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PREFACE

On October 17-18, 2000, the USDA Forest Service Southern Research Station sponsored a second annual Forest
Inventory and Analysis (FIA) symposium in Salt Lake City, Utah. Symposium organizers successfully sought to
document regional and national progress in implementing an enhanced FIA program. By the end of calendar year
2000, all Forest Service research stations will have begun annual inventories in at least one State using protocols
developed for a system that is national in both scope and scale.

Papers included in this publication have been sorted into a number of general topic areas. Those areas include
remote sensing and Geographic Inventory Systems (GIS), statistical estimation and modeling, information
management, analysis and reporting, and a special-studies session. We thank all presenters and convey special
thanks to those who so copiously documented their work and submitted papers for this publication.

Gregory A. Reams
Ronald E. McRoberts
Paul C. Van Deusen
Asheville, North Carolina
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INTRODUCTION
The users of USDA Forest Service Forest Inventory and
Analysis (FIA) data include state and federal agencies,
forest industry, other corporate entities, non-profit organiza-
tions, and private citizens. Many of these users utilize the
ArcView™ (ESRI, Inc.) Geographic Information System
(GIS) to facilitate their analyses of natural resource data.
Many of the users of FIA data, therefore, have in-house
expertise in the use of ArcView. They also typically have
many other types of natural resource information, such as
soil maps, watershed boundary delineations, political bound-
aries, transportation networks, etc., in ArcView format. To
date, it has been difficult to link the FIA data with these other
resource data, and it has been difficult for users to conduct
their own flexible spatial analyses of FIA information.

The USDA Forest Service North Central Research Station
and Michigan Technological University have recently
cooperated in the release of ArcView projects for each of the
eleven North Central States. In ArcView, a project is a file for
organizing work consisting of views, tables, charts, layouts,
and scripts (ESRI, Inc. 1998). These projects utilize FIA data
as presented in the Eastwide database (Hansen and others
1992); the data files undergo a pre-processing routine to
increase the speed of the ArcView Avenue scripts that
execute the analyses. The projects are available at no cost
from either organization, and allow users to conduct analy-
ses of acreage, current volume, net growth, mortality, and
removals by species or forest type for any geographically
defined region within a state’s boundaries. Users can subset
plots within a defined region using any of the descriptive FIA
variables such as landowner, forest type, age class, site
index, and so on. Users can do multiple sorts so they can,
for example, examine volume, productivity, and utilization for
all of the 31-40 year old aspen plots within a large water-
shed.

The FIA ArcView GIS projects promise to be of great utility to
users. It is currently awkward to conduct analyses across

state boundaries, with users being required to define the
areas of interest in each state, conduct the analyses of
interest in each state, and combine the results outside of the
GIS system. Current efforts are focused on developing a
single ArcView project for the entire eleven-state North
Central region. This will allow users to conduct analyses
for any geographic area within the region, with the GIS
seamlessly combining information across state boundaries
to produce results in a single step.

EXAMPLE ANALYSES
The incorporation of multi-state functionality further in-
creases the utility of the existing routines to users. In many
instances, areas of interest do not follow state or other
political boundaries. Watersheds and other ecological units
cross state boundaries, many mills procure wood from more
than one state, and so on. The first example illustrates an
analysis utilizing FIA plots located within 25 miles of the
point where the boundaries of Illinois, Iowa, and Wisconsin
intersect (fig. 1). This selection utilizes FIA plots from the
1985 Illinois, 1990 Iowa, and 1996 Wisconsin surveys. Table
1 shows the volume, growth, mortality, and removal esti-
mates for selected species from the 274,943 acres of
timberland within this area. Table 2 provides detailed
information on the volume and change of the northern red
oak resources within this area by two-inch diameter class.

The second example illustrates the use of a polygon defined
by another resource layer. This analysis utilizes the FIA plots
occurring within a polygon defined by a particular class of
alluvial soils in the southern portion of the region (fig. 2).
This area contains FIA plots from the following surveys:
1990 Iowa, 1985 Illinois, 1998 Indiana, 1994 Kansas, 1994
Nebraska, and 1989 Missouri. The acreage of some of the
most common forest types in this area is shown in table 3.

Tables 2 and 3 illustrate just some of the analyses available
from the software. In addition, composite volumes, net
growth, mortality, and removals (and their associated

ANALYZING REGIONAL FIA DATA IN THE ARCVIEW™
GEOGRAPHIC INFORMATION SYSTEM1

David Reed, Scott Pugh, Pat Miles, and Kurt Pregitzer2

Abstract—The ArcView™ Geographic Information System (GIS) is probably the GIS that is most widely used by federal
and state natural resource management agencies, industries, and non-profit institutions. As such, there is a great deal of
expertise and comfort with this package within the FIA user community. The North Central Research Station and Michigan
Technological University have recently cooperated in the release of ArcView GIS projects for each of the eleven North
Central states. These projects facilitate analyses of current volume, net growth, mortality, and removals for any geographic
region within a state, whether determined from ancillary polygon data (such as soil or watershed boundaries) or defined
on-screen by the user. Current efforts are focused on developing a single project that will allow similar analyses that are
not limited by state boundaries within the eleven-state North Central region.

1 Paper presented at the Second Annual Forest Inventory and Analysis (FIA) Symposium, Salt Lake City, UT, October 17–18, 2000.

2 Professor and Assistant Research Scientist, School of Forestry and Wood Products, Michigan Technological University, 1400 Townsend Drive,
Houghton, MI 49931; Forester, USDA Forest Service, North Central Research Station, 1992 Folwell Ave., St. Paul, MN 55108; and Professor,
School of Forestry and Wood Products, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, respectively.
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Table 1—Current volume, growth, mortality, and removal estimates for selected species on the 274,943
acres of timberland within 25 miles of the intersection of Illinois, Iowa, and Wisconsin (fig. 1)

Species  Volume   Growth   Mortality Net growth Removalsa

Basswood 23,246.4 584.5 229.0 355.4 45.3
Elm 21,271.9 1,298.6 503.3 795.3 601.6
White oak 14,301.7 156.2 77.0 79.2 313.7
Northern red oak 12,921.7 460.4 91.6 368.8 2,257.9
Sugar maple 12,009.8 225.6 90.1 135.5 461.1

a Removals for Illinois 1985 are not available in the FIA inventory data or in the GIS-FIA Model. An estimate is available
from a single year survey of mills (Hahn 1997).

Figure 1—FIA plots located within 25 miles of the point where the boundaries of Illinois, Iowa, and Wisconsin intersect, obtained using the
ArcView buffering function to define the area of interest, which is then overlain with the FIA plot location information.

1000 ft3 - - - - - - - - - - - - - - - - - -1000 ft3/yr- - - - - - - - - - - - - - - - - -
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Table 2—Volume and change of the northern red oak resources within 25 miles of the intersection of
Illinois, Iowa, and Wisconsin (fig. 1) by two-inch diameter class

Diameter Volume Growth Mortality Net growth Removalsa

4 0.0 96.6 0.0 96.6 0.0
6 150.1 7.2 8.9 -1.7 0.0
8 185.1 8.8 3.2 5.6 0.0
10 702.3 31.4 3.5 27.9 0.0
12 853.2 31.7 2.9 28.7 14.3
14 1,129.4 22.1 4.0 18.1 32.7
16 1,497.5 48.0 7.2 40.9 207.0
18 2,793.7 108.2 27.2 81.1 396.5
20 1,205.4 42.5 30.2 12.2 525.0
22 1,454.3 2.6 1.8 0.7 247.0
24 1,822.1 38.1 0.0 38.1 369.6
26 1,128.5 23.2 2.6 20.6 465.9

Total 12,921.7 460.4 91.6 368.8 2,257.9

a Removals for Illinois 1985 are not available in the FIA inventory data or in the GIS-FIA Model. An estimate is available from
a single year survey of mills (Hahn 1997).

Figure 2—FIA plots occurring within a polygon defined by a particular class of alluvial soils in the southern portion of the North Central
region, created by overlaying a general soils polygon coverage with the FIA plot location information.

In.   1000 ft3 - - - - - - - - - - - - - - - - - - -1000 ft3/yr- - - - - - - - - - - - - - - - - -
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standard errors) are available for all selected plots. A
composite stand table giving average trees per acre by
species and two-inch diameter class is also available in the
single state projects. In general, all of these tables are
available for the 50 most common species occurring in the
region.

DISCUSSION
A concern with the analyses in figures 1 and 2 is that the
data from the different states were taken at different times.
These are the most recent publicly available data for the
different states, but the result is that the data from the 1985
Illinois survey, which are now fifteen years old, are combined
with the two-year old 1998 Indiana data. Without a com-
monly accepted stand projection system, these inventories
cannot be updated to a common date. With the advent of
the annual surveys, though, this problem with the timing of
different state surveys will be greatly reduced. The ArcView
projects can easily be updated when annual data from the
various states are released, resulting in an annual regional
project. This will provide users with up-to-date resource
information in a GIS format with which they are familiar and
are already comfortable using.

The latitude-longitude location information publicly released
for the FIA plots does not represent exact plot locations. The
coordinates are rounded off or randomly altered to mask
exact plot locations; the method for doing this varies across
the US. When combined in a GIS, this has the effect of
including some plots within a polygon boundary that should
not be there, and excluding some plots from a polygon that
should really be included. In Michigan, some forested plot
locations appear in Lake Superior, for example. For large
areas, the effect of these distortions is minimal. For small
areas, though, a rather large proportion of the total forest
area can be involved. An analysis of the Michigan 1993 data
indicates that county-level volumes estimated in the GIS by
overlaying county boundaries with the FIA plot locations are
almost always within 10 percent of the volumes estimated
using the county code recorded in the Eastwide database
(Hansen and others 1992). The imprecise plot location effect
is minimized for geographic areas with low perimeter:area
ratios, and increases as the amount of boundary area
increases relative to the interior area. Circular areas, such
as in figure 1, have low perimeter:area ratios and minimal
errors introduced by imprecise plot locations. The introduced
errors are still proportionally greater for smaller circles than
they are for larger ones. Long, linear areas, such as riparian

zones, have large perimeter:area ratios and may be ex-
pected to have relatively large introduced errors due to
imprecise plot locations. It makes little sense to try to
examine corridors less than two or more miles in width, for
example, if the plot locations are only known to the nearest
mile. Users can obtain some guidance from the estimated
standard errors produced during the analyses; these are
underestimates, however, because they do not fully consider
the imprecise plot locations. Users need to check these
precision estimates, and make sure that the number of plots
or size of area selected results in a greater indicated level of
precision than is really required.

The ArcView projects described here were taken directly
from the data in the Eastwide database. The FIA data are
pre-processed to speed the ArcView analyses, but summa-
ries are based on the formulae given by Hansen and others
(1992). At the state level, results from the ArcView projects
match almost exactly with those from the respective state
publications. The ArcView projects calculate standard errors
for composite volume estimates, net growth, and removals;
these are calculated using the ratio formulae given in the
respective state reports. When data from different states are
combined, a simple weighting procedure is used to estimate
the standard errors for the total defined area.

Execution time is an issue with any software designed to
manipulate large amounts of data. With tens of thousands of
FIA plots and hundreds of thousands of tree records in the
North Central region, a great deal of programming effort has
gone into increasing the efficiency of the analyses illustrated
here. All of the analyses illustrated in figures 1 and 2 and the
results summarized in tables 1-3 can be obtained in about
20 minutes on a 233 MHz laptop computer provided the
soils layer is available at the beginning as an ArcView
theme.

SUMMARY
ArcView projects containing the FIA data for each of the
eleven North Central states and associated data processing
procedures are currently available from the US Forest
Service North Central Research Station or Michigan
Technological University. Many natural resource organiza-
tions use the ArcView GIS software and have in-house
expertise for conducting analyses using this software. The
individual state projects provide the capability for FIA data
users to link FIA data to other natural resource data, and to
conduct in-house analyses of natural resource information
for any defined geographic region within a state. The
regional model under development will extend these
capabilities across state lines within the eleven-state North
Central region. Both the individual state and the regional
models will provide users with a vehicle to utilize annual
inventory data, when available, to conduct quick analyses
addressing a variety of resource issues.

ACKNOWLEDGMENTS
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Service North Central Research Station, through Agreement
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work. Tom Wardle, Deputy State Forester for the State of
Nebraska, and Michael Hyslop, GIS Analyst in the School of

Table 3—The timberland acreage of some of the most
common forest types in the area defined in figure 2

Forest type   Acres

Maple-beech-birch 503,100
Oak-hickory 473,900
White oak-red oak-hickory 454,579
White oak 408,115
Elm-ash-cottonwood 377,100
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INTRODUCTION
Phase One stratification for Forest Inventory and Analysis
(FIA) survey purposes has traditionally been accomplished
through detailed photo interpretation of the most current
high altitude photography. Conversion from periodic to
annual inventories necessitates acquisition of current
imagery more often than high altitude photo programs can
provide at traditional funding levels. Satellite image analysis
offers a cost effective alternative.

One advantage of satellite imagery is the ability to machine-
process large areas in a relatively short time. Another is that
imagery is acquired on a regular cycle. Costs of imagery and
analyses are lower. Disadvantages relate to accuracy:
resolution is not as fine as aerial photography, and the
human ability to interpret context, shape, and texture are
lost.

The following methodologies were developed and tested in
an attempt to apply well-established, simple techniques that
could be quickly and easily implemented across a large
program such as FIA.

IMAGE ACQUISITION AND PREPROCESSING
Midsummer imagery may offer the best opportunity for
discriminating forest from nonforest if only a single date is
used in the analysis. Addition of imagery from another
season may improve accuracies by incorporating
phenological differences.

Although the choice of sensors is expanding, driven mostly
by a desire for increased spatial resolution, Landsat
Thematic Mapper (TM) remains one of the better choices
when considering classification needs of a forest target. Its
spatial resolution is somewhat smaller than the size of an
FIA plot, yet not so small as to overwhelm storage and
processing capacities when dealing with large land areas.
Its spectral resolution is greater than most other commercial
systems and offers better classification potential.

Two dates of imagery were used in this study. The first was
a  July 24, 1999 Landsat 5 scene from Path 27, Row 26
shifted 70 percent south. The second was an October 13,
1999 leaf-off Landsat 7 scene from Path 26, Row 27. Both
were rectified to the Minnesota Department of Natural
Resources (DNR) standard of extended zone 15 UTM
projection, NAD83 datum, using the MN Department of
Transportation ARC/INFO roads coverage for ground control
points.

The October scene needed some cloud removal. A
Normalized Difference Cloud Index, (TM5 - TM6) / (TM5 +
TM6) was calculated and added to the image as an
additional band. An unsupervised classification of 70
classes was then created and cloud and cloud-shadow
classes identified and masked out. Another unsupervised
classification of 150 classes was run on the cloud-free
images to identify obvious water and remove it from further
analysis.

The remaining unmasked imagery contained forest and
nonforest land pixels that can be roughly separated using an
image alarm available in many types of image analysis
software. The analyst roams the imagery digitizing a variety
of coniferous and deciduous stands, trying to include the
range of variability for each. I selected 30 of each and
merged the 30 separate polygons into one coniferous and
one deciduous signature. The image alarm allows the
analyst to edit parallelepiped limits for bands 3, 4, and 5.
The analyst interactively edits until the pixels alarmed
reasonably represent the labeled class. If two dates of
imagery are used, there are six bands to edit. The pixels
identified with the alarm are separated into a preliminary
“forest” area of interest (AOI) that will be further classified.
The remaining pixels are identified as a preliminary
“nonforest” AOI.

CLASSIFICATION REFINEMENT
Each of the AOIs are further classified using a 35-class
unsupervised technique to build signatures, followed by a
maximum likelihood supervised classification of the pixels.

FOREST/NONFOREST CLASSIFICATION OF LANDSAT TM DATA FOR
ANNUAL INVENTORY PHASE ONE STRATIFICATION1

Jim Rack2

Abstract—Launch of Landsat 7 creates the opportunity to use relatively inexpensive and regularly acquired land cover data
as an alternative to high altitude aerial photography. Creating a forest/nonforest mask from satellite imagery may offer a
cost-effective alternative to interpretation of aerial photography for Phase One stratification of annual inventory plots. This
paper describes the procedures: they include image rectification, registration, and spatial filtering to allow accurate
co-location with field plots and attempt to compensate for minor plot location errors. Identification of clouds and their
removal from further analysis is outlined. Image alarms are described as a coarse filter for arriving at a forest/nonforest
mask, with unsupervised classification as the fine filter. Accuracy assessment results for single-date, dual-date, filtered and
unfiltered combinations are reported, as well as cost estimates.
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This classification will do a better job than the alarm of
distinguishing fine differences between forest and nonforest.
These 35 classes are labeled using 3 or more sets of the
best available aerial photography. Photos should be well
distributed across the image.

Some signatures from this classification will be confused
and require further refinement. Each is identified as an AOI,
and another unsupervised classification is performed using
some number of subclasses, which are then relabeled using
the photographs. Eventually, most ambiguity should be
removed, and a model can be written to recode all pixels to
either forest or nonforest classes.

Two spatial concerns related to FIA plots need to be
addressed. One is accuracy of plot locations. A small test of
plot location accuracy conducted in our office on 1990 era
plots revealed a root mean square error of approximately 50
meters, even after plot locations had been extensively
edited. The second refers to the difference in area between
a pixel and an FIA plot cluster. One pixel is a square 30
meters on a side. It would take approximately 9 pixels in a 3
by 3 (3x3) matrix to cover the same area represented by the
new 4 subplot cluster or the old 10 subplot cluster. To
compensate somewhat for the inaccurate locations of the
FIA plots and the difference in size between a pixel and a
plot, a 3x3 majority filter was used to assign the majority
makeup of a 9-pixel area to the center pixel. This 3x3 filter
matrix passes over each pixel in the classification and
outputs a new filtered classification. Results are reported for
both the single-pixel classifications and the filtered
classifications.

ADDITIONAL STEPS FOR TWO-DATE
CLASSIFICATIONS
Using two dates of imagery requires some additional work in
preprocessing. Registration between the two images must
be checked: if pixel locations are not coincident, the images
will require additional registration work. An overlap area
must be identified so that analyses are restricted to pixels
that contain data from all bands of both input images. Layers
from the two images will have to be “stacked” to create one
image for analysis, containing as many as 12 bands of data.

RESULTS AND DISCUSSION
Classifications were compared to 106 actual FIA plots field
measured in 1998 and 1999. Four classification
combinations were compared to various combinations of FIA
ground land use (GLU) and history. Histories of “clearcut”,
“natural significant disturbance”, and “man-caused
significant disturbance” on forested plots were considered to
be in a nonforested state for accuracy assessment
purposes. Plots were also checked visually on the imagery
to see if current condition matched attributes in the
database: for example, if a forested plot was clearcut after
the field visit and before the image date. An additional 44
nonforested plots were added to compensate for the small
number of field-visited nonforest plots; these were identified
by “PI_LAND_USE” and “GLU” codes of nonforest from
annual inventory plots selected in 1994-1996. Only the
overlap area of the two images was included in the accuracy
assessment.

The single-date unfiltered classification accuracy assess-
ment matrix, table 1, shows a certain bias on the part of the
analyst towards an aggressive classification of “forest”. This
bias offers the advantage of insuring that all or most of the
actual forested plots are selected for field visits, but has a
negative effect on estimates of forest area.

Results (table 2) from filtering the single-date classification
indicate a slight improvement in overall accuracy from 85
percent to 88 percent. The filtering caused six plots
classified as “forest” to change to a “nonforest” classifi-
cation and one plot classified as “nonforest” to change to
“forest”. Visual inspection of the plot locations changed by
filtering confirmed the neighborhood of pixels to be a
generally better representation of conditions at the plot than
the single pixel at “plot center”.

Using a second image in the classification also improved the
classification accuracy, as shown in table 3, from 85 percent
to 88 percent. However, filtering this classification slightly
reduced the accuracy, from 88 percent to 87 percent (table
4). In this case, filtering caused the classification of five
plots to change from forested to nonforested and nine plots
from nonforested to forested.

Visual inspection of the errors from these matrices indicates
that plot location is a chief contributor. Plots near borders of

Table 2—Single-date classification, 7/24/99, 
unfiltered with 3x3 majority filter

Classified
forest 81 18 99 82

Classified
nonforest 0 51 51 100

Total 81 69 150

Producer's
 accuracy (%) 100 74 85

Percent

Overall 
acccuracy 

FIA FIA User's
forest nonforest Total accuracy

Table 1—Single-date classification, 7/24/99, unfiltered

Classified
forest 81 23 104 78

Classified
nonforest 0 46 46 100

Total 81 69 150

Producer's
 accuracy (%) 100 67 85

Overall 
acccuracy 

User's
accuracy

FIA
forest

FIA
nonforest Total

Percent
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forest/nonforest conditions have a higher probability of being
labeled incorrectly, especially if plot locations are imprecise.
As plot locations are updated with high-accuracy Global
Positioning Systems during field visits, classification
accuracies should also improve. Other conditions that con-
tributed to errors were plots labeled “marsh without trees”
and “right of way,” which tended to be misclassified as
forest.

The general conclusion one may draw from this small test is
that  simple image processing techniques of satellite
imagery can offer almost 90 percent accuracies of forest/
nonforest discrimination. Whether this is adequate for Phase
One stratification of FIA, or repeatable on other landscapes,
is yet to be determined.

COSTS
Image costs will vary depending on the source of the data.
Landsat 7 scenes carry about a $600-$800 price dependent
on the level of processing. The image analyses will take
between 7 and 10 days per scene center depending on
whether it is single date or dual date and the presence of
clouds. Twenty scenes of Landsat 7 for Minnesota would
cost about $13,000 and image analysis would add $40,000-
$50,000. Round numbers would show a cost of about
$53,000 for the 53 million acres in Minnesota or $0.001/acre
($0.64/square mile). These are estimates only and not to be
considered universal for all users. Individual circumstances
could alter these numbers substantially.

Table 4—Two-date classification, 7/24/99, unfiltered
and 10/13/99, filtered with 3x3 majority filter

Classified
forest 65 16 81 80

Classified
nonforest 2 53 55 96

Total 67 69 136

Producer's
 accuracy (%) 97 77 87

Overall 
acccuracy 

accuracyforest nonforest Total

Percent

FIA FIA User's

Table 3—Two-date classification, 7/24/99, unfiltered
and 10/13/99, unfiltered

Classified
forest 64 13 77 83

Classified
nonforest 3 56 59 95

Total 67 69 136

Producer's
 accuracy (%) 96 81 88

Overall 
acccuracy 

accuracyforest nonforest Total

Percent

FIA FIA User's
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PHASE I FOREST AREA ESTIMATION USING LANDSAT TM AND
ITERATIVE GUIDED SPECTRAL CLASS REJECTION: ASSESSMENT OF

POSSIBLE TRAINING DATA PROTOCOLS1

John A. Scrivani, Randolph H. Wynne, Christine E. Blinn, and Rebecca F. Musy2

Abstract—Two methods of training data collection for automated image classification were tested in Virginia as part of a
larger effort to develop an objective, repeatable, and low-cost method to provide forest area classification from satellite
imagery. The derived forest area estimates were compared to estimates derived from a traditional photo-interpreted, double
sample. One method used maplets digitized from ancillary imagery. Seed pixels, the other approach, used only available
ground plot data and the image to be classified. Both methods of training data collection resulted in classification accuracy
approaching 89 percent, and area estimation precision surpassing the FIA standard of 3 percent per million acres of
timberland. However, the precision estimate was met in large part from the additional ground truth data collected
supplemental to the national standard sample frame of one plot per 6,000 ac. The seed pixel approach is recommended
over maplets, because it does not require ancillary imagery and is less costly in analyst time.

INTRODUCTION
The Agricultural Research, Extension and Education Reform
Act of 1998 called upon the Forest Service to develop and
implement a strategy to improve the performance of the
Forest Inventory Analysis program. A study by the RAND
Corporation recommended that FIA explore utilization of
Landsat Thematic Mapper (TM) data for area measurements
on a national scale (Peterson and others 1999). Rich Guldin,
Director of Science Policy, Planning, Inventory, and Infor-
mation, USDA Forest Service, recently set the goal of
completing “ . . . the transition from reliance on aerial
photography to use of remotely sensed satellite imagery by
the end of FY 2003” (Guldin 2000).

The first phase of this transition to operational satellite
image utilization will be its use to produce forest area
estimates and provide Phase I stratification for the ground
sample.

If classification of raw TM data is to be used on an opera-
tional basis for FIA area estimation, two things are required:

1. Image analysis techniques that are low-cost, fast,
objective, and repeatable.

2. Standard protocols for the collection of training and
validation reference data.

If reference data protocols can be based upon existing field
protocols, with little or no modification, this transition can be
smooth and cost-effective.

This paper reports on work done in Virginia using an
automated classification procedure, Landsat TM imagery,
and training data collected from the FIA data sampling
frame. The objectives of this work were

1. To further develop an objective, repeatable, and low cost
process to obtain forest/nonforest stratification (classifica-
tion) with TM imagery.

2. To use this stratification in conjunction with Phase II and
III ground truth to provide adjusted forest land estimates.

3. To develop more objective, low-cost and effective
methods of obtaining training data for use in the classifi-
cation process.

4. To compare the precision of forest area estimates
obtained using classified imagery with those obtained
through traditional photo-interpretation methods and
double sampling.

DATA
A Landsat 7 Enhanced Thematic Mapper Plus (ETM+)
scene covering eastern Virginia, WRS Path 15, Row 34,
acquired on March 3, 2000, was used for this analysis. The
scene was geo-rectified using 30 ground control points and
a first-order polynomial model. The root mean square error
(RMSE) for the geo-rectification model was 11.8 m. For a
sample of 10 independent ground control checkpoints, the
RMSE was 11.9 m. Spectral bands 1–5 and 7 were used for
the analysis.

Ground reference data came from annual forest inventory
field measurements made in the years 1997-2000 in
Virginia. At the time of analysis, 978 Phase II and 24 Phase
III ground plots were available, representing slightly > than
three of the five panels of the 5-year annual sampling frame.
Also available were land use classifications from 285
deleted plots (ground plots for the last survey that had been
dropped from the five-panel system but remeasured by
Virginia crews). Precise coordinates from differentially
corrected GPS observations were collected for all of these
points, with an estimated accuracy of better than 10 m. Also
available were 753 intensification plots, where aerial photo-
interpreted land use points were verified on the ground by
field crews. Coordinates for the intensification plots were
digitized using 10 m SPOT panchromatic imagery, dated
1993 to 1994. In total, 2,040 land use ground truth points
were available. For collections of training data, 430 Phase II
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plots and 24 Phase III plots were used. Of the remaining
plots, 131 could not be used for validation due to clouds or
bad ETM+ data, leaving 1,455 plots for validation. The
resulting validation sampling intensity was one point per
4,600 ac. Table 1 summarizes the training and validation
ground truth data.

The entire scene was used in the classification process;
however, a 30 county subset of the image was used for
stratification and land use estimation, because the county is
the smallest unit for each that estimates are traditionally
derived. The 30 county subset contains 5.2 million ac of
land, and was 67.1 percent forested, with 3.38 million ac of
forest land in 1992, the date of last survey. The entire scene
covers approximately 7.6 million ac, with a similar proportion
of forest land.

Available for comparison are preliminary, county-level, forest
area estimates obtained using the traditional double-
sampling technique with a large sample of photo-interpreted
points, corrected with ground truth from both Phase II and
intensification points. For the 30 county subset, the large
sample of photo-interpreted points was 41,275 in size. The
standard errors of these estimates were estimated using the
formulae of Li and others (1992).

ITERATIVE GUIDED SPECTRAL
CLASS REJECTION
Iterative Guided Spectral Class Rejection (IGSCR) is a
hybrid classification method that builds and labels spectral
classes for use in supervised approaches such as the
maximum likelihood classifier (Wayman and others 2000).
The IGSCR algorithm is, in essence, an objective and
guided “cluster busting” (Jensen and others 1987, Rutchey
and Vilchek 1994) approach that uses specific rejection
criteria and large numbers of training pixels.

The IGSCR method accepts and labels a spectral class
when it meets the desired inclusion threshold and rejects it if
it does not. In this case, the inclusion threshold required at
least 90 percent homogeneity within spectral classes and a
minimum of at least 20 training data pixels per class. All
pixels in spectral classes meeting the 90 percent homoge-
neity/minimum pixel test are labeled and removed from the
original raw image. The unlabeled pixels from the raw image
are then clustered into new spectral classes and the next
iteration begins. Each of the iterations increases the number
of pixels (and spectral classes) with known identity and
decreases the number of unclassified training pixels. Once

the iterations are complete (based on user-defined param-
eters such as the percentage of pixels classified or the
classification of all training pixels), the known spectral
classes are combined into a single signature file. The pure
spectral classes are then used with the maximum likelihood
decision rule to classify the image.

TRAINING DATA
Maplets
Classifications of forest and nonforest land use, termed
maplets, were created via heads-up digitizing for relatively
small landscape areas within the scene. The image back-
drops used were digital orthophoto quarter quadrangles
(DOQQ), obtained from the U.S. Geological Survey. DOQQs
with image acquisition dates of 1994-1996 were available for
24 of the existing 26 Phase III plots in the pilot study area.
Twenty-four 1 km x 5 km maplets were created, approxi-
mately centered on each of the 24 Phase III plots. Three
categories (forest, nonforest, and uncertain) were used. Any
natural or cultural feature as large as a TM pixel (or that
dominates the spectral response of a TM pixel) was digi-
tized. Visual inspection of the Landsat 7 ETM+ imagery
(panchromatic, multi-spectral, and pan-sharpened) was
conducted to determine whether the area mapped had
changed since the date of the DOQQ. Areas that changed
were edited.

Table 2 summarizes the amount of training data generated,
expressed as percent of the image. Water was not
sufficiently represented in the maplet sample so additional
training data for water were collected visually from the TM
image.

Advantages to the maplet process include (1) their potential
utility for the FIA program for other uses and (2) the ability to
accurately map areas that are traditionally problematic in TM
forest/nonforest classifications such as low-density residen-
tial areas and recent harvests. The primary disadvantages
are (1) the subjective, analyst intensive nature of the
process and (2) the lack of national availability of DOQQs or
equivalent imagery. These disadvantages led us to examine
a process that has high potential to be objective, repeatable,
and highly automated. This process uses a subset of FIA
plot centers as “seed pixels” to segment areas of the image
into training data.

Seed Pixels
The seed pixel approach started with a random selection of
500 Phase II plots to be used in obtaining training data.

Table 1—Ground plot location numbers for validation and
training data from Phase ll, Phase lll, and intensification plots

Source Total      Training     Unusable       Validation

Phase II plots 978 255 69 654

Phase III plots 24 23 1 —

Deleted Phase II 285 152 18 115

Intensification 753 — 67 686

  Total 2,040 430 155 1,455

Table 2—Training data amounts for IGSCR forest/
nonforest classification of Landsat 7 Scene 15/34,
March 3, 2000

    Maplet        Seed pixels

Total (percent of image) 0.52 0.88

Composition (percent of total)

  Forest 50.1 69.6

  Nonforest 15.3 10.1

  Water 34.6 20.3
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Seventy of these had to be dropped due to plot location in
apparent mixed-land-use pixels, locations under clouds in
the imagery, or location on some bad data lines in the
image, leaving 430 plots. The sampling intensity for seed
pixel initiation was one point per 13,200 ac.

At each of the FIA plots, the analyst located the plot center
on the image, visually confirmed the land use call, and
initiated a seed pixel. ERDAS Imagine software’s seed pixel
function works by appending adjacent pixels that are within a
specified spectral distance of the mean of the pixels already
within the cluster. The only analyst input required is the
decision as to what maximum spectral distance should be
used. The analyst varied the spectral distance parameter in
order to create as large a cluster of pixels that appeared to
be clearly within the same land use condition as possible.
Development of a more objective and automated approach
to seed pixel reference data generation, would help speed
this process.

Table 2 summarizes the amount of training data generated
by the seed pixel methods as well. Again, water was not
adequately represented and the same ancillary water
reference data were used as in the maplet training
approach.

AREA ESTIMATION
For the photo-interpreted double sample, forest land
percentage estimates and standard errors were computed
with the formulae of Li and others (1992). Since the esti-
mates obtained from image classification are “wall-to-wall”,
or a complete enumeration of the landscape, the double
sampling estimates are not appropriate for estimating forest
area. Instead, we used the approach for adjusted map
marginals formulated by Card (1982).

RESULTS
Several classifications with different starting parameters,
specifically the number of ISODATA classes allowed at the
first iteration, were tried and all achieved very similar results.
Hence, we will report here only the results of 4 classifica-
tions, those starting with up to 300 ISODATA classes. Two
such classifications were made of the entire scene, and 2
were made for just the 30 county subset. Within each image
extent, one used maplets for training data and the other
used seed pixel training data. Whole and subset results
were very similar. For simplicity and ease of comparison with
double-sample methods, we report only the subset results
starting with 300 ISODATA classes.

Table 3 presents the Kappa statistics, overall map accuracy,
and producers and user’s accuracy for the forest and
nonforest classes. Overall map accuracy ranged from 88.5
to 88.8 percent.

Table 4 presents the unadjusted and adjusted map marginal
estimates of percent forest land, with standard errors. Also
presented are results from the traditional photo-interpreted
double-sampling estimation (PI). The PI estimate for the 30
county subset was 64.51 percent forest, with a standard
error of 0.82 percent. On a per million acres of forest land
basis, the standard error is 1.51 percent, well under the
national FIA standard of 3 percent per million acres.

For the IGSCR classifications, the adjusted map marginal
estimates are very close to the PI estimates: 65.43 percent
(maplet) and 64.51 (seed pixel). As expected, the standard
errors are higher: 1.06 percent (maplet) and 1.05 percent
(seed pixel). On a per million acres of forest land basis, at
1.95 percent (maplet) and 1.93 percent (seed pixel), the
estimates still surpass the FIA precision goal of 3 percent.

Note the 5 to 6 percent overestimate of forest land by the
unadjusted map marginals (table 4). This suggests that the
IGSCR method is overclassifying forest. Knowledge of the
area and visual inspection of the image suggest that the
major problems are urban and suburban areas with tree
cover similar to areas of forest land use. This suggests that
masking of known urban/suburban areas could improve the
accuracy of the IGSCR classifications.

DISCUSSION
The IGSCR classification method performed well in estimat-
ing forest land area using adjusted map marginals. The
precision of the estimates exceeded the FIA national

Table 3—Classification accuracy for forest/nonforest by
photo-interpretation, and various IGSCR classifications
of Landsat 7 Scene 15/34, March 3, 2000

        Photo-   IGSCR   IGSCR
Accuracy  interpretation   maplet   seed pixel

Overall 93.8 88.8 88.9

User’s
    Forest 94.5 87.9 87.3
    Nonforest — 90.8 92.6

Producer’s
    Forest — 95.3 96.4
    Nonforest — 77.8 76.3

Kappa
    statistic — 0.7534 0.7541

  Image Subset

    - - - - - - -  - - - - Percent - - - - - - - - - - -

Table 4—Estimates and standard errors of forest land for 
30-county subset of Scene 15/34, from photo-interpreted 
double sampling and IGSCR image classifications

    IGSCR      IGSCR
    maplet      seed pixel

Unadjusted
  Map marginals 65.26 71.57 70.36

Adjusted 
  Map marginals 64.51 65.43 64.51

Standard error 0.82 1.06 1.05

Standard error 1.51 1.95 1.93
  (per million acres)

 - - - - - - - - - -Percent- - - - - - - - - - - 

Photo-interpreted
double sample
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standard of 3 percent per million acres of forest land. The
method compared favorably to photo-interpreted double
sampling, although with some loss of precision.

Within the limits of this case study, the IGSCR method
proved to be objective and repeatable. Since this work was
still developmental, operational costs were not estimated.
However, we feel that its cost should be comparable to, if not
considerably less than, photo-interpretation and supervised
image classification approaches.

Two different protocols for collection of training data were
examined and both performed equally well. Further work on
the IGSCR method could possibly improve the current
classification accuracy (89-90 percent) to approach that of
the photo-interpretation methods (93-94 percent).

The amount of training data collected by either method was
less than one percent of the image. Previous IGSCR
development work (Wayman and others 2000) used 3 to 6
times the amount of training data, however, the classifier’s
performance was not any better. This result implies that
possibly even less training data could be used. Furthermore,
the maplet and seed pixel approaches had significantly
different proportions of forest and nonforest training data
(see table 2), but that seemed to make no difference in
accuracy of classification, either overall or by class.

This work has shown that either maplets or seed pixels can
work well as training data. Given the extra work involved in
creating maplets, we do not recommend this approach
unless the maplets are desired for other reasons, such as
examination of landscape patterns. The seed pixel approach
requires no additional imagery or ground truth other than a
portion of the Phase II plots. Higher precision can be gained
by either better classification accuracy or more ground
validation points. Focusing on problem classes, e.g. subur-
ban areas and recent harvests, could narrow the accuracy
gap.

The IGSCR classifications, and resulting forest land esti-
mates, meet the FIA precision standard of 3 percent per
million acres. Much of the credit for reaching this goal,
however, should be placed on the additional ground truth
provided beyond Phase II and Phase III ground plots. In this
study, deleted plots and intensification plots were also used.
If this same project had been limited to one ground truth plot
per 6,000 ac, the estimated standard errors per million acres
of forest land would have been approximately 2.7 percent for
the PI double sample and 3.5 percent for the IGSCR
classifications. FIA programs should consider continuing, or
initiating, land use intensification samples to achieve land
use precision goals.
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 LANDSAT TM CLASSIFICATIONS FOR SAFIS USING FIA FIELD PLOTS1

William H. Cooke III and Andrew J. Hartsell2

Abstract—Wall-to-wall Landsat Thematic Mapper (TM) classification efforts in Georgia require field validation. We
developed a new crown modeling procedure based on Forest Health Monitoring (FHM) data to test Forest Inventory and
Analysis (FIA) data. These models simulate the proportion of tree crowns that reflect light on a FIA subplot basis. We
averaged subplot crown proportions and compared them to Landsat TM classifications for validation. Resolution differ-
ences between field data and Landsat TM data make comparisons challenging. We recorded positive correlations
between the two types of data for four of the five FIA plots tested. We attribute differences on the fifth plot to
misregistration of the two data sources or misclassification of the TM imagery.

BACKGROUND
The 1974 Forest and Rangeland Renewable Resources
Planning Act (RPA) requires the United States Department
of Agriculture Forest Service (USDA FS) to provide Con-
gress with statistics on current forest land and rangeland
conditions. The Southern Research Station, Forest Inven-
tory and Analysis Program (SRS-FIA) conducts forest
inventories for all Southern States from Virginia to Texas.
Except for sparsely forested regions in west Texas and
west Oklahoma, forested land in the South has several
cycles of field inventories in recent history. SRS-FIA em-
ploys a systematic grid of permanent remeasurement plots
to help meet these inventory requirements. From these plot
measurements sample statistics for numerous variables
provide the basis for estimating forest/nonforest conditions.
Necessary for expanding plot estimates to county, unit, and
State levels is an accurate estimate of forest and nonforest
area by county. Currently, we use dot grids with National
Aerial Photography Program (NAPP) photos to calculate the
proportion of forested land. Multiplying this proportion by the
estimate of total land area from Bureau of Census records
yields an estimate of the land area in forest and in
nonforest condition. Correction factors derived from field
plots and from assessments of “intensification” plots
improves Phase I estimates of forest area.

FIA wants to reduce the frequency of NAPP photo acquisi-
tion or eliminate them entirely. Replacing NAPP photogra-
phy with the pixel-based approach of Landsat Thematic
Mapper (TM) data could achieve similar precision and
provide State cooperators with land cover maps. FIA plots
may provide a critical link between TM data and actual
ground conditions. FIA plots yield more detailed and
specific information than can be derived from TM data. This
study verifies TM data classifications.

METHODOLOGY
Field inventories in support of the Southern Annual Forest
Inventory System (SAFIS) are currently underway in Geor-
gia. Using hand-held Global Positioning System (GPS)

receivers, we connect FIA plot data to “real-world” coordi-
nates and then locate field plots on the TM imagery. A
county map of Georgia in figure 1 shows Brantley County,
the study site for this methodology.

Figure 1—Plots in study site, Brantley County, GA.

Two critical questions arise when we consider FIA plots for
remote sensing purposes:

1. How accurately can we locate the FIA plots on the
ground and on the TM imagery?  This is a coregistration
problem.

2. Which characteristics of the FIA plot data are useful for
remote sensing purposes? This is a crown modeling
problem.

Coregistration
Question 1 requires an examination of two sources of
registration error—the imagery and the GPS reading on the
plot. Problems with accurate coregistration of plots and
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satellite data result from locational errors of the satellite
imagery during rectification procedures and errors of the
GPS coordinate reading. Figure 2 illustrates the cumulative
effect of these error sources. If the error sources are
cumulative, FIA subplot 1 (plot center) could be as much as
two pixels away from its real-world location.

Data Preparation
We reformatted raw (unedited) plot data from Georgia from
ASCII files to a relational database format. We queried
individual tree data for these attributes:

1. Crown class (dominant, codominant, intermediate);
2. Species (pine, hardwood);
3. Nonmapped forested plots (edge conditions);
4. No evidence of disturbance; and
5. Live trees with d.b.h. ≥ 5 in.

Other data preparation included:

1. Assigning pine/hardwood species codes;
2. Computation of each tree location referenced to

Universal Transverse Mercator (UTM) coordinates
on each subplot based on field measurements of
distance and azimuth; and

3. Modeling crown diameter from diameter using Forest
Health Monitoring (FHM) data to derive regression
coefficients.

We downloaded FHM data from the St. Paul field office site
of the Forest Resources Management and Forest Health
Protection Web site (http://www.na.fs.fed.us/spfo/fhm/). As
the basis for simple linear regressions, these data
enabled prediction of crown diameters from d.b.h. For
modeling pine crown diameter and hardwood crown
diameter, we used 350 observations each. R-square
values were .82 and .63 for pine and hardwood prediction
models, respectively:

     Pine Model:  dbh ∗ .531225 + 0.0094
     Hardwood Model:  dbh ∗ .245801 + 2.4555

We drew crowns at the real-world location of each tallied
live tree with d.b.h. ≥ 5 in. When a tree crown extruded
beyond a subplot radius, we terminated that crown at the
plot perimeter. Conversely, crowns of trees that intruded on
the subplot radius are nontallied trees. We assumed that
truncation of extrusive crowns and nontally of intrusive
crowns represents a compensating error situation. We
ignored crown overlap from a reflectance perspective and
performed GIS union operations on overlapping crowns
(fig. 3). This ensures that calculation of crown area per plot
is a value between 0 and 1. We averaged crown proportion
estimates for each subplot for the four subplots to yield
crown proportion indices. Resolution differences between
the Landsat data and the field data make comparisons
difficult.

Figure 4 illustrates the unique problem of comparing field
data to image data. To facilitate comparisons, we com-
pared plot index values to 5 by 5 pixel windows on classi-
fied Landsat data acquired on December 17, 1996. We
calculated proportions for the 5 by 5-pixel window that was
most closely centered on the field plot (table 1).

DISCUSSION
Tables 1 and 2 compare plot and TM. Table 3 references
complete breakdowns of crown proportion by subplot.

Figure 2—Sources of locational error.

1 = pixel misregistration
2 = maximum GPS misregistration

Crown Modeling
Question 2 presents a challenging problem. The pixel
resolution (28.5 m) of TM data restricts the useful level of
detail of plot information. Within forested stands, the
satellite sensor most likely images dominant, codominant
and intermediate trees. More detailed information collected
during field sampling [diameter at breast height (d.b.h.),
height, etc.] is less useful. Holmgren and Thuresson
(1998) point out that satellite images seldom contain
enough information to support the decision process in
applied forestry. To address information utility, we devel-
oped a methodology to compare the individual tree data
from FIA field plots with estimates of forest area by a 25-
pixel TM window, which is large enough to allow for some
of the uncertainty of misregistration.

Based on 304 measurements of trees in New Zealand,
Avery (1975) documents a strong linear relationship
between d.b.h. and crown diameter for Pinus radiata D.
Don. This concept was originally designed to predict
diameter of trees whose crowns could be measured on
aerial photographs. For our study, we developed relation-
ships between measured crown diameter and d.b.h. to
enable prediction of crown diameter from d.b.h.

FIA field crews recorded distance and azimuth from each
subplot center to each tallied tree. We used this information
in a GIS system to provide a geographic reference point for
a mechanical reconstruction of the tree crowns on each
subplot.
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Figure 4—Resolution differences between field plots and Landsat
TM imagery.

Figure 3—GIS union operation to merge crowns prior to calculating
crown proportions.

