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Preface

The Gap Analysis Program (GAP) is a U.S. Geological Survey project being implemented nationwide
with the help of more than 400 cooperators, including the private sector, nonprofit organizations, and
government agencies. The purpose of GAP is to identify gaps in the network of conservation lands with
respect to land cover or habitat types as well as individual vertebrate species and to build partnerships around
the development and application of this information (Scott et al. 1993).

Gap Analysis is conducted by combining the distribution of actual natural vegetation, mapped from
satellite imagery and other data sources, with distributions of vertebrate and other taxa as indicators of
biodiversity. The data are manipulated and displayed using computerized geographic information systems.
Maps of species-rich areas, individual species of concern, and overall vegetation types are generated. Using
geographic information systems, this information can be analyzed to show where land-based conservation
efforts need to be focused to achieve conservation of overall biodiversity most efficiently.

The U.S. Geological Survey Environmental Management Technical Center facilitates the Upper Midwest
GAP (UMGAP), a cooperative effort with the states of Illinois, Michigan, Minnesota, and Wisconsin.
Mapping support is also provided to the states of Indiana and Iowa in an effort to produce a common
database for the Upper Midwest region.

The protocol describes both the underlying philosophy and the operational details of the land cover
classification activities being performed as part of UMGAP. Topics discussed include the hierarchical
classification scheme, ground reference data acquisition, image stratification, and classification techniques.
This discussion is primarily aimed at the image processing analysts involved in the UMGAP land cover
mapping activities as well as others involved in similar projects. It is a “how-to” technical guide of interest
to people responsible for satellite image processing.



Upper Midwest Gap Analysis Pro gram
Image Processin g Protocol

by

Thomas Lillesand, Jonathan Chipman, David Nagel,
Heather Reese, Matthew Bobo, and Robert Goldmann

Abstract

This document presents a series of technical guidelines by which land cover information is being extracted from
Landsat Thematic Mapper data as part of the Upper Midwest Gap Analysis Program (UMGAP). The UMGAP
represents a regionally coordinated implementation of the national Gap Analysis Program in the states of
Michigan, Minnesota, and Wisconsin; the program is led by the U.S. Geological Survey, Environmental
Management Technical Center.

The protocol describes both the underlying philosophy and the operational details of the land cover classification
activities being performed as part of UMGAP. Topics discussed include the hierarchical classification scheme,
ground reference data acquisition, image stratification, and classification techniques. This discussion is primarily
aimed at the image processing analysts involved in the UMGAP land cover mapping activities as well as others
involved in similar projects. It is a “how-to” technical guide for a relatively narrow audience, namely those
individuals responsible for the image processing aspects of UMGAP.

1. Introduction

Studies at the University of Wisconsin–Madison Environmental Remote Sensing Center and the
Wisconsin Department of Natural Resources have led to the development of a proposed methodology for
large-area land cover classification using satellite imagery. This protocol is intended to guide image
processing analysts working on the combined statewide land cover mapping efforts of the Wisconsin
Initiative for Statewide Cooperation on Landscape Analysis and Data (WISCLAND) and the Wisconsin
portion of the Upper Midwest Gap Analysis Program (UMGAP). The Upper Midwest Gap Analysis Program
represents a regionally coordinated implementation of the national Gap Analysis Program (GAP) in the states
of Michigan, Minnesota, and Wisconsin, led by the U.S. Geological Survey (USGS), Environmental
Management Technical Center. The image processing procedures developed for WISCLAND, developed
specifically for Wisconsin, form the general basis for the UMGAP image processing activities being applied
simultaneously in Michigan and Minnesota. The latter two states, however, are making appropriate
modifications to the protocol to reflect local programmatic interests and preexisting geographic information
systems data sources.

The protocol describes the underlying philosophy and operational details of the land cover classification
activities being performed as part of UMGAP. The hierarchical classification scheme is described first,
followed by the ground reference data collection process. A stratified sampling scheme is used to acquire
ground reference data for training purposes. Prior to classification, Landsat Thematic Mapper (TM) satellite
images are stratified according to several factors, and individual strata are classified separately. The primary
classification method used here is “guided clustering,” a hybrid technique combining elements of both
supervised and unsupervised classification methods. The overall genesis of these classification guidelines
can be found in Lillesand (1994).

This discussion is aimed at a relatively narrow audience, that is the image analysts responsible for actually
performing the image classification involved in the above land cover mapping programs as well as others
involved in similar projects. Accordingly, this document focuses on the “how-to” technical steps necessary
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to effect the image processing (and related geographic information systems analyses) being employed in
UMGAP; for this reason, portions of this document include references to specific ERDAS Imagine and
ARC/INFO commands and processes.  Also, the methods described herein are the result of ongoing studies,1

and many of these procedures are evolving as they are exercised in a production environment.

2. Selection of an Extendable Coding Scheme

One of the most important and difficult steps in planning a land cover classification project is selection
of the categories to be discriminated in the mapping effort. The classification scheme should be compatible
with existing national systems and yet represent local land cover characteristics. Selecting the appropriate
level of categorical detail is also important. Choosing an overabundance of categories can lead to
considerable confusion among cover types, whereas selecting too few classes may not meet user needs.

With these considerations in mind, a considerable effort was made to develop a classification scheme that
was (1) compatible with existing national schemes, (2) reflective of Upper Midwest cover types, (3) realistic
in terms of the TM sensor capabilities, considering that some ancillary data would also be used to aid the
classification process, and (4) extendable under ideal classification conditions or with an improvement in
technology. To accomplish this task, a classification scheme committee of WISCLAND participants was
formed representing the Wisconsin Department of Natural Resources, the Environmental Remote Sensing
Center, the U.S. Forest Service, and the USGS.

Numerous existing classification schemes were studied to help guide the structure and categorical detail
of the UMGAP scheme. Some of these include “A Land Use and Land Cover Classification System for Use
With Remote Sensor Data” (Anderson et al. 1976), “A Modified Wetland/Upland Land Cover Classification
System for Use With Remote Sensor Data” (Klemas et al. 1992), “A Coastal Land Cover Classification
System for the NOAA Coastwatch Change Analysis Project” (Klemas et al. 1993), and “Midwest Regional
Community Classification” (Faber-Langendoen 1993). 

To develop a classification scheme representative of Upper Midwest cover types and reflective of TM
sensor capabilities, a collection of works comprising published research and graduate theses was examined.
Results from 12 studies, consisting of 31 separate classifications conducted in the Great Lakes region, were
compiled into a single document. Accuracy figures for each land cover class in conjunction with category
specificity were noted for each study. From these observations, a group of base categories was identified for
inclusion in the UMGAP classification scheme, and additional extended categories were noted for possible
use under ideal classification conditions, with improved technology, or through the inclusion of other data
sources. These base and extended categories are listed in Appendix A, and definitions are included in
Appendix B.

The national GAP standards (Jennings 1994) involve classification to the alliance level and consistency
with the United Nations Educational, Scientific, and Cultural Organization/The Nature Conservancy system
(United Nations Educational, Scientific, and Cultural Organization 1973), with certain limitations. Many of
the UMGAP categories listed in Appendix A can be matched directly to individual alliances. Some
categories, however, represent components of multiple alliances. For example, the classification system in
Appendix A lists separate categories for beech, sugar maple, red maple, and three oak species; these
represent several alliances including “beech-sugar maple” and “beech-oak-maple.” At the 30- × 30-m
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(0.09 ha) spatial resolution required by many end users of the UMGAP land cover data, the individual
categories listed in Appendix A will be used. During the aggregation from the 0.09 ha initial classification
to the final 100-ha GAP minimum mapping unit, the categories will be modified to reflect the standard GAP
classes (see Section 6, Post-Classification Processing).

2.1 The Upper Midwest Gap Analysis Program Classification System

The classification system is hierarchical in character (i.e., more detailed classes can be collapsed into
more general ones). For example, the extended class of “Orchard” can be generalized up one level to
“Woody” or two levels to “Agriculture.” The classification system is designed with an eye towards
“crosswalking” it to other systems where possible. Whereas the system fully exploits the potential of
automated image classification, it also recognizes its limitations. It is envisioned that the system can and will
be extended through the use of additional land cover categories and other information sources. It provides
a point of departure for such applications as GAP analysis. The need for potential extension, however, was
recognized from the outset.

3. Ground Reference Data

Ground reference or groundtruth data must be collected to train the computer to recognize the various land
cover categories latent in the TM imagery and to assess the categorical accuracy of the resulting
classification. Ground reference data generally cannot be collected for large portions of the entire project
area; therefore, representative samples are frequently used (Lillesand and Kiefer 1994). Several criteria must
be considered when evaluating the suitability of any ground reference data set for land cover classification.
First, the data collection method should be systematic, that is, representative of the entire area to be
classified. Second, the method must have an element of randomness to avoid selection bias (Ott 1988). Third,
a sufficient number of reference samples must be utilized to provide an appropriate sample density and
ensure that the classification accuracy is known within a specified confidence level (Thomas and Allcock
1984). Fourth, the reference data must be reasonably contemporary with respect to the acquisition date of
the imagery. Fifth, the level of accuracy of the reference data must be high. Last, the classification scheme
used for collection of ground reference data must be compatible with the intended image processing
classification system.

