# Natural Gas Productive Capacity for the Lower 48 States 1986 Through 1998

December 1997

Energy Information Administration
Office of Oil and Gas
U.S. Department of Energy
Washington, DC 20585

This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization.

# **Preface**

The Natural Gas Productive Capacity for the Lower 48 States 1986 Through 1998 is the sixth in this series of reports prepared by the Energy Information Administration (EIA). The five previous reports were published in 1991, 1993, 1994, 1996, and 1997 {1,2,3,4,5} The EIA Dallas Field Office has prepared five earlier reports regarding natural gas productive capacity. These reports, Gas Deliverability and Flow Capacity of Surveillance Fields, reported deliverability and capacity data for selected gas fields in major gas-producing areas. {6,7,8,9,10} The data in the reports were based on gas-well back-pressure tests and estimates of gas-in-place for each field or reservoir. These reports use proven well testing theory, most of which has been employed by industry since 1936, when the Bureau of Mines first published Monograph 7.{11}

This publication is used by the Congress, Federal and State agencies, industry, and other interested parties to obtain accurate data of the lower 48 States' natural gas production history and wellhead productive capacity. Capacity projections from this report are used in EIA's *Short-Term Energy Outlook Quarterly Projections*. The report also contains a projection of lower 48 States' gas production requirements and wellhead productive capacity. These data are essential for the evaluation of the adequacy of future gas supplies, especially in periods of peak heating or cooling demand.

Total demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. This report examines the natural gas production element of the total gas demand. Domestic natural gas production supplies the majority of the natural gas demand requirements for the lower 48 States. The production requirement continues to increase while drilling has remained at low levels, a fact that this has raised some concern about the adequacy of future gas supplies, and gas producers' ability to meet periods of peak heating or cooling demand.

A history of natural gas production and natural gas productive capacity at the wellhead, along with a projection of the same, is shown in tables and figures. Data are compiled and presented for the lower 48 States, Texas, Louisiana,

California, Kansas, New Mexico, Oklahoma, Gulf of Mexico Outer Continental Shelf (OCS), Southeast area, Rocky Mountain area, and an eighteen State area that includes the remaining gas producing States. The EIA generates projections based on historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included. Also presented for each category are charts showing the number of gas-well completions by year and the percent of total wellhead productive capacity by age. Alaska is excluded from this report because Alaskan gas does not enter the lower 48 States pipeline system.

Appendix A contains the model abstract. Appendix B compares the results of previous productive capacity reports. Appendix C contains the calculations and a table of productive capacity per new gas-well completion. A glossary of terms used in this report is provided to assist readers in more fully understanding the data.

This annual gas capacity report was prepared by the Reserves and Production Division (located in Dallas, Texas), Office of Oil and Gas, Energy Information Administration. General information regarding preparation of the report may be obtained from Kenneth A. Vagts, Director of the Office of Oil and Gas (202/586--6401) or John H. Wood, Director of the Dallas Field Office (214/720-6150).

Questions may be directed to:

- James N. Hicks
   Phone 214/720-6156, FAX 214/720-6155
   E--mail: jhicks@eia.doe.gov
- Hafeez Rahman
   Phone 214/720-6162, FAX 214/720-6155
   E--mail: hrahman@eia.doe.gov
- Velton T. Funk Phone 214/720-6171, FAX 214/720-6155 E--mail: vfunk@eia.doe.gov

Significant contributions were made by Gary Long (rig model). A. H. Payne, Rhonda S. Green, and LaTonya Thomas also contributed to this publication.

| Contents                                                                                         | Page     |
|--------------------------------------------------------------------------------------------------|----------|
| Executive Summary                                                                                | ix       |
| 1. Introduction                                                                                  | 1        |
| 2. Gas Productive Capacity                                                                       | 3        |
| Gas Capacity to Meet Lower 48 States Requirements                                                | 3        |
| Historical Data                                                                                  | 6        |
| Dry Gas Productive Capacity Trends                                                               | 6        |
| Gas Production                                                                                   | 6        |
| Gas Prices                                                                                       | 6        |
| Projections                                                                                      | 6        |
| Dry Gas Productive Capacity and Production                                                       | 6        |
| New Well Completions                                                                             | 11       |
| Gas Productive Capacity Issues                                                                   | 11       |
| Demand                                                                                           | 11       |
| Deliverability                                                                                   | 13       |
| Weather's Effect on Deliverability                                                               | 13       |
| Gas Storage                                                                                      | 13<br>13 |
| Imports                                                                                          | 15       |
| 3. Producing Areas                                                                               |          |
| Gulf of Mexico OCS                                                                               | 16<br>20 |
| Texas (Excluding Gulf of Mexico OCS)                                                             | 25       |
| California (Including Pacific OCS)                                                               | 29       |
| Kansas                                                                                           | 33       |
| New Mexico                                                                                       | 37       |
| Oklahoma                                                                                         | 42       |
| Southeast (Excluding Gulf of Mexico)                                                             | 46       |
| Rocky Mountains                                                                                  | 51       |
| Eighteen States                                                                                  | 56       |
| References                                                                                       | 61       |
| Appendices                                                                                       |          |
| A. Model Abstract                                                                                | 63       |
| B. Comparison of Productive Capacity                                                             | 67       |
| C. Dry Gas-Well Capacity per New Gas-Well Completion Added                                       | 71       |
| Glossary                                                                                         | 77       |
| Tables                                                                                           |          |
| 1. Lower 48 States Dry Gas Production and Wellhead Productive Capacity, 1986-1995                | 7        |
| 2. Lower 48 States Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998    | 10       |
| 3. Gulf of Mexico OCS Dry Gas Production and Wellhead Productive Capacity, 1986-1996             | 17       |
| 4. Gulf of Mexico OCS Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998 | 18       |
| 5. Texas (Excluding Gulf of Mexico OCS) Dry Gas Production and Wellhead Productive Capacity,     | -        |
| 1986-1996                                                                                        | 21       |

|         |                                                                                                                                           | Page |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------|------|
| 6.      | Texas (Excluding Gulf of Mexico OCS) Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998                           | 22   |
| 7.      | Louisiana (Excluding Gulf of Mexico OCS) Dry Gas Production and Wellhead Productive Capacity, 1986-1996                                   | 26   |
| 8.      | Louisiana (Excluding Gulf of Mexico OCS) Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998                       | 27   |
| 9.      | California (Including Pacific OCS) Dry Gas Production and Wellhead Productive Capacity, 1986-1996                                         | 30   |
| 10.     | California (Including Pacific OCS) Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998                             | 31   |
| 11.     | Kansas Dry Gas Production and Wellhead Productive Capacity, 1986-1996                                                                     | 34   |
| 12.     | Kansas Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998                                                         | 35   |
| 13.     | New Mexico Dry Gas Production and Wellhead Productive Capacity, 1986-1996                                                                 | 38   |
| 14.     | New Mexico Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998                                                     | 39   |
| 15.     | Oklahoma Dry Gas Production and Wellhead Productive Capacity, 1986-1996                                                                   | 43   |
| 16.     | Oklahoma Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998                                                       | 44   |
| 17.     | Southeast (Excluding Gulf of Mexico OCS) Dry Gas Production and Wellhead Productive Capacity, 1986-1996                                   | 47   |
| 18.     | Southeast (Excluding Gulf of Mexico OCS) Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998                       | 48   |
| 19.     | Rocky Mountains Dry Gas Production and Wellhead Productive Capacity, 1986-1996                                                            | 52   |
| 20.     | Rocky Mountains Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998                                                | 53   |
| 21.     | Eighteen States Dry Gas Production and Wellhead Productive Capacity, 1986-1996                                                            | 57   |
| 22.     | Eighteen States Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998                                                | 58   |
| C1.     | Average Initial Flow Rates, Ultimate Recovery, and Decline Exponent on a Conventional Gas-well Completion Basis for 1992-1994             | 74   |
| Figures |                                                                                                                                           |      |
| 1.      | Lower 48 States Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998                                               | 3    |
| 2.      | Lower 48 States Natural Gas Production, 1986-1995                                                                                         | 4    |
| 3.      | Lower 48 States-Producing States and Areas                                                                                                | 4    |
| 4.      | Lower 48 States Productive Capacity and Supply Schematic                                                                                  | 5    |
| 5.      | Natural Gas Price by Category, 1986-1995                                                                                                  | 8    |
| 6.      | Lower 48 States Gross Natural Gas Production by Type, 1986-1995                                                                           | 8    |
| 7.      | Dry Natural Gas Production from Lower 48 Producing States, 1986-1995                                                                      | 9    |
| 8.      | Lower 48 States Dry Coalbed Gas Monthly Rate and Wellhead Productive Capacity, 1986-1998                                                  | 9    |
| 9.      | Lower 48 States Gas-well Completions Added During Year, 1986-1998                                                                         | 12   |
| 10.     | Percent of Total Wellhead Productive Capacity of Lower 48 States Gas Wells (Minus the 18 States Group) by Well Age, 1986-1998 (Base Case) | 12   |
| 11.     | Gulf of Mexico OCS Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998                                            | 16   |

|     |                                                                                                                                    | Page |
|-----|------------------------------------------------------------------------------------------------------------------------------------|------|
| 12. | Gulf of Mexico OCS Gas-Well Completions Added During Year, 1986-1998l                                                              | 19   |
| 13. | Percent of Total Wellhead Productive Capacity of Gulf of Mexico OCS Gas Wells, by Age, 1986-1998 (Base Case)                       | 19   |
| 14. | Texas (Excluding Gulf of Mexico OCS) Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998                   | 20   |
| 15. | Texas (Excluding Gulf of Mexico OCS) Gas-Well Completions Added During Year, 1986-1998                                             | 23   |
| 16. | Percent of Total Wellhead Productive Capacity of Texas (Excluding Gulf of Mexico OCS)  Gas Wells, by Age, 1986-1998 (Base Case)    | 23   |
| 17. | Texas (Excluding Gulf of Mexico OCS) Monthly Gross Gas-Well Gas Productive Capacity and G-10 Rate, 1986-1998                       | 24   |
| 18. | Louisiana (Excluding Gulf of Mexico OCS) Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998               | 25   |
| 19. |                                                                                                                                    | 28   |
| 20. | Percent of Total Wellhead Productive Capacity of Louisiana (Excluding Gulf of Mexico OCS) Gas Wells, by Age, 1986-1998 (Base Case) | 28   |
| 21. | California (Including Pacific OCS) Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998                     | 29   |
| 22. | California (Including Pacific OCS) Gas-Well Completions Added During Year, 1986-1998                                               | 32   |
| 23. | Percent of Total Wellhead Productive Capacity of California (Including Pacific OCS)  Gas Wells, by Age, 1986-1998 (Base Case)      | 32   |
| 24. | Kansas Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998                                                 | 33   |
| 25. | Kansas Gas-Well Completions Added During Year, 1986-1998                                                                           | 36   |
| 26. | Percent of Total Wellhead Productive Capacity of Kansas Gas Wells, by Age, 1986-1998 (Base Case)                                   | 36   |
| 27. | New Mexico Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998                                             | 37   |
| 28. | New Mexico Dry Coalbed Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998                                     | 40   |
| 29. | New Mexico Gas-Well Completions Added During Year, 1986-1998                                                                       | 40   |
| 30. | Percent of Total Wellhead Productive Capacity of New Mexico Gas Wells, by Age, 1986-1998 (Base Case)                               | 41   |
| 31. | Oklahoma Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998                                               | 42   |
| 32. | Oklahoma Gas-Well Completions Added During Year, 1986-1998                                                                         | 45   |
| 33. | Percent of Total Wellhead Productive Capacity of Oklahoma Gas Wells, by Age 1986-1998 (Base Case)                                  | 45   |
| 34. | Southeast (Excluding Gulf of Mexico OCS) Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998               | 46   |
| 35. | Southeast (Excluding Gulf of Mexico OCS) Dry Coalbed Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998       | 49   |
| 36. | Southeast (Excluding Gulf of Mexico OCS) Gas-Well Completions Added During Year, 1986-1998                                         | 49   |
| 37. | Percent of Total Wellhead Productive Capacity of Southeast (Excluding Gulf of Mexico OCS) Gas Wells, by Age, 1986-1998 (Base Case) | 50   |
| 38. | Rocky Mountains Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998                                        | 51   |

|     |                                                                                                           | Page |
|-----|-----------------------------------------------------------------------------------------------------------|------|
| 39. | Rocky Mountains Dry Coalbed Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998       | 54   |
| 40. | Rocky Mountains Gas-Well Completions Added During Year, 1986-1998                                         | 54   |
| 41. | Percent of Total Wellhead Productive Capacity of Rocky Mountains Gas Wells, by Age, 1986-1998 (Base Case) | 55   |
| 42. | Eighteen States Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998               | 56   |
| 43. | Eighteen States Gas-Well Completions Added During Year, 1986-1998                                         | 59   |
| 31. | Comparisons of Dry Gas Productive Capacity for the 1991,1993, 1994, 1995, 1996 and 1997 Studies           | 69   |

# **Executive Summary**

Natural gas productive capacity in the lower 48 States is expected to be adequate to meet monthly production requirements under normal weather conditions through 1998 for three drilling cases (Figure ES1). Capacity projections are shown for low, base, and high drilling cases associated with low, base, and high price scenarios from the Energy Information Administration Short-Term Integrated Forecasting System, August 1997 (Table ES1). Exceptionally high peak-day or peak-week heating or cooling demand may exceed projected productive capacity, or production may be limited by other factors, such as pipeline availability. Wellhead productive capacity sets the upper limit on natural gas production. Nonetheless, the natural gas industry has developed methods to meet peak demand, such as deliveries from storage and peak-day shaving. These developments have been greatly promoted at the Federal level by the movements to lessen regulation by the Federal Energy Regulatory Commission. Increased reliance on market forces also encourages industry efficiency, as customers with fuel-switching capability consume other fuels in response to higher gas prices. Lastly, effective demand might be lowered

by reducing service to customers that have interruptible contracts.

This is the sixth in the series of EIA reports on natural gas wellhead productive capacity in the lower 48 States. The series document a decline in gas productive capacity beginning in 1986 that was clearly reversed in 1996. Natural gas productive capacity is projected to increase in 1997 and 1998 for the *low*, *base*, and *high* drilling cases (Figure ES1). This increase in surplus capacity reflects mainly new discoveries in the Gulf of Mexico Outer Continental Shelf.

The major conclusions of this study are:

- Monthly wellhead productive capacity of dry gas will be adequate to meet production requirements in the *low, base*, and *high* cases through 1998.
- In fact, the surplus monthly productive capacity will be higher in December 1998 than in December 1996 for the *low, base,* and *high* cases.
- In particular, the largest gas producing area, the Gulf of Mexico Federal Offshore, is expected to meet its

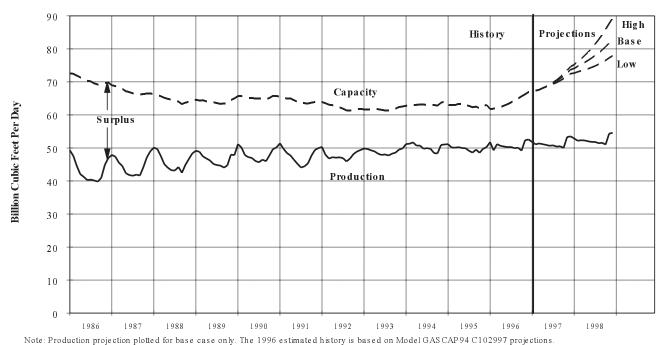



Figure ES1. Lower 48 States Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998

Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GAS CAP94 C102997. Productive Capacit Model GAS CAP94 C102997. Productions: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GAS CAP94

C102997

historical market share of U.S. production and maintain a substantial surplus productive capacity.

• Beyond 1998, a sufficient number of new wells and/or imports must be added each year in order to ensure an adequate gas capacity and supply.

For decades the lower 48 States natural gas productive capacity has been adequate to meet production requirements. In the 1970's, the capacity surplus was small because of market structure (split between interstate and intrastate), increasing production requirements, and insufficient drilling. In the early 1980's lower production requirements, together with increased drilling and tight gas price incentives, led to a large surplus capacity. After 1986, this large surplus began to decline as requirements for gas increased, gas prices fell along with oil prices, and gas-well completions dropped sharply. In late December 1989, the decline in this surplus, accompanied by exceptionally high requirements and temporary weather-related production losses, led to concerns about the adequacy of productive capacity for natural gas. These concerns were moderated by the gas system's performance during the unusually severe winter weather in March 1993 and January 1994.

Monthly natural gas wellhead productive capacity estimates are for conventional and coalbed gas-well completions and oil-well completions in the lower 48 States. The different drilling levels assumed in three cases are functions of oil and gas prices and gas production requirements (Table ES1).

Beginning in 1987, coalbed gas production and capacity began a rapid increase. By the end of 1995, the coalbed gas capacity was over 5 percent of the total gas-well gas capacity. Coalbed gas capacity is projected to be over 4 percent of the total at the end of 1998.

The existence of a surplus wellhead productive capacity does not signify that the entire gas capacity could be produced and delivered. The ability of a well to deliver gas into a pipeline system (deliverability) is always equal to or less than wellhead productive capacity. Deliverability is that volume of gas that can be produced from a well, reservoir, or field during a given period of time against a certain wellhead back-pressure under actual reservoir conditions, taking into account restrictions imposed by pipeline capacity, gas plant capacity, contracts, or regulatory bodies.

At the end of 1995, deliverability into the lower-48 pipeline system was estimated to be 53 billion cubic feet per day of

Table ES1. Annual Wellhead Price, December Production, and December Productive Capacity of Gas, 1986, 1995, 1996, 1997, and 1998

| Year/Cas e    | Price<br>(nominal<br>dollars) | Production<br>(billion cubic<br>feet per day) | Productive<br>Capacity<br>(billion cubic<br>feet per day) | Productive<br>Capacity Surplus<br>(billion cubic<br>feet per day) | Productive<br>Capacity<br>Utilization<br>(percent) |
|---------------|-------------------------------|-----------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------|
| His to ry     |                               |                                               |                                                           |                                                                   |                                                    |
| 1986          | 1.94                          | 47.0                                          | 69.9                                                      | 22.9                                                              | 67.2                                               |
| 1995          | 1.55                          | 50.3                                          | 63.0                                                      | 12.7                                                              | 79.8                                               |
| 1996          | 2.17                          | 52.6                                          | 66.9                                                      | 14.3                                                              | 78.6                                               |
| Proje c tions |                               |                                               |                                                           |                                                                   |                                                    |
| 1997/Low      | 2.00                          | 53.5                                          | 72.5                                                      | 19.0                                                              | 73.8                                               |
| 1997/Base     | 2.30                          | 53.5                                          | 73.7                                                      | 20.2                                                              | 72.6                                               |
| 1997/High     | 2.47                          | 53.5                                          | 74.6                                                      | 21.1                                                              | 71.7                                               |
| 1998/Low      | 1.66                          | 54.6                                          | 77.9                                                      | 23.3                                                              | 70.1                                               |
| 1998/Base     | 2.23                          | 54.6                                          | 82.7                                                      | 28.1                                                              | 66.0                                               |
| 1998/High     | 2.63                          | 54.6                                          | 89.3                                                      | 34.7                                                              | 61.1                                               |

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

dry gas, only 85 percent of the dry gas productive capacity at the wellhead. However, there is substantial uncertainty in this deliverability estimate. Should the surplus in wellhead productive capacity decline, more reliance would be placed on gas withdrawals from storage to meet peak heating and cooling demand. Gas storage requirements can be met by maintaining gas production that is closer to gas productive capacity throughout the year. This would lead to smaller seasonal variations in gas production.

# 1. Introduction

Natural gas demand in the lower 48 States has been increasing during the last few years. Natural gas-well drilling has remained at low levels during these same years. This has raised concern about the adequacy of future gas supplies, especially in periods of peak heating or cooling demand.

Total demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. Unpredictable market forces affect the number of new well completions and recompletions, which are related to drilling activity and rig efficiency. These forces include prices for oil and gas, imports, gas storage, regulatory changes, market dynamics, and total system deliverability.

This report addresses these concerns for the natural gas production element of total demand by presenting a historical analysis of the monthly productive capacity of natural gas at the wellhead for 1986 through 1996 and projecting productive capacity for 1997 and 1998. The impact of drilling, well completions, oil and gas price assumptions, and demand on gas productive capacity are integrated into the capacity projections as *low*, *base*, and *high* cases to account for the unpredictable market forces.

The *base* case reflects what would most likely occur if current market trends continue and drilling and production levels perform as they have in the past. The *high* case reflects an increase in the amount of drilling and favorable market conditions, while the *low* case reflects a decrease in drilling due to less favorable market conditions.

Assumptions used in the Wellhead Productive Capacity Model are summarized as follows:

- Wellhead gas productive capacity is a function of drilling, which adds new capacity, and production, which lowers existing capacity over time.
- The number of new gas-well completions is a function of drilling, which is influenced by oil and gas prices and production.
- Abandonment of individual conventional and coalbed gas-well completions is captured by decline functions for the group of wells included in a given vintage year for each area.
- Producing characteristics of new conventional and coalbed gas-well completions can be modeled from the characteristics of historical completions.
- Oil-well completions are currently producing at full capacity; therefore, the oil-well gas production rate equals oil-well gas capacity.

• U.S. gas production requirements are allocated to the lower 48 producing areas by month on the basis of 1995's production market share.

This report is based on of historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included. Natural gas production from Alaska is excluded from this report because Alaskan gas does not enter the lower 48 States pipeline system.

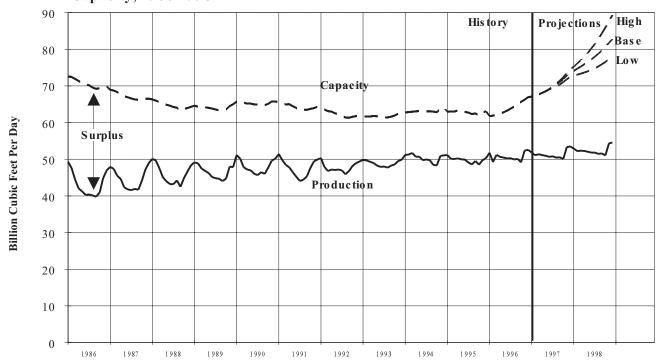
For this report, monthly gas-well production data were as obtained on a per completion basis for 14 States and the Gulf of Mexico Outer Continental Shelf (OCS) from Dwight's EnergyData, Inc. (Dwight's). Dwight's data are not available for the entire lower 48 States. Production data on a State basis for the remaining States were obtained from EIA's *Natural Gas Monthly* reports, and the number of gas-well completions were obtained from the American Petroleum Institute (API) drilling statistics. Rig activity data for the Rig Model are obtained from Baker Hughes.

