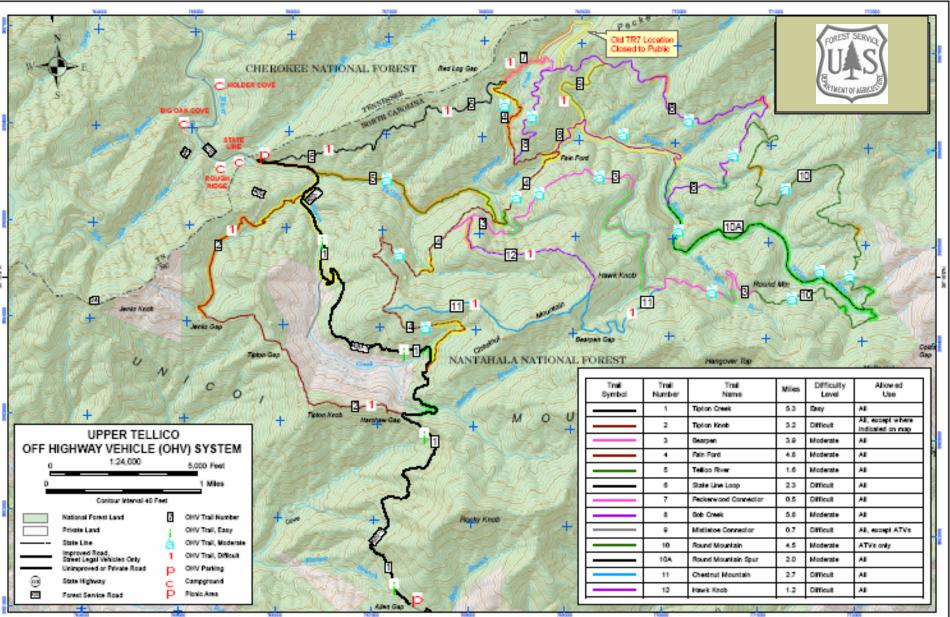
Upper Tellico River OHV Area Trail Condition Assessment


Objective:

Evaluate erosion and sediment yield from the entire trail system in the Upper Tellico OHV Area

Methodology:

- Trail condition and sediment transport assessment protocol were developed, field tested, and modified.
- A team of US Forest Service personnel and volunteers was assembled, representing engineering, fisheries, hydrology, soils, GPS, and other experience.
- Summarize data in tabular form.

Trail Locations

All market 1/784 (Sold King MARVIT Frank All shows in blue

AMP: 1917 Otals Dises MP York 1996

Assessment Protocol – Field Measurements

- Trail Condition Assessment Data Collected:
 - Trail template & Surface type
 - Presence of rutting
 - Trail gradient, length, & width
 - Fill gradient & length
 - Trail drainage feature & functionality
 - Change in trail volume post construction
- Sediment Transport Assessment
 - Data Collected:
 - Distance from trail to stream channel (buffer length)
 - Distance sediment is traveling from trail
 - Buffer gradient
 - Stream flow type (perennial, intermittent, or ephemeral)
 - Note of any depositional feature in the stream
 - Potential for sediment entering the stream channel
 - Note of trail runoff contributing to slope or channel instability

Results:

Trail Condition Assessment:

Trail	Miles	Road	Road Surface	Drainage	% Non Functioning
Number	Surveyed	Template	Туре	Dips	Drainage Dips*
1	3.61	Outsloped	Aggregate Surface	49	14
2	3.17	Outsloped/Entrenched	Native Surface	110	71
3	4.15	Outsloped/Entrenched	Native Surface	223	75
4	4.97	Outsloped/Entrenched	Native Surface	358	34
5	1.51	Outsloped/Entrenched	Agg. & Riprap Surface	67	36
6	2.25	Outsloped/Entrenched	Native Surface	143	61
7	0.59	Entrenched	Native Surface	23	22
8	5.97	Outsloped/Entrenched	Native Surface	242	49
9	0.73	Entrenched	Native Surface	36	33
10	4.79	Outsloped/Entrenched	Native Surface	43	100
10a	2.74	Outsloped/Entrenched	Native Surface	123	38
11	2.74	Outsloped/Entrenched	Native Surface	86	77
12	<u>1.27</u>	Outsloped/Entrenched	Native Surface	<u>46</u>	<u>85</u>
Total:	38.49			1,549	53

* Dips functioning at less than 100 percent efficiency.