The UMGAP project includes both the collection of new ground reference data and the incorporation of
preexisting reference data sets. For some areas of the region, particularly public lands, adequate ground
reference data sets already exist that may meet the requirements for use in training and accuracy assessment.
Also, for agricultural areas, previously collected data from the same year as the satellite imagery will be used.
For other areas, new reference data will be collected in the field. The collection of new data in the field is
described in Section 3.2, Nonagricultural Sample Site Selection and Training. The use of preexisting data
is described in Section 3.3, Agricultural Sample Site Selection and Training.

To meet the six criteria outlined above, studies were conducted at the Wisconsin Department of Natural
Resources and the Environmental Remote Sensing Center to examine methods for collecting and
incorporating ground reference data. These studies were aimed at developing a sampling methodology
whereby training and accuracy assessment data are collected simultaneously. Among the advantages of this
strategy are the following: (1) redundant field work and data handling are minimized, (2) no changes occur
on the ground between acquisition of training data and accuracy assessment data, and (3) discrepancies in
the application of the classification system are avoided. 
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3.1 Sampling

3.1.1 Choosing Appropriate Ground Coverage

The first step in developing a sampling scheme was to determine the amount of ground area that should
be sampled to include an adequate number of polygons for each land cover category. A statewide, completely
randomized sampling scheme would require field staff to cover more ground than necessary to accurately
represent all land cover categories. Because aerial photography is readily available for the region, and State
Department of Natural Resources and other field staff cooperators are skilled in using this medium for
navigation and interpretation, it was decided that aerial photos would serve as a base for delineating polygons
for ground verification. The extent of individual photos would serve as a logical unit for sampling, thus
restricting the ground area covered by field staff.

However, the data collection methods described here involve tradeoffs. These methods should produce
a set of reference data representative of the full range of spectral variability present in each satellite image,
thus providing ample training data for classification. On the other hand, the nonrandom aspects of the
sampling scheme affect the use of these data for certain accuracy assessment purposes. This is discussed in
Section 7.2, Thematic Accuracy Considerations.

Two large-area studies in the Great Lakes region by Luman (1992) and Bauer et al. (1994) were examined
to help determine the number of photos that should be sampled to adequately represent all cover types. In
addition, a pilot project examined previously classified TM scenes centered on various locations throughout
Wisconsin. These data were processed by graduate students for various research projects conducted at the
Environmental Remote Sensing Center. Four TM classifications capturing agricultural and forested regions
of the state were subset in 2,048 × 2,048 pixel arrays and overlaid with a grid representative of 1:20,000 scale
photo boundaries. Each photo covered about 4.5 km on a side. The 2,048 × 2,048 pixel array represented
approximately 3,775 km , the size of a typical county in Wisconsin. The 1:20,000 scale photography was2

chosen because it was widely available and could be used as a surrogate for another readily available photo
source, 1:40,000 scale National Aerial Photography Program (NAPP) frames.

Examination of the photography grid overlaid on the classified imagery suggested that a sample of about
6% of the photographs would capture enough variability in the scene to represent all but the least frequently
present classes. To account for these rare categories, a sample of approximately 50% of the photography
frames would be needed, which would involve a cost disproportionate to the importance of the infrequent
categories. Other methods will be required to improve the representation of these infrequent categories.

Because current 1:40,000 scale NAPP photography is available to all three states involved in the UMGAP
initiative, this product was used rather than the 1:20,000 scale photography. The 6% coverage deemed
necessary could easily be transferred to the NAPP frames because a 1:20,000 scale photo covers one quarter
of the area of a NAPP photo. The NAPP also has an advantage in that frames are centered on each of the four
quarters of the 1:24,000 scale (7.5 min) USGS quadrangle maps (“quarter quads,” Figure 1). This allows easy
georeferencing of the photo frames in a geographic information system (GIS). In addition, because the NAPP
photos cover four times the area of the 1:20,000 scale photos, more opportunities are offered to sample
infrequently occurring categories.

Using NAPP photography, the fundamental sampling unit consists of one quarter of a photo, also referred
to here as a USGS quarter quarter quadrangle (QQQ). Implementation of the sampling scheme is described
below.



Each full USGS quandrangle
in state contains a QQQ sample

Statewide 7.5-min
quandrangle index

Sampled QQQ
selected at random

Training and accuracy
assessment polygons

Single 7.5-min
USGS quadrangle

NAPP photograph

5

Figure 1 . Geographically stratified sampling scheme.

3.1.2 Quarter Quarter Quadrangle Sampling Scheme

Completely randomized designs provide the ideal statistical basis for accuracy assessment but can prove
impractical to implement (Congalton 1991), whereas a systematic approach is easier to implement but might
not be acceptable for accuracy assessment (Congalton 1988). Thus, Congalton (1991) suggests that a
combination of the random and systematic approaches be used for selecting samples. For the UMGAP
project, a stratified scheme with random eastings and northings was chosen for selecting QQQs in which to
delineate ground reference samples. The design allows for an essentially even distribution of sampling units
throughout the state. A random north-south and east-west position is applied to each row and column of quad
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Figure 2 . Geographically stratified sampling scheme with random eastings and northings, shown for
16 U.S. Geological Survey 7.5-min quadrangles.

sheets to minimize the effect of periodicity in the landscape. Berry and Baker (1968) suggest that this type
of scheme is preferred for most land cover investigations, especially when underlying serial correlations
(spatial autocorrelation) are unknown.

The sampling scheme is implemented as follows. Each USGS quad in the state, representing a primary
cell or sampling stratum, is divided into four columns and four rows resulting in 16 secondary cells, each
representing a QQQ. At random, a number (1–4) is assigned to each column and each row of primary cells.
The random column assignment represents the north-south position for the secondary cell to be selected and
the row assignment represents the east-west secondary cell position. A QQQ then is selected for each
quadrangle based on the north-south and east-west random numbers generated (Figure 2).

For example, the northwest primary cell in Figure 2 has a north-south random number of 1 and an east-
west assignment of 2. These random selections place the QQQ for sampling in the first row and second
column of the quadrangle.

The NAPP photos corresponding with the selected quarter quad are then acquired. Finally, the appropriate
quarter of the NAPP photo, corresponding to the randomly selected QQQ, is delineated as the area within
which ground reference polygons will be defined.
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3.2 Nonagricultural Sample Site Selection and Training

The NAPP photos selected using the above procedure are used by image analysts as a base for delineating
ground reference data. It was determined that 9- × 9-inch contact prints at 1:40,000 scale would be adequate
for this purpose. This format can be conveniently handled in the field and easily transported via mail.

In order to minimize staff time in the field and ensure that useful ground samples are collected, it was
decided that sample sites should be chosen by image interpreters in the office, aided by viewing color
composites of the TM data to be classified. First, a sheet of mylar is attached over each photo and the
appropriate quarter of the NAPP photo is delineated. Next, image interpreters delineate candidate polygons
on the mylar within the appropriate quarter using pencil. If sufficient auxiliary information is available to
make an identification, the image analyst may pre-identify polygons to expedite the field-checking process.

Several criteria should be used when delineating polygons on photos. First, the polygons should be at least
2 ha. Second, the corresponding area on the TM imagery should be relatively homogenous in tone. Third,
with few exceptions, the polygons should be delineated along roads. Fourth, the selected samples should be
representative of the range of spectral variability present in the area, based on visual examination of the TM
images. Following these guidelines will help ensure that each sample consists of only one cover type, that
all cover types are sampled, and that staff can easily access the sites in the field (Figure 1).

As described above, it is important that the composition of the polygon set is representative of the
variability in the stratum being used. Polygons may be delineated outside of the selected quarter photo when
necessary to represent important spectral features not present in the selected quarter photo or when it is
difficult to acquire a sufficient number of polyons in the selected quarter. It is also important to note that
strata predominantly composed of agricultural cover will require fewer nonagricultural samples relative to
the number of agricultural polygons.

Next, each polygon is assigned a unique number. The sample polygons are then delineated on the satellite
imagery using screen digitizing to be used for future processing. The photos with mylar attached are
delivered to field staff who field verify and record the UMGAP category associated with each ground sample
polygon. Forms and definitions to be used by field staff are included in Appendix B.

Summary: Methods:

1. Select the appropriate NAPP photo and position 1. Done manually.
mylar overlay sheet.

2. Display the TM imagery for the corresponding area. 2. Display scenes in Viewer.
Two images, three bands each, might be displayed
side-by-side.

