
Integrating Small Scale Technology into Local Systems

Sustainability Challenge

 Multiple Resource Assessments and Need for Problem Solving – Some Regional Examples
Introducing New Technology – A Value-Added Approach

Sustainability Challenge

Sustainability Challenge

Economic

Social

Environmental

How to best balance the economic, environmental, and social demands of American farmers and ranchers by providing options that increase productivity and profitability across geographically diverse locations.

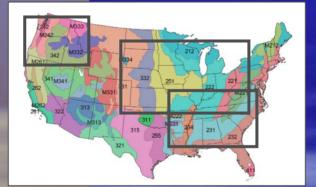
50

Soil Water Air Plant Animal +Human Effects

Sustainability Challenge

How to best balance the economic, environmental, and social demands of American farmers and ranchers by providing options that increase productivity and profitability across geographically diverse locations.

Soil Water Air Plant Animal +Human Effects


One Size Does Not Fit All

A Diversity of Commodities, Production Environments, and Problems

Corn Grain

Crop-Livestock

Cereals and Grasses

Confined Feeding

Soil Water Air Plant Animal Human Effects

The Energy Crop Belt

Switchgrass as an energy crop

Characteristics:

- Response to static prices.
- Complimentary crop to corn.
- Uniform crop production culture.
- Established transportation system.
- Replaces food or feed crop.
- Centralized conversion model.

The Energy Crop Belt

Switchgrass as an energy crop

Challenges:

- Effects of production on soil erosion.
- Mining nutrient phosphorus.
- Impact on corn and bean market.
- Central conversion facility impacts.
- Residues utilization after conversion.

Pacific Northwest Cereal and Grass Seed Systems

Challenges to Sustainable Production

Highly erodable soils, wildlife, & clean water

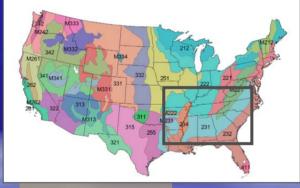
Excess straw residues after harvest

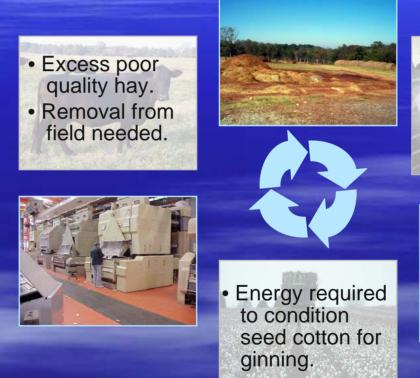
Health and safety concerns with burning

Southeastern Integrated Crop-Livestock Systems

Challenges to Sustainable Production

Grazing livestock


Crop production



Southeastern Integrated Crop-Livestock Systems

Challenges to Sustainable Production

Confined
animal waste.

 Land area needed for disposal.

Common to Agricultural Wastes

Characteristics:

- Disposal options are limited.
- Relatively low density so cannot be shipped great distances and produce value to the producer.
- Limited direct market options.
- Few economic options for use in
 - manufactured value-added products.
- Viewed as a liability by the producer.

Previous Hurdles to Utilizing Agricultural Wastes for Energy:

 Cost of transporting low-density materials to a central conversion facility.

 Apparent unsuitability of using air blown gasification reactors with materials high in silica.

• Technology not available for farmscale use.

An Alternative Conversion Model for Distributed Energy Production:

- New technologies available for local-scale use.
- Convert agricultural wastes and produce value-added energy products.
- New source of income, behind the farm gate.

New Technology Introduction

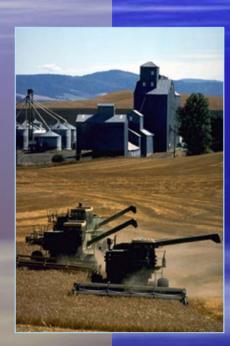
Western Research Institute – Dual-phase gasification reactor

Characteristics:

- Suited for diverse agricultural feed stocks.
- Produces medium BTU synthesis gas in an air-blown configuration.
- Can convert 2 to 10 tons of biomass per day.
- Operates at temperatures below those that cause slagging.

New Technology Introduction

DOE Pacific Northwest National Laboratory – Microchannel Fischer-Trope reactor



Characteristics:

- Liquid fuel production from synthesis gas.
- Suited to convert synthesis gas from 6 to 1,000 tons of biomass per day.

• Microchannel catalytic process, custom product selection.

Pacific Northwest Straw Potential:

- Already profitable cereal and grass seed production systems on 5.3million acres in the region.
- Over 7-million tons of straw available beyond the conservation requirement.

 Conversion equivalent 60-80 gallon per ton at \$1.90 per gallon equals \$800-million; 8.8% of the 4.8-billion gallons of fuel used in the region.

Southeastern Crop-Livestock System Potential:

- Suited to integrate with waste solids and gin operations.
- Provide producers a means to reduce land requirements for waste management.

Solid-liquid separation module

Phosphorus separation module

Biological nitrogen removal module

ARS Swine lagoon replacement system

Southeastern Crop-Livestock System Potential:

- Conversion of biomass to energy, utilizing herbage produced beyond grazing livestock requirements.
- Direct conversion of poultry manure and cotton gin wastes.
- Source of energy for seed cotton conditioning before ginning and gin waste disposal.