The method used to estimate natural gas productive capacity follows. Details of the methodology are found in previous reports { 1,2,3,4,5}.

By use of monthly gas-well production data, wells are grouped by vintage (the year a well first produced) for each State or area. A monthly peak production rate was selected each year for every vintage in each State or area. These data were input into the *Wellhead Productive Capacity Model* (Appendix A), where equation parameters were defined and a monthly productive capacity was estimated for each of the vintage years. Vintage-level capacities were summed to obtain the total capacities for each State or area. These were assumed to be the historical productive capacities. The model was used to project *low*, *base* and *high* case productive capacities for 1997 and 1998.

The projected gas production from the model was prorated by State and area on the basis of historical market share as follows. If scheduled gas-well gas production was less than gas-well gas productive capacity in a given State or area, the production required was set equal to the scheduled production. If the required scheduled gas-well gas production was greater than gas productive capacity in a given State or area, the production was set equal to productive capacity. When a State or area did not have adequate capacity to meet scheduled production, the unfilled capacity requirement was prorated to other States or areas that had surplus productive capacity. Surplus gas productive capacity occurs when the gas productive capacity is greater than and the scheduled gas production.

# 2. Gas Productive Capacity


## Gas Capacity to Meet Lower 48 States Requirements

The United States has sufficient dry gas productive capacity at the wellhead to meet forecast monthly production requirements through 1998 (Figure 1). Any potential shortfalls in States with low productive capacity could probably be met by transfers from those areas with a large surplus productive capacity, such as the Gulf of Mexico Outer Continental Shelf (OCS).

Dry gas is the type of gas generally transported by transmission systems and delivered to customers. Gross gas is the full stream volume, including all natural gas plant liquids and nonhydrocarbon gases but excluding lease condensate. In 1995, dry gas production represented 89 percent of the gross gas production in the lower 48 States (Figure 2).

For reporting and analysis, the lower 48 States were grouped into 10 separate producing States or areas on the basis of gas production volumes (Figure 3). Dry gas productive capacity was determined for each of these 10 areas. The quarterly gas production forecast in the Energy Information Administration (EIA), Short-Term Integrated Forecasting System, August 1997 {12} was used to determine the lower 48 States' production. This production was prorated into the 10 areas on the basis of their historical market shares. The quarterly production was further prorated into monthly data. If a given area could not meet its historical market share of production, the unmet production requirements were prorated to areas with surplus productive capacity. It was assumed that the pipeline facilities exist to transport this additional production from another supply area to its end market. Recent historical production patterns were used to allocate the projected lower-48 gas production requirements for 1997 and 1998 among States and areas (Figure 4).

Figure 1. Lower 48 States Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998



Note: Production projection plotted for base case only. The 1996 estimated history is based on Model GASCAP94 C102997 projections. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

21 18 15 Shrinkage for Trillion Cubic Feet Liquids Removal 12 Dry 9 Gross Marketed Wet 6 Repressuring, Vented and Flared, 3 and Nonhydrocarbons 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

Figure 2. Lower 48 States Natural Gas Production, 1986-1995

Source: Energy Information Administration, Natural Gas Annual, DOE/EIA-0131, 1986-1995.

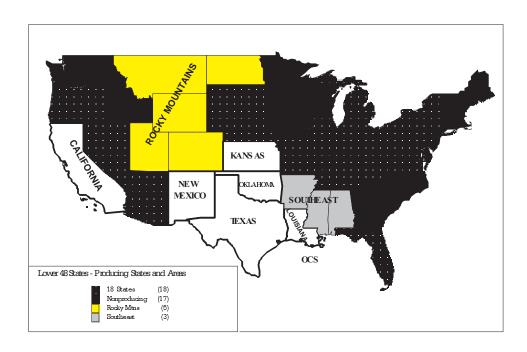



Figure 3. Lower 48 States - Producing States and Areas

Note: The 18 States are Arizona, Florida, Illinois, Indiana, Kentucky, Maryland, Michigan, Missouri, Nebraska, Nevada, New York, Ohio, Oregon, Pennsylvania, South Dakota, Tennessee, Virginia, and West Virginia. Non-producing States are Connecticut, Georgia, Delaware, Idaho, Iowa, Maine, Massachusetts, Minnesota, New Jersey, New Hampshire, North Carolina, Rhode Island, South Carolina, Vermont, Washington, and Wisconsin. Rocky Mountain States are Colorado, Montana, North Dakota, Utah, and Wyoming. Southeast States are Alabama, Arkansas, and Mississippi.

Source: Energy Information Administration, Office of Oil and Gas.

Lower 48 States Dry Gas Dry Gas Productive Capacity Production Demand by Area Prorate Demand Lower 48 States Among Areas Dry Gas Productive Capacity Capacity No Prorate Demand not Met Surplus to Areas with All Areas Surplus Capacity Flow Capacity by Area Gathering Systems P lantsPipelines Underground Imports and Storage Supplemental Gaseous Fuels Lower 48 States Dry Gas De live rie s

Figure 4. Lower 48 States Productive Capacity and Supply Schematic

Source: Energy Information Administration, Office of Oil and Gas.

#### **Historical Data**

#### **Dry Gas Productive Capacity Trends**

Historical monthly gas production and productive capacity for the lower 48 States for the months of January, June, and December are presented in Table 1. I January and December represent the typical peak winter months, and June represents a non-heating season.

Dry gas productive capacity in the lower 48 States substantially exceeded production throughout the 1980's. The lower 48 States' surplus capacity was more than 20 billion cubic feet per day through December 1986. However, gas capacity began declining in 1986 as drilling and new well completions rapidly declined. In 1996, surplus capacity was 14.4 billion cubic feet per day in December of that year.

The rapid decline in drilling and new well completions was caused by reduced natural gas prices. The wellhead price for natural gas shows a declining trend in 1986 and most of 1987 and then begins fluctuating seasonally after 1987 (Figure 5).

#### **Gas Production**

Total gross gas production (composed of gas-well and oil-well gas) from 1986 through 1995 is shown in Figure 6. Gas production from oil wells was stable over this time period, although oil production declined. Increases in producing gas-oil ratios roughly compensated for the declines in oil production. In 1995, gas production from oil wells was 16 percent of total gas production in the lower 48 States. If oil production declines in 1996, 1997, and 1998, as expected, gas production from oil wells will also decline if the producing gas-oil ratio stays at its 1995 level. The share of total gross production from gas wells increased from 79 percent in 1986 to 84 percent in 1995.

The dry natural gas production contribution from the major gas-producing States and areas is shown by Figure 7. The market share of production among States has been fairly stable from 1986 through 1995. The two largest gas-producing areas are the Gulf of Mexico OCS and Texas. Together these areas produce over one-half of the dry gas in the lower 48 States. The Gulf of Mexico has made the largest contribution to meeting major seasonal swings in demand. Other significant natural gas-producing States include Oklahoma, Louisiana, New Mexico, and Kansas. Chapter 3 reviews State and area gas production in detail.

Monthly gas production varies seasonally. Normally, production is highest in the months of January or February (because of high heating demand), substantially lower in June, and relatively higher in December. However, the minimum monthly production rate for a given year may fall

in other months, such as September, when there is neither a large cooling nor heating demand.

Coalbed gas was treated separately in this report for New Mexico and the Southeast and Rocky Mountains areas (Figure 8). These are the three major coalbed gas-producing areas. Coalbed gas production was 5 percent of the lower-48 total gas produced in 1995.

#### **Gas Prices**

The average real wellhead value of natural gas peaked in 1983 at \$3.75 (in constant 1995 dollars) per thousand cubic feet {13}, dropped sharply in 1986, and continued to decline to \$1.76 per thousand cubic feet in 1991 (a 52 percent drop over eight years). The average price in 1995 is \$1.55.{14} For comparison, real domestic crude oil prices dropped from \$38.52 per barrel in 1983 to \$14.62 in 1995, a 62 percent drop.{13} Given the lower prices and consequent decrease in drilling, it is understandable that wellhead productive capacity declined to values closer to gas production requirements from 1986 through 1995.

#### **Projections**

# Dry Gas Productive Capacity and Production

EIA projects the natural gas wellhead productive capacity for the lower 48 States by using the Wellhead Productive Capacity Model. For a description of the model, see Appendix A. The model estimates the last year of historical production and productive capacity (because the data is still preliminary) and generates a 2-year projection of production and wellhead gas capacity. To account for unpredictable market forces and changing drilling activity levels, gas productive capacity projections are formulated for low, base, and high cases. The base case reflects what would most likely occur if current market trends continue and drilling and production levels continue to perform as they have performed in the past. The high case reflects an increase in the amount of drilling under more favorable market conditions, while the low case reflects a decrease under less favorable conditions. The model results are listed in Table 2.

In December 1996, the wellhead productive capacity of the lower 48 States was 66.9 billion cubic feet per day of dry natural gas. For the lower 48 States, the model projects the following:

• In the *low* case projection, dry gas productive capacity will increase 16 percent to 77.9 billion cubic feet per day in December 1998.

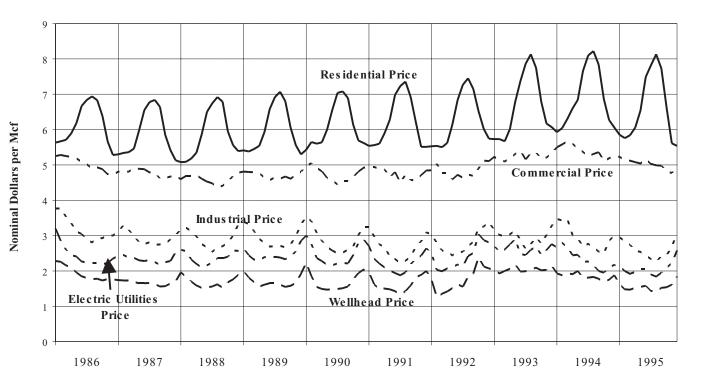

<sup>&</sup>lt;sup>1</sup>Production and capacity for all 12 months can be obtained from the authors.

Table 1. Lower 48 States Dry Gas Production and Wellhead Productive Capacity, 1986-1996 (Billion Cubic Feet Per Day)

| Dry Gas Productive Capacity |                   |                 |                 |              |                  |                          |  |
|-----------------------------|-------------------|-----------------|-----------------|--------------|------------------|--------------------------|--|
| Month-Year                  | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas | Total<br>Gas | Total<br>Surplus | Utilization<br>(percent) |  |
| Jan-86                      | 49.3              | 62.7            | 9.8             | 72.6         | 23.3             | 67.9                     |  |
| Jun-86                      | 40.3              | 61.3            | 9.0             | 70.3         | 30.0             | 57.3                     |  |
| Dec-86                      | 47.0              | 61.1            | 8.8             | 69.9         | 22.9             | 67.2                     |  |
| Jan-87                      | 47.9              | 60.0            | 9.0             | 69.0         | 21.1             | 69.4                     |  |
| Jun-87                      | 41.8              | 58.1            | 8.8             | 66.9         | 25.1             | 62.5                     |  |
| Dec-87                      | 49.0              | 57.8            | 8.7             | 66.5         | 17.5             | 73.7                     |  |
| Jan-88                      | 50.1              | 57.5            | 8.8             | 66.3         | 16.2             | 75.6                     |  |
| Jun-88                      | 43.2              | 55.8            | 8.8             | 64.6         | 21.4             | 66.9                     |  |
| Dec-88                      | 48.4              | 55.7            | 8.5             | 64.3         | 15.9             | 75.3                     |  |
| Jan-89                      | 49.1              | 55.8            | 8.8             | 64.6         | 15.5             | 76.0                     |  |
| Jun-89                      | 45.1              | 55.4            | 8.4             | 63.8         | 18.7             | 70.7                     |  |
| Dec-89                      | 47.8              | 57.1            | 7.9             | 65.0         | 17.2             | 73.5                     |  |
| Jan-90                      | 51.1              | 57.0            | 8.7             | 65.7         | 14.6             | 77.8                     |  |
| Jun-90                      | 46.0              | 56.6            | 8.4             | 65.0         | 19.0             | 70.8                     |  |
| Dec-90                      | 50.1              | 57.3            | 8.4             | 65.7         | 15.6             | 76.3                     |  |
| Jan-91                      | 51.4              | 57.2            | 8.4             | 65.6         | 14.2             | 78.4                     |  |
| Jun-91                      | 45.2              | 55.7            | 8.3             | 64.0         | 18.8             | 70.6                     |  |
| Dec-91                      | 49.9              | 56.0            | 8.3             | 64.3         | 14.4             | 77.6                     |  |
| Jan-92                      | 50.3              | 55.3            | 8.6             | 63.9         | 13.6             | 78.7                     |  |
| Jun-92                      | 47.2              | 53.9            | 8.4             | 62.3         | 15.1             | 75.8                     |  |
| Dec-92                      | 49.4              | 53.6            | 8.2             | 61.9         | 12.5             | 79.8                     |  |
| Jan-93                      | 49.8              | 53.5            | 8.1             | 61.7         | 11.9             | 80.7                     |  |
| Jun-93                      | 47.9              | 53.5            | 8.1             | 61.6         | 13.7             | 77.8                     |  |
| Dec-93                      | 49.8              | 54.6            | 7.9             | 62.6         | 12.8             | 79.6                     |  |
| Jan-94                      | 51.2              | 54.7            | 8.0             | 62.8         | 11.6             | 81.5                     |  |
| Jun-94                      | 49.8              | 55.2            | 7.9             | 63.1         | 13.3             | 78.9                     |  |
| Dec-94                      | 51.1              | 56.1            | 8.0             | 64.1         | 13.0             | 79.7                     |  |
| Jan-95                      | 51.1              | 55.2            | 7.8             | 63.0         | 11.9             | 81.1                     |  |
| Jun-95                      | 49.9              | 55.1            | 7.8             | 62.9         | 13.0             | 79.3                     |  |
| Dec-95                      | 50.3              | 55.3            | 7.7             | 63.0         | 12.7             | 79.8                     |  |
| Jan-96                      | 51.8              | 54.0            | 7.7             | 61.7         | 9.9              | 84.0                     |  |
| Jun-96                      | 50.2              | 55.6            | 7.7             | 63.3         | 13.1             | 79.3                     |  |
| Dec-96                      | 52.6              | 59.1            | 7.8             | 66.9         | 14.3             | 78.6                     |  |

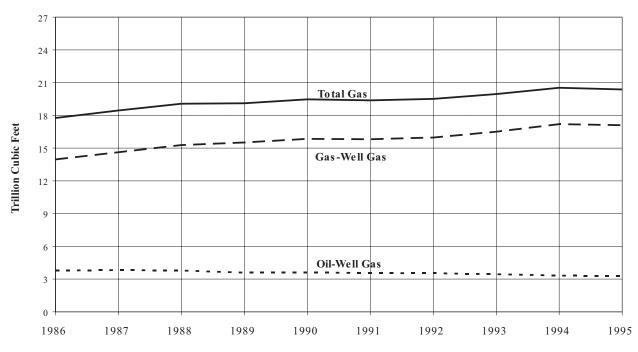

<sup>&</sup>lt;sup>a</sup>The 1996 estimated history is based on Model GASCAP94 C102997 projections and Baker Hughes rig counts. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997.

Figure 5. Natural Gas Price by Category, 1986-1995



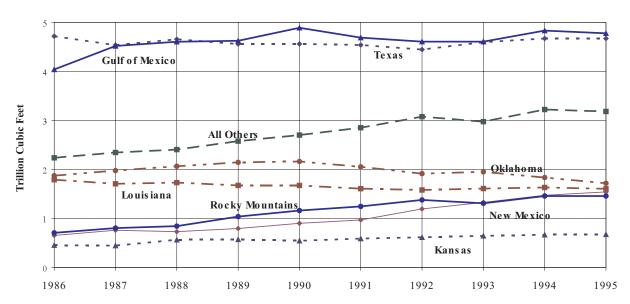
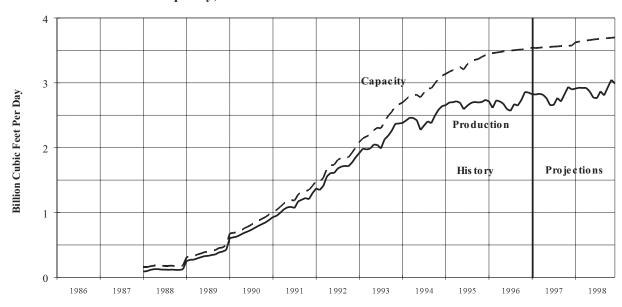

Source: Energy Information Administration, Natural Gas Monthly, DOE/EIA-0130(97/04)

Figure 6. Lower 48 States Gross Natural Gas Production by Type, 1986-1995



Source: Energy Information Administration, Natural Gas Annual, DOE/EIA-0131, 1986-1995


Figure 7. Dry Natural Gas Production from Lower 48 Producing States, 1986-1995



Note: State production for Texas and Louisiana does not include Gulf of Mexico OCS production

Sources: Energy Information Administration, Natural Gas Annual, DOE/EIA-0131, 1986-1995. Data for Texas, Louisiana, and Gulf of Mexico OCS are from Energy Information Administration, Office of Oil and Gas.

Figure 8. Lower 48 States Dry Coalbed Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998



Note: Production projection plotted for base case only.

Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

Table 2. Lower 48 States Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998 (Billion Cubic Feet Per Day)

|            |                   | Dry Ga          | s Productive Ca  | apacity      |                  |                          |
|------------|-------------------|-----------------|------------------|--------------|------------------|--------------------------|
| Month-Year | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas  | Total<br>Gas | Total<br>Surplus | Utilization<br>(percent) |
|            |                   | Lo              | w Case Projecti  | on           |                  |                          |
| Jan-97     | 51.8              | 59.2            | 7.8              | 67.1         | 15.3             | 77.2                     |
| Jun-97     | 50.7              | 61.4            | 7.7              | 69.1         | 18.4             | 73.4                     |
| Dec-97     | 53.5              | 65.2            | 7.3              | 72.5         | 19.0             | 73.8                     |
| Jan-98     | 52.9              | 65.4            | 7.3              | 72.7         | 19.8             | 72.8                     |
| Jun-98     | 51.8              | 67.3            | 7.1              | 74.4         | 22.6             | 69.6                     |
| Dec-98     | 54.6              | 71.0            | 7.0              | 77.9         | 23.3             | 70.1                     |
|            |                   | Bas             | se Case Project  | ion          |                  |                          |
| Jan-97     | 51.8              | 59.2            | 7.8              | 67.1         | 15.3             | 77.2                     |
| Jun-97     | 50.7              | 61.4            | 7.7              | 69.1         | 18.4             | 73.4                     |
| Dec-97     | 53.5              | 66.1            | 7.6              | 73.7         | 20.2             | 72.6                     |
| Jan-98     | 52.9              | 66.4            | 7.6              | 74.1         | 21.2             | 71.4                     |
| Jun-98     | 51.8              | 69.7            | 7.6              | 77.3         | 25.5             | 67.0                     |
| Dec-98     | 54.6              | 75.3            | 7.5              | 82.7         | 28.1             | 66.0                     |
|            |                   | Hiç             | gh Case Projecti | ion          |                  |                          |
| Jan-97     | 51.8              | 59.2            | 7.8              | 67.1         | 15.3             | 77.2                     |
| Jun-97     | 50.7              | 61.4            | 7.7              | 69.1         | 18.4             | 73.4                     |
| Dec-97     | 53.5              | 66.7            | 7.9              | 74.6         | 21.1             | 71.7                     |
| Jan-98     | 52.9              | 67.3            | 7.9              | 75.2         | 22.3             | 70.3                     |
| Jun-98     | 51.8              | 72.3            | 7.9              | 80.2         | 28.4             | 64.6                     |
| Dec-98     | 54.6              | 81.4            | 8.0              | 89.3         | 34.7             | 61.1                     |

Sources: Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997 and Model GASCAP C102997. Productive Capacity Projections: Model GASCAP94 C102997.

- In the *base* case projection, productive capacity will increase 24 percent to 82.7 billion cubic feet per day in December 1998.
- In the *high* case, productive capacity increases 33 percent from the December 1996 level, reaching 87.3 billion cubic feet per day in December 1998.

For surplus capacity in the lower 48 States:

- In the *low* case, the surplus capacity increases from 14.4 billion cubic feet per day in December 1996 to 23.3 billion cubic feet per day in December 1998.
- In the base case, surplus capacity increases to 28.2 billion cubic feet per day in December 1998.
- In the *high* case, the surplus capacity increases to 34.8 billion cubic feet per day in December 1998.

Gas productive capacity should be adequate to meet the projected monthly gas production requirements of the lower 48 States through December 1998, even in the *low* case.

#### **New Well Completions**

Gas productive capacity is increased by new gas-well completions. If there had been no new gas-well completions projected after 1995, the surplus capacity would have gone from 14.4 billion cubic feet per day in December 1996 to zero by December 1997. With no new completions, productive capacity would not have been adequate to meet the forecast production requirements. Gas-well completions must be added continuously to sustain an adequate productive capacity.

To project gas productive capacity, a projection of new gas-well completions is required. The projection of new well completions is based on a projection of rigs running and an estimate of completions per rig. Forecasts of the total drilling rigs were obtained from the EIA Drilling Rig Model. This model generates monthly rig counts on the basis of oil and gas revenues which are derived from production and price data appearing in the EIA's *Short Term Energy Outlook* (STEO). The Drilling Rig Model was described in previous reports {1,2,3,4,5}.

Gas-well completions added for the 2-year period 1997 through 1998 are estimated to be 34,939 for the *low* case, 39,342 for the *base* case, and 46,039 for the *high* case (Figure 9). The larger number of completions yields a dry gas productive capacity for the *high* case in December 1998 that is 89.3 billion cubic feet per day, (Table 2) or 8 percent

higher than the 82.7 billion cubic feet per day in the *base* case. Gas production requirements were assumed to be the same in both cases. A new gas-well completion is estimated to add about one million cubic feet per day of capacity (Appendix C).

For the *low*, *base*, and *high* cases, the corresponding gas-well completions were estimated primarily as a function of gas price and production. The 1998 gas prices for the three cases were respectively \$1.66, \$2.23, and \$2.63 per thousand cubic feet, as shown in the Short-Term Integrated Forecasting System, August 1997{12}. The actual gas prices were \$1.55 per thousand cubic feet in 1995{14} and \$2.17 in 1996{12}.

