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PREFACE

Optimum wutilization of Defense Mapping Agency (DMA) production
requires that the accuracy of the source material, interim and final
products be considered. This atcuracy is expressed by an error statemént
which indicates whether the product is reliable and acceptable or should
be wused with discretion, Therefore, the error statement must be
representative of the product and have a sound statistical basis. The
purpose of this report is to present and explain the theory and procedures
for providing a valid and meaningful error statement.

The normal distribution of linear errors is explained in detail
because two and three-dimensional error distributions are more easily
analyzed statistically by individual treatment of the linear components.
The principles of the linear error distribution apply only to independent
random errors, assuming that systematic errors have been eliminated or
reduced sufficiently to permit treatment as random errors.

This report is based on three reports produced at the Aeronautical
Chart and Information Center (now the Defense Mapping Agency Aerospace
Center) . These reports are Principles of Error Theory and Cartographic
Application, ACIC Technical Report No. 96, February 1962; Users Guide to
Understanding Chart and Geodetic Accuracies, ACIC Reference Publication
No. 28, September 1971; and Circular Error Probability of a Quantity
Affected by a Bias, Studey No. 6, June 1963. This report borrows heavily
from the material in these three reports.

I" e vii
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1. INTRODUCTION

Cartography, photogrammetry, and geodesy, as practiced at the Defense
Mapping Agency (DMA), involve the measurement of physical quantities ‘and
the utilization of such measurements. Regardless of the precision of the
instrument, no measurement device or method gives the true value of the
quantity measured. Mechanical imperfections in instruments and the limi-
tations introduced by human factors are such that repeated measurements of
the same quantity result in different values. Variations among successive
values are caused by errors in the observations. The true error of each
observation is the difference between the true value of a quantity and the
measured value, -

While the theory of errors does not yield a true value nor improve the
quality of observations, it does provide a way of estimating the most
probable value for the quantity and of determining the certainty attribu-
table to the estimate. This measure of the certainty will be called the
precision index and ni]l be the value that is attached to the DMA product
to express the product's reliability. On such DMA graphics as the Air
Target Chart this evaluation is expressed in the form of a reliability
diagram. The reliability diagram will express the horizontal accuracy and
vertical éccuracy of the chart. Although some charts lack an accuracy
statement, the basic concepts of horizontal and vertical accuracy apply to
all series of charts and other products such as positioning data bases.

Using error theory, the user of DMA products can develop for himself
accuracy estimates for products that do not furnish reliability infor-
mation. This report will describe how to combine error measures to obtain
the reliability estimates desired by the user. Use of error propagation
techniques allow the user to relate DMA furnished accuracies to the
variables of his interest.
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2. ERRORS

2.1 (lasses of Errors

Errors fall into three general classes which may be categorized
by origin as (1) blunders, (2) systematic, and (3) random {11 [2] [3].

Blunders are mistakes or gross errors. Blunders may be caused by
the wrong reading of instruments, transposing numbers or equipment
failures. Blunders are usually large and easily detected. Blunders
cannot be considered part of the sample from a statistical point of
view. For this reason great care should be taken to avoid blunders when
making observations., Observation and data collection methods should be
planned to include redundancy and reasonableness checks. Since blunders
are considered to be outside the population, they should be investigated
and explained before being eliminated from the population. If there is no
evidence of disturbance in the observations or data causing the lack of
homogeneity in the population, data should not be eliminated solely on the
basis of the magnitude of the error. Often data or observations are
edited on the basis of a three sigma test. In this test the observations
are averaged, and any that are more than three standard deviations from
the mean are rejected. When an accuracy evaluation is being based on a
data set there can be no automatic elimination of data as blunders.

Systematic errors affect the observations in the same way, hence
they are hard to detect by repeated observation. Systematic errors may
have the same sign and value, the so-called constant error or bias. In
cartographic applications, systematic errors may occur due to instrumental
factors or due to human limitations. Systematic errors may follow some
pattern such as refraction or distortion due to the curvature of the
earth. The method of compensating for systematic errors is to model them
mathematically. The theorical model of the observations should attempt to
mathematically compensate for all known systematic errors. If the effect
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of the error is not included in the theoretical model, the error should be
removed from the observations.

Random errors result from accidental and unknown combination of
causes beyond the control of the observer. They are characterized by:
positive and negative errors occuring with equal frequency, small errors
occuring more frequehtly than large errors, and extremely large errors
occurring rarely. Random errors are the errors that remain after the
blunders and systematic errors have been removed. Due to their
unpredictably random errors cannot be eliminated from observations.
Because of these random errors it is impossible to measure (observe) the
'true' value, '

Though it 1is impossible to predict random errors, they have
characteristics that may be expressed mathematically. The random errors
of repeated observations usually display a normal frequency distribution.
Because of the nature of these characteristics, the frequency distribution
of random errors can be expressed mathematically by the normal distribu-
tion function. Assuming all errors are independent and random (conforming
to the normal distribution function) the analysis of these errors allows
us to derive accuracy information on the observation. The probability
that a random error will not exceed a certain magnitude may be inferred
from an analysis of the normal frequency distribution of the random
errors,

2.2 Precision and Accuracy

Although the terms precision and accuracy [1] [2] [4] are often
used interchangeably, there is an important difference between them. By
definition, precision is the closeness with which repeated measurements
made under similar conditions are grouped together; and accuracy is the
closeness of the best estimated value obtained by the measurements to the
"true” value of the quantity measured.




Figure 2-1.

Precision and Accuracy

DMA TR 8400.1
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~

Precision is affected only by the random errors in the measuring
process while accuracy is affected by the precision as well as the
existence of unknown or systematic errors. The difference between
precision and accuracy is illustra;ed in Figure 2-1 where the plots of

errors in a circular distribution are shown. In Figure 2-la, the points

are grohped closely together and the measurement is said to be “precise”.

It 1is also accurate because the center of the group coincides
with the center of the circle. In Figure 2-1b, the grauping is still
precise but inaccurate because it is not centered on the center of the
circle, Instead, the mean of the points is offset by a systematic error
or bias. The measurements shown in Figure 2-1b are “inaccurate" because
of the bias even though they are "precise® (grouped closely). In
Figure 2-1c, the points exhibit neither clase grouping nor nearness to the
center. They are, therefore, not precise and not accurate. Measurements
can be precise and inaccurate at the same time, but they can never be
accurate unless they are precise also.

The basic definition of an error distribution assumes that
systematic errors and blunders have been removed and only random errors
are left. However, systematic errors cannot be removed from positional
information unless some means exist for their detection such as comparing
this information against given control. Consequently, if systematic
errors are not removed, they will have an effect (for example) on geodetic
and photogrammetric measurements and the resulting positional information.
It is not always possible to remove systematic errors from positioning
information. To give the user some knowledge of the accuracy of the
product he is using, methods have been devised to state the uncertainty of

the products.

In the discussion of horizontal and vertical accuracy, the terms
relative and absolute accuracy are often used. Absolute accuracy has the
same meaning as accuracy, that is, how well does the measured quantity

33
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compare to the true value. DMA defines absolute horizontal accuracy as
the statistical evaluation of all random and systematic errors encountered
in determining the horizontal position of a single data point with respect
to a specified geodetic reference datum. It is expressed as a circular
error at the 90 percent probability level. Absolute vertical accuracy 1is
defined as the statistical evaluation of all random and systematic errors
encountered in determining the elevation of a single data point with
respect to mean sea level. It is expressed as a linear error at the 90
percent probability level. Absolute accuracy is determined by comparing
data points on a map, chart or re]aied product to points with known
horizontal positions and elevation on the specified geodetic datum and
mean sea level.  The absolute error will include all uncertaintfes and
biases associatedjwith relating the product to the specified datum. DMA
defines relative (point-to-point) horizontal accuracy as the statistical
evaluation of all random errors encountered in determining the horizontal
position of one data point with respect to another, It is expressed as a
circular error over a specified distance at the 90 percent probability
level, It defines relative (point-to point) vertical accuracy as the
statistical eva]uation‘of all random errors encountered in determining the
elevation of one data point with respect to another., It is expressed as a
linear error over a specified distance at the 90 percent probability
level, The - main thing that should be pointed out about relative
accuracies is that they do not translate into absolute accuracies. For
instance, the relative accuracy involved in resolving a point on an image
is not the absolute accuracy of positioning that point on the ground with
respect to a geodetic datum.

Obviously due to their nature, relative errors will be smaller
than absolute errors. If an absolute measure of the accuracy of a data
set or map is required, one way to obtain it is to compare the data to an
independent set of data that is known to be accurate in the geodetic frame
of reference. An example of this would be comparing map points to points
positioned by field survey which is on the datum for which the absolute
accuracy is desired,
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3. REVIEW OF THE BASIC CONCEPTS OF PROBABILITY

3.1 Probabi]itz

Probability [5] [6] is defined as the frequency of occurrence in
':proportion to the number of possible occurrences, or simply, the ratio of the
number of successes to the number of trials. Let A and B symbolize two com-
Pletely independent events. P(A) is called the probability set function of
the event "A", The value of P(A) is called the probability of event "A" and
the value of P(B) is called the probability of event "B". The probability of
any event must be between 0 and 1. That 1s, zero probability means the parti-
cular event will never take place, and a probability of one means that the
particular event will occur with each trial. For example, the probability of
rolling the number 7 with a single die is 0.0 (an impossible event), but the
probability of rolling a number from and including 1 through 6 is 1.0.

Rule 1. The probability of event A is equal to or greater than 0 but
equal to or less than 1,

0<P(A) <1
Rule 2. The probability of a failure, or the probability of an event
not occurring, is 1 minus the probability that it will
occur, !
1 - P(A) = failure of event A
Rule 3. The probability of two mutually exclusive events A or B
occurring 1is equal to the sum of their individual

probabilities.

P(A or B) = P(A) + P(B)
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An example is the probability of efther 2 3 or 4 occurring on the single roll
of die:

P(3 or4) =1/6 +1/6 = 1/3

Rule 4, The probability of two 1independent events occurring
simultaneously is equal to the product of their individual
probabilities.

P(A and B) = P(A) * P(B).

If A is the value of the first die and B is the value of the second die, then
the probability that A = 3 and B = 4 in a single roll of both dice,

P(A=3 and B =4) =1/6 * 1/6 = 1/36.