Forest type

Pine ≥ 5 in. d.b.h. 68 100 35 0 80 100 100 100 42 100
Hardwood ≥ 5 in. d.b.h. 32 0 65 100 20 0 0 0 58 0

Crown (FIA) 54 49 71 41 65

Percent

TM FIA TM FIA TMTM FIA

Table 1—Comparison of Landsat Thematic Mapper (TM) classification with Forest
Inventory and Analysis (FIA) plot data

Plot 5

FIATM FIA

Plot 1 Plot 2 Plot 3 Plot 4

Subplot

1 81.78 .49 120.24 .72 99.10 .59 73.19 .44 137.89 .82

2 84.49 .50 30.26 .18 122.03 .73 71.59 .43 147.92 .88

3 95.49 .57 50.39 .30 121.29 .72 84.64 .50 111.34 .66

4 104.25 .62 127.11 .76 134.33 .80 48.15 .29 35.88 .21

Mean CP/plot

CA = Crown area per subplot in m2; CP = Crown proportion per subplot calculated by CA/plot area (168.11 m2 ).

CA CP

.54       .71     .41     .64  .49

CA CP CA CPCA CP CA CP

Table 3—Breakdown of crown proportion by subplot

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Forest type

Pine 3 0 1 2 0

Hardwood 0 14 0 1 12

Table 2—Count of trees with d.b.h. < 5 inches

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5
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Plot 1
FIA data indicated 100 percent of all trees ≥ 5 in. d.b.h. were
pines. Classified TM data from the 25-pixel window
resulted in 68 percent pine and 32 percent hardwood. The
mean crown proportion for plot 1 was .54. Table 2 results
indicate a fairly even distribution of crowns over the four
subplots.

Plot 2
FIA data indicated 100 percent of all trees ≥ 5 in. d.b.h. were
hardwoods. Classified TM data from the 25-pixel window
resulted in 35 percent pine and 65 percent hardwood. The
mean crown proportion for plot 2 was .49. Table 2 results
show an uneven distribution of crowns over the four
subplots. Subplots 1 and 4 are have more than 70 percent
crown saturation and subplots 2 and 3 have less than 30
percent crown saturation. Table 2 records 14 hardwoods
< 5 in. d.b.h., which indicates possible hardwood reflec-
tance from untallied trees on this plot.

Plot 3
FIA data indicated 100 percent of all trees ≥ 5 in. d.b.h. were
pines. Classified TM data from the 25-pixel window
resulted in 80 percent pine and 20 percent hardwood. The
mean crown proportion for this plot was .71. Subplots 2, 3,
and 4 have more than 70 percent crown saturation and
subplot 1 has more than 60 percent crown saturation.
Subplot 1 is relatively homogeneous, and the TM results
are in agreement with a homogeneous land cover
situation.

Plot 4
FIA data indicated 100 percent of all trees ≥ 5 in. d.b.h. were
pines. Classified TM data from the 25-pixel window
resulted in 100 percent pine. The mean crown proportion
for plot 4 was .41. Distribution of crown saturation across
the subplots is fairly consistent except for subplot 4, which
has less than 30 percent crown saturation. Table 2 indi-
cates that there are only two pines and one hardwood with
unmodeled crowns on this plot. Since crown saturation is
low, it would be interesting to know what features of the
landscape are causing pure pine classification results.

Plot 5
FIA data indicated 100 percent of all trees ≥ 5 in. d.b.h. were
pines. Classified TM data from the 25-pixel window
resulted in 42 percent pine and 58 percent hardwood. The
mean crown proportion for plot 5 was .64. Subplots 1 and 2
had more than 80 percent crown saturation. Subplot 3 had
more than 60 percent crown saturation and subplot 4 had
roughly 20 percent crown saturation. Two possible reasons
for the nonagreement between FIA and TM results are pixel/
plot misregistration or incorrect classification results.
Examination of the classified imagery reveals that a one-
pixel shift to the northwest would result in 60 percent pine
and 40 percent hardwood. High pine crown proportions in
subplots 1 and 2 further strengthen the argument for
misregistration. Results shown in Table 2 strengthen the
argument for incorrect classification results. Twelve
hardwood trees < 5 in. d.b.h. that were not modeled for
canopy proportion estimates and the location and diameter
of these stems/crowns should have been modeled. If the

majority of these trees are growing beneath the overstory,
misregistration is likely. If the majority of these trees are
growing in dominant canopy positions, misclassification is
likely.

CONCLUSIONS AND RECOMMENDATIONS
Resolution differences between the FIA field data and the
TM data show that we are attempting to “compare apples
and oranges.” On the basis of our limited study, there
appears to be good correlation between the results of the
modeled canopies and the TM classification. However,
misregistration and misclassification errors are difficult to
quantify. Excluding stems < 5 in. d.b.h. from the crown
modeling process was a mistake. In future modeling
efforts, if tallied stems < 5 in. d.b.h. are overtopped, we will
not model them on the basis of the canopy position
constraint. If stems < 5 in. d.b.h. are in a dominant, co-
dominant, or intermediate crown position we will model
them. This methodological change should provide useful
information on plot surface reflectance. We could bridge
resolution problems between the two data sources by
using LIDAR data or large-scale aerial photography.

This is a preliminary study designed to test the usefulness
of FIA plot data for verifying Landsat TM classifications. Now
that methodologies are established and automated,
numerous plots will be tested.

Finally, new canopy prediction models being tested include
species, age, density, crown class, landscape position,
and other variables as possible predictors of crown size.
These models may improve quantification of crown
proportion estimates by subplot.
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STRATIFYING FIA GROUND PLOTS USING A 3-YEAR OLD MRLC FOREST
COVER MAP AND CURRENT TM DERIVED VARIABLES SELECTED BY

“DECISION TREE” CLASSIFICATION1

Michael Hoppus, Stan Arner, and Andrew Lister2

Abstract—A reduction in variance for estimates of forest area and volume in the state of Connecticut was accomplished by
stratifying FIA ground plots using raw, transformed and classified Landsat Thematic Mapper (TM) imagery. A US Geological
Survey (USGS) Multi-Resolution Landscape Characterization (MRLC) vegetation cover map for Connecticut was used to
produce a forest/non-forest map derived from a classified 1993 TM image. A 1996 TM image was used to provide spectral
reflectance variables for each pixel, including the values for all 6 raw TM bands and several transformed layers: normalized
difference vegetation index (NDVI) and Tasseled Cap brightness, greenness, wetness, and “fourth.” Each pixel in the map
was assigned a value indicating how many surrounding pixels within a 3X3 or 5X5 window were forested. These same
windows were used to calculate, for each pixel, a mean, maximum, minimum, and standard deviation of the raw and
transformed layers. FIA ground plots (1996) were split into percent timberland classes using a “decision tree” algorithm that
recursively determines the most significant variable and the most significant split of that variable. The final set of grouping
criteria was used to statistically stratify a set of FIA ground plots. Results were compared with aerial photo based stratifica-
tion as well as TM derived forest/non-forest stratification.

BACKGROUND
Forest Inventory and Analysis (FIA), a program of the USDA
Forest Service, is responsible for the national forest inven-
tory and monitoring of the United States. Congress man-
dates, through the Forest and Rangeland Renewable
Resources Planning Act of 1974 and the McSweeny-McNary
Forest Research Act of 1928, that FIA continuously deter-
mine the extent, condition, and volume of timber, growth,
and depletions of the Nation’s forest land. In the East, FIA
inventories must meet specified sampling errors: a three-
percent error per one million acres of timberland is the
maximum allowable sampling error for area (Hansen and
others 1992). Until now, FIA has reached this accuracy in
part by statistically stratifying the FIA ground plots using
aerial photos. However, the Agricultural Research, Exten-
sion, and Education Reform Act of 1998 (PL 105–185)
directs all FIA units to change from an inventory frequency
of 10–14 years per state to an annual inventory system that
ground samples 20 percent of each state per year (Gillespie
1999). This new inventory design requires plot stratification
every five years.

OBJECTIVE
The Northeastern FIA unit, responsible for surveying the 13
northeastern states, uses aerial photos from the National
Aerial Photography Program (NAPP) for FIA ground plot
stratification. NAPP currently is on a seven year cycle. The
high cost of additional qualified photo interpreters necessary
to complete aerial photo stratification in all the states on a
five year cycle plus the seven year cycle of NAPP has led to
investigations of the use of satellite imagery to stratify the
ground plots.

The objective of this study was to stratify FIA ground plots
into “percent timberland per plot” classes using variables
objectively selected from a large pool of potentially effective
stratifiers. Selection would be made by a “decision tree”
algorithm that recursively determines the most statistically
significant variable and the partition of that variable with the
highest level of significance. Over one hundred different
images and forest cover maps derived from Landsat TM
scenes, considered strongly correlated with forested
landscapes, were subjected to this decision tree selection
method. Additionally, several non-satellite variables that are
often highly correlated with forest cover were added to the
assemblage of potential stratifiers. An important aspect of
our study was the inclusion of two forest cover maps
classified from Landsat TM and produced by USGS. The
potential cost efficiency of using existing satellite based
forest cover maps to stratify the ground plots generated
much interest in comparing these maps with other products.

This study begins to explore the hypothesis that the
statistically most significant predictor variables for percent
timberland may also be used to successfully stratify the plots
in order to reduce the variance of estimates of total
timberland area and tree volume. The final selection of
predictor variables made by the decision tree algorithm to
group the FIA plots into percent timberland classes was
used to form the strata for a timberland area estimate.
Finally, an important objective of this study was to compare
sampling errors of state level estimates of percent
timberland with other stratification efforts.
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METHOD
Study Area
The state of Connecticut was used for this study because all
the ground plots were located using Global Positioning
System (GPS) and there was a mostly cloud free Landsat
TM scene available that was acquired the same year that
the plots were measured. Additionally, two USGS forest/non-
forest maps are available for the state.

Selection of Predictor Variables
Four different types of landscape level variables were made
available to the decision tree algorithm for use as predictors
for plot level variables: Landsat TM satellite imagery,
including the raw bands and vegetation index images;
Classified forest/non-forest maps derived from Landsat TM
imagery; pixel neighborhood texture maps; and non-satellite
variables (table 1).

Table 1—Landsat TM derived and other predictor variables provided to the decision 
tree algorithm as candidates to predict classes of the response variable, percent 
timberland per plot

Predictor variable
Date of TM 

scene
Source

TM raw images and vegetation indexes: 
All six raw TM bands 8/1996 USGS
Normalized Difference 

Vegetation Index 8/1996 USGS (scene) /NE FIA
Tasseled Cap Transformation-

Brightness, Greenness,
Wetness, Fourth 8/1996 USGS (scene) /NE FIA

TM derived forest/non-forest maps:
Multi-Resolution Landscape

Characterization 
forest map 8/1993 USGS

GAP forest map 8/1993 USGS
Normalized Difference

Vegetation Index
threshold forest map 8/1996 USGS (scene) /NE FIA

Moving window filter images:
3X3 pixel window algorithms for

unclassified variables:
minimum, maximum, mean,
standard deviation 8/1996 USGS (scene) /NE FIA

5X5 pixel window algorithms for
unclassified variables:
minimum, maximum, mean,
standard deviation 8/1996 USGS (scene) /NE FIA

3X3 pixel window algorithm for 
classified variables:
total forested pixels 8/1993&96 USGS (scene) /NE FIA

5X5 pixel window algorithm for 
classified variables:
total forested pixels 8/1996&96 USGS (scene) /NE FIA

Non-TM variables:
Elevation 30m USGS 1:24000 DEM 
Slope 30m USGS 1:24000 DEM
Precipitation 4km PRISM– www.ocs.orst.edu/prism/prism_new.htm
Soil permeability 1km STARTSGO database
Soil bulk density 1km STARTSGO database
Length of roads <1/2km 30m TIGERLINE road file- www.census.gov
Length of roads <1km 30m TIGERLINE road file- www.census.gov
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Five different images were produced from vegetation index
algorithms applied to all or part of the raw TM bands. There
are a number of algorithms used to extract information such
as; biomass, leaf area index, and percent vegetative ground
cover, which are called Vegetation Indexes (VI). These
algorithms reduce the multiple bands in a TM image to a
single number per pixel that predicts vegetation
characteristics (Jensen 1996). The hypothesis is that forest
cover falls within a certain well-defined region of a given VI
map based on the “brightness” value of pixels. One of the
more common VI’s used is the NDVI, which makes use of
the ratio between reflected near-infrared light and red light
(and others 1973, Larsson 1993). Other VI’s evaluated were
the layers derived from the Tasseled Cap transformation
(Crist and Cicone 1984).

One of the three forest/non-forest maps evaluated was
produced from the NDVI image. Based on our analysis, the
higher the pixel’s brightness value the more likely it was to
cover a forested area on the ground. The NDVI map was
“thresholded” at a certain brightness level whereby all pixels
above this level were classified as forest and those pixels
below that level were classified as non-forest. The threshold
level that provided the most accurate map when compared
with aerial photos was selected for the final NDVI threshold
map.

Forest/non-forest maps were also acquired from Gap
Analysis Program (GAP) and National Land Cover Data
(NLCD) (formerly Multi Resolution Landscape Characteriza-
tion (MRLC)) vegetation cover maps for the Connecticut
study area. Both of these products are sponsored and
coordinated by the USGS and are designed to provide a
map of current land cover types over the U.S (Scott and
Jennings 1998, Jennings 1993). These maps are based on
TM classification and differ from each other and from other
TM images for a variety of possible reasons, including;
differing dates and quality of TM imagery used, different
classification methods applied, differing minimum mapping
unit, and differing definitions of forest land employed.

An evaluation of FIA ground plot geometry and the locational
uncertainty of both TM pixels and plots due to image registr-
ation errors and GPS errors, respectively, suggests that
images which quantify pixel values within a 3X3 or 5X5 pixel
window may be highly correlated with percent timberland
totals for the four subplots that make up an FIA ground plot
(fig. 1). Moving window filters applied to forest/non-forest
maps produce images where the value of each pixel is equal
to the sum of forested pixels within the local pixel neighbor-
hood. Plots stratified with these “filtered” images result in
estimates of timberland with lower variance (Hoppus and
others 2000, Riemann and others 2000). Calculated vari-
ables for the 3X3 and 5X5 moving window filters of the
unclassified images include the minimum, maximum, mean
and standard deviation of the window values.

Elevation, slope, precipitation, soil permeability, soil bulk
density, and the length of roads within 0.5 km and 1.0 km
were also provided as predictor variables for percent timber-
land per plot. They were compared to the satellite based
variables by the decision tree algorithm.

Defining Classes Using the Decision Tree Algorithm
FIA ground plots, measured in 1996 throughout the state of
Connecticut, were split into percent timberland classes using
a “decision tree” algorithm that recursively determines the
most significant predictor variables and the most significant
splits of each variable based on other predictor variables.
The term recursive refers to any mathematical procedure in
which any element is computed systematically from the one
preceding it. The final set of grouping criteria was used to
statistically stratify a somewhat independent set of FIA
ground plots.

The software package used to select significant variables is
based on statistical procedures described in a paper by
Biggs et al 1991. The procedure begins by grouping all
observations of the response (or dependent) variable based
on each of the predictor (or independent) variables available
to the decision tree. Continuous predictable variables are
first partitioned into 10 equal-sized intervals. The classes of
each predictor variable are then recursively combined by
selecting the pair of classes that are most similar based on a
F-test. The most significant of these combined groupings is
then determined. After a Bonferroni adjustment to the
significance level to account for the number of classes for
each variable, these “best” groupings for all predictor
variables are then compared to determine the most signifi-
cant variable. The population of plots is then split according
to the best variable grouping if the significance level p is less
than a predetermined value (p=0.01 for this study).

For example, the continuous response variable, percent
timberland per plot, is first split arbitrarily into 10 classes by
consecutive groups of values of one of the predictor
variables (fig. 2). Each class has nearly equal numbers of

 

Figure 1—The FIA ground plot geometry versus 30m TM pixels. The
plot consists of a cluster of four 0.017 ha subplots. The dark grey
circles represent the area of locational error due to GPS errors. The
larger grey circles represent the potential locational error due to
image registration.
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observations. An F significance test is applied to each
adjacent pair of classes to determine if these groups of the
response variable are statistically different based on a
selected p value of 0.01. Classes found not to be statistically
different are merged (fig. 3). An F significance test, with a
Bonferroni adjustment to account for the number of classes,
for each response variable grouping is used to determine
the most significant predictor variable. The decision tree
selects the predictor variable with the lowest p value for
each generation of classes.

Each class created by the decision tree based on the most
significant predictor variable is also split, if possible, by each
of the remaining predictor variables. The decision tree
algorithm applies the F significance test to this next genera-
tion of classes. This process is repeated for each generation
of classes until the split results in too few observations
(specified by the operator at 10) or the level of significance
is reached.

Building the Stratification Model
Ten random samples of 50 percent of the FIA ground plots in
the state of Connecticut (226 plots) were split into percent
timberland classes by predictor variables using the decision
tree algorithm. The predictor variable selected as the most
significant for the first generation split was noted in each
case. The “filtered” image produced from summing the
forested pixels in a 5X5 moving window applied to the MRLC
forest/non-forest map was the most significant variable for
the first split - six out of ten times. The maximum algorithm
for a 3X3 moving window filter applied to raw TM band three
(red light) was selected twice. The minimum NDVI algorithm
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Figure 2—The decision tree algorithm first splits the continuous response variable into 10 classes of approximately equal size by consecutive
groups of values of each of one of the predictor variables. Here the predictor variable, roads within 1 km, splits the response variable, percent
timberland per plot.

for a 3X3 moving window filter was selected once as was the
3X3 window filter for the MRLC forest cover map.

The most common predictor variable selected for each
generation of splits from the random samples was chosen
for the model. The predictor variable values that defined the
timberland classes were determined by taking an average
from the samples.

The final model was then applied to all the FIA plots in the
state of Connecticut. The chosen predictor variables were
used to group the plots into percent timberland classes or
strata. The total area of the state defined by each of the
strata was calculated and used to weight the plot classes to
estimate the total timberland in the state.

RESULTS
The final decision tree classes of “percent timberland per
plot” were created by two generations of predictor variable
splits. The MRLC forest/non-forest map, filtered by a 5X5
pixel window that counted total forested pixels, was used for
the first generation split. Three of the four classes in the first
generation split were in turn split by images created from
moving window filters. Two of the classes were split by the
brightness values of an image created by applying a
“minimum” 5X5 pixel moving window filter to the NDVI
image. The timberland class defined by the highest numbers
of MRLC forested pixels was split by the image created from
applying a “standard deviation” 5X5 pixel moving window
filter to the raw TM band three (fig. 4). This combination of
predictor variables resulted in an R-squared of 0.61.
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Figure 3—Groups of the response variable are merged when they are found to be statistically similar by
an F-test. Here seven of the original 10 classes of the response variable, percent timberland per plot,
have been merged into three, while only three of the original classes remain unchanged.
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Stratified plot estimates of percent timberland and net cubic
foot volume, using the model classes as the strata, had
smaller sampling errors than estimates stratified by photo-
interpreted timberland/non-timberland plots or any of the
unfiltered forest/non-forest maps produced from classified
TM satellite imagery. The model did not perform as well as
photo plots interpreted for six categories of volume as well
as timberland cover. Finally, the model did not stratify the
plots such that the sampling error was three percent or less
per million acres of timberland: a sampling error of 2.3
percent is required for the approximately 1.6 million acres of
timberland in the state of Connecticut (table 2).

The MRLC forest/non-forest map filtered for total forested
pixels by a 5X5 moving window was selected as the signifi-
cant predictor variable for the first generation split of the
plots, indicating that the USGS product shows promise as a
tool for FIA plot stratification. The fact that nearly all of the
significant predictor variables were based on 3X3 or 5X5
filters indicates that the geometry match between the plots
and the TM pixels requires a measurement of each pixel’s
neighborhood for best results.

CONCLUSION
The decision tree algorithm selected predictor variables that
split the response variable, percent timberland per plot, into
classes capable of producing stratified estimates of total
timberland in the state of Connecticut with less sampling
error than any other satellite based strata tried so far. The
technique is relatively objective and based on a logical
hypothesis that predictor variables that are highly correlated
with ground plot variables should provide useful strata for
population estimates. In any case, without the decision tree
algorithm to look at all the numerous combinations of
predictor variables, this particular set of predictor variables
and class boundary values would have never been selected.
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Figure 4—Final decision tree model for classes of percent timberland for all Connecticut ground plots. Each box shows the
predictor variable, predictor variable class boundaries, average percent timberland, and the number of plots.

Table 2—Stratified plot estimates and percent sampling error for total timberland
area and net cubic-foot volume for the state of Connecticut. The stratifiers include
the decision tree model (Model); photo-interpreted timberland/non-timberland plots
(PI2); photo-interpreted volume plots (PI7); an unfiltered MRLC forest/non-forest
map (MRLC F/NF); the model with just the first split based on the filtered MRLC forest/
non-forest map (MRLC5); and estimates based on unstratified ground plots (None)
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None 1,699 3.74
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HONEYCOMBING THE ICOSAHEDRON AND
ICOSAHEDRONING THE SPHERE1

Joseph M. McCollum2

Abstract—This paper is an attempt to trace the theoretical foundations of the Forest Inventory and Analysis and Forest
Health Monitoring hexagon networks. It is important in case one might desire to alter the intensity of the grid or lay down
a new grid in Puerto Rico and the U.S. Virgin Islands, for instance. The network comes from tessellating an icosahedron
with hexagons and projecting those hexagons to a sphere. The paper proposes a sample network for Puerto Rico and
the U.S. Virgin Islands.

1 Paper presented at the Second Annual Forest Inventory and Analysis (FIA) Symposium, Salt Lake City, UT, October 17–18, 2000.

2 Computer Specialist, USDA Forest Service, Forest Inventory and Analysis, Southern Research Station, Asheville, NC 28804.

INTRODUCTION
Pardon the title; it is bad grammatical form to verb a noun. It
is also geometrically impossible to square the circle using
classical means. There will always be a few chords from
the circle left over. Using the method that follows, one will
find that it is impossible to completely tessellate a sphere
with regular hexagons. There will be twelve pentagons left
over. Historically, Forest Inventory and Analysis (FIA) plots in
the American South have been laid out on a square grid or
no grid at all—that is, haphazardly. Forest Health Monitoring
(FHM) plots have been laid out on a hexagon network.
Hexagons, squares, and triangles tile the plane (or any
study area on earth). Carr and others (1999) list a set of
criteria for global grid cells that argue in favor of hexagons;
among other things, hexagons provide maximum area for
minimum perimeter. The astrophysicist Max Tegmark
(1996) listed similar criteria and built a similar grid for the
sky. In geometry, squaring the circle means attempting to
rearrange a circle to form a square; and in this paper,

honeycombing an icosahedron is attempting to fit a
honeycomb pattern on top of an icosahedron. To
accomplish this task, start with an unfolded icosahedron,
as shown in figure 1. Ultimately, this icosahedron shall be
projected to the sphere of the earth, as shown in figure 2.

An icosahedron is a geometric solid with 20 faces, all of
which are equilateral triangles. Throughout this paper, the
“poles” of the icosahedron will be points at the very top and
very bottom of the unfolded solid. The “cuts” will be those
line segments connected to the poles, and the “ends” of
the “cuts” will be the points at which the cuts join. A similar
method will work with an octahedron, but the icosahedron
approximates a sphere better than any other platonic solid.
Tesselate each face with nine triangles. Take six of the
triangles from one face to form a hexagon. There will be
three triangles on each face that ultimately form parts of
pentagons. The result is a solid with 32 faces, 20 of which
are hexagons and 12 of which are pentagons. Geometers

Figure 1—Icosahedron tessellated with hexagons.
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Figure 2—World map projected on an unfolded icosahedron.

know this solid as a truncated icosahedron, athletes know
it as a soccer ball; and although the reader may not be
aware, virologists know it as the structure of a virus with
triangulation number T = 3 (Johnson and Speir 1997).
Figure 1 has sixty vertices marked with bold circles, and
chemists know this structure as C60 (Maggio 1994).

What If More Hexagons Are Desired?

As indicated by Carr and others (1999) and Tegmark
(1996), hexagons are useful because they form an ideal
network by which to divide a study area into smaller areas
from which to draw plots. Under the Lambert Azimuthal
Equal Area projection [used in the Snyder (1992) model of
this method], the default radius of the earth is 6,370,997 m.
A perfect sphere of this radius has a surface area equal to
5.10 x 1014 m2. This number is about 1.26 x 1011 ac. The
icosahedron in figure 1 must be subdivided to match the
scale of an FIA plot. There are 5,936 ac per FIA plot, which
compared to the surface area of the earth is one part in 21

million. Each large FHM hex has 27 FIA hexes and,
compared to the surface area of the earth, is 1 part in
786,000. If one wished to construct sixteenfold FIA hexes
(for a more intense FHM grid), one would need a cell that is
1 part in 1,327,000. The short answer of how to create
more hexagons is to create more triangles, as shown in
figure 3.

Instead of the 20 hexagons and 12 pentagons in figure 1,
we now have 110 hexagons and 12 pentagons. This
method will work elegantly if there are 9n2 triangles on each
face, for a total of 180n2 triangles. Twelve pentagons will
consume 60 triangles, leaving enough triangles for 30n2 –
10 hexagons. Note that if n = 162, then 30n2 – 10 is near
786,000; if n is around 840, then 30n2 – 10 is around 21
million. An icosahedron that circumscribes the earth has a
surface area about 14.6 percent larger than that of the
sphere—one may wish to use this surface area instead of
that of the earth. More exact numbers appear in table 1.

 

Figure 3—The second-order tessellation of the icosahedron with hexagons using the triangle
orientation.
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HEXAGON  HIERARCHIES
In a tessellation of hexagons, one hexagon is surrounded
by six others, as in figure 4. If one connects the centers of
the outer ring of six, one produces a hexagon three times
as large as the original hexagon. One may continue in this
manner to get hexagons of size 3, 12, 27, 48, . . . 3n2, where
n = 1,2,3, . . .

If one connects opposite vertices of the ring of six as shown
in figure 5, one produces a hexagon four times as large as
the original hexagon. One may continue in this manner to
get compositions of size 1, 4, 9, 16, 25, . . . n2, again where
n = 1,2,3, . . .

If one makes a ring of six clusters of seven hexagons
around another cluster of seven hexagons, as shown in
figure 6, one produces a hexagon 21 times as large as a
basic hexagon. This maneuver is called a sevenfold
composition. The large hexagon is seven times larger than
a threefold hexagon. One may continue in this manner to
get compositions of size 1, 7, 19, 37, . . . 3n2 - 3n + 1, where
n = 1, 2, 3.

If one relaxes the constraint of requiring the vertex to be in
the center hexagon of the cluster and allows the vertex to be
in the center of any hexagon of the cluster, then one gets
another family of compositions and decompositions, such
as in figure 7.

The Chevron and Intermediate Orientations
The structures in figures 1, 2, and 3 are called the “triangle”
orientation. What if one applies the threefold decompo-
sition to the structures in figures 1, 2, and 3? Then one
obtains structures as in figure 7. Structures of this sort have
the chevron orientation. In this case, each face has 1.5
hexagons, plus three-fifths of a pentagon. Across 20 faces,
there are 12 pentagons and 30 hexagons. In general, there
are 10n2 –10 hexagons and 12 pentagons for a total of 10n2

+ 2 polygons. What resolutions yield FHM- and FIA-sized
hexagons?  The answer is about 280 for an FHM-sized
hexagon and about an order 1,458 for an FIA-sized
hexagon. Note that an order 1,458 hexagon is one twenty-
seventh the size of an order 162 hexagon of the opposite
orientation, and that an order 280 hexagon of this (the
“chevron”) orientation is 27 times as large as an order 840

A B

Figure 4—Illustration of (A) the threefold composition method and (B) its generalization.

Table 1—Number and size of polygons under the triangle orientation of various resolutions

Area of Area of
Order Triangles Hexagons + Pentagons = Polygons triangle hexagon

m2 m2

1 180 20 12 32 2.83 x 1012 1.70 x 1013

2 720 110 12 122 7.08 x 1011 4.25 x 1012

3 1,620 260 12 272 3.15 x 1011 1.89 x 1012

162 4,723,920 787,310 12 787,322 1.08 x 108 6.48 x 108

840 127,008,000 21,167,990 12 21,168,002 4.02 x 106 2.42 x 107

841 127,310,580 21,218,420 12 21,218,432 4.01 x 106 2.41x 107

842 127,613,520 21,268,910 12 21,268,922 4.00 x 106 2.40 x 107

843 127,916,820 21,319,460 12 21,319,472 3.99 x 106 2.39 x 107
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A B

Figure 5—Illustration of (A) the fourfold decomposition method and (B) its generalization

A B

Figure 6—Illustration of (A) the sevenfold and (B) the nineteenfold decomposition.

Figure 7—Thirteenfold decomposition.

hexagon of the opposite (the “triangle”) orientation. More
exact numbers appear in table 2.

Are the triangle and the chevron orientations the only ones
possible?  No, but mathematically they are the easiest. A
close inspection shows that the generalized threefold
decomposition is the chevron orientation. In figure 4 (A) cut
the figure from the center to the vertices of the bold
hexagon. What you see is the chevron orientation. In the
equation T = h2 + hk + k2, substitute h = n and k = n. The
result is T = 3n2. The generalized fourfold decomposition is
the triangle orientation. In figure 5 (A) cut the figure from the
center to the vertices of the bold hexagon. There is the
triangle orientation. In the equation T = h2 + hk + k2,
substitute h = n and k = 0. What remains is T = n2, and the
generalized sevenfold is an intermediate case. Substitute
h = n and k = n - 1 in the equation T = h2 + hk + k2. What
remains is T = 3n2 – 3n + 1, the generalized sevenfold
equation.
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As was mentioned in the introduction, virologists refer to
the “triangle” orientation as the structure of a virus with
triangulation number T = 3. Triangulation numbers work in
the following way:

Start with a plane of tessellated hexagons, as in figure 9.
From the origin, go north by h hexagons, marking a spot at
H1. Also, go northeast by h hexagons, marking a spot at
H2. From H1, go north by k hexagons, marking a spot at K1.
From H2, go northwest by k hexagons, marking a spot at
K2. In the figure, h = 3 and k = 2. The result is an equilateral
triangle with vertices at the origin, K1, and K2.

This equilateral triangle has a triangulation number T = h2 +
hk + k2, or in this case, 19. An icosahedron tessellated with
hexagons in this manner would have 10T – 10 hexagons,
12 pentagons, and, of course, 10T + 2 polygons. To
tesselate an icosahedron with hexagons, one may
continue in this fashion making sure that adjoining
triangles match partial hexagons—except at the poles and
the ends of the cuts, where pentagons are formed.

Figure 8—The chevron orientation of hexagon tessellation.

Table 2—Number and size of polygons under the chevron orientation at various resolutions

Area of Area of
Order Triangles Hexagons + Pentagons = Polygons triangle hexagon

m2 m2

1 60 20 12 32 8.50 x 1012 5.10 x 1013

2 240 30 12 42 2.13 x 1012 1.28 x 1013

3 540 80 12 92 9.45 x 1011 5.67 x 1012

280 4,704,000 783,990 12 784,002 1.08 x 108 6.51 x 108

281 4,737,660 789,600 12 789,612 1,08 x 108 6.46 x 108

1457 127,370,940 21,228,480 12 21,228,492 4.01 x 106 2.40 x 107

1458 127,545,840 21,257,630 12 21,257,642 4.00 x 106 2.40 x 107

1459 127,720,860 21,286,800 12 21,286,812 4.00 x 106 2.40 x 107

  
 
 
 
               K1 
      K2 
       H1 
 
 
      H2 

Figure 9—Method of constructing triangulation numbers.
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Icosahedroning the Sphere
When the icosahedron is tessellated with hexagons in the
desired way, the next problem is projecting points and lines
on the icosahedron to points and lines on the sphere. This
problem has baffled cartographers for decades. Among the
first to offer a solution was Fisher (1943). His solution is
used to this day. He used a combination of aspects of the
gnomonic projection. Fisher’s map appears in Dahlberg
(1997) among other places.

One apparent disadvantage of Fisher’s map is that the
combination of aspects appears to abruptly shift from
straight parallels to curved parallels. The lines of 30° N.
and 30° S. look as though they appear on the map twice—
once as curved lines and once as straight lines. Thus,
directions could be ambiguous and certain points on the
earth might appear on the earth in two different places.
Snyder used a variation of the Lambert Azimuthal Equal
Area projection, and Buckminster Fuller devised a method
as well (Pitre 2000).

If you want to map the icosahedron to the sphere, it is
desirable that the points on the main triangles match. That
way, no point on the earth appears on the map more than
once and directions are unambiguous. To make
computations easier, you may want to start with the North
Pole at the top apex and the South Pole at the bottom apex.
Then, split the sphere into five parts with each cut 72° from
the next.

One tempting solution is to map parallels on the earth to
straight lines in the triangle orientation. Doing so, one can
see that 5 triangles (out of 20) join at each of the poles.
One can show that one-quarter of a sphere’s area is above
30° N., and one-quarter below 30° S. So simply map
straight lines in the triangle to parallels on the earth.
Meridians sweep out equal areas of the triangle. One flaw
in that method is that when half-hexagons are joined from
large triangles, the resultant figures look more like
pentagons than hexagons.

The next attempt might be to map straight lines on the
triangle to great circles on the earth. The cuts are still
mapped to meridians (which are great circles). Straight
lines are mapped to great circles, which follow such
equations as atan(c•sinθ). Munem and Foulis (1984) give
the area of a sphere as:

                                                      (1)

where

R = the radius,
t = longitude, and
f = colatitude.

One may adapt this equation to:

                                                                      (2)

where

f = latitude.

If one wants the area bounded by any 72° wedge, the North
Pole, and a particular great circle, one gets:

                       (3)

Integrate this to get:

                       (4)

If one wants one-twentieth of the total area of the sphere,
one sets this result equal to πR2/5, and then solves for c,
which turns out to be equal to 0.618034. If one substitutes
this value into atan(k•sinθ), one sees that the great circle
traces a route from 26.565 N. at the endpoints (the 54th and
126th meridians) to an apex of 31.717 N, at the 90th

meridian.

If one wants a mathematically simple method, one can just
project any point (x,y,z) on the triangular face of the
icosahedron to a point (X,Y,Z) on a sphere of radius R in the
following way:

                                    r  =  x2  +  y2  +  z2     (5)

                                        X  =  (R/r) •x     (5a)
                                        Y  =  (R/r) •y     (5b)
                                        Z  =  (R/r) •z     (5c)

This method leads to hexagons of roughly equal size.
Exactly equal sized hexagons are desirable, but not crucial
to planning a forest inventory (Snyder 1992).

One could adapt the gnomonic method to a more equal
area projection by observing that in the triangle orientation,
the first row has one triangle, the second three, the third
five, . . .  and k2 triangles up to and including the kth row. If
there are n2 total triangles on the face of a major triangle,
one may set expression (4) equal to (πR2/5)•(k2/n2) and
solve for c. Also, meridians would not be equally spaced on
the triangle. Observe that:
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                                                                                                     (6)

is equal to:

                                                                                     (7)

which in general is not linear in k. At latitudes near Puerto
Rico and the U.S. Virgin Islands, it makes little difference
whether one maps straight lines on the icosahedron to
parallels on the earth, great circles on the earth, or
loxodromes (lines of constant direction) on the earth.
However, at latitudes near Alaska, it does make a
difference.

In conclusion, figure 10 is a proposed grid system for
Puerto Rico and the Virgin Islands. This grid may need to
be altered in order to accommodate Snyder’s (1992)
assumptions and starting points as well as for the
particular needs of the FIA and FHM programs in the
Caribbean. At this writing, various resolutions of the grid
are being explored. In the conterminous United States, FIA-
sized hexagons have been grouped into sets of 27 for the
purpose of constructing traditional FHM-sized hexagons.
One could also overlay another network of sixteenfold
hexagons.
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INTRODUCTION
The USDA Forest Service’s Forest Inventory and Analysis
(FIA) uses a systematic sample of field plots to characterize
forest conditions over 300,000,000 hectares of forest and
woodland ecosystems in the USA. FIA measures 364,000
1-ha field plots, 120,500 of which are forested. Remote
sensing can improve accuracy of FIA statistical estimates.
For example, FIA interprets aerial photography for a
systematic sample of 9,400,000 plots to improve estimates
of forest area and population totals. Stratification with wall-
to-wall Landsat satellite data could replace photo-interpre-
tation within the next few years.

We specify accuracy standards for remotely sensed
classifications that will be used for stratification into two
categories: forest and nonforest. Application of our recom-
mendations requires assumptions, such as the expected
prevalence of forestlands in the population. We make
generalizations regarding the loss in efficiency caused by
change in land use since acquisition of remotely sensed
data. These generalizations help determine how old
remotely sensed images can become before new imagery
is needed for stratification. We also consider formation of a
stratum for elements that are most likely to be misclas-
sified. We make recommendations that can help determine
a priori the size of this “indeterminate” stratum.

SAMPLE SURVEY ESTIMATORS
Assume a population is subdivided into two sub-popula-
tions, such as forest and nonforest. Our goal is estimation
of the proportion P(Aj) of each sub-population Ai

 in the
population, where 0<P(Aj)<1. A simple transformation
converts this proportion into a percentage or an area (e.g.,
number of hectares). Assume every element of the sam-
pled population is composed of one and only one sub-
population category, which justifies the binomial distribu-
tion. We introduce the “error matrix” for remotely sensed

classifications and make the connection to statistical
stratification, start with the estimator, give the estimators for
simple random sampling and for stratification, and define
the “design effect” as a measure of the gain in statistical
efficiency with stratification.

Error Matrix for Remote Sensing
The “error matrix” or “confusion matrix” describes accuracy
in the remote sensing literature (e.g., Congalton 1991). Let
P(Bj) be the proportion of the population in stratum Bj, let
P(Aj∩Bj) denote the proportion of the population that is
jointly in sub-population Aj and remotely sensed stratum Bj,
and let P(Aj|Bj) denote the proportion of sub-population Aj

given that the remotely sensed stratum is Bj, where
P(Aj|Bj)=P(Aj∩Bj)/P(Bj). Figure 1 gives the mathematical
notation that we use for the error matrix. We assume
remotely sensed classifications are used to define each
stratum, and remote sensing measures the size, or area,
of each stratum, i.e., P(Bj).

The ideal stratification occurs when each sub-population
occurs in one and only one stratum (Cochran 1977).
However, remote sensing does not have 100 percent
accuracy, and each remotely sensed stratum usually
contains both sub-populations. For example, let stratum B1

be classified as forest with wall-to-wall Landsat data;
however, not all sites that are truly forested will be included
in this stratum.

The sample of field plots is used to estimate the distribu-
tion P(Aj|Bj) of each sub-population Aj within each remotely
sensed stratum Bj. Remote sensing improves statistical
estimates of each sub-population P(Aj) by introducing
ancillary data, namely precise measurement of the size
P(Bj) for each stratum.

ACCURACY OF REMOTELY SENSED CLASSIFICATIONS FOR
STRATIFICATION OF FOREST AND NONFOREST LANDS1

Raymond L. Czaplewski and Paul L. Patterson2

Abstract—We specify accuracy standards for remotely sensed classifications used by FIA to stratify landscapes into
two categories: forest and nonforest. Accuracy must be highest when forest area approaches 100 percent of the
landscape. If forest area is rare in a landscape, then accuracy in the nonforest stratum must be very high, even at the
expense of accuracy in the forest stratum. Accuracy in both strata must be at least 90 percent to achieve appreciable
gains in efficiency. We recommend that new remotely sensed data be used to re-stratify landscapes whenever the area
in forestland decreases by five percent or more since the previous stratification. Efficiency can increase up to 15 percent
with formation of an “indeterminate” stratum, which contains elements that are most likely to be misclassified.

1 Paper presented at the Second Annual Forest Inventory and Analysis (FIA) Symposium, Salt Lake City, UT, October 17–18, 2000.

2 Project Leader and Mathematical Statistician, USDA Forest Service, Rocky Mountain Research Station, 2150 Centre Ave., Bldg. A, Suite 350,
Fort Collins, CO 80526–1891, respectively.
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Simple Random Sampling
Assuming simple random sampling, Cochran (1977) gives the estimated proportion of sub-population A

j
 and its variance as:

Stratification
Consider a simple random sample of field plots, each of which is classified into one and only one sub-population. Remotely
sensed classifications place each field plot into one and only one stratum, and remote sensing measures the area of each
stratum. Cochran (1977) gives the estimated proportion of sub-population A

i
 in the total population, and its variance:
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Figure 1—The "error matrix", or "confusion matrix", describes classification accuracy with
remotely sensed data. The goal is estimation of the prevalence or size of each sub-population,
i.e., P(Aj). Post-stratification uses the distribution of sub-population proportions in each stratum,
i.e., P(Aj|Bj), and the size of each stratum, i.e., P(Bj), to improve statistical estimates of P(Aj) .
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where

Equation (2) is sufficient to compute approximations for the variance of a post-stratified estimate. However, the expected
variance is often needed for survey planning when the stratum sizes P(B

j
) and conditional probabilities P(A

i
|B

j
) are not yet

observed. In the following sections, we make realistic assumptions and simplifications that make it easier to anticipate gains
from stratification and specify accuracy standards for remote sensing.

Design Effect
The improvement in statistical efficiency with stratification of a simple random or systematic sample is quantified by the ratio
of variances, which is designated the “design effect” by Särndal and others (1992). We denote the design effect as k, and it is
approximated with equations (1) and (2) as:

If stratification improves the estimate, then k must be less than 1. Since all variances are positive, k>0. In the following
sections, we use the design effect to simplify the mathematics and draw broad generalizations.

For two strata (m = 2), the design effect k in equation (3) simplifies to:
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Now, we express equation (4) in a form that is more useful in deriving the generalizations that follow. First, we use figure 1 to
define two useful equalities:

Equation (4) can be expressed using the equalities in equation (5) as:

Since P(B1)+ P(B2)=1, equation (6) may be rewritten as:

Subtract k in equation (7) from 1:
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Rearranging equation (8):

Note that the final expression in equation (9) is the product of two terms, each of which is independent of each other and the
sizes of the strata P(B

i
). This feature greatly simplifies subsequent algebra.

SYMMETRICAL 2x2 ERROR MATRIX
We now derive expressions for the size of the two strata given the sizes for both sub-populations P(A

i
). We assume the

relative accuracy is identical in both strata (see below). Under this assumption, we show that both margins of the 2x2 error
matrix in figure 1a are identical, i.e., P(A

i
)= P(B

i
), and the off-diagonal joint probabilities are identical, i.e., P(A

1
∩B

2
)=P(A

2
∩B

1
).

The symmetry under these conditions facilitates derivations in other sections.

Relative Accuracy
Using equation (9), define “relative accuracy” as follows:

If the relative accuracies are identical in both strata, then the following proceed from equation (9):

Symmetric Margins
From figure 1b and equation (11), the off-diagonal conditional probabilities are:

By definition, the size of sub-population A1
 
equals the sum of sub-population A1 in each of the two strata B1

 
and B2. Using

figure 1a and equations (11) and (12):
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Solving equation (13) for P(B1), we show that both margins of the 2x2 error matrix in figure 1a are identical, i.e., P(Ai)= P(Bi):

Symmetric Off-Diagonals
Finally, we show that both off-diagonal joint probabilities in the 2x2 error matrix (fig. 1a) are identical when the relative accura-
cies in both strata are identical:

Symmetric Matrix of Joint Probabilities
Assuming the relative accuracies are identical in both strata, as in equations (11) to (15), the matrix of joint probabilities from
figure 1a is symmetric, as given in figure 2.

ACCURACY STANDARDS
Classification accuracy P(Ai|Bi) in stratum Bi

 must be greater than the proportion of sub-population P(Ai) in the population, i.e.,
P(Ai|Bi)>P(Ai); otherwise, the design effect k will be greater than one in equation (9). For example, a 10,000-km2 geographic
area truly contains 7,000-km2 of forest cover. Stratification will improve precision if, and only if, the remotely sensed forest
category has at least 70 percent accuracy [i.e., 0.7<P(A1|B1)<1.0], and the remotely sensed nonforest category has at least 30
percent accuracy  [i.e., 0.3<P(A2|B2)<1.0]. However, accuracy must be far greater before the gain in precision is substantial, as
we now discuss.

Examples of desired accuracy of remotely sensed classifications are given for five different levels of design effect k in table 1.
For example, a “substantial” gain in table 1 is defined as a design effect of k=0.5, meaning:
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Figure 3—Relative confidence intervals for different levels of
design effect k in table 1.

Figure 2—Error matrix for two sub-populations and corresponding strata when the relative
accuracy in each stratum is identical (equations (11) to (15)). These assumptions permit
generalizations, while maintaining realistic scenarios.