Estimated Cumulative Soil Loss from Trails since Construction

(change in volume from constructed road prism (outsloped, not entrenched) to current condition)

	Miles	Soil Loss Entrenched	Soil Loss Entrenched Sections
Trail #	Surveyed		(tons)
1	3.61	0	0
2	3.17	2,030	6,431
3	4.15	596	2,473
4	4.97	622	3,090
5	1.51	1,539	2,317
6	2.25	9,051	20,386
7	0.59	4,113	2,426
8	5.97	1,185	7,081
9	0.73	8,487	6,173
10	4.79	1,186	5,676
10a	2.74	692	1,894
11	2.74	2,531	6,925
12	1.27	7,615	9,677
Total:	38.48	1,938	74,550

Results (continued):

Sediment Transport Assessment:

Sediment Travel Distances & Potential for Sediment Delivery to Stream

		Sediment	Travel						
	# Sites	Distance (ft)		Potential for Sediment Delivery to Stream*					
Trail #	Surveyed	max	mean	# high	% high	# med	% med	# low	% low
1	114	252	37	48	42	30	26	36	32
2	120	284	31	20	17	21	18	79	66
3	238	310	41	93	39	49	21	96	40
4	334	300	52	122	37	55	16	157	47
5	81	121	45	45	56	17	21	19	23
6	160	315	46	26	16	12	8	122	76
7	34	186	56	18	53	9	26	7	21
8	327	375	36	111	34	59	18	157	48
9	47	337	48	22	47	11	23	14	30
10	185	270	31	75	41	21	11	89	48
10a	146	185	48	51	35	52	36	42	29
11	110	261	62	34	31	5	5	71	65
12	61	>500	92	19	31	0	0	42	69

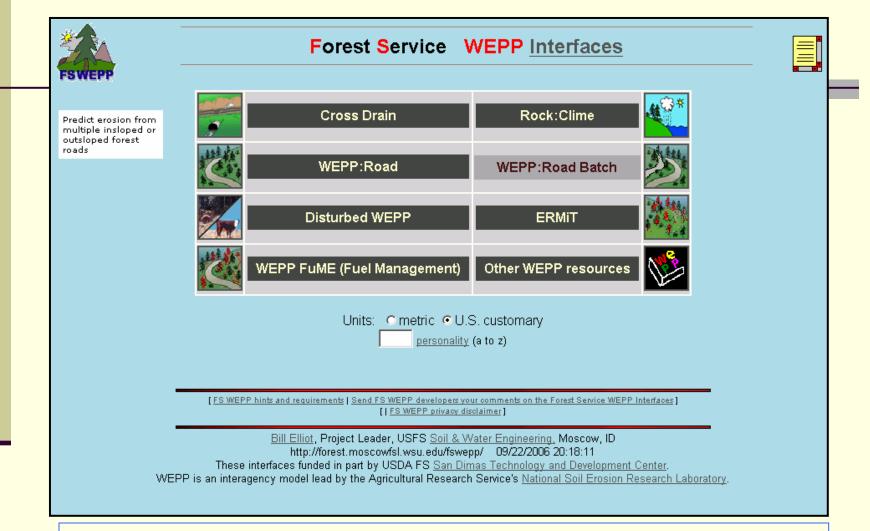
* Surveyor's estimate of the likelihood of sediment traveling to the nearby stream.

Sediment Transport Assessment:

Sediment to Streams & Channel and Slope Instability

	# Sites	% of sites within	Sediment Entering Stream		Channel or Slope Instability*		
Trail #	Surveyed	100' of stream	# sites	% sites	# yes	% yes	
1	114	60	48	42	36	32	
2	120	26	15	12	9	8	
3	238	59	102	43	17	7	
4	334	39	129	39	58	17	
5	81	79	51	63	20	25	
6	160	18	19	12	19	12	
7	34	56	23	68	8	24	
8	327	47	101	31	46	14	
9	47	68	26	62	12	26	
10	185	50	68	37	41	22	
10a	146	57	53	36	34	23	
11	110	24	30	27	2	2	
12	61	2	1	2	0	0	

* Often the result of increased water yield from trail surface.


Findings:

- Estimated soil loss from trails since construction is extensive (>2,000 tons) in all trails except trails 420-1 and 10a.
- Many sites (45%) are within 100 ft of a stream channel. Trails 1, 3, 5, 7, 9, 10, & 10a have > 50% of runoff sites within 100'.
- The greatest number of sites delivering sediment to streams is occurring on Trails 3, 4, & 8.
- From Trail 4, more than 50% of the 334 sites are contributing to channel or slope instability.
- Most trails have failing drainage structures requiring maintenance.

Findings (continued):

- Sediment from trail erosion entering stream channels is a function of trail proximity to stream, trail gradient, & the frequency & functionality of trail runoff drainage structures, e.g., drainage dips and silt traps.
- Silt traps were effective at reducing sediment only when associated dips were functioning, they were properly sized, they were maintained, a sufficient buffer between trail and stream was available, and removed sediment was placed in a stable area.
- Three bridges were found deficient and needing repair/replacement.

Future Assessment Protocol – WEPP computer model

FS WEPP is a set of interfaces designed to allow users to quickly evaluate erosion and sediment delivery potential from forest roads. The erosion rates and sediment delivery are predicted by the Water Erosion Prediction Project (WEPP) model, using input values for forest conditions. The WEPP model will be used in the analysis of management alternatives during the NEPA process.

Questions?