The newer gas-well completions contribute most of the productive capacity in the lower 48 States. Wells less than three years old contributed 49 percent of the productive capacity in the lower 48 States in December 1996. Wells less than 2 years old provided 40 percent, while wells completed that year provided 28 percent (Figure 10).

#### **Gas Productive Capacity Issues**

#### **Demand**

Peak-day demand may be twice the annual average-day demand. Peak-day demand usually occurs in December, January, or February during very cold weather. The cold weather, while increasing gas demand, may also decrease potential supply because of weather-related production and transportation problems.<sup>2</sup>

Peak-day demand cannot be met by increasing gas production at the wellhead and should not be expected to be met by production in the future. To better serve its customers, the natural gas industry has developed methods to meet peak demand, such as delivery from gas storage facilities and peak shaving facilities.

It could be argued that in periods of high gas demand, price increases at the wellhead could both increase supply quantities and decrease consumption until they balance. Over a sufficient period of time this is true. However, in the very short term (days), average wellhead prices are relatively unresponsive to demand, although, commercial, industrial, and electric utility gas prices normally increase during periods of high seasonal demand (Figure 5). The vast majority of gas is covered by 30-day or longer contracts. Therefore, if there is a sudden large increase in gas demand, there is not an accompanying sudden, large increase in the average price of gas at the wellhead. However, small volumes of gas may sell at very high prices on the spot market.

<sup>&</sup>lt;sup>2</sup>For more information about this subject see Energy Information Administration, Service Report SR/OG/91-01 and Oil and Gas Journal, March 5, 1990, pp.17-20.

30,000 High 25,000 Base **Gas-Well Completions** 20,000 Low 15,000 10,000 Projections His to ry 5,000 0 1986 1987 1990 1991 1992 1993 1994 1995 1996 1997 1998 1988 1989

Figure 9. Lower 48 States Gas-Well Completions Added During Year, 1986-1998

Note: The 1996 estimated history is based on EIA's Drilling Rig Model projections and Baker Hughes rig counts. Completions include recompletions in new producing zones.

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

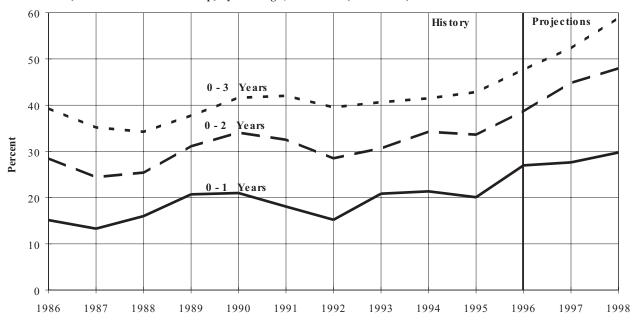



Figure 10. Percent of Total Wellhead Productive Capacity of Lower 48 States Gas Wells (Minus the 18 States Group) by Well Age, 1986-1998 (Base Case)

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

Effective gas demand in peak periods is typically lowered by reducing deliveries to customers with interruptible contracts or by customers with fuel-switching capability responding to higher gas prices by switching to another fuel. A price increase would have little impact on reducing residential gas requirements. It is residential heating or cooling demand that is most likely to have a sudden upward surge related to weather. Residential consumers used 5.2 times as much gas in December 1994 as they did in August 1994 and 6.6 times as much gas in December 1995 as they did in August 1995.{15}

Because cost-of-service pricing lowers the unit cost of gas during periods when large volumes are being delivered, the residential cost of gas per thousand cubic feet actually drops in December, while the wellhead price of gas increases. {15} Figure 5 shows the relationship of wellhead price to residential, commercial, industrial, and electric utility prices for 1986 through 1995. Therefore, small increases in the average price of natural gas at the wellhead do not effectively dampen weather-related residential gas requirements in the short term.

#### Deliverability

The existence of a high gas productive capacity at the wellhead does not mean that it could actually be produced and delivered. Deliverability is always equal to or less than wellhead productive capacity. Deliverability takes into account restrictions imposed by pipeline capacity, contract, or regulatory bodies. Even with a large surplus dry gas productive capacity, there can be Short-Term regional gas supply problems.

In order to meet peak-month or peak-day demand, the pipeline system must also have adequate deliverability to the final destination. Pipeline systems must have adequate diameters, properly spaced compressors, and adequate interconnections between pipelines. Gas pipeline systems must be optimized to transport gas efficiently from any well to wherever in the lower 48 States where the need might arise.

Productive capacity and deliverability can be compared by using the data collected by the Natural Gas Supply Association (NGSA) in its NGSA Survey on 1995 Natural Gas Field Deliveries & Productive Capacity. (16) The data on connected gas-well capacity as of January 1, 1996, which is equivalent to deliverability into the pipeline system, were collected on an operator basis for seven lower-48 regions. The survey covered 83 percent of the production for the Offshore Gulf Coast, the highest for any region in the survey. The ratio of the NGSA 1995 connected gas field capacity to the annual 1995 field deliveries was 1.07. In other words, deliverability was 7 percent higher than annual production. The equivalent deliverability for all Offshore Gulf Coast operators was 15 billion cubic feet per day if the NGSA surveyed operators are representative of all operators in this region.

For the month of January 1996, it was estimated that 85 percent of the productive capacity at the wellhead could be delivered into the pipeline system. This was obtained by dividing the January 1996 deliverability of 53 billion cubic feet per day (determined by scaling up the NGSA connected-gas-well capacity){16} by the January 1996 dry productive capacity at the wellhead of 62 million cubic feet per day.

During the 1980's and most recently with FERC Order 636 in 1992, major changes have occurred in regulations, contracts, interconnections between trunklines, access to transportation, and markets. These changes have introduced a much greater degree of flexibility and responsiveness in the natural gas industry. This flexibility makes it likely that a higher percentage of the productive capacity can be delivered. More gas can get from where it is produced to where it is needed. However, in some cases, pipeline capacity may limit gas deliverability.

#### Weather's Effect on Deliverability

One problem that is associated with the handling of natural gas is the phenomenon of a production line or well "freezing up." This problem occurs when water vapor and hydrocarbon vapors combine to form snow-like substances, called hydrates. Under suitable pressure conditions, hydrates may be formed at temperatures well above the freezing point of water. One of the problems in handling natural gas is the prevention of the formation of hydrates and their removal once formed.

Interruptions in regional supply can cause a peak production requirement in other areas. For example, storms in the Gulf of Mexico have damaged producing sites and abruptly shut in wells. Needed gas was supplied to consumers from other areas or from storage during part of this time.

#### **Gas Storage**

Gas storage is a vital part of the natural gas industry. Stored gas provides a source for reliable deliveries during periods of heavy demand. Storage also enables greater system efficiency by allowing more stable production and transmission flows.

Sufficient dry gas productive capacity will exist during the years 1997 through 1998 to increase the underground natural gas storage inventory needed. Gas storage requirements can be met by maintaining gas production closer to gas productive-capacity throughout the year. Increased use of storage reduces the need for excess productive capacity, thus promoting improved economic efficiency in production.

#### **Imports**

Imports have become an increasingly important part of the domestic gas supply picture. Reliance on imported gas has

more than doubled in less than a decade. In 1986, net imports made up 4 percent (689 billion cubic feet) of the total gas demand requirements. In 1995, net imports supplied 12 percent (2,687 billion cubic feet) of the total gas demand requirements.

# 3. Producing Areas

This section of the report details the natural gas wellhead productive capacity by State or area where Dwight's gas-well gas production data are available. From these data, individual studies are made for each of six States: California, Kansas, Louisiana, New Mexico, Oklahoma, Texas, and the Gulf of Mexico Federal Offshore Outer Continental Shelf (OCS).

The remaining Dwight's data are combined into 3 groups of States (Figure 3). Five states are grouped together as *Rocky Mountains*: Colorado, Montana, North Dakota, Utah, and Wyoming. Three states are combined as the *Southeast* group, consisting of Alabama, Arkansas, and Mississippi. The third group is made up of *18 States*: 3 States with Dwight's data—Michigan, Nebraska, and South Dakota and 15—Arizona, Florida, Illinois, Indiana, Kentucky, Maryland, Missouri, Nevada, New York, Ohio, Oregon, Pennsylvania, Tennessee, Virginia, and West Virginia- for which no Dwight's data are available.

Each State or group of States has its own unique, initially scheduled monthly gas production rate for January 1996 set to the same values for the *low, base*, and *high* cases. However, the actual production rate in an area will be less

than its initially scheduled production rate if its scheduled production rate exceeds its gas productive capacity. Scheduled gas production is the production demand for the United States taken from the Energy Information Administration's Short-Term Integrated Forecasting System, August 1997, {12} and prorated among the States and areas.

For each State or area where the scheduled production exceeds the gas productive capacity, the deficit capacity (the negative difference between capacity and scheduled production) is rescheduled to States and areas with surplus capacity. The production for these deficit capacity States will be greater in the *base* and *high* cases because there will be more well completions. The larger number of well completions adds more capacity and reduces or eliminates the deficit capacity.

For States or areas where the scheduled production does not exceed capacity, the surplus capacity (the positive difference between capacity and scheduled production) is used to replace the deficit capacity of the States and areas with deficit capacities. For these surplus capacity States, the production rate will be highest in the *low* case because there is a larger deficit capacity to make up.

#### **Gulf of Mexico OCS**

The Gulf of Mexico OCS is a prolific natural gas producer with large seasonal variations in producing rate. In 1995, more than a quarter of the lower 48 States' dry gas production came from this area. Mobile Block 823 producing 81 Bcf, was the largest OCS natural gas producer in 1995. Garden Banks 236 was the second largest producer making 76 Bcf, and Matagorda Island 623, the third largest producer, producing 70 Bcf.

Surplus capacity was adequate from 1986 through 1996. Future projections show increases for the *low*, *base*, and *high* cases.

Figure 11 shows the dry gas production rate and wellhead productive capacity from 1986 through 1996, with projections through 1998. The January, June, and December historical production rates and capacities are presented in Table 3. Dry gas production and wellhead productive capacity projections are shown by Table 4.

Figure 12 shows the number of gas-well completions added during each year from 1986 through 1996 and projected through 1998. There is an increase in the Gulf of Mexico completions for 1997 and 1998.

The initial flow rate per well completion for the Gulf of Mexico is about eight million cubic feet per day (Appendix C). Most reservoirs in the Gulf of Mexico have high permeabilities and are water-drive reservoirs. This means that the reservoir can sustain a high flow rate throughout most of its producing life. However, the recovery efficiency is generally less than the recovery efficiency for reservoirs with other types of drive mechanisms.

Figure 13 shows the percent of the Gulf of Mexico OCS gas-well productive capacity in December of each year by age of the well. gas-well completions that have been producing for less than one year contributed from 18 to 44 percent of the productive capacity from 1986 through 1996.

The gap between the capacity and production curves begins to widen in 1996 and continues through 1997. Several deep water projects are scheduled to commence production in 1997 and 1998.

The OCS area provides surplus capacity to meet major seasonal swings in the lower 48 States gas requirements. The future for this area to meet this role looks bright, especially if successful deep water projects continue to add adequate gas-well completions.

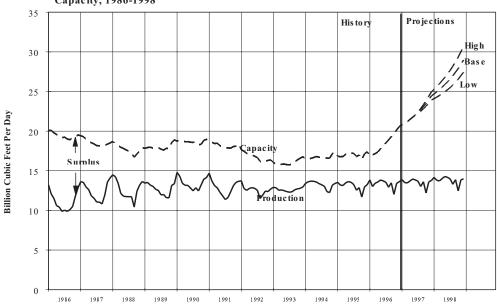



Figure 11. Gulf of Mexico OCS Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998

Note: Production projection plotted for base case only. The 1996 estimated history is based on Model GASCAP94 C102997 projections. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

Table 3. Gulf of Mexico OCS Dry Gas Production and Wellhead Productive Capacity, 1986-1996 (Million Cubic Feet Per Day)

**Dry Gas Productive Capacity** Dry Gas-Well Oil-Well Total Total Utilization Month-Year Production Gas Gas Surplus (percent) Gas Jan-86 13.210 18.478 1,585 20.063 6,853 65.8 Jun-86 9,878 17,706 1,460 19,166 9,288 51.5 Dec-86 18,038 1,489 19,527 6,682 65.8 12,845 Jan-87 13,624 18,006 1,416 19,422 5,798 70.1 18,385 Jun-87 11,534 17,068 1,317 6,851 62.7 Dec-87 14,118 17.264 1,252 18,516 4,398 76.2 Jan-88 14,481 17,446 1,254 18,700 4,219 77.4 Jun-88 11,747 16,319 1,309 17,628 5,881 66.6 Dec-88 13,654 16,607 1,314 17,921 4,267 76.2 Jan-89 13,441 16,557 1,286 17,843 4,402 75.3 Jun-89 12,535 16,690 1,224 17,914 5,379 70.0 Dec-89 13,346 17,825 1,085 18,910 5,564 70.6 Jan-90 14,792 17,516 1,220 18,736 3,944 78.9 Jun-90 12,831 17,420 1,184 18,604 5,773 69.0 Dec-90 14,144 17,730 1,228 18,958 4,814 74.6 14,698 1,301 4,157 78.0 Jan-91 17,554 18,855 66.0 Jun-91 11,845 16,645 1,314 17,959 6,114 Dec-91 13,676 16,917 1,434 18,351 4,675 74.5 Jan-92 13,746 16,344 17,669 77.8 1,325 3,923 Jun-92 12,786 15,546 1,297 16,843 4,057 75.9 Dec-92 12,717 15,134 1,233 16,367 3,650 77.7 Jan-93 12,919 14,677 1,353 16,030 3,111 80.6 Jun-93 12,376 14,395 1,377 15,772 3,396 78.5 Dec-93 12,948 15,397 1,378 16,775 77.2 3,827 Jan-94 13,414 14,989 1,538 16,527 3,113 81.2 13,388 0.08 Jun-94 15,180 1,548 16,728 3,340 Dec-94 13,409 15,709 1,632 17,341 3,932 77.3 80.3 Jan-95 13,530 15,266 1,575 16,841 3,311 Jun-95 13,551 1,662 17,257 3,706 78.5 15,595 Dec-95 13,233 15.704 1.692 17,396 4,163 76.1 Jan-96 13,843 82.1 15,150 1,718 16,868 3,025 Jun-96 13,718 16,431 1,698 18,129 4,411 75.7 Dec-96 13.614 18.691 1.889 20.580 6.966 66.2

<sup>a</sup>The 1996 estimated history is based on Model GASCAP94 C102997 projections and Baker Hughes rig counts. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997.

Table 4. Gulf of Mexico OCS Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998 (Billion Cubic Feet Per Day)

|            | Dry Gas Productive Capacity |                 |                   |              |                  |                       |  |  |
|------------|-----------------------------|-----------------|-------------------|--------------|------------------|-----------------------|--|--|
| Month-Year | Dry<br>Production           | Gas-Well<br>Gas | Oil-Well<br>Gas   | Total<br>Gas | Total<br>Surplus | Utilization (percent) |  |  |
|            |                             | Lov             | w Case Projection | ons          |                  |                       |  |  |
| Jan-97     | 13,874                      | 18,889          | 1,916             | 20,805       | 6,931            | 66.7                  |  |  |
| Jun-97     | 13,848                      | 20,135          | 1,902             | 22,037       | 8,189            | 62.8                  |  |  |
| Dec-97     | 13,806                      | 22,045          | 1,889             | 23,934       | 10,128           | 57.7                  |  |  |
| Jan-98     | 14,176                      | 22,210          | 1,889             | 24,099       | 9,923            | 58.8                  |  |  |
| Jun-98     | 14,177                      | 23,315          | 1,907             | 25,222       | 11,045           | 56.2                  |  |  |
| Dec-98     | 14,032                      | 25,553          | 1,874             | 27,427       | 13,395           | 51.2                  |  |  |
|            |                             | Bas             | se Case Projecti  | ons          |                  |                       |  |  |
| Jan-97     | 13,874                      | 18,889          | 1,916             | 20,805       | 6,931            | 66.7                  |  |  |
| Jun-97     | 13,848                      | 20,135          | 1,902             | 22,037       | 8,189            | 62.8                  |  |  |
| Dec-97     | 13,773                      | 22,510          | 1,939             | 24,449       | 10,676           | 56.3                  |  |  |
| Jan-98     | 14,169                      | 22,738          | 1,943             | 24,681       | 10,512           | 57.4                  |  |  |
| Jun-98     | 14,174                      | 24,251          | 1,965             | 26,216       | 12,042           | 54.1                  |  |  |
| Dec-98     | 13,983                      | 27,021          | 1,955             | 28,976       | 14,993           | 48.3                  |  |  |
|            |                             | Hig             | h Case Projecti   | ons          |                  |                       |  |  |
| Jan-97     | 13,874                      | 18,889          | 1,916             | 20,805       | 6,931            | 66.7                  |  |  |
| Jun-97     | 13,848                      | 20,135          | 1,902             | 22,037       | 8,189            | 62.8                  |  |  |
| Dec-97     | 13,753                      | 22,969          | 1,992             | 24,961       | 11,208           | 55.1                  |  |  |
| Jan-98     | 14,162                      | 23,274          | 2,001             | 25,275       | 11,113           | 56.0                  |  |  |
| Jun-98     | 14,174                      | 25,189          | 2,025             | 27,214       | 13,040           | 52.1                  |  |  |
| Dec-98     | 13,969                      | 28,619          | 2,040             | 30,659       | 16,690           | 45.6                  |  |  |

Sources: Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997 and Model GASCAP C102997. Productive Capacity Projections: Model GASCAP94 C102997.

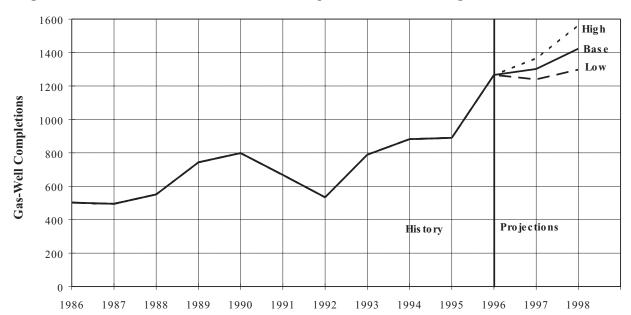



Figure 12. Gulf of Mexico OCS Gas-Well Completions Added During Year, 1986-1998

Note: The 1996 estimated history is based on Drilling Rig Model projections and Baker Hughes rig counts. Completions include recompletions in new producing zones.

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

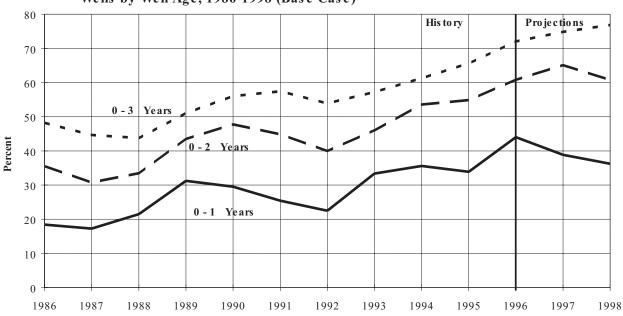



Figure 13. Percent of Total Wellhead Productive Capacity of Gulf of Mexico OCS Gas Wells by Well Age, 1986-1998 (Base Case)

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

#### **Texas (Excluding Gulf of Mexico OCS)**

Texas gas production amounted to over a quarter of the lower 48 States dry gas production in 1995. Gas-producing zones range from high permeability, water-drive formations to low permeability "Tight Gas" reservoirs. The three largest gas-producing areas in 1995 in the State were the Giddings (234 Bcf) the Carthage (189 Bcf), and the Panhandle West (154 Bcf) fields.

Figure 14 shows the dry gas production rate and wellhead productive capacity from 1986 through 1996, with projections through 1998. The January, June, and December production rates and capacities are presented in Tables 5 and 6. Productive capacity began a very pronounced downturn beginning in 1986. After 1986, surplus capacity began to diminish (Figure 14). Consequently, capacity utilization began to increase after 1986 (Table 5). The surplus capacity is projected to increase in 1997 and 1998. Compared with the OCS, surplus capacities have not shown large increases in June. This reflects the fact that production requirements for Texas gas are less seasonal than for the Gulf of Mexico OCS.

Figure 15 shows the number of producing gas-well completions added during each year from 1986 through 1998. The number of gas-well completions are projected to increase through 1998.

Initial flow rates for Texas wells range from high to relatively low. The average initial flow rate per well in Texas has been about one million cubic feet per day for the last few years (Table C1).

Figure 16 shows the percent of the Texas gas-well gas productive capacity for each year by age of well. Well completions that have been producing gas for less than one year contributed 30 percent of the gas-well gas productive capacity in 1996.

Figure 17 shows a comparison of the maximum daily rate monthly determined by the Texas Railroad Commission (TRC) and the gross gas-well gas productive capacity estimated in this study. The magnitude of the maximum daily rate as determined by TRC from the G-10 tests is higher than the productive capacity estimated in this report.

Operators of Texas gas wells are required to make a production test of each gas well semi-annually and report the test on Form G-10 unless the well is exempt from testing.

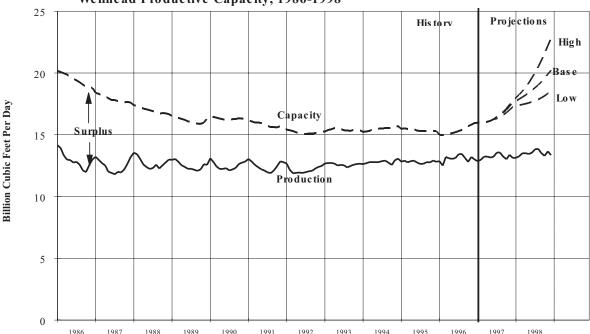



Figure 14. Texas (Excluding Gulf of Mexico OCS) Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998

Note: Production projection plotted for base case only. The 1996 estimated history is based on Model GASCAP94 C102997 projections.

Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997.

Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

Table 5. Texas (Excluding Gulf of Mexico OCS) Dry Gas Production and Wellhead Productive Capacity, 1986-1996 (Million Cubic Feet Per Day)

|            | _                 | Dry Ga          | s Productive C  |              |                  |                          |
|------------|-------------------|-----------------|-----------------|--------------|------------------|--------------------------|
| Month-Year | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas | Total<br>Gas | Total<br>Surplus | Utilization<br>(percent) |
| Jan-86     | 14,148            | 16,666          | 3,509           | 20,175       | 6,027            | 70.1                     |
| Jun-86     | 12,749            | 16,258          | 3,267           | 19,525       | 6,776            | 65.3                     |
| Dec-86     | 13,007            | 15,640          | 3,146           | 18,786       | 5,779            | 69.2                     |
| Jan-87     | 13,217            | 15,247          | 3,140           | 18,387       | 5,170            | 71.9                     |
| Jun-87     | 11,918            | 14,795          | 3,033           | 17,828       | 5,910            | 66.8                     |
| Dec-87     | 13,196            | 14,588          | 3,025           | 17,613       | 4,417            | 74.9                     |
| Jan-88     | 13,542            | 14,248          | 3,150           | 17,398       | 3,856            | 77.8                     |
| Jun-88     | 12,234            | 13,913          | 3,074           | 16,987       | 4,753            | 72.0                     |
| Dec-88     | 13,000            | 13,679          | 2,993           | 16,672       | 3,672            | 78.0                     |
| Jan-89     | 12,969            | 13,459          | 3,080           | 16,539       | 3,570            | 78.4                     |
| Jun-89     | 12,247            | 13,131          | 2,954           | 16,085       | 3,838            | 76.1                     |
| Dec-89     | 12,564            | 13,502          | 2,833           | 16,335       | 3,771            | 76.9                     |
| Jan-90     | 13,095            | 13,459          | 2,963           | 16,422       | 3,327            | 79.7                     |
| Jun-90     | 12,292            | 13,324          | 2,888           | 16,212       | 3,920            | 75.8                     |
| Dec-90     | 12,836            | 13,290          | 2,982           | 16,272       | 3,436            | 78.9                     |
| Jan-91     | 13,040            | 13,207          | 2,951           | 16,158       | 3,118            | 80.7                     |
| Jun-91     | 12,105            | 13,021          | 2,839           | 15,860       | 3,755            | 76.3                     |
| Dec-91     | 12,778            | 12,787          | 2,809           | 15,596       | 2,818            | 81.9                     |
| Jan-92     | 12,668            | 12,492          | 2,926           | 15,418       | 2,750            | 82.2                     |
| Jun-92     | 11,913            | 12,255          | 2,826           | 15,081       | 3,168            | 79.0                     |
| Dec-92     | 12,476            | 12,440          | 2,811           | 15,251       | 2,775            | 81.8                     |
| Jan-93     | 12,675            | 12,227          | 3,038           | 15,265       | 2,590            | 83.0                     |
| Jun-93     | 12,562            | 12,521          | 2,945           | 15,466       | 2,904            | 81.2                     |
| Dec-93     | 12,657            | 12,458          | 2,900           | 15,358       | 2,701            | 82.4                     |
| Jan-94     | 12,627            | 12,389          | 2,851           | 15,240       | 2,613            | 82.9                     |
| Jun-94     | 12,794            | 12,751          | 2,751           | 15,502       | 2,708            | 82.5                     |
| Dec-94     | 13,067            | 12,997          | 2,712           | 15,709       | 2,642            | 83.2                     |
| Jan-95     | 12,824            | 12,817          | 2,664           | 15,481       | 2,657            | 82.8                     |
| Jun-95     | 12,749            | 12,773          | 2,559           | 15,332       | 2,583            | 83.2                     |
| Dec-95     | 12,814            | 12,744          | 2,544           | 15,288       | 2,474            | 83.8                     |
| Jan-96     | 12,859            | 12,463          | 2,537           | 15,000       | 2,141            | 85.7                     |
| Jun-96     | 13,121            | 12,718          | 2,491           | 15,209       | 2,088            | 86.3                     |
| Dec-96     | 13,002            | 13,484          | 2,475           | 15,959       | 2,957            | 81.5                     |

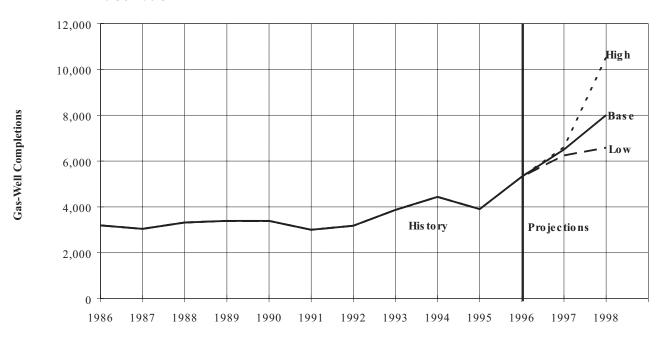
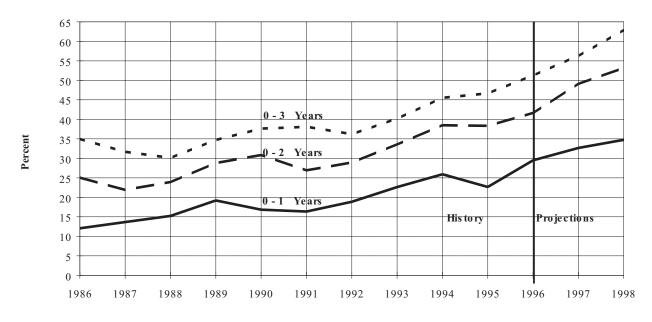

<sup>a</sup>The 1996 estimated history is based on Model GASCAP94 C102997 projections and Baker Hughes rig counts. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997.

Table 6. Texas (Excluding Gulf of Mexico OCS) Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998 (Million Cubic Feet Per Day)

| Dry Gas Productive Capacity |                   |                 |                  |              |                  |                          |  |  |
|-----------------------------|-------------------|-----------------|------------------|--------------|------------------|--------------------------|--|--|
| Month-Year                  | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas  | Total<br>Gas | Total<br>Surplus | Utilization<br>(percent) |  |  |
|                             |                   | Lo              | w Case Project   | ion          |                  |                          |  |  |
| Jan-97                      | 12,859            | 13,508          | 2,464            | 15,972       | 3,113            | 80.5                     |  |  |
| Jun-97                      | 13,232            | 13,839          | 2,423            | 16,262       | 3,030            | 81.4                     |  |  |
| Dec-97                      | 13,160            | 15,004          | 2,245            | 17,249       | 4,089            | 76.3                     |  |  |
| Jan-98                      | 13,146            | 15,101          | 2,232            | 17,333       | 4,187            | 75.8                     |  |  |
| Jun-98                      | 13,542            | 15,502          | 2,168            | 17,670       | 4,128            | 76.6                     |  |  |
| Dec-98                      | 13,405            | 16,417          | 2,100            | 18,517       | 5,112            | 72.4                     |  |  |
|                             |                   | Bas             | se Case Projecti | ons          |                  |                          |  |  |
| Jan-97                      | 12,859            | 13,508          | 2,464            | 15,972       | 3,113            | 80.5                     |  |  |
| Jun-97                      | 13,232            | 13,839          | 2,423            | 16,262       | 3,030            | 81.4                     |  |  |
| Dec-97                      | 13,129            | 15,231          | 2,361            | 17,592       | 4,463            | 74.6                     |  |  |
| Jan-98                      | 13,139            | 15,387          | 2,353            | 17,740       | 4,601            | 74.1                     |  |  |
| Jun-98                      | 13,539            | 16,287          | 2,315            | 18,602       | 5,063            | 72.8                     |  |  |
| Dec-98                      | 13,358            | 17,945          | 2,277            | 20,222       | 6,864            | 66.1                     |  |  |
|                             |                   | Hig             | h Case Projecti  | ons          |                  |                          |  |  |
|                             |                   |                 |                  |              |                  |                          |  |  |
| Jan-97                      | 12,859            | 13,508          | 2,464            | 15,972       | 3,113            | 80.5                     |  |  |
| Jun-97                      | 13,232            | 13,839          | 2,423            | 16,262       | 3,030            | 81.4                     |  |  |
| Dec-97                      | 13,110            | 15,322          | 2,465            | 17,787       | 4,677            | 73.7                     |  |  |
| Jan-98                      | 13,133            | 15,542          | 2,461            | 18,003       | 4,870            | 72.9                     |  |  |
| Jun-98                      | 13,539            | 17,149          | 2,451            | 19,600       | 6,061            | 69.1                     |  |  |
| Dec-98                      | 13,345            | 20,359          | 2,449            | 22,808       | 9,463            | 58.5                     |  |  |

Sources: Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997 and Model GASCAP C102997. Productive Capacity Projections: Model GASCAP94 C102997.


Figure 15. Texas (Excluding Gulf of Mexico OCS) Gas-Well Completions Added During Year, 1986-1998



Note: The 1996 estimated history is based on Drilling Rig Model projections and Baker Hughes rig counts. Completions include recompletions in new producing zones.

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

Figure 16. Percent of Total Wellhead Productive Capacity of Texas (Excluding Gulf of Mexico OCS) Gas Wells by Well Age, 1986-1998 (Base Case)



Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

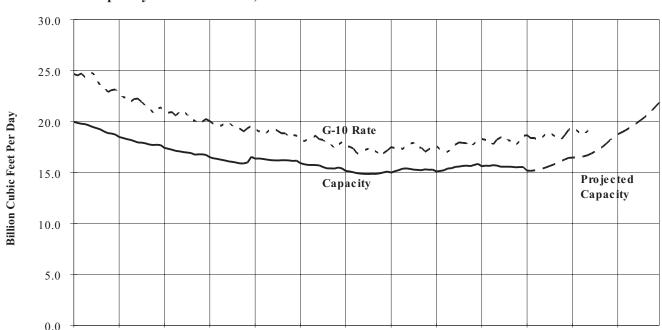



Figure 17. Texas (Excluding Gulf of Mexico OCS) Monthly Gross Gas-Well Gas Productive Capacity and G-10 Rate, 1986-1998

Note: Capacity projection plotted for base case only.

1988

1989

1990

1987

1986

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Railroad Commission of Texas. Projections: Model GASCAP94 C102997.

1991

1992

1993

1994

All gas wells producing less than 100 thousand cubic feet per day are automatically exempt. Each month, the TRC determines statewide gas well deliverability by summing the latest available G-10 test rates. However, the TRC does not necessarily expect that this deliverability (sum of G-10 test rates) can be achieved. This is true for the following reasons:

The daily rate reported on a Form G-10 is of 72 hours duration, and that rate cannot be sustained for a month by most gas-well completions.

If all gas-well completions were produced at the daily rate shown on a G-10, increased back-pressures would result, prohibiting gas from many wells from getting into the pipeline system.

The daily rates reported on the form G-10 reflects the ability of gas-well completions to produce at the time they are tested. However, each TRC deliverability estimate (sum of latest G-10 tests) contains well test data that may be as much as five or more months old.

1995

1996

1997

1998

Capacity estimated in this report is the daily rate that can be sustained for a month. Rates reported on the G-10 tests are required to be sustainable for only 72 hours.

Both, however, exhibit a similar downward trend. Capacity is projected to increase during 1997 and 1998. Data from the G-10 tests are plotted through June 1997.

### Louisiana (Excluding Gulf of Mexico OCS)

Louisiana has been a large producer of natural gas for many years. Gas produced comes from high permeability, water-drive, deep and sometimes over-pressured formations on the Gulf Coast as well as from low permeability and relatively shallow reservoirs in North Louisiana. In 1995, the three fields producing the largest volume of natural gas in the State were the Fresh Water Bayou (70 Bcf), Chalkey (51 Bcf), and Lake Arthur South (51 Bcf) fields, according to Dwight's data. In 1995, almost 9 percent of the total dry gas produced in the lower 48 States came from Louisiana. {14}

The following pages include Tables 7 and 8 and Figures 18 through 20, which provide historical and projected production and productive capacity, gas-well completions added, and percent of capacity by well age. These data exclude the OCS.

Production and productive capacity are equal with no surplus in November and December 1996. There is no surplus in December 1997 for any of the three cases. In December 1998, there is no surplus for the low case. The production is plotted for the base case only in Figure 18.

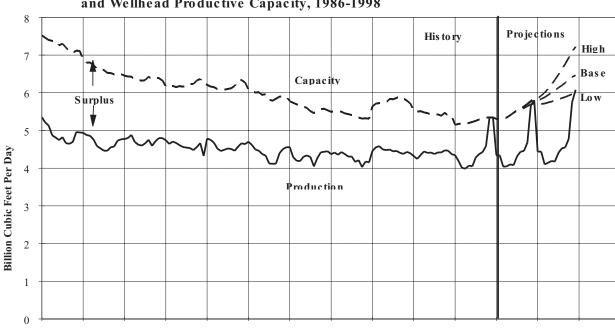



Figure 18. Louis iana (Excluding Gulf of Mexico OCS) Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998

Note: Production projection plotted for base case only. The 1996 estimated history is based on Model GASCAP94 C102997 projections.

Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997.

Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

Table 7. Louisiana (Excluding Gulf of Mexico OCS) Dry Gas Production and Wellhead Productive Capacity, 1986-1996 (Million Cubic Feet Per Day)

|                  | _                 | Dry Ga          | s Productive Ca | pacity         |                  |                          |
|------------------|-------------------|-----------------|-----------------|----------------|------------------|--------------------------|
| Month-Year       | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas | Total<br>Gas   | Total<br>Surplus | Utilization<br>(percent) |
|                  |                   |                 |                 |                |                  |                          |
| Jan-86           | 5,350             | 6,939           | 585             | 7,524          | 2,174            | 71.1                     |
| Jun-86           | 4,746             | 6,722           | 538             | 7,260          | 2,514            | 65.4                     |
| Dec-86           | 4,946             | 6,530           | 579             | 7,109          | 2,163            | 69.6                     |
| Jan-87           | 4,939             | 6,297           | 583             | 6,880          | 1,941            | 71.8                     |
| Jun-87           | 4,524             | 6,056           | 570             | 6,626          | 2,102            | 68.3                     |
| Dec-87           | 4,764             | 5,920           | 573             | 6,493          | 1,729            | 73.4                     |
| Jan-88           | 4,773             | 5,886           | 569             | 6,455          | 1,682            | 73.9                     |
| Jun-88           | 4,598             | 5,773           | 546             | 6,319          | 1,721            | 72.8                     |
| Dec-88           | 4,798             | 5,789           | 540             | 6,329          | 1,531            | 75.8                     |
| Jan-89           | 4,738             | 5,667           | 502             | 6,169          | 1,431            | 76.8                     |
| Jun-89           | 4,562             | 5,680           | 483             | 6,163          | 1,601            | 74.0                     |
| Dec-89           | 4,322             | 5,810           | 420             | 6,230          | 1,908            | 69.4                     |
| Jan-90           | 4,782             | 5,774           | 440             | 6,214          | 1,432            | 77.0                     |
| Jun-90<br>Jun-90 | 4,782<br>4,488    | 5,774<br>5,650  | 432             | 6,082          | 1,594            | 77.0<br>73.8             |
| Dec-90           | 4,637             | 5,832           | 443             | 6,275          | 1,638            | 73.9                     |
| lan O1           | 4.704             | F 660           | 440             | 6.070          | 4 270            | 77.0                     |
| Jan-91           | 4,701             | 5,660           | 419             | 6,079          | 1,378            | 77.3<br>72.7             |
| Jun-91           | 4,333             | 5,549           | 415             | 5,964          | 1,631            |                          |
| Dec-91           | 4,554             | 5,473           | 422             | 5,895          | 1,341            | 77.3                     |
| Jan-92           | 4,559             | 5,263           | 512             | 5,775          | 1,216            | 78.9                     |
| Jun-92           | 4,339             | 5,093           | 504             | 5,597          | 1,258            | 77.5                     |
| Dec-92           | 4,450             | 5,037           | 497             | 5,534          | 1,084            | 80.4                     |
| Jan-93           | 4,369             | 5,097           | 398             | 5,495          | 1,126            | 79.5                     |
| Jun-93           | 4,306             | 5,032           | 402             | 5,434          | 1,128            | 79.2                     |
| Dec-93           | 4,151             | 4,935           | 376             | 5,311          | 1,160            | 78.2                     |
| Jan-94           | 4,459             | 5,160           | 479             | 5,639          | 1,180            | 79.1                     |
| Jun-94           | 4,493             | 5,364           | 470             | 5,834          | 1,341            | 77.0                     |
| Dec-94           | 4,397             | 5,246           | 473             | 5,719          | 1,322            | 76.9                     |
| Jan-95           | 4,320             | 5,128           | 391             | 5,519          | 1,199            | 78.3                     |
| Jun-95           | 4,320<br>4,414    | 5,010           | 417             | 5,427          | 1,013            | 81.3                     |
| Dec-95           | 4,414             | 4,955           | 431             | 5,386          | 1,015            | 81.2                     |
| los 06           | 4 2 4 2           | A 774           | 204             | E 450          | 000              | 04.0                     |
| Jan-96           | 4,343             | 4,771<br>4,911  | 381<br>415      | 5,152<br>5,226 | 809<br>1 177     | 84.3<br>77.5             |
| Jun-96           | 4,049<br>5,346    | 4,811           | 415<br>416      | 5,226<br>5,246 | 1,177            | 77.5                     |
| Dec-96           | 5,346             | 4,930           | 416             | 5,346          | 0                | 100.0                    |

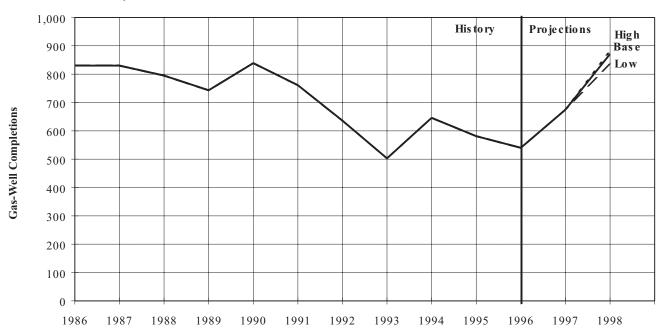
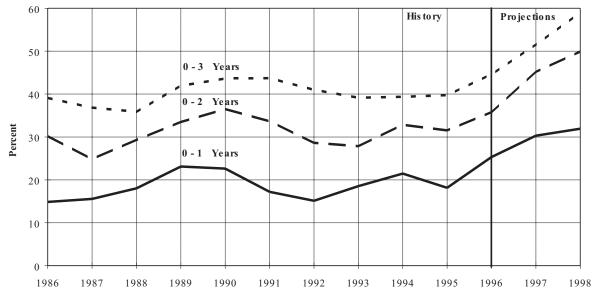

<sup>a</sup>The 1996 estimated history is based on Model GASCAP94 C102997 projections and Baker Hughes rig counts. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997.

Table 8. Louisiana (Excluding Gulf of Mexico OCS) Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998 (Million Cubic Feet Per Day)

| Dry Gas Productive Capacity |                   |                 |                  |              |                  |                          |  |
|-----------------------------|-------------------|-----------------|------------------|--------------|------------------|--------------------------|--|
| Month-Year                  | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas  | Total<br>Gas | Total<br>Surplus | Utilization<br>(percent) |  |
|                             |                   | Lo              | w Case Projecti  | on           |                  |                          |  |
| Jan-97                      | 4,343             | 4,894           | 414              | 5,308        | 965              | 81.8                     |  |
| Jun-97                      | 4,080             | 5,061           | 410              | 5,471        | 1,391            | 74.6                     |  |
| Dec-97                      | 5,714             | 5,331           | 383              | 5,714        | 0                | 100.0                    |  |
| Jan-98                      | 4,440             | 5,306           | 381              | 5,687        | 1,247            | 78.1                     |  |
| Jun-98                      | 4,175             | 5,423           | 373              | 5,796        | 1,621            | 72.0                     |  |
| Dec-98                      | 5,964             | 5,600           | 364              | 5,964        | 0                | 100.0                    |  |
|                             |                   | Ba              | se Case Projecti | ion          |                  |                          |  |
| Jan-97                      | 4,343             | 4,894           | 414              | 5,308        | 965              | 81.8                     |  |
| Jun-97                      | 4,080             | 5,061           | 410              | 5,471        | 1,391            | 74.6                     |  |
| Dec-97                      | 5,802             | 5,399           | 403              | 5,802        | 0                | 100.0                    |  |
| Jan-98                      | 4,438             | 5,392           | 402              | 5,794        | 1,356            | 76.6                     |  |
| Jun-98                      | 4,174             | 5,668           | 398              | 6,066        | 1,892            | 68.8                     |  |
| Dec-98                      | 6,081             | 6,066           | 395              | 6,461        | 380              | 94.1                     |  |
|                             |                   | Hiç             | gh Case Projecti | on           |                  |                          |  |
| Jan-97                      | 4,343             | 4,894           | 414              | 5,308        | 965              | 81.8                     |  |
| Jun-97                      | 4,080             | 5,061           | 410              | 5,471        | 1,391            | 74.6                     |  |
| Dec-97                      | 5,844             | 5,423           | 421              | 5,844        | 0                | 100.0                    |  |
| Jan-98                      | 4,436             | 5,433           | 420              | 5,853        | 1,417            | 75.8                     |  |
| Jun-98                      | 4,174             | 5,922           | 422              | 6,344        | 2,170            | 65.8                     |  |
| Dec-98                      | 6,075             | 6,795           | 425              | 7,220        | 1,145            | 84.1                     |  |

Sources: Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997 and Model GASCAP C102997. Productive Capacity Projections: Model GASCAP94 C102997.


Figure 19. Louis iana (Excluding Gulf of Mexico OCS) Gas-Well Completions Added During Year, 1986-1998



Note: The 1996 estimated history is based on Drilling Rig Model projections and Baker Hughes rig counts. Completions include recompletions in new producing zones.

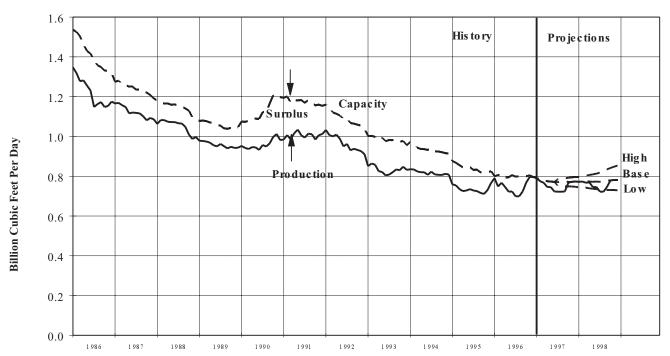
Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102297.

Figure 20. Percent of Total Wellhead Productive Capacity of Louisiana (Excluding Gulf Mexico OCS) Gas Wells by Well Age, 1986-1998 (Base Case)



Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

### **California (Including Pacific OCS)**


California is a net importer of natural gas. All California gas produced is used within the State. In 1995, two-thirds of the total gas produced in California and the Pacific OCS was oil-well gas. {14}

In 1994, Elk Hills and Coalingas East Extension oil fields were the two largest producers of natural gas. The two largest gas fields were Rio Vista and Pitas Point; the latter is in the Pacific OCS. This information was obtained from the California Department of Conservation.