• The estimate with stratification has half the variance of the
estimate with simple random sampling;

• Estimates from simple random sampling would require a
two-fold increase in the number of field plots to achieve
the same variance with stratification; and

• The confidence interval with stratification is approximately
71 percent (                      ) smaller than that with simple
random sampling.

Figure 3 illustrates the relative precision of stratified
estimates for each level of design effect in table 1. The
discrete levels in table 1 simplify mathematical generaliza-
tions that follow.

Assume that the relative accuracies are identical in both
strata, as in equation (11). Figure 4 displays the classifica-
tion accuracy P(A

i
|B

i
) in stratum B

i
 required to meet various

levels of gain in statistical efficiency (k in table 1). From
figure 4, classification accuracy in a stratum must be nearly
perfect if its corresponding sub-population is very prevalent,
i.e., P(A

i
)»1.0, while the accuracy need not be nearly as

great for a rare sub-population, i.e., P(A
i
)≈0. Czaplewski

and Patterson (in preparation) show that figure 4 is
applicable classification systems having three or more
sub-populations under certain assumptions.
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Table 1—Levels of gain from stratification used in comparisons 
 

 
 
 
 

Design effect 
k=VSTR/VSRS 

 

 
 
 

Gain in efficiency 
through post-
stratification 

 
 

Increase in effective 
number of plotsa 
gained through 

stratification 

 
 

Relative variance of 
stratified sampling 

compared to simple random 
sampling 100×VSTR/VSRS 

 

Relative standard errorb  
of stratified sampling 
compared to simple 

random sampling 100× 

STR SRSV /V  
 

   - - - - - - - - - - - -Percent- - - - - - - - - - - - 

k=(1/1.0)=1.00        “None”            None 100  100 

k=(1/1.2)=0.83        “Minimal”            1.2-fold   83    91 

k=(1/1.5)=0.67        “Moderate”            1.5-fold    67     82 

k=(1/2.0)=0.50        “Substantial”            2-fold    50    71 

k=(1/4.0)=0.25        “Excellent”            4-fold    25    50 
 

a The increase in sample size n that would be required to achieve the same variance without stratification. 
b Approximately proportional to the confidence interval. 

0.5 100%×
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LOSS OF EFFICIENCY OVER TIME
Landscapes change over time through land management,
succession, disturbance and shifting land use. Current
field plots may be stratified using remotely sensed data
that were acquired many years ago. Some portion of the
total “classification error” is caused by changes in the
landscape, not by the original accuracy of the remotely
sensed classifications. How old can the remotely sensed
data become before its value for stratification becomes
seriously degraded?

Assume the size of sub-population A
1
 at time t decreases

by some fraction D of its original size at time 0, where
0<D<1. Since the remotely sensed data were acquired at
time t=0, the stratum sizes P(B

i
) are the same at times 0

and t. Assume changes in the landscape between times 0
and t are independent of the remotely sensed classification
at time 0. The decrease in the size of sub-population A1

causes a corresponding increase in sub-population A2.
Finally, assume both strata at time 0 have the same relative
accuracy. The error matrix in figure 5, which corresponds to
figure 2, captures these assumptions. Under these
conditions, the design effect kt at time t equals:

Equation (16) can be transformed into a more general
expression that simultaneously covers all levels of the
design effect k0:

Figure 6 is a graphical display of equation (17). When there
has been little change in the landscape between time 0
and t (∆≈0), there is little change in design effect (kt≈k0)
using remotely sensed data acquired at time 0, and there
is little loss in statistical efficiency. However, as the net
decrease in sub-population size (∆) becomes larger, the
design effect approaches one. This means that the
variance with stratification is nearly equal to that under
simple random sampling, i.e., the gain in efficiency through
stratification is almost entirely lost.

When a sub-population is very common, i.e., P(Ai)≈1, even
a small decrease in sub-population size between time 0
and t causes major losses in efficiency. However, if the
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Figure 4—Classification accuracy P(Ai|Bi) in stratum Bi required for
different levels of statistical gain (k in table 1) as a function of sub-
population size P(Ai). These results assume that the relative
accuracy is identical for all strata as in equation (11).
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Figure 5—Error matrix that includes change (D at time t) in sub-population A1 after acquisition of the
remotely sensed data (time t=0) that are used to specify strata B1 and B2.
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Figure 6—Design effect as function of loss rate for one of the sub-
populations. As the rate becomes faster, the design effect
approaches 1, meaning that the variance with stratification is no
better than the variance with simple random sampling.
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sub-population represents less than 80 percent of the total
population at time 0, and the net decrease at time t is less
than 5 percent (∆=0.05), then the decrease in efficiency is
less than 25 percent (fig. 6). Most extensive landscapes
have less than 80 percent forest.

As example, let sub-population A
1
 represent forest land-

use, and the stratification is based on ten-year old remotely
sensed data. Assume 1 percent per year of the original
forest land-use is converted to another land use, such as
agriculture or urban. The rate of change over 10 years is
∆≈0.10. Assume there are no conversions back to forest
land-use. If forest land-uses occupy less than 60 percent of
the landscape, then the stratification based on ten-year old
remotely sensed data retains 75 percent of its efficiency
(fig. 6). Loss of statistical efficiency is most rapid in those
landscapes dominated by forest land-uses.

Czaplewski and Patterson (in preparation) extend this
model to cases in which changes occur in both sub-
populations. They analyze steady state conditions, in which
the changes in sub-population A

1
 exactly equal the

changes in sub-population A
2
. They find that statistical

efficiency also decreases over time, and the rate of loss in
efficiency can be higher in a dynamic stead-state land-
scape than a landscape that is not at equilibrium.

INDETERMINATE STRATUM
Some population elements (e.g., pixels) are classified with
less confidence than other elements with remotely sensed
data. For example, the maximum likelihood classifier,
which is widely used for image processing, computes the
probabilities of a pixel being a member of each remotely
sensed category. The pixel is assigned to the category with
the highest probability, even if the largest probability is rela-
tively low for some pixels. This often occurs with mixed
pixels, or pixels near the boundary of a multivariate cluster.
As another example, a binary-tree classifier assigns each
element into a single category, but the algorithm estimates
the probability of correct classification using its training
data. Even with unsupervised classifiers, all multivariate
clusters do not have the same proportion of predominate
labeling sites. We investigate the opportunity to increase
statistical efficiency by creating a new stratum that contains
pixels which are classified with less confidence than other
pixels. We label this stratum as the “indeterminate
stratum.”

The matrix in figure 7 gives one example that is numerically
tractable. Let dij represent the quantity of elements that
are removed from sub-population i in stratum j. We start by

moving a small quantity of elements into the indeterminate
stratum and increase the quantity until the gain in statistical
efficiency is maximized. The first elements removed are
those that are most difficult to successfully classify.

The size of each d
ij
 is modeled by functions f

i,j
(c

i
), where c

i
starts at 0 and incrementally increases towards 1 until the
optimum is realized (fig. 8). These functions have the
following conditions:

1.  For the matrix in figure 7, d
ij
=f

i,j
(c

i
) for 0<c

i
<1 in stratum

B
i
. If the sub-population is correctly classified in stratum

B
i
, f

i,i
(c

i
) is a linear function of (c

i
). If the sub-population

is not correctly classified in stratum B
i
, f

j,i
(c

i
) is a non-

linear function of (c
i
) so that we can impose Conditions

3 and 4 that follow. Figure 8 illustrates these two
functions.

2.  The number of elements correctly classified in a stratum
must always be larger than the number of elements that
are incorrectly classified, i.e., P(A

i
|B

i
)>0.5. For large

values of the design effect k (meaning that the original
stratification yields little gain in efficiency over simple
random sampling), and a when stratum is very rare, this
condition is not always met. Therefore, the following
constraint is placed on P(Ai) in equation (18).

3.  Some classification errors are not removed until virtually
all elements in the stratum are shifted into the indeter-
minate stratum (fig. 8). The last elements to be removed
from the stratum (c≈1) have almost no classification
error. The value of a in equation (18) is numerically
determined so that the following condition is true for
fj,i(ci), i.e., when the sub-population is not correctly
classified in stratum Bi.

4.  The highest proportion of classification errors are
removed from each stratum during the first incremental
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Figure 7—Error matrix in which an “indeterminate” stratum, which includes sites that are most likely to be misclassified.
This stratum can increase statistical efficiency by increasing the classification accuracy in the original two strata.

( ) ( )1

1 2 1
P

2 1 1

k
A

k

− −>
− −

(18)

( )
( )
( )

( ) ( )

, ,

, ,

P

P
1 e i

i i i i i

i i i

j i j i i

i i c

d f c

c A B

d f c

A B ααααααα

αααααααααα
−

=

= ∩

=

∩
= −

( ) ( ), 1 Pj i i j if c A B= = ∩



41

shifts of elements into the indeterminate stratum, where
c

i
≈0. We assume a 50:50 mixture of the two sub-

populations among these first elements. This repre-
sents those elements that are most difficult to correctly
classify. This constraint is imposed by making the first
derivatives of f

i,i
(c

i
) and f

j,i
(c

i
) identical when c

i
=0 (fig. 8).

5.  As elements are moved into the indeterminate stratum,
accuracies increase in both of the original strata. We
force their relative accuracies to remain equal so that c2

can be expressed as a function of c1. This reduces the
number of variables in our evaluation. However, we
make an exception to this constraint when c1=1,
meaning all of stratum B1 is moved into the
indeterminate stratum.

6.  The shift of elements into the indeterminate stratum
stops when the design effect in equation (4) reaches its
minimum within the interval 0<ci<1, i.e., the optimum
improvement in statistical efficiency.

7.  We relax Condition 5 (above) when c1=1, meaning the
optimum in Condition 6 is not realized as c

1
 reaches 1.

This situation approximately occurs whenever
P(Ai)<1.15k-0.67 in our model from figure 7 and
equation (18). In this situation, we merge stratum B1

with the indeterminate stratum. This returns us to two
strata, where the merged stratum contains stratum B

1

plus elements removed from stratum B
2
. We use c

2
 to

increase the quantity of elements shifted from stratum
B

2
 into this new stratum until we achieve the optimum in

Condition 6.

We were unable to find an algebraic solution to this
formulation; therefore, we developed a numerical solution.
The following describe our results.

We found that statistical efficiency does increase with
addition of an indeterminate stratum, at least using the
model in figure 7 and equation (18). Let k

opt
 represent the

design optimal effect with addition of the indeterminate
stratum. Figure 9 shows the proportional improvement in
the design effect (k

opt
/k) relative to the initial prevalence of

stratum B
1 
for different initial design effects (table 1). The

optimal gain in efficiency exceeds 15 percent (k
opt

/k<1-0.15)
when classification accuracy is high, i.e., the initial design
effect is excellent; however, the gain is less than 5 percent
when the initial design effect is marginal.

Given the model in figure 7 and equation (18), optimal size
of the indeterminate stratum varies with prevalence of the
two strata, as shown in figure 10. The optimal size is under
10 percent of the population when the design effect is
excellent (classification accuracy is high), but it can
approach 30 percent when the design effect is marginal
(fig. 10). The optimal proportion of the indeterminate
stratum that originates from each of the original strata in
figure 7 is given in equation (19) and illustrated in figure 11:

Figure 8—Functions fi,j(ci) for the size of each dij, which is used to
shift likely classification errors into the “indeterminate” stratum. See
figure 7 and equation (18).
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Figure 9—Proportional improvement in the design effect (kopt/k)
with addition of an indeterminate stratum for different initial design
effects (table 1). The dashed lines indicate when stratum B1 is
merged with the indeterminate stratum to optimize efficiency
(Condition 7).
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Figure 11—Proportion of indeterminate stratum originally part of
stratum B1, which corresponds to equation (19).

Let P(A
1
|B

1
)OPT represent the optimal classification

accuracy in stratum B
1
 after formation of the indeterminate

stratum. Figure 12 shows P(A
1
|B

1
)OPT as a function of

the original accuracy in stratum B
1
, i.e., P(A

1
|B

1
). We found

that this relationship is approximately P(A
1
|B

1
)OPT≈[0.75

P(A
1
|B

1
)+0.25] in our model (figure 7 and equation 18),

regardless of the initial design effect.

If accuracy is marginal and the stratum size is small
(i.e., P(B

i
)<1.15k-0.67), then the indeterminate stratum

should be merged with the rare stratum to increase
efficiency. This situation corresponds to the dashed lines in
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Figure 12—Optimal classification accuracy in stratum B1 after
formation of the indeterminate stratum, which contains elements
that are most likely to have classification errors.
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Figure 10—The optimal size of the indeterminate stratum,
expressed as a proportion of the total population. Dashed lines
indicate when stratum B1 is merged with the indeterminate stratum
to optimize efficiency (Condition 7).

figure 9. However, gains do not exceed 5 percent with the
model in figure 7 and equation 18. When the gain in
efficiency is optimal, the indeterminate stratum contains
100 percent (ci=1) of the rare stratum, plus approximately
25 percent  (cj≈ 0.25) of the common stratum. The latter
portion contains the most likely classification errors in
stratum Bj.

We recommend that the size of the indeterminate stratum
be specified before exploring the sample data after they are
collected; this avoids "over-fitting" to a given sample. Over-
fitting can bias the estimated sampling error, thus produc-
ing a variance estimate that is smaller than its true value. In
other words, our estimate would not be as precise as we
assume, and analyses of these estimates can produce
false conclusions. Figures 9 and 10, and equation 19,
provide a priori specifications that can help practitioners
follow our recommendation.
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REMOTE SENSING PRECISION REQUIREMENTS FOR FIA ESTIMATION1

Mark H. Hansen2

Abstract—In this study the National Land Cover Data (NLCD) available from the Multi-Resolution Land Characteristics
Consortium (MRLC) is used for stratification in the estimation of forest area, timberland area, and growing-stock volume
from the first year (1999) of annual FIA data collected in Indiana, Iowa, Minnesota, and Missouri. These estimates show
that with improvements in the classification, ground plot location and geo-rectification methods, we should be able to meet
the accuracy standard for timberland area estimates (3 percent per million acres of timberland) in most areas. To meet the
accuracy standard for growing-stock volume estimates (5 percent per billion cubic feet of growing stock) under the base
sampling intensity (one plot per 5,937 ac on a 5-year cycle) that FIA has implemented in the North Central Region, we must
be able to create meaningful volume classes from TM imagery or find other means to improve our estimates. Improve-
ments in classification methods are most important in areas where forest land makes up a small portion of the total land
area. Simulations based on observed FIA data, an existing classification of Landsat TM data, and various assumptions are
used to examine the expected accuracy of FIA estimates when a complete cycle of annual inventories (5 years) has been
completed.

INTRODUCTION
FIA has made a commitment to an annual forest inventory
with a base inventory of one ground plot every 5,937 ac with
one nth of the plots measured every year over a cycle of n
years. In the North Central region, with the cooperative
efforts of state agencies, plans are to measure plots on a
cycle of n=5 years, with a 20 percent sample of the plots
measured each year. Once the annual forest inventory is
fully implemented, basic estimates of current conditions
(e.g., timberland area and growing-stock volume) can be
made from the moving average of estimates made from all
plots measured over the full cycle. The first year’s ground
plot measurement data collected under this system in the
North Central region are now available for the states of
Indiana, Iowa, Minnesota, and Missouri. These plots were
measured between October 1998 and September 1999.

These first year plot data, together with a thematic GIS layer
based on the classification of Landsat TM data for
stratification purposes, are used here to produce estimates
and sampling errors for forest area, timberland area, and
growing-stock volume. Stratification methods similar to those
used in the last two periodic inventories conducted by
NCFIA (Hansen and Wendt 2000) are used with data
produced by MRLC (Vogelmann and others, 1998) for
stratification into four classes. Here I examine the sampling
errors that can be expected once the entire cycle of data is
available (4 years from now) to see how close to meeting
national accuracy standards we can expect our estimates
will be.

Sampling errors can be reduced by various means including
improving stratification, measuring additional sample plots,
and using other estimation schemes. Measuring additional
sample plots is extremely costly. Other estimation methods
are possible and are a topic of current discussion that goes
beyond the scope of this paper. Here I examine how much

better the classification of Landsat TM data must be in order
to reduce sampling errors to meet the national accuracy
standards. Stratified random sampling estimation is used
throughout the study.

DATA
NCFIA sampled 5,240 systematic plot locations in the four-
state study area using the national FIA plot design, a cluster
of four 1/24th acre fixed area subplots. Of these plot
locations, 1,467 (28 percent) contained some forest land.
These plots were located across the landscape following the
grid system described by Brand and others (2000). Data
available for each plot included the geographic position of
the plot center (measured by GPS and/or digitized from geo-
referenced Landsat imagery), the proportion of forest and
timberland area on the plot (an observation from 0 to 100
percent), and the growing-stock volume (cubic feet per acre)
on the plot. The methods, procedures, and definitions used
to observe the attributes of interest are available on-line at
http://fia.fs.fed.us/manuals/.

FIA estimates are commonly reported at the state and unit
(group of counties) level. Figure 1 shows these units for the
study area. In this study I have classified units as sparse
(less than 10 percent forest), mixed (10 to 45 percent forest),
or heavy (greater than 45 percent forest) based on the most
recent periodic FIA inventory (fig. 2). Table 1 presents the
total number of plot locations and the number that contained
forest land for each unit.

The thematic GIS layer based on the classification of
Landsat TM data used in this project is the National Land
Cover Data (NLCD) prepared by the Multi-Resolution Land
Characteristics Consortium (MRLC). MRLC used dual date
(leaves-on and leaves-off) imagery that was resampled into
a 30- by 30-m pixel format, an Anderson level 2 classifi-
cation scheme, various ancillary data sources, and a single
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Figure 1—FIA inventory units in the study area.

Figure 2—Sparse, mixed, and heavy forest FIA units.

pixel minimum mapping unit to classify geo-referenced
imagery into the 21 classes shown in table 2. Imagery dates
ranged from 1988 to 1994 over the study area. Detailed
documentation of the methods used in classification and on-
line access to the data are available at
http://www.epa.gov/mrlc/.

ESTIMATION
Stratified Random Sampling
All estimates and sampling errors presented here are based
on stratified random sampling estimators with stratification
after the selection of the sample (poststratification)
presented by Cochran (1977) with finite population
correction ignored. The estimate of the population mean is
the weighted average of the observed strata means from the
sample

and the estimated sampling error is a weighted function of
the within strata sampling errors

where L is the number of strata, n is the total number of
observations (plots),       and       are the observed
(estimated) mean and variance in statum h, and       is the
stratum weight (proportion of the total population in
stratum h).
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Table 1—Number of total plot locations and plot locations
that contained forest land by FIA unit

State Unit   Total    Forest

Sparse (< 10 percent IN 4 458 56
    forest) IA 1 311 34

IA 2 375 56
IA 3 516 20

MN 4 663 30

2,323 196

Mixed (10 to 45 IN 1 124 35
    percent forest) IN 2 134 61

IN 3 53 22
MN 3 413 93
MO 4 664 155
MO 5 265 89

1,653 455

Heavy (> 45 percent MN 1 313 235
    forest) MN 2 412 220

MO 1 193 144
MO 2 179 113
MO 3 167 104

1,264 816

5,240 1,467

Subtotal

Grand total

Number of plot locations

Subtotal

Subtotal
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Here, the thematic GIS data (the pixels and their
classification) define the population and sampling frame.
These GIS data divides the population (total area of an
inventory unit) into equal size pixels (sampling units) where
each pixel has a distinct class (stratum) assigned to it. The
ground plots provide an observation of the attribute of
interest (y) for the specific pixel that contains the plot center.
This observation is always a per unit area observation such
as volume per acre. In the case of area estimation, for
example, the area of timber land, this per unit area
observation is a value from 0 to 1 that is the proportion of
the ground plot that was observed to be timber land. Most
estimates reported by FIA are totals rather than means and
are the product of the estimated population mean        and
the known total area of the population        that is obtained
from Bureau of Census data.

FIA Accuracy Standards
FIA has set national accuracy standard for its inventories.
These standards are defined for a specified area or volume.
The standard for the estimate of total timberland area is 3
percent per million acres and for growing-stock volume 5
percent per billion cubic feet. The equation

                             (3)

converts the observed sampling error as a percent for an
estimate to a specified volume or area standard basis
(typically 1 million ac or 1 billion ft3). For example, an
inventory that yields an estimated area of timberland of

4 million acres with a 2.0 percent sampling error would not
meet the standard because
                                                                               4.0 percent
per million acres, which is greater than the accuracy
standard (3 percent per million acres) for timberland area
estimates. In this paper equation 3 is used to convert
sampling errors to a per million acres or per billion cubic feet
basis. Also, to convert observed sampling errors from the
first year of annual inventory data to a full cycle basis when
estimates will be made based on the moving average of 5
years of observations, sampling errors are divided by the
square root of 5. Dividing sampling errors by the square root
of 5 is equivalent to increasing the sample size by a factor of
5 (based on the assumption of a representative sample of
the population), which simulates estimation based on the
average of five independent estimates.

Stratification
The NLCD data were used to create four strata (1-nonforest
interior, 2-nonforest edge, 3-forest edge, 4-forest interior).
This was accomplished in four steps:

1. NLCD classes 33 (transitional), 41 (deciduous forest), 42
(evergreen forest), 43 (mixed forest), 51 (shrubland), and
91(woody wetlands) were grouped into a single class
(forest), and all other classes were grouped into a second
class (nonforest).

2. A clump and sieve operation (ERDAS, 1997) was applied
to this two-class image to create a two-class image with a
minimum mapping unit of 1 ac (4 pixels).

3. Forest pixels within 2 pixels of any nonforest pixel were
classified forest edge; all other forest pixels (those not
within 2 pixels of nonforest) were classified forest interior.

4. Nonforest pixels within 2 pixels of any forest pixel were
classified nonforest edge; all other nonforest pixels (those
not within 2 pixels of forest) were classified nonforest
interior.

In step 1, the NLCD shrubland class was included in the
initial forest grouping because we found that some of the
lands classified as shrubland by NLCD contained enough
trees to meet the FIA definition of forest land. An example
portion of the final reclassified image is shown in figure 3.

U.S. Bureau of Census data files were used in this study to
provide the total area within each FIA unit and divide the
imagery into FIA inventory units. TIGER county boundary
files and ERDAS IMAGINE software were used to perform
the data manipulation required to define the strata, match
ground plot data to the appropriate pixels, and summarize
the number of pixels by class and inventory unit. Oracle SQL
programs were written to produce the estimates and
sampling errors. In the estimation, the Bureau of Census
information, together with the NLCD geo-referenced data,
define the population (total area sampled).

ESTIMATION WITH FOUR STRATA
The sampling errors of the area estimates are very
dependent on the quality of the stratification. The estimate of
forest area will have a low sampling error if the stratification
is good, that is, if the forest interior stratum contains most of

( )yst( )A

areaor   volumespecified

areaor   volume totalestimatederror) sampling (observed
e =

=acres  1,000,000acres  4,000,000percent) (2.0

Table 2—National land cover data classes

Class Description

11 Open water

12 Perennial ice/snow

21 Low intensity residential
22 High intensity residential

23 Commercial/industrial/transportation

31 Bare rock/sand/clay

32 Quarries/strip mines/gravel pits

33 Transitional

41 Deciduous forest

42 Evergreen forest

43 Mixed forest

51 Shrubland

61 Orchards/vineyards/other

71 Grasslands/herbaceous

81 Pasture/hay

82 Row crops
83 Small grains

84 Fallow

85 Urban/recreational grasses

91 Woody wetlands

92 Emergent herbaceous wetlands
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the plots that are 100 percent forest, the nonforest interior
stratum contains most of the that plots are 100 percent
nonforest, and the two edge strata contain the plots that are
on the forest/nonforest interface.

In meeting the national FIA accuracy standard for timberland
area estimation, stratification becomes more important in
areas where timberland is a small portion of the total land
area. In populations that are more than 85 percent
timberland, simple random sampling estimation will produce
sampling errors less than 3 percent per million acres and
statification is not required to meet the area accuracy
standard at the current ground plot intensity. In populations
that are 20 percent timberland or less, simple random
sampling will produce sampling errors in excess of 7 percent
per million acres. Figure 4 shows the expected sampling
errors based on simple random sampling across the
complete range of percent timberland when the total
timberland area in the population is 1 million ac.

Figure 4—Expected sampling error (timberland area) from a simple
random sample in a population of 1,000,000 acres of timberland
and a sampling intensity of one plot per 5,937 ac.

The mean percent forest land within each of the four strata
for all of the FIA units in the study area are shown in figure 5.
This figure shows that the NLCD data with reclassification did
a fairly good job of stratification. This figure is arranged with
the heavily forested units at the top of the vertical scale and
the sparsely forest units at the bottom. In all but one inven-
tory unit (MO-2) the nonforest interior stratum contained less
than 5 percent forest area, and in only one unit (MN-4) was
the forest interior observed to contain less than 80 percent

Figure 5—Mean observed percent forest land by FIA unit and the
original four strata created from the NLCD data and the four steps
described.

Figure 3—Example portion of the reclassified NLCD image.
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forest land. Because there was very little forest interior in
western Iowa (IA-3), in that unit I combined the forest interior
and forest edge strata into the forest edge strata in all
analyses in this paper.

Table 3 shows the estimate of total forest area, timberland
area, and growing-stock volume (based on the 1999 plot
data and the stratification described previously) for the three
groups of FIA units shown in figure 2 (sparse, mixed, and
heavy forest) and sampling errors based on various
assumptions, each a progressive improvement in the
stratification. The first sampling error column in this table
(sampling error for a single year estimate) is the actual
estimated sampling error based on the data from only 1
year. This sampling error represents a sampling intensity of
one plot per 29,685 ac and is the observed sampling error of
the estimates in the first column of numbers (single year
estimate). All other sampling errors in this table have been
converted to a per million acres or per billion cubic feet basis
for the moving average estimate given 5 years of data based
on equation 3 divided by the square root of 5. The different
columns simulate progressive improvements in classification
that could possibly improve the estimation but still use the
same four strata.

The column labeled “nothing added” is simply the expected
sampling error with 5 years of data based on stratification
using only the existing NLCD data and the procedures to
define four strata as previously described. This column was
computed by applying equation 3 to the numbers in the two

columns to its left (to convert to per million or per billion) and
dividing by the square root of five (to simulate the addition of
4 more years of data at the same intensity). It should be
noted that the expected sampling errors in all cases failed to
meet the FIA accuracy standards and that they are highest
in the sparsely forested unit and lowest in the heavily
forested unit. Without improvements to the classification, we
should not expect to meet accuracy standards, especially in
areas that are sparsely forested.

In an attempt to reduce sampling error by improving the
stratification, I have simulated the effect that having perfect
knowledge of all reserved lands would have on the
estimates. Under this scenario, reserved lands would be
treated as a subpopulation. This was simulated by moving
reserved plots into a different population and moving a
proportional area from the NLCD data. Reserved lands are
areas such as parks and wilderness areas where timber
harvest is prohibited.

By definition, plots on reserved lands have observed values
of zero for timberland area and growing-stock volume.
However, they are often forested and thus increase the
variability in the forest strata in the estimation of timberland
area and growing-stock volume. In application, the treatment
of reserved lands as a subpopulation would be possible
through the acquisition of good maps and/or GIS layers that
show reserved lands from various land management
agencies. This has been done in the past when aerial
photos were manually interpreted but has not yet been

Table 3—Estimates and sampling errors based on stratified random sampling estimation and the
existing four strata with various improvements to the classification

     Add GIS
     layer

     Single      Sampling      for
     year      error      Add GIS      reserved

     estimate      for a      layer      land,     Add GIS
     (million      single     Add GIS      for      census     layers
     acres or      year     layer      reserved      water,     and
     billion      estimate     for      land and     and most     improve
     cubic      (% of   Nothing     reserved     census      farm     location

Units Item      feet)      estimate)   added     land      water      lands     data

Sparse Forest area 4.27 4.74 4.38 4.31 4.31 3.67 3.04
Tmbld area 3.79 5.5 4.79 4.68 4.68 4.13 3.71
GS volume 4.01 8.34 7.46 7.33 7.33 7.02 6.73

Mixed Forest area 10.99 2.86 4.23 4.2 4.2 3.66 2.96
Tmbld area 10.51 3.02 4.38 4.31 4.31 3.81 3.12
GS volume 12.61 4.56 7.24 7.18 7.18 6.84 6.44

Heavy Forest area 22.76 1.49 3.19 3.19 3.11 2.97 2.56
Tmbld area 21.05 1.8 3.69 3.38 3.29 3.18 2.83
GS volume 19.41 3.26 6.42 6.26 6.22 6.16 6.03

Sampling error (percent per million acres
or billion cubic feet) after 5 years

with various improvements in classification
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implemented into the NLCD classification. I simulated
adding such a GIS layer for reserved lands by moving all the
plots on reserved lands and their associated area to a new
stratum. In all but one case, this action reduced sampling
errors (one estimate of forest area showed no change in
sampling error), although the sampling errors are still above
the national accuracy standard. The biggest reductions in
sampling errors came in the heavily forested units where
large areas of reserved forest lands are found (e.g.,
Boundary Waters Canoe Area and Voyageurs National
Park). Here, sampling errors for timberland area and
growing-stock volumes decreased substantially (3.69 to 3.38
and 6.42 to 6.26 percent, respectively). However, sampling
errors for forest area did not change (3.19 percent).

Adding information about census water is simulated in the
next column using the same techique. The decrease in
sampling errors that this produces is again only seen in the
heavily forested units such as northern Minnesota where
water is a fairly large portion of the total area. In application
this could be done through GIS layers that are available
from the Bureau of Census.

In the next column I simulated what would happen if we had
access to a good GIS layer that could identify 80 percent of
the agricultural lands in each unit. Since several government
agricultural programs either have this type of GIS
information available or are in the process of creating GIS
information, it may be possible to identify major agricultural
areas known to be nonforest and segment them in the
estimation. In effect, the addition of these GIS layers is
simply a method to treat areas we know are different as a
subpopulation. The addition of these various GIS layers did
reduce sampling errors, but it did not produce any sampling
errors below the national accuracy standards. Other GIS
layers for things such as urban areas, transportation, and
other nonforest areas by definition may be available and
could possibly improve the stratification somewhat.

Closer examination of the data showed that many of the
ground plots that were totally misclassified (forest interior
plots that contained no forest land or nonforest interior plots
that contained 100 percent forest land) were within 2 pixels
of an edge stratum. Sixteen of the total 24 (67 percent)
nonforest interior plots that contained 100 percent forest
land were within 2 pixels of nonforest edge and 29 of the
total 54 (54 percent) forest interior plots that contained no
forest land were within 2 pixels of forest edge. This suggests
that poor geo-registration of the image and/or plot poor
location information may be responsible for much of the
error. To simulate the effect that improvements in location
information (either ground plots or pixels) could reasonably
have on the final estimates, I randomly moved 40 percent of
these misclassified interior plots to the adjacent edge strata,
along with a proportional amount of the total area, and
produced the last column of table 3. In the heavily forested
units, sampling errors for timberland area (2.83 percent)
were less than the national standard, and in the mixed and
sparse units they were reduced considerably (3.12 and 3.71
percent, respectively) and were not far above the standard.
Sampling errors for growing-stock volume were reduced, but
are still considerably above the 5 percent per billion cubic
foot standard (6.03 to 6.73 percent). Figure 6 contrasts the

mean percent forest land in these revised strata with the
mean from the original strata by inventory unit. The net
effect of the changes to the original data was an increase in
average percent forest land in almost every case in the
forest interior, forest edge, and nonforest edge strata. The
net effect in the nonforest interior stratum was mixed.
However, this stratum was greatly reduced in size relative to
the other strata with the addition of the GIS layer for
agricultural lands.

Figure 6—Mean percent forest land in original stratification
contrasted with the mean percent forest land after simulation to
improve the stratification by the addition of GIS layers and improved
location information.
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ESTIMATION WITH ADDITIONAL
VOLUME STRATA
It is apparent that strata are needed to improve volume
estimates, or that some other method must be found to
reduce sampling errors to attain the national accuracy
standard for volume estimates. To reduce sampling errors
from 6 to 5 percent by increasing sampling intensity would
require 44 percent more plots. That would be very
expensive. Here I simulate adding volume strata to see how
the sampling errors for growing-stock volume change.

Initially, I subdivided both the forest interior and forest edge
strata into two strata each. I did this by generating a value
based on a function of observed basal area, stand age, and
a random number, ordered the plots based on this value,
and placed the top half in one stratum (high volume) and the
other half in another stratum (low volume). The goal was to
divide each of the two original forest strata into two equal
size strata that approximate a fairly good classification. This
procedure created four strata (forest interior-low, forest
interior-high, forest edge-low, and forest edge-high) from the
forest inerior and forest edge strata. Table 4 summarizes
observed volume per acre in these classes. The high and
low volume strata have significantly different means. Figure
7 shows the distribution of volume per acre for these strata.
These simulated strata are different without being too good.
There is significant overlap as would be expected in any real
classification, and both classes have large numbers of plots
with zero volume per acre. The effect that adding these two
volume strata has on the estimation is shown in table 5.
Sampling errors for the area estimates change only a little
compared to large reductions in the sampling errors on
volume. This stratification did not meet the national accuracy
standard for growing-stock volume in any of the units.

Figure 7—Distribution of plot volume per acre within the simulated
high and low volume strata.

A second stratification into three volume classes (high,
medium, and low) was created using a similar procedure.
These strata are summarized in table 6 with the distributions
shown in figure 8. Table 5 show the 5 percent per billion
cubic feet standard was met in the heavily forest units (4.91
percent) but not quite met in the mixed and sparse units
(5.31 and 5.66, respectively). The addition of the three
volume strata also improved the timberland area estimates
enough to meet the accuracy standard in the mixed forest
units by stratifying many of the misclassified forest plots into
the low volume strata. In the sparse forest units, even better
stratification would be needed to meet both the area and
volume standards. Since area and volume estimation are
linked, it is difficult to meet volume standards without also
meeting the area standards.

These simulations suggest that fairly good volume classifi-
cation is needed to meet national accuracy standards for
growing-stock volume estimation. Figure 9 shows the

Table 5—Sampling errors with the addition of
simulated volume classes

    Without      With 2     With 3
    volume      volume     volume

Units      Item   classes      classes     classes

Sparse Forest area 3.04 3.07 2.97
Tmbld area 3.71 3.78 3.69
GS volume 6.73 6.32 5.66

Mixed Forest area 2.96 2.99 3.01
Tmbld area 3.12 3.15 3.15
GS volume 6.44 5.64 5.31

Heavy Forest area 2.56 2.57 2.58
Tmbld area 2.83 2.83 2.83
GS volume 6.03 5.29 4.91

%/million ac or billion ft 3

improvements in classification

Sampling error after five 
years with various 

Table 4—Summary of observed volume per acre
with the addition of two volume strata

     Standard
Units           Stratum  Mean      deviation 

Sparse Forest interior - low 636 613

Forest interior - high 1,670 674

Forest edge - low 365 693

Forest edge - high 853 734

Mixed Forest interior - low 690 578

Forest interior - high 1,662 810

Forest edge - low 444 591

Forest edge - high 1,101 858

Heavy Forest interior - low 444 404

Forest interior - high 1,138 703

Forest edge - low 362 442

Forest edge - high 1,002 743

 Cubic feet per acre 
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Figure 8—Distribution of plot volume per acre within the simulated
high, medium, and low volume strata.

distribution of FIA plots measured in the mid-1980’s FIA
inventories in Illinois and Indiana. In those inventories, 3,269
FIA plots were classified into nine size-density classes using
stereo pairs of 1:40,000 aerial photos. Based on this classifi-
cation, I created the three best strata I could find by collap-
sing the three classes with the highest average volume per
acre into one strata (high) and similarly collapsing the other
classes to create medium and low volume strata. This figure
also shows the distribution of the forest interior plots in the
simulated three volume classes. To assist in visual
comparison, I have adjusted the scale to a common total
number of plots in all strata. Table 7 summarizes volume per
acre for these two data sets. The two distributions have
similar shapes. However, it appears that the simulated strata
do a better job of distinguishing between the high and

medium volume plots and that the low volume stratum
produced from the aerial photos was somewhat better than
the simulated low volume stratum.

There are a number of differences between the two data
sets contrasted in table 7 and figure 9. The data sets are
from different regions (Illinois and Indiana vs Indiana, Iowa,
Missouri, and Minnesota), used different ground plot
designs, and were measured at different times. They are
only shown here to illustrate that the quality of volume
classification needed from Landsat TM to meet or nearly
meet existing national FIA accuracy standards is about the
same as we were obtaining from manual interpretation of
aerial photos.

Figure 9— Distribution of the volume per acre data summarized in
table 7. The data on the left are from manual stereo interpretation
of aerial photos (1980’s Illinois and Indiana inventory data). The
data on the right are the simulated Landsat TM classification (1999
forest interior strata from Iowa, Indiana, Minnesota, and Missouri)
that produced volume estimates of approximately the national
standard (5 percent per billion cubic feet). Total number of plots in
all strata have been adjusted to an equal basis to aid in visual
comparison.

Table 6—Summary of observed volume per acre
with the addition of three volume strata

    Standard
Units            Stratum   Mean     deviation 

  Cubic feet per acre

Sparse Forest interior - low 425 506
Forest interior - medium 1,017 559
Forest interior - high 1,840 556
Forest edge - low 273 744
Forest edge - medium 577 336
Forest edge - high 1,106 821

Mixed Forest interior - low 584 616
Forest interior - medium 798 467
Forest interior - high 1,790 740
Forest edge - low 311 559
Forest edge - medium 668 453
Forest edge - high 1,410 878

Heavy Forest interior - low 339 366
Forest interior - medium 646 372
Forest interior - high 1,291 690
Forest edge - low 425 506
Forest edge - medium 1,017 559
Forest edge - high 1,840 556

Table 7—Comparison of observed volume per 
acre within three volume classes, manual stereo
interpretation of aerial photos (1980's Illinois and
Indiana inventory data) vs simulated Landsat TM
classification (1999 forest interior strata from
Iowa, Indiana, Minnesota and Missouri)

Class      Mean      S.D.    Mean     S.D. 

Low 224 426 402 456
Medium 1,003 725 706 420
High 1,272 797 1,466 738

Method

Manual stereo
interpretation of

aerial photos

Simulated
Landsat TM
classification
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DISCUSSION
The analysis and simulations I have done here suggest that
through the use of Landsat TM imagery, forest/nonforest
classification, ancillary data sources (GIS layers), and
improved registration and GPS locations, we will meet or
nearly meet the FIA accuracy standards for area estimation
at the one plot per 5,937 ac sampling intensity we have
implemented. To meet sampling accuracy standards for
growing-stock volume estimation, additional stratification is
needed. Major investments in improving stratification must
be made to obtain the degree of classification needed to
meet the volume accuracy standards. To meet these
accuracy standards given this sampling intensity, we must
be able to identify volume classes from remote sensing with
about the same degree of accuracy as we did using manual
interpretation of aerial photos in past applications.
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INTRODUCTION
Recently authors have used the USDA Forest Service’s
database of Forest Inventory and Analysis (FIA) plots to
produce maps of species distributions (Iverson and others
1999, Moeur and Riemann Hershey 1999, Riemann Hershey
and others 1997), pockets of high-value commercial trees
(King 2000), and forest distribution (Zhu 1994). The methods
used to produce these maps have varied from geostatistical
simulation (Riemann Hershey and others 1997, King 2000)
to advanced multivariate regression-based techniques (Zhu
1994, Moeur and Riemann Hershey 1999, Iverson and
others 1999). Few of the techniques, however, have
addressed the theoretical and practical problems associated
with analyzing highly skewed distributions using parametric
statistics. For example, positively skewed data distributions
can affect semivariance calculations and kriging weights if
the extreme values are located within patches of homoge-
neous patches of low values. Similarly, traditional statistical
methods, such as multiple linear regression, determine the
significance of a given model by calculating an F statistic
and comparing it to a theoretical distribution. If the data from
which the model was built are not normally distributed,
erroneous inferences can be made.

Geostatistical techniques such as ordinary kriging and its
variants do not inherently require normally distributed data;
rather, they assume a multi-point Gaussian random function,
described thoroughly in Isaaks and Srivastava (1989),
Goovaerts (1997) and Myers (1994). The random function
model, which can actually be thought of as a conceptual
model, was formulated in part to account for the inherent
uncertainty surrounding a set of spatially referenced
observations. A random function, in effect, is a set of
random variables for each location within a given spatial
domain. A random variable is a variable whose values at
any location are determined by some probabilistic mecha-
nism. In other words, a reported estimate is drawn from a
distribution of estimates that have some probability of
occurring at the estimate’s location.

Each data point can be conceived of as a random variable
whose true value is known, and each estimate to be made is
a linear combination of random variables (the known data).

The distribution of values making up a random variable can
be described by a cumulative distribution function (CDF), or,
as with class variables, by a probability density function
(PDF). At any unknown location, a CDF constructed without
any additional information regarding the form of the random
variable would resemble that in figure 1A. In this situation,
the best estimate of a variable at an unknown location would
be the sample mean. However, in many earth science
datasets, data are spatially dependent, and this knowledge
can be used to update the CDF to one that might resemble
that in figure 1B. In this instance, one might choose different
percentiles of the CDF as an estimate to report, depending
upon the goals of the study.

For example, assume there is a set of spatially referenced
observations of the importance of species X within a study
area. The importance of this species might be dependent
upon variables such as soil chemistry, climatic factors,
topographic relationships, or the presence or absence of
other species. In general, these factors can be assumed to
vary relatively smoothly across space. It can be inferred,
thus, that areas with high levels of species X are surrounded
by other areas of high levels of species X. In other words,

A NONPARAMETRIC GEOSTATISTICAL METHOD FOR ESTIMATING
SPECIES IMPORTANCE1

Andrew J. Lister, Rachel Riemann, and Michael Hoppus2

Abstract—Parametric statistical methods are not always appropriate for conducting spatial analyses of forest inventory
data. Parametric geostatistical methods such as variography and kriging are essentially averaging procedures, and thus
can be affected by extreme values. Furthermore, non normal distributions violate the assumptions of analyses in which test
statistics are generated and compared to a theoretical distribution, such as analysis of variance or stepwise multiple linear
regression. Here, we offer guidelines and an example of the use of the indicator approach for dealing with nonparametric
data distributions, using data from a study conducted in northern Vermont and New Hampshire.

Figure 1—Example of two cumulative distribution functions defining
the random variable at an unknown location: A—when no additional
information is known about the values; B—when additional informa-
tion, such as the form of the model of spatial dependence, is known.
Points can be defined along B using indicator geostatistics.
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the random function exhibits spatial dependence, or
autocorrelation. Autocorrelation, an index of similarity
analogous to variance, can be calculated for points sepa-
rated by distances placed in discrete distance classes. Once
the relationship between autocorrelation and separation
distance is modeled using variography, the variogram can
be used in the estimation procedure (e.g., kriging) to update
the CDF to create a conditional CDF (CCDF). Therefore, a
given location’s CDF is altered, or conditioned on the
surrounding data, using the model of spatial dependence
constructed for the random function. Under the multi-
Gaussian assumption (i.e., that the random variables
composing the random function are normally distributed),
the mean of the random variable is the simple kriging
estimate at that location, and the variance is the simple
kriging variance (Isaaks and Srivastava 1989, Goovaerts
1997, Myers 1994).

Again, it is important to note that the non-normality of a
distribution of samples does not necessarily imply a non-
multiGaussian random function. An observed set of samples
can be thought of as one realization of the random function;
i.e., the samples could theoretically have had an infinite
number of distributions. In geostatistics, the problem with
non-normal distributions is that the modeling procedure (the
variography) and the estimation procedure (the kriging) are
essentially averaging techniques, and can be affected by
small numbers of extreme values, a common phenomenon
in earth science datasets. To resolve this, sample data with
highly skewed distributions are normal score transformed
(Deutsch and Journel 1998, Goovaerts 1997). In this
procedure, the original CDF is mapped onto the standard
normal CDF, giving the transformed distribution perfect
symmetry, with a mean of zero and a standard deviation of
one. The relationship between the two distributions is
defined on a case-by-case basis so that after the estimation
procedure is carried out, back transformation can be
performed (Deutsch and Journel 1998).

The normal score transform is useful when performing
conventional statistical estimation as well. For example, with
stepwise multiple regression, variable inclusion and param-
eter estimates are determined by calculating test statistics
that are compared to a reference distribution that was
created under the assumption of normality. Large deviations
from normality can lead to undesirable outcomes such as
heteroscedasticity in regression residuals (Zar 1984), and
thus should be carefully evaluated.