The probabilities of occurrence of the numbers summed from each of 36
possible combinations resulting from the single roll of two dice are presented
in Figure 3-1. The probability of rolling the number 7, for example, ts 6/36
or 1/6 since there are six combinations which have a sum of seven. A histo-
gram shown in Figure 3-1 {s a discrete representation of the normal
probability curve for the roll of two dice.

3.2 The Normal Distribution of a Continuous Random Variable [6] [7]

The area under the normal probability density curve (Figuné 3-2a,
page 14) represents the total probability of the occurrence of the continuous
random variable x and is equal to one, or 100%. The mathematical expression
of the curve is the normal probability density function, p(x):

2
- AX - H
plx) = —t—e %0 (3-1)
g Vor
where: x = the random variable

10
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|
‘ Number " Probability . ) Combinations
. 1 0
-2 1/36 - - (1,1)
- 3 2/36 (1,2) (2,1)
4 3/36 (1,3) (3,1) (2,2)
5 4/36 (1,4) (4,1) (2,3) (3,2)
- 6 5/36 (1,5) (5,1) (2,4) (4,2) {3.3)
, 7 6/36 (1,6) (6,1) (2,5) (5,2) (4,3) (3,4)
- 8 5/36 (2,6) (6,2) (3,5) (5,3) (4,4)
9 4/36 (3,6) (6,3) (4,5) (5,4)
. 10 3/36 ~ (4,6) (6,8) (5,5)
11 2/36 (5,6) (6,5)
‘ 12 1/36 (6,6)
13 0
‘
|}
l 6/36
| 6/36 40 r\\\ 5/36
ir 4/38 // AR ,\\ 4/36
3/33//| ) S & N
2384~ -1 —p oo 10N 536
./ _: Loborpr Lo
17384 - S — b -1 it iatr il ol e~ UC
_1 g S~
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u = a parameter representing the mean value
of x

c = a parameter representing the standard deviation,
a measure of the dispersion of the random
variable from the mean, u . (The square
of the standard deviation is called the varfance.)

vZn = 2.5066,..

e = the base of natural logarithms, 2,71828...

The parameters are computed from an infinite number of random variables:

(3-2)

o= (3-3)

where:
n = the number of random vgriéblgs ‘

The normal probability distribution function, P(x), determines the
probability that the random variable wT1f assume a value within a certain
interval and is derived from the normal probability density function by
integrating between limits of the desired interval. Letting the limfts range
from - « to x:

12
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X
P(x) = [ p(x) dx

P(x) = (3-4)

Q
)

8 — Ix
|-
4]
N
Q
(=N
x

The value of P(x) ranges between 0 and 1, illustrated in Figure 3-2b. As X
approaches its upper 1limit, P(x) approaches 1; as x approaches its lower
limit, P(x) approaches zero. This is true since x cannot exceed nor be less
than its defined limits. ‘
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Pl

m k

-~ Figure 3-2a.  Normal Probability Density Curve

Figure 3-2b.  Normal Probability Distribution Cuwg
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4. ONE-DIMENSIONAL (LINEAR) ERRORS

4.1 Linear Errors [4] [8]

_ An error in a measurement is the difference between the "true" value
of a quantity and the measured or derived value. The "true" value can never
be determined because of instrument limitations and human fallibility, but can
be estimated by taking a sufficient number of measurements. In determining
the value of a quantity, only one measurement may be necessary when an approx-
imate value is sufficient. If, on the other hand, the quantity is important
enough to require a more precise value, repeated measurements are made,
Variations will exist between the values obtained from several measurements,
Applying the theéry of the normal distribution to these measurements, the
"best" value for the quantity is the Mean or average of all the observed
values. The differences between the mean, usually denoted by the Greek letter
"mu" (u), and the observed values are the apparent errors or residuals which
are used to estimate a statement of precision for the measuring process. When
the residual errors (the measurement minus the mean) here denoted by (x), are
randomly distributed ébout the mean, the precision of the measurements is
expressed by a single term, the standard deviation. The standard deviation is
designated by the Greek letter "sigma" (o)and sometimes referred to as the one
sigma (lo) error. The square of the standard deviation (02) is called the
variance, For a linear distribution, the standard deviation is computed by
squaring all the restdual errors, adding the squared values, dividing by the
number of errbrs (1ess one), and taking the square root:

L2
°=/ wI

4.2 Application of the Probability Density Function to Random Errors [7]

The normal probability density curve of an infinite number of mea-
surements of the unknown quantity X is expressed by parameters analogous to
those of equation (3-1). The true value, Mo is the mean of the distribution
of the observed values X1, X3, X3, eoeXpe The curve, illustrated in
Figure 4-1 (page 17), has the mathematical form:

15




DMA TR 8400.1

(X - w)?
L T
p(X) = e ¢ (4-1)
av 2n
I (xi - Hx)z
where: o= 1=1

The normal probability density curve of errors has a mean of zero and is
identical in form to that of the observed values. Illustrated in Figure 4-2
(page 18), the curve is described by the functfon:

2 v %

p(e) (4-2)

]
1 ]

where: €

the true error;
e=Xj-uy

the standard deviation of the errors

Q
]

Since the true value of a quantigy cannot be measured and an infinite
number of measurements {is impractical, estimitéd values obtained from a finite
number or sample of measurements must be substituted for the true value and
the parameters of the density function, As\the number of measurements in the
samplé becomes larger, the reliability of the estimate increases. Often, 30
values provide an adequate estimate. The most probable value ( Y')

approximates the true value and 1is determined from the arithmetic mean of l 3
observed values:

% |
Xy
x -1l (4-3) H
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P (X)

Xi=Hyx — €. -0 My . +0 X; =My + €

Population

p (X)

+Ox X|=:-X-+x‘

Figure 4-1. Normal Probability Densiity Curve of Observed Values
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(Xj <y B (X = uy) (X; > puy)

Population

pix)

x 0 ""ax \ +X
(X; < X) Xi=X) (X;>X)
Sample

Figure 4-2, Normal Probability Density Curve of. Errors
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The true error is approximated by the residual "x*, hereafter designated the

- error and defined as the difference between the observed value and the most
- probable value:

X = x.i - 7 ) . (4-4)

The standard deviation computed from a sample (o&) is {dentified by a
subscript and computed from:

I K
% = /T (4-5)

This term is sometimes referred to as the standard error. The normal
probability density function of errors now becomes :

x2
: 1 - 75;2_
p(x) = _——TZE:- e (4-6)
o, Y2x

The parameters X and o, may assume different values as various sam-
ples are selected from the same population and are, therefore, random vari-
ables with dispersion expressed by similar parameters. The standard deviation
of mean, o-x; and the standard deviation of the standard deviation, o, » indi-
cate the reliability of the estimate and help "round off" the computed values:

n 2
= 131 s (4_7)
°Y ni(n-1)

= i = (4‘8)
%o 2 (n - 1)2 ;; (n-1)
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4.3 Precision Indexes

A precision index [7] reveals how errors are dispersed or scattered
about 2zero and reflects the 1limiting magnitude of error for various
probabilities. For example, 50% oﬁ all errors in a series of measurements do
not exceed 120 feet; 90% do not exceed 149 feet. Although different errors
are given, each expresses the same precision of the measuring process (Figure
4-3, page 22)., The standard deviation ( o, ) and average error (n) are two
indexes with theoretical derivations, Common usage has included three
additional probability levels which are, in effect, precision findexes: (1)
probable error (PE), (2) map accuracy standard (MAS), and (3) and three sigma
error (30) . _

The standifd deviation is the most important of the indexes and has
the probability of:

*oy

P(x) = f p(x) dx = 0,6827 (4-9)
-0,

Or, 68.27% of all errors will occur within the limits of L

The average error is defined as the mean of the sum of the absolute
values of all errors:

n
1 1= T
n= i=1 - ) L:L (4-10)

The probability represented by the average error is 0.5751, or 57.51%. The
average error is easily computed from the standard deviation:

n=0.7979 o, | (4-11)

20




IMA TR 8400.1

The. probable error is that error which 50% of all errors in a ’
Tinear distribution will not exceed. Specifically, the true error is equally
likely to be 1larger or smaller than the probable error. Expressed
mathematically: ‘

PE

b
/ p(x) dx = 0.50 ’ (4-12)
a

The probable error is computed from the standard error:

T x
PE = 0.6745 T—:—f = 0.6745 Ux (4-13)

The U.S. National Map Accuracy Standards specify that no more than
10% of map elevations (a one-dimensional error) shall be in error by more than
a given limit. The standards are commonly interpreted as limiting the size of
error of which 90% of the elevations will not exceed. Therefore, the map
accuracy standard i; represented by:

bl
MAS = [ p(x) dx = 0.90 (4-14)
al

or, computed from the standard deviation:
MAS = 1.6449 o, | (4-15)

The three sigma error,'as the name implies, is an error three times

the magnitude of the standard deviation. The 3o error is used because it
approaches near certainty -- 0.9973 or 99.73% probability. Since the
probability of a 1linear random error falling outside these 1limits is
sufficient cause to consider such errors as "blunders”.

The meaning of the standard deviation with respect to the normal
distribution function is illustrated in Figure 4-3. The vertical axis, p(x),
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represents the mean value for the measured quantity. The normal error
distribution function about the mean is expressed in one sigma units centered
on the mean. . The property of the distribution curve is twofold:

- The total area under the distribution curve is equal to unity.

- The area under the curve between anmy two values of x; and xp 1is
equal to the probability of an error occurring between these limits.,

- The area under the curve between the limits X =0 and Xp = -0
is 68.27% of the total area under the curve. Under the assumption that the
errors are normally distributed, this means there is a 68.27% probability that
errors in any further measurements under the same conditions will not exceed
the standard deviation. The standard deviation does not indicate the
probability that an error of a certain size will occur, it only indicates that
approximately 68% of the errors will fall within the specified limits of plus

or minus one sigma.

-X

b= 50%(PE)
%--—»ea%'(ifx)——-l

- 90% (MAS)
' 99.7%(30)

Figure 4-3.  Normal Linear, Distribution
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Factors for converting from one probability level to another are
shown in Table 4-1. For example, an error of +20 feet in elevation at 90%
probability can be converted to 112 feet at 68.27% by multiplying 20 feet by
the factor 0.6080.