3. Select, number, and identify (if possible) at least 3. Done manually.
30 polygons, primarily within the selected quarter
photo. Include polygons from other quarters of the
photos as necessary. Polygons should be at
least 2 ha and reasonably homogeneous in
appearance in the raw TM data.

4. Delineate the selected polygons on the TM data, 4. Create vector coverage.
using screen digitizing.

5. Deliver photos with mylar overlays to field 5. Done manually.
personnel.
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3.3 Agricultural Sample Site Selection and Training

The crop grown in any given field in the Upper Midwest may change annually (or even intra-annually)
because of crop rotation. As a result, the collection date of agricultural ground reference data must match
the TM acquisition date as closely as possible. To meet this requirement, photo bases and crop reports will
be acquired from county Farm Service Agency (FSA) offices. These data are collected annually by FSA as
part of that agency’s 35-mm-based crop compliance program. Because these data are typically organized
according to tracts of ownership, it is usually necessary to consult a plat map for each of the sections to be
sampled to assist FSA in the information compilation process. That is, a list of owners by section usually
must be compiled prior to making the information request to FSA.

Results of a pilot study at the Wisconsin Department of Natural Resources and the Environmental Remote
Sensing Center showed that acquiring crop data for one public land survey section (nominally 1 mile ×
1 mile) per QQQ is sufficient to provide agricultural training data for the agricultural base categories listed
in Appendix A. The section chosen within the QQQ is deliberately selected by the image interpreter, based
on the number of fields and diversity of crops within the section. It should be noted that more sections may
be required in predominantly agricultural areas.

The boundary of each field is delineated on the imagery using screen digitizing. Some fields may be split
into sub-samples to facilitate training and accuracy assessment.

3.4 Identification of Radiometric Normalization Reference Sites

One of the objectives of UMGAP is to provide useful data for land cover change-detection studies. There
are a variety of different techniques used for change detection (Khorram et al. 1994; Lillesand and Kiefer
1994). Because some of these techniques require the radiometric standardization of multiple dates of
imagery, it is important to be able to identify specific sites on the landscape that experience minimal spectral
change over the anticipated period of change detection. These sites are used to radiometrically normalize one
image to the other, in a process referred to as relative calibration. This approach was demonstrated by Coppin
and Bauer (1994) in a multitemporal change-detection study in Minnesota and was recommended by the
Coastal Change Assessment Program change-detection protocol (Khorram et al. 1994; Dobson et al. 1995).
 

Eckhardt et al. (1990) identified several important considerations for the selection of spectrally invariant
sites used for radiometric normalization of multi-date images, including

� The sites must be of approximately the same elevation as the area of interest in the scene.
� The sites should contain little or no vegetation.
� The sites must be in a relatively flat area.
� When viewed on a display screen, the sites must have no apparent change in pattern over time.
� As far as possible, the sites should represent a wide range of pixel brightnesses.

During the UMGAP data collection and data processing stages, analysts should attempt to identify
potential radiometric normalization sites. To the extent possible, from 10 to 20 well-distributed,
radiometrically invariant sites should be identified in each scene. Ground targets will include such features
as deep, nonturbid water bodies, roads, parking lots, rooftops, and other sites.
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4. Satellite Image Data

Image data used for land cover classification can come from a variety of sensors, can be single date or
multitemporal, and can be nearly raw or highly manipulated. This project is using two-date Landsat TM
scenes, provided by the national GAP program (Jennings 1994). The multiple images that cover the project
area need to be modified in several ways, including matching coordinate systems and eliminating areas of
overlap between adjacent scenes.

4.1 Image Band Selection

The image band selection process was driven by two main criteria: the need for a high level of accuracy,
and the need for efficient use of available computer resources. After a number of different tests, it was
determined that the best results were obtainable using two-date TM imagery from all six reflectance
(nonthermal) bands, compressed to three bands for each date by a principal components transformation. The
TM imagery is well suited to this type of land cover classification because of its 30-m resolution and variety
of spectral bands, especially in the near- and mid-infrared. The precise dates of imagery to be used vary from
area to area as a result of both data availability and temporal variation in vegetation condition across the large
area included in the study. In general, one TM image from summer and one from fall were selected to derive
the most benefit from seasonal changes in forested areas. Spring and summer images were selected in areas
dominated by agricultural cover types. 

Because of the very large area involved, the processing and analysis of the 12 bands of data of the
combined dates were considered to be a significant problem. Furthermore, it was anticipated that there would
be a great deal of redundancy of information among the TM bands on each date because of interband
correlation (Lillesand and Kiefer 1994). A number of studies have shown that principal components analysis
(PCA) can be used to reduce the number of bands used in image analysis without significant loss of
information (Jensen 1986). For this project, several different methods of generating the components were
tried. The best results were achieved by creating separately the first three components from each date, then
combining the two sets of components into a single six-band image for classification. Preliminary results
showed that this combined principal components method produced as accurate classifications as did a larger
number of raw image bands and involved significantly less time, effort, and disk space. To get the most
benefit from the PCA process, any clouds present in the imagery are masked out prior to generating the
principal component bands. Additionally, the principal components are generated separately for each stratum,
rather than for the entire scene. These steps are described in more detail in Section 5.2, Scene Stratification.

4.2 Removal of Overlap for Adjacent Thematic Mapper Scenes

The numerous TM scenes that compose any state in the Upper Midwest overlap by approximately 35%
on each side (and much less in the north-south direction). To reduce processing time, most of this overlap
should be eliminated. Deciding which areas of overlap to eliminate is not trivial, especially in light of the
need to further subdivide the states into spectrally consistent classification units (SCCUs), described in
Section 5.2.

In the overlap area between two neighboring TM scenes, the image analyst must determine which portion
of each image will be used for classification and which will be ignored. The two scenes can then be classified
separately without processing the overlapping area twice. One consideration in eliminating overlap is the
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presence of stratification unit boundaries (described in Section 5.2). Cloud cover, haze, and general image
quality will also affect the decision of which portions of the overlapping areas to assign to a scene.

Screen digitizing is used to select the areas to be classified. A small amount of overlap (approximately
100 pixels) should remain between scenes. This area of overlap is used to compare the compatibility of the
two classifications when completed and ensure that no gaps exist between images after they are stitched
together.

5. The Classification Process

The UMGAP image processing methodology is the end-product of extensive research and development.
It consists of two major procedures: stratification of the image data into several types of discrete units and
classification of the pixels in each unit. These procedures are designed to maximize the accuracy and
completeness of the resulting output maps. The entire process is described in proper order in a 14-step
summary in Section 5.1.

Automated classification is the process of systematically extracting useful land cover information from
raw remotely sensed imagery. The most well-developed methods of classification are based on analysis of
spectral patterns among a set of image bands. A number of different classification algorithms have been
employed; most such methods can be categorized as supervised, unsupervised, or hybrids of the two
(Lillesand and Kiefer 1994). To determine the best automated classification methodology for this project,
a series of tests was conducted and a set of protocols for the classification process was developed based on
the results.

As described in Section 5.2, the satellite imagery are stratified in several ways. Where clouds are present,
they are masked out. Next, urban areas are classified separately. Each scene is then broken up into a number
of SCCUs, based in part on ecoregions but modified as necessary by photomorphic features of the imagery.
Within each of these strata, wetlands are cut out (using existing digital wetlands boundary maps) and
processed separately. The bulk of each stratum (the portion outside of all clouds, urban areas, and
wetlands) is classified using a hybrid method referred to as guided clustering, followed by maximum
likelihood classification. Wetlands are classified separately using traditional unsupervised clustering or
guided clustering followed by maximum likelihood classification.

5.1 The Upper Midwest Gap Analysis Program Classification Process:
A 14-Step Summary

The classification process consists of a series of 14 steps. These steps are described in more detail in
Sections 5.2 through 5.6. To summarize the entire process, the 14 steps are listed here and are shown
conceptually in Figure 3.

1. Delineate all cloud-covered areas in the scene and remove them from both image dates.

2. Delineate all urban areas and copy them from the parent images to separate files. 

3. Compute principal components for urban areas separately for each date and combine the first three
principal components from each date into a single urban principal component file.
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Figure 3 . The Upper Midwest Gap Analysis Program classification process in 14 steps.

4. Use unsupervised clustering of the principal component bands to classify all urban areas into categories
of “High intensity urban,” “Low intensity urban,” and “Other.” Retain the “High intensity urban” and
“Low intensity urban” pixels for subsequent replacement into the final classification and mask them out
from the TM scenes. Do not retain “Other” pixels, which will be reclassified in the original image data
set.