INDICATOR GEOSTATISTICS
Another estimation method used when working with highly
skewed data distributions is indicator geostatistics. The goal
of this paper is to present the general theory and methodol-
ogy behind indicator kriging (IK), and to present an example
of indicator kriging with varying local means (IKLVM). Both
are nonparametric geostatistical approaches that avoid
many of the abovementioned pitfalls. In IK and IKLVM, the
CCDF is constructed by defining discrete points across the
entire range of data values (fig. 1B), and then interpolating
between these points to arrive at the completed CCDF for
each point to be estimated. IK is a univariate approach,
while IKLVM allows for the incorporation of ancillary
covariates into the estimation procedure.

INDICATOR KRIGING
In IK, the first step in defining the CCDF values at a given
location is to determine a series of threshold values or
cutoffs from within the range of data values. In practice,
deciles of the sample data distribution are chosen because
the goal is to define the CCDF for the entire data range.
Once these thresholds have been determined, each value is
coded as a “1” or a “0”, with “1” being assigned to values
below that threshold, and “0” being assigned to values
above the threshold. Thus in the example where deciles of
the distribution are used as cutoffs, 10 datasets consisting
of 1’s and 0’s will be created, one for each cutoff.

The second step in defining the CCDF values is to model
the spatial autocorrelation for each of the coded datasets
(e.g., deciles) using variography. In order to construct
smoothly varying CCDF’s, Goovaerts (1997) recommends
using the same model or combination of basic models for all
of the variograms. For example, the indicator variograms
(correlograms) for each of seven percentiles of a dataset
shown in figure 2 should be modeled using the same basic
structure.

Once these variograms have been created, IK is performed.
In IK, each estimate is actually a weighted average of the
sample data (1’s and 0’s) surrounding it, with the weights
being derived from the variogram. An IK estimate can be
interpreted as the probability of an outcome of 1, or, more
specifically, the probability of the actual value at that location
being below the threshold used to code the data. This
process is repeated for each point to be estimated, and for
each threshold dataset. In effect, in keeping with the above
decile example, 10 continuous probability maps are created
with the value of each pixel being the probability of falling
below the threshold used to code the data. Thus, 10 pairs of
x,y coordinates (cutoff value, probability of being less than
that cutoff value) can be obtained for each location, and 10
points can be placed along the CCDF as in figure 1B.
Interpolating between and extrapolating beyond these
discrete points to fill in the CCDF should be undertaken with
care; guidelines are given in Goovaerts (1997) and Deutsch
and Journel (1998).

Figure 2—Examples of indicator variograms obtained from spruce-
fir importance data from a study in northern New Hampshire and
Vermont. See Lister and others (2000) for details. All of the
variograms from different cutoff levels show some degree of spatial
dependence.
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The final step of the process is to choose a percentile of the
CCDF to report as a value. Goovaerts (1997) gives a
detailed discussion of different criteria that might be em-
ployed to make this decision. In essence, the decision will
be based on some sort of an optimality criterion defined by
the goals of the study. The following section will not only
present an example of an indicator technique in practice, but
also elucidate some of the steps one might take to develop
an optimality criterion for the choice of the estimate to
report.

INDICATOR KRIGING WITH LOCALLY VARYING
MEAN—AN EXAMPLE
A study was conducted using data from 760 FIA plots in
northern New Hampshire and Vermont (for details see Lister
and others 2000). The relative importance (relative basal
areas) of a combination of red spruce (Picea rubens Sarg.)
and balsam fir (Abies balsamea L.) was determined on each
plot, and IKLVM was applied. IKLVM is in principle identical
to univariate IK, however the CCDF values are determined
by a combination of logistic regression (Montgomery and
Peck 1982) and simple kriging of the residuals of the logistic
regression. The technique is implemented in a manner
similar to that of simple kriging with varying local means,
described in Metzger (1997), Majure and others (1996), and
Hunner and others (1998). The general expression for the
logistic regression estimate is

where E(y) can be interpreted as the probability of an
outcome of “1” occurring (assuming that the data are coded
as 0 and 1), b0…bn are the coefficients and x1…xn are the
ancillary data layers.

The first step of the process was to determine the appropri-
ate thresholds as described above. The frequency histogram
of the data indicates a strong positive skewness (fig. 3), with
30 percent of the data values having 0 percent spruce-fir
importance. Consequently, the cutoffs chosen for indicator
coding were the 30th – 90th deciles of the original data’s

distribution, or values of 0, 3, 10, 17, 27, 40 and 60 percent
spruce-fir importance. Once these seven coded data sets
were constructed as described above, logistic regression
was applied to determine, for each point to be estimated,
the probability of being below or equal to one of the seven
cutoff values (an outcome of “1”).

In order to build the logistic regression model, exhaustively
sampled data layers (i.e., secondary data that were collo-
cated with FIA plots and at all points to be estimated) were
chosen based on a combination of user judgment, explor-
atory data analysis, and stepwise logistic regression. The
variables included in the final regression model were
Landsat band 4, digital elevation model (DEM) -derived
slope and the square root of elevation, and the square root
of latitude. One logistic regression model was built for each
of the seven cutoffs. All regressors contributed significantly
to the model for each cutoff at the 0.01 level, with the
majority being significant at the 0.0001 level.

The value of each pixel in the maps in figure 4 was pre-
dicted using the logistic regression model for that cutoff.
Each value represents the probability that a pixel falls below
the cutoff used to code the data. For example, the upper left
map represents the probability of a pixel’s value being lower
than or equal to the original data’s 30th percentile, which is
0 percent spruce-fir importance. The highest probabilities
(lighter pixels) of having 0 percent spruce-fir importance are
seen in areas such as valleys or in clearly nonforest areas,
where the logistic regression procedure yielded low values.
As the cutoff values increase, the amount of area which
probably falls below that cutoff’s level of spruce-fir increases
until finally, at the 90th percentile, spruce-fir forest has a
relatively high probability of occurring at importance levels of
at most 60 percent everywhere except forested ridge tops
far from roaded areas (shown as darker areas on the map).
In these areas, the forests have a high chance of having
greater than 60 percent spruce-fir importance.

The next step of the IKLVM procedure was to calculate the
regression residuals from each model by subtracting the
probabilities from the regression output from the coded data.
These residuals are then assessed for spatial dependence
using variography. In our example, the inverted correlograms
(hereafter referred to as variograms) of the residuals
indicate that spatial dependence does exist in the regression
residuals (fig. 5). None of the variograms exhibited substan-
tial anisotropy, i.e. the model of spatial continuity did not
change with direction.

The next to final step was to use simple kriging to estimate
for each map the error at every point in the study area,
based on the variograms of the logistic regression residuals
(fig. 5). These error (residual) maps were then combined
with the regression-based maps with simple addition to
arrive at updated maps of IKLVM probability estimates. It is
these updated estimates that were used to complete the
CCDF.

To reiterate, we created IKLVM maps for each of our cutoff
values. If we were to stack these maps one on top of the
other and randomly sample any pixel of the stack, we would
obtain a set of x, y coordinates that could be used to locate

xn)* bn ...  x1* b1 exp(b0  1

xn)* bn ...  x1* b1 exp(b0
 xi..xn)|E(y

++++
+++=

Figure 3—Frequency histogram of the spruce-fir importance data
used in the example. The distribution exhibits a strong positive skew,
with 50 percent of the data falling in the first class.



55

discrete points on a CCDF similar to that in figure 1B. It is
important to remember that each pixel in the map has its
own CCDF. In our example, we chose to fill in the CCDF by
implementing linear interpolation between points in the
center of the distribution and hyperbolic interpolation in the
tails. This choice was made based on examination of the
resulting CCDF’s and assessment of their plausibility, as well
as on the suggestions of Deutsch and Journel (1998) and
Goovaerts (1997).

Once we created our percentile maps and arrived at a CCDF
for each pixel, the final step in the IKLVM approach was to
choose a percentile of the distribution to report as the final
estimate. Goovaerts (1997) and Deutsch and Journel (1998)
discuss criteria that can be used to make this decision. In
general, they suggest that the user establish an “optimality
criterion”, or set of conditions that a “good” estimate must
satisfy, and then use this criterion to make the choice. Figure
6 shows scatterplots for both the model fit (A-G) and a set of

Figure 4—Logistic regression maps constructed from data coded as 1 or 0, based on whether they fall below the
indicated threshold percentage of spruce-fir importance. Light pixels have higher probabilities of falling below that
cutoff than dark pixels. The effects of topography are readily apparent in the southeast part of the study area.
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validation data’s fit (H-N) for a range of deciles of the CCDF
(the 20th through the 80th) that probably encompasses the
final estimate. The dashed line passing through the cloud of
points is the 45-degree line, along which all points would fall
if the model perfectly predicted the sample points. The dark
line is a least squares best fitting line describing the relation-
ship between the actual value (x axis) and the estimate (y
axis). The closer the agreement between the least squares
best fitting line and the 45-degree line, the more accurate the
model is, on average.

It is apparent that for low percentiles, the model dramatically
underestimates (fig. 6). For larger percentiles, however, the

situation is reversed with values being over predicted.
Intermediate values tend to be predicted the best near the
middle of the distribution. For some applications, the user
might be very concerned about correctly estimating values
close to zero, for example, when trying to accurately locate
areas with small amounts of some rare but valuable tree
species. Before investing in field reconnaissance, a user
might want to be as certain as possible that the species
occurs at a location, so he or she might choose a percentile
where the values are underestimated, for example, the 20th

or the 30th percentiles. Similarly, a user might want to find all
areas where there are large amounts of a species of
interest, in which case the user might choose a percentile

Figure 5—Variograms of residuals from the logistic regression procedure for the indicated cutoff. All residual
variograms exhibit spatial dependence.



57

Figure 6—Scatterplots of the model fit of estimates from the 20th to 80th deciles (A-G, respectively), and for the
70 validation data (H-M, respectively). The actual data value is on the x axis, and the predicted value is on the y
axis. The gray dashed line is the 45-degree line (perfect agreement), and the black solid line is the least squares
best fitting line through the points.
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such as the 80th or 90th. The percentile of the CCDF to report
as an estimate is therefore chosen based on the relative
impact of overestimation or underestimation.

Another criterion might be avoidance of heteroscedasticity of
the residuals. The percentile values surrounding the median
(figure 6D, E, F and K, L, and M) appear to exhibit roughly
equal variance for the entire range of estimates, with the
points approximately following the 45-degree line. In our
example, we might choose the 70th percentile based on this
criterion.

Another criterion that can be applied is the ability of a given
percentile to produce estimates with a distribution that
resembles that of the original data, either for certain areas of
the distribution, or for the distribution as a whole. Figure 7
shows a histogram of estimates from each percentile
compared to that of the original data. Using this criterion, the
estimates from the 40th percentile (the “x” symbol) of the
CCDF’s most closely agree with the original data in the first
class, which encompasses the lowest importance values for
spruce fir (< 0.05, or 5 percent importance) and has the
largest class occupancy.

Table 1 shows the results of a quantitative method of
comparing the estimate histograms with that of the original
data. One might seek to minimize the squared difference
between percentages of estimates in each class for the

different techniques. In addition, one might want to weight
these differences by the magnitude of class occupancy
because differences in very populous classes might be more
important than differences in less populous classes. For
example, for the first class in table 1, the value of 301.991
was arrived at by squaring the difference between the

Figure 7—Histograms of the original data (dashed line) and the
estimates from each of seven percentiles (solid lines; see legend for
details). The 40th percentile histogram has the closest agreement with
the original data’s histogram.

Table 1—Quantitative assessment of the differences between the histograms in figure 7. For each
percentile, the weighted average squared difference between the percentile histogram and the
original data’s histogram was calculated for each class. The 40th percentile has the minimum
weighted average difference

Class      20th      30th       40th      50th      60th      70th      80th

1 50.000 301.991 176.375 2.450 33.863 170.107 398.375 692.871
2 4.816 0.002 0.120 1.202 1.997 2.475 2.226 1.201
3 5.524 0.003 0.039 0.551 0.908 1.091 0.893 0.364
4 6.516 0.453 0.239 0.002 0.101 0.253 0.343 0.168
5 4.816 0.210 0.101 0.020 0.191 0.488 0.713 0.641
6 2.833 0.010 0.002 0.021 0.093 0.214 0.377 0.466
7 4.533 0.337 0.266 0.100 0.033 0.001 0.014 0.036
8 2.691 0.074 0.052 0.007 0.003 0.039 0.137 0.282
9 2.975 0.121 0.090 0.042 0.013 0.001 0.046 0.192
10 3.258 0.228 0.200 0.107 0.060 0.011 0.013 0.194
11 1.416 0.016 0.011 0.001 0.000 0.007 0.048 0.209
12 1.841 0.047 0.042 0.023 0.008 0.001 0.008 0.103
13 0.992 0.002 0.003 0.002 0.001 0.001 <0.001 <0.001
14 1.275 0.010 0.008 0.008 0.007 0.005 0.004 0.002
15 1.133 0.007 0.007 0.006 0.005 0.003 0.003 0.002
16 2.125 0.096 0.070 0.064 0.059 0.052 0.051 0.042
17 0.992 0.010 0.010 0.003 0.003 0.003 0.002 0.001
18 0.992 0.010 0.010 0.004 0.004 0.003 0.002 0.002
19 0.283 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
20 0.992 0.010 0.010 0.005 0.001 0.031 0.159 0.589

Mean squared 
    difference: 15.981 9.350 0.243 1.966 9.199 22.412 38.743

Squared differencePercent of
original data
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amount of the 20th percentile estimates in class 1 (74.6
percent) and the amount of the original data in class 1 (50
percent). This squared difference was multiplied by 0.5,
which is the proportion of the values of the original data in
class 1. Because this first class contains 50 percent of the
data, any difference observed in this class is more important
then one observed in, e.g., class 10, which contains less
than 4 percent of the data. We can thus weight each
difference by the percentage of original data in that class,
and then determine the smallest weighted average squared
difference between the actual data and the estimates in
order to choose that as the percentile to report. In our
example, the choice would be the 40th percentile.

FINAL POINTS
The indicator approach shows itself to be much less
restrictive than traditional approaches such as parametric
regression, or geostatistics under the multiGaussian
assumption. It makes no assumptions about the underlying
shape of the CCDF describing the random variable at any
location, and it also allows for the incorporation of secondary
data, as in the IKLVM procedure. The benefits of incorporat-
ing additional “soft information” into the estimation proce-
dure become readily apparent when examining the resulting
final maps from univariate IK and multivariate IKLVM (fig. 8).
The amount of detail available in the regression-based map
is dramatically higher than that found in the univariate-
derived map. This is due to the ability of the technique to
account for sharp changes in the landscape over short
distances. Univariate IK, on the other hand, assumes that a
smooth transition occurs between levels of the primary
variable in the intervening spaces between the plots;
therefore it fails to take into account the fine-scale features.

In conclusion, the random function model allows us to
implement indicator geostatistical methods that can alleviate
concerns about non-normal data distributions. The use of
the indicator approach also allows us to define optimality
criteria for reporting a final estimate or creating a map of
an environmental variable. We have found that these
approaches, especially IKLVM, are useful tools for modeling
forestry data.
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Figure 8—Comparison of the final univariate IK map (A) and the
IKLVM multivariate map (B). The IKLVM map reveals much more of
the fine scale spatial heterogeneity that exists across the landscape
than does the IK map.
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INTRODUCTION
Stratification with remotely sensed forest map improves
precision of FIA estimates. However, FIA also uses stratifi-
cation to assure that area estimates equal “official” acres in
each county, as published by the U.S. Census Bureau. I
term this latter function “areal control.”

Cross-stratification by both remotely sensed strata and geo-
political boundaries proliferates the number of strata. Hence,
sample sizes become small in many of these cross-
classified strata. There is concern within FIA that these
small sample sizes can degrade the statistical efficiency
gained through stratification. This concern is heightened by
the move to an annual FIA system, in which only 10 percent
to 15 percent of the FIA field plots are remeasured each
year.

I consider the use of stratification solely for variance
reduction to avoid proliferation of strata. I present an
alternative to stratification to areal control that constrains
FIA estimates such that they agree with county acreages
from the Census Bureau. I use a simple example of two
strata (forest and nonforest) and two counties.

PROBLEM FORMULATION
Let the 4x1 vector z represent the true area of forest and
nonforest in each county. Equation (1) denotes the vector
estimate of these areas, including the 4x4 covariance matrix
Vz for estimation errors.

(1)

The estimates in equation (1) assume that remotely sensed
data have already been used to separate Phase 2 plots into
forest and nonforest strata, and the appropriate estimator is
used to reduce variance through this stratification. However,
the estimates in equation (1) are not stratified by Census
Bureau county statistics for areal control. The following
describes the alternative to stratification for areal control, in
which the sample estimate is constrained so that summa-
tions of areal estimates for each county exactly equal the
“official” acres in each county, as published by the U.S.
Census Bureau.

Let the 2x1 vector c contain the “official” acres in each
county. A sample estimate of c is available from a simple
linear transformation of the vector estimate z from equation
(1).

In addition, the exact areas for each county are available
from the Census Bureau.

c in equation (3) is a vector of constants, not an estimate,
because the county acreages from the Census Bureau are
known without error. Our objective is to constrain the vector
estimate z in equation (1) such that the vector estimate c of
county acreages in equation (2) agrees exactly with the
Census Bureau statistics in equation (3).

GENERALIZED LEAST SQUARES (GLS)
Let vector B represent the estimates of forest area that are
constrained to agree with official statistics.

 AREAL CONTROL USING GENERALIZED LEAST SQUARES
AS AN ALTERNATIVE TO STRATIFICATION1

Raymond L. Czaplewski2

Abstract—Stratification for both variance reduction and areal control proliferates the number of strata, which causes small
sample sizes in many strata. This might compromise statistical efficiency. Generalized least squares can, in principle, replace
stratification for areal control.
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Estimation of the B vector is the final goal.

The GLS solution estimates 4x1 vector B in Equation (4)
from the 6x1 vector y, which is a concatenation of vector
estimate z from equation (1), and a vector of independent
ancillary estimates k (with covariance matrix V

k
), which will

later contain the areal control statistics.

Define the linear model:

The zero off-diagonal sub-matrices within the covariance
matrix Vy in equation (6) correspond to the presumed
independence between vectors z and k in equation (5).

The GLS estimator for B is defined as:

Let the matrices in equation (7) be partitioned as follows:

Using matrix algebra for partitioned matrices, equation  may
be rewritten as:

Maybeck (1979, pp. 234-235) shows that the result in
equation (9) is a maximum likelihood estimate under
appropriate assumptions. Maybeck (p. 214) uses the
following matrix inversion lemma to rewrite the first term in
equation (9) into a numerically superior form:

The matrix inversion lemma in equation (10) reduces the
dimensions of the matrices to improve numerical perform-
ance. The left-hand term in equation (10) involves inversion
of a 4x4 matrix in my simple example, while the right-hand
term involves inversion of a 2x2 matrix. When the number of
areal controls is larger, say the Census Bureau area for
each of 50 counties, and there are 2 remotely sensed strata,
say forest and nonforest, then the left-hand term requires
inversion of a 100x100 covariance matrix, while the right-
hand term inverts a 50x50 matrix. Maybeck (1979, pp. 214-
217) uses this lemma, then expands, regroups, and exploits
algebraic identities to rewrite equation (9) as:

Equation (11) may be expressed in an equivalent “Joseph”
form (Maybeck p. 237) as:

Maybeck (pp. 215-216) derives the covariance matrix for the
estimate in equation (11) as:

An alternative form for equation (13) is:

While equation (14) is more complex than equation (13), the
“Joseph” form of the covariance matrix in equation (14) has
numerical advantages (Maybeck 1979, p. 237). However,
equation (14) can still have numerical problems with ill-
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conditioned covariance matrices. Maybeck (pp. 368-405)
develops equivalent estimation equations that improve
numerical precision and stability by using square roots of the
covariance matrices. Maybeck (1979) recommends
diagnostics that test the distribution of multivariate residuals,
or “innovations.”

APPLICATION OF GLS TO AREAL
CONTROL IN FIA
Let the vector of independent ancillary estimates k in
equation (5) contain the areal control statistics from the
Census Bureau, i.e., k=c from equation (3). The asso-ciated
covariance matrix in equations (10) through (14) equals the
zero matrix, i.e., V

k
=0, because c is a vector of constants. In

this case, the usual form of the GLS estimator in equation
(8) will not work because it requires the infeasible inverse of
a singular covariance matrices. However, the equivalent
estimators in equations (11) and (12) are feasible because
the weighting matrix G in equation (10) simply equals:

The matrix inversion lemma in equation (10) assumes that
V

z
 and V

k
 are positive definite covariance matrices (Maybeck

1979, p. 213). This is obviously untrue when V
z
=0 for

equation (15), even though equation (15) is feasible.
However, this violation of assumptions has never caused
any problems for my numerical applications, and an
alternative derivation should exist that does not need to
assume that Vk is positive definite. In addition, y is a vector
of proportions that sum to exactly one, and its covariance
matrix Vz in equation (1) is not positive definite; neither is
HVzH’ positive definite, which means that its inverse in
equation (15) does not exist. This latter problem can be
solved by deleting one row in c and HVzH’, and the
corresponding row and column in covariance matrix HVzH’,
or using the pseudo-inverse.

FIA requires estimators that can be implemented within
database structures. This typically requires that statistical
estimators be implemented as expansion factors in the
database. This criterion cannot be met exactly with the
expressions in equations (11) or (12). Equation (11) might be
best suited for application in a database. The database
retains the expansion factors originally used to estimate
vector z, which contains the statistics in FIA core tables for
area. However, each element of z, and each corresponding
cell in FIA core tables, must be “adjusted” by the associated
element in the vector G[c-Hz], which contains positive and
negative elements centered on zero. One way to implement
these adjustment terms is to add a “record” to the FIA
database that contains the estimated population totals for
area in the FIA Inventory Unit (i.e., z).
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DISCUSSION
I show that there is at least one alternative to stratification
for areal control. This alternative might solve problems with
insufficient sample sizes in small cross-classified strata,
especially as FIA shifts to an annualized system that
measures 20 percent or less of its Phase Two field plots
each year. In effect, the empirical relationship between
remote sensing and field data is established using data
across the entire multi-county region to avoid problems with
small sample sizes in some strata. This is already captured
in equation (1). Then, a linear multivariate estimator in
equation (11) or (12) applies areal controls so that final
estimates are constrained to agree with “official statistics”
(e.g., Bureau of Census).

This same approach can be used to constrain FIA estimates
to other “official statistics,” such as the published area for
each national forest, ranger district, park, or preserve. If it is
not necessary to make FIA estimates agree with cross-
classifications of administrative entities (e.g., area of each
county on a national forest), then the areal controls can be
applied sequentially through the estimators given above.

Because the number of cells in FIA core tables are so
numerous, and the GLS estimators require inversion of
covariance matrices that correspond to cells in FIA statisti-
cal tables, the proposed solution might only work for a few
broad indicators (e.g., total forest area), which are typically
margins in FIA core tables. The proposed solution might
require ad hoc or special methods to implement in FIA
information management system.

I plan to test the practical value of these estimators using
Monte Carlo simulations.
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INTRODUCTION
The North Central Research Station has developed nonlin-
ear, individual-tree, distance-independent annual diameter
growth models formulated as the product of an average
diameter growth component and a modifier component and
calibrated for species groups (Lessard and others submit-
ted). The models may be used in two ways: (1) to update
information on FIA plots not visited in the current year as a
method of eliminating any lag in estimates of current
conditions; and (2) to predict future forest resources.

Regional diameter growth models were developed for
species groups within two ecoregions, the Laurentian Mixed
Forest and the Eastern Broadleaf Forest (Lessard and
McRoberts, in preparation). The objective of this study is to
apply the Eastern Broadleaf Forest regional models to an
independent data set, Indiana annual FIA data, and analyze
the prediction performance.

PROVINCE 222
The diameter growth models are calibrated on FIA data from
the Eastern Broadleaf Forest (Continental)—Province 222,
defined by Bailey (1995). Province 222 is a subdivision of
the Hot Continental Division. Most precipitation in Province
222 occurs during the growing season and generally
decreases in quantity as distance from the Atlantic Ocean
increases. This province favors drought-resistant oak-
hickory associations. Province 222 lies to the east of the
prairie regions, south and west of the Laurentian Mixed
Forest—Province 212 in the northern areas, and west of the
Appalachian Mountains in the southern regions. It extends
from the Minnesota/Canadian border in the north through
Missouri and Tennessee in the south.

CALIBRATION DATA
The diameter growth models were calibrated using FIA data
across all ownership categories on land classified as timber-
land. Timberland was defined as non-reserved forestland
that is producing or is capable of producing 20 ft2/ac/yr of
industrial wood. The FIA periodic 10-point cluster survey
design and the data collection were described by Hansen
and others (1992). ArcView GIS was used to overlay Bailey’s
eco-region map (Bailey and others 1994) on the FIA plot
locations to select plots within Province 222. Growth models
were calibrated using FIA data from the following states (the
parentheses refer to the year of the inventory): Michigan
(1980, 1993), Wisconsin (1983, 1996), Minnesota (1990,
1993), Illinois (1985, 1998), Indiana (1986, 1998), Iowa
(1974, 1990), Ohio (1978, 1990), Missouri (1972, 1989),
Kentucky (1974, 1987), and Tennessee (1989, 1996).

INDIANA ANNUAL DATA
Data from both the old periodic 10-point cluster design and
the new 4-point annual design plots were collected during
the last periodic inventory in Indiana (1998). The new
standard plot design is a cluster of four fixed-area subplots
(24-foot radius) superimposed on four fixed-area micro-plots
(6.8-ft radius). All trees 5.0 in dbh and larger are measured
on the subplots and all trees 1.0-4.9 in dbh are measured on
the micro-plots. Under the annual system, plots to be
measured in each cycle are divided into five sub-cycles.
Each sub-cycle is inventoried in a single year to complete
the full inventory cycle in five years.

Two measurement intervals were included in the Indiana
annual data set: (1) 1,358 trees (69 plots) in the 1998-1999
data (the last periodic, cycle 4 to cycle 5, sub-cycle 1); and
(2) 1,503 trees (63 plots) in the 1998-2000 data (the last
periodic, cycle 4 to cycle 5, sub-cycle 2).

UPDATING INDIANA ANNUAL FOREST INVENTORY AND ANALYSIS
PLOT DATA USING EASTERN BROADLEAF FOREST

DIAMETER GROWTH MODELS1 2

Veronica C. Lessard3

Abstract—The Forest Inventory and Analysis (FIA) program of the North Central Research Station (NCRS), USDA Forest
Service, has developed nonlinear, individual-tree, distance-independent annual diameter growth models. The models are
calibrated for species groups and formulated as the product of an average diameter growth component and a modifier
component. The regional models for the Eastern Broadleaf (Continental)—Province 222, defined by R.G. Bailey, are
calibrated using periodic Forest Inventory and Analysis data within that ecoregion. Average annual diameter growth is the
dependent variable. The independent variables include crown ratio, crown class, stand basal area larger than the subject
tree, physiographic class, latitude, and longitude. North Central Forest Inventory and Analysis has begun implementing
annual inventories in a number of states of the region. The diameter growth models have been applied to annual data from
Indiana to test their effectiveness on an independent data set that was collected under a survey design that differs from the
one on which the models were calibrated. The bias of estimates increased with increasing values of crown ratio and with
decreasing values of crown class.
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where DBH is diameter at breast height, CR is crown ratio
(percent of tree height consisting of crown), CC is crown
class in five categories ranging from dominant to sup-
pressed, BAL is plot basal area per acre for trees larger than
that of the subject tree, PC is physiographic class coded in
the data set as 3, 4, 5, 6, or 7 (corresponding with xeric,
xeromesic, mesic, hydromesic, and hydric, respectively),
LNG is longitude, and LAT is latitude. The modeling method-
ology and assessment of fit are documented in Lessard and
others (in review).

BIAS ASSESSMENTS FOR MODELS APPLIED TO
INDIANA ANNUAL DATA
Residual analysis was conducted to examine the adequacy
of the diameter growth model predictions for an independent
data set. The Eastern Broadleaf Forest regional models
were applied to the FIA Annual Indiana data to obtain
predicted diameter growth rates (in/yr) for individual trees.
Predicted growth rates were compared to average annual
observed change in DBH, calculated as the ratio of the
difference in DBH at the two measurements and the number
of years in the measurement interval. Residuals were
calculated as differences between observed and predicted
annual changes in diameter. To examine how well the
models fit the data, percentile statistics (25th, 50th, 75th) were
computed for the residuals by species group, and by classes
of DBH, CR, BAL, CC, longitude, and latitude. Models were
judged to be unbiased if zero was included in the range of
values between the 25th and 75th percentiles for the
residuals.

RESULTS AND CONCLUSIONS
The models were generally unbiased when the residuals
were examined by species group (table 1), and by classes of
DBH (table 2), CR (table 3), BAL (table 4), CC (table 5),
LNG (table 6), and LAT (table 7). Several exceptions did
occur. The models overestimated growth rates for
cottonwood, however there were only 17 cottonwood trees in
the data set used to test the models. Median residuals
generally increased with increasing CR classes and with
decreasing CC sizes. However, the inter-quartile range of
residual values included zero for all but the largest and
smallest classes of CR (table 3) and for the smallest CC with
only 3 observations (table 5).

To examine the trend found in the residuals with respect to
CR more closely, median average annual growth rates were
calculated by CR class for both the Indiana Annual data and
the Eastern Broadleaf Forest Periodic data and compared
Indiana Annual data growth rates were less than those of the
calibration data for small CC values and greater for large CC
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[expMODIFIER =  β4 (CR – 4) + β 5 (BAL – 50) + β 7 (CC - 3) +                   

                 β 8 (PC – 5) + β 10 (LNG – 89) + β 11 ((LNG – 89)
2)/10 +  

                 β 12 (LAT – 40) + β 13 ((LAT – 40)
2)/10], (1c) 

 

MODEL FORM
The form of the diameter growth model is:

Table 1—Analysis of residuals (calculated as the  
observed minus predicted values) sorted by  
species group 

Percentile  
Species group 

No. of 
trees 

25th 50th 75th 

  In/yr In/yr In/yr 
Softwoods     

Eastern white 
pine 36 -0.117 -0.031 -0.003 

Red pine 22 -0.068 -0.048 0.012 
Jack pine and 

Virginia pine 93 -0.022 0.037 0.099 
Shortleaf pine 55 -0.017 0.022 0.059 
Tamarack 5 -0.011 0.016 0.017 
Eastern redcedar 100 -0.026 0.021 0.111 
Other softwoods 9 -0.061 -0.031 0.000 

Hardwoods     
Select white oak 158 -0.065 -0.027 0.018 
Other white oak 32 -0.063 -0.031 0.046 
Northern red oak 48 -0.083 -0.011 0.037 
Other red oak 163 -0.050 0.004 0.087 
Select hickory 72 -0.061 -0.009 0.046 
Other hickory 160 -0.046 -0.004 0.042 
Hard maple 272 -0.043 -0.003 0.050 
Soft maple 217 -0.079 -0.024 0.056 
Boxelder 23 -0.104 -0.005 0.137 
American beech 40 -0.043 -0.006 0.050 
White and green 

ash 144 -0.073 -0.007 0.061 
Black ash 7 -0.102 -0.052 0.014 
Aspen 14 -0.091 0.038 0.122 
Cottonwood 17 -0.182 -0.097 -0.035 
American 

basswood 39 -0.018 0.013 0.069 
Butternut and 

walnut 77 -0.057 -0.014 0.053 
Black cherry 153 -0.084 -0.014 0.075 
Elm 168 -0.060 -0.005 0.060 
Hackberry 28 -0.056 -0.015 0.089 
Sycamore 27 -0.110 -0.040 0.014 
Yellow-poplar 117 -0.067 0.058 0.246 
Sweetgum 35 -0.026 0.032 0.113 
Tupelo 40 -0.046 0.002 0.071 
Sassafras 125 -0.059 -0.029 0.006 
Flowering 

dogwood 29 -0.029 -0.007 0.017 
Other commercial 

hardwoods 68 -0.089 -0.025 0.064 
Noncommercial 

hardwoods 69 -0.033 0.010 0.066 
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Table 2—Analysis of residuals (calculated as the  
observed minus predicted values) sorted by  
5-inch dbh class  
 

 Percentile  
DBH 
class 

 
Number 
of trees  25th 50th 75th 

In   In/yr In/yr In/yr 

1-5 228  0.061 0.004 -0.041 

5-10 1,502  0.064 -0.006 -0.055 

10-15 606  0.064 -0.002 -0.054 

15-20 213  0.032 -0.030 -0.082 

20-25 83  0.082 -0.023 -0.096 

25+ 30  0.087 -0.006 -0.089 
      

Table 3—Analysis of residuals (calculated as the  
observed minus predicted values) sorted by crown  
ratio 
 

 Percentile Crown 
ratio 
class  

 
Number 
of trees  25th 50th 75th 

Percent  
 

In/yr In/yr In/yr 

0-9 33  -0.047 -0.073 -0.103 

10-19 288  0.011 -0.032 -0.067 

20-29 697  0.031 -0.022 -0.066 

30-39 771  0.065 -0.002 -0.055 

40-49 470  0.071 -0.001 -0.052 

50-59 219  0.113 0.025 -0.034 

60-69 104  0.159 0.065 0.004 

70-79 55  0.231 0.064 -0.034 

80-99 25  0.150 0.130 0.049 
      

Table 4—Analysis of residuals (calculated as the  
observed minus predicted values) sorted by BAL 
  

 Percentile  
BAL 
class  

 
Number 
of trees  25th 50th 75th 

Ft2/ac  
 In/yr In/yr In/yr 

0-50 989  -0.069 -0.007 0.076 

51-100 804  -0.064 -0.021 0.043 

101-150 376  -0.047 -0.003 0.055 

151-200 142  -0.035 0.005 0.048 

201-250 97  -0.051 -0.009 0.019 

251-300 132  -0.035 0.018 0.065 

301-350 109  -0.010 0.026 0.075 

351-400 13  0.021 0.246 0.246 
      

Table 5—Analysis of residuals (calculated as the  
observed minus predicted values) sorted by CC 
 

 Percentile  
BAL 
class  

 
Number 
of trees  25th 50th 75th 

   In/yr In/yr In/yr 

1 3  0.286 0.185 0.147 

2 79  0.154 0.052 -0.011 

3 1,457  0.074 0.004 -0.057 

4 626  0.048 -0.017 -0.060 

5 497  0.027 -0.020 -0.052 
      

Table 6—Analysis of residuals (calculated as the  
observed minus predicted values) sorted by longitude 
 

 Percentile  
 
Longitude 

 
Number 
of trees  25th 50th 75th 

Degrees  
 In/yr In/yr In/yr 

-87.55 230  0.076 0.004 -0.051 

-87.05 364  0.066 -0.005 -0.063 

-86.55 1,066  0.041 -0.013 -0.057 

-86.05 301  0.085 0.012 -0.043 

-85.55 405  0.080 -0.005 -0.058 

-85.05 296  0.072 0.005 -0.067 
      

Table 7—Analysis of residuals (calculated as the  
observed minus predicted values) sorted by latitude 
 

 Percentile  
 
Latitude 

 
Number 
of trees  25th 50th 75th 

Degrees   In/yr In/yr In/yr 

38.05 475  0.069 0.015 -0.034 

38.55 521  0.034 -0.014 -0.053 

39.05 461  0.057 -0.017 -0.064 

39.55 302  0.085 0.008 -0.049 

40.05 92  0.129 0.019 -0.057 

40.55 124  0.092 -0.001 -0.083 

41.05 441  0.043 -0.021 -0.064 

41.55 246  0.074 -0.003 -0.071 
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values. This follows the underestimation and overestimation
patterns of the residuals (table 3).

In the context of their intended applications, the annual
diameter growth models may be considered generally
unbiased. However, because diameter growth rates with
respect to CR tended to change from the time during which
the calibration data were collected to the time the annual
data was collected, exploration of methodology to capture
these changes may improve the diameter growth predic-
tions. Inclusion of climate variables in the model or applica-
tion of model updating (e.g. Bayes) may improve the quality
of diameter growth predictions.
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INTRODUCTION
The Forest Inventory and Analysis (FIA) program of the
USDA Forest Service has initiated an annual forest inventory
system featuring measurement of a proportion of plots each
year (McRoberts 1999). One approach to obtaining annual
inventory estimates with this system is to use growth models
to update to the current year data for plots measured in
previous years and then base estimates on the data for all
plots. If the updating procedure is sufficiently unbiased and
precise, this approach provides nearly the same precision as
using all plots but without the adverse effects of using out-
of-date information. With this estimation approach in mind, a
prototype set of individual tree, diameter at breast height
(DBH) (1.37 m aboveground) growth models has been
constructed and calibrated for use in updating FIA plot
information.

The data used to calibrate the models were taken from
measurements of forested Minnesota FIA plots for the 1977
(Spencer 1982) and 1990 periodic inventories (Miles et al
1995). Only trees alive and measured in both inventories
were used. For each tree, average annual DBH growth was
used as a surrogate for annual growth and was calculated
as the ratio of the difference in DBH measurements for the
two inventories and the number of growing seasons be-
tween measurements. Predictor variables were average
DBH for the measurement interval, initial crown ratio (CR),
initial crown class (CC), average plot basal area (BA),
average plot basal area in trees larger than the subject tree
(BAL), and physiographic class (PC). BA and BAL represent
the sum of cross-sectional areas of live tree boles at breast
height, and, unless otherwise noted, references to both BA
and BAL are assumed to have been scaled to a per unit
area basis.

The DBH growth models consist of the product of two
components, an average component corresponding to
regional average DBH growth with respect to DBH and a
modifier component that adjusts DBH growth predictions in
accordance with local plot and tree conditions. The average
component is based on a 2-parameter gamma function with

a constant multiplier and uses DBH as the predictor variable,
while the modifier component consists of the product of
exponential factors of which each incorporates a single
predictor variable.  Each factor in the modifier product
expresses a multiplicative effect on growth predictions in
terms of departures from regional or ecosystem averages
for a single predictor variable. The general form of the DBH
growth model is

E(�DBH) = Ave(DBH)*Mod(CR,CC,BA,BAL,PC) [3a]

where E(.) denotes statistical expectation, »DBH is annual
DBH growth,

Ave(DBH) = ß
1
 DBHß

2
 exp(ß

3
 DBH) [3b]

and

Mod(CR,CC,BA,BAL,PC)
= exp[ß
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)2], [3c]

where the ßs are parameters to be estimated and the Cs are
constants representing regional or ecosystem averages for
the corresponding predictor variables. Using iteratively
reweighted least squares techniques, the model was fit
separately for individual species. If a parameter was not
statistically significantly different than zero, its estimate was
fixed at zero. Lessard and others (submitted) provide details
of the fitting procedure and verification and validation of the
models.

THE ANNUALIZED INVENTORY DATABASE
An annualized database of plot and tree variables was
constructed to evaluate the models. The database included
measurements from forested FIA plots for both the 1977
(Spencer 1982) and the 1990 (Miles and others 1995) USDA
Forest Service periodic inventories of Minnesota. Plots
included in the 1977 inventory were actually measured
between 1974 and 1978, while plots included in the 1990
inventory were actually measured between 1986 and 1991.
Because additional investigations were necessary to

ESTIMATING THE UNCERTAINTY IN DIAMETER GROWTH MODEL
PREDICTIONS AND ITS EFFECTS ON THE UNCERTAINTY OF

ANNUAL INVENTORY ESTIMATES1

Ronald E. McRoberts and Veronica C. Lessard2

Abstract—Uncertainty in diameter growth predictions is attributed to three general sources: measurement error or sampling
variability in predictor variables, parameter covariances, and residual or unexplained variation around model expectations.
Using measurement error and sampling variability distributions obtained from the literature and Monte Carlo simulation
methods, the uncertainty in 10-year diameter growth model predictions is estimated as are its effects on annual basal area
estimates obtained using an annual inventory system. The results indicate that although annual diameter growth is difficult
to predict precisely, the effects of the uncertainty in the growth predictions are greatly attenuated when diameter estimates
are aggregated to estimate plot basal area and mean basal area over all plots.
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estimate the uncertainty in model parameters estimated for
each species, the data were further restricted to plots that
included only the 15 most common tree species in Minne-
sota, i.e., if the species of any tree on a plot was not among
the 15 most common species, the data for that plot was
excluded from the database. The resulting database
included data for 38,156 trees on 1,951 plots.

Plots measured for the 1977 and 1990 Minnesota invento-
ries consisted of 10 subplots of which each is described as
a variable radius plot due to the use of point sampling
techniques. With these techniques, trees are selected with
probability proportional to cross-sectional area rather than
proportional to the frequency of occurrence in the population
(Myers and Beers 1971). With point sampling, the number of
trees in the population represented by a sample tree, termed
the tree factor, varies by tree and is calculated as a scaling
constant divided by the tree DBH. Tree factors are used to
expand the measurements of sample trees to per unit area
estimates.

Based on observations of individual trees with DBHs of at
least 12.7 cm, an 11-year database was constructed that
consisted of annual values for all model predictor variables
and annual status with respect to survival, ongrowth,
mortality, and harvest for each tree. Construction of the
database required distributing total growth between invento-
ries over varying numbers of years for individual trees in
each of four categories: (1) survivor trees that were alive
and measured at both inventories; (2) ongrowth trees that
attained the 12.7-cm minimum DBH between inventories; (3)
mortality trees that died between inventories due to causes
other than harvest; and (4) harvest trees that were removed
between inventories. For survivor trees, average annual
DBH growth was calculated by dividing the total growth
between inventories by the number of growing seasons
between measurements. Measured DBH for the 1977
inventory was assigned to year 0, and DBHs for the 10
subsequent years were calculated by adding the average
annual growth to the previous year's DBH. Because
ongrowth trees were measured only in the 1990 inventory,
DBH measurements for these trees were assigned to year
11, and DBHs for previous years back to year 0 were
sequentially calculated by subtracting from current DBHs
predictions of annual DBH growth obtained from the DBH
growth models. Ongrowth status for these trees was
designated in the year the tree attained the 12.7-cm
minimum DBH. For mortality trees, a year of mortality
between 1 and 10 was randomly selected from a uniform
distribution and assigned to the tree independently of years
of mortality assigned for other trees on the same plot. For
harvest trees, a year of harvest between 1 and 10 was
randomly selected from a uniform distribution and assigned
to all trees harvested on the sample plot. For both mortality
and harvest trees, DBHs measured in the 1977 inventory
were assigned to year 0, and DBHs for subsequent years
were calculated by adding previous year's DBHs and
predictions of annual DBH growth obtained from the DBH
growth models.

Calculation of unbiased estimates of change in BA (»BA) is
difficult using data from variable radius plots (Van Deusen
and others 1986). For these analyses, tree factors corre-
sponding to year 0 were calculated for all trees and then

held constant for the succeeding 10-year interval. Thus,
annual database values of BA and BAL were calculated
using the database of annual tree DBHs and the constant
tree factors.

Although the procedures used to construct the annual
database create somewhat greater uniformity in annual DBH
growth, ongrowth, mortality, and harvest than would be
observed, they represent a reasonable alternative. First,
most other alternatives for distributing annual DBH growth or
survivor trees would require either annual remeasurement or
destructive sampling of all trees. Second, in the absence of
precise knowledge of annual patterns of ongrowth, mortality,
and harvest, uniform distributions represent overall long-
term patterns that are reasonable for 10-year intervals.
Finally, the impact on estimates of uncertainty, the primary
entity of interest for this study, is expected to be minimal.

THE SIMULATION PROCEDURES
Monte Carlo simulations were used to obtain estimates of
uncertainty for model parameter estimates; 10-year »DBH
and DBH predictions, plot BA estimates, and mean plot BA
estimates; and annual inventory estimates of mean plot BA.
Before the simulations could be implemented, uncertainty
had to be quantified for three components: tree- and plot-
level predictor variables, residual variability, and parameter
estimates. In all situations, uncertainty in model predictor
variables was assumed to be non-negligible.

Uncertainty in Predictor Variables
Values of predictor variables are based on FIA field crew
measurements and are subject to uncertainty. The tree-level
predictor variables, DBH, CR, and CC, correspond to the
measurement of a single physical entity, while the plot-level
variables, BA, BAL, and PC, are sample estimates. Distribu-
tions for measurement errors for the tree-level predictor
variables were obtained from the literature. McRoberts and
others (1994) reported the results of a study in which 9-10
FIA field crews independently measured the same plots.
They estimated a curve for describing the standard deviation
of DBH measurements as a function of mean DBH. They
also reported that distributions of ocular estimates of CR as
percentages in the 0-1 range often deviated “0.3 around the
median crew estimate. Nichols and others (1991) reported
that when crews returned to plots later in the same growing
season to obtain second ocular estimates of CC, 80 percent
of estimates were unchanged while the remaining 20
percent were evenly distributed in the two adjacent classes.
Uncertainty in BA and BAL estimates was simulated by
using DBH measurements incorporating simulated DBH
measurement error to calculate BA for each plot and BAL for
each tree on each plot. Finally, because of the non-unifor-
mity of plot soil, topographic, and vegetation conditions, PC
is also subject to uncertainty due to sampling variability.
However, because no empirical estimates of the sampling
variability for PC are available, an arbitrary assumption was
made that the coefficient of variation for PC is 10 percent.