Table 4-1

Linear Error Conversion Factors

To
From 50.00% 68.27% 90.00% 99.73%
50.00% 1.0000 1.4826 2.4387 4.4475
68.27% 0.6745 1.0000 1.6449 3.0000
90.00% 0.4101 0.6080 1.0000 1.8239
99.73% 0.2248 0.3333 0.5483 1.0000

4.4 Examples of Linear Errors

The foregoing discussion demonstrates the use of the normal distribu-
tion in the analysis of random errors. There are numerous opportunities for
the occurrence of random variables in cartographic and geodetic work. For
example, the base lines and measured angles, observed lengths of lines, eleva-
tions, etc., resulting from geodetic triangulation, traverse, and leveling all
contain error. Celestial and gravimetric observations as well as distances
measured by trilateration are also examples of measures where linear errors
occur. The principles of error theory can be used advantageously to analyze
the results in terms of the specifications established for the survey.

At DMA, the normal linear error distribution has important applica-
tions with respect to evaluating the accuracy of positional information. In
addition to the one-dimensional errors which exist in such positional data as
elevations above mean sea level, the linear error components of two-dimen-
sional positions can be analyzed by applying principles of the normal linear
error distribution. The following sections contain discussions of the utility

of the 1linear standard error for analyzing two and three-dimensional
distributions.
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.5, TWO-DIMENSIONAL (ELLIPTICAL, CIRCULAR) ERRORS

5.1 Introduction

_ A two-dimensional error is the error in a quantity defined by two
random variables. For example, consider the true geographic position of a
point referred to the X and Y axes. Each observation of the X and Y
coordinates will contain the errors “x* and "y". When assumed random and
independent, each error has a probability density distribution of:

x2
_ " 26,2
px) = wt_e X
oy Von
2
1 " 262
and: ply) = e Y
oy/Z?

Applying Rule 4 of Section 3.1., the two-dimensfonal probability density
function becomes:

‘ 2 2
. - 1 ( X + Yy )
plxyy) = —2—e 2792 o7 (5-1)
2n o qy
Rearranging terms: 2 2
1 ( X + Yy )
: | Tttt
= g o
{;3* p(X:.Y) Oxdy 2'" = @ X y
Therefore:
-2 1n [ pxy) o 0 2] =Xy 4ds (5-2) »
o qy |
Inun
For given values of p(x,y), the left side of equation (5-2) is a constant
K2
25
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Then:
2 2
2 . X -
x-ozwb- {(5-3)
X y

For values of p(x,y) from 0 to = , a family of equal probability densit
ellipses are formed with axes K dx and K ¢, . ‘

y
When Oy = 9y equation (5-2) becomeé: ; (5-4)
-20x2 In [p(x.y) "xz Za] = xZ+ yz

For a given value of p{x,y), the left side of equation (5-4) is a constant
which is the square of the radius of an equal probability density circle.

The probability density function integrated over a certain region
becomes the probability distribution function which yields the probability
that x and y will occur simultaneously within that region, or:

P(xoy) = [ ] plx,y) dx dy (5-5)
However, since both positive and negative values of either ®x™ or "y" will
occur with equal frequency, the errors may be considered as radial errors,

designated by "r", where r = X"+ y .

5.2 Elliptical Errors

The probability of an ellipse [10] is given by the distribution

KZ
T

P(x,y) = 1 -¢ (5-6)

The solution of equation (5-6) with values of K for different
probabilities yields the results shown in Table 5-1, For a 39%
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probability, the axes of the ellipse are 1.000 9 and 1.0000 oy; for a

50% probability, the axes are 1.1774 oy and 1.1774 Oy -

Table 5 - 1

Values of the Constanht K

Probability K
39.35% 1.0000
50.00% 1.1774
63.21% 1.4142
90.00% 2.1460
99.00% 3.0349
99,.78% 3.5000

The use of the error ellipse is complicated by the problem of
axes orientation and propagation of elliptical errors. Therefore, the
ellipse is commonly replaced by a circular approximation which is easier
to use and understand.

5.3' Circular Errors

The probability distribution function [9] of the radial error
expressing the probability that “r" will be equal to or less than radius
R, or the probability that the point (x,y) will be contained within a
circle of radius R, is derived in Appendix D and stated as:

2
r %
-— [1 +---z] 2
P(R) = L ,}re 4o % 1 [-._-2'2 (—-zoy - 1)1 dr (5-7)
oqu Y L P o
0 Yy X

A special case of the P(R) function (5-7) is formed when r=R, and
. =0 =o0.= 0. . From Appendix D, part 2:
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P(R) = Pc =1-¢ ‘ {5-8)
Pc = the circular probability distribution function, a special
case of P(R)
R = the radius of the probabflity circle

o. = the circular standard error, a special case of crwhen

= =
Or, Ox Oyo

When g, and oy are not equal, the P(R) function, (5-7), is
modified by letting "a" equal the ratio o / oy where o, 1s the smaller
standard error of the two. Then from Appendix D, part 3:

P(R) =__.2.9.7 ’} e’ I, (vk) dv : (5-9)
1 +a 0
where:
R 1+ al
X = 3 L . ]
4
ay a
_ rz 1+ az
v = 4 2 [ az ]
%
K = ) a2
1+ az

Equation (5-9) can be solved for differént probabilities or values of P(R)
representing precision indexes of the error distribution,
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5.4 Circular Pfecision Indexes

The precision indexes [10] illustrated in Figure 5.1 (page 35)
are measures of the dispersion of errors in a distribution and represent
the error which is unlikely to be exceeded for a given probability. ‘The
preferred circular precision indexes, consistent with indexes used in the
linear distribution, are: (1) the circular standard error ( o, ), (2) the
circular error probable (CEP), (3) the circular map accuracy standard
(CMAS), and (4) the circular near-certainty error, three point five sigma
(3.5 9 ). The mean square positional error (MSPE), an additional index

which has been used at DMA, is not recommended because the probability
represented varjes when % and o, are not equal.

The probability of the circular standard error is found by
solving equation (5-8) for Pe when % = R , thus:

0. 2
Po= 1-ce
&
Pe= 1-e
Pc = 1 - 0.60653
«*e Po = 10,3935 (5-10)

That is, 39.35% of all errors in a circular distribution are not expected
to exceed the circular error.

For a truly circular distribution, the linear standard errors are
equal and identical to the circular stgndard error (ox = oy = oc) . When
9y and oy are not equal, a normal circular error distribution may be
substituted for the elliptical distribution. The substitution is
satisfactory for error analysis within specified °m1n/°max ratios.
Because of distortion in the error distribution for low ratios, however,

the circular concept should be used with discretion.

29
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Note:

When P(R) = 39.35%,

Table 5-2
Solution of P(R) Function for P(R) = 39.35%
min %
- S x | | Gmax
1.0000 1.0000
0.8165 0.9063
0.6547 0.8197
0.5000 ‘0.7323
0.3333 10.6327
0.2294 0.5727
0.1005 0.5274
0.0 0.5151
R ~ Cco
Table 5-3

Solution of

P(R) Function for P(R) = 50.00%

min

_CEP
%max “nax
1.000 1.1774
0.8165 1.0683
0.6547 0. 9690
0.5000 0.8707
0.3333 0.7696
0.2294 0,7174
0.1005 0.6835
0.0 . 0.6745

Note: When P(R) = 50.00%, R ~ GCEP
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An approximate circular standard error is determined from
equation (5-9) by letting P(R) = 39.35% and R = o, « Values of o/,
for ratios of °min/°max from 0.0 to 1.0 are contained in Table 5-2 and
plotted in Figure 5-2 (page 39). For the °h1n/°hax ratio between 1.0 and

0.6, the curve is a straight line with the equation:

o, ~ (0.5222 Oin * 0.4778 qnax) . (5-11)
A rapid approximation gives a slightly larger 9% value for the same
°hin/°hax ratio:

o i .E i . - .ﬁj .
, 3

o. ~ 0.5000 (o* + qy) . (5-12)
As °min/°max approaches zero, the 39.35% probability curve follows a
transition from circular, through elliptical, to the linear distribution
form. The curve does not effectively represent a circular standard error
for Qmin4°hax ratios less than 0.6 because it is not compatible with
other circular precision indexes. For example, the factor 1.774 converts
a circular error at 39% probability to a circular error at 50% probability
when qmin/Qmax = 1,0, but when %min = 0, the factor converting a linear
error at 39% probabiltiy to a linear error at 50% probability is 1.3094.
The circular standard error computed from equation (5-12), however, can be
converted to other circular precision indexes by constant circular
conversion factors for omin/ormax ratios between 1.0 and 0.2 and is,
therefore, the preferred method for approximating the circular standard

error,

The circular error probable is the circular error which 50% of
all errors in a circular distribution will not exceed, or the value of R
in equation (5-5) which makes Pc = 0.5, The CEP in a truly circular

distribution (i.e. oy =0, =0 ) is computed by:

R2
T 202
0.5=1-c¢e ¢

k)|

R TR+ 7 T T T T - P e
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R2
1-05= ¢
2
Th 0.5 = « R
Zoh

RZ = 0.69315 (20.%)

R = 1,1774 A

CEP = 11,1774 9% (5-13)

X -
equation (5-9) by letting P(R) = 50.00% and R = CEP, Values of CEP/ O

for ratios of min/° from 1.0 to 0.0 are tabulated in Table 5-3. The
50% probability curve p1otted in Figure 5-3 is approximated by a series of
straight lines for different ratios of %min’ %max with the equations:

when‘ o, and oy are not equal, an approximate CEP is determined from

CEP ~ (0.6142 ¢ 1n+ 0.5632 omax)
when Wmin/a is between 1.0 and 0.3

CEP ~ (0.4263 o, ; + 0.6196 o )

when Gnin/"max 1S between 0.3 and 0.2

A rapid approximation of the CEP plots as a siraight line which intersects
the 50% probability curve at the point where qmin’“hax = 0,2 and has the
equation:

§

CEP ~ 0.5887'(0 +oy)
when o / 1s between 1.0 and 0.2

max

The CEP computed by this equation is compatible with the circular standard
error computed by equation (5-12) and is, therefore, the preferred method
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for approximating the circular probable error within the specified limits.