 5. Delineate SCCUs in the original nonurban image data set based on photomorphic interpretation of the
ecoregion map.
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6. Within each SCCU, compute principal components for each image date separately for all remaining
pixels in the parent data set (original - [clouds + “High intensity urban” + “Low intensity urban”]).
Combine the first three principal components for each date into a single nonurban image data set.

7. Delineate all wetlands in each SCCU and remove them from the image.

8. Classify wetland areas in each SCCU using unsupervised clustering (or guided clustering) followed by
maximum likelihood classification.

9. For any cloud-covered wetland areas, apply the original principal component transform to the cloud-free
date and classify.

10. Classify nonurban upland areas in each SCCU using guided clustering followed by maximum likelihood
classification.

11. For any cloud-covered nonurban uplands, apply the original principal component transform to the cloud-
free date and classify using unsupervised clustering.

12. For any cloud-covered urban areas, apply the original principal component transform to the cloud-free
date and classify.

13. Insert the “High intensity urban,” “Low intensity urban,” wetlands, and all single-date cloud-free
classified areas into the nonurban upland classified data set.

14. Use ancillary data to classify all areas cloud covered in both image dates.

5.2 Scene Stratification

Classification projects in the past have realized improved accuracy as a result of scene stratification
(Stewart 1994). This involves segmenting a large study area into smaller (more spectrally consistent) regions
prior to classification. Several stratification methods were investigated for this project, including masking
of urban areas, stratification by ecoregion, and subdivision of ecoregions using wetland/upland boundaries.

5.2.1 Clouds

If clouds are present in either date of imagery, screen digitizing is used to delineate them. The analyst
visually identifies clouds in the imagery and also identifies cloud shadows based on their proximity to clouds.
The clouds and cloud shadows are then masked out. During the classification process, these areas are
classified based only on the data from the cloud-free date. Areas with clouds on both dates should be few
in number and will either be classified using ancillary data only or left unclassified.

5.2.2 Urban Areas

Urban areas are often difficult to classify because they are a mixture of many cover types (Kramber and
Morse 1994). Highly reflective urban cover is often confused with bare soil, resulting in errors of omission
and commission with agriculture. Many authors have found that this problem can be overcome by classifying
urban areas separately from nonurban areas (Robinson and Nagel 1990; Northcut 1991; Luman 1992). 
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Urban areas are copied to a separate file for classification. The TIGER Line Files from the 1990 Census
are overlaid on an image backdrop as a guide and the analyst delineates boundaries around urban areas. The
analyst may also refer to NAPP photos to assist in identifying urban areas. The urban areas are classified as
high intensity urban, low intensity urban, or nonurban. After classification, those portions of the delineated
urban areas classified as high intensity urban or low intensity urban are masked out of the TM images,
whereas those portions of the delineated urban areas classified as nonurban are not masked out. Thus, any
pixels within the delineated urban areas that have nonurban land cover will be classified with the remainder
of the scene.

5.2.3 Spectrally Consistent Classification Units

 Each scene is divided into several photomorphic SCCUs (Figure 4). These strata are based on ecoregion
boundaries but are modified as necessary to delineate areas of relatively uniform appearance (including
phenological regions and atmospheric influences) present in the image and not accounted for (or adequately
represented) in the ecoregions. A variety of maps of ecoregions and landscape units have been proposed for
stratification of remotely sensed data prior to classification (Stewart 1994); the SCCUs for UMGAP are
based on the regional landscape ecosystems described by Albert (1995). After delineating SCCUs, the analyst
should buffer each region by approximately 500 m, extending each into adjacent SCCUs, to assist in post-
classification edge matching. At state borders, a buffer region extending approximately 3,000 m beyond the
boundary should be included. As described in Section 4.1, principal components for each SCCU are
generated separately for each date of imagery. The first three principal component bands from each date are
then combined, making a single six-band image for each SCCU.

5.2.4 Wetlands

Numerous researchers have classified wetlands in the Upper Midwest with varied success (e.g., Best
1988; Cosentino 1992; Polzer 1992). Wetland classification accuracy is sometimes unacceptably low because
wetland vegetation often appears spectrally similar to upland cover types. Because of this problem, it has
been suggested that “current satellite technology is most valuable when used in conjunction with digital data
derived from aerial photography and other sources” (Federal Geographic Data Committee 1992). For this
reason, wetland surveys based on aerial photography, such as the National Wetlands Inventory, are being
used to extract wetlands from each stratum of the satellite imagery after principal components are generated.
Uplands and wetlands can then be processed separately. Only the most-generalized level of the wetlands
inventory (wetlands versus uplands) is used to avoid tying the UMGAP classification to the potentially
obsolete details of the photo-based inventory. 

This procedure limits the confusion between upland and wetland types to those instances where errors
of omission or commission exist in the wetlands inventory data. At the same time, using the satellite data for
classification within wetland boundaries ensures that the classification of these areas is as current as possible
and provides a uniform interpretation scale for both wetlands and uplands. For those who prefer the
sometimes dated (but more detailed) National Wetlands Inventory data, these data can be “burned into” the
TM classification at a later time.



Photomorphic stratum,
or spectrally consistent
classification unit 
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Urban:
unsupervised clustering
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unsupervised clustering
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Figure 4 . Preclassification image stratification.

Summary: Methods :

1. Use screen digitizing to delineate any clouds that 1. Use “Mask” model (in-house) in Spatial Modeler.
appear on either date’s image. Mask out these
clouds.

2. Overlay TIGER Line files on the TM imagery and 2. Use AOI and Subset. For each date’s image:
perform screen digitizing to delineate urban areas. Run Principal Components, in 16-bit mode, with
Extract (copy) the urban areas from each date of the first three components for output. Run PCA



15

TM imagery, but do NOT mask them out. In the Stats Model (Imagine). Run C program (in-
urban files, compute principal components house) to format principal component statistics.
separately for each date and combine the first Run principal component 16-to-8 bit adjustment
three principal components from each date into a model (in-house). Use Layer Stack to combine
single file. principal component files into a six-band file.

3. Classify the extracted urban area principal 3. See Section 5.3, Unsupervised Clustering of
component bands into high intensity urban, low Urban Areas.
intensity urban, and nonurban classes. In the TM
scene for each date, mask out pixels classified as
high intensity urban or low intensity urban in the
urban file. Do NOT mask out pixels within the
delineated urban areas that were classified as
nonurban.

4. Overlay Albert’s ecoregion boundaries on top 4. In Arc/Info, intersect ecoregions with outline of
of the image. Delineate SCCU boundaries, image to produce polygons. Build the new
which reflect photomorphic features (including coverage. In Imagine, display image and overlay
phenological regions and atmospheric influences) vectors. Use the Vector Query Tool to select
present in the image and are not accounted for, or polygons for AOI. Add selected polygons to AOI
accurately represented in, the ecoregions. A 500-m and save to file. Warp/Reshape AOIs to match
buffer should be left around the edge of each photomorphic features. Use Subset with AOIs.
SCCU. Cut each date’s image along the SCCU
boundaries.

5. For each SCCU, generate principal component 5. For each SCCU: Run Principal Components, in
bands from the first date of imagery and from the 16-bit mode, with the first three components for
second date of imagery. Combine the first three output. Run PCA Stats Model (Imagine),
principal component bands from both images into principal component stats formatting program
a single file. (in-house), and principal component 16-to-8 bit

adjustment model (in-house). Use Layer Stack
to combine principal component files into a
six-band file.

6. Import digitized wetland boundaries from photo- 6. In Imagine, display image and overlay vector
based inventory. Register the digitized wetland file wetlands file. Use Vector Query Tool to select
to the TM imagery. Within each SCCU, overlay polygons for AOI. Add selected polygons to AOI
wetland polygons and extract wetland pixels. and save to file. Use Subset with AOIs. Use
Set aside the wetlands portion for separate mask model (in-house) in Spatial Modeler to
classification. Mask out the wetlands from the place 0s (zeros) in upland file.
remaining (upland) portion of the SCCU.

5.3 Unsupervised Clustering of Urban Areas

When all of the urban areas have been delineated with screen digitizing, copy them from the TM
imagery. Principal component bands are generated as described in Section 5.2. An unsupervised
classification is performed on the extracted urban file, and the two urban classes, high intensity urban and
low intensity urban, are differentiated. These pixels are masked out of the TM scene to be burned back in
during the post-classification phase (see Section 6). All other pixels in the delineated urban areas are
designated nonurban and are not masked out of the TM scene.

Because the urban areas were extracted prior to the creation of the SCCUs, all the urban areas in a scene
are classified together.
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Summary: Methods:

1. Using an unsupervised ISODATA routine, cluster 1. Using the AOIs from Section 5.2, run ISODATA
the extracted urban areas. with AOI option.

2. If desired, perform maximum likelihood 2. Run maximum likelihood classifier.
classification of the urban areas with the clusters
from ISODATA.