Residual Variability
Estimates of residual variability were obtained as by-
products of calibrating the models. Residuals were assumed
to follow a Gaussian distribution with zero mean but with
heterogeneous variances. The standard deviations of the
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distributions of residuals were found to be adequately
described as follows:

[4]

where E(.) denotes statistical expectation of the quantity
between the parentheses, ó

res
 , is the sample estimate of ó

res 
,

and »DBH is predicted diameter growth from the models.

Uncertainty in Model Parameter Estimates
Model parameter covariances reflect uncertainty in the
parameter estimates and must be included as a component
of total uncertainty whenever model predictions are involved.
When the models are relatively simple (eg., linear) and the
uncertainty in predictor variables is negligible, parameter
covariance estimates may be easily obtained using analyti-
cal methods. However, when the models are complex,
nonlinear, and rely on predictors variables whose uncertainty
cannot be assumed to be negligible, then Monte Carlo
simulations are appropriate, if not also necessary, for reliably
estimating these covariances. Failure to incorporate the
uncertainty in the predictor variables results in underesti-
mates of parameter covariances and, therefore, in underes-
timates of model prediction uncertainty. Using the distribu-
tions of uncertainty for the predictor variables and residual
variation as previously described, distributions of model
parameter estimates were obtained using a 4-step Monte
Carlo procedure:

1. Simulated »DBH observations were obtained as the sums
of two components: »DBH predictions obtained from the
models using the parameter estimates obtained by
calibrating the models to the observed data, and residuals
randomly selected from a Gaussian distribution with zero
mean and standard deviations obtained using equation [4]
and the »DBH predictions.

2. Simulated values for predictor variables were obtained as
sums of two components: observed values of the vari-
ables and either measurement error for DBH, CR, and
CC, or sampling variability for PC obtained by randomly
selecting values from the distributions previously de-
scribed; using the simulated DBH observations, BA was
calculated for each plot and BAL was calculated for each
tree on each plot.

3. Model parameter estimates were obtained by fitting the
models to the simulated »DBH observations obtained
from Step 1 using the simulated values of the predictor
variables obtained from Step 2; the resulting parameter
estimates were recorded.

4. Distributions of model parameter estimates were obtained
via 250 repetitions of Steps 1–3.

Uncertainty Estimation
Estimates of the uncertainty in »DBH and DBH predictions
and in derived BA variables were based on Monte Carlo
simulations. The essence of the simulation procedures,
explained in detail below, is to initialize plot and tree condi-
tions using the annualized database of values, add random
variability where appropriate to mimic uncertainty, use the
models to predict annual DBH growth, record estimates at
fixed time intervals, and repeat the process a large number
of times to create a distribution of estimates.

Two approaches to evaluating uncertainty were used. The
ACCUMULATING approach produces DBH predictions for
each of 10 consecutive years by sequentially predicting
»DBH using the models and adding the prediction to
previous year's DBH to obtain current year's DBH. Annual
estimates of plot BA, mean plot BA, and the standard error
of mean plot BA are obtained and are designated the
MODEL10 estimates. Uncertainty in estimates obtained with
this approach represent the accumulated uncertainty in DBH
predictions over the 10-year prediction interval.

The second approach is designated the ANNUAL approach
and is intended to mimic the annual inventory system being
implemented by the FIA program of the USDA Forest
Service. The sampling design for this system features an
equal probability grid of field plots which has been system-
atically divided into five interpenetrating, non-overlapping
panels. Each year the plots in a single panel are measured
with panels selected on a 5-year rotating basis. To mimic the
annual inventory procedures, the plots included for these
analyses were ordered with respect to their plot numbers
and distributed among five equal-sized panels by systemati-
cally assigning every fifth plot to the same panel. Because
FIA plot numbers had been assigned sequentially on the
basis of the geographic locations of the plots, the panel
assignments approximated the systematic, interpenetrating
feature of the annual inventory sampling design. Annual
inventory estimates of mean plot BA and the standard error
of mean plot BA were obtained using three methods: (10 the
SAMPLE20 estimates were based on measurements for the
current year's 20-percent panel of plots; (2) the MOVING
estimates were based on the most recent measurements for
all plots; and (3) the UPDATE estimates were based on
measurements for the current year's 20-percent panel of
plots and updated information obtained using the growth
models for the four panels of plots measured in previous
years.

Estimates of the uncertainty in »DBH and DBH predictions
and estimates of plot BA for the ACCUMULATING approach
and in estimates of mean plot BA and the standard error of
mean plot BA with both approaches were obtained using a
4-step Monte Carlo procedure:

1. Year 0:
a. Measurement of all plots was simulated by adding the

year 0 values of DBH, CR, CC, and PC from the
annualized database and simulated measurement
errors and sampling variability obtained by randomly
selecting values from the distributions previously
described; simulated DBH observations were
recorded for each tree.

b. Simulated values of BA and BAL were obtained from
the simulated DBH observations by calculating BA for
each plot and BAL for each tree on each plot; plot BA,
mean plot BA, and the standard error of mean plot BA
were calculated and recorded.

c. A set of model parameter estimates for each species
was randomly selected from the distributions previ-
ously constructed.

E[ln(σ̂ res)] = α1+α2ln(∆̂DBH), 
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2. Subsequent years:
a. ACCUMULATING approach. Simulated observations

of »DBH for all trees were obtained as the sums
of previous year's DBHs, predicted »DBHs,
and residuals randomly selected from Gaussian
distributions with zero mean and standard deviations
obtained using [4] and predicted »DBHs; the
simulated observation of DBH and the difference
between current and previous years' simulated DBH
observations were recorded for each tree.

b. ANNUAL approach.
(i) For panels selected for measurement, field

measurement was simulated for all plots by
replacing values for each tree with values from the
annualized database for the appropriate year and
adding measurement errors and sampling vari-
ability randomly selected from the appropriate
distributions.

(ii)For panels not selected for remeasurement, an
updated value for DBH for each tree was obtained
as the sum of previous year's DBH, predicted
»DBH, and a residual randomly selected from a
Gaussian distribution with zero mean and standard
deviation obtained from [4] and predicted »DBH.

c. For each of the four estimation methods, BA was
calculated for each plot, BAL was calculated for
each tree on each plot, and mean plot BA and the
standard error of mean plot BA were calculated; plot
BA, mean plot BA, and the standard error of mean
plot BA were recorded for all four methods.

3. Step 2 was repeated 10 times to obtain predictions and
estimates for all four methods for years 1-11.

4. Steps 1-3 were repeated 250 times to obtain distributions
of DBH and »DBH predictions, plot BA estimates, and
estimates of mean plot BA and the standard error of
mean plot BA for each method for each year.

ANALYSES
Standards of Comparison
The standards of comparison for evaluating bias and the
contribution of uncertainty in model predictions to the
uncertainty in estimates of mean plot BA were the annual
estimates of mean plot BA and the standard errors of mean
plot BA obtained from the annualized database values. For
comparison purposes, these estimates represent a current
year sample of the entire geographic area under consider-
ation and are regarded as being without measurement error.
Estimates based on these values use 100 percent of the
sample plots and are designated the SAMPLE100 esti-
mates. Because the DBH values on which the SAMPLE100
estimates are based are regarded as having no uncertainty,
any uncertainty in the SAMPLE100 estimates is due simply
to sampling variability of trees on plots and BA estimates
among plots.

ACCUMULATING Approach
Uncertainty in »DBH and DBH predictions for individual
trees, estimates of plot BA, and MODEL10 estimates of
mean plot BA was quantified using the distributions of

simulated estimates. Bias in the MODEL10 estimates of
mean plot BA and the standard error of mean plot BA is
evaluated by comparing these estimates to the comparable
SAMPLE100 estimates. Differences between the medians of
the distributions of MODEL10 estimates of the standard
error of mean plot BA and the SAMPLE100 estimates
quantify the effects of uncertainty in model predictions of
DBH on the uncertainty of mean plot BA.

ANNUAL Approach
Bias and uncertainty in the annual inventory estimates of
mean plot BA and estimates of the standard error of mean
plot BA were evaluated using the medians of the distribu-
tions of simulated estimates. Comparisons of median
estimates of mean plot BA for the SAMPLE20, MOVING,
and UPDATE methods to the annual SAMPLE100 estimates
of mean plot BA provide the bias check. Comparisons of the
medians of distributions of estimates of the standard error of
mean plot BA for the UPDATE method to the SAMPLE100
estimates reveals the effects of uncertainty in model
predictions on annual inventory estimates of mean plot BA.

RESULTS
The adequacy of the 250 simulations was checked by
evaluating the stability of coefficients of variation for the
annual MODEL10 estimates of plot BA. For all plots, these
coefficients of variation had stabilized by 100-150 simula-
tions and were virtually unchanged for the final 50
simulations.

ACCUMULATING Predictions and Estimates
Histograms of coefficients of variation for 10-year DBH and
10-year DBH predictions indicate that although the median
coefficient of variation for »DBH was relatively large,
approximately 0.20, the median for DBH was small, approxi-
mately 0.02 (fig. 1). Thus, 10-year DBH may be predicted
quite precisely, even though 10-year »DBH is difficult to
predict precisely. This result is attributed to two factors: first,
as a component of 10-year DBH predictions, »DBH is
relatively small compared to the other component, initial
DBH; and second, the larger component, initial DBH, has
little uncertainty, because DBH measurement error is small.

Bias in the MODEL10 estimates of mean plot BA was
evaluated by comparing the medians of the distributions of
the MODEL10 estimates of mean plot BA to the
SAMPLE100 estimates (table 1). The Wilcoxon Signed
Ranks test (Conover 1980) detected no statistically signifi-
cant differences (α=0.05) between the MODEL10 medians
and the SAMPLE100 estimates. This result is consistent
with observations that the medians of the MODEL10
estimates are in close proximity to the SAMPLE100 esti-
mates and that they fall within a 2-standard error confidence
interval around the SAMPLE100 estimates (fig. 2).

The medians of the distributions of the MODEL10 estimates
of the standard error of mean plot BA were only slightly
larger than the SAMPLE100 estimates. This result suggests
that uncertainty in model predictions of »DBH has only a
slight negative impact on the uncertainty in estimates of
mean plot BA (table 1).
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ANNUAL Approach
Bias in the annual inventory estimates of mean plot BA was
evaluated by comparing the medians of the distributions of
the SAMPLE20, MOVING, and UPDATE estimates to the
SAMPLE100 estimates (fig. 3, table 1). The medians of the
SAMPLE20 estimates deviated considerably from the
SAMPLE100 estimates due to the SAMPLE20 small sample
size, while the medians of the MOVING estimates exhibited
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consistent bias due to the trend in the SAMPLE100 esti-
mates. The medians of the distributions of the UPDATE
estimates track the SAMPLE100 estimates quite closely, a
result confirmed by the failure of the Wilcoxon Signed Ranks
test to detect statistically significant differences (α=0.05).

The medians of the distributions of the UPDATE estimates of
the standard error of mean plot BA were only slightly larger
than the SAMPLE100 estimates, again indicating that
uncertainty in model predictions of DBH has only a slight
negative impact on the uncertainty of annual inventory
estimates of mean plot BA.

Figure 2–-Annual BA means obtained from DBH predictions.
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Figure 1—Distributions of simulated �DBH and DBH predictions.

Table 1—Mean plot basal area estimates

Year Mean   SE Mean   SE Mean   SE Mean   SE Mean   SE

0 55.72 0.85 55.74 0.86 55.72 0.85 55.72 0.85 55.72 0.85
1 57.17 0.87 57.51 0.87 60.12 2.02 56.22 0.86 57.79 0.88
2 58.26 0.87 58.87 0.88 59.57 1.97 57.37 0.86 59.20 0.88
3 59.35 0.87 60.23 0.88 57.04 1.94 57.59 0.87 60.61 0.88
4 59.84 0.87 61.23 0.89 61.01 1.92 58.50 0.87 61.08 0.89
5 60.80 0.90 62.01 0.91 59.45 1.85 59.44 0.87 61.98 0.91
6 61.87 0.92 62.85 0.93 64.33 2.16 60.28 0.89 62.87 0.93
7 63.08 0.95 63.65 0.95 63.04 2.16 60.97 0.90 63.97 0.96
8 64.66 0.98 64.81 0.97 63.14 2.24 62.19 0.93 65.45 0.99
9 66.33 1.01 65.85 1.00 68.92 2.26 63.78 0.96 66.94 1.02
10 68.48 1.07 67.14 1.07 67.60 2.24 65.50 0.99 68.93 1.07

UPDATE  

---------------------------------------------------ft 2 /ac ----------------------------------------------------

SAMPLE100 MODEL10 SAMPLE20 MOVING  
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CONCLUSIONS
Two conclusions emerge from this study. First, even though
»DBH is relatively difficult to predict precisely, 10-year
predictions of DBH were quite precise. This conclusion is
partially attributed to the observation that 10-year »DBH is
generally a relatively small component of 10-year DBH. The
second conclusion is that the uncertainty associated with
model-based updating technique had only a slight negative
impact on the uncertainty of 10-year estimates of plot BA,
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Figure 3—Annual BA means obtained from annual inventory system.

and 10-year and annual inventory estimates of mean plot
BA. For the mean plot BA estimates, this conclusion is
partially attributed to the observation that DBH prediction
uncertainty is relatively small compared to natural variability
among estimates of plot BA. Acknowledgment is made,
however, that a complete updating system also requires
techniques for predicting the survival, regeneration, and
removal of trees, components that are not considered in this
study. Nevertheless, the study demonstrates that sufficiently
unbiased and precise updates of DBH may be obtained.
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 A COMPARISON OF SEVERAL TECHNIQUES FOR ESTIMATING
THE AVERAGE VOLUME PER ACRE FOR MULTIPANEL

DATA WITH MISSING PANELS1

Dave Gartner and Gregory A. Reams2

Abstract—As Forest Inventory and Analysis changes from a periodic survey to a multipanel annual survey, a transition
will occur where only some of the panels have been resurveyed. Several estimation techniques use data from the
periodic survey in addition to the data from the partially completed multipanel data. These estimation techniques were
compared using data from two periodic surveys from Georgia. The comparison criteria were based on (1) an estimated
mean within the confidence interval derived from using the complete multipanel data set and (2) a small, estimated
standard error that does not underestimate the complete data standard error. Multiple imputation matching performed best;
the double sampling ratio estimator also performed well. Two methodssingle imputation using group means and single
imputation using matched standsboth underestimated the standard error. Replacing the missing observations with
growth model predictions using SETWIGS caused an overestimation of the mean.

INTRODUCTION
The USDA Forest Service, Forest Inventory and Analysis
(FIA) Units have been conducting surveys of commercial
forest land in the continental United States since the
1930s. Traditionally, FIA has conducted surveys on a State
level with a cycle from 6 to 15 years with a mode of about
10 years in the South. Prior to a tightening of the supply and
demand relationship for wood fiber in the South, the 10-
year cycle was considered timely enough (Reams and
others 1999).

With the growing demand for wood products from the
South, the need for more current inventory information has
become apparent. To meet this need, the Agricultural
Research, Extension, and Education Reform Act (Public
Law 105–185): (The Farm Bill) of 1998 mandated FIA to
implement an annual inventory system Nationwide.

Southern FIA is changing from single-panel (periodic)
whole-State surveys to an interpenetrating five-panel
annual survey (Reams and Van Deusen 1999). The latter
design divides the large periodic survey into five repeated
smaller samples, called panels (Reams and Van Deusen
1999). By providing information about the variations
between years, the separate annual samples are able to
estimate annual and secular trends.

The new annual five-panel design will give rise to new
estimation techniques. The new official FIA estimate will be
a moving average using the annual survey data (Reams
and others 1999). The moving average is operationally
convenient, requires a minimum of assumptions, and is
basically design-based as opposed to model-based.

To understand how the moving average will be
implemented, consider the following situation: (1) the last
full periodic survey has been completed; (2) starting
immediately afterwards, the five-panel annual system has
been implemented; and (3) three panels have been

completed and now an estimate of live standing volume
per acre for Georgia is needed. The official FIA estimate will
be the average, using the annual survey data from the plots
in panels one through three and the closeout periodic
survey data for plots in panels four and five. Note that plots
from panels four and five have yet to be measured under
the annual system; therefore, the plot attributes are at least
3 years old.

Some users of the annual survey data suggested using
statistical modeling techniques to update the data values.
Some of these techniques replace the missing data in the
unsurveyed panels with estimates from the surveyed
panels. In the statistical literature, this replacement of
missing data with modeled data is called imputation
(Rubin 1987). After imputing data values for old or
unmeasured plots, it would be tempting to analyze a
simulated-complete data set as a complete data set.
However, this approach tends to understate the true
variance in the estimates (Little and Smith 1987, Van
Deusen 1997).

This study compares the performance of several
techniques. In addition to imputation, the double sampling
ratio estimator was used as a comparison. Because
multiple imputation is conservative in its estimate of the
variance (Rubin 1987), the variance estimate for double
sampling is expected to be lower than for multiple
imputation.

METHODS
Data
We simulated the end of the third panel, having access to
the data from the first three panels and the last periodic
survey. The variable in the comparison is the statewide
average volume of live trees in cubic feet per acre. To
compare predicted values with observed values, we used
the 1988 and 1996 periodic surveys from Georgia. To
simulate conditions at the end of year three, we deleted the
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stand volume data from 40 percent of the 1996 plots. We
used only unit, county, plot, forest type, and stand origin
from 1996 plots with deleted stand volume data.

Operational Information Assumptions
We assumed that the regional FIA units know which
areas have been harvested and the volumes of any
remnant stands. In the simulation, we coded as “cut” all
stands with trees that were marked as cut in the 1996
survey. We put these cut stands in a separate data set and
did not delete any of their 1996 volume data. The prediction
methods could have been modified to handle harvested
stands by including a probability of being harvested and a
prediction of harvesting intensity, but we decided against
this approach.

Data Preparation
Two major changes in the plot sampling protocols occurred
between the 1988 survey and the 1996 survey. One was the
change from using variable-radius plots to fixed-radius
plots. The second was the handling of plots that contained
more than one stand. During the 1988 survey, if any of the
subplots fell into a different stand than the central subplot,
that subplot was rotated until it fell within the same stand
as the central subplot. During the 1996 survey, if any
subplot fell into a different stand or stands, the subplots
were not rotated but the different stands were given
different codes, called condition codes. To make sure the
1988 data used to predict 1996 volumes matched the
observed 1996 stands, only pure stands were used. If the
trees measured in 1988 appeared in more than one 1996
condition code, we removed the plot from the data set. If a
1996 condition code did not have any 1988 trees, we
removed the condition code from the data set.

After we removed these data, 3,749 plots remained. We
calculated the live tree volumes in cubic feet per acre for
each plot for both survey years. We then placed the 1,194
stands with cut trees in a separate data set. We simulated
the two unsurveyed panels by deleting the 1996 volume
data for 40 percent (1,020 out of 2,555) of the remaining
stands. To suit the estimation techniques being run by
forest type, we placed the forest types with fewer than
seven plots in the 60 percent of the data that represent the
three surveyed panels.

Estimation Techniques
Three-panel method—The first estimation technique uses
only the 1996 volume data for the cut stands and the three
surveyed panels. We calculate the means and standard
errors for both groups, and then combine them, weighting
the uncut stands to include the number of stands with
missing volumes.

Single imputation group meansAdding information on
the forest types yields the second estimation technique.
With single imputation group means, the missing volumes
are replaced with the average observed volume for that
forest type. We then recombine the cut and uncut data sets
and use standard estimation procedures.

Single imputation matchingAdding the information on
the 1988 volumes yields two more types of estimation

techniques: single imputation matching, and multiple
imputation matching. For single imputation matching,
we find stands with 1988 volumes and forest types  that
match those of the stands with missing 1996 volumes.
Once we find a matching stand, we replace the missing
1996 volume data with the data from the matched stand.
Then we recombine the cut and uncut data sets and use
standard estimation procedures.

Multiple imputation matchingMultiple imputation (Rubin
1987) matching differs from single imputation matching, in
that a set of possible donor plots is sought for each
missing value. A separate donor stand is then randomly
chosen for each missing value from its donor pool. We
repeat this process of randomly choosing donor plots
several times, and combine the results from the repeti-
tions.

For each imputed data set, we calculate the statistic of

interest (mean live tree volume per acre), denoted as        .

The variance of 
 
        is denoted as lU* . In this case, 

lU*
is the standard error. The function for the estimated mean

is
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This degrees of freedom has been given a modifier for
possible small sample sizes (Barnard and Rubin 1999).
The modifier is

where mm TBm /)1( 1−+=γ  and 0ν  is the degrees of
freedom of the full sample if no data values are missing.
The final degrees of freedom is

The main advantages of multiple imputation over single
imputation are that the variance caused by the process of
randomly choosing donor plots is empirically estimated
(eq. 3) and is explicitly included in the estimate of the
overall variance.

Multiple imputation modelingThe assumption that
the 1996 volume is an approximately linear function of
1988 volume for uncut stands yields another estimation
technique. Multiple imputation modeling estimates the
parameters from a linear regression of 1998 volume on
1996 volume. We modify these parameters by adding a
random error term, determined by decomposing the
parameters’ variance-covariance matrix. Using a
Cholesky decomposition turns the variance-covariance
matrix into a set of variances for independent normal
variables. We then multiply random normal variates by
these variances and add them to the parameter estimates.
We use these modified parameters to estimate the
missing values. We calculate an imputed standard
deviation by randomly generating a Chi-square variable and
multiplying it by the observed standard deviation. We
generate standard normal deviates, multiply them by this
imputation standard deviation, and add them to the
estimates for the missing values. We repeat this process
several times and analyze the results in the same manner
as for the multiple imputation matching data. Thankfully, the
current multiple imputation software does all of these
computations. As with the multiple imputation matching
method, the objectives of repeating the process are (1) to
empirically estimate the variance of the mean due to
randomization, and (2) to incorporate this variance into the
total variance for the estimator.

Single imputation growth modelGrowth models use the
1988 tree-level information, such as species, diameters,
and expansion factors, along with plot site index. We simply
replace the missing volumes with the growth model
predictions. For this study we used the growth model,
SETWIGS (Bolton and Meldahl 1990).

Multiple imputation using growth model predictionsWe
could incorporate growth model predictions into multiple
imputation efforts in two different ways. The first way would

be to replace the missing data with the growth model
projections. According to Rubin (1987), the proper method
for replacing the missing data with the growth model
predictions is the same method used for the linear regres-
sion predictions in multiple imputation modeling, including
decomposing the parameter variance-covariance matrix
and imputing new parameters and standard errors.
Unfortunately, the current multiple imputation software will
not calculate these values. We decided not to use this
method because of the effort it required.

The second method of incorporating growth model predic-
tions into multiple imputation is using the growth model
predictions as the covariate. We used multiple imputation
matching and multiple imputation modeling techniques by
replacing the 1988 volume information in the earlier
multiple imputations with the growth model predicted
volumes.

Double sampling ratio estimatorWe also used the
classical sampling statistical technique called double
sampling using a ratio estimator (Cochran 1977). Double
sampling occurs when a sample is taken and the value of
one variable (X) is observed. Then a subsample of the first
sample is taken and the value of the variable of interest (Y)
is observed. The estimated average for Y on the whole
sample using a ratio estimator (      ) is the average of X for
the whole sample (      ), times the ratio of the average of Y
for the subsample (     ) divided by the average of X for the
subsample (     ):

The variance of this estimator is given by equation 9:

where     is the number of observations in the subsample,
     is the number of observations in the full sample, and

Note this estimator is not the same as regression through
the origin. In this instance, we used Y as the 1996 volume
for the uncut stands and the growth model-predicted
volumes for X. We then combined the estimates and
variances for the cut and uncut stands.

Solas Software
We ran all multiple imputations using Solas software
(1999). The multiple imputation matching techniques
followed the propensity score method, which uses a logis-
tic regression equation to predict the propensity of an X
value to correspond with a missing Y value. A donor pool of
observations is created from a local neighborhood of pro-
pensity values. If only one covariate is used, the predicted
propensity is a monotonic function of the covariate, and the
neighborhood of predicted propensities is the same as the
neighborhood of the covariate values. However, this
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condition will not necessarily be true if more than one
covariate is used. Because Solas creates a separate
equation for each level of a grouping variable, adding
grouping variables, such as forest type, will still allow the
propensity scoring method to act as a matching method.

Using multiple grouping variables causes a problem for
Solas. Solas can run only 30 groups at a time. With more
than 30 forest types, we had to break the data set into
several parts. We imputed each part separately, then
merged them together again. Solas also runs out of
memory and has trouble with large data sets. We hope the
new SAS multiple imputation procedure will have fewer
limitations.

We also ran the single imputation matching using Solas.
Instead of limiting the donor pool to just the plot with the
next larger and the next smaller 1988 plot volumes, Solas
required that the donor pool include at least the next two
larger and two smaller plot volumes. In keeping with single
imputation, we picked only one value per observation with
missing data.

RESULTS
Because the multiple imputation techniques use random-
ization, we ran all multiple imputation techniques five times
to estimate the variability caused by the randomization. We
report this variability for the estimated statistics (tables 1 to
3).

Means
Figure 1 shows the relationship between 1988 and 1996
volumes for the stands that were not cut. Several stands
along the 1988 volume axis show that criteria for determin-
ing cut stands did not catch all of the stands that lost
volume. The volume losses were probably the result of
natural disturbances as opposed to harvesting.

The full 1996 data have a mean of 1,569.96 ft3 per ac (table
1) and a standard error of 22.18 (table 2). Because the
multiple imputation methods were run five times each, the

overall means and standard deviations of the estimated
means appear on table 1. All but one of the estimation
techniques gave means within 1.15 standard errors of the
full data mean. Replacing the missing 1996 volume data
with the SETWIGS growth model projections provided a
mean of 1,771.63 ft3 per ac.

Figure 2 shows the relationship between the volumes
predicted by SETWIGS and the 1996 observed volumes for
uncut stands. The line on the graph shows where the
predicted volume equals the observed volume. Most of the
points fall below the line, showing that the SETWIGS-
predicted volumes were larger than the observed volumes.
This estimated mean is about nine standard errors above
the mean found by using all of the data.

0 4000 8000 12000
1988 Volume (cu. ft./acre)

0

4000

8000

12000

19
96

 V
ol

um
e 

(c
u.

 ft
./a

cr
e)

Table 1—Estimated mean stand volume by estimation technique

Estimation technique Means

All of the data 1,569.96
Three surveyed panels only 1,568.60
Group mean imputation 1,577.01
Single imputation matching: volume 1988 1,556.53
Multiple imputation matching: volume 1988a Mean 1,571.57, std. dev.  1.89
Multiple imputation modeling: volume 1988a Mean 1,570.77, std. dev. 17.91
Single imputation: SETWIGS 1,771.63
Multiple imputation matching: SETWIGSa Mean 1,574.68, std. dev.  4.14
Multiple imputation modeling: SETWIGSa Mean 1,575.01, std. dev.  9.61
Double sampling ratio estimator: SETWIGS 1,577.15

a  Multiple imputation techniques were run five times. The reported results are the mean and
standard deviation of the five runs.

Figure 1—Observed 1988 stand volumes versus observed 1996
stand volumes.



80

Standard Errors
The estimated standard errors are shown in table 2. As
with the estimated means, for the multiple imputation
methods, the means and standard deviations of the five
estimated standard errors are reported in table 2. The
standard errors for the single imputation group means and
the single imputation matching are smaller than the
standard error found when using the full data set. The
double sampling ratio estimator and the multiple imputa-
tions have larger standard errors than using the full data
set. Generally, the matching techniques outperformed the
modeling techniques, and SETWIGS predictions outper-
formed 1988 volume.

Mean Square Error
The mean square error is the bias squared plus the
standard error squared. The mean square error for each
method appears in table 3. As with the estimated means,
for the multiple imputation methods, the means and
standard deviations of the five mean square errors are
shown in table 3. Only the single imputation group means

Table 2—Standard errors of the various estimation techniques

Estimation technique          Standard error

All of the data 22.18
Three surveyed panels only 25.23
Single imputation group means 19.45
Single imputation matching: volume 1988 21.90
Multiple imputation matching: volume 1988a Mean 23.86, std. dev. 0.34
Multiple imputation modeling: volume 1988a Mean 30.80, std. dev. 3.16
Single imputation SETWIGS 25.43
Multiple imputation matching: SETWIGSa Mean 23.43, std. dev. 0.59
Multiple imputation modeling: SETWIGSa Mean 23.97, std. dev. 1.38
Double sampling ratio estimator: SETWIGS 23.15
All of the data: stratified sample 20.16

a Multiple imputation techniques were run five times. The reported results are the means
of the standard errors and their standard deviations.
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Figure 2—SETWIGS predicted volumes versus observed 1996
stand volumes.

Table 3—Mean square errors of the various estimation techniques

Estimation technique           Mean square error

All of the data 491.95
Three surveyed panels only 638.40
Single imputation group means 428.00
Single imputation matching: volume 1988 659.97
Multiple imputation matching: volume 1988a Mean  581.69, std. dev.  16.23
Multiple imputation modeling: volume 1988a Mean 1361.04, std. dev. 503.69
Single imputation: SETWIGS 41317.47
Multiple imputation matching: SETWIGSa Mean  590.03, std. dev.  66.46
Multiple imputation modeling: SETWIGSa Mean  686.78, std. dev. 100.88
Double sampling ratio estimator: SETWIGS 587.62
All of the data: stratified sample 406.43

a Multiple imputation techniques were run five times. The reported results are the means of
the mean square errors and their standard deviations.
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has lower mean square errors than using all of the data. As
with the standard errors, all of the multiple imputation
techniques had higher mean square errors, with the
matching techniques performing better than the linear
modeling techniques.

DISCUSSION
The single imputation group means technique removes the
variation between the missing volumes and their means by
forest type. Removing this variation causes the standard
error and the mean square error to be underestimated.
Single imputation matching limits the variation in a similar
manner. With a given set of original stand conditions, there
is a range of possible ending conditions. Single imputation
matching limits the variation less than does single imputa-
tion group means and, therefore, underestimates the
standard error less than group means imputation. How-
ever, it still underestimates the standard error and the
mean square error.

The standard error for double sampling ratio estimator is
very close to the standard errors for the multiple imputation
matching methods. The double sampling ratio estimator
required splitting the plots into harvested and unharvested
strata, while the multiple imputation methods did not stratify
the data. Therefore, the multiple imputation matching
methods actually performed slightly better than the double
sampling ratio estimator.

Creating an inventory estimate for the harvested stands is
more complex, especially for the double sampling ratio
estimator and the single imputation growth model method.
To use either of these methods on the harvested plots
would require either the ability to remotely sense all
harvests each year, or the creation of probability-of-harvest
models and a method of allocating partial harvests to
individual trees. The southern FIA unit currently does not
have the budget or the infrastructure to be able to remotely
sense harvesting on an annual basis. Some work has
been done on probability of harvest models for stands, but
no work has been done on methods of allocating partial
harvests to individual trees. The multiple imputation
methods would not require using remotely sensed infor-
mation on harvesting or the probability of harvest models.
Currently, about 20 percent of the stands are harvested
(either clearcut or partial) within a 5-year cycle.

All of the imputation techniques predict plot level data and
then calculate overall means and standard errors. The
double sample ratio estimator, however, is not an imputa-
tion technique because it does not calculate values for the
missing observations. Therefore the double sampling ratio
estimator may not be suitable for variables that are difficult
to model. The number of snags per acre, amount of fallen
woody debris, and ownership are examples of such
variables. Some tables, such as the diameter distribution
tables, may be sensitive to the differences between model
predictions and observed data, and may not be fit well by
the double sample ratio estimator.

The multiple imputation techniques may have an additional
advantage. While each table requires a separate run using
double sampling ratio estimator, properly constructed
multiple imputation data sets can be used for all tables
simultaneously.
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FIA ESTIMATION IN THE NEW MILLENNIUM1

Francis A. Roesch2

Abstract—In the new millennium, Forest Inventory and Analysis (FIA) will deliver most of its database information
directly to the users over the Internet. This assumption indicates the need for a GIS-based estimation system to support
the information delivery system. Presumably, as the data set evolves, it will free FIA and the users from exclusive
estimation within political boundaries.

A data set of basal area measurements from a survey unit in Georgia is used to simulate one that might have been
obtained had an annual inventory been conducted over a 5-year time interval. The simulated data set was used to
investigate various estimators and any potential spatial correlation of basal area. The presence of spatial correlation,
coupled with a desire to fulfill user needs to obtain estimates over individually defined elements of the spatial-temporal
cube, forms the basis for an argument that a real-time GIS-based estimation system should be developed as the main
information delivery vehicle for FIA.

1 Paper presented at the Second Annual Forest Inventory and Analysis (FIA) Symposium, Salt Lake City, UT, October 17–18, 2000.

2 Mathematical Statistician, USDA Forest Service, Southern Research Station, Asheville, NC 28804.

INTRODUCTION
As we approach the next millennium, it is apparent that we
cannot consider how we might improve Forest Inventory
and Analysis (FIA) estimation without first asking: “What are
the major products of FIA likely to be?” That is, through
which routes will we deliver the bulk of our inventory
information? Most likely, we will deliver most of our informa-
tion directly from the database over the Internet, not in the
paper reports that have historically taken about 2 years to
publish. To use the Internet effectively and efficiently, we
must build an estimation system to adequately support the
delivery of information that is more sensitive to the needs of
its users.

Insights into the needs of these users can come from
myriad sources, but none so compelling as the reports of
the two Blue Ribbon Panels, BRP I (Anonymous 1992) and
BRP II (Anonymous 1998). These panels were formed
specifically to provide suggestions for improving the FIA
program. For instance, a concern over the potential misuse
of FIA data resulted in the following statement from BRP I:
“To maintain the credibility of the program, FIA, working
together with experienced biometricians, must issue clear
direction on the scientifically valid uses of FIA data without
creating disincentives to innovation and advancement of
technology” (Anonymous 1992).

The best way to communicate scientifically valid uses of the
information is to develop a system that can provide esti-
mates in as many usable forms as possible. In this
manner, FIA will provide scientifically defensible mecha-
nisms from which to make estimates. FIA may still chal-
lenge inferences drawn from the estimates, but if the
estimates themselves are sound, the scientific community
can debate the validity of various resulting inferences.

The second Blue Ribbon Panel reiterated and expanded
the recommendations of the first in one specific recom-
mendation:

“Better analysis is necessary for improving customer
service. More analysis of FIA data would be useful in
improving and increasing customer service. While some
FIA customers have the capability and inclination to analyze
raw data themselves, other customers rely on outside
sources to summarize and analyze the data for them”
(Anonymous 1998).

In addition, the second Blue Ribbon Panel charged FIA to
“Produce the most current resource data possible.”

The overwhelming consensus among panel members
was that timeliness of resource data is of paramount
importance:

“Strengthening of Forest Service research and expertise in
Geographic Information Systems (GIS), and collaboration
with other agencies, could deliver immediate benefits. We
urge the Forest Service to:

“Reallocate funding within the Forest Service in order to
reach the goal of timely resource data established in the
first Blue Ribbon Panel report. Fully integrate GIS
technology into the inventory process. Aggressively support
and promote the annual inventory systems being
established in the North Central and Southern FIA units.
Based upon results from these efforts, establish a model
for annual inventory to be adopted nationwide” (Anonymous
1998).

To fully comprehend the needs of the users, we must first
identify those users. FIA users include State foresters,
university researchers, National Forest System employees,
Forest Service researchers, military bases, other govern-
ment and State agencies, forest industry, forestry consult-
ants, and members of conservation and environmental
groups. Their needs are as diverse as the groups them-
selves.
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The term “drill-down technology” refers to a database
feature that allows a user to view increasing levels of detail
as scale increases. It is used extensively in mapping
software and GIS packages to deliver the appropriate level
of information at varying scales. For example, if one were
interested in regional wood supply information, providing
individual tree-level data would not be very helpful. On the
other hand, region-level information provides little more
than background to a State forester interested in a particu-
lar county’s available forest resource. A resourceful user
can derive region-level information from tree level data from
the entire region. However, users are generally supportive
of programs that provide information in the most useful
forms and at the most appropriate scales. It is apparent
that the most efficient aggregator of FIA data into appropri-
ately scaled information will usually be FIA itself. Excep-
tions do occur with a few special-needs users.

Given the richness of the data that will be available from the
annual inventory design, and the power of existing GIS
systems, the user of FIA data should not be constrained by
boundaries in space or time that have been predefined by
FIA. However, given user-defined spatial and temporal
constraints, FIA should endeavor to provide estimates in
real time. These estimators should be available for as
diverse a set of needs as the data will allow. Certainly, the
data support investigations into forest amenities and
commodities at a wide range of scales, but they can also
provide insights into the contributions and effects of forests
in wide-ranging areas of interest. Some related areas
include studies of pollution, watersheds, and even human
behavior.

To increase the usefulness of our information, we must
incorporate all of the available improvements in user-
interface tools. As a minimum standard, the user should
not have to know any variant of Structured Query Language
(SQL). This requires that we provide the estimation system
in a user-friendly GIS environment.

To ensure the greatest utility of the data, FIA must provide
an estimation system robust to an unpredictable and
uncontrollable set of click events. This will compel FIA
statisticians to reach as deeply into their estimation toolbox
as any single previous effort has ever required. A com-
pletely different approach will be required if the user is
permitted to define areas of interest—say by digitization or
by map overlays—and time periods of interest rather than
be required to work within strictly defined boundaries in
space and time. Given the plethora of information available
in the data set, a truly robust system would often have to
use estimators that “reach out” to external data and other
information sources for support, rather than to rely solely on
the FIA data collected within the user-defined, spatial-
temporal limits. A GIS-based estimation system has to
provide the “best” estimators at any scale of interest within
the estimation range. For most attributes, the most inten-
sive scale in the estimation range for FIA data includes
areas the size of a large county. However, the relationship
of available information to the area delineated varies by the
size of the area relative to the sample, the variable of
interest, and the period of interest. Large areas require only

the usual sample estimates when sample sizes within the
area and period are adequate, while small areas require
the use of supplementary information from outside of the
area or period.

METHODS
Before an estimation system can be incorporated into a
production system, its individual components, as well as
the relationships between those components, must be
thoroughly tested. This leaves us with the problem of
testing a large, potentially complex, estimation system prior
to the availability of the data. The approach we used was to
manufacture a reasonably believable 5-year series of data
by projecting data from a single year backward and forward
1 and 2 years. The data from FIA’s Survey Unit 1 in Georgia,
collected in 1989 and 1996, were used to establish
individual-tree basal area projection equations, mortality
and harvest probabilities, and proportions by forest type,
dominant species, and age class. These functions were
then applied to the 1996 tree-level data to project it back-
ward 1 and 2 years and forward 1 and 2 years, simulating
tree data for 5 consecutive years on 2,353 plots. The survey
unit consists of 35 counties, which were grouped into 5
contiguous 7-county groups for part of this study. This data
set was considered to represent the “truth” for each of the
years 1994 through 1998. Figure 1 graphs the “true” mean
basal areas per acre. We define the “current truth” as the
state of this simulated population in 1998.

The sample plots for the FIA Annual Inventory sample
design are located in a systematic triangular grid consist-
ing of five interpenetrating panels. One panel is measured
each year for five consecutive years, after which the panel
measurement sequence reinitiates. If panel 1 was mea-
sured in 1998, it will also be measured in 2003, 2008, and
so on. Panel 2 would be measured in 1999, 2004, 2009,
and every five years thereafter.

To mimic the systematic FIA Annual Inventory design,
spatial coordinates of the plots were used to assign plots
to panels, a panel being a single year’s measurement.
Therefore, the simulated FIA Annual Inventory sample
consisted of approximately one-fifth of the plots for each
year.

A preliminary study investigated specific applications of two
general methods for combining the multiyear data from the
FIA annual inventory design to form current estimates for
small areas. The two general methods are (1) the simple
moving average estimator (MAE), and (2) a globally defined
mixed estimator (ME) applied locally. Two variations of the
mixed estimator method (ME1 and ME2) are compared to
each other as well as to the assumed default estimator
(MAE). Assume that one and only one full series of obser-
vations is available so that all five panels have been
measured once. “Current” is defined as the measurement
time of the last panel (panel 5).

MAE pools the latest five panels measured, under the
assumption that no time trend exists at the observed scale.
As some variables of interest will violate this assumption
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over the measurement interval, it is important to determine
valid applications of this simple estimator.

Modeling an existing temporal trend becomes important
when the objective is to estimate the time-specific value of
some forest attribute, e.g. current volume or basal area per
acre. When a temporal trend does in fact exist, MAE will
have the tendency to mask the very trends that the FIA
annual inventory design was intended to evaluate. There-
fore, we explored the mixed estimator because it can
recognize and efficiently utilize the time-series nature of the
five-panel sample.

If we seek the estimate for a variable at a specific time, let:

ijtX = the per-acre value observed at plot i  in county j

( =i 1,...,
jn , j = 1,...,J), and time t (t = 1,...,5),

ijtA = the area in acres sampled at plot i in county j

( =i 1,...,
jn , j = 1,...,J), and time t (t = 1,...,5), and

PA  = the fixed plot area.

When no time trend is present, the sample area weighted
mean for the five-panel series provides the best estimator
of a per-acre value (V):
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We tested two variations of mixed estimation for current
basal area. Each variation applies global (survey unit)
results of the mixed estimation methodology to subareas
within the survey unit, under the assumption that the
sample will often be too small for a direct application of
mixed estimation to the subareas. In both variations, we
used mixed estimation at the survey unit level to choose
from the three simple models discussed by Van Deusen
(1999), and to find the maximum likelihood estimate of the
weighting parameter p. The models were (1) a straight line
with a slope of zero, (2) a straight line of any slope, and (3)
a quadratic. In the first variation (ME1), we fit the chosen
model and level of p at the lower levels (i.e. county and
county group). In the second variation (ME2), we fit the
chosen model at the survey unit level to predict an overall
    (a Tx1 vector described below, where T is the number of
years in the sample, usually equal to 5). This leads directly
to a simple updating vector 

   
,
 
found by multiplying the

inverse of each element of    by the fifth element of    .
Then:

where:

        a Tx1 vector of total area sampled at each time,

       a Tx1 vector of basal area estimates for each time,

      a Tx1 vector of ones, and

                          = a function that places a Tx1 vector       into
the diagonal of a TxT matrix of zeroes.

Figure 1—Survey unit “true” mean basal area per acre by year.
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We then evaluated the estimators for how well they
predicted the “true” county level and county group level
basal areas for 1998 from the 1994 to 1998 sample, under
a squared error loss function. Initially, we conducted a case
study yielding a unique solution for the moving average
estimator (MAE) and each variation of mixed estimation
(ME1 and ME2). The squared error calculated for these
methods is simply the mean of the squared difference of
each estimate by county and county group from the truth for
that county or county group.

Finally, we performed a simulation, assuming that spatial
correlation between plots was unimportant. The plots were
randomly rearranged 1,000 times and then grouped into
simulated, approximately equally sized, “counties.” We
varied the number of counties from 10 to 50 to see what
effects sample size would have on the ranking of the
estimation approaches. When the plots were grouped into
10 counties, there was an average of 235.3 plots in each
county, (actually 235 plots in 7 counties and 236 plots in 3
counties). At the other extreme, when there were 50
counties, there were 47 plots in 47 counties and 48 plots in
3 counties. We calculated the mean difference and mean
squared difference from the “truth” over the 1,000 random
arrangements of the 2,353 plots. We defined the “truth” as
the population mean of each simulated county at time 5.

The simulation results led to the suspicion that the as-
sumption of spatial independence between plots was
weak. Therefore, in an attempt to detect spatial trends, we
performed median polishes of the “true” population plot
data for 1998 aggregated at five different scales of a square
grid (50, 40, 30, 20, and 10 miles on a side). We conducted
the median polishes in the cardinal directions (north-south
and east-west). At two scales, a strong north-south trend
was indicated. The cell sizes for the first of these scales
were slightly larger than the average county size (a square
grid with 30 miles on a side), resulting in 31 filled cells. The
second scale was 20 miles on a side, resulting in 57 filled
cells. The results for 50, 40, and 10-mile grids are not
presented because they did not show any spatial trends.
Subsequent to the median polishes, we calculated the
variograms for the 30 and 20-mile grids of both the original
data and the residuals.