Although a circular error concept is not recommended for

°hin/°hax ratios less than 0.2, a nearglinear 50% probabilty error may be
computed to represent a CEP for lower ratios when a comparison of circular
errors derived from different sources is required:

CEP ~ (0.2141 %nin ¥ 0.6621 o )

max
when qmin/°hax is between 0.2 and 0.1

CEP ~ (0.0900 Onin * 0-6745 qmax)

“-when %in/%max 15 between 0.1 and 0.0

CEP ~ 0.6745 Omax
when %Min = 0

The following alternate methods of computing an approximate CEP are not
recommended because of 1imited applicability:

2 2
g

[+
CEP ~1.1774 "—2-"-—1-
and CEP ~ 0.8325 /axz toQ

when o . /o .. is between 1.0 and 0.8

The mean square positional error is defined as the radius of the
error circle equal to 1.41420c and has little significance in a truly

circular error distribution. However, when ¢, and oy are approximately

X
equal, the MSPE defines the error in a geographic position and is

computed:
MSPE = /of + oyz (5-14)
when °hin/°hax is between 1.0 and 0.8
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The probability represented by the MSPE can be found by solving equation
(5-8) for P_ , when R = MSPE and o is approximated by equation (5-12),
thus:

2
R
R
P = 1-e %%
[of
; (oxz + oxz)
. 2
P, = 1-e Zo, (5-15)
When o, = qy :
- -1.0
PC = ] -8
Pc =1 - 0.3679
P = 63.21% " (5-16)

When o, * o, the solution of (5-15) yields yalues of P ranging from 64%
variation in probability, the MSPE is not recommended for use as a

precision index.

The 2drms accuracy standard has been suggested [11] for use in
the navigation community., The 2drms is defined by:

2drms = 2/ ¢ 2 4 5 2

X ¥y

Hence, it will have a radius twice the MSPE. The percentage level for the
2drms is 95.4%. Like the MSPE, it will vary in probability and may be
skewed by large errors.

2drm = 2,99 o,

34
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Normal Circular Distribution

Figure 5-1.
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The circular map accuracy standard is based on the percentage
level in use by the U.S. National Map Accuracy Standards which specify
that no more than 10% of the well-defined points in a map will exceed a

given error., The standards are commonly interpreted as limiting the size
of error which 90% of the well-defined points will not exceed. Therefore,
the circular map accuracy standard is represented by the value of R in

equation (5-8) when P, = 0.90, and is computed:
CHMAS = 2.1460 o, (5-17)
or CMAS = 1.8227 CEP (5-18)

The three-five sigma error, representing a circular probability
of 99.78% approaches hear-certainty in a circular distribution and has a
magnitude 3.5 times that of the circular standard error.

5.5 Discussion of Circular Errors

The normal circular error distribution is derived from the
bivariate or two-dimensional distribution of errors. For typical
applications, the variables x and y are random errors defined as Eastings
and Northings, downrange and crossrange components, or latitude and
longitude converted to some metric unit. It is rare that these errors are
uncorrelated and their standard errors equal. As such, they are referred
to as elliptical distributions. To simplify probability calculations, the
elliptical distribution 1is converted to an -equivalent circular
distribution. For the following discussion, it will be assumed such a
conversion has taken place according to the following formula which is
adequate for cases where the larger standard error does not exceed five
times the smaller:

g. = 0.5 (ax + c}) (5-19)
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The quantity (ob) is defined as the circular standard error and is the
basic statistical parameter used in probability estimates based upon the
normal circular distribution.

!

. The probability associated with circular errors is used in the
same way as for linear errors. However, {nstead of the area under the
normal distribution curve, the probability in a circular distributfon is a
function of the radius of a circle centered on the mean of the error
distribution (Figure 5-1, page 35). A circle with a radius equal to the
circular standard error represents 39.35% probability in a normal circular
distribution. Other probability levels can be defined by circles of
larger radii. For example, a circle with a radius of 1,1774 times the
circular standard error represents 50% probability and 1is known as the
circular error probable (CEP) which is common to missile, bombing, and

artillery error terminology.

The radius can be increased further to describe a circle
representing 90% probability. The latter, which is approximately twice
the circular standard error (or 2'1460°t) »is known as the circular map
accuracy standard (CMAS). Circular errors (CE) at the 90% level are
sometimes expressed as CE 90%. The expression "90% assurance" is another
term used to express confidence in an estimate, However, probability
rather than assurance is the preferred term because it has a statistical
meaning.

Circular distribution probabilities can be converted from one
level to another by the factors in Table 5-4. For example, a geographic
position is assigned a CMAS of 500 feet. The CEP (50% probability) of the
position is estimated by multiplying 500 feet by the factor 0.5486 from
Table 5-5 to obtain 274 feet. This does not imply that there is a 50%
hrobabi]ity that an error of 274 feet will occur, rather it means that
there is a 50% probability that the error will not be larger than 274
feet.

37
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5.6 Circuiar Conversion Factors

The relationships of the circular standard error to other
circular precision indexes [10] are summarized in Table 5-4. Conversion
factors’ (Table 5-5) computed from thése relationships convert a circular
error at a given probability to a circular error .at another probability.
When a circular error distribution 1is substituted for an elliptical
distribution, the circular conversion factors are retained.

Table 5-4
Summary of Circular Precision Indexes

LA

Symbol ) Probability Derivation

% «3935 1,0000 9.
CEP .5000 1.1774 %
MSPE .6321 1.4142 9
CMAS . 9000 2.1460 9%
3.5 % .9978 3.5000 9

Table 5-5
Circular Error Conversion Factors
To
From 39,35% 50.00% 63.21% | 90.00% 99.78%
39.35% 1.0000 1.1774 1.4142 | 2.1460 3.5000
50.00% 0.8493 1,0000- } :1.2011 | 1.8227 2.9726
63.21% 0.7071 0.8325 1.0000 | 1.5174 2.4749
90.00% 0.4660 0.5486 0.6590 | 1.0000 1.6309 -
99.78% 0.2857 0.3364 0.4040 | 0,6131 1.0000
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6. THREE DIMENSIONAL (ELLIPSOIDAL, SPHERICAL) ERRORS

6.1 Introduction

. A three-dimensional error is the error, in a quantity defined by
three random variables. Expanding on the example in Section 5.1., a point
is referred to X, Y, and Z axes which establish the spatial position of
the point. When random and independent, the errors X, ¥, and z each have
a linear probability distribution. The three-dimensional probability
density function is expressed by:

2 2 2
1, x y ., z
i ‘--2(:°x .+-;;2-*-E;2)
p(x,y.z) = 3 1 € (6‘1)
2
(2w) o, Qy 9,

Similar to Section 5.1, the probability density function can be written:

2. 2 2
2 X z
where:
} | ;‘%
2 : B
W= = - 2 In (p(x,y.z) o, qy 9, (2n) )

For values of the constant W2 from 0 + = , the density function defines a
family of ellipsoids of equal probability density.

6.2 Ellipsoidal Errors

" The probability of an error ellipsoid is given [10] by the
probability distribution function:

W 1,2 |
P(s) = @{) e " Tt gt | (6-3)
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where: s = the radial error;

S = foz + yZ + 28

s o
t“'—‘-—a—

0.2

rs

g

ps * standard error of the radidl erdor “s®

The solution of equation (6-3) for W ylelds the values given in Table 6-1.

Table 6-1
Values for the Constant H

P
.
r
.
r

" Probability W >
19.9% 1.000 |
50 1.538
60,8 1,732
9% 2.500 |
R I | g—
99 3.368 1 1
99,89 4,000 | 7
46 b



RTINS AR R 3 o R o .
o - - ]lll: IIII illlf ‘II'

DMA TR 8400,1

6.3 Spherical Probability Distribution Functfon

Nhen‘o=c=o

. 9ps = Oy » equation (6-1) becomes
the spherical probability density function [10]: '
1 2°s2
P(s) = —a—e (6-4)
2 3
(2n) o

where: o

spherical standard error

Integrating p(s) from s = 0 to s = S, equation (6-4) becomes the spherical
probability distrtbution function:

52 SZ
-
2 ) 2
P(s) = f-?f(%;) - i S ) (6-5)

where: S = radius of the probability sphere
Equation (6-5) can be solved by an approximation formula:
2 Y

c -
' - =z
H e
P(s) ~ #KZ— 1.253:- Ce - o )
" ;( ' C+0.8 e -4

(6-6)

where: (C = S
%

6.4 Spherical Precision Indexes

A spherical error distribution is represented by indexes [10]
similar to those in Sections 4.4, and 5.4, Preferred spherical precision
indexes include: (1) the spherical standard error | LA )s (2) the
spherical error probable (SEP), (3) the spherical accuracy standard (SAS),
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and (4) the spherical near-certainty error, four sigma ( 405 }o The mean
radial spherical error (MRSE), an index which has been used at DMA, is not
recommended - because the probability represented varies  when

o., 0., and g_ are not equal.

x* %y z

The probability of an error sphere of radius equal to the
spherical standard error is computed by equation (6-6) for the condition

C =-E§— = ] as follows:

-3
/%: = 0,7978846

1
e 2= 0.60653

e “0-% _ 0.67032
0.8¢ ~%+% = 0.53626
P(S) ~ 0.79788 (1.253 - 0,6065 - 0.3948)

For a truly spherical distributioﬁk the linear Standard error are
equal and identical to the spherical standard error (ux =0, "0 = q) .
When Oy» Oy and o, are not equal, the spherical standard error is
approximated by:

LA ~ 0.333 (°x + oy + oz)

when °nin/Cmax is between 1.0 and 0.35

The substitution of a spherical form for an ellipsoidal distribution is
not recommended when the °min’°max ratio 1s less than 0.35.

r
r
r
jEj
r
r
r
I
I

I
I
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The following alternate method of approximating o is not
recommended because of limited applicability:

AJ//;*Z " qyz .y
o~ —3 (6-8)

when min/ %max is between 1.0 and 0.9

The spherical error probable is defined as the maghitude of the

spherical radius S when the function P(S) = 0.5 or 50%. Expressed in the

form S = Co

s the spherical probable error is computed by:

SEP = 1.5382 o (6-9)

The P(R) function £or two-dimensional errors is solved by the use of Grad
and Solomon's tables. Expanding this method into the spherical
distribution, the radius S for a 50% probability sphere (5502) was
computed in terms of Onax for ratios of qnin/"max and °mid/°max and
tabulated in Table 6-2. Utilizing these values, an approximation of the

spherical probable error can be computed:

SEP ~ 0,5127 (ox + o, + az) (6-11)

when %nin/ “max is between 1.0 and 0.35

The mean radial spherical error is the radius of the error sphere

equal to 1.73205. or v3 O in a truly spherical distribution. When '

o, * oy * o, , the MRSE is computed by:

MRSE ~ ,f;xz + gyz + 0.2 | (6-12)

z
when ®min/ %max is between 1.0 and 0.9

The probabilities represented by the MRSE are computed by equation (6-6).
Because of the variation in probability, the MRSE is not recommended for

use as a precision index.
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The spherical accuracy standard is defined as the magnitude of
the spherical radius S when the function P(S) = 0.9 or 90%. Expressed in

the form S = C T » the spherical accuracy standard is computed by:

SAS = 2.5000s (6-13)

The four sigma error, representing a spherical probability of
99.89%, approaches near-certainty in a spherical distribution and has a
magnitude four times that of the spherical standard error. '

Table 6-2 ‘
So]utiog of P(S) Function for P(S) = 50.00%

g g .
mid min v
qnax q“ax SEP ~ 5501 SEP ~ 0.512/ (Ox + O‘y + GZ)
Letting q., .
0.866 0.866 1.4016 %nax 1.4007
1.0 0.707 1.3892 Omax 1.3879
0.775 0.632 ' 1.2341 %nax 1.2341
0.577 0.577 1.1016 %nax ; 1.1044
0.894 0.447 1.2104 %na x : 1.2002
0.707 0.408 1.0894 %max T 1.0844
0.535 0.378 0.9791 %max ; 10,9808
S '

0.354 0.354 0.8689 %pax 0.8757
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6.5 Spherical Conversion Factors

The relationships of the spherical standard error to other
spherical precision indexes [10] are summarized in Table 6-3. Conversion
factors_(Table 6-4) computed from these relationships convert a spherical
error at a given probability to a spherical error at another probability.

Table 6-3
Summary of Spherical Precision Indexes

Symbo1 Probability Derivation

A .199 1.000 A

SEP .50 1.538 g

MRSE .608 1,732 A

SAS .90 2.500 o

4 LA . 9989 4,000 A
Table 6-4

Spherical Error Conversion Factors

To
From 19.9% 50% 60.8% 90% 99.89%
19.9% 1.000 1.538 1,732 2.500 4,000
50% 0.650 1.000 1.126 1.625 2.600
60.8% 0.577 0.888 1.000 1.443 2.309
90% 0.400 0.615 0.693 1.000 1.600
99.89% 0.250 0.385 0.433 0.625 1.000
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7. PROPAGATION OF ERRORS

7.1 Variance and Covariance Propagation

. The propagation of errors [1] [2] 1is sometimes called the
propagation of variances and covariances. Var1ancés, the measure of
dispersion of a random variable, has already been defined. The covariance
is a measure of the mutual variation of two random variables. Covariance
describes the correlation between two variables. Covariance is computed
from the equation:

n
oy Ty L (g - w) Ly - w) (7-1)
xy ~mel b M x i 'y A

where x;,y; are the observations of the variables x, y

s U mean of the set of observations

Hyx 2y

X

n ;he number of observations

The covariance matrix is a square symmetric matrix of the
variance and covariances of the random variables we are using. The matrix
may be any dimension depending on the number of random variables.

[ 2
g o (]
X1 1,2 F1 %3
2
I =lo g o (7-2)
X X1 %2 %2 52 "3
(o] g [¢)
| %1 %3 X2 X3 X3

If the random variables y;, and y, are linear functions of the random
variables, X1s and X2s they may be written:

Y1 = 3 t a1x) + apxp

Y2 = byt byxy + box,
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or written in matrix form:
Yy = c+ Cx (7-3)

where y = [y yzlt

X o= Ix It :
¢ =[ag byl

a a
C =|b] b5

It can be shown?\EZJ that the covariance matrices are related by:

R .
zyy C}:xx C ‘ (7-4)
a, a a. b
Y1 ?ylyz 1 "2 °2x1 °x1x2 1 71
or 2 = 2
b, b . a., b
°_y1y2 g A2 1 2 c’xlxz g x2 2 2

The matrix C is called the Jacobian of y with respect to x ,

denoted by Jyx‘

Jyy = (7-5)

yx

2112

It should be noted that even if there is no covariance in X,
that is

there may still be a covariance in Yy .
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7.2 Propagation Through Known Functions

Another method for the propagation of errors [1] 1is the
propagation of known errors through known functions. This method assumes’
the errors are independent and known. The equations for this propagation
are derived and shown in Appendix C. A quantity, x, is computed from two
measured quantities u and v, ‘where x = f(u,v) denotes a function of u and
ve The error o, of x is affected by the errors in both u and v. When

9 and o, are randomly distributed, the propagated error, o, » Can be
computed by the general equation:

2 2 '
5 _ 9X 2 ax 2
% = /(33 o ¥ (°5V % (7-6)
where: o, = the standard error of x
o, 9, = the standard errors of u and v

%§ .-%5 = partial derivatives of x, with

respect to u and v.

Applicatibn of’the general equation to specific conditions produces the
following .rules for the function flu,v):

Rule 1. Addition and Subtraction

X = au:tbv

o, = /’ a? 0“2+ b 20 vz , (7-7)

Rule 2. Multiplication and Division

X = tauv

[} / g 2 [+ 2

X “2 + g (7-8)
X u v
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Rule 3. Powers

v )

Indexes other than the standard error can be used to propagate
errors. For example, using Rule 1:

(PE), = f(ps)u"’ + (pE) 2
n, = nu2 + nv2

Ox = Ouz + 0 2

(MAS), = ./(m\s)u2 + (mas) 2
o), = / o) 2+ (30 2

However, note that the index must be consistent throughout the formula.
Similarly precision 1indexes 1in two and three dimensions may be
propagated. For example: ’

R g = //Vo 2 +0 2 + 0 2 .
cx Cu c

v C“

7.3 Application of Error Propagation Methods

The principle source of covariance information to be used in the
propagation of errors 1is least squares adjustment. In the case of
positional information for DMA products these adjustments may be
analytical photogrammetric triangulation. In strict terms, the finverse l

matrix (N‘l) is not a covariance matrix, but a cofactor matrix usually
denoted by Q.

qQ=nN?
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A cofactor matrix is related to the covariance matrix by a scalar
multiplier.

Q= kj
where k = '_lf s
oo
and 002 is called the reference variance.

It should be pointed out that only random errors will be
propagated by:

1

T
yx

)

y = Iy Y

Hence thiS will be a measure of the precision of the adjustment.

Another method is called error propagation from sample
statistics. This method evaluates the product by comparison to diagnostic
control points. This method will take into account biases in the product,
random errors in the product, random errors in the diagnostic control and
random error in measuring the control on the product. In this method a 6
X 6 cross-covariance matrix is computed. Let this matrix be denoted by Q.

- -
024’1 h Cehy g8, %o, %41h,
"4y 02*1 Ahp e, N, g,
2
Q- RURCUSRIER TV RV (7-10)
48 ey One, 02"2\ "y oy

2
M MY Py T Ty,

g [#] [o]
12 “&hy “ah, Thy
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Q should include the effects of residuals from the adjustment,
the covariance of the control used as diagnostics, a covariance of the
measurement errors, and the covariance of the comparisons. The points
( b M 0y ) ( s Ay hy ) should be chosen in pairs separated by the
distance over which the point-to-point relative accuracy is desired.

To compute the absolute accuracy, consider the 6 x 6 Q matrix to
be partitioned such that:

1 O
(7-11)

L
n
.

'y, Oy

The absolute accuracyrmay be determined from Q1 or Qyp. The units of the
matrix should all be meters. Assume that the horizontal and vertical
components of Q;; are independent but the latitude and longitude may be
correlated. That is:

2 -
s % 0 (7-12)
2
0 = %2 %2 0
o o &F _

The 90% LE or MAS value for the vertical accuracy is computed from:
90% LE = 1.6449 | ¥ &, | . (7-13)

The factor 1.6449 is from Table 4.1 relating the one sigma error to the
90% error.

To compute the circular accuracy in this case, we will consider
the latitude and longitude as correlated. The eduations to relate these
variances and covariances to two 1independent variables, u,v, 1in the
horizontal plane are: |

60

R e —




T et e e e At 2 SRS O Sy e s . . S E————— ‘,_h

DMA TR 8400.1
6/ Gijm ug./\_-e,f

°?u7‘-% (0¢2 + 012) + %--(02¢ + 021)2 + (0¢A)2
and ' (7-14) -
cvzz-%(az¢+o)‘2)- /%'(64;2+°A2)2+(°¢A)2 t

Now
o =1 (o +0)
c 2'% v
and ;:..-lw
90% CE = 2.146 o
for 2<0/0 <1.

To compute the relative accuracy using the 6 x 6 covariance
matrix Q, change the varfables such that:

A¢ = ¢ - 1
A) = XZ - Al
M=h2-h2.
/
The point-to-point covarfance matrix will be:
Qpp = JQUT (7-15)
PP
where
<1 0 01 0 o
J=]10-1 0 01 0
0 0-1 0 0 1
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Assuming the .horizontal and vertical components are independent,

i B

02 o 0

a6 “a¢ar
Qi = o .0 (7-16)
PP ApAX AX
2

0 0 S Anb*

b . »

From here the horizontal circular relative error and vertical linear
relative error are determined with the same formulas used for the absolute

accuracies,
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8. APPLICATION OF ERROR THEORY TO POSITIONAL INFORMATION

8.1 Positional Errors

_ By the use of error theory in the evaluation of positional
information, it is possible to establish a meaniﬁbfu] accuracy subject to
uniform interpretation. To provide a logical and acceptable basis for
computation and comparison, positional errors are assumed to follow a
normal distribution. This assumption is valid because positional error

components generally follow a normal distribution pattern when sufficient
data is available.