3. Recode subclasses as either high intensity urban, 3. Use Recode.
low intensity urban, or nonurban.

4. Use the high intensity urban and low intensity 4. See Section 5.2.
urban pixels as a mask for the rest of the TM
scene, as described in Section 5.2.

5.4 Unsupervised Clustering of Wetlands

Wetland areas are cut from each SCCU during the stratification stage, after performing the principal
components transformation described in Section 5.2 on each SCCU. The resulting wetlands-only portion of
the TM image are clustered using an unsupervised ISODATA routine. Spectral clusters are labeled based
on the wetlands inventory and other data sets as necessary. After classification of the remainder of the TM
scene, the condensed wetland information classes are inserted into the final upland classification file. Note
that extracting wetlands from the imagery should leave “holes” of zero value pixels in the TM data. This
procedure should speed machine processing and mitigate confusion for image analysts concentrating on the
upland data.

In some instances, when adequate training data are available, guided clustering may be used for wetlands
classification rather than unsupervised clustering. The guided clustering methodology is described in
Section 5.5.

Summary: Methods:

1. Using an unsupervised ISODATA routine, cluster 1. Using the AOIs from Section 5.2, run ISODATA
the wetlands-only portion of the TM image. with AOI option.

2. Perform maximum likelihood classification of the 2. Run maximum likelihood classifier.
wetlands areas with selected clusters from
ISODATA.

3. Label spectral clusters based on Wisconsin 3. Recode classes.
Wetlands Inventory or other data.

5.5 Guided Clustering

Prior land cover classification projects have employed both supervised and unsupervised classification
methods (Jensen 1986). Both methods, however, have inherent difficulties that make the classification
process more costly and less reliable. Bauer et al. (1994) found that supervised techniques were inadequate
for large-area classifications in the Upper Midwest region because of forest complexity, poor spectral
separability, and the extensive manual processing required. In an attempt to resolve these problems with
traditional supervised classification methods, a number of new techniques have been suggested.
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Unsupervised techniques have the advantage of eliminating the costly and intensive training set
delineation process of supervised classification, but identifying the resulting clusters can be difficult.
Variability in different analysts’ interpretation of the output of unsupervised classifiers may threaten the
accuracy and objectivity of these classifications (McGwire 1992). Also, unsupervised classifiers reduce the
ability of the analyst to control which classes are defined. 

Guided clustering, the approach taken here, represents an alternative to supervised and unsupervised
classification techniques (Lime and Bauer 1993; Bauer et al. 1994). It avoids most of the major pitfalls of
the previous methods and appears well suited to large-area classifications with complex cover types. In
guided clustering, the analyst delineates training sets for each cover type. Unlike the training sets used in
traditional supervised clustering methods, these training sets need not be perfectly homogenous. For each
information class, an unsupervised clustering routine is used to generate 20 or more spectral signatures from
the class’ training sets. These signatures are examined by the analyst; some may be discarded or merged and
the remainder are considered to represent spectral subclasses of the desired information class. Signatures are
also compared among the different information classes. Once a sufficient number of such spectral subclasses
have been acquired for all information classes, a maximum likelihood classification is performed with the
full set of refined spectral subclasses. The subclasses are then aggregated back into the original information
classes.

Summary: Methods:

1. The analyst delineates training pixels for 1. Use Vector Query Tool with Arc coverage. Use
information class X. query to select polygons based on SCCU ID,

class, and assessment or training status.
Convert to AOI.

2. Cluster class X pixels into spectral subclasses 2. ISODATA.
X1..Xn using an automated clustering algorithm.

3. Examine class X signatures and merge or delete 3. Evaluate signatures in Signature Editor and
signatures as appropriate. A progression of modify as desired.
clustering scenarios (e.g., from 3 to 20) should be
investigated, with the final number of clusters and
merger and deletion decisions based on such
factors as (1) display of a given class on the raw
image, (2) multidimensional histogram analysis for
each cluster, and (3) multivariate distance
measures (e.g., transformed divergence or
Jeffries-Matusita distance).

4. Repeat steps 1–3 for all additional information 4. Repeat steps 1–3. Use Append option in
classes. Signature Editor to unite all spectral signatures

for all classes in a single file.

5. Examine ALL class signatures and merge or delete 5. Evaluate signatures in Signature Editor and
signatures as appropriate. modify as desired.

6. Perform maximum likelihood classification on the 6. Run maximum likelihood classifier.
entire SCCU with the full set of spectral
subclasses, saving the Probability Density
Function image.

7. Aggregate spectral subclasses back to the original 7. Use Recode.
information classes.
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To ensure that all of the spectral classes present in a SCCU are represented, the analyst may perform an
unsupervised clustering of the entire SCCU as a test. The resulting cluster signatures are compared to the full
set of spectral signatures from guided clustering to help determine whether any significant spectral classes
have been omitted. If the unsupervised clustering produces any clusters that are not well represented by any
of the signatures developed through guided clustering, additional training samples may be required.

If any clouds were present in a particular SCCU, the clouded areas masked out in Section 5.2 will have
to be classified in a separate step after the rest of the SCCU is classified. The same set of signatures created
during the guided clustering of the noncloudy portion of the SCCU will still be used for the cloud covered
areas. However, the signature files must be edited to remove the three principal component bands for the
cloudy image. The maximum likelihood classification will then be done using only the bands from the cloud-
free image.

5.6 Maximum Likelihood Classification

Statistical classifiers in image processing have proven successful in many land cover classification
projects. In general, these classifiers assign an image pixel to its most likely class, based upon the class mean,
variance, and covariance in each band. This process may involve calculating a number of different
probability values representing the likelihood that a given pixel belongs to each of the spectral classes in the
final classification. For some applications, it may be desirable to have an indication of the likelihood that a
given pixel is actually a member of the class to which it was assigned. For this reason, the maximum
likelihood classifier will save an image of the probability density function from each classification. These
images will aid in identifying areas and classes of questionable accuracy. The probability density function
images for each stratum are used interactively during the classification process. They are also saved for
future reference by users who wish to have access to information about the spatial variability and class
variability of the classification probabilities.

5.7 Alternative Classification Methods

The classification methods described here are designed to be standardized and repeatable and to permit
replication elsewhere under varying conditions. For some portions of the tristate Upper Midwest Gap
Analysis Project, however, it may be desirable to consider alternative classification strategies. One example
of such an alternative strategy is the use of carefully timed multiseason imagery designed to maximize the
benefit of phenological variability (e.g., Wolter et al. 1995). Before deciding on an alternative classification
method, it is important to carefully examine the nature of the proposed classification strategy and to
determine whether it satisfies all of the design considerations presented in this document.

6. Post-Classification Processing

As each scene is classified to an acceptable level of accuracy, it can be used to aid in classifying
neighboring images. When an initial classification is completed for any given SCCU, it should be compared
to all of its neighbors whose accuracy has already been assessed. Distinct differences along the boundary
between the two scenes could indicate that the classification in question will need modifications. This
process will help mitigate categorical edge-matching errors when the scenes or strata are finally stitched
together.
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After each SCCU has been classified, the wetlands, urban areas, and cloud-covered pixels extracted from
it and separately classified are placed back in the image. Transportation features, such as roads and railroads,
are then added into the classified image from ancillary sources such as USGS Digital Line Graphs. A variety
of products will be generated from the classified imagery. Digital versions of the data will be made available
in both raw and filtered formats, to meet the needs of different end users. For filtered products, a
clump-and-sieve algorithm is used. Adjacent pixels sharing the same class are grouped into clumps. Clumps
smaller than four pixels in size are deleted and the resulting holes are filled in by expansion of neighboring
clumps. The clump-and-sieve process is performed separately on upland and wetland areas to prevent upland
areas from extending into wetlands and vice versa. In addition, pixels classified as water are preserved
regardless of clump size. Note that for filtered data, the probability density function images produced during
maximum likelihood classification will not be applicable. In addition to digital data, hard-copy products can
be generated at a variety of scales. Finally, to meet the national GAP project standards, the data will also be
“vectorized” (converted to vector format) and aggregated to a 100-/40-ha minimum mapping unit at the
Environmental Management Technical Center (Jennings 1994).

Summary: Methods:

1. Add any delineated areas with clouds back into the 1. Use Class Merge Model (Spatial Modeler), with
SCCU from which they were originally extracted. clouds and full scene. If <raster> <> 0 use <raster>.

2. Add the classified wetlands pixels back into the SCCU 2. Use Class Merge Model (Spatial Modeler), with
from which they were originally extracted. wetlands and full scene. If <raster> <> 0 use

<raster>.

3. Stitch together neighboring SCCUs, examining 3. Use Subset.
boundaries for discontinuities.

4. Add the classified urban area pixels back into the 4. Use Class Merge Model (Spatial Modeler), with
classified scene. urban areas and full scene. Select only “high

intensity urban” and “low intensity urban” to be
placed back in the full scene.