RESULTS
For the case study, table 1 shows the mean difference from
the truth over all counties and county groups for MAE, ME1,
ME2, and the mean of panel 5 (P5M). Table 2 shows the
corresponding mean squared differences. The panel 5
mean is included because panel 5 is the portion of the
sample that observes only the population partition of
interest (that is, tree basal areas during 1998). In the case
study, the mean difference is not a true measure of model
bias, but can be an indication of model bias. Note that two
of the estimators have roughly the same mean difference at
both the county and county group levels, leading us to
suspect that the respective levels may reflect the true level
of bias in these estimators. Of these two, MAE shows the
largest absolute difference. Due to the increasing trend in
the variable of interest, all values for the moving average
were low. The magnitude of the absolute mean difference

is close to zero for ME2. When going from the county to the
county group level, the large reduction in magnitude of
absolute mean difference for the other two estimators
appears to be more a result of decreasing variance than of
bias. Of course, because P5M is design unbiased and
does not rely on a time dependent model, we know that this
is the case for P5M.

In table 2, ME2 shows the lowest mean squared differ-
ences overall. In addition, ME1 has a higher variance than
MAE and ME2 at the county level, because the sample
sizes were too small at the county level to fit the model. Two
observations support this statement. First, ME1 behaves
better at the county group level than at the county level.
Second, ME2, in which the model was fit at the survey unit
level and then applied at the lower levels, works well even
at the county level.

The second part of the study, the simulation in which we
randomly rearranged the plots, has led to unexpected,
albeit explainable results. The top graph in figure 2 shows
the mean squared difference from the truth for the 1,000
random arrangements of the 2,353 plots after being
grouped into 10 to 50 counties; the bottom graph gives the
corresponding mean differences. Note that although the
MAE of time 5 basal area still displays the expected bias, it
now compares favorably, in terms of mean squared error,
with ME2. ME2 can be expected to work best if the individual
county basal areas at times 1 through 4 have the same
values relative to the county basal areas at time 5 as
occurs globally over the entire survey unit. In a heteroge-
neous population, this condition is more likely to occur if
similar plots are spatially collocated. ME1 requires that the

Table 1—Mean difference—case study 
 
 
  County 
Estimator County  group 
 
 
Moving average estimator -2.026 -1.919 

Panel 5 mean  2.293  .024 

Mixed estimator, variation 1 -2.367  .027 

Mixed estimator, variation 2  .078  .159 
 

Table 2—Mean squared difference—case study 
 
 
  County 
Estimator  County  group 
 
 
Moving average estimator 12.586 4.305 

Panel 5 mean  314.065 8.963 

Mixed estimator, variation 1 98.350 2.470 

Mixed estimator, variation 2 9.128 .513 
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Figure 2—Mean squared difference (A) and mean difference (B) from the truth for 1,000 random arrangements of
the 2,353 plots after being grouped into 10 to 50 counties; i.e., sample size per county is decreasing from left to
right.

selected model be fit at the county level. This would be
advantageous if plots within counties were more homoge-
neous than between counties, and if there were a sufficient
number of plots in each county. These observations have
led to a search for spatial trends in the data.

In the top graph, figure 3 gives the aggregated mean
population basal areas for the data within grid cells of 20
miles on a side; in the bottom graph, it gives the residuals,
row, column, and all effects following a median polish of
this data. Tukey (1977) and Cressie (1991) explain the
median polish (also known as median sweep). Figure 4
gives the corresponding information following a coarse
mapping with 30-mile grid cells. In the bottom graph of both
figures, the row effect (far right column, save for the “all”
effect at the bottom) is a large, positive number at the top
and a not-quite-as-large, negative number at the bottom.
Although neither vector strictly decreases from top to
bottom, a trend does appear likely.

The top graph of figure 5 shows the classical estimates, as
well as the Cressie-Hawkins robust estimates (Cressie
and Hawkins 1980), of the north-south variograms for the
data in the top graph of figure 3. The bottom graph of figure
5 displays the corresponding estimates for the residuals in
figure 3. Likewise, figure 6 provides the same estimates for
the data in figure 4. Figure 5 illustrates the classic argu-
ment that the median polish removes spatial correlation

from the data, as the estimated variograms of the residuals
are decidedly flatter than those of the data. At first blush,
figure 6 seems to give quite the opposite impression; that
is, unless one ignores the values for the lag of six (equal to
180 miles). It is appropriate to ignore this lag since only a
single observation supported it and one end of the interval
happens to be in a row with only two observations. Ignoring
the lag 6 values, we see that the plots for the residuals are
slightly flatter than the plots for the data. In toto, figures 3
through 6 show that there is a north-south trend observable
at scales greater than or equal to 100 miles.

CONCLUSIONS
The FIA annual inventory design will provide a set of
sample observations of forest attributes that is thoroughly
diffused through space and time. This will allow estimation
of forest attributes for an almost-infinite set of subdomains
of interest. FIA cannot provide this extremely large set of
potential estimates; however, FIA could and should provide
a reasonable set of tools within an estimation system to
users accessing the data over the Internet. Such a system
would be more useful if it made reasoned use of data from
outside the domain of interest (i.e. the space-time cube
defined by a user) when that domain of interest is too small
to contain enough observations for the usual sample-
based estimators.
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Figure 3—Aggregated mean basal area (A) of the “true” population simulated from Georgia, Survey Unit 1 Forest
Inventory and Analysis data following a coarse mapping with a grid size of 20 miles on a side, plotted by an
arbitrary coordinate system. The bottom graph (B) shows the overall effect (bottom right), the column effects
(remainder of the bottom row), the row effects (remainder of the right column), and the residuals (remaining
values) following a median polish of the data in the top graph.

This study examines methods of making estimates over a
smaller domain than the sample within that domain will
actually support. The methods that use outside information
in different ways, MAE, ME1, and ME2, yield substantial
improvement in terms of squared error loss over P5M.
None of the alternative estimators, as applied to the small-
areas, however, can be shown to be design unbiased. In
the presence of increasing or decreasing trend, the
alternatives to the simple moving average have the poten-
tial of being model unbiased. For basal area, and presum-
ably all variables that are likely to exhibit trends over the 5-
year measurement period, even simplistic approaches to
modeling the trends can result in significant reductions in
MSE over the simple moving average.

These estimators (MAE, ME1, and ME2) use the same
information in different ways. That information comes only
from the FIA annual inventory data, although 80 percent
comes from outside of the domain of interest. Therefore,
comparisons between the methods are direct. On the other
hand, some methods that we have not discussed here
benefit from a rich history of external growth and yield
research. Mixed estimation, in general, represents a much
lower investment in human resources both initially and in
the long term than common industrial methods, which use
growth and mortality equations to update plot data. This

latter approach would be difficult for FIA to use because
appropriate growth models do not exist for many condition
classes of interest, and those that do exist would have to
undergo thorough testing for use in this context. In addition,
to ensure that the forest populations are not moving away
from those upon which the models were built, the growth
model predictions would have to be constantly monitored.

There are at least two ways to view any differences be-
tween Part 1, the case study, and Part 2, in which the plots
were randomly rearranged 1,000 times. Conducted over a
broader range of conditions, the simulation, on the one
hand, should be considered a more robust test of the
behaviors of the respective estimators. On the other hand,
the simulation disfavors estimators that draw strength from
spatial correlation, if that correlation exists in real popula-
tions. Any spatial correlation inherent in the data remained
intact in the case study but not in the simulation. The
results support this second viewpoint on a number of
fronts. For instance, the moving average estimator moved
up in ranking during the simulation relative to the case
study. Since spatial correlation would lead to stronger time
trends within counties, and the moving average estimator
would be at a disadvantage in the presence of a time trend,
a simulation ignoring potential spatial correlation might
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Figure 4—Aggregated mean basal area (A) of the “true” population simulated from Georgia, Survey Unit 1
Forest Inventory and Analysis data following a coarse mapping with a grid size of 30 miles on a side, plotted
by an arbitrary coordinate system. The bottom graph (B) shows the overall effect (bottom right), the column
effects (remainder of the bottom row), the row effects (remainder of the right column), and the residuals
(remaining values) following a median polish of the data in the top graph.

Figure 5—Classical and Cressie-Hawkins robust estimators of the north-south variograms for a grid
size of 20 miles on a side, for the aggregated data (A) and the residuals (B) following a north-south,
east-west median polish.
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garble any time trend enough to favor the moving average
estimator. Similarly, if a strong global time trend existed, in
the presence of strong spatial correlation at the county
level, the two applications of mixed estimation would
benefit. Therefore, we should not be surprised if they fare
better in the case study than in this particular simulation.

The spatial analysis established that the basal area data
did contain spatial correlation at relevant scales. Other
survey units, of a similar size and diversity, could also
exhibit spatial trends for this and probably other variables.
Therefore, modeling for both the potential spatial trends as
well as the potential temporal trends within survey units
could benefit small-area estimates. This gives further
credence to the call to FIA for the development of a GIS
based estimation system with the ability to adapt to user-
defined areas and periods of interest.
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These needs can be quantified by letting the implemen-
tation year for a state be year 1 and the current year be T.
Call the true per acre value     . Therefore the user wants

where     is a random error term. It follows that the expected
value of the moving average is

1 Paper presented at the Second Annual Forest Inventory and Analysis (FIA) Symposium, Salt Lake City, UT, October 17–18, 2000.

2 Principal Research Scientist, National Council for Air and Stream Improvement, 600 Suffolk Street, Lowell, MA 01854.

 ALTERNATIVES TO THE MOVING AVERAGE1

Paul C. Van Deusen2

Abstract—There are many possible estimators that could be used with annual inventory data. The 5-year moving
average has been selected as a default estimator to provide initial results for states having available annual inventory
data. User objectives for these estimates are discussed. The characteristics of a moving average are outlined. It is
shown that moving average characteristics don’t always coincide with user objectives. Alternative estimators are
proposed that may have more desirable characteristics than the simple moving average.

INTRODUCTION
The Forest Inventory and Analysis (FIA) program of the
USDA Forest Service is shifting from doing periodic
inventories in each state to implementing an annual forest
inventory (USDA Forest Service 1999) where a percentage
of the plots are measured each year. The design is
intended to provide annual systematic coverage of each
state and to generally provide the same amount of
information each year. For the most part, the annual
inventory uses the same plot system that existed under the
periodic design, and one could argue that the annual
system merely changes the timing of plot visits. In fact, the
annual inventory is a response to changing user needs
and therefore represents a major transition for FIA.

A widespread user desire for more timely data is arguably
the driving force that led to the 1998 Farm Bill directive for
annual inventories. This is documented in 2 Blue Ribbon
Panel reports, BRP I and BRP II (American Forest Council
1992, American Forest and Paper Association 1998).
BRP I called for shortening the cycle between periodic
surveys from 10 to 5 years. This shortened cycle was never
achieved and cycles averaged 10 years or more when BRP
II convened in 1997. The BRP II call for an annual survey
led to the 1998 Farm Bill legislative mandate for annual
surveys.

WHAT THE USER WANTS
Most users want timely data and timely estimates. They
want estimates that reflect current values in accordance
with the current data that an annual inventory provides. It
follows that estimates of per acre values are needed for
year t, where t can denote any year beginning with annual
inventory implementation up through the current year.
Likewise, estimates of change between any 2 years should
be available. It goes without saying that the user also wants
current estimates of area by forest type, but that is a subject
for another paper.

·

WHAT THE MOVING AVERAGE ESTIMATES
The 5-year moving average is equivalent to taking all plot
measurements from the last 5 years in a state and
averaging them together. For years t-4 through t this can be
written as

where     is the average of all plot values measured in year
j, and        is a weight such that                 . The plan for the
annual inventory is to assign plots to panels and to
measure 1 panel per year. Therefore,      can also be called
the panel mean. The weight,    , ensures that each panel is
weighted according to the proportion of the total plots it
contains. With an exact 20 percent sample,     =0.2.

The panel mean is unbiased for the true underlying
value,      , and we can write
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to what was done under the old periodic design. It often
took 3 or more years to complete the full periodic survey
in a state, and state estimates were obtained by averaging
all plots together as if they had been measured in the
same year. This estimate was then assumed to represent
the value at the final measurement year. Based on this
precedent, one could conclude that the 5-year moving
average is "good enough" even though it isn't estimating
the current year value.

The variance of the moving average is easy to derive as

where                             is estimated from the between plot

variance within the panel and      is the number of plots in
the panel measured in year j. Therefore, the expected value
and the variance of the moving average are well-defined,
and both are easy to estimate.

ESTIMATING CHANGE WITH THE MOVING
AVERAGE
Change and trend are more important to many FIA users
than current status. FIA is committed to producing official
state-level reports every 5 years, but users will not wait for
10 years to assess trend. Since the moving average is
currently considered to be the default estimator it makes
sense to look at the difference between 2 moving average
estimates. Suppose we are at year 6 of the annual survey
and want an estimate of change since year 5. The difference
between the year 6 and year 5 moving average is



Equation (6) shows that taking the difference of consecutive
moving averages cancels out much of the data. Remember
that the goal of the annual survey is to cycle through the
plots every 5 years, so the plots measured in year 1 will
generally be remeasured in year 6. Therefore, equation (6)
shows that simple 5-year moving average change estimates
give the average of the 5-year change in the current panel.
The other 4 panels (80 percent of the plots) measured over
the past 5 years are ignored. This is clearly an undesirable
situation and less variable estimators could be constructed
by using more of the data.

The variance of the moving average change estimator
(equation 6) is
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ALTERNATIVES TO THE MOVING AVERAGE
Alternatives to the moving average are needed because
(1) the moving average is not unbiased for current status
and (2) moving average annual-change estimates ignore
80 percent of the plots under a 5-panel annual inventory
design. There are many alternatives that could be
considered. Here the focus will be on mixed-estimation
methods (Theil 1971), but multiple imputation (Rubin 1987)
and double sampling for regression will also be briefly
discussed.

Multiple Imputation
Multiple imputation (Van Deusen 1997, Reams and Van
Deusen 1999, Roesch and Reams 1999) uses the intuitively
appealing approach of filling in values for unmeasured plots
and then applying standard complete data analysis meth-
ods. Imputation can be performed by database lookup
(hotdeck methods), with regression estimates, or with more
elaborate modeling efforts. Single imputation is a special
case where only one possible value is imputed for each
missing value. Single imputation usually requires complex
procedures to properly estimate variance. This makes it
tempting to treat imputed values as if they are real which
will lead to under-estimating the variance. Multiple
imputation requires the imputer to incorporate variability
into the imputations, which leads to a simplified variance
estimation process for the analyst.

Multiple imputation can work for variables that are difficult
to model but are amenable to database lookup. Examples
of such variables include: number of snags, Red-cockaded
Woodpecker (Picoides borealis) nests, or disturbance
status. A disadvantage is that multiple datasets must be
stored (say m) and each analysis must be repeated m times.
Typical users might find this confusing, so multiply imputed
datasets will probably not become an official FIA product in
the near future.

Double Sampling for Regression
Double sampling for regression (DSR) can be viewed as a
single imputation procedure. Intuitively, single imputation
methods should place different weights on imputed values
and real data. DSR (Cochran 1977, Fairweather and Turner
1983, and Hansen 1990) does this by incorporating pre-
dictions via the following regression equation

where      is the mean from the year t panel, a is a
regression coefficient,    represents concomitant
information from the 4 panels not measured in year t,
and      is concomitant information from the year t panel.
Usually one refers to a large and a small sample with DSR,
where the small sample includes the hard-to-measure
variable, y, and the easy-to-measure variable, x. Only the
easy-to-measure variable is measured in the large sample.
For the annual inventory application, the current panel is the
small sample and the other 4 panels constitute the large
sample.
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so the covariance between remeasured plots will reduce the
overall variance. However, this doesn't justify ignoring 80
percent of the plots.
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A necessary assumption is that the large and small
samples represent the same population, and therefore
                   .  However, this may not be true with the annual
inventory. The values for      from the current panel must
come from measurements made 5 years earlier, whereas
    comes from measurements made 4, 3, 2, and 1 years
earlier on the other 4 panels. Therefore, there are
systematic differences between the small and large
sample x's, and it is likely that                   . Regardless,
double sampling for regression could be used as a single
imputation technique, but some validation studies should
be conducted first. Also, variance of DSR change estimates
would be difficult to derive such that auto correlation is
correctly handled.

Mixed Estimation Methods
Mixed estimation (Theil 1971) offers a flexible time series
approach that leads to model-unbiased estimates of cur-
rent status, change estimates over any time interval, and
variance estimates. There are numerous variations that
can be considered (Van Deusen 1996, 1999) and a subset
of the possibilities is presented here.

Generally, a mixed estimator is defined by an observation
equation and a transition equation, where the transition
equation is analogous to the Bayesian prior distribution.
Although mixed estimation has a Bayesian flavor, it is a
cross between Bayesian and frequentist approaches. The
observation equation used here is

where     is an independent random error with mean 0 and
variance            . Consider the following three transition
equations

where      is an independent random error with variance
              and  p  is a parameter that is estimated from the
data. As  p  gets larger, the influence of the transition
equation diminishes and the mixed estimator approaches
the mean for each panel. Each transition equation leads to
a mixed estimator with somewhat different characteristics.
Likewise, each equation represents a different prior
assumption about how       is related to        . The transition
equations (8a-c) constrain the first, second, and third
differences of the    s and lead to progressively smoother
estimates of trend. The transition equations also state that
past values give an indication of current values. This
seems eminently plausible, since the forest won't change
much from 1 year to the next, barring catastrophe.
Transition equation (8b) represents an intermediate
smoothness constraint and would make a reasonable
choice for FIA purposes.

The estimation process is best described using matrix
notation. It follows that there is no particular reason to use
only the most recent  5 years of data. The equations stay

x

the same regardless of how much data are used, and the
estimates will usually improve with more data. The matrix
estimation equations for years 1 through T are
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where
R depends on the selected transition equation,

contains transition variances on the diagonal, and

                         . More details can be found in Van

Deusen (1999).

The important point here is that relatively simple equations
are available to estimate current status and its variance.
Trend estimates are also available, since equation (9a)
provides estimates of       through     . To estimate the the
change from time t–k to t, simply use              . A complete
covariance-matrix is available from (9b), which makes it
possible to estimate the variance of change. Thus, mixed
estimators provide very general capabilities for estimating
status and trend.

SUMMARY
FIA is replacing the periodic inventory with an annual
inventory. Even though data will be acquired annually, FIA
plans to produce official estimates for each state every 5
years using a 5-year moving average. The 5-year moving
average has been selected as the default estimator for
the annual survey, in part because it seems easy to
understand and compute. Users want FIA procedures that
are statistically valid, not unnecessarily complicated, and
that meet their needs. The MA is statistically valid and easy
to implement, but it doesn't fully meet user needs. In
particular, the MA does not estimate current status at time t.
Regardless, it is similar to what was done under the old
periodic design and might be an adequate approximation
of current status.

Users also want estimates of trend between any 2 years,
say t and t–k. In particular, they should be able to obtain
change estimates between the current year and the prev-
ious year. It was shown in equation (6) that the difference
between consecutive 5-year moving averages gives an
estimate of the average annual growth over the last 5 years
using only 20 percent of the plots. Therefore, this cannot be
the best trend estimator available.

Mixed estimators were discussed that do provide
estimates of current status and trend between any 2 years.
These estimators are more complex than the MA, but will
give users a wider array of estimates. For a few years
following annual inventory implementation, the moving
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average may be sufficient. In the long run, FIA should give
serious thought to finding alternatives to the MA.
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 THE NEW SOUTHERN FIA DATA COMPILATION SYSTEM1

V. Clark Baldwin, Jr., and Larry Royer2

Abstract—In general, the major national Forest Inventory and Analysis annual inventory emphasis has been on data-base
design and not on data processing and calculation of various new attributes. Two key programming techniques required for
efficient data processing are indexing and modularization. The Southern Research Station Compilation System utilizes
modular and indexing techniques applied with standard Oracle tools. We present the unit’s approach and describe the
challenges encountered as a guide for others embarking on the same complex computational journey.

INTRODUCTION
The new southern Forest Inventory and Analysis (FIA)
Inventory Compilation System includes data processing
activities from field collection to processed data output. For
convenience, the process is divided into three phases: (1)
data collection, (2) calculation of derived data, and (3) output
of the compiled data. Although relatively straightforward and
manageable, the computing process is complex because of
the changes in sampling design, addition or redefinition of
variables measured, and new or additional outputs required
in the shift from periodic to annual inventories.

The complexities begin at the field collection phase, where
the data recorder software must be capable of managing
input from various sampling scenarios. The first scenario is
the remeasurement of the periodic/prism sample with the
initial inventory of the annual/mapped sample overlaid on
the prism/periodic sample (USDA 1967, 1998). The second
scenario is the remeasurement of the annual/mapped
sample (USDA 1998). The third scenario is the remeasure-
ment of a fixed-area sample (e.g., 1998 Kentucky plots) with
a new initial annual/mapped sample at a different location
(USDA 1999). At the present time, nine States are down-
loading previous inventory data, collecting new data, and
transmitting data. While the States are actively converting
data from periodic to annual inventories in different stages
and ways, data from no two States are similarly compiled.
Sophisticated software downloads and formats data from a
variety of sources, such as flat-files (Anonymous 2000) and
Oracle™ database tables (Koch and Loney 1997), into a
common Microsoft™ (MS) Access format (Anonymous
2000). The field crews operating in the remeasurement of
the annual/mapped mode can query the Oracle database
tables through any remote Internet connection and build the
county’s previous inventory data interactively on the
personal data recorder. Crews operating in the other modes
download preformatted historic data to the personal data
recorder. They can transmit and capture data through a dial-
up connection to a server in Starkville, MS, which loads the
data into a set of Oracle relational production database
tables.

The amount of data flowing concurrently from nine States is
part of the “tidal wave of data” referred to during this
conference. From 28,101 sample plots, 21,161 were

submitted via data recorder; and 6,940 were submitted by
other means. The number of trees from these plots totaled
605,281. Data flowing so quickly into the system caused a
logjam. To accommodate this massive data input, we have
designed a compilation system and data-flow method to
clear the logjam and ensure efficient data processing.

The Southern Compilation System had to overcome many
challenges during system development; these involve
algorithm development and programming and required the
creation of immediate solutions. The difficulties centered in
the areas of (1) computer system and Oracle software
performance, (2) input data, (3) change accommodation, (4)
area reconciliation, and (5) moving-average estimation.

THE SOUTHERN COMPILATION SYSTEM
Concepts
The data compilation system must process current and
previous data for all of the scenarios described above. The
Oracle database system accomplishes these complicated
tasks using a relational database format. The three major
groups of relational tables within our Compilation System
are  (1) Production Tables, (2) Regional Tables, and (3)
National Tables.

Indexing—The Compilation System hierarchy was designed
with primary index keys that link the database tables to allow
quick and easy access to any element. The primary index
key, PIX_ID, grows as the level of the table increases within
the hierarchy tree. The primary index key is similar to a
serial number and can be used to locate an item in any
table, based upon its relation to any other table. Levels of
processing are State, county, cycle, panel, plot, and
individual tree. The following programming code example
illustrates the process:

Production Table Prod_Plot plot level PIX_ID = 1300103141
where State = 13, County = 001, Plot = 031, Cycle = 4,
and Panel = 1.

Regional Table Inventory tree level PIX_ID =
13001031413010 where State = 13, County = 001, Plot  =
031, Cycle = 4, Panel = 1 , Subplot = 3, and Tree Number
= 10.

National Table Tree level PIX_ID = 13001031413010 where
State = 13, County = 001, Plot = 031, Cycle = 4, Panel =
1, Subplot = 3, and Tree Number = 10.
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We establish an SQL query by joining the three tables, using
a substring of the PIX_ID key. The following simple SQL
statement can query the attributes of species code, diameter
from the Tree table, past diameter at breast height (d.b.h.)
from the Inventory table, and remeasurement period from
the Plot table:

Select Tree.spcd, Tree.dia, Inventory.Pastd.b.h.,
Plot.Remper from Tree, Inventory, Plot where Tree.pix_id
= 13001031413010 and Inventory.Pix_Id = Tree.Pix_Id and
Plot.Pix_Id = substr(Tree.Pix_Id,1, 10)

By using the PIX_ID primary index key, we can reduce
paragraphs of Structured Query Language (SQL)  code to a
statement that can locate individual items, such as one tree.
Without the PIX_ID primary index key, the query to select
the exact same attributes would be:

Select Tree.Spcd, Tree.Dia, Inventory.Pastd.b.h.,
Plot.Remper From Tree, Inventory, Plot Where
(Tree.Statecd = 13 and Tree.Countycd = 1 And Tree.Plot =
31 And Tree.Cycle = 4 And Tree.Panel = 1 And
Tree.Subplot = 3 And Tree.Tree = 7) And (Inventory.State
= Tree.Statecd And Inventory.County = Tree.Countycd
And Inventory.Location = Tree.Plot And Inventory.Cycle =
Tree.Cycle And Inventory.Panel = Tree.Panel And
Inventory.Point_Number = Tree.Subplot And
Inventory.Tree_Number = Tree.Tree) And (Plot.Statecd =
Tree.Statecd And Plot.Countycd = Tree.Countycd And
Plot.Plot = Tree.Plot And Plot.Cycle = Tree.Cycle And
Plot.Panel = Tree.Panel)

In complexity and performance, the PIX_ID process is less
complicated and executes faster than code written without
this feature. Each tree has a unique PIX_ID that allows the
isolation, tracking, and processing of any individual tree
throughout the entire system.

Modules—The Compilation System uses modules and
functions of Oracle PL/SQL code (Urman 1996) to break
down the complex process scenarios into small tasks. To
manage maintenance, debugging, and change, each
module or function within the system was kept small and
limited to one task. Thus, for example, if a volume equation’s
coefficients change, only the function for volume needs
modification or replacement. For debugging a data problem,

the data need only be run through an appropriate module or
function for the problem to be isolated. Most modules and
functions can be executed at any level of processing and in
any order. An individual tree with a data problem may be
reprocessed using the module or modules in question
without reprocessing the whole data set. However, area data
can be processed only at the county level due to the nature
of the data. Some possible levels of processing are State,
county, unit, cycle, panel, plot, and individual tree. In this
semi-automated design mode, as a plot clears the internal
edit, processing modules at the plot level begin for all of the
data on the plot. When the last plot of a county clears the
internal edit, the area processing modules are triggered to
process the county data. This semi-automated mode
provides that all of the data for a processing level will be
complete when the last plot clears the internal edit.

The Compilation System modules are divided into four
groups: (1) Loader, (2) Stocking, (3) Volume, and (4) Area
(fig. 1). Loader modules were designed as a dynamic front-
end engine to translate, format, and populate data into
national and regional tables. When the data structures,
definitions, and variables change within the input data
received from the field, the Loader modules can
accommodate the changes without affecting the other more
static module groups. The National Field Manual will require
major system design changes in the Loader modules, but
the other modules will need only minor or no modifications.
The Stocking group consists of modules that calculate trees
per acre, stocking, forest type, and stand size, which use
national algorithms. The Volume group modules calculate
total cubic foot volume; cubic volume of the sawlog section;
board foot volume; growth, removals, and mortality; and
weight. The Area group modules calculate forest area, area
factors, and remeasurement factors.

The Stocking group consists of four major modules: (1) trees
per acre, (2) stocking, (3) forest type, and (4) stand size. The
trees per-acre modules calculate both prism plot sample
trees per acre and mapped/annual plot trees per acre. Two
methods calculate prism trees per acre depending upon the
size of the trees. For trees 1.0 to 4.9 inches in d.b.h.:

Trees per acre = 300 / number of measured sample
points.

Figure 1—Computation modules of the Southern FIA Compilation System.
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 For trees = to 5.0 in. d.b.h.,

Trees per acre =  6,875.49354 / [(number of measured
sample points) d.b.h.2 ].

Two methods calculate the annual/mapped trees per acre
for trees sampled in a microplot or subplot. For trees within a
microplot:

Trees per acre =  43,560 / [(number of microplot
points / 100) 581.07].

For trees within a subplot:

Trees per acre =  43,560 / [(number of subplot
points / 100) 7,238.23].

A national team of scientists developed algorithms for the
Stocking, Forest Type, and Stand Size modules in the
Stocking group.

The Volume group consists of five major modules: (1) Cubic-
Foot, (2) Sawlog Portion, (3) Board-Foot, (4) Growth,
Removals, and Mortality (GRM), and (5) Weight. The volume
and weight modules use standard volume equations
generally of the form:

Volume or weight = Coeff A + Coeff B (d.b.h.2 Height).

However, any acceptable equations may be used to
calculate the tree volumes and weights.

The GRM module is more complex because it must deal
with missing items such as diameter and height of cut and
dead trees. The general model for GRM growth values is

Growth = (current volume - previous volume) /
remeasurement period.

A regression model computes any missing d.b.h.

Predicted Current d.b.h. = (Coeff A ) Former Measured
d.b.h. (Coeff B)EXP(Coeff C) Former Measured d.b.h..

This produces values for deriving annual radial increments
for the area sampled.

By adjusting a height equation for site differences, we can
predict the height of a cut or mortality tree from the predicted
diameter. First, we predict the current height from equations
of the form:

Predicted Current Height = Coeff A + Coeff B
[Log10(Predicted Current d.b.h.)]1/2.

Next, we predict a Former Height using equations developed
from the same model, with Measured Former D.B.H.
replacing Predicted Current D.B.H. We then determine a
harmonic proportion by:

Proportion = Measured Former Height / Predicted
Former Height.

Finally, we predict Current Height as:

Predicted Current Height = Predicted Current Height
(Proportion).

The resulting height is a function of the original height of the
tree as well as the diameter. This procedure reflects the
influence of the tree site on the height prediction. After
calculating a tree’s missing variables we can then estimate
the growth of removals or mortality. The trees are
theoretically grown forward or shrunk backward by the
appropriate number of years of growth.

The Area group consists of five major modules: (1) Land
Use, (2) Forest Area, (3) Area Factors, (4) Area Balance,
and (5) Remeasurement Factors.

The Land Use module loads the photo interpretation
information. The Forest Area module interprets aerial
photography, field calls, and intensification plot samples
corrected for forest, nonforest, and water land-use types.

We divide the county forest area, nonforest area, and water
area by the number of conditions within each classification
to produce an area factor for each sample. The sample area
factor is proportioned by the percentage of each land-use
classification and assigned to sample conditions.

The Area Balance module adjusts the area factors at the
condition level so that the rounded area factors will equal the
enumerated acreage of the county. The Remeasurement
Factor module calculates an area factor based upon the
previous inventory forest acreage and forest sample plots for
GRM expansion. The Southern Annual Inventory uses
different procedures for calculating area factors (Reams and
Van Deusen 1999), because the current inventory sample
must be combined with the previous inventory sample.

Challenges
The overall challenge was to design a system that would
accommodate the various existing and planned situations.
The system has to accommodate (1) multiple State
inventories using different procedures to produce a common
set of data, (2) a massive flow of field data, (3) major
changes without substantially affecting the processing of
data, and (4) a major sample design change due to
transition from a periodic inventory to an annual inventory.
The SRS Compilation System can accommodate all of these
complexities and more.

One specific major challenge was the calculation of area.
The national database structure requires that the Area
Factors be applied at the plot level and not the condition
level where they are calculated. This was particularly difficult
for the southern State inventories because Area Factors are
calculated for forest, nonforest, and water areas, especially
when a sample contained mixed conditions between forest,
nonforest and water. Two examples highlight area
calculation challenges:

Example 1—Table 1 illustrates an Area Factor situation at
the plot level. The first two rows demonstrate a problem that
arises when individual condition-level Area Factors are
combined into a single plot-level Area Factor. This sample
plot contains two conditions: one is a nonforest land use of
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code 62 and the other a forest land use of code 20 (col. 1).
There are separate Area Factors for nonforest and forest at
the county level (col. 6), and these factors have different
values (4,423.7331 acres and 6,016.7952 acres,
respectively). To obtain the proportioned condition Area
Factor for nonforest in this sample, we multiply the county
nonforest Area Factor (4,423.7331 acres) by the condition
proportion of nonforest (.75, col. 2), which equals
3,317.7998 acres (col. 3). We calculate the forest condition
Area Factor (1,504.1998 acres) in the same manner. If we
sum these individual condition factors with all of the other
sample plot condition factors grouped by their respective
land uses, they would equal their respective totals of area
for the county. However, if we combine the two condition
factors for different land uses based upon different Area
Factors into a single plot-level Area Factor, they will never
equal the correct county acreage for the respective land use.
The values in Table 1 illustrate this. The single plot-level
Area Factor, derived by summing the nonforest condition
factor (3,317.7998 acres) with the forest condition factor
(1,504.1998 acres) equals 4,821.9996 acres (col. 4). This
value is the only Area Factor that the national database
tables carry.

To calculate area for the respective land uses within a
county based upon its sample plots, we multiply the single
plot-level Area Factor (col. 4) by the condition proportion.
For this example, the procedure produces the following
results: the nonforest condition factor would equal the plot
Area Factor (4,821.9996 acres) multiplied by the nonforest
proportion (.75), which equals 3,616.497 acres (col. 5). The
forest Area Factor would equal the plot Area Factor
(4,821.9996 acres) multiplied by the forest condition
proportion (.25), which equals 1205.4999 (col. 5). But now
neither of these two values will sum to the correct acreage

for their respective land uses at the county level. The
nonforest condition factor should be 3,317.7998 acres, but
has been calculated by the plot-level Area Factor method as
3,616.4970 acres. This results in 298.6972 too many acres
for this condition. The forest condition factor should be
1,504.1998 acres, but has been calculated by the plot-level
Area Factor method as 1,205.4999. This results in 298.6669
too few acres for this condition. Thus, since the county-level
Area Factors for differing land uses will always be different
values (col. 6), this method does not work when there are
different land use conditions. On the other hand, this
example also illustrates that when a sample plot has two
different conditions that are in the same land use (rows 3
and 4), the plot-level Area Factor (col. 4) process does work
because they are both calculated using the same county
land-use Area Factor (col. 6).

The lower portion of table 1 demonstrates the solution. We
must recalculate the condition proportion (col. 2) for each
sample that contains more than one land-use condition
(col. 1). We accomplish this recalculation by dividing the
calculated land-use condition area factor (col. 3) by the
county Area Factor (col. 6) and using that value as the
condition proportion (col. 2: .688 and .312 for land uses 62
and 20, respectively) in the database record. We then
proportion the condition Area Factors by these new values,
resulting in 3,317.5857 and 1,504.4628 acres for Land Use
conditions 62 and 20, respectively (col. 5). The sum of these
new values (which bring along the influence of their original
Land Use factor) is 4,821.9985 acres, a value very close to
the column 4 value. When we proportion the plot Area
Factors by the recalculated condition proportion (col. 5), the
resulting values are also very close to the original condition
area Land Use factors (col. 5). Note that since these values
are not the exact calculated condition Land Use factors,

Condition Plot Condition area County
Land Condition area area factor area
use proportion factor factor proportioned factor

62 .69 3,317.7998 4,821.9996 3,327.1772 4,423.7331

20 .31 1,504.1998 4,821.9996 1,543.0387 6,016.7952

Table 1—An example of a potential problem in calculating area factors

Condition Plot Condition area County
Land Condition area area factor area
use proportion factor factor proportioned factor

Plot level area factor challenge

62 .75 3,317.7998 4,821.9996 3,616.497 4,423.7331
20 .25 1,504.1998 4,821.9996 1,205.4999 6,016.7952
20 .75 2,691.846 3,591.9996 2,693.8845 3,591.8459
20 .25 897.9615 3,591.846 897.9615 3,591.8459

Solution: Condition Proportion = Condition Area Factor / County Land Use Area Factor

              CP62 = 3,317.998 / 4,423.7331 CP20 = 1,504.1998 / 6,016.7952
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there is a small difference in the total acreage when
summed at the county level. Rounding of the recalculated
condition proportion makes the difference larger.

Example 2—Another challenge has been the calculation of
an Area Factor under the moving average estimation
approach (Reams and Van Deusen 1999) for the annual
forest inventory system. This concept combines the current
panel completed with the rest of the sample population. In
other words, if panel 1 contains 20 percent of the sample
plots just inventoried, and the remaining 80 percent of a
State’s plots were inventoried during the last survey cycle, to
produce statewide estimates we must combine the forest
area calculation using the 20-percent sample with the older
80-percent sample. Two other complications offer
challenges. There may be a transition from an old to a new
photo interpretation methodology, and sometimes the
previous compilation methodology used data in a flat-file
format, whereas the current data resides within a relational
database format.

First, we collected and reformatted all of the flat-file data and
loaded it into the current database structure. We calculated
a new estimate of forest area and computed a new set of
Area Factors for the entire sample. Then another problem
surfaced. The 20-percent current sample population level
volumes had been calculated using current tree data and
current Area Factors. The 80-percent previous sample
population-level volumes had been calculated using
previous data and previous Area Factors. To put the entire
sample into the same context, we had to calculate the 80-
percent sample population level-volumes using the current
set of Area Factors.

To accomplish that task, we reduced plot volumes to
individual tree-level volumes, recalculated trees-per-acre for
each tree, and then recalculated population-level volumes
using the current Area Factors. Either of two alternative
procedures could be utilized: (1) reformat the 20-percent
current sample into a flat-file format and combine those data
with the 80-percent previous data, recalculating the
population volumes; or (2) reformat the previous 80-percent
sample into the National database format and then combine
the samples. We selected the first method, reasoning that
tested and trusted table-building software could build very
accurate tables based on the combined data. If there were
discrepancies, that method would point to the compilation
procedures and not the table-building procedures, thus
quickly revealing any existing problems.

Unfortunately, there were discrepancies. As is common in
developmental work, thorough testing of the compilation
system output revealed that the first procedure did not
produce acceptable results. It, thus, became necessary to
pursue development using the second procedure.

CONCLUSION
The indexing and modularization techniques are two key
procedures in the new Southern FIA Compilation System
that make complex compilation situations manageable. The
development examples presented, showing a success and
an initial failure, represent just a few of the many challenges
we encountered with the new system. So far, the life cycle of

the system’s processing phase has required 6 months of
planning and design, 9 months of initial application
programming by one application developer, and 7 months of
testing, debugging, and modifications. Unit personnel have
concentrated their effort for more than a year on algorithm
development, programming, testing, and documentation for
all modules, and on computer system design, development,
implementation, and maintenance. A conservative estimate
of time already spent on this project is about 12,000 person-
hours. Final development, testing, and debugging are
currently in progress using actual data in a production-type
mode of operation. The system will be operational in 2001.
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INTRODUCTION
The Forest Inventory and Analysis (FIA) program collects or
calculates over 300 variables for its national network of
permanent forest plots (FIA 2001). Many of these variables
are collected specifically to assess the U.S. timber supply.
However, ecological analysis of forest structure is also
possible with these data.

The FIA variables can be classified into two broad groups of
“attribute” and “category” variables (Chojnacky 1996).
Attribute variables are generally continuous variables based
upon direct field measurements (or functions of direct
measurements). Examples include diameter at breast height
(dbh), tree age, height, volume, biomass, and so forth.
Category variables are generally discrete classifications of
observed phenomena or social/political groupings. Ex-
amples include county, vegetation class, geographic
location, tree species, forest type, land uses, and many
other observations of forest structure and use impacts.

Of the two variable types, the continuous attribute variables
are most flexible because these can usually be summarized
in raw form, combined with other variables in calculations,
used in models to produce estimates, and fit theory for
confidence interval computation within FIA’s double sam-
pling for stratification design (Chojnacky 1998). On the other
hand, discrete categorical variables are generally not
compiled as statistical endpoints. More often, categorical
variables classify summations of attribute variables or
classify forest area.

The difference between “attribute” and “category” can be fuzzy
for some calculated variables that are functions of both variable
types, but the point of distinction hinges on the end product. A
variable can be considered an “attribute” if it is possible to
total it in some meaningful manner and estimate a variance
within FIA’s sample design. This definition can be tricky for a
variable such as percent understory cover because a “total
cover” estimate is not meaningful, but a ratio estimator for
total cover divided by total area (for any size area) is a nice
attribute variable with a variance (Chojnacky 1998, p. 13).

Categorical variables are not necessarily undesirable, but
they are somewhat limited and often difficult to define for
multiple uses. For example, forest type (Hansen and others
1992) and habitat type (Pfister and others 1977) are two
categorical variables for plot-level vegetation description.
Forest-type classifies from a timber stocking perspective,
and habitat-type classifies from a climax vegetation perspec-
tive, but neither necessarily gives an accurate description of
present tree cover by species, and they do not collapse
uniformly in some hierarchical fashion. Ability to logically
collapse categorical variables is crucial because FIA data
applications inevitably have too few plots for some category,
which requires category grouping.

An example of a well-defined, flexible, categorical variable is
taxonomic tree species. Species distinction is supported by
a wealth of information, including taxonomic nomenclature,
genetics, growth rates and forms, specific gravity, shade
tolerance, nutrient requirements, and so forth. Species has
been traditionally used by FIA to tally regional timber
statistics on volume or numbers of trees, but FIA defers to
forest-type all plot-level forest classifications because of the
problem of multiple species per plot. However, this is likely
more a matter of traditional convenience from earlier days of
limited computing power than of practical necessity. For
example, the continuous variable, basal area, could easily
be ranked according to predominate species or species
group to obtain a flexible plot classifications tailored to many
different needs (Chojnacky and Woudenberg 1994).

This paper illustrates, by example, ecological analyses done
with only a few variables. Estimates are based on attribute
(continuous) variables but also use categorical (discrete)
variables that can be easily and meaningfully regrouped.
The two ecological examples include Mexican spotted owl
habitat calculated for a national forest in New Mexico and
down deadwood estimated for Maine.

METHODS
The data for both examples were previously analyzed in
other studies. For the owl example, habitat data were

ON FIA VARIABLES FOR ECOLOGICAL USE1

David C. Chojnacky2

Abstract—The Forest Inventory and Analysis (FIA) program collects or calculates over 300 variables for its national network
of permanent forest plots. However, considerable ecological analysis can be done with only a few key variables. Two
examples—Mexican spotted owl habitat in New Mexico and down deadwood in Maine—are used to illustrate the potential of
FIA data for ecological use. These examples illustrate the importance of the variables (1) diameter at breast height, (2) tree
species, and (3) live/dead/cut tree status for compiling estimates and confidence intervals within FIA’s sample design.
Priority variables are suggested for constructing an ecological database with FIA data.
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compiled for a test on using FIA data to monitor Mexican
spotted owl habitat as defined by a recovery plan for the
owl’s “threatened” status (Chojnacky and Dick 2000).
Included were 464 FIA plots spanning 1.3 million ha of forest
and wilderness in New Mexico’s Gila National Forest from
the 1994 inventory. FIA attribute variables used were dbh,
tree height, and number of trees per plot. FIA category
variables included tree species, live/dead tree status, tree
dominance class, forest type, and habitat type. The latter
three variables were needed for an elaborate “forest cover”
algorithm defined by the recovery plan. (Forest cover
probably could have been defined more simply, but the
previous study had to be done in compliance to recovery
plan guidelines.) Also used were several sample design
variables for field plots sizes, phase 1 and phase 2 samples
sizes, and stratum identifications and areas. These were
needed to compute confidence intervals and expand the
estimates to forest totals.

Data for the down deadwood (DDW; also called coarse
wood debris) example were compiled from 1,842 plots that
were re-measured in Maine’s 1995 inventory (Chojnacky and
Heath [In preparation]). Down deadwood data are not
currently available in the FIA database but they were
collected in Maine from transects overlaid on FIA plots.
Down deadwood is important for assessing carbon stocks
for global warming concerns, habitat for numerous
organisms, nutrient cycling, and soil movement (fig. 1). The
purpose of the deadwood study was to predict DDW from
other routinely collected FIA variables. Results showed a
subsampling scheme and simple model as reasonable. For
this approach, dbh and DDW were the only attribute
variables used. FIA category variables included tree
species, live/dead/cut tree status, ownership, stand size
class, and forest type. Because Maine’s 32 forest types
were unmanageable for simple compilation, predominate
basal area by species was used to collapse the forest types
into six groups. Also used were the sample design variables
for sample sizes and stratum areas.

RESULTS AND DISCUSSION
Mexican Spotted Owl
An actual amount of Mexican spotted owl habitat was not
calculated from the FIA data. Instead, area was calculated
for a plausible habitat scenario defined from the bird’s
habitat needs (Chojnacky and Dick 2000). The main purpose
of the scenario was to assess the FIA sample intensity for
detecting change. Results of the 95 percent confidence
intervals for mixed-conifer and ponderosa pine forest cover
ranged from ± 20 to ± 35 percent (fig. 2). The small amount
of pine-oak was more variable at ± 50 to ± 73 percent.