The statistical treatment of errors is applied to measureable
quantities found 1in the sources of positional information. The
differences between diagnostic surveyed values of ground control (not used
in the photogrammetric adjustment) and the coordinates of that control
from a photogrammetric adjustment are considered to be the errors in the
photogrammetric adjustment. Analysis of the linear components, latitude
and longitude expressed in meters, provide a two-dimensional expression
for the accuracy of the adjustment. When all the linear standard errors
occurring -in the adjustment are combined and converted to a circular
distribution, as described in the Chapter 7 on error propagation, it will
be part of the accuracy statement for the product. In the case of maps,
the final product accuracy will be based on this adjustment error and the
errors associated with map construction. In the case of digital data, the
accuracy statement contained in the header record is for any single data
point in the cell. Although the accuracy is based on comparing diagnostic
points to data interpolated from the digital data, the accuracy does not
include any interpolation caused errors of the user.

Because of the different sources contributing to the accuracy of
various DMA products, it is important for the user to carefully choose the
right product to fulfill his positioning requirements. If there is a
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requirement for high absolute accuracy for point positioning, the
recommended product is the Point Positioning Data Base. This product
allows positioning directly from a data base that avoids the errors caused
by map construction and the representation of the positioning data on a

paper copy.

The statement [12] for a map of descriptor 1 is that 90 percent
of all well-defined planimetric features are located within 0.5mm (0.02
inches) of their geographic position with reference to a prescribed

datum. Table 8-1 gives the ground distance in feet of 0.02 inches on a
map for various scales of DMA maps. This number forms a 1imit for the 90
percent accuracy of a map at the given scale. These limiting case

accuracies for descriptor 1 products should not be confused with generaT'

product accuracy which will usually be less accurate.

Among the positioning errors in photogrammetric adjustments or on

maps, there are often those which are not measureable or able to be
modeled and which must be estimated by empirical methods. When this is

necessary, an additional assumption must be made to the effect that such
data is compatible with the computed data and that the empirically derived

error data will also follow the theoretical normal error distribution.

Table 8-1
Ground Distance Equivalent to
0.02 of an Inch at Chart Scale

Chart ‘ Scale ‘| Distance (feet)
ONC 1:1,000,000 1667
TPC/PC 1:500,000 833
J0G 1:250,000 | 417
ATC 1:200,000 333
Topo 1:100,000 167
Topo 1: 50,000 83
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Various types of points require different parameters to establish
precise positions, These have been discussed as one, two, or three
dimensional coordinates. For example, a vertical position (elevation)
requires only a one-dimensional coordinate - the height of the point above
a reference datum; a geodetic position 1is expressed by two-dimensional
coordinates - latitude and longitude referenced to a specific datum; and
spatial positions require three-dimensional coordinates such as the X, ¥»
Z coordinates in a rectangular system. The errors accumulated in the
process of determining the various positions must be evaluated in the same
dimensions required to express the position, Errors for vertical
positioning can be assumed to follow a normal linear distribution; those
for a geodetic positiom - a circular distribution; and the errors for a
spatial point can be assumed to follow a normal spherical distribution,

8.2 The Accuracy Statement

Three major groups of data fall within Department of Defense
positioning requirements: (1) maps, charts and other graphics; (2) data
bases of digital data such as Digital Terrain Elevation Data (DTED); and
(3) specific points. By the use of error theory, a horizontal accuracy
eva]uation‘of the DMA positioning product as a whole can be obtained. In
the case of maps or graphics, a specified, probability (90 percent) that
the true errors in well-defined planimetry will not exceed, is used as an
accuracy statement for the map. Map accuracy can also be interpreted as a
percentage - the percentage of well-defined points which contain errors
not exceeding the given magnitude. Similarly, vertical accuracy is stated
as a 90 percent probability that the linear errors in vertical position
will not exceed a specific value. DMA also expresses the accuracy of its
digital data bases in terms of 90 percent probability. For some data
bases, for instance Digital Terrain Elevation Data (DTED), the header
record contains both absolute and point-to-point (relative) error
values. These accuracies are given as 90 percent horizontal (circular)
and 90 percent vertical (1inear) errors. The accuracy statement does not
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mean that the. error in position is exactly the value shown, rather it
expresses the probability that the true error in a given position will not
be larger than the error given.

_ Positional error should be expressed by precision indexes which
immediately identify the form and probability represented by a given

error, The precision index chosen should be that which has been

conventionally used for ‘the type of data represented. For instance, the
90 percent probability used at DMA for map errors. Another example is the
error in position associated with artillery or missile testing, or weapons
deiivery. In these cases the errors have conventionally been expressed as
circular error probable (CEP). Using error theory and the factors given
in this report, the different accuracies and precision indexes can be
related. For example, if an accuracy is given by a weapons analyst as 100
feet CEP, we know the form of the error is circular and the prbbabi]ity is
50 percent. This implies a 50-50 chance that the geodetic position in
question does not vary more than 100 feet from the true geodetic
position, If we are jnterested in the equivalant error at the 30 percent
probability level, multiply 100 ft. by 1.8227 (from Table 5-5) to yield a
90 percent probability that the positional error will not exceed 182 ft.

Errors in different forms are more easily understood when
precision indexes comson to linear, circular, and spherical error
distributions are used. Precision indexes suitable for expressing
positional error include (1) the linear, circular, and spherical standard
errors representing 68.27%, 39.35%, and 19.9% probabilities, respectively,
(2) the linear probable error, circular error probable, and spherical
error probable representing 50% probability in each distribution, (3) the

map accuracy standard, cfircular map accuracy standard, and spherical

accuracy standard representing a 90% probability level, and (4) a
probability level approaching near-certainty for each distribution which
the positional error is theoretically unlikely to exceed; (a) three sigma
(1inear, 99.73%), (b) three-five sigma (circular, 99.78%), and (c) four

-
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sigma (spherical, 99.89%). Since error values are easily converted from
one precision index to another in the same distribution, the use of any
index is largely a matter of choice. However, in presenting positional
information, the position error is best expressed by the precision index
that is conventional for the type of positional error being described,
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Summary of Formulas and Conversion Factors

Linear Error Formulas
Percentage
Precision Index Symbo1l Probability Formula

Standard Error o 68.27% ©/ 2
- 2 (xi - .x.) _ 2 xz
_ % n-1 - n-1

where: X; = measured value
of the quantity X; X1s Xo

LI N ) Xn

X = the most probable value
(arithmetic mean) of X

X

n

Y =

x = the error; x = X - X
n = number of measurements
Probable Error | PE 50¢% PE = 0,6745 oy
Map Accuracy MAS 90% MAS = 1.6449 oy
Standard
Near-Certainty 3¢ 99,73% - 3.0000 o,
|_Error (Three sigma) ' —
Linear Error Conversion Factors
To
From 50% 68.27% 90% 99,.73%
50% 1.0000 1.4826 2.4387 4.4475
68,27 0.6745 1,0000 1.6449 3.0000
90 0.4101 0.6080 1.0000 1.8239
99,73 0.2248 0.3333 0.5483 1.0000




DMA TR 8400.1

Circular Error Formulas

L Percentage
Precision Index Symbo1 Probability- Formula
C'ircq]uaf % 39.35% % = 0.5000 (°x + oy)
Standard Error ,when o . /a2 0.2
Circular CEP 50% CEP = 1,1774 o
Error Probable CEP = 0.5887 (°x + ay)

CEP ~ (0.2141 %nin + 0.6621 °max)

CEP ~ (0.0900 ¢ min + 0.6745 amax)

when 0.0 < qm1n < 0.1

Circular Map CMAS 90% OMAS = 2.1460 o
Accuracy Standard ‘ :

CMAS = 1,0730 (°x + °y)
Circular Near-.. .. | 3.5 o, 99,78% 3.5000 o
Certainty Error
(Three-five sigma)

~Circular Error Conversion Factors
To ; L
“From 39.35% . 50% - 63% 90% 99,78%
39.35% 1.0000 1.1774 1.4192 2.1460 3.5000 !
50 0.8493 1.0000 | 1.2011 | 1.8227 2.9726 -
63 0.7071 0.8325 1,.0000 1.5174 2.4749 \;,3
90 0.4660 0.5486 | 0.6590 1.0000 1.6309
99.78 0.2857 0.3364 0.4040 0.6131 1.0000 '
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Spherical Error Formulas

_ Percentage

Precision Index Symbo1 Probability Formula
Spherical o 19.9% o = 0.3333(q, + 9, *q,)
Standard Error when "min/‘hax 2 0.35
Spherical SEP 50% SEP = 1,5382 o
Error Probable

SEP = 0,5127 (ok + o, + oé)

when qn'in/omax 2 0,35
Spherical SAS 90% SAS = 2,5003 9
Accuracy Standard
Spherical Near- 405 99,89% 4,0000 o
Certainty Error
(Four sigma)
Spherical Error Conversion Factors
To
From 19,9% 50% 61% 90% 99.89%
19.9% 1.000 1.538 1.732 2.500 4,000
50 0.650 1.000 1.126 1.625 2.600
61 0.577 0.888 1.000 1.443 2.309
90 0.400 0.615 0.693 1.000 1.600
99.89 0.250 0.385 0.433 0.625 1.000
71
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Appendix A

PERCENTAGE PROBAPILITY FOR
STANDARD ERROR INCREMENTS

The following table presents the increments of linear ( o, ), circular

( o ), and spherical ( o ) standard errors for intervals of one percent

probability. Percentage levels corresponding to precision indexes are
underlined.

