Table 4. Typical Heat Content of Materials in Municipal Solid Waste (MSW) (Million Btu Per Ton)

Materials	Million Btu Per Ton	
Plastics		
Polyethylene terephthalate ^{c, e} (PET)		20.5
High density polyethylene ^e (HDPE)		19
Polyvinyl chloride ^c (PVC)		16.5
Low density polyethylene/ Linear low der	nsity polyethylene (LDPE/LLDPE)	24.1
Polypropylene ^c (PP)		38
Polystyrene ^c (PS)		35.6
Other ^e		20.5
Rubber ^b		26.9
Leather ^d		14.4
Textiles ^c		13.8
Wood ^b		10
Food ^{a, c}		5.2
Yard trimmings ^b		6
Newspaper ^c		16
Corrugated Cardboard c, d		16.5
Mixed paper ^e		6.7

a Includes recovery of other MSW organics for composting.

b Energy Information Administration, Renewable Energy Annual 2004, "Average Heat Content of Selected Biomass Fuels," (Washington, DC, 2005).

c Penn State Agricultural College Agricultural and Biological Engineering and Council for Solid Waste Solutions, Garth, J. and Kowal, P. Resource Recovery, Turning Waste into Energy, University Park, PA, 1993. d Bahillo, A. et al. Journal of Energy Resources Technology, "NOx and N2O Emissions During Fluidized Bed Combustion of Leather Wastes," Volume 128, Issue 2, June 2006. pp. 99-103.

^eUtah State University Recycling Center Frequently Asked Questions.<u>http://www.usu.edu/recycle/faq.htm</u>