The results for the Gila National Forest were encouraging
because the planned use of the method was for combining
several national forests into recovery units, which would
increase sample size and further reduce confidence
intervals. The habitat scenario needs testing against actual
owl demographic data, but there seems sufficient power in
the FIA data to monitor modest changes in habitat area.

The FIA variables needed to monitor owl habitat included
dbh, height, tree species, live/dead tree status, and several
other plot-level and tree classifications for computing forest
cover. The list could be shortened to the first four variables if
forest cover were recomputed from species and basal area
(or trees per area or other dbh-based density metrics).

Down Deadwood
The other example on down deadwood in Maine illustrates
DDW estimated from a subsample. The FIA program has
recently combined with the Forest Health Monitoring national
network of plots, which are sampled at about 1/16th the
intensity of the FIA grid. These plots are being called the
third phase (P3) of FIA’s sample design, with first phase (P1)
being the remote sensing for stratification points and the
second phase (P2) being the full sample of FIA field plots.

Figure 1—Down deadwood or coarse woody debris found in eastern
hardwood forest.

Figure 2—Area of hypothetical Mexican spotted owl habitat for Gila
National Forest, 1994 FIA inventory. The scenario illustrates habitat
can be determined from FIA data within about 20 to 35 percent of
the estimates for mixed conifer and ponderosa pine forest cover.
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A method for including DDW in an FIA assessment is to
model DDW from the P3 plots and then apply the model to
the more intense P2 design. A regression model

135)n  0.20,
2

(R ==  fit to P3-plot data is:

Application of the P3-based model to FIA P2 data compared
favorably (fig. 3). There was little statistical difference
between methods because the 95 percent confidence
intervals overlapped for the total and for all species groups,
except spruce-fir.

These results illustrate another aspect of the FIA design
where subsampling can be used to add in new attribute
variables such as DDW without the expense of collecting the
variable on every plot. The results could also have been
summarized directly in a three-phase sample design instead
of using the regression model, but the details of this
application for FIA data have not yet been worked out.

As for the owl example, the key FIA variables include dbh,
tree species, and live/dead/cut tree status. Additional
classifications for ownership and stand size class were used

to construct the P3-model, but stand size class could have
been redefined from basal area and numbers of trees.

CONCLUSION
Of all the FIA variables, (1) dbh, (2) tree species, and (3)
live/dead/cut tree status seem most important for ecological
use. As shown in the examples, these can describe forest
structure for two different uses. By adding in tree age,
height, a few social/political variables (such as county,
ownership, measurement period, and geographic coordi-
nates), and the sample design variables, one has founda-
tions for a strong ecological database.

Because FIA already collects these variables to some
degree, it would be fairly easy to construct an ecological
subset of the FIA database. Key items should include the
following:

Attribute variables
• Diameter for all trees at a consistent height above

groundline regardless of where the tree was actually
measured. (Because diameter is so important, it would
also be desirable to have conversion capability between
groundline and breast height measurement points for all
species. Groundline diameter makes much biological
sense because it is at the interface between roots and
bole.)

• Meta-data explaining age measurement, and future
development of field procedures that consistently
subsample tree ages in a statistical design.

• Meta-data explaining height measurement and
development of field procedures that consistently
subsample tree heights in a statistical design.

Category variables
• Live/dead/cut tree status code that also includes a decay

class for dead.

• Tree species and all other discrete observations and
classifications that are consistently recorded throughout
the entire FIA program, such as State, county,
measurement period, ownership, tree damage, slope,
aspect, and so forth.

Sample design variables
• Trees-per-area expansion factors (plot sizes) for every

live, dead, cut, and missing tree within a plot regardless of
size or classification.

• Phase 1 sample sizes and strata information necessary to
calculate a variance for any estimate.

This list is meant to emphasize priorities but not include
exhaustive detail. Needed is consistently available informa-
tion for calculating stand structure metrics and variances
from tree-level data. FIA has recently done a good job of
including noncommercial tree species and all forestlands
without regard to timber utility into its inventories. However,
many tree-level and plot-level compilation procedures still
include gaps when considering all trees. Creating an
ecologically oriented subset of FIA data would simplify data
access for users who need to carefully account for every for
every live, dead, cut, or missing tree regardless of value
judgments.

Figure 3—Down deadwood (DDW) biomass estimated from FIA
plots (DDW P2) for Maine’s 1995 inventory compares well to a
model-based estimate (DDW P3) from a 1/16th subsample. The
model was developed from P3 plots but applied to P2 plots for
forest type groups (aspen/birch, maple/beech/birch, red maple/other
hardwoods, cedar/hemlock, pine/oak, spruce/fir).
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ESTIMATION BASED ON THE FIRST CYCLE OF THE ANNUAL FOREST INVENTORY
 SYSTEM: METHODS, PRELIMINARY RESULTS, AND OBSERVATIONS1

Mark H. Hansen, Gary J. Brand, Daniel G. Wendt, and Ronald E. McRoberts2

INTRODUCTION
The Forest Inventory and Analysis (FIA) program at North
Central Research Station, USDA Forest Service, has
completed the first year of statewide annual forest
inventories in four States: Indiana (IN), Iowa (IA), Minnesota
(MN), and Missouri (MO). Ground plot measurements and
quality control checks were made by a combination of
NCFIA field personnel, cooperating State employees, and
private forestry consultants under contract to cooperating
state agencies. Plots in these states were measured
between September 1998, and April 2000.

These first year plot data, together with a thematic GIS layer
based on a classification of Landsat TM data for
stratification purposes (Vogelmann and others 1998), were
used to produce estimates and sampling errors for standard
forest resources variables. This paper presents results from
the inventory, compares those results to estimates from
previous periodic inventories, and discusses implications of
these comparisons.

DATA AND ESTIMATION
NCFIA sampled a total of 5,240 systematic plot locations in
the four-State study area using the National FIA plot design,
a cluster of four 1/24th ac fixed area subplots. Of these 5,240
plot locations, 1,467 were found to contain some forest land.
Table 1 compares the number of plots observed in each
state under the first year of the annual inventory system to
the number of plots in the most recent periodic inventory. It
is important to keep in mind that there was a change in plot
design in IA, MN, and MO between the last periodic
inventory and 1999. Under the old plot design, a plot was
tallied as a forest plot only if a forest condition existed at plot
center. Under the new plot design, a plot is tallied as a forest
plot if any portion of the plot falls in a forest condition. This
change in plot design increases the percentage of forest
plots in the total sample without a change in total forest
area, especially in areas with a great deal of forest/nonforest
interface such as IA and MO.

Abstract—The first year of annual FIA data collection in the North Central region was completed for 1999 in Indiana, Iowa,
Minnesota, and Missouri. Estimates of timberland area, total growing-stock volume and growing-stock volume per acre are
presented. These estimates are based on data from 1 year, collected at the base Federal inventory intensity, a lower
intensity sample than previous periodic inventories conducted in these States. In the North Central region, plots are
measured on a 5-year cycle (20 percent of the plots measured each year) at a base intensity of one plot per 5,937 ac.
These first-year estimates, obtained from the 20 percent sample, are based on a sample intensity of one plot per 29,685 ac
and, thus, have greater sampling variability than previous periodic inventories conducted by FIA.

Table 1—Number of plots observed in the first year (1999) of the
annual inventory and number of plots observed in the most recent
periodic inventory in the North Central Region

 Total    Forest    Total    Forest

Iowa 1,202 110 12,767 713 1998

Indiana 769 174 6,402 1,605 1990
Minnesota 1,801 578 43,955 13,507 1990

Missouri 1,468 605 17,259 5,072 1989

  All States 5,240 1,467 80,383 20,897

Date of 
most recent 

periodic 
inventory

1999 annual inventory periodic inventory

Number of observed plots

Most recent
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The intensity of the plots from a single year of the annual
inventory is lower than any periodic inventory conducted by
NCFIA. This first year sample comprises 20 percent of the
base sampling intensity of the full 5-year inventory. When
the complete 5-year cycle of plots has been measured,
estimates will be based on all the plots measured over the
5-year cycle (five times the number available for this first
year). In addition, some states have provided resources to
intensify the inventory by measuring additional plots. In this
first year, we have not included any intensified plots in the
analyses.

The ground plot locations sampled in the first year are a
combination of plot locations from the previous periodic
inventory and plots in new locations. The hexagon/panel
system (Brand and others 2000) determined the plot
locations that were measured. This system divides the entire
conterminous 48 States into 5,937-ac hexagons and selects
a measurement location within each hexagon. When one or
more locations from the previous inventory exist within a
hexagon, one is selected for remeasurement, otherwise a
new location is selected. In three States (IN, MN, and MO)
the previous periodic inventory used a sample design in
which the status of some plots that were determined to be
undisturbed between the two previous inventories were
updated using models (Miner and others 1988) rather than a
field and remeasurement. For example, when the 1990 MN
inventory was conducted, all plots measured in the 1977
inventory plots were examined using aerial photography.
The conditions on a portion of the plots that were found to
be undisturbed were projected forward to 1990 using a
forest growth model (adjusted using information from actual
remeasured data), and the resulting projected plot data were
used as observations in the estimation process. In the plot

location selection procedures for the annual inventory
system, both the remeasured and projected plot locations
were candidates for measurement. Thus, three kinds of plots
were measured in the 1999 annual inventory:

1. New plots at locations never previously measured,
2. Remeasured plots from the previous periodic inventory,

and
3. Remeasured plots that were not measured in the

immediate previous periodic inventory.

Table 2 summarizes the numbers of these various kinds of
plots for each State.

In addition, various ground plot designs were used in
different States so that not every remeasurement consists of
the remeasurement of the same plot design. IN used the
current standard FIA plot design for its previous inventory,
however, the other States used a 10-point cluster of variable
radius plots. The change in plot design and the mix of new
and remeasurement plots limits our ability to estimate the
components of change attributes requiring actual plot
remeasurements (e.g. growth, removals, and mortality) and
also increases the sampling error associated with estimates
of total change (e.g. change in forest area and change in
total growing-stock volume). Only after 10 years under the
annual inventory system will all the plots used to produce
estimates be remeasurement plots with observations 5
years apart using a standard plot design, assuming we
maintain this system and plot design.

The stratified random sampling estimator, with stratification
after the selection of the sample (post-stratification), was
used to produce all resource estimates. This estimator is a
special case of the double sampling for stratification

Table 2—Number of plot locations by plot type and State

   Plots    Plots
   remeasured    remeasured

   from the    from and
   previous    older

  New    periodic    periodic    All plot
States   plots    inventory    inventory    types

Iowa 240 962 0 1,202
Indiana 42 296 431 769

Minnesota 103 928 770 1,801
Missouri 160 920 388 1,468

    All States 545 3,106 1,589 5,240

Iowa 19 91 0 110
Indiana 13 97 64 174
Minnesota 84 382 112 578
Missouri 87 427 91 605

    All States 203 997 267 1,467

Number of observed plots

   All plots (includes forest and nonforest plot locations

Forest plot locations only
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estimator that has been used in NCFIA estimation for over
30 years. With the use of satellite imagery and computer
classification in place of photo plot sampling and human
interpretation, we obtained known strata areas (rather than
estimates of strata areas), eliminating one source of
sampling error in our estimates. National Land Cover Data
(NLCD) available from the Multi-Resolution Land
Characteristics Consortium (MRLC) (http://www.epa.gov/
mrlc/) are used to obtain strata areas. This classification was
conducted without any knowledge of the location,
classification or other characteristics of FIA ground plots and
is truly independent of the ground sample. Independence of
the strata area estimates and the ground plot classification
(assumed in previous inventories that used double sampling
for stratification) came into question when both the strata
area estimates and classification of plot locations into strata
was done by the same photo interpreters. Some bias that
could not be corrected was likely introduced into estimates
under that system. Details of the procedures used to
produce these estimates are presented in another paper in
this report (Hansen 2001).

RESULTS
Estimates of timberland area, total growing-stock volume
and average growing-stock volume on timberland for each
state are shown in figures 1 through 3. Estimates from the
first year of the annual inventory and those from all periodic
statewide inventories since 1965 are shown for comparison.
In these figures, the solid lines indicate the estimates and
the dashed lines indicate the estimates plus or minus one
standard error and thus delineate a 67 percent confidence
interval around those estimates.

Estimates of timberland area increased in three of the four
States (MO, IA, and MN) from the estimates made at the
time of the previous inventories: 1989 for MO, 1990 for IA,
and 1990 for MN. Data for these inventories were collected
over several years and the aerial photography used for
stratification was taken prior to the field work, usually
several years prior. The date (year) of a periodic inventory is
a reporting date assigned to the entire inventory and reflects
the year when the last of the field plot measurements were
taken, although the measurements are usually made over
several years. Based on the inventory date, the estimated
annual change in timberland area between inventories was
0.54 percent in MO, 0.32 percent in MN, and 0.37 percent in
IA. These increases continue trends that were observed
between the prior two inventories in these three States.

The estimates for IN are contrary to the trends that were
seen in the past and show a decrease in timberland area.
The last periodic inventory in IN was 1998, just one year
prior to the first year of the annual inventory. An estimated
5.65 percent decrease in timberland area is indicated
between that inventory and the first year of the annual
inventory system. The sampling error on the 1999 estimate
of the timberland in IN is fairly high (4.56 percent), and the
sampling error on the 1998 estimate is considerably less
(1.59 percent). As mentioned previously, the 1998 inventory
was based on considerably more observations, and the
1999 estimate is based on a remeasurement of only 11
percent of these plots (727 of the 6,402 plots measured in
1998) plus the addition of 42 new plots. Also, the 1998

Figure 1—Timberland area estimates for four states, 1965 to 1999.
Solid lines indicate the estimates and the dashed lines indicate the
estimates plus or minus one standard error.

estimate was based on a different classified image for
stratification. In detailed analysis of the data, only 3 of 727
(0.41 percent) remeasurement plots in the 1999 annual data
indicated an observed change from timberland to another
condition from the 1998 periodic inventory. One of these
three plots was measured in 1998 and observed to be
timberland at that time. When this plot was remeasured in
1999, the area had been cleared of most trees and
construction of a park was underway. The other two were
field visited in the 1986 inventory and found to be
timberland, classified undisturbed in 1998 (based on aerial
photo interpretation), and not remeasured in 1998. In 1999,
when these two plots were remeasured, they were observed
to have changed to a nonforest land classification. One plot
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Figure 2—Total growing stock volume estimates for four States,
1965 to 1999. Solid lines indicate the estimates and the dashed
lines indicate the estimates plus or minus one standard error.

Figure 3—Average growing stock volume per acre estimates for
four states, 1965 to 1999. Solid lines indicate the estimates and the
dashed lines indicate the estimates plus or minus one standard error.

was in a lowland area where flooding associated with beaver
activity had killed the trees, and the other was a farm
woodlot where tree mortality associated with cattle grazing
resulted in a reclassification of the plot to nonforest. In both
of these cases it is unclear when the change to nonforest
occurred. This analysis of the IN remeasurement plots
indicates that the decrease in estimated timberland area in
IN in 1999 from that reported in the 1998 periodic inventory
may be a result of the high sampling error associated with
the 1999 estimates rather than a loss of timberland between
the two inventories.

The total growing-stock volume estimates presented in
figure 2 show a large increase in MO from 1989 (over 5

percent per year), a smaller increase in IA from 1990
(slightly less than 2 percent per year) and net decreases in
MN (0.5 percent per year) and IN (12 percent per year). Total
growing-stock volume estimates are dependent on
estimates of timberland area and volume per acre, of which
both have associated sampling errors. When combined, the
sampling errors for total growing-stock volumes are fairly
high. Figure 3 shows the growing-stock volume per acre
estimates for each State. As with the timberland area
estimates in IN, there is a decrease in the estimated
growing-stock volume per acre (6.7 percent from 1998 to
1999). This decrease, combined with the estimated
decrease in timberland area results in a large decrease in
estimated total volume. Again, high sampling errors most
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likely account for a part of this estimated decrease. As
additional data become available, the precision of these
estimates will improve; and it will be possible to associate
changes in volume to the various factors that can cause
these changes (growth, mortality, harvesting, and land-use
change). Although sampling errors are fairly high, it does
appear that the trend of increasing growing-stock volumes in
MN and IN that have been observed over the past two
periodic inventories may have ended. Additional analysis and
data are needed to confirm these findings and to study the
causes and impacts of these changes.

Other publications are available that present more detailed
estimates for individual States (Schmidt 2000a, 2000b).
Additional analysis of the data is being conducted and will be
presented in future publications. Also, data will be made
available via the internet at http://www.fs.fed.us/research/
databases.htm.

DISCUSSION
One purpose of this paper was to demonstrate that
estimates from the first year of the annual forest inventory
could be made shortly after the completion of data collection.
FIA has made a commitment to complete inventories on an
annual basis and make final data and estimates from these
inventories available when sufficient data is available for
detailed analysis. Estimates from the first four states inven-
toried under this new system were presented at a sympo-
sium within six months of the final field measurements. As
we gain more experience and improve data collection and
processing systems the time to produce and report estimates
will decrease. As the speed of reporting increases, the
amount of detailed analysis that we can provide with the
estimates decreases. To date, results are reported with a
minimum of analysis. As annual inventories are implemented
and replace periodic inventories as the source of the best
available information on the forest resources of a state, users
will find it possible and necessary to perform more of the
detailed data analysis themselves.

During the transition period to annual inventories, sampling
errors for estimates are high and detailed breakdowns of the
estimates are questionable. Our plans for making raw data
and estimates available to our users over the next few years
will be determined by the number of years of annual
inventory data collected in a state. Following the first year,
state-level estimates such as those presented here will be
published. After 2 years, nine State-level tables of area,
volume, and number of trees will be published. Following the
third year the full suite of 24 standard FIA core tables will be
published. After 4 years, the core tables will be revised and
web access to the plot data and the FIA table generation
program will be available. Following the fifth year of data
collection, a full analytical report will be prepared. Periodic
analysis of the data will be conducted once the system is in
full operation. Over the transition some States will have few
remeasurement plots (Kansas, Nebraska, North Dakota, and
South Dakota) and estimates of change will not be produced
until sufficient remeasurement data is available. In these
States tables related to current conditions will be produced
following this schedule.
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 ANALYSIS AND REPORTING NEEDS FOR ANNUAL
FOREST INVENTORIES IN THE SOUTH1

Michael T. Thompson2

Abstract—The annual forest inventory system essentially eliminates the concept of the periodic inventory. Therefore, the
reporting requirements and needs for individual States will change as the South makes the transition to full annual
inventories. The Farm Bill and the Forest Service Strategic Plan require both annual reports and 5-year comprehensive,
analytical reports. The Southern Research Station Forest Inventory and Analysis unit proposes that the annual reports be
brief research notes, supplemented by available hard copy and electronic tabular data. The annual reports will summarize
estimates derived from a moving average of five inventory panels. Based on the preceding 5 years of data, succinct
analytical reports will focus on status and change in forest resourceswith color maps and graphicsand nonproduct-
related issues. A statistical report published prior to the analytical report can contain all tabular data, detailed discussions
of inventory methods, sampling errors, and definitions. Where the previous full inventory is outdated and cannot be
included in moving-average estimates, there will still be a need for interim reports in States that have initiated annual plot
measurements.

INTRODUCTION
The annual forest inventory system implemented nation-
wide by Forest Inventory and Analysis (FIA) essentially
eliminates a periodic survey cycle. As a result, reporting
requirements must change to accommodate the annual
nature of releasing inventory estimates. As all reporting will
still be at the State level, individual States in various stages
of transitioning to full annual inventories will need to adjust
their reporting. In this paper, I will discuss FIA reporting
requirements and needs for (1) States still inventoried
under a periodic inventory, (2) States in transition to full
annual inventories, and (3) States in full annual inventory
mode. It will explain how FIA in the South will meet the
reporting objectives outlined by the Farm Bill and the Forest
Service Strategic Plan.

REPORTING REQUIREMENTS FOR
PERIODIC INVENTORIES
For States with a full periodic inventory, the two required
reports are statistical reports (regional and State) and
analytical reports. Statistical reports that follow the format in
Tennessee’s recent periodic inventory will add an ex-
panded methods section that addresses differences
between the current and the previous inventory procedures.
A number of changes in procedure, such as sample
designs, volume computation, and merchantability stan-
dards, will affect the assessment of change between
inventory periods. Reports will clearly identify these
changes and, when appropriate, highlight problems that
affect trend statistics.

Analytical reports for periodic inventories will be different if
the inventory was conducted before or after the merger of
the Southern and Southeastern FIA units. States using the
format of the previous separate FIA units include Arkansas
(1995), Florida (1995), Mississippi (1994), Oklahoma
(1993), and Texas (1992). Analytical reports for States
inventoried during or after the merger will make a transition
toward the new model for analytical reports.

INVENTORY ESTIMATES IN
ANNUAL INVENTORIES
The 1998 Farm Bill mandates annual collection of field
data for 20 percent of all FIA plots in each Southern State.
Several Forest Inventory and Monitoring (FIM) workshops
have discussed accurate time-series techniques to
estimate current conditions at the scale of a State or sub-
State region (Survey Unit). Participants agreed that annual
measurement of 20 percent of the FIA plots in each State
provides the most current information, but also reduces the
sample size to an unacceptable level of accuracy to most
users of the data. Therefore, the recommendation is that
States in transition from a periodic to an annual inventory
use a moving average that includes the last periodic
inventory if the data are not too old. The data are consid-
ered too old if the period is greater than approximately 3
years.

The assumption is that FIA will measure a total of    plots
over a period of      years. We will divide    plots into
approximately equal panels. The proposed target for the
South is     = 5, and    /5 = 20 percent of the plots measured
each year.

The inventory statistics in an annual report will use the
moving average, averaged over the last      years. When
interpreting the results, a user should consider this data an
unbiased estimate of conditions. Some trend analyses will
have a time-bias; this is not expected to be great if     = 5.
Actually, the moving average is a familiar concept for those
States that required several years to inventory. For example,
for the 1997 periodic inventory, Georgia took plot measure-
ments from the fall of 1995 to the spring of 1998.

REPORTING REQUIREMENTS FOR
ANNUAL REPORTS
The Farm Bill and the Forest Service Strategic Plan require
that States compile and release data in both hard copy and
electronic format once per year on a predetermined
schedule. FIA considered several options to meet these
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objectives. Electronic format supplemented with simple
hard copy would deliver a product more quickly, but would
give little credit to analysts and the Research Work Unit.
Another option was for State agencies to publish annual
estimates, but not all States would publish results equally.
Therefore, the primary means of reporting annual inventory
results should be through a brief Forest Service publica-
tion, such as a research note, supplemented by tabular
data available in hard copy and electronic form. Analysts
should pursue collaborative reporting efforts between State
agencies and the Forest Service.

REPORTING REQUIREMENTS FOR
ANALYTICAL REPORTS
The Farm Bill and Forest Service Strategic Plan require that
every 5 years the Forest Service produce a complete State
analytical report that includes core information covering the
current status of the forest resource based upon the
previous 5 years of data. More specifically, inventory
statistics should use the Moving Average where    is the
number of plots measured under the panel system over a
period of     = 5 years. Also recommended are trends in
forest status and condition, timber products output informa-
tion for each State, and projections for key resource
attributes over the next 20 years. To meet these require-
ments, one comprehensive report could cover all aspects
of the forest resource and associated inventory data. Past
reports in the South fit this category, but they were timber
oriented and lengthy. The advantage is that everything is
available in one publication; the major drawback is the long
development and publication process required, which is
detrimental to the timely objective of the Farm Bill.

The proposed approach is to develop analytical, succinct,
5-year reports focused on the general status and change in
the forest resources of each State. A wider audience can be
reached with a shorter report providing color maps and
graphics, and by more inclusive, nonproduct-related
language whenever possible. The analytical report should
contain 20 to 25 pages of text, graphics, and maps. The
development and publication of a statistical style report
should occur prior to the development of the analytical
report. The statistical report would contain all of the tabular
data, detailed discussion of inventory methods, sampling
errors, and definitions. These sections would be excluded
in the analytical reports. The major advantage to developing
5-year reports is a short turnaround period, enabling timely
reports. Analysts will have more time to write scientific
reports on forest resources in each State.

REPORTING REQUIREMENTS FOR
INTERIM REPORTS
Before the end of the 5-year cycle, States that have initiated
annual plot measurements, but whose previous full
inventory is too old, will generate interim reports. Analysts
can process two or three panels of inventory data (40 to 60
percent of the full periodic inventory plot total) and then
update the estimate annually. For example, Virginia, whose
previous inventory was 1992, will soon complete three
panels, or 60 percent, of the total periodic inventory. After
this estimate, an interim status report will be published on
forest resources.

REPORTING FOR GEORGIA’S INVENTORY
Georgia’s inventory serves as an example of the reporting
process. The design-based estimate used for annual
surveys will be the moving average. The State will combine
plot measurements from the previous periodic inventory
with plots measured in the annual inventory.

The field work for Georgia’s 1997 periodic inventory began
in November of 1995 and ended in April 1998; all five
Survey Unit reports and the State Statistical Report have
appeared. The annual inventory effort began immediately
after the periodic inventory, and the field work for panel 1
(approximately 20 percent of the periodic inventory plot
total) was completed in June of 1999. For Georgia, then,
the State-wide measurement interval between a plot
measured in panel 1 and the same plot measured in the
periodic inventory averaged 1.8 years.

The FIA moving-average estimate for Georgia will combine
about 80 percent of the plot network from the 1997 periodic
inventory and the 20 percent of plots selected for panel 1.

Let us suppose that the reporting attribute of interest is the
average per-acre volume of all live standing trees 5.0
inches in diameter at breast height (d.b.h.) and larger on
timberland area in the State of Georgia. The inventory
sample to measure live-tree volume was a fixed-radius plot
cluster of four points spaced 120 feet apart. Each point
served as the center of a 1/24-acre circular subplot used to
sample trees 5.0 inches d.b.h. and larger. These sample
plots were established without regard to land use or forest
cover. Forest and nonforest condition classes were
delineated and recorded. FIA defines condition classes by
six attributes: land use, forest type, stand origin, stand size,
stand density, and major ownership category (Thompson
1998). FIA assigns trees to their respective condition
classes.

To determine the average per-acre volume of live trees 5.0
inches d.b.h. and larger, a weighted mean was computed.
The equation for mean per-acre live volume is,

where, = per-acre volume of live trees 5.0 inches d.b.h.
and larger on timberland area sampled by

                         plot    ,
= proportion of total area sampled on plot  that

sampled timberland area, and

= sum of the proportions of plots that sampled
timberland area.

The statistics for computing the standard error were
determined using PROC MEANS with the WEIGHT state-
ment and VARDEF=WDF option (SAS Institute 2000).

The Statewide inventory per-acre estimate of all live trees
5.0 inches d.b.h. and larger on timberland as determined
by the moving-average estimate (    ) is,

                                                                                                       (2)
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Georgia for the three separate estimates     ,     , and      .
The estimate in the annual report will be     , and any
discussions of change or trend from the previous inventory
will be the difference between       and     .

DISCUSSION
For the immediate future, as the transition continues
toward annual inventories, FIA in the South will deal with
data availability and reporting. After implementation of the
annual inventories, Southern States will use the simple
   -year moving average for reporting of FIA information. The
moving average is a reasonable and practical way to
analyze and report data. In the future, when more compli-
cated analysis will update inventory statistics, the moving
average approach can evaluate whether other estimates
are improving the results.
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    = number of plots that sampled timberland in panel 1,

           = number of plots that sampled timberland in
                panels 2,3,4, and 5,

    = mean live volume per acre on timberland for panel 1
        (equation 1), and

            = mean live volume per acre on timberland for
                panels 2,3,4, and 5 (eq. 1);

      = the mean determined by all plots in the periodic
         inventory that sampled timberland, representing the
         Statewide inventory per-acre estimate of all live trees
          5.0 inches d.b.h. and larger.

Note that in equation 2, the plots in panels 2,3,4, and 5
have not been measured under the annual system, but are
considered a valid component of the estimate since the
most dated samples were measured in 1995. Figure 1
illustrates the average per-acre volume of live trees 5.0
inches d.b.h. and larger on timberland area for the State of

n1

yp

Figure 1—Three estimates of average per-acre volume of live trees 5.0 inches d.b.h. and larger on timberland area for the State
of Georgia.
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INTRODUCTION
Along with resource sustainability, forest regeneration has
emerged as a critical research question in Pennsylvania due
to the paucity of tree seedlings found in the typical forest
understory (McWilliams and others 1995). The USDA,
Forest Service, Northeastern Research Station (NE), Forest
Inventory and Analysis (FIA) unit began collecting forest
inventory data on an annual basis in Pennsylvania starting
this past field season. The annual inventory provides an
opportunity for landscape-level assessment of regeneration
adequacy across the range of forested ecosystems common
in the State. Regeneration assessment in Pennsylvania will
require development of new inventory techniques because
existing NE-FIA protocols (USDA Forest Service, 2000) and
national FIA protocols (USDA Forest Service 2000) do not
provide the level of detail needed to address regeneration
adequacy.

The diversity of plant communities common across
Pennsylvania’s forested landscape, high white-tailed deer
(Odocoileus virginianus Boddaert) populations, competing
vegetation, and other factors make this a challenging and
costly research problem to address. A consortium of
interested groups within the State has agreed that a
comprehensive system for evaluation and monitoring of
forest understories is needed. Specific research questions
associated with this goal are:

- What are the abundance, composition, and quality of
advance regeneration?

- What are the abundance, composition, and quality of
regeneration following major disturbance?

- What are the extent and composition of competing
vegetation?

- What is the status of regeneration of oak and other key
species?

Because of the importance and complexity of this issue, a
pilot study to assess regeneration measurement protocols is
being conducted during this year’s field season.

PILOT STUDY
Goals and Objectives
The regeneration pilot study is intended to provide a field
test of regeneration sampling design and measurements.
Objectives of the study are:

• Determine the minimum (or optimal) set of sample plots
required to quantify the character of tree
regenerationand competing regeneration,

• Develop a scientifically credible and peer-reviewed set
of measurement protocols that address the range of
research questions,

• Test the analytical framework for assessing tree regen-
eration and competing regeneration, and

• Provide a cost model for full implementation of the
regeneration assessment.

The findings of the pilot study will be used in the annual
inventory design for Pennsylvania and as a tool for design-
ing and implementing regeneration studies in other north-
eastern states.

Sample Design
The basic premise for designing the sample used in the pilot
study was to collect as much data as possible within the
footprint of the national sample design. For example, tree
seedlings were tallied on four 6.8-foot microplots at each
subplot, compared to one microplot that is used for the
national sample design (fig. 1). The resulting dataset allows
for analysis of standard errors associated with differing
numbers of microplots. Data collection spanned the period
between leaf-on and leaf-off conditions to allow a subjective
evaluation of the field forester’s ability to identify tree
seedlings.

Regeneration and supporting data were collected at three
levels: sample location, subplot, and microplot. Time data

ASSESSING REGENERATION ADEQUACY IN PENNSYLVANIA’S
FORESTS: A PILOT STUDY1

William H. McWilliams, Susan L. King, and Charles T. Scott2

Abstract—The USDA, Forest Service, Northeastern Research Station (NE), Forest Inventory and Analysis (FIA) unit began
collecting forest inventory data on an annual basis in Pennsylvania starting this past field season. The forestry community
of Pennsylvania has identified forest regeneration as a primary research issue for the inventory to address. New techniques
for measuring and quantifying regeneration are needed because existing NE-FIA protocols and national FIA protocols will
not provide the level of detail required. A pilot study is being conducted to determine a cost efficient method for measuring
tree seedlings, shrubs, and competing vegetation. The study is expected to result in a recommended approach for full
implementation next field season.
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were recorded to provide estimates of the cost of collecting
regeneration data and assist in determining the number of
personnel needed to complete the measurements.

At the sample location level, a broad assessment of the
impact of deer on understory vegetation was made. The
assessment was based on general knowledge of local deer
populations, the amount of available alternative food
sources within one-square mile of the sample location
(agricultural crops), and a list of understory species ranked
by preference for browse by deer.

At the subplot level, a tally of vegetation that competes with
tree seedling development was made. In the context of this
study, competing vegetation is defined to include non-tree
vegetation; such as shrubs, fern, grass, and other herba-
ceous vegetation that may inhibit the establishment and
development of tree seedlings. Standard NE-FIA species
codes were used for deciduous, evergreen, and dwarf
shrubs and vines. Additional codes were needed for
rhizomous ferns (Hayscented, New York, and Bracken),
other ferns, grass, and other herbaceous vegetation. All
competing vegetation data was tallied using 10-percent

cover classes. The larger subplot was used to tally compet-
ing vegetation because of the patchy occurrence of these
life forms (Marquis and others 1990).

Measurements of trees were collected on four 6.8-foot
radius microplots located at cardinal directions within each
subplot. The tree tally is intended to provide a sample
representing future stand occupancy and composition.
Conceptually, the size of the microplot represents the ground
area occupied by a tree once it reaches a diameter of 5.0
inches, which represents a fully established tree of mer-
chantable size (Marquis and others 1990). The sample of
tree seedlings was limited to “established” seedlings. As
such, seedlings that were less than 2.0-inches tall, had
fewer than two normal sized leaves, or that bore cotyledons
were not counted.

At each microplot, tree seedlings were tallied by species,
seedling source (stump sprout and other), and eight height
classes. A tally of saplings (trees from 1.0-inches to 4.9-
inches in diameter) was made using a condensed set of the
national FIA protocols that included diameter, crown ratio,
and crown class. On microplots with trees 5.0-inches and

Figure 1—Sample location layout. The larger circles represent 24-foot radius subplots that are located 120 feet apart at
azimuths 360, 120, and 240. The smaller circles represent 6.8-foot radius microplots that are located 12 feet from subplot
center at azimuths 90, 180, 270, and 360. Microplots with solid lines are part of the national sample design. Microplots with
dashed lines were added for the pilot study.
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larger, the species code of the most dominant large tree was
recorded.

Complicating Factors
Design of an analytical framework for assessing
regeneration adequacy in Pennsylvania is complicated by
many factors. A diverse mix of forest communities and
conflicting habitat uses make it difficult to set universal
regeneration guidelines. Fike (1999) describes 54 forest and
woodland communities. Very often, communities are not
distinct but are in transition to other community types making
it difficult to assess the ability of understory vegetation to
perpetuate existing or potential overstory compositional
traits. For example, a mature overstory comprised of oak
(Quercus sp.) and ash (Fraxinus sp.) species may contain a
well-stocked understory of red maple (Acer rubrum L.). The
high economic value of oak, black cherry (Prunus serotina
Ehrh.), sugar maple (Acer sacharrum Marsh.), ash (Fraxinus
sp.), and other species in relation to less valuable species
common in forest understories; as well as the importance of
wildlife, aesthetic, and other recreational activities and their
related habitat requirements further confuse the issue.

Any classification of regeneration must consider site
occupancy requirements of individual species, degree of
establishment, and seedling source. The suite of species
common in Pennsylvania exhibit a wide range of site
occupancy requirements that depend on numbers of stems
and stem height. For example, the probability of survival of a
six-foot seedling is quite different from a six-inch seedling. In
addition, the degree of establishment can be challenging to
measure, especially for small seedlings. New research has
shown that root collar diameter is a better indicator of oak
seedling establishment than seedling height (Personal
communication. Dr. Patrick Brose. 2000. Research Forester,
Northeastern Research Station, Old Route 6, Irvine, PA
16329–0267). Lastly, information on whether seedlings
originate as stump sprouts or from other sources is useful
for gauging the quality of the prospective future stand.

The regeneration assessment should also perform well
under a variety of stand conditions, from older closed
canopy stands to heavily disturbed stands with a need for
new stand establishment. This will allow analysis of both
advance regeneration levels and post-disturbance
regeneration success.

Competing vegetation in forest understories is another
complicating factor. The regeneration assessment should
include an estimate of the degree that competing vegetation
interferes with the establishment and growth of tree
seedlings. So far, the study objectives do not call for
remeasurement of percent cover; however, it is likely that
remeasurement will emerge as an objective in future
discussions with clients for this information. Any
remeasurement design will need to consider the work of van
Hees and Mead (2000) who noted some limitations of
remeasuring percent cover estimates over time.

Perhaps the most significant factor influencing regeneration
in Pennsylvania is the large deer population in the State.
Population data indicate that relative deer densities exceed

thresholds for adequate seedling development across most
of the State (Pennsylvania Game Commission. 2000.
Unpublished deer population data available from the author).

Analytical Features
The analysis will focus on classifying regeneration adequacy
of forest conditions encountered at each sample location
and estimation of numbers of tree seedlings per acre. The
number and placement of microplots will be determined
using standard errors. Standard errors will be examined for
individual species and species groups for different numbers
and placement of microplots. The configuration(s) that
provides the smallest acceptable standard errors will be
considered for implementation. Quality assurance methods
will be developed following the choice of sampling protocols.
Lastly, cost estimates will be developed using the time data.

There are a number of existing guidelines for evaluating
regeneration and silvicultural research will likely provide
improved measures over time. Because of this, the ap-
proach for classifying regeneration adequacy needs to be
flexible enough to consider different schemes for evaluating
the stocking of seedlings by height class. It is also useful to
be able to examine a range of regeneration guidelines,
rather than assuming a single metric will fit all needs. As a
starting point, the data will be compiled using the framework
from a previous study of regeneration using NE-FIA data
(McWilliams and others 1995). The approach considers
three species groups, two levels of acceptable seedling
density, and a set of weights to be applied to height classes.
Individual tree species are assigned to desirable, commer-
cial, and woody groups using commonly accepted timber
conventions. The two levels of acceptable seedling density,
25 (low) and 100 (high) seedlings per acre, cover the range
of regeneration guidelines found in the literature (Leak 1980,
Sander and others 1976, Marquis and Bjorkbonm 1982). To
account for different seedling survival rates by height class,
each seedling was weighted as follows:

Height Class Weight

2 to 6 inches 1
6 inches to 1 foot 1
1 to 2 feet 2
2 to 3 feet 2
3 to 5 feet 20
5 to 10 feet 50
10 to 15 feet 50
Greater than 15 feet 50

Any combination of weighted stems that meets or exceeds
the minimum number required was considered adequately
stocked. For example, a microplot is considered to meet the
high-density requirement if it contains a minimum of two
stems at least five feet tall for the species group of interest.
Similarly, a microplot is stocked at the low-density level if
twenty 6-inch and three 2-foot stems are encountered. Any
forested condition at the sample location is considered
adequately regenerated if at least 70 percent of the
microplots are adequately stocked.
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The species groups, acceptable seedling densities, and
height-class weights can all be adjusted to fit differing
viewpoints regarding what constitutes adequate regenera-
tion. It may also turn out that different height-class weights
will be needed for individual species or species groups. For
example, one viewpoint may hold that American beech
(Fagus grandifolia) is not a commercial species. The
prevalence of beech in Pennsylvania’s forest understories
would likely have a significant impact on the population
estimates of commercial-species regeneration adequacy.

Analysis of competing vegetation is relatively straightforward.
Estimates of percent cover for shrubs, fern, grass, and other
herbaceous vegetation will be used to support and explain
regeneration stocking and composition.

The suite of regeneration indicators will be used to classify
the overall status of regeneration across Pennsylvania and
for important sub-regions, such as ecoregions, forest-type
groups, and geographical units. The measurements should
also provide sufficient data for developing relationships
between overstory and understory composition. This will
facilitate predictions of prospective composition of future
forest communities in the State.

NEXT STEPS
The data collection phase of the study has been completed.
The immediate next step will be to complete the analysis of
study data to address the specific objectives of the pilot
study described above. Once a final set of measurement
protocols is determined, the protocols and associated
analytical framework will be circulated for peer review and
final adjustments will be made. Full implementation of the
regeneration measurements will proceed during this coming
field season. Another opportunity for research is to explore
auxiliary data sources for correlation of regeneration findings
with other variables, such as soils, physiography, deer
populations, and acid deposition.
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 COMPARISON OF STANDING VOLUME ESTIMATES
USING OPTICAL DENDROMETERS1

Neil A. Clark, Stanley J. Zarnoch,
Alexander Clark III, and Gregory A. Reams2

Abstract—This study compared height and diameter measurements and volume estimates on 20 hardwood and 20
softwood stems using traditional optical dendrometers, an experimental camera instrument, and mechanical calipers.
Multiple comparison tests showed significant differences among the means for lower stem diameters when the camera
was used. There were no significant differences among the methods for volume or height.

INTRODUCTION
Digital technology is being utilized more and more to
facilitate the collection of forest inventory data. Satellites
that scan the earth’s surface on a periodic basis provide
affordable data for various forms of regional analyses.
Digital aerial cameras and positioning systems can be
directed to capture more detailed information quickly and
with little manual processing. Technologies are reducing
data collection costs and changing the way we can model
and analyze these data. Regardless of methodology and
scale, at some point this macroscale data must be
combined with a more detailed subsample on the charac-
teristics of the individual trees that make up the regional
forests. For metrics such as volume or biomass, current
methods of collecting this individual stem data are cost
prohibitive, and some metrics such as crown dimension
are highly error prone. There is hope that the digital camera
system can aid in the affordable and accurate collection of
individual stem data.

Since the 1950s, cameras have been used in various ways
to collect tree stem data (Bradshaw 1972; Crosby and
others 1983; Juujärvi and others 1998). In 1998, the USDA
Forest Service funded a study to examine the feasibility of
using a digital camera to collect data from individual
standing trees (Clark 1998). While the method was
feasible, several improvements—including increased focal
length, digital range, and inclination—were needed before
it could be considered practical. The main advantages of
using digital cameras over film cameras are the elimina-
tion of film and development costs and the capability of
direct integration with digital image processing software.
These things greatly reduce the costs of using camera
systems, propelling them into competition with traditional
methods. This paper will examine how use of the camera
instrument compares to standard and felled-tree methods
of measuring diameter, height, and volume.

METHODS
Twenty hardwood and 20 softwood trees were selected
from a mature, mixed oak-pine stand at the Bent Creek
Experimental Forest near Asheville, NC. The trees were
approximately distributed by 1-inch classes from 4 to 24

inches in diameter at breast height (d.b.h.). Diameter
measurements were made at heights of 0, 0.5, 1, 2, 4.5,
17.3 ft, and every 4 ft from 8 ft to the top of the tree (exclud-
ing 16 ft). The locations of the measurement points along
the tree boles were not marked, and thus were measured
independently by each method. However, to minimize
extraneous variability, a vertical paint mark was made on
each stem to ensure that measurements were taken from
the same side of the tree by each method. Occasionally,
due to thick underbrush or tree crowns, some of the crew
members taking optical measurements may have deviated
from the directional control in order to observe the diameter
at the desired height. Total tree height was also recorded
along with live crown ratio. Truth data were collected by
felling each stem, then measuring diameters with a
mechanical caliper and heights with a nylon tape.

The Standard Method
Four four-member crews collected diameter and height
data using sectional aluminum poles for height determina-
tion and pentaprism calipers for diameters. In some cases,
McClure pentaprisms were used on diameters exceeding
24 in., which was the limit of the pentaprism calipers. Five
hardwood and five softwood trees spanning the diameter
ranges were systematically assigned to each crew.

The standard method deviated from the previously de-
scribed protocol in two ways. First, whenever a fork or other
drastic diameter change occurred, a new base was
established above the anomaly from which diameters were
again collected in 4 ft intervals. Second, diameter tapes or
mechanical calipers were sometimes used for the mea-
surement of d.b.h. in order to verify the size class of the
stem. In some instances, these measurements were
recorded in lieu of the optical dendrometer measurements.

The Camera Method
The camera-rangefinding instrument (fig. 1) used in this
study was a prototype model built by Laser Atlanta, Inc.,
which incorporates a Panasonic GP-CX161, 480 x 720
output pixel, color, CCD (charge coupled device) video
camera into their Advantage® CIL laser rangefinder (Clark
2000). Camera data were output to a Sony GV-D300
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portable digital video (DV) cassette recorder, and the range
data were output to a memory card. Each mini DV cassette
was capable of storing 60 minutes of video data. The 2Mb
memory card was capable of storing approximately 36,000
range/bearing/pitch records. The instrument was set to
record 30 frames per second of video data and 3 ranges
per second (derived from 238 ranges measured per
second).

Each stem was scanned with the camera-rangefinding
instrument from two or more visible vantage points, with at
least one of these points aligned with the vertical paint
mark on the stem. Redundant data were collected from the
additional vantage points to increase the probability that a
given height was visible. In general, a close-range (10 to 30
ft) distance was used to view the lower portion of the stem
and a >30 foot range for the upper portions in order to avoid
severely acute perspective angles.