Factors for converting the error at one percentage probability to
another within the same%distribution are derived by dividing the standard
error increment of the new percentage probability by the standard error
increment of the given percentage probability. An example 1is the

conversion from the circular map accuracy standard (90%) to the circular
probable error (50%):

CEP = 1.1774 o
CMAS = 2.1460 o
CEP =-%§%§%% CMAS

.*. CEP = 0.5486 CMAS

TABLE A-1

Conversion Factors for Converting Standard Errors
to Various Different Percentage Probabilities

% g X Gc OS

00 0.0000 0.0000 0.0000
01 0.0125 0.1418 0.3389
02 0.0251 0.2010 0.4299
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TABLE A-1 (cont'd.) E
2 gy 9% o
03 0.0376 0.2468 0.4951 l‘
04 0.0502 0.2857 0.5479 t 3
05 _ 0.0627 0.3203 0.5932
06 0.0753 0.3518 0.6334
07 0.0878 0.3810, | 0.6699
08 ~ 0.1004 ~0.4084 . 0.7035
09 0.1130 0.4343 0.7349 |
10 0.1257 - 0,4590 \ 0.7644 - g
11 0.1383 0,4 . 0.7924 ‘
12 0.1510 " 0.5056 0.8192
13 0.1637 0.5278 0.8447 E"
14 : 0.1764 0.5492 0.8694 :
15 0.1891 0.5701 : 0.8932
16 : 10,2019 - 0.5905 ©0.9162 ;
17 ©0.2147 0.6105 _ . 0.9386 . ;
18 0.2275 0.6300 0. 9605 =
19 0.2404 0.6492 S 0.9818 | \
19.9 | L y 1.0000 .
20 0.2533 0.6680 T.0026
21 0.2663 0.6866 1.0230°
22 0.2793 0.7049 . 1.0430 F
23 0.2924 0.7230 1.0627 £
24 . 0.3055 0.7409 1.0821
25 0.3186 0.7585 1.1012
26 0.3319 0.7760 1.1200 E
27 0.3451 0.7934 1.1386
28 0.3585 0.8106 : 1.1570 h
29 0.3719 0.8276 : 01,1781 r
30 0.3853 0.8446 ‘ 1.1932 -
31 0.3989 0.8615 . 1.2110
32 0.4125 0.8783 1.2288 ["
33 0.4261 0.8950 1.2464 L
34 0.4399 0.9116 1.2638
35 0.4538 0.9282 1.2812 o
36 0.4677 0.9448 1.2985 [:
37 0.4817 0.9613 ~ 1.3158
38 0.4959 0.9778 1.3330
39 0.5101 0.9943 1.3501
39,35 1.0000
T 0.5244 - 5 : S 1.3672 |
41 0.5388 1.0273 1.3842 | [
42 0.5534 1.0438 1.4013 | L
43 0.5681 1.0603 1.4183
44 0.5828 1.0769 1.4354 |
45 0.5978 1.0935 1.4524

A-2
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TABLE A-1 (cont'd)
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4 % 9. LA
46 0.6128 1.1101 1.4695
47 0.6280 1.1268 1.4866
48 0.6433 1.1436. 1.5037
49 0.6588 1.1605 1.5209
50 0.6745 1.1774 1.5382
n 6.59a3 L] L ] 5
52 0.7063 1.2116 1.5729
53 0.7225 1.2288 1.5904
54 0.7388 1.2462 1.6080
55 0.7554 1.2637 1.6257
56 0.7722 1.2814 1.6436
57 0.7892 1.2992 1.6616
57.51 - 0.7979 .

0.8064 1.3172 1.6797
59 0.8239 1.3354 1.6980
60 0.8416 1.3537 1.7164
60.82 1.7321

0.8596 1.3723 .
62 0.8779 1.3911 1.7540
63 0.8965 1.4101 1.7730
63.21 1.4142

0.9154 1.3292 1.7924
65 0.9346 1.4490 1.8119
66 0.9542 1.4689 1.8318
67 0.9741 1.4891 1.8519
68 0.9945 1.5096 1.8724
68.27 1.0000

1.0152 1.5305 1.8932
70 1.0364 1.5518 1.9144
71 1.0581 1,5735 1.9360
72 1.0803 1.5956 1.9580
73 1.1031 1.6182 1.9804
74 1.1264 1.6414 2.0034
75 1.1503 1.6651 2.0269
76 1.1750 1.6894 2.0510
77 1.2004 1.7145 2.0757
78 1.2265 1.7402 2.1012
79 1.2536 1.7667 2.1274
80 1.2816 1.7941 2.1544
81 1.3106 1.8225 2.1825
82 1.3408 1.8519 2.2114
83 1.3722 1.8825 2.2416
84 1.4051 1.9145 2.2730
85 1.4395 1.9479 2.3059
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TABLE A-1 (cont'd.)
% oy 9. o
86 1.4758 1.9830 2.3404
87 1.5141 2.0200 2.3767
88 1.5548 2.0593 2.4153
89 1.5982 2.1011 2.4563
90 1.6449 2.14%8' 2.5003
T 1.6954 . .
92 1.7507 2.2475 2.5998
93 1.8119 2.3062 2.6571
94 1.8808 2.3721 2.7216
95 1.9600 2.4477 2.7955
96 2.0537 2.5373 2.8829
97 2.1701 2.6482 2.9912
98 2.3263 2,7971 3.1365
99 ‘. 2,5758 3.0349 3.3683
99,73 3.0000 v
95,78 3.5000
99,89 4.0000
39.9 3.2905 3.7169 .03
99,99 3.8905 4.2919 4,6094

e
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Appendix B
THE MOST PROBABLE VALUE

Since the true value of a measured quantity is never known, the most
probable value of the quantity must be determined from the observed
values. The following proof [4] will show that the arithmetic mean of the
observed values is the most probable value of the quantity:

Symbols:
X = an unknown quantity
X; = the observed values of the unknown quantity;
xi = xl, x2’ X3 see x" (1)
X = the arithmetic mean of the observed values;
n xi n
X =7 —,o0rn¥ = § X (2)
=] il =
Xj = the error in an observation; (3)
Xi = Xi - ')'('
Proof:
Xl = X1 --X.
X2 = XZ -’7
xn = Xn - X
n n _
) xi= I X = X
i=1 i=1
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From equation (2);

) ) b 0 (4)
. = - X ]
A L R |

This shows that the sum of the differances about the mean is zero,
~ which was expected, but if equation (3) is squared and then summed:

X12 = Xlz - le X + 72 . | (5)

Xzz = XZZ-ZXZ X + 72

POLOOIDIPNOINSIOESSIOSIOOIRPOINIPOROEDDS

2 2 2
x,© o= X -ZXHY + X

n n n ; (6)
2 y 2 2
Lxg = 3 xfom T x eoX
i=1 i=] i=]
The most probable value will be found when | x12 = 0, or the
i=]

most probable value of X will be that which makes

o2

: ;" = a minimum, In order to find this minimum, differentiate
i=1
equation (6) with respect to X and equate to O:

2

d n n
— Z X1 e - 2 Z X1+2n7-0
X i=1 i=1

e X = 3‘: o (7)

Equation (7) proves that the mean value X is the most probable
value of a set of independent observations. Therefore, 1in the

determination of the residual value it s correct to use the mean value as
an approximation of the true value,

8-2
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Appendix C
PROPAGATION OF ERRORS THROUGH KNOWN FUNCTIONS

Suppose that we wish to determine a quantity, x, which is a function
of at least two other variables, u and v, which, are actually observed
(measured). We will determine the errors in x from those for u and v and
from the functional dependence [1] [2] [a].

x = fluyv, . . .) {c-1)

. The errors in «x can be determined by constdering the dispersfon in
the values of «x resulting from combining the individual measurements UjeVy
+ « o Into individual results Xje

x1 = f (u1g VI’ * o o)
X2 = f(uz, Vz, e o o)

Xp o= flug, vy, o 0 W) (C-2)

It will be assumed that the most probable value of x, x is:

X = f (U, V...) ‘ (C-3)

where u,v are averages of the measured variables.

It is shown [1] that the variance of X °x2 will be given by:

C-1
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2
a2y e, () @Y (c-4)

If u and v are independent ( oy " 0) then the standard deviation of
x is:

' 2 2 | N
/ o, @) co i@ . ()

Special Formulas for Error Propagation

Rule 1., Addition and Subtraction

The parameter's 2 and b are defined as positive constants, If x is
the weighted sum of u and v,

X = au ¢ bv

Then (C-5) becomes:

2 2,.,2 2 -
l/ a“g " ¢ b 9, (C-6)
or in the special case where a = b = 1

g, = g,to (c-7)

Rule 2. Multiplication and Division

P M Em o mR R PR e mey e e

If x is the weighted product of u and v

X = % auy

Then (C-5) becomes:

- /%24, u2 2

c-2
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or more“Symmetrically,

Ux Ouz Ovz
SR 2l & (c-8)

Rule 3. Powers
If x is obtained by factors raised to various powers
x = udyb

Then (C-5) becomes:

o - / 20222, 2 b2u2y2b-2, 2

or symmetrically (obtained by dividing by x = udvD)

/ o 2 o, 2
g u v
2= /=) e () (c-9)




DMA TR 8400.1

Appendix D

DERIVATION AND SOLUTION OF THE TWO-DIMENSIONAL
PROBABILITY DISTRIBUTION FUNCTION

v

1. Derivation. The probability density functions [9] of the independent
errors "x" and "y" are :

2 2
X _ y
_ 1 " 0.2 _ 1 " 2¢
p(x) = -;;—72;—- e x“ , and p (y) = 1;;‘72; e y
Using Rule 4, Section 2.1.:
2 2
1 X
() = gt e G2+ 3
P 2y .".axoy y
2 2
. 1 X
1 i AT Al
P (x,y) = T [ e X Yy~ dx dy (1)
Xy xy
Using polar coordinates:
xz = rz cos2 G
y2 = rz sinz ]
where r is.the radia] error and r = xz + y2

P(r)=P(r= /x2+y2<¢R) =P (xy<R) (2)

where R is the radius of the probability circle.
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The two-dimensional probability distribution functions is:

R 2x .,2 [ainae + cos? ©
1 / 2 0, a2 r dr do

P(R) = e [ e y
"% % rs0 o0

r do dr (small increment resulting
from dx and dy)

Using identities: sin‘e = 3 (1 - cos 20)

cosze = % (1 + cos 20)

R o -rz [1-c0526+1+cosze]
P(R) 1 L3 2 2 dr do
® 7790 o f I e Gy gy r dr
XY p=0 =0
Rearranging terms: '
R - [~ + - - c0s26
P(R) = '2"1?%"'6""! re v -:; :'f ¢ e + :;2 :;2 dedr
XY p=p o=0

let ¢ = 20,
d¢ = 2do
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Then:
- P TES S S e gy
1 ’- -
A T v L D 4¢ gy
r=0 ¢=0
Rearranging terms:
r2 -3!; ™ @ Qyz
R -—[1 +-2] -— L - 1] cos ¢
P(R) = olo [ re 4oy o, |:l [e 4 -0_2- d¢] dr
% O v y x
r=0 ¢=0
Let: . ” "9
X L:XZ 1] cos ¢ 2 2
™ - -
1 e 4% do 1=1, [ Lo (Ly- 1]
0 ‘ 4°y o,

where Io is a Bessel Function, zero order, modified first kind.