The following pages include Tables 9 and 10 and Figures 21 through 23, which provide historical and projected

production and productive capacity, gas-well completions added, and percent of capacity by well age. These data include the OCS. Production and productive capacity are equal, with no surplus for December 1996. There is no surplus for January 1997, October 1997 through June 1998, and September 1998 through December 1998 for the low case. For the base case, there is no surplus for January 1997, October 1997 through February 1998, and October 1998 through December 1998. For the high case, there is no surplus for January 1997, and November 1997 through January 1998.

Figure 21. California (Including Pacific OCS) Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998



Note: Production projection plotted for base case only. The 1996 estimated history is based on Model GASCAP94 C102997 projections. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

Table 9. California (Including Pacific OCS) Dry Gas Production and Wellhead Productive Capacity, 1986-1996 (Million Cubic Feet Per Day)

|            | _                 | Dry Ga          | s Productive Ca | apacity      |                  |                          |
|------------|-------------------|-----------------|-----------------|--------------|------------------|--------------------------|
| Month-Year | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas | Total<br>Gas | Total<br>Surplus | Utilization<br>(percent) |
|            | 4.047             | 700             | 775             | 4 507        | 400              | 07.0                     |
| Jan-86     | 1,347             | 762             | 775             | 1,537        | 190              | 87.6                     |
| Jun-86     | 1,231             | 683             | 734             | 1,417        | 186              | 86.9                     |
| Dec-86     | 1,175             | 616             | 703             | 1,319        | 144              | 89.1                     |
| Jan-87     | 1,166             | 579             | 696             | 1,275        | 109              | 91.5                     |
| Jun-87     | 1,120             | 536             | 714             | 1,250        | 130              | 89.6                     |
| Dec-87     | 1,086             | 485             | 707             | 1,192        | 106              | 91.1                     |
| Jan-88     | 1,063             | 485             | 695             | 1,180        | 117              | 90.1                     |
| Jun-88     | 1,072             | 469             | 692             | 1,161        | 89               | 92.3                     |
| Dec-88     | 997               | 431             | 655             | 1,086        | 89               | 91.8                     |
| Jan-89     | 978               | 419             | 659             | 1,078        | 100              | 90.7                     |
| Jun-89     | 950               | 399             | 658             | 1,078        | 107              | 89.9                     |
| Dec-89     | 943               | 399             | 648             | 1,037        | 104              | 90.1                     |
| Dec-03     | 943               | 333             | 040             | 1,047        | 104              | 90.1                     |
| Jan-90     | 952               | 423             | 652             | 1,075        | 123              | 88.6                     |
| Jun-90     | 932               | 450             | 638             | 1,088        | 156              | 85.7                     |
| Dec-90     | 981               | 561             | 637             | 1,198        | 217              | 81.9                     |
| Jan-91     | 985               | 569             | 625             | 1,194        | 209              | 82.5                     |
| Jun-91     | 1,005             | 555             | 628             | 1,183        | 178              | 85.0                     |
| Dec-91     | 1,012             | 519             | 635             | 1,154        | 142              | 87.7                     |
| Jan-92     | 1,032             | 528             | 632             | 1,160        | 128              | 89.0                     |
| Jun-92     | 950               | 457             | 630             | 1,087        | 137              | 87.4                     |
| Dec-92     | 910               | 408             | 628             | 1,036        | 126              | 87.8                     |
| Jan-93     | 851               | 428             | 575             | 1,003        | 152              | 84.8                     |
| Jun-93     | 804               | 420<br>397      | 575<br>579      | 976          | 172              | 82.4                     |
| Dec-93     | 832               | 368             | 588             | 976<br>956   | 124              | 87.0                     |
|            |                   |                 |                 |              |                  |                          |
| Jan-94     | 835               | 398             | 574             | 972          | 137              | 85.9                     |
| Jun-94     | 807               | 356             | 576             | 932          | 125              | 86.6                     |
| Dec-94     | 808               | 313             | 601             | 914          | 106              | 88.4                     |
| Jan-95     | 759               | 326             | 550             | 876          | 117              | 86.6                     |
| Jun-95     | 735               | 288             | 558             | 846          | 111              | 86.9                     |
| Dec-95     | 766               | 264             | 561             | 825          | 59               | 92.8                     |
| Jan-96     | 790               | 251             | 549             | 800          | 10               | 98.8                     |
| Jun-96     | 723               | 251             | 554             | 805          | 82               | 89.8                     |
| Dec-96     | 796               | 259             | 537             | 796          | 0                | 100.0                    |

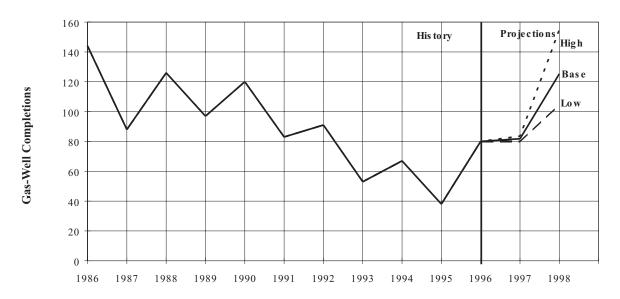
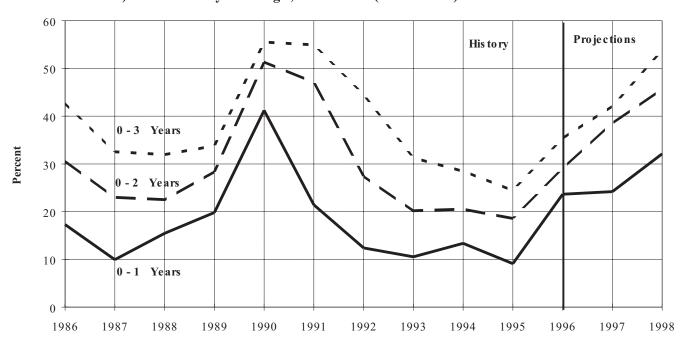

<sup>&</sup>lt;sup>a</sup>The 1996 estimated history is based on Model GASCAP94 C102997 projections and Baker Hughes rig counts. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997.

Table 10. California (Including Pacific OCS) Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998 (Million Cubic Feet Per Day)

|            | _                 | Dry Ga          | s Productive Ca  | apacity      |                  |                          |
|------------|-------------------|-----------------|------------------|--------------|------------------|--------------------------|
| Month-Year | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas  | Total<br>Gas | Total<br>Surplus | Utilization<br>(percent) |
|            |                   | Lo              | w Case Projecti  | on           |                  |                          |
| Jan-97     | 790               | 255             | 535              | 790          | 0                | 100.0                    |
| Jun-97     | 723               | 241             | 530              | 771          | 48               | 93.8                     |
| Dec-97     | 747               | 249             | 498              | 747          | 0                | 100.0                    |
| Jan-98     | 744               | 249             | 495              | 744          | 0                | 100.0                    |
| Jun-98     | 735               | 250             | 485              | 735          | 0                | 100.0                    |
| Dec-98     | 729               | 255             | 474              | 729          | 0                | 100.0                    |
|            |                   | Bas             | se Case Project  | ion          |                  |                          |
|            |                   |                 |                  |              |                  |                          |
| Jan-97     | 790               | 255             | 535              | 790          | 0                | 100.0                    |
| Jun-97     | 723               | 241             | 530              | 771          | 48               | 93.8                     |
| Dec-97     | 773               | 253             | 520              | 773          | 0                | 100.0                    |
| Jan-98     | 772               | 253             | 519              | 772          | 0                | 100.0                    |
| Jun-98     | 746               | 259             | 514              | 773          | 27               | 96.5                     |
| Dec-98     | 781               | 272             | 509              | 781          | 0                | 100.0                    |
|            |                   | Hiç             | gh Case Projecti | ion          |                  |                          |
|            |                   |                 |                  |              |                  |                          |
| Jan-97     | 790               | 255             | 535              | 790          | 0                | 100.0                    |
| Jun-97     | 723               | 241             | 530              | 771          | 48               | 93.8                     |
| Dec-97     | 796               | 255             | 541              | 796          | 0                | 100.0                    |
| Jan-98     | 796               | 256             | 540              | 796          | 0                | 100.0                    |
| Jun-98     | 746               | 273             | 540              | 813          | 67               | 91.8                     |
| Dec-98     | 835               | 310             | 543              | 853          | 18               | 97.9                     |

Sources: Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997 and Model GASCAP C102997. Productive Capacity Projections: Model GASCAP94 C102997.


Figure 22. California (Including Pacific OCS) Gas-Well Completions Added During Year, 1986-1998



Note: The 1996 estimated history is based on Drilling Rig Model projections and Baker Hughes rig counts. Completions include recompletions in new producing zones.

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

Figure 23. Percent of Total Wellhead Productive Capacity of California (Including Pacific OCS) Gas Wells by Well Age, 1986-1998 (Base Case)



Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

#### Kansas

In 1995 over half the gas produced in the State of Kansas came from the giant Hugoton field. Hugoton field 1995 production of 517 billion cubic feet of gas was almost 23 percent more than in 1994. This information was obtained from Dwight's. Hugoton field occupies almost all of the western half of Kansas and extends south into Oklahoma and the northern part of the Texas Panhandle. Production from

this field generally comes from low permeability sandy carbonate reservoir rocks.

The following pages include Tables 11, 12, and Figures 24 through 26. These data provide historical and projected production and productive capacity, gas-well completions added, and percent of capacity by well age.

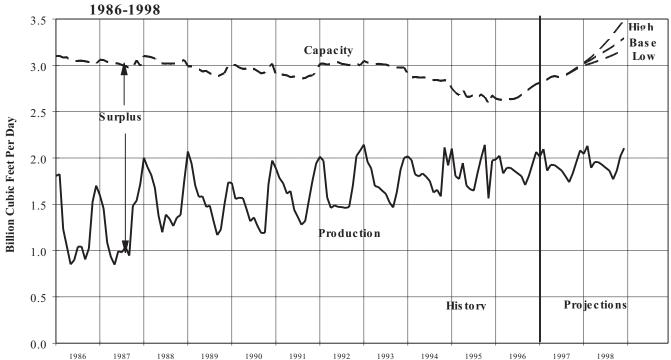



Figure 24. Kans as Dry Gas Monthly Production Rate and Wellhead Productive Capacity,

Note: Production projection plotted for base case only. The 1996 estimated history is based on Model GASCAP94 C102997 projections. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

Table 11. Kansas Dry Gas Production and Wellhead Productive Capacity Projections, 1986-1996 (Million Cubic Feet Per Day)

| Month-Year       | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas | Total<br>Gas   | Total<br>Surplus | Utilization<br>(percent) |
|------------------|-------------------|-----------------|-----------------|----------------|------------------|--------------------------|
|                  |                   |                 |                 |                |                  |                          |
| Jan-86           | 1,806             | 2,813           | 287             | 3,100          | 1,294            | 58.3                     |
| Jun-86           | 897               | 2,803           | 245             | 3,048          | 2,151            | 29.4                     |
| Dec-86           | 1,702             | 2,791           | 226             | 3,017          | 1,315            | 56.4                     |
| Jan-87           | 1,597             | 2,809           | 251             | 3,060          | 1,463            | 52.2                     |
| Jun-87           | 994               | 2,768           | 252             | 3,020          | 2,026            | 32.9                     |
| Dec-87           | 1,720             | 2,745           | 248             | 2,993          | 1,273            | 57.5                     |
| Jan-88           | 2,002             | 2,820           | 281             | 3,101          | 1,099            | 64.6                     |
| Jun-88           | 1,198             | 2,720           | 302             | 3,022          | 1,824            | 39.6                     |
| Dec-88           | 1,753             | 2,778           | 279             | 3,057          | 1,304            | 57.3                     |
| Jan-89           | 2,071             | 2,742           | 248             | 2,990          | 919              | 69.3                     |
| Jun-89           | 1,472             | 2,696           | 244             | 2,940          | 1,468            | 50.1                     |
| Dec-89           | 1,736             | 2,784           | 218             | 3,002          | 1,266            | 57.8                     |
| Jan-90           | 1,730             | 2,727           | 279             | 3,006          | 1,276            | 57.6                     |
| Jun-90           | 1,317             | 2,665           | 275<br>275      | 2,940          | 1,623            | 44.8                     |
| Dec-90           | 1,972             | 2,750           | 268             | 3,018          | 1,046            | 65.3                     |
| lon 01           | 1 000             | 2 600           | 200             | 2 000          | 1.010            | 65.1                     |
| Jan-91<br>Jun-91 | 1,888<br>1,441    | 2,698<br>2,678  | 200<br>202      | 2,898<br>2,880 | 1,010<br>1,439   | 50.0                     |
| Dec-91           | 1,941             | 2,740           | 193             | 2,933          | 992              | 66.2                     |
| Dec-91           | 1,941             | 2,740           | 193             | 2,933          | 992              | 00.2                     |
| Jan-92           | 2,014             | 2,801           | 215             | 3,016          | 1,002            | 66.8                     |
| Jun-92           | 1,472             | 2,829           | 205             | 3,034          | 1,562            | 48.5                     |
| Dec-92           | 2,080             | 2,801           | 200             | 3,001          | 921              | 69.3                     |
| Jan-93           | 2,144             | 2,841           | 207             | 3,048          | 904              | 70.3                     |
| Jun-93           | 1,647             | 2,791           | 220             | 3,011          | 1,364            | 54.7                     |
| Dec-93           | 2,001             | 2,774           | 204             | 2,978          | 977              | 67.2                     |
| Jan-94           | 2,018             | 2,681           | 216             | 2,897          | 879              | 69.7                     |
| Jun-94           | 1,798             | 2,647           | 222             | 2,869          | 1,071            | 62.7                     |
| Dec-94           | 1,920             | 2,619           | 216             | 2,835          | 915              | 67.7                     |
| Jan-95           | 2,102             | 2,521           | 229             | 2,750          | 648              | 76.4                     |
| Jun-95           | 1,663             | 2,437           | 225             | 2,662          | 999              | 62.5                     |
| Dec-95           | 1,973             | 2,469           | 206             | 2,675          | 702              | 73.8                     |
| Jan-96           | 1,984             | 2,435           | 207             | 2,642          | 658              | 75.1                     |
| Jun-96           | 1,863             | 2,427           | 211             | 2,638          | 775              | 70.6                     |
| Dec-96           | 2,066             | 2,581           | 217             | 2,798          | 732              | 73.8                     |

<sup>&</sup>lt;sup>a</sup>The 1996 estimated history is based on Model GASCAP94 C102997 projections and Baker Hughes rig counts. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.;

Table 12. Kansas Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998 (Million Cubic Feet Per Day)

| Dry Gas Productive Capacity |                   |                 |                  |              |                  |                          |  |  |
|-----------------------------|-------------------|-----------------|------------------|--------------|------------------|--------------------------|--|--|
| Month-Year                  | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas  | Total<br>Gas | Total<br>Surplus | Utilization<br>(percent) |  |  |
|                             |                   | Lo              | w Case Projecti  | on           |                  |                          |  |  |
| Jan-97                      | 2,014             | 2,595           | 216              | 2,811        | 797              | 71.6                     |  |  |
| Jun-97                      | 1,894             | 2,663           | 212              | 2,875        | 981              | 65.9                     |  |  |
| Dec-97                      | 2,087             | 2,787           | 196              | 2,983        | 896              | 70.0                     |  |  |
| Jan-98                      | 2,046             | 2,801           | 195              | 2,996        | 950              | 68.3                     |  |  |
| Jun-98                      | 1,926             | 2,875           | 189              | 3,064        | 1,138            | 62.9                     |  |  |
| Dec-98                      | 2,113             | 2,982           | 183              | 3,165        | 1,052            | 66.8                     |  |  |
|                             |                   | Ba              | se Case Project  | ion          |                  |                          |  |  |
| Jan-97                      | 2,014             | 2,595           | 216              | 2,811        | 797              | 71.6                     |  |  |
| Jun-97                      | 1,894             | 2,663           | 212              | 2,875        | 981              | 65.9                     |  |  |
| Dec-97                      | 2,082             | 2,793           | 206              | 2,999        | 917              | 69.4                     |  |  |
| Jan-98                      | 2,045             | 2,811           | 206              | 3,017        | 972              | 67.8                     |  |  |
| Jun-98                      | 1,926             | 2,933           | 202              | 3,135        | 1,209            | 61.4                     |  |  |
| Dec-98                      | 2,106             | 3,094           | 199              | 3,293        | 1,187            | 64.0                     |  |  |
|                             |                   | Hiç             | gh Case Projecti | ion          |                  |                          |  |  |
| Jan-97                      | 2,014             | 2,595           | 216              | 2,811        | 797              | 71.6                     |  |  |
| Jun-97                      | 1,894             | 2,663           | 212              | 2,875        | 981              | 65.9                     |  |  |
| Dec-97                      | 2,079             | 2,787           | 216              | 3,003        | 924              | 69.2                     |  |  |
| Jan-98                      | 2,044             | 2,813           | 215              | 3,028        | 984              | 67.5                     |  |  |
| Jun-98                      | 1,926             | 2,988           | 214              | 3,202        | 1,276            | 60.1                     |  |  |
| Dec-98                      | 2,104             | 3,274           | 214              | 3,488        | 1,384            | 60.3                     |  |  |

Sources: Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997 and Model GASCAP C102997. Productive Capacity Projections: Model GASCAP94 C102997.

2,500 High 2,000 Base Gas-Well Completions 1,500 1,000 His to ry Projections 500 0 1986 1987 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1988

Figure 25. Kans as Gas-Well Completions Added During Year, 1986-1998

Note: The 1996 estimated history is based on Drilling Rig Model projections and Baker Hughes rig counts. Completions include recompletions in new producing zones.

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

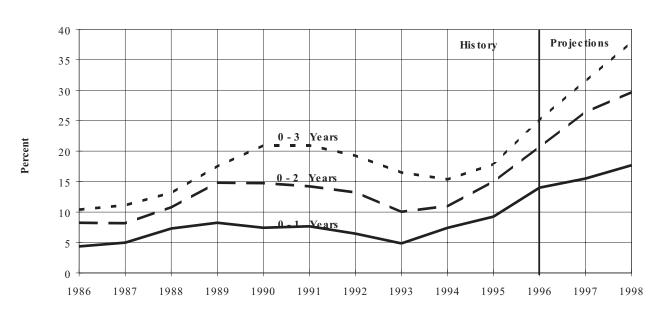
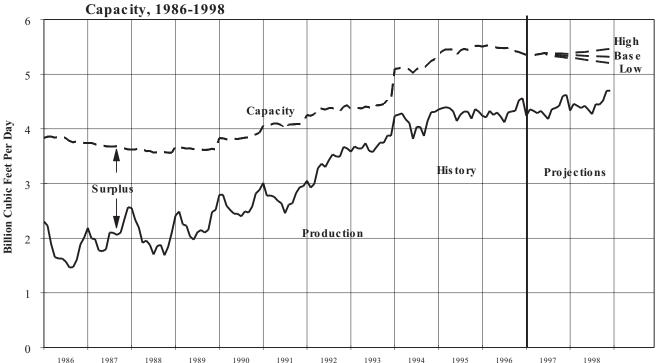



Figure 26. Percent of Total Wellhead Productive Capacity of Kansas Gas Wells by Well Age, 1986-1998 (Base Case)

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

#### **New Mexico**

Most of this State's natural gas is produced from fields in northwestern New Mexico from the San Juan Basin. Practically all of the oil-well gas produced comes from the Permian Basin of southeast New Mexico.


Basin field of the San Juan Basin, the largest gas field in the State, produced 667 billion cubic feet of mixed gas-well conventional and coalbed gas during 1995. This was a decrease of 36 billion cubic feet over the amount produced in 1994. New Mexico has been an area of intense drilling for coalbed gas since 1989. Coalbed gas production from this field increased 217 percent from 1990 through 1994.

Coalbed gas produced in New Mexico was about 15 percent of the State's total dry gas producted in 1990, 23 percent in

1991, 31 percent in 1992, 36 percent in 1993, 39 percent in 1994, and 41 percent in 1995.{13} Coalbed gas-well completions were treated separately from the conventional gas-well completions in this report. Coalbed gas wells have an increasing rate of production the first few years of their lives. After reaching their peak production rates, coalbed gas wells are predicted to have very low decline rates and therefore very long lives. Coalbed gas capacity has shown an increase in the last few years. (Figure 28).

The following pages include Tables 13, 14, and Figures 27 through 30, which provide historical and projected production and productive capacity, gas-well completions added, and percent of capacity by well age.

Figure 27. New Mexico Dry Gas Monthly Production Rate and Wellhead Productive



Note: Production projection plotted for base case only. The 1996 estimated history is based on Model GASCAP94 C102997 projections.

Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997.

Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

Table 13. New Mexico Dry Gas Production and Wellhead Productive Capacity, 1986-1996 (Million Cubic Feet Per Day)

| Dry Gas Productive Capacity |                   |                 |                 |                |                  |                       |  |  |
|-----------------------------|-------------------|-----------------|-----------------|----------------|------------------|-----------------------|--|--|
| Month-Year                  | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas | Total<br>Gas   | Total<br>Surplus | Utilization (percent) |  |  |
|                             |                   |                 |                 |                |                  |                       |  |  |
| Jan-86                      | 2,307             | 3,259           | 574             | 3,833          | 1,526            | 60.2                  |  |  |
| Jun-86                      | 1,627             | 3,310           | 551             | 3,861          | 2,234            | 42.1                  |  |  |
| Dec-86                      | 2,005             | 3,222           | 521             | 3,743          | 1,738            | 53.6                  |  |  |
| Jan-87                      | 2,189             | 3,208           | 536             | 3,744          | 1,555            | 58.5                  |  |  |
| Jun-87                      | 1,798             | 3,155           | 525             | 3,680          | 1,882            | 48.9                  |  |  |
| Dec-87                      | 2,567             | 3,085           | 539             | 3,624          | 1,057            | 70.8                  |  |  |
| Jan-88                      | 2,553             | 3,098           | 524             | 3,622          | 1,069            | 70.5                  |  |  |
| Jun-88                      | 1,876             | 3,083           | 512             | 3,595          | 1,719            | 52.2                  |  |  |
| Dec-88                      | 2,100             | 3,059           | 503             | 3,562          | 1,462            | 59.0                  |  |  |
|                             | 0.444             | 0.470           |                 |                | 4.000            | 0.7.0                 |  |  |
| Jan-89                      | 2,414             | 3,179           | 501             | 3,680          | 1,266            | 65.6                  |  |  |
| Jun-89                      | 1,974             | 3,155           | 472             | 3,627          | 1,653            | 54.4                  |  |  |
| Dec-89                      | 2,519             | 3,165           | 458             | 3,623          | 1,104            | 69.5                  |  |  |
| Jan-90                      | 2,791             | 3,322           | 508             | 3,830          | 1,039            | 72.9                  |  |  |
| Jun-90                      | 2,445             | 3,322           | 491             | 3,813          | 1,368            | 64.1                  |  |  |
| Dec-90                      | 2,881             | 3,426           | 504             | 3,930          | 1,049            | 73.3                  |  |  |
| Jan-91                      | 3,010             | 3,506           | 551             | 4,057          | 1,047            | 74.2                  |  |  |
| Jun-91                      | 2,640             | 3,531           | 539             | 4,070          | 1,430            | 64.9                  |  |  |
| Dec-91                      | 2,952             | 3,581           | 547             | 4,128          | 1,176            | 71.5                  |  |  |
| Jan-92                      | 3,051             | 3,692           | 563             | 4,255          | 1,204            | 71.7                  |  |  |
| Jun-92                      | 3,301             | 3,789           | 564             | 4,353          | 1,052            | 75.8                  |  |  |
| Dec-92                      | 3,642             | 3,880           | 553             | 4,433          | 791              | 82.2                  |  |  |
| I 00                        | 0.500             | 0.004           | 505             | 4.000          | 700              | 00.4                  |  |  |
| Jan-93                      | 3,583             | 3,801           | 565<br>556      | 4,366          | 783<br>700       | 82.1                  |  |  |
| Jun-93<br>Dec-93            | 3,596<br>3,875    | 3,839<br>3,959  | 556<br>571      | 4,395<br>4,530 | 799<br>655       | 81.8<br>85.5          |  |  |
| Dec-93                      | 3,073             | 3,959           | 571             | 4,550          | 655              | 65.5                  |  |  |
| Jan-94                      | 4,239             | 4,556           | 539             | 5,095          | 856              | 83.2                  |  |  |
| Jun-94                      | 3,815             | 4,540           | 487             | 5,027          | 1,212            | 75.9                  |  |  |
| Dec-94                      | 4,310             | 4,761           | 515             | 5,276          | 966              | 81.7                  |  |  |
| Jan-95                      | 4,354             | 4,758           | 611             | 5,369          | 1,015            | 81.1                  |  |  |
| Jun-95                      | 4,143             | 4,737           | 620             | 5,357          | 1,214            | 77.3                  |  |  |
| Dec-95                      | 4,316             | 4,904           | 615             | 5,519          | 1,203            | 78.2                  |  |  |
| Jan-96                      | 4,239             | 1 801           | 615             | 5 506          | 1 267            | 77.0                  |  |  |
| Jan-96<br>Jun-96            | 4,239<br>4,224    | 4,891<br>4,875  | 605             | 5,506<br>5,480 | 1,267<br>1,256   | 77.0<br>77.1          |  |  |
| Dec-96                      | 4,561             | 4,774           | 606             | 5,380          | 819              | 84.8                  |  |  |

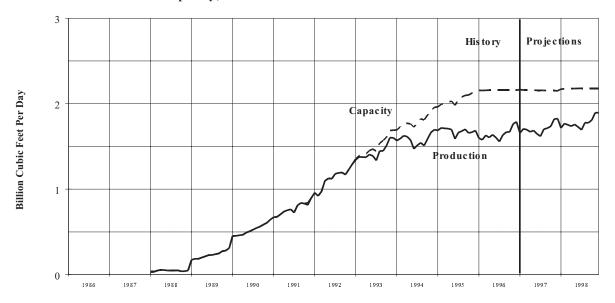
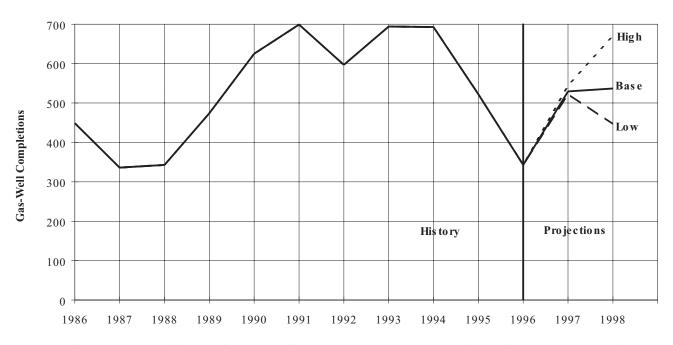

<sup>&</sup>lt;sup>a</sup>The 1996 estimated history is based on Model GASCAP94 C102997 projections and Baker Hughes rig counts. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997.

Table 14. New Mexico Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998 (Million Cubic Feet Per Day)

|            | _                 | Dry Ga          | s Productive Ca  | apacity      |                  |                          |
|------------|-------------------|-----------------|------------------|--------------|------------------|--------------------------|
| Month-Year | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas  | Total<br>Gas | Total<br>Surplus | Utilization<br>(percent) |
|            |                   | Lo              | w Case Projecti  | on           |                  |                          |
| Jan-97     | 4,239             | 4,750           | 604              | 5,354        | 1,115            | 79.2                     |
| Jun-97     | 4,255             | 4,792           | 597              | 5,389        | 1,134            | 79.0                     |
| Dec-97     | 4,632             | 4,745           | 556              | 5,301        | 669              | 87.4                     |
| Jan-98     | 4,335             | 4,733           | 553              | 5,286        | 951              | 82.0                     |
| Jun-98     | 4,350             | 4,715           | 540              | 5,255        | 905              | 82.8                     |
| Dec-98     | 4,714             | 4,676           | 526              | 5,202        | 488              | 90.6                     |
|            |                   | Ba              | se Case Project  | ion          |                  |                          |
| Jan-97     | 4,239             | 4,750           | 604              | 5,354        | 1,115            | 79.2                     |
| Jun-97     | 4,255             | 4,792           | 597              | 5,389        | 1,134            | 79.0                     |
| Dec-97     | 4,621             | 4,752           | 585              | 5,337        | 716              | 86.6                     |
| Jan-98     | 4,333             | 4,744           | 583              | 5,327        | 994              | 81.3                     |
| Jun-98     | 4,349             | 4,756           | 577              | 5,333        | 984              | 81.5                     |
| Dec-98     | 4,698             | 4,746           | 571              | 5,317        | 619              | 88.4                     |
|            |                   | Hiç             | gh Case Projecti | ion          |                  |                          |
|            |                   |                 |                  |              |                  |                          |
| Jan-97     | 4,239             | 4,750           | 604              | 5,354        | 1,115            | 79.2                     |
| Jun-97     | 4,255             | 4,792           | 597              | 5,389        | 1,134            | 79.0                     |
| Dec-97     | 4,615             | 4,762           | 611              | 5,373        | 758              | 85.9                     |
| Jan-98     | 4,331             | 4,759           | 610              | 5,369        | 1,038            | 80.7                     |
| Jun-98     | 4,349             | 4,804           | 611              | 5,415        | 1,066            | 80.3                     |
| Dec-98     | 4,693             | 4,850           | 614              | 5,464        | 771              | 85.9                     |

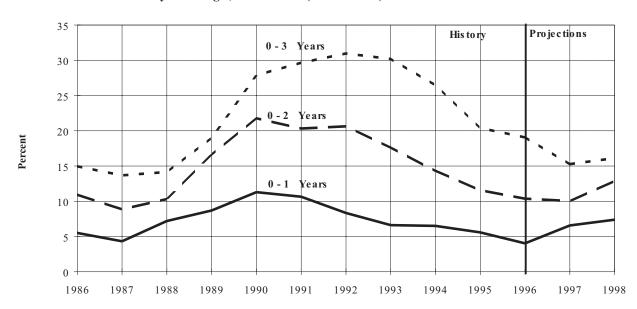
Sources: Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997 and Model GASCAP C102997. Productive Capacity Projections: Model GASCAP94 C102997.


Figure 28. New Mexico Dry Coalbed Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998



Note: Production projection plotted for base case only.

Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.


Figure 29. New Mexico Gas-Well Completions Added During Year, 1986-1998



Note: The 1996 estimated history is based on Drilling Rig Model projections and Baker Hughes rig counts. Completions include recompletions in new producing zones.

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

Figure 30. Percent of Total Wellhead Productive Capacity of New Mexico Gas Wells by Well Age, 1986-1998 (Base Case)



Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

#### Oklahoma

Oklahoma is among the top three gas-producing States. There are numerous large and small gas fields scattered throughout western Oklahoma. Oil fields with large volumes of associated-dissolved gas are located generally in central Oklahoma. Dwight's EnergyData, Inc., indicates that, in 1995, the top two gas-producing areas were the Mocane-Laverne (94 Bcf) area and the Watonga-Chickasha Trend (82 Bcf). The Mocane-Laverne area, located in

Northwest Oklahoma, consists of over 50 fields, and the Watonga-Chickasha Trend consists of more than 70 fields.

The following pages include Tables 15 and 16 and Figures 31 through 33, which provide historical and projected production and productive capacity, gas-well completions added, and percent of capacity by well age.

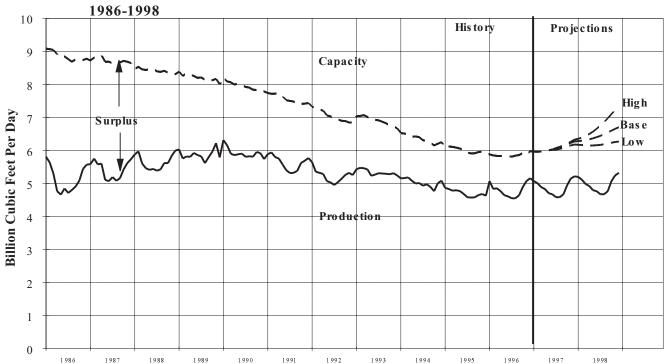



Figure 31. Oklahoma Dry Gas Monthly Production Rate and Wellhead Productive Capacity,

Note: Production projection plotted for base case only. The 1996 estimated history is based on Model GASCAP94 C102997 projections. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

Table 15. Oklahoma Dry Gas Production and Wellhead Productive Capacity, 1986-1996 (Million Cubic Feet Per Day)

|            | _                 | Dry Ga          | as Productive Ca | apacity      |                  |                       |
|------------|-------------------|-----------------|------------------|--------------|------------------|-----------------------|
| Month-Year | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas  | Total<br>Gas | Total<br>Surplus | Utilization (percent) |
| Jan-86     | 5,812             | 7,575           | 1,507            | 9,082        | 3,270            | 64.0                  |
| Jun-86     | 4,852             | 7,555           | 1,295            | 8,850        | 3,998            | 54.8                  |
| Dec-86     | 5,572             | 7,513           | 1,264            | 8,777        | 3,205            | 63.5                  |
| Jan-87     | 5,588             | 7,498           | 1,228            | 8,726        | 3,138            | 64.0                  |
| Jun-87     | 5,073             | 7,392           | 1,296            | 8,688        | 3,615            | 58.4                  |
| Dec-87     | 5,742             | 7,439           | 1,211            | 8,650        | 2,908            | 66.4                  |
| Jan-88     | 5,885             | 7,271           | 1,202            | 8,473        | 2,588            | 69.5                  |
| Jun-88     | 5,444             | 7,256           | 1,222            | 8,478        | 3,034            | 64.2                  |
| Dec-88     | 5,999             | 7,128           | 1,183            | 8,311        | 2,312            | 72.2                  |
| Jan-89     | 6,032             | 7,164           | 1,222            | 8,386        | 2,354            | 71.9                  |
| Jun-89     | 5,863             | 7,059           | 1,141            | 8,200        | 2,337            | 71.5                  |
| Dec-89     | 5,789             | 6,966           | 1,033            | 7,999        | 2,210            | 72.4                  |
| Jan-90     | 6,313             | 6,981           | 1,224            | 8,205        | 1,892            | 76.9                  |
| Jun-90     | 5,907             | 6,892           | 1,094            | 7,986        | 2,079            | 74.0                  |
| Dec-90     | 5,740             | 6,778           | 1,010            | 7,788        | 2,048            | 73.7                  |
| Jan-91     | 5,890             | 6,800           | 940              | 7,740        | 1,850            | 76.1                  |
| Jun-91     | 5,405             | 6,583           | 941              | 7,524        | 2,119            | 71.8                  |
| Dec-91     | 5,772             | 6,545           | 892              | 7,437        | 1,665            | 77.6                  |
| Jan-92     | 5,646             | 6,424           | 902              | 7,326        | 1,680            | 77.1                  |
| Jun-92     | 5,035             | 6,141           | 893              | 7,034        | 1,999            | 71.6                  |
| Dec-92     | 5,257             | 5,958           | 887              | 6,845        | 1,588            | 76.8                  |
| Jan-93     | 5.436             | 6.219           | 824              | 7.043        | 1.607            | 77.2                  |
| Jun-93     | 5,271             | 6,083           | 846              | 6,929        | 1,658            | 76.1                  |
| Dec-93     | 5,244             | 5,886           | 788              | 6,674        | 1,430            | 78.6                  |
| Jan-94     | 5,155             | 5,709           | 820              | 6,529        | 1,374            | 79.0                  |
| Jun-94     | 5,017             | 5,587           | 817              | 6,404        | 1,387            | 78.3                  |
| Dec-94     | 5,088             | 5,450           | 804              | 6,254        | 1,166            | 81.4                  |
| Jan-95     | 4,869             | 5,335           | 750              | 6,085        | 1,216            | 80.0                  |
| Jun-95     | 4,687             | 5,261           | 759              | 6,020        | 1,333            | 77.9                  |
| Dec-95     | 4,632             | 5,214           | 735              | 5,949        | 1,317            | 77.9                  |
| Jan-96     | 5,074             | 5,132           | 751              | 5,883        | 809              | 86.2                  |
| Jun-96     | 4,612             | 5,082           | 729              | 5,811        | 1,199            | 79.4                  |
| Dec-96     | 5,161             | 5,240           | 741              | 5,981        | 820              | 86.3                  |

<sup>&</sup>lt;sup>a</sup>The 1996 estimated history is based on Model GASCAP94 C102997 projections and Baker Hughes rig counts. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997.

Table 16. Oklahoma Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998 (Million Cubic Feet Per Day)

|            |                   |                 | s Productive Ca | ipacity      |                  |                          |
|------------|-------------------|-----------------|-----------------|--------------|------------------|--------------------------|
| Month-Year | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas | Total<br>Gas | Total<br>Surplus | Utilization<br>(percent) |
|            |                   | Lo              | w Case Projecti | on           |                  |                          |
| Jan-97     | 5,074             | 5,228           | 737             | 5,965        | 891              | 85.1                     |
| Jun-97     | 4,675             | 5,303           | 724             | 6,027        | 1,352            | 77.6                     |
| Dec-97     | 5,230             | 5,513           | 670             | 6,183        | 953              | 84.6                     |
| Jan-98     | 5,203             | 5,508           | 666             | 6,174        | 971              | 84.3                     |
| Jun-98     | 4,771             | 5,514           | 646             | 6,160        | 1,389            | 77.5                     |
| Dec-98     | 5,343             | 5,647           | 625             | 6,272        | 929              | 85.2                     |
|            |                   | Ва              | se Case Project | ion          |                  |                          |
| Jan-97     | 5,074             | 5,228           | 737             | 5,965        | 891              | 85.1                     |
| Jun-97     | 4,675             | 5,303           | 724             | 6,027        | 1,352            | 77.6                     |
| Dec-97     | 5,218             | 5,571           | 705             | 6,276        | 1,058            | 83.1                     |
| Jan-98     | 5,201             | 5,581           | 702             | 6,283        | 1,082            | 82.8                     |
| Jun-98     | 4,770             | 5,714           | 690             | 6,404        | 1,634            | 74.5                     |
| Dec-98     | 5,324             | 6,026           | 678             | 6,704        | 1,380            | 79.4                     |
|            |                   | Hig             | h Case Project  | ion          |                  |                          |
|            |                   |                 |                 |              |                  |                          |
| Jan-97     | 5,074             | 5,228           | 737             | 5,965        | 891              | 85.1                     |
| Jun-97     | 4,675             | 5,303           | 724             | 6,027        | 1,352            | 77.6                     |
| Dec-97     | 5,210             | 5,593           | 736             | 6,329        | 1,119            | 82.3                     |
| Jan-98     | 5,198             | 5,619           | 735             | 6,354        | 1,156            | 81.8                     |
| Jun-98     | 4,770             | 5,928           | 731             | 6,659        | 1,889            | 71.6                     |
| Dec-98     | 5,319             | 6,614           | 729             | 7,343        | 2,024            | 72.4                     |

Sources: Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997 and Model GASCAP C102997. Productive Capacity Projections: Model GASCAP94 C102997.

3,000 Projections His to ry Hig h 2,500 Gas-Well Completions 2,000 Base 1,500 1,000 500 0 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995

Figure 32. Oklahoma Gas-Well Completions Added During Year, 1986-1998

Note: The 1996 estimated history is based on Drilling Rig Model projections and Baker Hughes rig counts. Completions include recompletions in new producing zones.

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

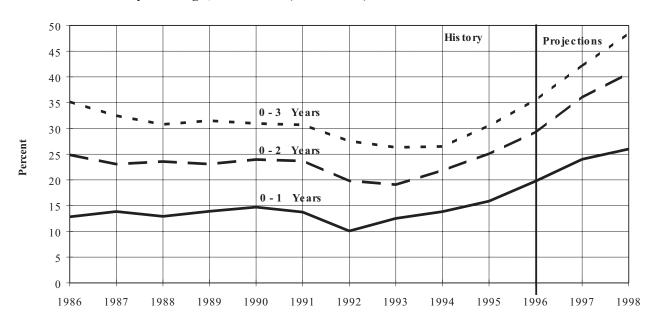
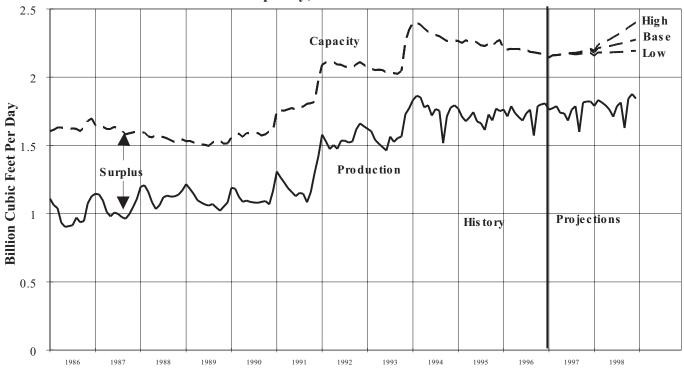



Figure 33. Percent of Total Wellhead Productive Capacity of Oklahoma Gas Wells by Well Age, 1986-1998 (Base Case)

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GAS CAP 94 C102997.

### **Southeast (Excluding Gulf of Mexico OCS)**


The Southeast area includes the States of Arkansas, Mississippi, and Alabama (excluding Gulf of Mexico OCS). Production is from highly permeable deep formations on the Gulf Coast, as well as from low permeability and relatively shallow formations in Arkansas, northern Mississippi, and northern Alabama.

Coalbed gas production in Alabama was 35 percent of the State's total dry gas production in 1990, 47 percent in 1991, 35 percent in 1992, 37 percent in 1993, 28 percent in 1994,

and 30 percent in 1995. {13} Coalbed gas-well completions in Alabama were treated separately from conventional gas-well completions in this report. Coalbed gas capacity continues to increase through 1998, (Figure 35).

The following pages include Tables 17 and 18 and Figures 34 through 37, which provide historical and projected production and productive capacity, gas-well completions added, and percent of capacity by well age.