The camera data were post-processed back at the office,
using customized software written in C++ for the Windows
platform by Neil Clark. The following procedure was used
to calculate the diameters:

1.  Range data were filtered in order to determine the actual
range to the stem and to filter out ranges from occluding
objects.

2.  Heights were calculated using ranges and inclination
angles.

3.  Video frames were manually correlated with the range
data, extracted from the videotape, and saved as digital
images.

4.  Image coordinates representing the diameters were
collected by on-screen digitizing and the resultant
diameters were calculated, then output to a digital file.

Differences, defined as method measurements minus
felled tree measurements, were analyzed for total height,
volume calculated by Smalian’s formula, and outside bark
diameters at d.b.h., 17.3 ft, and in the clear bole and crown.
The clear bole and crown diameters were determined
using total height and live crown ratio. Graphical analysis
and descriptive statistics were used to compare the
methods. A randomized block design analysis was also
performed to test for differences between the two instru-
ments and the “true” value for each taxonomic division.
Trees were considered blocks, which contained three
treatments defined as Camera, Standard, and True. Overall
significance tests were performed, least square means
computed, and Bonferroni multiple comparisons per-
formed using an experimentwise error rate of 0.05.

RESULTS AND DISCUSSION
Figure 2 and table 1 show the results of diameter errors by
category. Due to procedural errors, four softwood stems
were not matched and were left out of the comparison for
the camera method. A 17.3 ft diameter measurement from
one stem was also excluded from comparison because it
was missing in one of the data sets. Differing sampling
methods also created different sample sizes among the
other diameter categories; therefore, only diameter mea-
surements taken at heights corresponding with the truth
data were compared.

Figure 1—Camera rangefinder prototype used in this study.

Figure 2—Errors for camera and standard methods for varying
stem characteristics. The box indicates a 95 percent confidence
interval about the mean (assuming normal distributions), and tails
indicate the maximum and minimum observations.
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Diameters at Breast Height
For diameters at breast height the standard method is
more accurate for all taxonomic divisions (fig. 3). Within this
category there is a concern that contact dendrometer
(mechanical caliper or diameter tape) measurements,
acquired to determine tree size class, were substituted as
the optical dendrometer measurements for the standard
method. The existence and severity of this operator bias
could not be documented, but is mentioned as a possibility.

Discrepancies greater than 1 in. using the camera method
were all negative and occurred primarily on larger stems
(fig. 3). A number of probable causes exist for the varia-
bility of the d.b.h. errors. A high frequency of understory
vegetation can cause improper range data collection. The
range filter used in the diameter processing software is not
sensitive to occlusions within a certain threshold (5 ft) of
the estimated stem face range. Correction for measuring
range to the stem face instead of the stem axis may have a Figure 3—Diameter at breast height errors.

Division Method n Mean Stnd.Dev. Minimum Maximum

- - - - - - - - - - - Diameter at breast height (inches) - - - - - - - - - - -

Hardwood Standard 20 -0.08 0.19 -0.80 0.10
Camera 20 -.46 .77 -1.90 1.00

Softwood Standard 20 -.12 .44 -1.40 .80
Camera 16 -.71 .97 -2.70 1.00

- - - - - - - - - - - - - Clear bole diameters (inches) - - - - - - - - - - - -

Hardwood Standard 159 .10 1.66 -4.30 9.00
Camera 166 -.96 1.98 -7.90 5.30

Softwood Standard 173 -.15 1.11 -5.60 3.70
Camera 145 -.54 1.60 -6.70 4.80

- - - - - - - - - - - - - - Crown diameters (inches)  - - - - - - - - - - - - - -

Hardwood Standard 69 -.03 .84 -1.80 1.80
Camera 151 .03 1.40 -4.40 4.60

Softwood Standard 81 .01 .95 -2.10 2.10
Camera 93 1.15 2.52 -5.00 6.60

 - - - - - - - - - - - - - - - - - - - Height (feet) - - - - - - - - - - - - - - - - - - -

Hardwood Standard 20 .94 3.22 -5 9
Camera 20 -2.32 7.26 -15 9

Softwood Standard 20 .11 5.79 -7 15
Camera 16 .04 9.41 -14 16

- - - - - - - - - - - - - - - - - Volume (cubic feet) - - - - - - - - - - - - - - - -

Hardwood Standard 20 .88 5.78 -13.16 14.94
Camera 20 -2.90 5.39 -17.04 3.20

Softwood Standard 20 -.50 6.98 -18.39 15.31
Camera 16 .12 4.57 -8.65 9.79

Table 1—Difference statistics (method – felled tree) by category for hardwoods and softwoods
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slight effect. Difficulty in locating stem edges due to
foreground occlusion or background obfuscation may have
been caused by the understory vegetation. Observations
made on unimpeded open field targets indicate an instru-
ment bias correlated with the inclination angle.

Clear Bole Diameters
Multiple comparison tests (table 2) demonstrated no
significant differences among the softwood means for
diameters on the clear bole, but the camera was signifi-
cantly lower than the two other methods for hardwoods.
Extreme negative values are present predominantly for
large diameters (fig. 4) and low heights (fig. 5). All values
greater than 24 inches were situated below breast height
and are subject to the same error explanations as d.b.h.
These lower height measurements had small effects on
the volume determination (especially if useable volume
was to be considered), due to the short lengths with which
these measurements were associated. Some extreme

Table 2—Bonferroni Multiple Comparision test results from a randomized
block design analysis on the inventory attributes

Least squares means

Division P-value Camera Standard Fell

- - - - - - - - Diameter at breast height (inches) - - - - - - -

Hardwoods 0.0045 12.22  a 12.60  b 12.68  b
Softwoods .0103 12.23  a 12.74  ab 12.94  b

- - - - - - - - - - - - 17.3 diameter (inches) - - - - - - - - - - - -

Hardwoods .0009 10.68  a 11.53  b 11.32  b
Softwoods .1852 10.44  a 10.86  a 10.75  a

- - - - - - - - - Clear bole diameters (inches) - - - - - - - - -

Hardwoods .0026 12.34  a 13.27  b 13.19  b
Softwoods .0668 11.67  a 12.11  a 12.25  a

- - - - - - - - - - - Crown diameters (inches) - - - - - - - - - - -

Hardwoods .8162 6.83  a 6.68  a 6.58  a
Softwoods .4271 7.27  a 6.58  a 6.73  a

- - - - - - - - - - - - - - - - - Height (feet) - - - - - - - - - - - - - - -

Hardwoods .1102 65.60  a 68.85  a 67.92  a
Softwoods .981 67.31  a 66.94  a 67.28  a

- - - - - - - - - - - - - Volume (cubic feet) - - - - - - - - - - - - -

Hardwoods .0185 36.38  a 40.16  b 39.28
Softwoods .3663 41.52  a 39.70  a 41.40  a

Figure 4—Clear bole diameter errors.
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positive values in the hardwoods using the standard
methods may have been the result of estimation due to
exceeding the range of the pentaprism.

Crown Diameters
Using the standard method, variance (fig. 6) seemed to be
independent of dimension in the crown measurements.
The multiple comparison tests (table 2) did not indicate
significant differences among the means, though standard
errors (fig. 6) were less for the standard method. Camera
mean errors were positive for both hardwoods and soft-
woods, and extreme positive errors can be found in the
softwoods. Twenty of the 22 camera errors > 4 inches (fig.
6) were from three stems, so there is a potential for the
camera estimates to have a correlated error. Especially
among the hardwood crown diameters, the differing data
collection protocol of the standard method greatly influ-
enced the number of samples that could be compared.

Height
Total tree heights (actually stem length) ranged from 23 to
93 ft. Table 1 reveals that the camera variance is greater;
however, the multiple comparison tests (table 2) do not
reveal any significant differences among the means. It is
thought that the camera method may improve for the
hardwoods in a leaf-off condition if a better range to the top
can be achieved. Then, by taking this length from ground to
highest tip and projecting it back over to the plumb stump
axis, a more accurate total tree height can be calculated.

Volume
The hardwood least squares means between the camera
and standard methods are significantly different from each
other based on the multiple comparison tests (table 2),
though neither method is significantly different from the true
mean. Although the results using the standard method
were better for each separate category previously men-
tioned, the volume results were slightly less satisfactory
than the camera measurements. The camera and felled-
tree methods used the 4 ft incremented diameters in order
to calculate volume, whereas the standard method used
shorter segments in places where forks or significant taper
changes were exhibited. This may provide a partial expla-
nation of this unexpected outcome. On the camera side, the
negative trend still exists in the hardwoods. However, on
some softwood stems the negative lower diameter errors
are offset by positive upper-stem errors.

CONCLUSIONS
For heights or diameters alone, the camera method was
not quite as accurate as the standard method. For volume,
the camera method was marginally better than the stan-
dard method. A summary of the multiple comparison tests
(table 2) shows that the standard method least squares
means do not differ significantly from the felled-tree method
least squares means in any category. Camera method
diameters on the lower portion of the stem are generally
lower than the true diameters. It is evident that extreme

Figure 5—Camera diameter errors by height.

Figure 6—Crown diameter errors.
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diameter measurement errors are related to their position
on the stem. Negative errors occur predominantly below
breast height, and most of the extreme positive errors occur
in the crown. Sources of instrument and methodological
bias are being investigated. If the biases present at the two
extremities of the stem can be removed, this instrument
can produce some results comparable to the standard
methods with considerable timesavings in the field.

FUTURE WORK
A few hardware improvements are needed, including the
integration of the ranging and video data streams and
incorporation of the video tape recorder into the ruggedized
unit, before the camera can be considered a reliable
production instrument. The information extraction suite of
algorithms needs to be expanded to provide increased
automation. Image matching can be implemented to
photogrammetrically determine heights, providing greater
accuracy for spatial measurements, and edge detection
can be used to eliminate manual coordinate capture.
Algorithms can also be developed to incorporate more
variables of interest, such as crown characteristics,
biomass models, and stem quality.
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 LAND USE, RECREATION, AND WILDLIFE HABITATS:
GIS APPLICATIONS USING FIA PLOT DATA1

Victor A. Rudis2

Abstract—Spatial contexts govern whether and how land is used. Forest surveys inventory land uses from sampled
plots and provide common forest resource summaries with limited information about associated nearby uses, or the
landscape context. I used the USDA Forest Service’s Forest Inventory and Analysis program of the South-Central States
survey region (Alabama, Arkansas, Louisiana, Mississippi, east Oklahoma, Tennessee, and east Texas) to derive
landscape context information. Methods employed moving averages (statistical combinations of sample plot observations
with those from adjacent sample plots) to portray the spatial context, or “neighborhood” for forest resource appraisals.
The survey region had 32,000 plots with land use information, and half of the plots classed as forest land provided more
detailed information. Results yielded regional maps with displays of high and low probability of common land uses. For
forest land, attributes shown include roads, forest fragment size, and hunting signs. Models of land use “hot spots” of
competing and complementary uses are provided, forest land attributes important to selected recreational opportunity and
wildlife habitat appraisals are discussed.

INTRODUCTION
The clearing of extensive forested areas for agricultural use
was once a common practice in the United States
(Williams 1989). Deforestation of this magnitude is not as
widely practiced today, but anthropogenic influences
continue to affect remnant, as well as regenerated forests.
Livestock grazing intrudes upon otherwise exclusive forest
land use in pasture-dominated regions (Rudis 1998,
2000). Major roads, urban and built-up land, and
associated higher population densities encroach on an
otherwise rural forested landscape, thereby reducing
timber harvests (Barlow and others 1998). This urban
sprawl frequently clashes with other rural land needs
(Befort and others 1988).

Silvicultural management regimes, as well as
complementary and competitive income sources, may also
differ among regions dominated by neighborhoods with
important recreational, urban, or agricultural pursuits, or
with habitats of critically endangered wildlife populations.
Depending on user demand and quality of neighborhood
resources (e.g., scenery, game), income from nontimber
forest enterprises can vary widely. In the southern United
States, for example, lease fees in 1989 for hunting alone
averaged between $1 and $15 per acre per year (Thomas
and Shumann 1993). Forests near areas with high
population densities are unlikely commercial wood
sources as nontimber uses (e.g., aesthetics, real estate)
may outweigh their use for timber production (Wear and
others 1999).

The USDA Forest Service’s Forest Inventory and Analysis
(FIA) program monitors the status and change in forest
land and provides sample-based information about forest
resources. Commonly, FIA data users analyze and
summarize FIA data from sample plots but often ignore the
context, that is, the “neighborhood” of the samples. In
addition, attributes that index nontimber forest products and

uses are not widely known, such as those associated with
recreation opportunities and wildlife habitats.

The main objective of this study was to illustrate the use of
landscape context attributes for forest resource appraisals.
A second objective was to consider the importance of
selected attributes for recreation and wildlife habitat
appraisals at the landscape level of analysis. Forest
attributes included in this paper include roads, forest
fragment size, and hunting signs.

Roads provide access to forests for passive uses like
sightseeing and for extractive uses like timber harvesting.
Roads and allied roadside vegetation management also
alter the wildlife habitat value of forests (Forman and
Deblinger 1998). For example, forests with extensive roads
are less likely to support viable populations of black bear
(Rudis and Tansey 1995) and snakes (Rudolph and others
1998). Roaded forests, by definition, are also less likely to
support primitive recreation opportunities, such as hunting
and backpacking (USDA Forest Service 1982).

Forest fragment size is inversely related to population
density (Rudis 1998). Among bottomland hardwood
forests, large fragments (>1,000 ha) are comparatively
wetter and older. Large bottomland hardwood fragments
contain fewer human intrusions than small (<100 ha)
fragments (Rudis 1995). Large forest fragments are in
short supply. They are valued for primitive recreation
opportunities (Rudis 1987, 1995) and are key habitats for
wildlife in need of seclusion from humans (e.g., black bear,
venomous snakes) or requiring large expanses of forest
land (e.g., Cerulean warbler). Simply because of their size
and their scarcity, large forest fragments offer economic
opportunities like tourism as well as reserves of future
timber supplies. Small fragments have lower potential for a
variety of resources but may be suited to other uses, such
as picnicking, thermal cover for livestock, and windbreaks
in agriculture-dominated neighborhoods.
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Hunting signs observed and associated with forested
areas index a number of phenomena. At the very least,
such an index shows the prevailing cultural practice and
landowner concern about hunting activities. The presence
of more abundant signs in one region or time period than
in others also suggests (1) a concentration of landowners
with hunting interests or leased land by hunt clubs, (2)
greater apprehension over landowner liability, (3) concern
for trespass by hunters, (4) conflict between landowners
and sportsmen regarding hunting activities, and (5) a
shortage in the supply of hunting areas relative to demand.
An increase in sign density between surveys suggests a
change in landowner attitudes toward hunting activities and
a decline in subsistence hunting opportunities by low-
income residents.

METHODS
Data used were from the U.S. Department of Agriculture,
Forest Service, Forest Inventory and Analysis (FIA) surveys
conducted between 1988 and 1995 for the South-Central
States (Alabama, Arkansas, Louisiana, Mississippi, east
Oklahoma, Tennessee, and east Texas). FIA sampled land
use systematically in a three-phase design involving forest
and nonforest determinations from aerial photos, a check
of photointerpretation for a portion of these, and a ground
sample of a still smaller subsample (Miller and Hartsell
1992.) Although sampling with aerial photographs was 25
times more intensive, geographically referenced observa-
tions were available only for ground-sampled plots.
Because of this lack of geographic referencing, other
sample information was not included.

Each of the 32,000, 0.4-ha ground-sampled plots had an
approximate latitude and longitude from reference maps.
Samples were spaced at 4.8 km intervals. FIA crews
obtained more detailed attribute information on about
17,000 plots classified as forest land. The definition of
forest land included areas 0.4 ha and larger, >37 m in
width, and not developed for nonforest uses.

To generate land use and forest attribute maps from
ground-referenced information, I created a digital map of
forest inventory plots (positional accuracy better than 0.8
km) to a geographic surface with the aid of ArcView
geographic information science (GIS) software and maps
(ESRI, Inc. 1996a, 1999.) Further details and additional
examples of early results appear elsewhere (Rudis 1991,
2000, and in press.)

I transferred plot attribute information to 2.4-km grid cells
oriented in cardinal directions to increase computation
efficiency. The dimension of the grid cell was “small
enough to define the most detailed geographic feature”
(ESRI, Inc. 1996b), yet large enough to minimize computer
memory storage space and software calculations. With a
2.4-km grid, I nominally assigned every plot to a unique grid
cell.

For indicator attributes, I recoded observations as
0=absent, or 1=present, averaged the observations for a
given range of samples, and obtained average probability
of occurrence, in percent. For interval attributes, I used
attribute values themselves to calculate averages and

compared average values using standard deviations above
and below the mean. When needed, I transformed the
values to obtain a normalized frequency distribution.

Moving Averages
Averages per grid cell were estimates from plots within a
circle of a given radius. The term is referenced as a
“spatially moving average.” Grain size was defined as the
radius of the circle used to calculate the spatially moving
average. Only grid cells associated with sample plots
contributed to the averages. A grain size of 4.8-km radius
encompassed about 13 of the 2.4-km grid cells (7,240 ha),
up to five of which contained FIA sample plots. For land use
occurrence probability estimation, results yield an occur-
rence probability of 0, 1, 2, 3, 4, or 5, out of five samples.

The spatially moving average yields an isotropic probability
for forest land. Small-scale aerial photographs, however,
show forest land as more frequent along the direction of
steep terrain and adjacent to water courses, and as
associated with particular soils and climates. The simpli-
fied averaging procedures used in this report ignored them.
Furthermore, because FIA locations of sample plots were
on a regular grid, I made no extensive examination of
alternative grain sizes.

I employed the circular neighborhood mean statistics
function within ArcView with the Spatial Analyst extension
(ESRI, Inc. 1999). Calculation of means for forest-collected
attributes provided averages for adjacent nonforest land, a
scenario in classical statistics comparable to drawing a
regression line beyond the range of the sampled region. To
mask these areas, I created a layer of grid cells with 20
percent or less forest land probability, based on a 4.8-km
radius grain size and averaged from all sampled plots. For
the seven-State FIA survey region, this nonforest mask
included extensive areas of nonforest land in the
Mississippi Alluvial Plain. I also masked out areas with no
FIA plot samples (nonsurveyed locations and largely
nonforested counties in western Oklahoma, western Texas,
and extreme southern Louisiana).

For forested plot attributes, I used a radius of 24 km—a
size with resolution suitable for multicounty decisions, e.g.,
multiagency, Federal, and regional planning. The 24-km
radius grain size approximated the size of a county plan-
ning area, or portion of a large city, which a larger grain size
could obscure. This grain size is likely coarse for local
management purposes, but provides broad contextual
information. The 24-km grain size yielded averages
nominally represented by 25 forested plots. Exceptions
were in sparsely sampled, sparsely forested regions,
where averages were based on fewer samples.

Kriging
Unlike the more straightforward “averaging” technique
listed above, kriging is memory intensive for large data
sets. Kriging yields grid-cell averages based on a distance-
weighting scheme, with the nearest sample plots, typically
16, contributing the most information. The radius specified
is large to ensure that averages are based on 16 plots,
even in a sparsely populated sample region. Contrary to
moving average interpolation, changing the radius will
usually yield only small differences in resulting patterns.
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The analyst must choose among several weighting
schemes, based on an examination of the geographic
relationship of sampled values and sometimes by
knowledge of the spatial association of phenomena under
study. In a linear weighting scheme, the value at one grid
cell location corresponds directly (1 to 1) with the value at
an adjacent grid cell location.

I converted indicator plot values to an indicator probability
surface interpolated with kriging, using ArcView with the
Spatial Analyst extension and GS+ software (Gamma
Design Software 1998). GS+ interpolated the surface with a
2.4 km grid.

Field Attributes
FIA field crews made a general determination of land use
on each sample plot. On forest land, they collected
traditional timber variables, such as stand diameter class
(i.e., stand size in timber reports), forest type, harvest
activity, owner class, site productivity, and stand origin.
Crews also collected nontraditional variables like livestock
grazing, presence of trash, and proximity to urban and built-
up land. Maps of other results based on moving averages
appear elsewhere (Rudis 2000, and in press).

Selected results in this paper include the use of moving
averages to assess forest land, forest fragment (patch)
size, road proximity, and hunting signs. More recent results
include averages using kriging, with overlays of county-
based ecological subregion boundaries (Rudis 1999) to
highlight regional, within-State differences. The example
includes a spatial prediction of predominant land use.

Land use—The classification of land at 0.4-ha sample
plots by use classes. Categories were forest, cropland,
pastureland, urban and other land uses, marsh, and
noncensus water. Definitions follow Anderson and others
(1976) land use classifications. FIA survey manuals
describe additional details (FIA Staff 1994).

Forest fragments—Contiguous forest cover unbroken by
nonforest cover. A “contiguous” forest meant a patch of
forest unbroken by water or nonforest land cover >37 m
wide, as determined by field visits and the aid of 1:58,000
scale high-altitude color-infrared aerial photographs.
Forest fragment size classes (and midpoints used in
averages) were 0.4 to 4.0 ha (midpoint 2 km), 5 to 20 (12),
21 to 40 (30), 41 to 202 (121), 203 to 1,012 (607), 1,013 to
2,023 (1,518), and >2,023 (set at 3,323 ha). Because the
frequency distribution of forest fragment size class was
lognormal, I calculated averages using logarithm-
transformed midpoint values. Though one fragment could
be large enough to be associated with more than one
sample plot, I assumed every plot was a different fragment.

Roads—Travel corridors associated with vehicular
transportation. From the sample plot to the nearest road,
FIA field crews measured proximity in 30 m intervals to
1600 m (100 ft intervals, to 5300 ft). FIA field crews judged
roads as capable of travel by four-wheel drive vehicles,
termed “truck-operable or better” roads.

Hunting signs—Signs encountered by field crews within
400 m (1,320 ft) of a sample plot. These signs listed “no
hunting,” “hunting restricted,” or “posted” and were
commonly associated with the sample plot.

RESULTS AND DISCUSSION
Figure 1 illustrates the distribution of forest land by sample
plot location and by interpolated forest land probability.
Forest land probability was low in the Mississippi Delta
(western Mississippi, east Louisiana, and eastern
Arkansas) and other predominantly agricultural areas
along major rivers. Forest land probability was also low in
the Blackland Prairie crescent spanning the States of
Mississippi and Alabama. Forest land probabilities were
higher in other areas.

Forest Fragments
I used forest fragment size class to illustrate an example of
an interval attribute. Figure 2 depicts the spatial distribution
of mean fragment size. Most of the large fragments were
either in mountainous areas, such as the Boston
Mountains of the Ozark National Forest, or in low-lying
areas, such as the Atchafalaya Basin of Louisiana. Black
bear occupy many of these same sites (Maehr 1984). The
most fragmented forests (Memphis, Central Tennessee,
Longview [Texas], and agriculture-dominated areas) do not
contain black bear.

Large fragments that occur on Federal and State land serve
as habitats for wildlife in need of seclusion and provide
primitive recreational opportunities. Results indicate that
the public agencies associated with these areas have
been successful in conserving these uses.

Figure 3 (see page 134 ) illustrates that roaded forests
near roads were abundant throughout the South and more
abundant in selected regions. An extensive road network
appears near forests throughout south Mississippi and
parts of other States, particularly within the Southern
Coastal Plain. By contrast, roadless forested areas were
rare. The only extensive roadless forested area was in
Louisiana’s Atchafalaya Basin, which suggests that its
scientific and ecological value may surpass its value for
forest production or development.

Land Use
The last two examples employ kriging to depict land use in
east Texas. Figure 4 (see page 135) shows land use in
east Texas for the 1992 FIA survey. A linear weighting
scheme yielded the highest r-square autocorrelation (>
0.65) and lowest residual sums-of-squares.

Pastureland dominated in the western part of east Texas,
urban areas to the southwest (Houston area), and forests
to the east. Given these patterns, one might logically expect
livestock to use forests in pasture-dominated areas. In fact,
livestock grazing occurred on a third of the forests in the
western ecological province, compared with 10 percent
throughout the south central region (Rudis 1998). The
urban-dominated areas encompassed the outskirts of
major cities—the most prominent of which was in the
southwest corner (Houston metro area, Harris County).
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Figure 1—Forest and nonforest land use, U.S. Forest Inventory and Analysis surveys. South-Central United States,
1988–1995: (A) sample plot locations, (b) forest area probability. Forest land probability was generated using a 4.8 km
radius moving average and mapped to a 2.4 km grid.

Each of these patterns suggest that forests in nonforest-
dominated areas serve more as shade for livestock or as
landholdings for urban uses than as forests with
continuing timber production potential. Hence, forest
resource appraisals stratified by predominating land-use
class—whether it is pasture, urban, or forest—will likely
improve estimates of forest resource supply.

Hunting Signs
Forest land with hunting signs represents 11 percent of the
resource in the South-Central States FIA survey region
(Rudis 1998). The spatial distribution of forests with
hunting signs appears in figure 5 (see page 136) for two
sample periods. In both surveys, hunting restrictions were
more frequent in the northern half of east Texas. One
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Figure 2—Deviation from average forest fragment class, forest land probability 20 percent or more, South-Central
United States, 1988 to 1995 surveys. Averages were generated using a 24 km radius moving average and mapped
to a 2.4 km grid.

hypothesis is that because both forests and public land
areas are relatively limited to the north, landowners may be
(1) selling more private land leases for hunting on a per-
acre basis, and (2) resisting public use of forest land for
hunting. Analysts need additional evidence, such as deer
kill surveys, sportsman license sales, or landowner
studies, to draw definitive inferences. The suggested
increase in restricted forests for Wood County, TX, bears
further investigation.

FUTURE PROSPECTS
Critical to any mapping scheme is having geographically
referenced observations from which to draw inferences.

From a mapping standpoint, the more information received
from all sampled plots, not just those visited on the ground
and not just those having detailed attributes only for
forested land, the better will be the resulting estimation of
the “neighborhood.” Studies have already implicated road
density, road proximity, and fragment size class in the distri-
bution of wildlife populations (Rudolph and others 1998,
Rudis and Tansey 1995) and recreation uses (Rudis
1987). The next steps in the analyses are to improve the
reliability of these indices as surrogates for the number of
recreation users, the percentage of landowners with spec-
ific intentions, and the number of hunters. Such improve-
ments could take the form of user and landowner surveys.
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Figure 3—Roadless and roaded forest probability, forest land probability 20 percent or more. South-Central United
States, 1988-1995 surveys. Averages were generated using a 24 km radius and a 2.4 km grid interpolation.

Map certainty is the confidence of an attribute’s value at a
given location and attribute variation near the location. A
straightforward appraisal of map certainty is to list the
number of samples used to estimate the value of each grid
cell. Among land-use attributes, map certainty is greater in
regions with more samples. Among forest land attributes,
map certainty is greater in regions with abundant forests.
Map certainty in land use estimates is relatively uniform
because FIA sampling is regularly spaced throughout the
survey region. Certainty in mapped forest attributes
information is lower in sparsely forested regions, such as
the Mississippi Delta, and higher in densely forested
regions, such as the Boston Mountains of Arkansas.

Relaxation of the isotropic forest probability assumption
and incorporation of information from other data sources
are other ways to improve resulting maps. Incorporation of
classified digital imagery from satellite sensors permits a
reduction in the grain size (and an increase in the
resolution) of sensor-detected earth cover classes, while
still providing thematic information from ground-sampled
observations. Concurrence of prediction in attributes
mapped from other geographically referenced, correlated
data, such as soils, climate, and geology, boosts
confidence in attribute variation for a given location.
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In conclusion, GIS provides additional tools for evaluating
the spatial context of FIA plots for forest resource apprais-
als, particularly the context of associated nontimber values.
Examples in this paper portray land use, wildlife habitat,
and recreational opportunities. Knowing where the phe-
nomena occur, even in general terms, provides the analyst
with added information about likely timber supplies,

Figure 4—Land use probability, east Texas Forest Inventory and
Analysis survey. Averages were generated using kriging with a
linear weighting scheme for the 16 nearest samples and a 2.4 km
grid interpolation.
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occurrence “hot spots” of predominant and potentially
competing resource uses, and change over time.
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 INTEGRATING P3 DATA INTO P2 ANALYSES:
WHAT IS THE ADDED VALUE1

James R. Steinman2

Abstract—The Forest Inventory and Analysis and Forest Health Monitoring Programs of the USDA Forest Service are
integrating field procedures for measuring their networks of plots throughout the United States. These plots are now
referred to as Phase 2 (P2) and Phase 3 (P3) plots, respectively, and 1 out of every 16 P2 plots will also be a P3 plot.
Mensurational methods will be identical on both types of plots, as will the procedures used for coding tree damages.
Measurements of crown dieback, crown density, and foliage transparency; and measurements related to soils, lichens,
and ozone indicators will distinguish P3 tree data from P2 tree data. Questions arise as to what value the unique P3 data
add to reporting forest health conditions, and whether the P3 attributes can be extended to the greater number of P2 plots
and forest landscape. This paper explores the latter question by showing how representative the P3 plots are of the
forest as depicted by P2 plots. In empirical analyses of P2 and P3 data recently collected in Georgia, the P3 data were
treated as a one-sixteenth subset of the P2 data. Stratifications of the data by forest-type group demonstrated that P3
plots were representative of the predominant forest-type groups and spatial distributions showed how the two types of
plot data were comparable at different levels of resolution.

INTRODUCTION
The Forest Inventory and Analysis (FIA) and Forest Health
Monitoring (FHM) Programs of the USDA Forest Service are
integrating field procedures for measuring plots throughout
the United States. All FHM plots [herein referred to as
Phase 3 (P3)] will be collocated on a systematic grid with 1
of every 16 FIA plots [herein referred to as Phase 2 (P2)].
Mensurational methods on both types of plots will be
identical, and FHM procedures for recording tree damages
will be applied to the P2 plots. Crown measurements of
dieback, density, and foliage transparency in 5-percent
classes will remain as the only attributes that distinguish
P3 tree data from P2 tree data. Measurements related to
soils, lichens, and ozone bio-indicators will also be unique
to P3 plots, and other data related to woody debris, herbs,
and shrubs will most likely be collected in the near future
on these plots.

Integration of the P2 and P3 field procedures will also
result in combined use of P2 and P3 attributes for the
reporting of forest health conditions. In these analyses, the
P3 data will be regarded as a one-sixteenth subset of the
P2 plots with the additional attributes described above.
This proposed use of the data gives rise to several related
questions:

1. Do P3 plots represent the forest landscape as
depicted by P2 plots?

2. What is the appropriate spatial scale of use for the P3
data?

3. Can attributes unique to the P3 plots be extended to
the P2 plots?

Past analyses have addressed only the first two questions
by showing that estimates of some attributes from P2 and
P3 data are comparable at a regional scale of resolution
(Brooks and others 1992). However, recent unpublished

applications of the P3 data have demonstrated their use for
smaller geographic areas. Given this interest, the objective
of this paper is to explore the spatial relationships between
P2 and P3 data at different scales.

METHODS
Empirical data from Georgia were used in an analytical
approach to compare spatial distributions of various
attributes common to the P2 and P3 data. Georgia was
selected as a case study because (1) recent years of
measurement for P2 and P3 data closely coincide (1997
and 1995, respectively), and (2) sampled data distributions
for the State are similar among forest-type groups and
stand sizes (table 1). Analytical methods focused on
whether spatial distributions of the P2 and P3 data were

Table 1—Percentages of forest-type groups and stand
size in Georgia as estimated by Phase 2 (P2) and Phase 3
(P3) data sources

                                                             Data source and year

Forest-type groups P2 P3 Difference
and stand size 1997 1995   P2 – P3

                                                      - - - - - - - - Percent  - - - - - - - -
Forest-type groups

Oak-hickory 23 17 6
Oak-gum-cypress 16 13 3
Oak-pine 15 21 -6
Loblolly-shortleaf pine 30 28 2
Longleaf-slash pine 14 19 -5

Stand size
Sawtimber 40 41 -1
Poletimber 24 24 0
Seedling-sapling 36 35 1
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still comparable at higher levels of resolution within the
State.

In 1995, P3 data were collected in Georgia on a systematic
grid of hexagons wherein one P3 plot was located within
each hexagon cell. In 1997, P2 data were collected from a
nonsystematic plot network dissimilar to the new system-
atic grid of the Southern Annual Forest Inventory System
(SAFIS) (Roesch and Reams 1999). Therefore, to make
realistic comparisons between data from P2 and P3 plots,
it was necessary to simulate the SAFIS grid using the 1997
data.

Simulating the New P2 Grid
The new SAFIS P2 grid was simulated by choosing plots
measured in 1997 that were nearest to the center of each
grid cell. This technique populated about 4,500 of the 6,413
SAFIS grid cells with data. Empty cells occurred mostly in
areas that were purposely undersampled in 1997, such as
nonforested landscapes (e.g., the Atlanta area) and the
Okefenokee Swamp. Aside from these areas, the simula-
tion of the SAFIS grid produced a uniform and representa-
tive sampling intensity of 16 P2 plots for each P3 hexagon
cell (fig. 1).

Quantifying Spatial Associations between P2 and
P3 Plots
The simulated grid was used to depict spatial distributions
of P2 plots located within different forest-type groups
throughout Georgia. Likewise, spatial distributions of P3
plots within corresponding forest-type groups were then

overlaid for comparison. Considering that individual plots
can occupy multiple forest conditions, plots were consid-
ered representative of a given forest stratum only if at least
50 percent of their sampled area was within that stratum.
Plots sampling the oak-hickory and loblolly-shortleaf pine
forest-type groups were used in example analyses be-
cause these groups are abundant yet unevenly distributed
in Georgia.

The ratio of the number of P2 to P3 plots was calculated for
each forest-type group at different spatial scales and
compared to the base-grid ratio of 16:1. The smallest unit
of area (highest resolution) used for analysis was a P3
hexagon grid cell, where the number of P2 plots
representing a given forest stratum was compared with that
depicted by the individual P3 plot for the cell. A tally of all
counts was then used to examine how the classification of
a P3 cell compared to that of each P2 plot contained within
the cell. This Geographic Information System technique
was easy to implement and provided an unbiased match
between P2 plots and P3 hexagons.

In a similar manner, a coarser resolution was analyzed
using a cluster of seven P3 hexagon cells, with one cell
surrounded by six others. This technique involved
classifying each cluster of seven cells, or “hepta-hexagon,”
according to the P3 attributes of the center cell, and then
determining how many P2 plots within the cluster had
matching attributes. Each P3 hexagon cell was evaluated,
which resulted in a sequence of overlapping clusters equal
in number to the number of individual P3 hexagons.
However, only hepta-hexagon clusters located completely
within Georgia were retained for analysis.

RESULTS
Ratio of P2 Plots per P3 Hexagon
A tally of all P2 and P3 plots that sampled oak-hickory forest
conditions showed a total of 670 P2 and 29 P3 plots,
equivalent to a ratio of 23:1. This deviation from the base-
grid ratio of 16:1 corresponds to a slightly greater estimate
of oak-hickory forest abundance obtained from the P2 data
(table 1) and suggests that the P3 plots under-sampled the
resource. For plots that sampled loblolly-shortleaf pine
forest conditions, the ratio of P2 to P3 plots was 18:1, which
was expected, considering that both types of plots provide
similar estimates of the loblolly-shortleaf pine abundance
in the State.

A visual display of locations of P2 and P3 oak-hickory plots
illustrates their respective spatial distributions within
Georgia (fig. 2). From these data it is evident that the
number of oak-hickory P2 plots within each oak-hickory
P3 hexagon is much less than 16. Conversely, a large
number of oak-hickory P2 plots are located in areas not
represented by oak-hickory P3 hexagons.

A cross-classification of the plot distributions quantifies the
disparity in plot locations (table 2). All 29 oak-hickory P3
hexagons contain 10 or fewer oak-hickory P2 plots.
Furthermore, about two-thirds of the hexagons contain
fewer than six P2 plots. Conversely, a large number of oak-
hickory P2 plots are located in areas where the nearest P3
plots are in other forest-type groups or are nonforested.

Figure 1—P3 hexagons in Georgia overlaid with a simulated grid of
P2 plots using data from 1997 to simulate the one-sixteenth P3
sampling intensity of P2 plots.
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Similar results were found for the loblolly-shortleaf forest-
type group. The arbitrary difference was that loblolly-
shortleaf pine types are more abundant in the southern part
of Georgia.

Ratio of P2 Plots per Cluster of Seven P3 Plots
As expected, use of the clusters of seven P3 hexagons
resulted in greater numbers of oak-hickory P2 plots within
each hepta-hexagon cluster (table 3). All but three of the
clusters with an oak-hickory P3 plot in the center hexagon
cell also contained at least 16 oak-hickory P2 plots some-
where within the cluster. Visual inspection of the plot and
cluster distributions also confirmed that the area defined by
the hepta-hexagon clusters captured most of the P2 plots
(fig. 3).

Results at this spatial scale were also similar in analyses
of the distributions of the loblolly-shortleaf pine types.

Locations of P2 plots in this stratum were strongly associ-
ated with seven-hexagon clusters that had a P3 loblolly-
pine plot in the central cell.

DISCUSSION
Although this study used only a subset of empirical data
from Georgia, some general conclusions can be inferred
from its analyses. Findings help quantify which spatial
resolutions are suitable for use with the P3 data.

For a given P3 plot, the distance to neighboring P2 plots
with similar attributes can be great. The Georgia data show
that a low number of oak-hickory P2 plots are usually found
within the hexagon cell of an oak-hickory P3 plot. This
finding confirms that an individual P3 plot is not necessarily
representative of its surrounding hexagon and that the P3
hexagons are thus not an appropriate level of resolution for

Figure 2—P3 hexagons and P2 plots, each representing sampled
oak-hickory forest-type groups.

Figure 3—Clusters of seven P3 hexagons used to search a more
extensive area for neighboring P2 plots that represent oak-hickory
forest-type groups.

Number of oak-hickory
P2 plots per P3
hexagon

Number of P3 hexagons

Oak-hickory Other

0 0 0
1–5 1 22
6–10 1 24
11–15 1 23
>15 16 81

Table 3—Spatial associations between Phase 2 (P2) and
Phase 3 (P3) plot locations that sample oak-hickory
forest-type groups

Table 2—Spatial associations between Phase 2 (P2) and
Phase 3 (P3) plot locations that sample oak-hickory
forest-type groups

0 0 29
1–5 19 135
6–10 10 25
11–15 0 2
>15 0 0

Number of oak-hickory
P2 plots per P3
hexagon

Number of P3 hexagons

Oak-hickory Other
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interpretation. However, results showed that 16 P2 plots
that match one attribute were found by expanding the
search area to a cluster of seven hexagons. For some
individual forest strata, this spatial resolution can therefore
be achieved.

However, results from this study also imply that analyses of
more detailed forest strata would involve searching larger
areas to find 16 P2 plots for every matching P3 plot. For
example, searches for P2 and P3 plots that sample pole-
sized, oak-hickory forests on well-drained sites would
obviously result in a smaller number of P3 plots and
require going a greater distance to find 16 neighboring P2
plots (fig. 4). In other words, forest strata by several
attributes will have lower spatial resolutions of interpreta-
tion than those strata defined by just one attribute. In some
instances, a forest stratum of interest may be too detailed
to obtain much spatial resolution within a State, and the
default approach to regional analyses would be necessary.

This paper did not directly demonstrate how data from the
P3 plots can be extended to P2 plots. However, one
plausible method is to assign P3 values to neighboring P2
plots within the same strata. The distance at which P2 plots
were to be considered neighbors would depend on the
results stated in this paper. In addition, it would be of
interest to examine the variability of P3 data attributes
themselves.

REFERENCES
Brooks, R.T.; Dickson, D.R.; Burkman, W.B. [and others].

1992. Forest health monitoring in New England: 1990 annual
report. Resour. Bull. NE–125. Radnor, PA: U.S. Department of
Agriculture, Forest Service, Northeastern Forest Experiment
Station. 111 p.

Roesch, F.A.; Reams, G.A. 1999. Analytical alternatives for an
annual inventory system. Journal of Forestry. 97(12): 33–37.

Figure 4—A cluster of 19 P3 hexagons to illustrate a more
extensive search area for P2 plots with matching attributes.
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PLOTVIEW SOFTWARE FOR RETRIEVING PLOT-LEVEL
IMAGERY AND GIS DATA OVER THE WEB1

Ken Boss2

Abstract—-The Minnesota Department of Natural Resources Division of Forestry Resource Assessment office has been
cooperating with both the Forest Service’s FIA and Natural Resource Conservation Services’s NRI inventory programs in
researching methods to more tightly integrate the two programs. One aspect of these ongoing efforts has been to develop a
prototype intranet application to provide interactive, map-based access to “raw” FIA and NRI plot data. The application runs
on a password-protected web site at http://www.ra.dnr.state.mn.us/plotview. Products retrievable for any given plot on the
interactive map include scanned aerial photographs, scanned field plot sheets, scanned USGS quad maps, digital ortho
quad photography, and, in the case of the NRI program, database outputs of the raw data collected for the plot. All software
driving the interface is freely distributable under open source licenses.

INTRODUCTION
PlotView is a web-based intranet application designed to
provide online access to centrally maintained stores of plot
data from anywhere that an internet connection is available.
The design of the system obviates any need for duplication
of large image datasets, while simultaneously providing
instantaneous access to those datasets from virtually any
location. Field data gatherers, crew managers, quality
control personnel and data analysts are all enabled to
access the data they need when they want it, thereby
avoiding the lengthy delays encountered in the past when
trying to access plot data.

MAP INTERFACE
One of the great strengths of the PlotView application is that
it enables users to view plot locations in a landscape context
via online maps. The maps are easily navigated through a
variety of means, including place name searches, public
land survey specifications, map coordinate input, or point-
and-click pan and zooming on the map itself. The map view
may be toggled to a satellite image view, allowing users to
readily identify both cultural and natural features in proximity
to the plot(s) of interest.

PLOT DATA ACCESS
Data pertaining to a given plot can be accessed either by
entering the plot ID into a text box in the interface, or by
clicking on the plot centroid symbol on the map. The data
returned for a given plot may include any or all of the
following:

Scanned aerial photographs—these can include any number
of inventory-specific photos taken over the plot through the
years, and/or more generic photo resources such as NHAP,
NAPP or state and local photographic holdings.

Scanned plotsheets—available only for the FIA program,
included specifically for access to the hand-drawn maps
indicating plot access routes.

Plot-specific database contents—available currently only for
NRI plots. Taps into the “dataview” web application at Iowa
State for database outputs specific to a given plot. Integra-
tion with FIA plot databases is also possible.

DRGs (scanned USGS quad maps)—presented in a “seam-
less” fashion, so that users can view any area without regard
to the boundaries of the original paper maps. Presented with
GIS overlays, including plot centroid and label.

DOQs (quad-based orthorectified photography from USGS)
—as with the DRGs, above, DOQs are presented in a
“seamless” mode, so that any area of interest may be
viewed without regard to original photo boundaries. Also
presented with GIS overlays, including plot centroid and
label.

SUPPORTING SOFTWARE
PlotView is supported by a number of freely-distributable
open source software packages, listed below.

MapServer (http://mapserver.gis.umn.edu)—provides the
interactive web-mapping capabilities.

Perl (http://www.perl.com)—the scripting “glue” that holds
the various pieces together.

MySQL (http://www.mysql.com)—the database system that
holds the metadata for the variety of data elements associ-
ated with the plots. Note that MySQL is not required for the
PlotView application to work, and may be supplanted with
nearly any web-accessible database system (Oracle,
Sybase, Informix, etc.)

Apache Web Server (http://www.apache.org)—Web serving
software. May be supplanted by a variety of other web
serving software packages.

PDFlib (http://www.pdflib.com)—PDF file format generator.
Enables the PDF encapsulation of images and maps for
printing.
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There are a couple of proprietary software products that,
while not required to run PlotView, are indispensable in
preparing GIS and image data for web distribution.

ArcView and/or ArcInfo (http://www.esri.com)—GIS software
used to prepare the map datasets served with the
MapServer. Note that the MapServer is presently poised to
incorporate the OGR and GDAL open source software
libraries, which will greatly expand the sources of both vector
and raster GIS data that the MapServer can work with.

MrSID Encoder (http://www.lizardtech.com)—Software for
the wavelet compression of image data; enables speedy
delivery of large image datasets over the internet.

FURTHER INFORMATION
PlotView is best understood by visiting the web site itself.
Visit http://www.ra.dnr.state.mn.us. Note that you will need
a user ID and password in order to access the site, though
for security reasons these cannot be printed here. Contact
your FIA program manager or NRI ICCS leader for this
information.

Feel free to direct any technical or administrative questions
concerning PlotView to the author of this paper.
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