5. Overlay transportation features from USGS Digital Line 5. Vector Overlay.
Graph files on top of the classified image.

7. Accuracy Assessment

Few aspects of the land cover mapping process are as elusive and challenging as assessing the accuracy
of the final products resulting from such efforts. The literature includes several recent treatises specifically
focused on the subjects of classification accuracy assessment (e.g., Congalton 1991; Janssen and van der Wel
1994) and land cover change-detection accuracy assessment (e.g., Khorram et al. 1994). These documents
highlight the need to consider both the positional accuracy and thematic accuracy of any given data product.

7.1 Positional Accuracy Considerations

The data used for UMGAP classification have been registered to the Universal Transverse Mercator
coordinate system (e.g., Universal Transverse Mercator or Wisconsin Transverse Mercator) and subsequently
resampled (primarily using cubic convolution). Through the careful selection of numerous, well-defined, and
well-distributed ground control points (GCPs), the positional accuracy (RMSE) of well-defined objects
appearing in the TM imagery should be on the order of ± 0.5 pixels, or ± 15 m. Also, registration of one
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TM scene to another is expected to be on the order of ± 0.5 pixels and no more than ± 1 pixel. Ideally, the
georeferencing of each scene should be verified using a minimum of 10 GCPs (with a minimum of 2 GCPs
in each quadrant of the scene) and 7.5-min quadrangles. Care should be taken to ensure that the same datum
(e.g., NAD83) is used for the check as was used for the original scene georeferencing process. Scenes with
RMSE values in excess of ± 1 pixel should be reregistered.

7.2 Thematic Accuracy Considerations

7.2.1 Anticipation of Multipurpose Use of Upper Midwest Gap Analysis Program Land Cover
Data

It is anticipated that UMGAP land cover data will be used over a range of geographic scales from the site
to the statewide level. No single thematic accuracy assessment methodology is appropriate over this range
of applications. Accordingly, the philosophy of the thematic accuracy assessment protocol for UMGAP is
to provide sufficient raw information at a base level to enable a flexible range of potential accuracy
assessment scenarios in various future application contexts. The following information relates to the
collection of base level data only. 

7.2.2 Sample Unit

The fundamental sample unit available for accuracy assessment is the polygon, for this is the unit within
which the ground reference data are collected. A census of all pixels in the polygon is performed to
determine the most abundant class within the polygon. In most cases, a single class should be clearly
dominant because the ground reference data collection effort in which the polygons were delineated was
designed to include only homogenous areas. The analyst should visually examine accuracy assessment
polygons to ensure that this is the case.

7.2.3 Reference Data for Accuracy Assessment

Section 3, Ground Reference Data, describes some of the methods used for collecting reference data for
UMGAP. The methods used are not completely random because of the focus on rapid and cost-effective
acquisition of a large volume of representative data for training purposes. Only a portion of the data collected
are required for training, and the remainder can be used to help assess the accuracy of the final
classifications. It is important to note, however, that many of the statistical techniques described below are
based upon an assumption of randomness. In particular, the fact that reference polygons are selected and
delineated manually results in unequal (and unknowable) probabilities of inclusion for different points on
the ground. This may introduce a bias into the estimators for categorical and overall accuracy and may also
affect the estimators for the variance of these quantities (Czaplewski 1994). Future investigations are planned
to evaluate the effectiveness of data collection methods for a variety of accuracy assessment strategies.

7.2.4 Classification Error Matrices

The most widely used accuracy assessment techniques for land cover classification involve the use of
error matrices as the primary basis for comparing, on a category-by-category basis, the relation between the
known reference data (columns) and the corresponding results of the automated classification (rows). In
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addition to compilation of the complete matrix, the following descriptive statistics can be computed: overall
accuracy, producer accuracy of each category, user accuracy of each category, the two-tailed 95% confidence
interval of the overall accuracy and the producer and user accuracies, and the Kappa (KHAT) statistic for
the overall classification and each individual category (Lillesand and Kiefer 1994). Examples of the
computation of these descriptive statistics are contained in Appendix C. 

7.3 Other Accuracy Assessment Products

Certain specialized accuracy assessment products will be available from the UMGAP classification
process. These include storage and cartographic portrayal of the probability density function value associated
with the most probable class assignment of each pixel by the maximum likelihood algorithm. Also, the
integration of the accuracy assessment and training sampling process permits depiction of the exact areas
used for accuracy assessment. The polygons used for this process are stored in a vector file that is
automatically registered to the same coordinate system as the image data. Thus, it is possible to document
the distribution of accuracy assessment sites by overlaying this vector file directly on the raw imagery, on
a USGS topographical map, or another georeferenced data source.

8. Conclusion

This document was written to explain and codify the image processing procedures in the UMGAP land
cover classification being performed with multi-date TM data. These procedures continue to evolve as they
are employed in a production environment. Also, they are intended to be the basis for the initial land cover
classification involved in UMGAP. New data sources and methods continually enhance the approaches
described herein. Our objective was to provide a firm foundation for these anticipated enhancements.
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Appendix A. Upper Midwest Gap Analysis Program Classification System

Base categories are in boldface. Extended categories are in plain text. Eight-bit numeric ID numbers are
listed in parentheses (). * denotes classes limited to Minnesota. ‡ denotes classes limited to Wisconsin.

(100) 1 Urban/developed
(101) 1.1 High intensity
(104) 1.2 Low intensity 
(107) 1.3 Transportation

(110) 2 Agriculture
(111) 2.1 Herbaceous/field crops

(112) 2.1.1 Row crops
(113) 2.1.1.1 Corn
(114) 2.1.1.2 Peas ‡
(115) 2.1.1.3 Potatoes ‡
(116) 2.1.1.4 Snap beans ‡
(117) 2.1.1.5 Soybeans ‡
(118) 2.1.1.6 Other

(124) 2.1.2 Forage crops
(125) 2.1.2.1 Alfalfa ‡

(131) 2.1.3 Small grain crops ‡
(132) 2.1.3.1 Oats ‡
(133) 2.1.3.2 Wheat ‡
(134) 2.1.3.3 Barley ‡

(140) 2.2 Woody
(141) 2.2.1 Nursery
(144) 2.2.2 Orchard
(147) 2.2.3 Vineyard

(150) 3 Grassland
(151) 3.1 Cool season
(154) 3.2 Warm season
(157) 3.3 Old field

(160) 4 Forest
(161) 4.1 Coniferous

(162) 4.1.1 Jack pine
(163) 4.1.2 Red/white pine
(164) 4.1.3 Scotch pine ‡
(165) 4.1.4 Hemlock ‡
(166) 4.1.5 White spruce
(167) 4.1.6 Norway spruce ‡
(168) 4.1.7 Balsam fir
(169) 4.1.8 Northern white-cedar
(173) 4.1.9 Mixed/other coniferous

(175) 4.2 Broad-leaved deciduous
(176) 4.2.1 Aspen
(177) 4.2.2 Oak

(178) 4.2.2.1 White oak
(179) 4.2.2.2 Northern pin oak
(180) 4.2.2.3 Red oak

(181) 4.2.3 White birch
(182) 4.2.4 Beech ‡
(183) 4.2.5 Maple

(184) 4.2.5.1 Red maple
(185) 4.2.5.2 Sugar maple

(186) 4.2.6 Balsam poplar *
(187) 4.2.7 Mixed/other broad-leaved deciduous
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(190) 4.3 Mixed deciduous/coniferous
(191) 4.3.1 Pine-deciduous *

(192) 4.3.1.1 Jack pine-deciduous *
(193) 4.3.1.2 Red/white pine-deciduous *

(194) 4.3.2 Spruce/fir-deciduous *

(200) 5 Open water

(210) 6 Wetland
(211) 6.1 Emergent/wet meadow

(212) 6.1.1 Floating aquatic *
(213) 6.1.2 Fine-leaf sedge *
(214) 6.1.3 Broad-leaved sedge-grass *
(215) 6.1.4 Sphagnum moss *

(217) 6.2 Lowland shrub
(218) 6.2.1 Broad-leaved deciduous
(219) 6.2.2 Broad-leaved evergreen
(220) 6.2.3 Needle-leaved

(222) 6.3 Forested
(223) 6.3.1 Broad-leaved deciduous

(224) 6.3.1.1 Red maple
(225) 6.3.1.2 Silver maple *
(226) 6.3.1.3 Black ash
(227) 6.3.1.4 Mixed/other deciduous *

(229) 6.3.2 Coniferous
(230) 6.3.2.1 Black spruce
(231) 6.3.2.2 Tamarack
(232) 6.3.2.3 Northern white-cedar

(234) 6.3.3 Mixed deciduous/coniferous

(240) 7 Barren
(241) 7.1 Sand
(242) 7.2 Bare soil
(245) 7.3 Exposed rock
(246) 7.4 Mixed

(250) 8 Shrubland



B-1

Appendix B. Sample Ground Reference Data Forms and Definitions

Please check the land cover type associated with the polygon-ID. Choose that which best describes the land cover; land cover
type definitions are provided on an enclosed sheet. Please read the definitions prior to groundtruthing. Record additional
comments, such as species information for nonforested cover types, or percent composition for mixed categories, such as shrub and
grassland, in the comments section.