Therefore: 2
2 o
o 2
| R - on +J12] 2 o
1 .. 2 r
P(R) = 5 [ re 4ay a, Io[ ':;—2 (‘;L?- 1)] dr (3)
r=0 Y X

2. Special Case of Two-Dimensional Probability Distribution Function.

When % = 9, = o from equation (3):

D-3
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*

P(R)

P(R)

Since:

Then:

1 1.4
2“. o
i Y
F ]
@
]
g
.Of P
N x ©
o |
@
r} o4 b O
]
rﬂ.z oc
"
[ o ]
s
®
i ]
o
~ o
——
® x
. (-9
Lza
b

1-¢

P(R)
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3. Modified Form of the Two-Dimensional Probability Distribution

Function. To solve equétion (3) by the use of tables, the equation must
be modified. From S.0. Rice's "Properties of Sine Wave Plus Noise" [13]:

X

1; (kx) = {) e’ 1_ (vk) dv

Modifying equation (3):

2 2
L1+
R 4 2 02 2
10 ] re e X 1L r
" yr=0 4oy
Step A
Letting:
o 2
r
v = (1 + )
w0z
o 2
2r y
dv = (1+ ) dr
w0

(5)
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, | r \ 4
To get the quantity [--2- (-l! - 1)1 in the form of (vk):
4°y o)s E
r2 ] 2
W2t ? . L
Yy X
o 2 o 2 o
(- 1) = (1+Ly) & .
Ix Ox -
g, 2 -
(o * 1] o
e’ k = {
1+ -
Ox -
° -
Let a = - where 9 is the smaller of the two:

d r
of of. 1- & )
(T’xfz-?;z) (“2- ) ( ) 1 - ‘2 (6) 3

k = .
Zly  aep Ayt ? e
%2 ~
Step C '—
Getting L and ay in terms of a: =
2 2

20 o 0.2 0.2 r

1 ] X
g, g ° 0.2 o?+o2]'2[xay‘ag+oz L

X'y (+_§_2) xy ~

X X

————
"

L B

D-6
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g, o g
o, o Xy _X
[ g g
2 s M e 10 2 L1 - P (7
X X X a® +
Step D
1 °x2+° °x2+°
oyZ °x2+° g o £+1
1+-;x—2= ax = [ o‘—-&x"z-——]'[ °x2 ]’ a2 (8)
o2 T o2
Combining Steps A, B, C, D and equation (3):
1+a 2 2
r? oy SR D
P(R)' f‘y a e °y a I[ﬁ (1+a)(’1':a‘2')] dv. (9)
0
Rewriting equation (9):
PR) = —22 7 &¥ I (vk) d 1
= —= [ € o (vk) dv (10)
1 +a 0
where:
2 2 2 o2
x=_4%.z[i_tz§..] . V.T%.z[l_.tz.@_] ; k:(.l___az)
y a y a 1 +a
D-7
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4, Solution.of Modified Function. To compute the CEP [13] [14] (CEP = R
when P(R) = 0.5) for values of ?y « /.6 and o, * /.4, two methods are

available:

Method 1:

To determine the value for x by Rice's table’of I, (vk) dv, enter the
table with values of k and th% required probability. 2
P(R) = 50% probability; a = —* = 0.8165; a’ = 0.6667; k = 12 . 0.2
y l+a

P(R) = ;-%1;2 Z €' 1, (vk) dv

.

2

.50 (1 + .

(Lra) .- e 1, (v
0

X
0.5103 = [ e I (vk) dv
0

Enter the table with k = 0.2 and interpolate for 0.5103 to get the value
of x.

.6 = 4517
5103
.8 = 5516
.x = 0.71732
2 2
x = 1577 Ll-izﬁ-a . 0.71732
Yy a

D-8

Ii‘
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qlx

= 1.0713
y .

The - radius of the 50% probability ciréle (CEP) resulting from

Oy qy is R = 1,0713 °y.

Method 2:

Using tables computed by Arthur Grad and Herbert Solomon [14]:
From equation (2):

PRY = P (Fx® 4y < R) = b (2ay? ¢ )

Since x and y have unit standard errors, they can be written as:

X = o X and y = % Y.

Therefore:

PR). = P (af  +02x2 (82

' 02 2
POt B 1y
y y

From Grad and Solomon Tables:

2 2
P (al YUt a, y,© <t) a ta, = 1

a
P (.Yzz t 3 yir £ ) (12)
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Correlation between equations (11) and (12) will permit use of the tabled

values,
X, /all L
%

'e

Enter the tables with values of a;, a; and the reguired probability, Then
interpolate for values of

LI ./

0

a \
Since ?3- v/f%. then 3 = 4 2, = N 3

R, JO-6846k . | 068
q .

Yy

R = 1,068 Gy

D-10
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Appendix E
DERIVATION OF THE SPHERICAL PROBAB!LITY DISTRIBUTION FUNCTION
The combined probability dens1ty distribution function of the
independent errors x, y and z are; ’
2 2 2
X 2
1 X 1 % 1 92
P(x,y,2) = ———¢ o ————8 . e (1)
o, /7 o, ¥ o, 73
In the spherical case where o, = Oy = 0, = 05 :
5 i x2 f:yz + 22
p(x.y.Z)dx dy dz = -——————-3 e z'q»s | dx dy dz (2)

o3 ()72

Converting to 3-dimensional coordinates:

£ = ¢ cof ¥ cos? a

f =s2 cos2 Ysinzx

22 = 52 sitf ¥
)(2+ff+zzsszco§2!coszx+sz 2 2

3" cos” Ysin® a+ s2 sin?

b 4
= £ cos v (cos2 A+ sinz A) + szlsin2
2

E-1
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Let § = radfus of sphere, replacing radfal error s.

Then: ds Sdy S cos Y d\ = 32 cos ¥ dy d) dS
| 5

2

5 h } 1 . i 20
MS) = [ | —t—e & cos v dv dr 4S5 (3)
S«0 M0 Y- - -'2 (2:)‘5 o:
Lt
P(S) & mdmr (2) (2v) 7 SRS ds
- ; v o B 7
(2w)° a0 S ..,
£-2




SZ
_ /2— S s2 ?.as !‘
..c P(S) = ; f -1 e ds
0 o
(3
Integrating by parts:
‘ 2
S S 205
Let u=—==, dv = — e ds
s o
ds 20
du = 7;ﬁ, : vV = -
S
) —752 ) _5_2?
/2— S 20, $ o 29
Ps) = VTI(E) (= A ds]
) s

In order to use approximation formula [14], P(S) must be transformed to

2
the integral of e-t /2dt .

-S =
Letting C S5 dS = o dC, where o

= constant :
s .

P(S) = J/-— [ - Ce '-Z +

From above reference when x > 0:

E-3
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(8)

(6)
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4
[ e ot~ et
¥ x +08e" (7)
2

(8)

E-4
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Appendix F
SUBSTITUTION OF THE CIRCULAR FORM FOR ELLIPTICAL ERROR DISTRIBUTIONS

Omin. _ . lﬂﬁ:oa
T =09 G = 0
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O

Omin o
- = 0.5 — =04

amax. o max.

~ —~
> S

O omin. Omin

- = 0.2

om.

F
i
r
1
[
C
C
i__

O min.
- = 0.1

F-2
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Appendix G
Error Probability of a Quantity Affected by a Bias

In error analysis it is assumed that all systematic errors have been
removed from the observational data. This is seldom true for it is
virtually impossible to eliminate all systematic errors. In the analysis
it is hoped that the systematic errors of consequente have been eliminated -
leaving only numerous small systematic errors whose combinations cannot be
distinguished from random errors. When a systematic error of consequence
has not been removed, the value obtained is said to be biased. That is,
the value deviated from its true or accepted value by some known or
undetermined amount.

This appendix is éoncerned with the effect these undetected, biased
quantities have on the probability interpretation applied in error
analysis [16]. In the two-dimensional case, this would be the radius of
circle which will dinclude a certain portion of an error distribution
affected by a biased quantity. As an example, consider a missile with a
circular standard error o. =r , aimed at a point T. The missile is
biased (or the target misidentified) by an amount d; therefore, the
distribution of missile impacts is around the point A (a distance of d
from T) not T. (see Figure G-1)

9)

Figure G-1. Circular Error with a Bias

G-1
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The probability error space containing the true value when the error
source has both a random and a bias component can be expressed
mthmﬂcﬂly. The probabﬂity density function for an errar, x, in one
dimension, f(x) is:

e o (6-1) -

f(x) e
/E; o, ’ { L
where x = random variable ' L.
X = the bias in x,

The probability function for two dimensions is:

ol et

f(X,y) '-z——-——- e (G'Z)

where X,y . random variables

= bias in x

|

Yy = blas iny

In three-dimensfonal, the probability density function is:

Ll x -7[2 | {z-“ﬂz (z -7)2
f(x,y.2) = —r L %[ éx - o, - o, . (6-3)

(2:)70 0,0

X y 2z

where Xo,¥sZ = random variables

G-2
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X = bias in x
y = bias iny
B z = bias in z

The one standard deviation probability level may be found from the
integrals of the probability density functions, Equations (6-1), (6-2),
and (G-3), using numerical integration. In one dimension, using equation
(G-1), the Tinear standard deviation probability is:

czx

Pr(- o2, < x < ot) = [ f(x)dx (6-4)
-0k,
X

Pr (-ol.x < x < 02) = ,6827 (G-5)

where ot is the linea? one-sigma error in x.

The probability density function is two dimensions, Equation (G-2),

may be numerically integrated to find the circular one standard deviation
probability level:

2
Pr [(x2 + y2) < o, =1 g f(x,y) dxdy (G-6)

. Pr [(x + y2) < ac2] = .3935 (6-7)

In Equation (6-6), R denotes a circular disc of radius O, -

For the three-dimensional case, Equation (G-3) may be numerically
integrated to find the spherical one standard deviation probability level:

Pr [(x2 + y2 + 22) < osz] = [ f g f(x,y,z) dxdydz (G-8)
Pro[(x? + % + 2%) < 021 = .1990 (6-9)
6-3
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In Equation (G-8), S denotes a sphere of radius of .

for the linear case, Equation (G~4), the numerical integration may be
performed using Simpson’s Rule. For the two and three-dimensional cases,
Equations (G- 6) and (6-8), numerica\ integration may use the 15th degree

Gauss Product Formulas [17]. ,

G-4
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