Figure 34. Southeast (Excluding Gulf of Mexico OCS) Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998



Note: Production projection plotted for base case only. The 1996 estimated history is based on Model GASCAP94 C102997 projections. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

Table 17. Southeast (Excluding Gulf of Mexico OCS) Dry Gas Production and Wellhead Productive Capacity, 1986-1996 (Million Cubic Feet Per Day)

| Dry Gas Productive Capacity |                   |                 |                 |                |                  |                          |  |  |
|-----------------------------|-------------------|-----------------|-----------------|----------------|------------------|--------------------------|--|--|
| Month-Year                  | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas | Total<br>Gas   | Total<br>Surplus | Utilization<br>(percent) |  |  |
|                             |                   |                 |                 |                |                  |                          |  |  |
| Jan-86                      | 1,110             | 1,458           | 146             | 1,604          | 494              | 69.2                     |  |  |
| Jun-86                      | 908               | 1,483           | 137             | 1,620          | 712              | 56.0                     |  |  |
| Dec-86                      | 1,128             | 1,567           | 131             | 1,698          | 570              | 66.4                     |  |  |
| Jan-87                      | 1,146             | 1,519           | 128             | 1,647          | 501              | 69.6                     |  |  |
| Jun-87                      | 1,008             | 1,505           | 130             | 1,635          | 627              | 61.7                     |  |  |
| Dec-87                      | 1,109             | 1,477           | 127             | 1,604          | 495              | 69.1                     |  |  |
| Jan-88                      | 1,197             | 1,470           | 124             | 1,594          | 397              | 75.1                     |  |  |
| Jun-88                      | 1,062             | 1,444           | 121             | 1,565          | 503              | 67.9                     |  |  |
| Dec-88                      | 1,171             | 1,425           | 119             | 1,544          | 373              | 75.8                     |  |  |
| Jan-89                      | 1,216             | 1,405           | 126             | 1,531          | 315              | 79.4                     |  |  |
| Jun-89                      | 1,067             | 1,377           | 127             | 1,504          | 437              | 70.9                     |  |  |
| Dec-89                      | 1,082             | 1,400           | 115             | 1,515          | 433              | 71.4                     |  |  |
| Jan-90                      | 1,189             | 1,450           | 109             | 1,559          | 370              | 76.3                     |  |  |
| Jun-90                      | 1,086             | 1,479           | 110             | 1,589          | 503              | 68.3                     |  |  |
| Dec-90                      | 1,167             | 1,496           | 112             | 1,608          | 441              | 72.6                     |  |  |
| Dec-30                      | 1,107             | 1,430           | 112             | 1,000          | 771              | 72.0                     |  |  |
| Jan-91                      | 1,309             | 1,661           | 94              | 1,755          | 446              | 74.6                     |  |  |
| Jun-91                      | 1,128             | 1,671           | 92              | 1,763          | 635              | 64.0                     |  |  |
| Dec-91                      | 1,419             | 1,882           | 93              | 1,975          | 556              | 71.8                     |  |  |
| Jan-92                      | 1,579             | 1,935           | 156             | 2,091          | 512              | 75.5                     |  |  |
| Jun-92                      | 1,535             | 1,939           | 152             | 2,091          | 556              | 73.4                     |  |  |
| Dec-92                      | 1,641             | 1,944           | 149             | 2,093          | 452              | 78.4                     |  |  |
| Jan-93                      | 1,622             | 1,921           | 150             | 2,071          | 449              | 78.3                     |  |  |
| Jun-93                      | 1,462             | 1,894           | 141             | 2,035          | 573              | 70.3<br>71.8             |  |  |
| Dec-93                      | 1,773             | 2,207           | 141             | 2,348          | 575              | 75.5                     |  |  |
| Jan-94                      | 1 022             | 2 270           | 124             | 2.402          | 569              | 76.3                     |  |  |
| Jun-94                      | 1,833<br>1,718    | 2,278<br>2,208  | 124             | 2,402<br>2,328 | 610              | 76.3<br>73.8             |  |  |
| Dec-94                      | 1,718             | 2,208           | 118             | 2,328          | 475              | 73.8<br>79.1             |  |  |
|                             | 4 770             | 0.440           | 440             | 0.005          | 405              | 70.4                     |  |  |
| Jan-95                      | 1,770             | 2,149           | 116             | 2,265          | 495              | 78.1                     |  |  |
| Jun-95                      | 1,675             | 2,141           | 113             | 2,254          | 579              | 74.3                     |  |  |
| Dec-95                      | 1,751             | 2,155           | 118             | 2,273          | 522              | 77.0                     |  |  |
| Jan-96                      | 1,762             | 2,084           | 115             | 2,199          | 437              | 80.1                     |  |  |
| Jun-96                      | 1,682             | 2,086           | 110             | 2,196          | 514              | 76.6                     |  |  |
| Dec-96                      | 1,808             | 2,062           | 105             | 2,167          | 359              | 83.4                     |  |  |

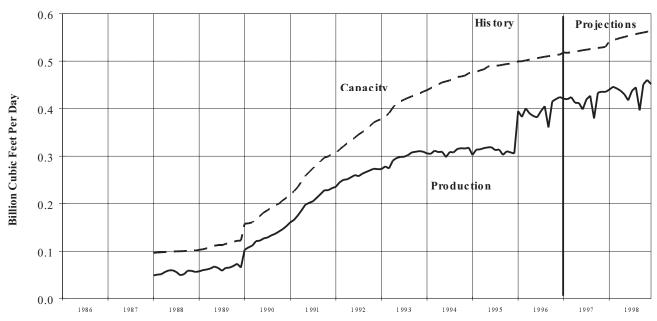
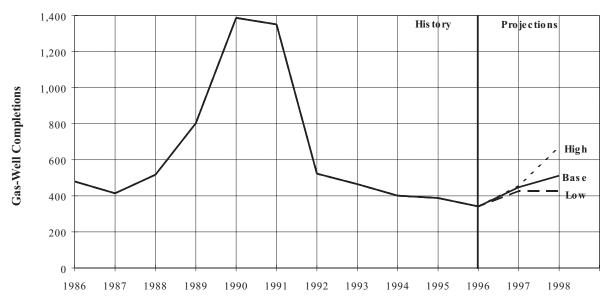

<sup>&</sup>lt;sup>a</sup>The 1996 estimated history is based on Model GASCAP94 C102997 projections and Baker Hughes rig counts. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997.

Table 18. Southeast (Excluding Gulf of Mexico OCS) Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998 (Million Cubic Feet Per Day)

| Dry Gas Productive Capacity |                   |                 |                  |              |                  |                       |  |
|-----------------------------|-------------------|-----------------|------------------|--------------|------------------|-----------------------|--|
| Month-Year                  | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas  | Total<br>Gas | Total<br>Surplus | Utilization (percent) |  |
|                             |                   | Lo              | w Case Projecti  | on           |                  |                       |  |
| Jan-97                      | 1,762             | 2,040           | 105              | 2,145        | 383              | 82.1                  |  |
| Jun-97                      | 1,682             | 2,072           | 103              | 2,175        | 493              | 77.3                  |  |
| Dec-97                      | 1,827             | 2,082           | 95               | 2,177        | 350              | 83.9                  |  |
| Jan-98                      | 1,791             | 2,064           | 94               | 2,158        | 367              | 83.0                  |  |
| Jun-98                      | 1,710             | 2,091           | 92               | 2,183        | 473              | 78.3                  |  |
| Dec-98                      | 1,850             | 2,105           | 88               | 2,193        | 343              | 84.4                  |  |
|                             |                   | Ва              | se Case Projecti | on           |                  |                       |  |
| Jan-97                      | 1,762             | 2,040           | 105              | 2,145        | 383              | 82.1                  |  |
| Jun-97                      | 1,682             | 2,072           | 103              | 2,175        | 493              | 77.3                  |  |
| Dec-97                      | 1,822             | 2,097           | 100              | 2,197        | 375              | 82.9                  |  |
| Jan-98                      | 1,790             | 2,081           | 100              | 2,181        | 391              | 82.1                  |  |
| Jun-98                      | 1,710             | 2,136           | 98               | 2,234        | 524              | 76.5                  |  |
| Dec-98                      | 1,843             | 2,179           | 96               | 2,275        | 432              | 81.0                  |  |
|                             |                   | Hiç             | gh Case Projecti | on           |                  |                       |  |
| Jan-97                      | 1,762             | 2,040           | 105              | 2,145        | 383              | 82.1                  |  |
| Jun-97                      | 1,682             | 2,072           | 103              | 2,175        | 493              | 77.3                  |  |
| Dec-97                      | 1,820             | 2,104           | 104              | 2,208        | 388              | 82.4                  |  |
| Jan-98                      | 1,789             | 2,091           | 104              | 2,195        | 406              | 81.5                  |  |
| Jun-98                      | 1,710             | 2,190           | 103              | 2,293        | 583              | 74.6                  |  |
| Dec-98                      | 1,842             | 2,299           | 103              | 2,402        | 560              | 76.7                  |  |

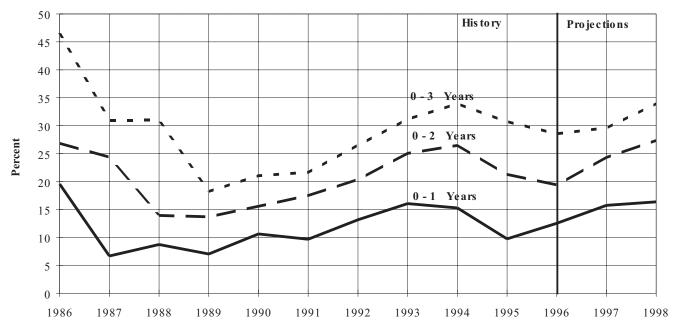
Sources: Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997 and Model GASCAP C102997. Productive Capacity Projections: Model GASCAP94 C102997.


Figure 35. Southeast (Excluding Gulf of Mexico OCS) Dry Coalbed Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998



Note: Production projection plotted for base case only.

Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GAS CAP94 C102997. Productive Capacity: Model GAS CAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GAS CAP94 C102997.


Figure 36. Southeast (Excluding Gulf of Mexico OCS) Gas-Well Completions Added During Year, 1986-1998



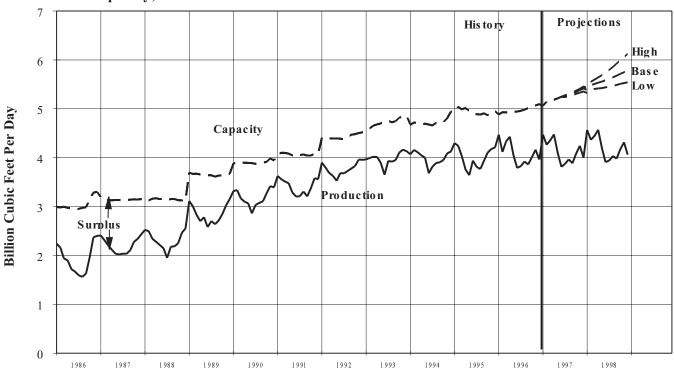
Note: The 1996 estimated history is based on Drilling Rig Model projections and Baker Hughes rig counts. Completions include recompletions in new producing zones.

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

Figure 37. Percent of Total Wellhead Productive Capacity of Southeast (Excluding Gulf of Mexico) Gas Wells by Well Age, 1986-1998 (Base Case)



Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.


### **Rocky Mountains**

The Rocky Mountains area includes Colorado, Montana, North Dakota, Utah, and Wyoming. The area is diverse and geologically complex, with many low permeability formations.

completions in Colorado and Wyoming were treated separately from conventional gas-well completions in this report. Coalbed gas capacity has shown an increase in the last few years (Figure 39).

Coalbed gas produced in Colorado was about 11 percent of the State's total dry gas produced in 1990, 17 percent in 1991, 26 percent in 1992, 32 percent in 1993, and 40 percent in 1994, and 44 percent in 1995. {13} Coalbed gas-well The following pages include Tables 19 and 20 and Figures 38 through 41, which provide historical and projected production and productive capacity, gas-well completions added, and percent of capacity by well age

Figure 38. Rocky Mountains Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998



Note: Production projection plotted for base case only. The 1996 estimated history is based on Model GASCAP94 C102997 projections.

Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997.

Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

Table 19. Rocky Mountains Dry Gas Production and Wellhead Productive Capacity, 1986-1996 (Million Cubic Feet Per Day)

|            | _                 | Dry Ga          | s Productive Ca | apacity      |                  |                       |
|------------|-------------------|-----------------|-----------------|--------------|------------------|-----------------------|
| Month-Year | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas | Total<br>Gas | Total<br>Surplus | Utilization (percent) |
| Jan-86     | 2,241             | 2,342           | 650             | 2,992        | 751              | 74.9                  |
| Jun-86     | 1,671             | 2,354           | 600             | 2,954        | 1,283            | 56.6                  |
| Dec-86     | 2,400             | 2,738           | 562             | 3,300        | 900              | 72.7                  |
| Jan-87     | 2,408             | 2,395           | 785             | 3,180        | 772              | 75.7                  |
| Jun-87     | 2,022             | 2,374           | 761             | 3,135        | 1,113            | 64.5                  |
| Dec-87     | 2,436             | 2,393           | 763             | 3,156        | 720              | 77.2                  |
| Jan-88     | 2,524             | 2,303           | 802             | 3,105        | 581              | 81.3                  |
| Jun-88     | 2,147             | 2,357           | 804             | 3,161        | 1,014            | 67.9                  |
| Dec-88     | 2,553             | 2,372           | 754             | 3,126        | 573              | 81.7                  |
| Jan-89     | 3,115             | 2,786           | 909             | 3,695        | 580              | 84.3                  |
| Jun-89     | 2,579             | 2,769           | 873             | 3,642        | 1.063            | 70.8                  |
| Dec-89     | 3,155             | 2,810           | 861             | 3,671        | 516              | 85.9                  |
| Jan-90     | 3,319             | 2,823           | 1,061           | 3,884        | 565              | 85.5                  |
| Jun-90     | 2,861             | 2,843           | 1,045           | 3,888        | 1,027            | 73.6                  |
| Dec-90     | 3,391             | 2,929           | 1,015           | 3,944        | 553              | 86.0                  |
| Jan-91     | 3,625             | 2,969           | 1,102           | 4,071        | 446              | 89.0                  |
| Jun-91     | 3,206             | 2,951           | 1,077           | 4,028        | 822              | 79.6                  |
| Dec-91     | 3,559             | 3,030           | 1,048           | 4,078        | 519              | 87.3                  |
| Jan-92     | 3,899             | 3,326           | 1,080           | 4,406        | 507              | 88.5                  |
| Jun-92     | 3,685             | 3,337           | 1,051           | 4,388        | 703              | 84.0                  |
| Dec-92     | 3,955             | 3,510           | 1,009           | 4,519        | 564              | 87.5                  |
| Jan-93     | 3,965             | 3,790           | 765             | 4,555        | 590              | 87.0                  |
| Jun-93     | 3,649             | 3,973           | 770             | 4,743        | 1,094            | 76.9                  |
| Dec-93     | 4,131             | 4,119           | 736             | 4,855        | 724              | 85.1                  |
| Jan-94     | 4,071             | 4,029           | 646             | 4,675        | 604              | 87.1                  |
| Jun-94     | 3,682             | 4,044           | 634             | 4,678        | 996              | 78.7                  |
| Dec-94     | 4,124             | 4,327           | 617             | 4,944        | 820              | 83.4                  |
| Jan-95     | 4,298             | 4,337           | 598             | 4,935        | 637              | 87.1                  |
| Jun-95     | 3,940             | 4,330           | 583             | 4,913        | 973              | 80.2                  |
| Dec-95     | 4,209             | 4,382           | 571             | 4,953        | 744              | 85.0                  |
| Jan-96     | 4,470             | 4,329           | 559             | 4,888        | 418              | 91.4                  |
| Jun-96     | 3,790             | 4,389           | 554             | 4,943        | 1,153            | 76.7                  |
| Dec-96     | 3,963             | 4,539           | 556             | 5,095        | 1,132            | 77.8                  |

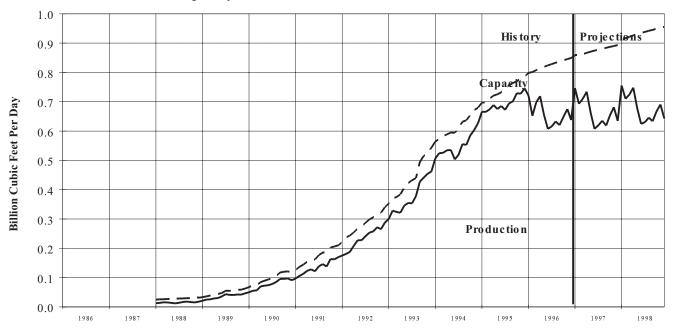
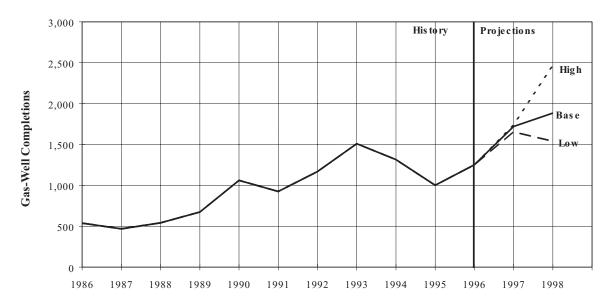

<sup>&</sup>lt;sup>a</sup>The 1996 estimated history is based on Model GASCAP94 C102997 projections and Baker Hughes rig counts. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997.

Table 20. Rocky Mountains Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998 (Million Cubic Feet Per Day)

|                  | _                 | Dry Ga          | s Productive Ca | pacity             |                  |                          |
|------------------|-------------------|-----------------|-----------------|--------------------|------------------|--------------------------|
| Month-Year       | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas | Total<br>Gas       | Total<br>Surplus | Utilization<br>(percent) |
|                  |                   | Lo              | w Case Projecti | on                 |                  |                          |
| Jan-97           | 4,470             | 4,508           | 554             | 5,062              | 592              | 88.3                     |
| Jun-97           | 3,813             | 4,699           | 548             | 5,247              | 1,434            | 72.7                     |
| Dec-97           | 4,014             | 4,845           | 510             | 5,355              | 1,341            | 75.0                     |
| Jan-98           | 4,567             | 4,814           | 508             | 5,322              | 755              | 85.8                     |
| Jun-98           | 3,909             | 4,943           | 495             | 5,438              | 1,529            | 71.9                     |
| Dec-98           | 4,076             | 5,060           | 482             | 5,542              | 1,466            | 73.5                     |
|                  |                   | Bas             | se Case Project | ion                |                  |                          |
| Jan-97           | 4,470             | 4,508           | 554             | 5,062              | 592              | 88.3                     |
| Jun-97           | 3,813             | 4,699           | 548             | 5,247              | 1,434            | 72.7                     |
| Dec-97           | 4,005             | 4,881           | 536             | 5,417              | 1,412            | 73.9                     |
| Jan-98           | 4,565             | 4,853           | 535             | 5,388              | 823              | 84.7                     |
| Jun-98           | 3,908             | 5,054           | 529             | 5,583              | 1,675            | 70.0                     |
| Dec-98           | 4,061             | 5,258           | 523             | 5,781              | 1,720            | 70.2                     |
|                  |                   | Hiç             | gh Case Project | ion                |                  |                          |
| lan 07           | 4.470             | 4.500           | F.F. 4          | F 000              | 500              | 00.0                     |
| Jan-97<br>Jun-97 | 4,470<br>3,813    | 4,508<br>4,699  | 554<br>548      | 5,062<br>5,247     | 592<br>1,434     | 88.3<br>72.7             |
| Dec-97           | 3,999             | 4,699<br>4,895  | 546<br>560      | 5,247<br>5,455     | 1,434<br>1,456   | 73.3                     |
| Dec-31           | 3,333             | 4,090           | 500             | 0, <del>4</del> 00 | 1,400            | 13.3                     |
| Jan-98           | 4,563             | 4,873           | 559             | 5,432              | 869              | 84.0                     |
| Jun-98           | 3,908             | 5,181           | 560             | 5,741              | 1,833            | 68.1                     |
| Dec-98           | 4,057             | 5,562           | 562             | 6,124              | 2,067            | 66.2                     |

Sources: Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997 and Model GASCAP C102997. Productive Capacity Projections: Model GASCAP94 C102997.


Figure 39. Rocky Mountains Dry Coalbed Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998



Note: Production projection plotted for base case only.

Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

Figure 40. Rocky Mountains Gas-Well Completions Added During Year, 1986-1998



Note: The 1996 estimated history is based on Drilling Rig Model projections and Baker Hughes rig counts. Completions include recompletions in new producing zones.

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

His to ry Projections - 3 • 0 Years Percent -1 Years 

Figure 41. Percent of Total Wellhead Productive Capacity of Rocky Mountains Gas Wells by Well Age, 1986-1998 (Base Case)

Sources: History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc. Projections: Model GASCAP94 C102997.

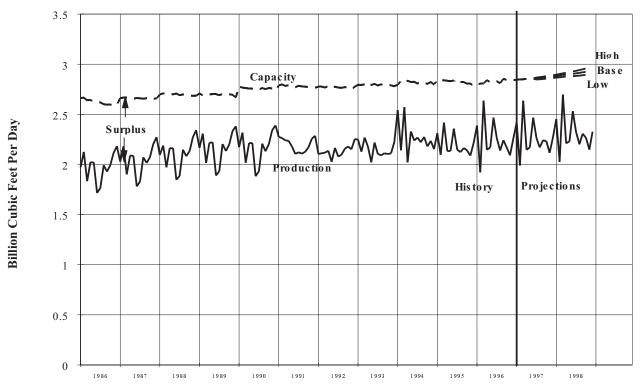
### **Eighteen States**

The remaining producing 18 States were considered as one group. The 18 States are:

- Arizona
- Michigan
- Oregon

- Florida
- Missouri
- Pennsylvania

- Illinois
- Nebraska
- South Dakota


- Indiana
- Nevada
- Tennessee

- KentuckyMaryland
- New York
- Ohio
- Virginia West Virginia.

Data are limited for this group of States, and only 3 of the 18 States are included in Dwight's: Nebraska, Oregon, and South Dakota. Production data are available from EIA for each of the 18 States but not by well completion.

The following pages include Tables 21 and 22 and Figures 42 and 43, which provide historical and projected production, productive capacity, and gas-well completions added.

Figure 42. Eighteen States Dry Gas Monthly Production Rate and Wellhead Productive Capacity, 1986-1998



Note: Production projection plotted for base case only. The 1996 estimated history based on Model GASCAP94 C102997 projections. Sources: Production History: Energy Information Administration, Office of Oil and Gas and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997. Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997, and Model GASCAP94 C102997.

Table 21. Eighteen States Dry Gas Production and Wellhead Productive Capacity Projections, 1986-1996 (Million Cubic Feet Per Day)

|                  | Dry<br>Production | Dry Ga          | s Productive Ca |                |                  |                          |
|------------------|-------------------|-----------------|-----------------|----------------|------------------|--------------------------|
| Month-Year       |                   | Gas-Well<br>Gas | Oil-Well<br>Gas | Total<br>Gas   | Total<br>Surplus | Utilization<br>(percent) |
|                  |                   |                 |                 |                |                  |                          |
| Jan-86           | 1,970             | 2,448           | 213             | 2,661          | 691              | 74.0                     |
| Jun-86           | 1,716             | 2,423           | 201             | 2,624          | 908              | 65.4                     |
| Dec-86           | 2,182             | 2,402           | 189             | 2,591          | 409              | 84.2                     |
| Jan-87           | 2,029             | 2,443           | 218             | 2,661          | 632              | 76.2                     |
| Jun-87           | 1,781             | 2,441           | 221             | 2,662          | 881              | 66.9                     |
| Dec-87           | 2,272             | 2,439           | 219             | 2,658          | 386              | 85.5                     |
| Jan-88           | 2,095             | 2,484           | 214             | 2,698          | 603              | 77.7                     |
| Jun-88           | 1,848             | 2,480           | 227             | 2,707          | 859              | 68.3                     |
| Dec-88           | 2,341             | 2,479           | 207             | 2,686          | 345              | 87.2                     |
| Jan-89           | 2,166             | 2,471           | 237             | 2,708          | 542              | 80.0                     |
| Jun-89           | 1,890             | 2,474           | 228             | 2,702          | 812              | 69.9                     |
| Dec-89           | 2,381             | 2,476           | 194             | 2,670          | 289              | 89.2                     |
| Jan-90           | 2,173             | 2,514           | 264             | 2,778          | 605              | 78.2                     |
| Jun-90           | 1,883             | 2,514           | 239             | 2,770          | 869              | 68.4                     |
| Dec-90           | 2,390             | 2,513           | 226             | 2,739          | 349              | 87.3                     |
| Jan-91           | 2,275             | 2,535           | 253             | 2,788          | 513              | 81.6                     |
| Jun-91           | 2,105             | 2,531           | 239             | 2,770          | 665              | 76.0                     |
| Dec-91           | 2,285             | 2,521           | 244             | 2,765          | 480              | 82.6                     |
| Jan-92           | 2,104             | 2,521           | 255             | 0.776          | 672              | 75.8                     |
| Jan-92<br>Jun-92 | 2,166             | 2,521           | 260             | 2,776<br>2,775 | 609              | 75.6<br>78.1             |
| Dec-92           | 2,253             | 2,518           | 257             | 2,775          | 522              | 81.2                     |
| lan 00           | 2.240             | 0.500           | 200             | 0.705          | F 47             | 00.4                     |
| Jan-93           | 2,248             | 2,529           | 266             | 2,795          | 547              | 80.4                     |
| Jun-93           | 2,219             | 2,535           | 269             | 2,804          | 585              | 79.1                     |
| Dec-93           | 2,225             | 2,528           | 252             | 2,780          | 555              | 80.0                     |
| Jan-94           | 2,541             | 2,533           | 262             | 2,795          | 254              | 90.9                     |
| Jun-94           | 2,238             | 2,524           | 301             | 2,825          | 587              | 79.2                     |
| Dec-94           | 2,153             | 2,523           | 276             | 2,799          | 646              | 76.9                     |
| Jan-95           | 2,311             | 2,523           | 317             | 2,840          | 529              | 81.4                     |
| Jun-95           | 2,356             | 2,519           | 318             | 2,837          | 481              | 83.0                     |
| Dec-95           | 2,218             | 2,511           | 273             | 2,784          | 566              | 79.7                     |
| Jan-96           | 2,387             | 2,514           | 283             | 2,797          | 410              | 85.3                     |
| Jun-96           | 2,467             | 2,528           | 292             | 2,820          | 353              | 87.5                     |
| Dec-96           | 2,257             | 2,552           | 289             | 2,841          | 584              | 79.4                     |

<sup>&</sup>lt;sup>a</sup>The 1996 estimated history is based on Model GASCAP94 C102997 projections and Baker Hughes rig counts. Sources: Production History: Energy Information Administration, Office of Oil and Gas; Dwight's Energydata, Inc.; and Model GASCAP94 C102997. Productive Capacity: Model GASCAP94 C102997.