NAME: DATE:   
NAPP PHOTO-ID:          POLYGON-ID:
(1) COVER TYPE
URBAN/DEVELOPED SHRUBLAND BARREN WETLAND
____ High Intensity Urban ____Upland Shrub ____Sand ____Emergent/Wet Meadow 
____ Low Intensity Urban ____Bare Soil ____Lowland Shrub

GRASSLAND ____Exposed Rock ____Coniferous
AGRICULTURE ____Grassland ____Mixed ____Broad-leaved Deciduous
____ Row Crops ____Broad-leaved Evergreen
____ Forage Crops OPEN WATER ____Forested Wetland

____ Open Water ____Coniferous
FOREST ____Broad-leaved Deciduous
____ Coniferous ____Mixed Coniferous/
____ Broad-leaved Deciduous         Broad-leaved Deciduous
____ Mixed Coniferous/Broad-leaved Deciduous 
____ Clearcut/Young Plantation - If clearcut, was area logged within the past 3 years? Circle: Yes or No 
Comments: __________________________________________________________________________________

(2) FOREST SPECIES 
Write the estimated percentage of the species present in the space provided. 
The percentages should total the canopy cover percentage in section 3.
 
____ % Jack Pine ____ % Red Maple ____ % Alder ____ % Black Willow
____ % Red Pine ____ % Sugar Maple ____ % Red/Black                ____ % Cottonwood
____ % White Pine ____ % Silver Maple Oak ____ % Beech
____ % Black Spruce ____ % Green Ash ____ % White/Bur                
____ % White Spruce ____ % Black Ash Oak Other Species
____ % Balsam Fir ____ % White Birch ____ % N. Pin Oak ____ % ___________
____ % Hemlock ____ % Yellow Birch ____ % Slippery Elm ____ % ___________
____ % White Cedar ____ % River Birch ____ % Amer. Elm ____ % ___________
____ % Tamarack ____ % Basswood ____ % Black Cherry
____ % Aspen
Are trees at mature height? Circle: Yes or No
Comments: __________________________________________________________________________________

(3) CANOPY AND UNDERSTORY
 If canopy is less than 80%, mark the understory vegetation present:

Canopy cover is:   _____% ____ Small trees ____ Saplings   
____ Shrubs ____ Herbaceous Vegetation

Comments: __________________________________________________________________________________

(4) METHOD OF IDENTIFICATION
____ Field Verification (Able to identify location and access the area circled.)
____ Windshield Survey (Could not enter identified area, but identified species from outside of area.)
____ Inaccessible Polygon
____ Photo interpreted / Knowledge of area

(5) CONFIDENCE LEVEL OF ASSESSMENT
______  High (good)      ______  Medium              _____ Low (questionable)

(6) ADDITIONAL COMMENTS
____________________________________________________________________________________________
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Definitions to Accompany Groundtruth Data Sheets

I. URBAN/DEVELOPED

Structures and areas associated with intensive land use.

a. High Intensity - Greater than 50% solid impervious cover of synthetic materials. 

Examples: parking lot, shopping mall, or industrial park 

b. Low Intensity - Less than 50% solid impervious cover of synthetic materials. May have some
interspersed vegetation.

Examples: sparse development, single family residence 

Note: Areas meeting the requirements of both Urban/Developed and Forest classes should be
classified in the Urban/Developed category. (i.e., residential areas with greater than 10% crown
closure of trees would be classified as Urban/Developed, rather than forest.)

II. AGRICULTURE

Land under cultivation for food or fiber (including bare or harvested fields).

Examples: corn, peas, alfalfa, wheat, orchards, cranberry bogs 

III. GRASSLAND

Lands covered by noncultivated herbaceous vegetation predominated by grasses, grass-like plants
or forbs.

Examples: cool or warm season grasses, restored prairie, abandoned fields, golf course, sod farm,
hay fields 

IV. FOREST

An upland area of land covered with woody perennial plants, the tree reaching a mature height of
at least 6 feet tall with a definite crown. Crown closure of the area must be greater than 10%.

a. Coniferous - Upland areas whose canopies have a predominance (greater than 33-1/3%) of
cone-bearing trees, reaching a mature height of at least 6 feet tall. If the deciduous species group
is present, it should not exceed one-third (33-1/3%) of the canopy. 

Examples: Jack Pine, Red Pine, White Spruce, Hemlock, Tamarack 

b. Broad-leaved Deciduous - Upland areas whose canopies have a predominance (greater than
33-1/3%) of trees, reaching a mature height of at least 6 feet tall, which lose their leaves
seasonally. If the coniferous species group is present, it should not exceed one-third (33-1/3%) of
the canopy.
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Examples: Aspen, Oak, Maple, Birch 

c. Mixed Coniferous/Broad-leaved Deciduous - Upland areas where deciduous and evergreen
trees are mixed so that neither species group (broad-leaved deciduous or coniferous) is less than
one-third (33-1/3%) dominant in the canopy.

Examples: Hemlock/Northern Hardwood forest (40% Coniferous, 60% Broad-leaved Deciduous)

d. Clearcut/Young Plantation - Area used for tree production that has been recently cut, and is
generally devoid of established vegetation cover, with the continued intention of tree production.
Also an area that has been very recently replanted with trees (usually as a monoculture). If the
area has been logged within the last 3 years, please indicate this in the comments section of the
groundtruth sheet.

Note: Areas that meet the requirements of both Forest and Forested Wetland categories should be
classified in the Forested Wetland category.

V. OPEN WATER

Areas of water with no vegetation present.

Examples: Lake, Reservoir, River, Retaining Pond 

VI. WETLAND  

An area with water at, near, or above the land surface long enough to be capable of supporting
aquatic or hydrophytic vegetation, and with soils indicative of wet conditions.

a. Emergent/Wet Meadows - Persistent and nonpersistent herbaceous plants standing above the
surface of the water or soil.

Examples: Cattails, Marsh Grass, Sedges 

b. Lowland Shrub - Woody vegetation, less than 20 feet tall, with a tree cover of less than 10%,
and occurring in wetland areas.

Broad-leaved Deciduous examples: Willow, Alder, Buckthorn 
Broad-leaved Evergreen examples: Labrador-tea, Leather-leaf, Bog Rosemary 
Coniferous examples: Stunted black spruce 

c. Forested Wetland - Wetlands dominated by woody perennial plants, with a canopy cover
greater than 10%, and trees reaching a mature height of at least 6 feet.

Coniferous examples: Black Spruce, Northern White Cedar, Tamarack 
Broad-leaved Deciduous examples: Black Ash, Red Maple, Swamp White Oak 
Mixed Broad-leaved Deciduous/Coniferous: Mixture of the species above. See Upland
Mixed Broad-leaved Deciduous/Coniferous for group proportions. 
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Note: If an area meets the requirements of Forested Wetland, it should take precedence over any
other "Forest" category.

VII. BARREN

Land of limited ability to support life and in which less than one-third (33-1/3%) of the area has
vegetation or other cover. If vegetation is present, it is more widely spaced and scrubby than that
in shrubland.

Note: If the area meets the requirements of both Agriculture and Barren, it should be placed in
the Agriculture class. Also, if the area is wet and meets the requirements of Wetlands, it should
be placed in the appropriate Wetland category.

a. Sand
b. Bare Soil
c. Exposed Rock
d. Mixed - an area that has less than two-thirds (66-2/3%) dominant cover of one of the above
Barren classes.

VIII. SHRUBLAND

Upland Shrub - Vegetation with a persistent woody stem, generally with several basal shoots,
low growth of less than 20 feet, and coverage of at least one-third (33-1/3%) of the land area.
Less than 10% tree cover interspersed.

Examples: Scrub Oak, Buckthorn, Sumac 

If the area is shrubland as a result of logging within the past 3 years, please indicate this in the
comments section of the groundtruth sheet.

Note: See WETLAND (Lowland Shrub) for other shrub category

EXAMPLES

Below are some examples of how certain mixtures of forest are classified. An explanation is provided.

40% Maple, 10% Aspen, 5% Balsam Fir, 10% White Pine ......Broad-leaved Deciduous

This is called Broad-leaved Deciduous because there is one species that composes more than
33-1/3% of the canopy.

10% Aspen, 20% Maple, 10% Oak, 10% Balsam Fir, 15% Hemlock, 30% White Pine ..... Mixed
Broad-leaved Deciduous/Coniferous

This is called Mixed Broad-leaved Deciduous/Coniferous because there are greater than
33-1/3% of each species group in the canopy.

35% Aspen, 20% Oak, 10% Balsam Fir, 20% White Pine, 5% Hemlock .....
Mixed Broad-leaved Deciduous/Coniferous
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This is called Mixed Broad-leaved Deciduous/Coniferous because there are greater than
33-1/3% of each species group in the canopy, even though there is over 33-1/3% of Aspen.

20% Aspen, 80% Open Canopy with grasses in understory .....Broad-leaved Deciduous

This is called Broad-leaved Deciduous because only 10% canopy closure defines the forest class.
A note on the groundtruth sheet should be made about the grass understory.
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Appendix C. Methods for Reporting Accuracy Assessment Results

Note: The following document parallels and is based on sample data from the discussion of accuracy
assessment in Lillesand and Kiefer (1994), pp. 615–618. For further information about these topics, please
refer to that text.

The classification error matrix is a convenient and comprehensible method for displaying the results of
the accuracy assessment process. Reference data are listed in the columns of the matrix and the classification
data are listed in the rows. The major diagonal of the matrix represents the number of correctly classified
samples; errors of omission are represented by the nondiagonal column elements, and errors of commission
are represented by nondiagonal row elements. Table C.1 is an example of a classification error matrix,
including six land cover categories.

Table C.1  Error matrix resulting from classification of random test pixels (based on
Lillesand and Kiefer [1994], Table 7.4, p. 618).

Reference Data
Row

Water Sand Forest Urban Corn Hay Total
Water 226 0 0 12 0 1 239
Sand 0 216 0 92 1 0 309
Forest 3 0 360 228 3 5 599
Urban 2 108 2 397 8 4 521
Corn 1 4 48 132 190 78 453
Hay 1 0 19 84 36 219 359
Column
Total 233 328 429 945 238 307 2840

Using the data from Table C.1, accuracy percentages can be calculated for the overall classification and
for each category separately, as demonstrated in Table C.2. There are two distinct accuracy figures for the
individual categories. The producer’s accuracy is calculated by dividing the number of correctly classified
samples by the column total for the category. The user’s accuracy is calculated by dividing the number of
correctly classified samples by the row total for the category. 

Table C.2  Overall accuracy and producer’s/user’s accuracy by category.

Producer’s Accuracy User’s Accuracy

Water: 226/233 = 97.00% Water: 226/239 = 94.56%
Sand: 216/328 = 65.85% Sand: 216/309 = 69.90%
Forest: 360/429 = 83.92% Forest: 360/599 = 60.10%
Urban: 397/945 = 42.01% Urban: 397/521 = 76.20%
Corn: 190/238 = 79.83% Corn: 190/453 = 41.94%
Hay: 219/307 = 71.34% Hay: 219/359 = 61.00%

Overall accuracy = (226 + 216 + 360 + 397 + 190 + 219)/2,480 = 64.84%

Two-tailed 95% confidence intervals can be computed for the overall classification and for each
category, as follows (Thomas and Allcock 1984; Jensen 1986; Snedecor and Cochran 1989):



64.84 ±1.96� 64.84�35.16 / 2480�(50 / 2480)�(62.94, 66.74)

CI�p ± 1.96� pq / n�(50 / n)

97.00 ±1.96� 97.00�3.00 / 233�(50 / 233)�(94.60, 99.40)

65.85 ±1.96� 65.85�34.15 / 328�(50 / 328)�(60.57, 71.14)

83.92 ±1.96� 83.92�16.08 / 429�(50 / 429)�(80.32, 87.51)

94.56 ±1.96� 94.56�5.44 / 239�(50 / 239)�(91.48, 97.65)

69.90 ±1.96� 69.90�30.10 / 309�(50 / 309)�(64.63, 75.18)

60.10 ±1.96� 60.10�39.90 / 599�(50 / 599)�(56.10, 64.11)

��
N�� xii�� (xi�x�i)

N2
�� (xi�x�i)
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[Equation 1]

where p = percent correct calculated above
q = 100 - p
n = number of samples

Table C.3 demonstrates the process of computing confidence intervals for overall accuracy and for
category accuracy.

Table C.3  Computation of 95% confidence intervals (two-tailed) for overall accuracy and
producer’s/user’s accuracy by category.

95% CI for overall accuracy: 

95% CI for producer’s accuracy by class:

Water:  

Sand:   

Forest: 
...

95% CI for user’s accuracy by class:

Water:  

Sand:   

Forest: 

...

In addition to the figures provided in Tables C.2 and C.3, another measure of accuracy is widely used in
accuracy assessment of land cover classifications. The Kappa, or KHAT, statistic describes the difference
between the observed classification accuracy (represented by Table C.2) and the theoretical chance
agreement that would result from a random classification (Congalton and Mead 1983; Rosenfield and
Fitzpatrick-Lins 1986). For the overall classification, Kappa is computed as follows:

[Equation 2]

where N = total number of samples in all categories
� (xii) = number of correctly classified samples
�(xi+�x+I) = sum of products of each category’s row and column totals in the error matrix
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For individual categories, this simplifies to the following:

[Equation 3]

where N = total number of samples in all categories
xii = number of correctly classified samples in the specified category
xi+ = row total in the error matrix for the specified category
x+I = column total in the error matrix for the specified category.

The process of calculating Kappa statistics is demonstrated in Table C.4 below.

Table C.4  Kappa (KHAT) statistics for overall accuracy and category accuracy.

Kappa statistic for overall accuracy: 

N = 2480 �(xii) = 226 + 216 + 360 + 397 + 190 + 219 = 1608
�(xi+�x+I)= (239�233) + (309�328) + (599�429) + (521�945) + (453�238) + (359�307) = 1,124,382
Kappa = {[(2480�1608) - 1,124,382] / [(2480�2480) - 1,124,382]} = 0.5697

Kappa statistic for category accuracy: 

Water: Kappa = {[(2480�226) - (239�233)] / [(2480�239) - (239�233)]} = 0.9400
Sand: Kappa = {[(2480�216) - (309�328)] / [(2480�309) - (309�328)]} = 0.6532
Forest: Kappa = {[(2480�360) - (599�429)] / [(2480�599) - (599�429)]} = 0.5175
...

The variance of Kappa (Hudson and Ramm 1987) can be calculated as follows:

[Equation 4]

where
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The process of calculating the variance of Kappa is demonstrated in Table C.5 below.

Table C.5  Kappa (KHAT) variance.

N = 2480

�(xii )= 226 + 216 + 360 + 397 + 190 + 219 = 1608

�(xi+*x+I) = (239�233) + (309�328) + (599�429) + (521�945) + (453�238) + (359�307) = 1,124,382

�[xii*(x i+ + x+I)] = [226�(239+233)] + [216�(309+328)] + [360�(599+429)] +

[397�(521+945)] + [190�(453+238)] + [219�(359+307)] = 1,473,490

�[xij�(xj+ + x+I) ] = [226�(239+233) ] + [0�(239+328) ] + [3�239+429) ] + ... 2 2 2 2

... + [78�(359+238)] + [219�(359+307) ] = 2,279,167,2222

T = (1608 / 2480) = 0.648387

U= [1,124,382 / (2480) ] = 0.1828142

V = [1,473,490 / (2480) ] = 0.2395762

W = [2,279,167,222 / (2480) ] = 0.1494243

� (K) = (1/2480) � [ 0.341395 + -0.004595 + 0.004364 ] = 0.00013762

The Kappa statistic is often used to compare the results of multiple classifications (Congalton and Mead
1983; Congalton 1991). After calculating Kappa and its variance � (K) for each classification, a test statistic2

is computed as follows:

[Equation 5]

This test statistic follows a Gaussian (normal) distribution and can be used to determine whether
differences between the two classifications are significant. Significance at 95% is obtained by comparing
the Z-score to the equivalent value (1.96) from the normal tables. If the Z-score is greater than 1.96, the
classification accuracy results are significantly different. The normal tables can also be used to test
significance at other levels (e.g., 90%, 99%, or 99.9%) as desired. 

This process is demonstrated in Table C.6 below.

Table C.6  Hypothesis test for comparing Kappa statistics.

Statistics from Classification 1:

K  = 0.5697                     [from Table 4]1

� (K ) = 0.0001376         [from Table 5]2
1

Statistics from Classification 2:

K  = 0.60242

� (K ) = 0.0025392
2



Z2,1�
(0.6024�0.5697)

0.002539�0.0001376
�0.6321

Z3,1�
(0.6203�0.5967)

0.0000794�0.0001376
�3.4350
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Statistics from Classification 3:

K  = 0.62033

� (K ) = 0.00007942
3

Threshold for significance at 95% = 1.96           [from normal tables]

                [not significant]

               [significant]
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