Table 22. Eighteen States Dry Gas Production and Wellhead Productive Capacity Projections, 1997-1998 (Million Cubic Feet Per Day)

| Dry Gas Productive Capacity |                   |                 |                  |              |                  |                          |  |
|-----------------------------|-------------------|-----------------|------------------|--------------|------------------|--------------------------|--|
| Month-Year                  | Dry<br>Production | Gas-Well<br>Gas | Oil-Well<br>Gas  | Total<br>Gas | Total<br>Surplus | Utilization<br>(percent) |  |
|                             |                   | Lo              | w Case Projecti  | on           |                  |                          |  |
| Jan-97                      | 2,418             | 2,558           | 287              | 2,845        | 427              | 85.0                     |  |
| Jun-97                      | 2,467             | 2,573           | 283              | 2,856        | 389              | 86.4                     |  |
| Dec-97                      | 2,278             | 2,601           | 262              | 2,863        | 585              | 79.6                     |  |
| Jan-98                      | 2,452             | 2,606           | 260              | 2,866        | 414              | 85.6                     |  |
| Jun-98                      | 2,531             | 2,628           | 253              | 2,881        | 350              | 87.9                     |  |
| Dec-98                      | 2,336             | 2,655           | 245              | 2,900        | 564              | 80.6                     |  |
|                             |                   | Bas             | se Case Projecti | on           |                  |                          |  |
| Jan-97                      | 2,418             | 2,558           | 287              | 2,845        | 427              | 85.0                     |  |
| Jun-97                      | 2,467             | 2,573           | 283              | 2,856        | 389              | 86.4                     |  |
| Dec-97                      | 2,272             | 2,603           | 275              | 2,878        | 606              | 78.9                     |  |
| Jan-98                      | 2,451             | 2,608           | 274              | 2,882        | 431              | 85.0                     |  |
| Jun-98                      | 2,531             | 2,635           | 270              | 2,905        | 374              | 87.1                     |  |
| Dec-98                      | 2,327             | 2,668           | 266              | 2,934        | 607              | 79.3                     |  |
|                             |                   | Hi              | gh Case Project  | ion          |                  |                          |  |
| Jan-97                      | 2,418             | 2,558           | 287              | 2,845        | 427              | 85.0                     |  |
| Jun-97                      | 2,467             | 2,573           | 283              | 2,856        | 389              | 86.4                     |  |
| Dec-97                      | 2,269             | 2,602           | 288              | 2,890        | 621              | 78.5                     |  |
| Jan-98                      | 2,450             | 2,609           | 287              | 2,896        | 446              | 84.6                     |  |
| Jun-98                      | 2,531             | 2,642           | 286              | 2,928        | 397              | 86.4                     |  |
| Dec-98                      | 2,325             | 2,688           | 286              | 2,974        | 649              | 78.2                     |  |

Sources: Production Projections: Energy Information Administration, Short-Term Integrated Forecasting System, August 1997 and Model GASCAP C102997. Productive Capacity Projections: Model GASCAP94 C102997.

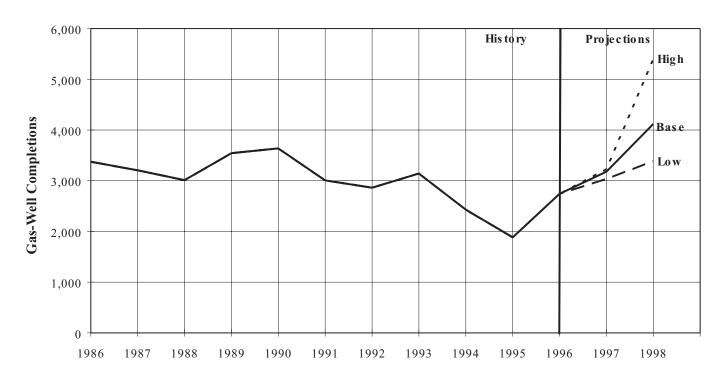



Figure 43. Eighteen States Gas-Well Completions Added During Year, 1986-1998

Note: The 1996 estimated history is based on Drilling Rig Model projections and Baker Hughes rig counts. Completions include recompletions in new producing zones.

Sources: History: Energy Information Administration, Office of Oil and Gas. Estimates of gas-well completions based on API well completion data. Projections: Model GAS CAP 94 C102997.

## References

- Energy Information Administration. Natural Gas Productive Capacity for the Lower 48 States 1980 through 1991. DOE/EIA-0542 (Washington, DC, January 24, 1991).
- Energy Information Administration. Natural Gas Productive Capacity for the Lower 48 States 1982 through 1993. DOE/EIA-0542 (Washington, DC, March 10, 1993).
- 3. Energy Information Administration. *Natural Gas Productive Capacity for the Lower 48 States 1980 through 1995*. DOE/EIA-0542 (Washington, DC, July 14, 1994).
- 4. Energy Information Administration. *Natural Gas Productive Capacity for the Lower 48 States 1984 through 1996*. DOE/EIA-0542 (Washington, DC, February 9, 1996).
- Energy Information Administration, Natural Gas Productive Capacity for the Lower 48 States 1985 through 1987. DOE/EIA-052. Washington, DC, December 23, 1996.
- 6. Energy Information Administration. Gas Deliverability and Flow Capacity of Surveillance Gas Fields in Texas Railroad Commission District 8. DOE/EIA-0342 (Washington, DC, April 1982).
- 7. Energy Information Administration. *Gas Deliverability and Flow Capacity of Surveillance Gas Fields in Texas*. DOE/EIA-0342(82) (Washington, DC, October 1982).
- 8. Energy Information Administration. *Gas Deliverability* and Flow Capacity of Surveillance Gas Fields in Kansas, New Mexico, and Arkansas. DOE/EIA-0416(83) (Washington, DC, September 1983).

- 9. Energy Information Administration. Gas Deliverability and Flow Capacity of Surveillance Fields in Louisiana and Texas Federal Offshore Areas. DOE/EIA-0471 (Washington, DC, January 23, 1986).
- Energy Information Administration. Gas Deliverability and Flow Capacity of Surveillance Fields in Louisiana. DOE/EIA-0506 (Washington, DC, December 2, 1987).
- Rawlins, E.L., and Schellhardt, M.A. Back-Pressure Data On Natural Gas Wells and Their Application to Production Practices. U.S. Bureau of Mines Monograph 7. 1936
- 12. Energy Information Administration. *Short-Term Integrated Forecasting System*, August 1997.
- 13 Energy Information Administration, U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves Annual Report. DOE/EIA-0216 (Washington, DC, 1991, 1992, 1993, 1994 and 1995).
- Energy Information Administration. *Natural Gas Annual*. DOE/EIA-0131 (Washington, DC, 1986 through 1995).
- 15. Energy Information Administration. *Natural Gas Monthly.* DOE/EIA-0131 (Washington, DC, January 1986 through 1998).
- 16. Natural Gas Supply Association. *Natural Gas Supply Association Survey: Natural Gas Field Deliveries & Productive Capacity as of January 1, 1996* (Washington, DC, September 1996).

# Appendix A

# **Model Abstract**

#### Appendix A

## **Model Abstract**

Name: Wellhead Gas Productive Capacity

Acronym: GASCAP

**Description:** GASCAP estimates the historical wellhead productive capacity of natural gas for the lower 48 States and projects the productive capacity for 3 years. *The Short-Term Energy Outlook* (STEO) output for *low*, *base*, and *high* cases is used to estimate the number of active rigs and oil and gas well completions. The projected oil production (which is assumed to be producing at capacity) is used to estimate the oil-well gas production using a constant gas-oil ratio. The gas demand is also taken from STEO. The difference between demand and oil-well gas production is assumed to be the gas-well gas demand and the production as long as capacity exceeds demand.

**Purpose:** GASCAP is used to project the natural gas wellhead productive capacity for the lower 48 States. It also allows quantification of the available productive capacity and the projected capacity under differing future scenarios.

**Date of Last Model Update: 1996** 

Part of Another Model: No

References to Any Other Models: None

**Documentation reference:** Wellhead Gas Productive Capacity Model (GASCAP) Documentation DOE/EIA-M052, March 1995

#### Official Model Representatives:

• Office: Oil and Gas

• Division: Reserves and Production

• Model Contacts: John H. Wood, James N. Hicks, Hafeez Rahman, Velton T. Funk

• **Telephone:** 214-720-6150

**Archive Media and Installation Guides:** Cartridge tape available from NEIC for GASCAP94, for the report *Natural Gas Productive Capacity for the* Lower 48 States 1986 through 1998, DOE/EIA-0542(97/2).

**Energy System Described:** GASCAP measures and predicts wellhead natural gas productive capacity.

#### **Coverage:**

- Geographic: Lower-48 natural gas producing States
- Time Unit/Frequency: Evaluates 13 years of historical data and project productive capacity for 3 years.
- **Products**: Natural gas
- Economic Sectors: Not applicable

#### **Modeling Features:**

- Model Structure: The model consists of a series of Statistical Analysis System (SAS) procedures utilizing a modified rate of gas production versus cumulative gas production (Rate-cum) equation.
- Modeling Techniques: SAS, utilizing the least squares, nonlinear regression procedure (NLIN) with the Marquardt computational method, was used to fit hyperbolic equations to the data.
- **Special Features**: Estimates conventional and coalbed gas-well gas productive capacity separately.

#### **Non--DOE Input Variables and Sources:**

- Dwight's EnergyData Inc, Richardson, TX, Oil and Gas Reports
- State monthly natural gas production by well
- Baker Hughes Incorporated
- Number of active rotary rigs and number of active rotary gas rigs
- American Petroleum Institute
  - Drilling statistics monthly tapes

#### **DOE Data Input Variables and Sources**:

- Natural Gas Annual
- Marketed gas production by State
- Gross gas production by State
- Oil-well gas production by State
- Natural Gas Monthly
  - Marketed production of natural gas by State
- Short Term Energy Outlook

- Dry gas production forecast
- Oil and gas price forecasts
- Petroleum Supply Annual
- Crude oil production

#### **Computing Environment:**

#### **Main Frame**

Hardware: IBM 3090E Model 400Operating System: MVS/XA

• Languages: FORTRAN / SAS / COBOL

• Memory requirement: 1500K

• Storage requirement: 1200 tracks of 3380 disk space

• Estimated run time: 4 hours CPU time

#### **Personal Computer**

• Hardware: Compaq Deskpro 386/20

• Operating System: MS DOS

•Software: LOTUS 123 / EXCEL / ARBITER /

HARVARD GRAPHICS

• Memory requirement: 2000K

• Storage requirement: 10 Mb hard disk space

• Estimated run time: 1 hour

#### **Independent Expert Reviews Conducted:**

 Report of fingings and Recommendations Paul R. Carpenter, Ph.D.
 Brattle/IRI, Inc.
 26 June 1995

• Model Quality Audit Allied Technology Group, Inc. Prepared by QuanTech, Inc.

29 February 1996

# Appendix B

# Comparison of Productive Capacity

#### Appendix B

# Comparison of Productive Capacity

Comparisons of base case productive capacities for this and all previous studies were made (Figure B1). In nearly all instances, capacities for the last two studies were equal to or higher than those in earlier studies.

1994, 1995, 1996, and 1997 Studies 90 80 70 Billion Cubic Feet Per Day 60 50 1991 Study 993 Study 994 Study 30 1995 Study 20 1996 Study 1997 Study 10 0 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

Figure B1. Comparisons of Base Case Dry Gas Productive Capacity for the 1991, 1993,

Note: Monthly capacity estimates are for base case.

Sources: 1991 Study: Energy Information Administration. Natural Gas Productive Capacity for the Lower 48 States 1980 Through 1991. DOE/EIA-0542(91) (Washington, DC January 24, 1991). 1993 Study: Energy Information Administration. Natural Gas Productive Capacity for the Lower 48 States 1983 Through 1993. DOE/EIA-0542(93) (Washington, DC March 10, 1993). 1994 Study: Energy Information Administration. Natural Gas Productive Capacity for the Lower 48 States 1980 Through 1995. DOE/EIA-0542(94) (Washington, DC July 14, 1994). 1995 Study: Energy Information Administration. Natural Gas Productive Capacity for the Lower 48 States 1984 Through 1996. DOE/EIA-0542(96) (Washington, DC February 9, 1996). 1996 Study: Energy Administration. Natural Gas Productive Capacity for the Lower 48 States 1985 Through 1997. DOE/EIA-0542(97) (Washington, DC

## Appendix C

# Dry Gas-Well Capacity per New Gas-Well Completions

#### Appendix C

# Dry Gas-Well Capacity per New Gas-Well Completion

Dry gas-well gas productive capacity of about one billion cubic feet per day is added per 1,000 new gas-well gas completions. This is the difference between the dry gas-well productive capacity change for the *high* case and the *base* case during 1998 divided by the difference in gas-well completions between the *high* and *base* case during 1998. For productive capacity, the period of change is from December 1997 to December 1998 (Table 2). The well completions for the *base* and *high* cases are those added during 1998 (Figure 9).

The calculation for 1998 follows:

(Difference in capacity change for the high and base case)
(Difference in well completions for the high and base case)

$$=\frac{(81.4^{Bcf}/_{day}-66.7^{Bcf}/_{day})-(75.3^{Bcf}/_{day}-66.1^{Bcf}/_{day})}{27.9 Thousand Completions - 21.5 Thousand Completions)}$$

$$> 1$$
  $\frac{Bcf}{day}$   $1000 Gas - well Completions$ 

$$> 1 \frac{\frac{MMcf}{day}}{Gas - well Completion}$$
.

The estimate of dry gas-well capacity per new gas-well completion depends on three parameters: initial flow rate  $(q_i)$ ; ultimate recovery  $(G_{ul})$ ; and the decline exponent (B) (Table C1). These parameters are determined from nonlinear regression fits of the rate versus cumulative production relationship for hyperbolic declined. $\{5\}$ 

$$q = q_i \underbrace{\overset{\bullet}{\text{CE}}}_{\text{CE}} - \frac{G_p}{G_{ul}} \underbrace{\overset{\bullet}{\text{CE}}}_{\text{E}}^B \quad . \tag{C1}$$

where

q= gas flow rate at capacity, million cubic feet per day

 $q_i$ = initial gas flow rate at capacity, million cubic feet per day

G<sub>p</sub>= cumulative gas produced, million cubic feet

G<sub>ul</sub>= ultimate gas recovery, million cubic feet

B= hyperbolic decline exponent.

Table C1. Average Initial Flow Rates, Ultimate Recovery, and Decline Exponent on a Conventional Gas-Well Completion Basis for 1992-1994

| tate/Area                               | qi<br>Initial Flow Rate<br>(MMcf/day) | G <sub>ul</sub><br>Ultimate Recovery<br>(MMcf) | B<br>Decline<br>Exponent |
|-----------------------------------------|---------------------------------------|------------------------------------------------|--------------------------|
|                                         |                                       |                                                |                          |
| ulf of Mexico                           | 7.5                                   | 4,386                                          | 1.2                      |
| exas (Excluding Gulf of Mexico OCS)     | 1.0                                   | 1,009                                          | 2.2                      |
| ouisiana (Excluding Gulf of Mexico OCS) | 2.1                                   | 1,886                                          | 1.9                      |
| alifornia (Including Pacific OCS)       | 1.0                                   | 815                                            | 1.6                      |
| ansas                                   | 0.4                                   | 953                                            | 2.7                      |
| ew Mexico                               | 0.6                                   | 1,179                                          | 2.9                      |
| klahoma                                 | 0.9                                   | 1,033                                          | 2.3                      |
| outheast                                | 1.2                                   | 2,408                                          | 2.4                      |
| ocky Mountain                           | 0.7                                   | 1,624                                          | 2.9                      |

Note: Texas and Louisiana exclude Gulf of Mexico OCS; California includes Pacific OCS.

Source: Energy Information Administration, Model GASCAP94 C102997.

# Glossary

## **Glossary**

**Annual Average-Day Demand**: Annual demand divided by the number of days in the year.

**Associated Gas:** Natural gas, commonly known as gas-cap gas, which overlies and is in contact with crude oil in the reservoir.

**Back-pressure**: The pressure maintained on equipment or systems through which a fluid flows.

**Bcf**: Billion cubic feet of gas at a pressure base of 14.73 pounds per square inch absolute and a temperature base of 60 degrees Fahrenheit.

**Coalbed Gas**: Natural gas that is produced from coalbeds. Methane is the principal component. It is commonly referred to as coalbed methane.

Connected Field Capacity: The Natural Gas Supply Association's definition of Connected Field Capacity is "the rate at which gas can be physically injected into the intrastate and interstate pipeline network, on a 30-day sustainable basis," under the best of operating conditions (i.e., excluding planned and unplanned downtime). Because the sustainable production rate of a gas field can be lower than that of the individual gas well, the connected capacity is defined on a field basis rather than on a well basis.

Connected field capacity also takes into account the capacity limitations imposed by gathering systems and natural gas processing plants. For example, if a group of wells can physically produce 100 MMcf/day of dry gas, but the gathering system can only transport 90 MMcf/day and the gas processing plant can only produce 70 MMcf/day of dry gas, then the connected field capacity is stated as 70 MMcf/day. The difference between the 100 MMcf/day well production potential and the 70 MMcf/day actually produced by the gas processing plant (i.e., 30 MMcf/day) is considered unconnected field capacity.

Gas productive capacity used to operate gas production and processing facilities was excluded from the survey's consideration.

**Deficit Capacity**: The negative difference between gas productive capacity and scheduled gas production.

**Deliverability**: The volume of natural gas that can be produced from a well, reservoir, or field during a given period of time against a certain wellhead back-pressure under actual reservoir conditions, taking into account restrictions imposed by pipeline capacity, contract, or regulatory bodies.

**Demand**: U.S. requirement for dry gas from all sources: production, storage withdrawals, supplemental gaseous fuels, and imports.

**Dissolved Gas:** Natural gas in solution in crude oil in the reservoir.

Dry Gas: Marketed gas less extraction loss.

**Extraction Loss:** The reduction in volume of natural gas resulting from the removal of natural gas liquid constituents at natural gas processing plants.

**Flow String:** The string of tubing or casing through which gas or oil flows to the surface.

**Gas-Well Gas**: Nonassociated or associated gas produced from well completions classified as gas-well completions by a regulatory body.

**Gross Gas**: Full well stream gas volume, including all natural gas plant liquids and nonhydrocarbon gases, but excluding lease condensate. Also includes amounts delivered as royalty payments or consumed in field operations.

**G-10 Rate**: Daily gas well production rate calculated as specified on the Railroad Commission of Texas Oil and Gas Division form G-10 and Rule 28.

**Lease Condensate:** A mixture consisting primarily of pentanes and heavier hydrocarbons which is recovered as a liquid from natural gas in lease or field separation facilities, exclusive of products recovered at natural gas processing plants or facilities.

Marketed Gas: Gross natural gas less gas used for repressuring, quantities vented and flared, and nonhydrocarbon gases removed in treating or processing operations. Includes all quantities of gas used in field and processing operations.

**Mcf**: Thousand cubic feet of gas at a pressure base of 14.73 pounds per square inch absolute and a temperature base of 60 degrees Fahrenheit.

**MMcf**: Million cubic feet of gas at a pressure base of 14.73 pounds per square inch absolute and a temperature base of 60 degrees Fahrenheit.

Nonassociated Gas: Free natural gas not in contact with crude oil in the reservoir.

OCS: Outer Continental Shelf.

**Oil-Well Gas**: Natural gas produced from well completions classified as oil-well completions by a regulatory body.

**Peak-Day Demand**: Highest daily demand that occurred on any one day during the year.

**Peak-Month Average-Day Demand**: Highest of the 12 monthly demands for the year divided by the number of days in the month.

**Peak Shaving:** Supplying fuel gas such as propane to a distribution system from an auxiliary source during periods of maximum demand, when the primary source is not adequate.

**Plant Liquids**: Those volumes of natural gas liquids recovered in natural gas processing plants.

**Productive Capacity:** The volume of natural gas that can be produced from a well, reservoir, or field during a given period of time against a certain wellhead back-pressure under actual reservoir conditions excluding restrictions imposed by pipeline capacity, contract, or regulatory bodies.

**Productive Capacity at the Wellhead:** The maximum gas production rate that can be sustained for a specific month at the gas-well. It changes over time and cumulatively is a function of gas production and drilling.

**Surplus Capacity:** The positive difference between gas productive capacity and scheduled gas production.

**Tcf**: Trillion cubic feet of gas at a pressure base of 14.73 pounds per square inch absolute and a temperature base of 60 degrees Fahrenheit.

Vintage Year: The year in which a well first goes on production.

Water-Drive Reservoir: A reservoir in which the rate of water intrusion into the pay substantially equals the volumetric net rate of oil and gas withdrawal.

**Well:** A hole made by drilling through strata.

**Well Completion:** A flow string in a well used to conduct fluids to the surface from one reservoir or zone. A producing well may contain one or more well completions.