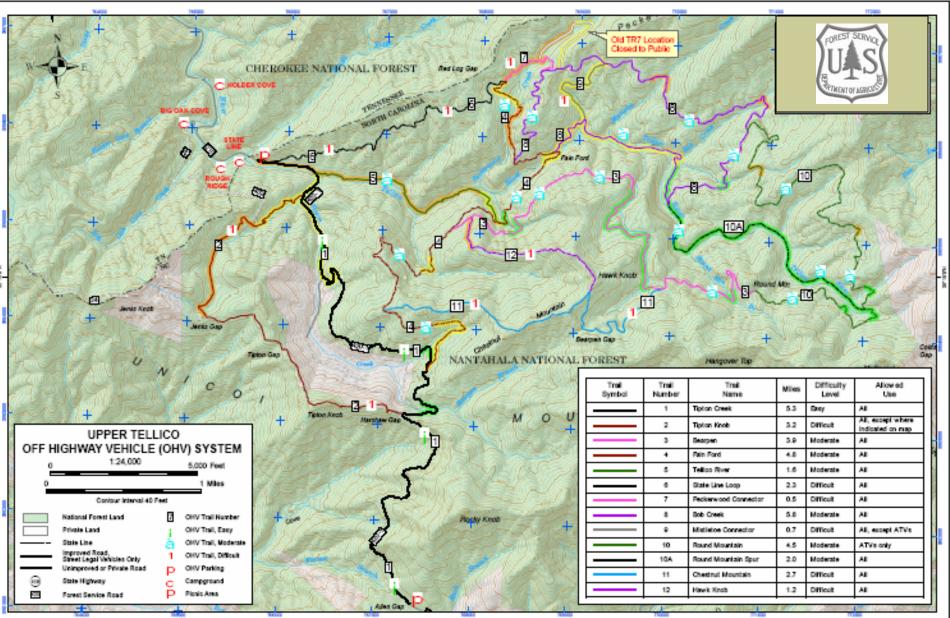
Upper Tellico River OHV Area Trail Condition Assessment

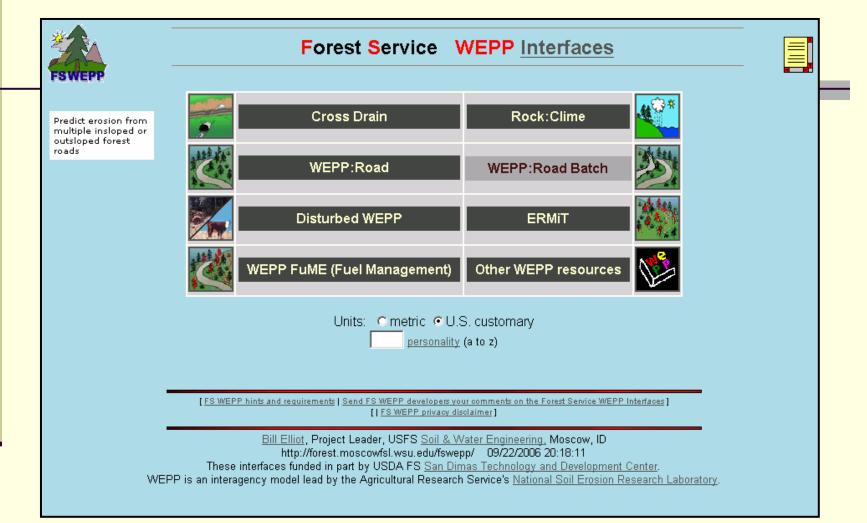

Objective:

Evaluate erosion and sedimentation from high priority trail segments in the Upper Tellico OHV Area

Methodology:

- Trail segments within 100 feet of mapped stream channels were identified using GIS & priority was given to trail segments based on known trail location and condition
- Trail condition and sediment transport assessment protocol were developed, field tested, and modified
- A team of US Forest Service personnel was assembled, representing engineering, fisheries, hydrology, GPS, and other experience
- Summarize data in tabular form & run the Water Erosion Prediction Project (WEPP) computer model

Assessment Priority Trail Locations


Employ 17764 Gald Key, MARVER Tana, 58 shows in King

Mark 1977 State State Mr. Tune 1996

Assessment Protocol – Field Measurements

- Trail Condition Assessment Data Collected:
 - Trail template & Surface type
 - Presence of rutting
 - Trail gradient, length, & width
 - Fill gradient & length
 - Buffer gradient
 - Trail drainage feature & functionality
 - Change in trail volume post construction
- Sediment Transport Assessment
 - Data Collected:
 - Distance from trail to stream channel (buffer length)
 - Distance sediment is traveling from trail
 - Stream flow type (perennial, intermittent, or ephemeral)
 - Note of any depositional feature in the stream
 - Potential for sediment entering the stream channel
 - Note of trail runoff contributing to slope or channel instability

$Assessment\ Protocol - {\tt WEPP\ computer\ model}$

FS WEPP is a set of interfaces designed to allow users to quickly evaluate erosion and sediment delivery potential from forest roads. The erosion rates and sediment delivery are predicted by the Water Erosion Prediction Project (WEPP) model, using input values for forest conditions.

Results:

Trail Condition Assessment - Field Measurements:

Trail	Miles	Road	Road Surface	Drainage	% Non Functioning	
Number	Surveyed	Template	Туре	Dips	Drainage Dips	
1	1.52	Out Sloped Road	Aggregate Surface	49	14	
		Out Slope w/				
2	1.42	Entrenchment	Native Surface	54	31	
3	1.02	Out Sloped Road	Native Surface	206	60	
4	2.51	Out Sloped Road	Native Surface	215	33	
5	1.51	Out Sloped Road	Agg. & Riprap Surface	67	36	
6						
7	0.59	Entrenched	Native Surface	23	22	
8	4.34	Out Sloped Road	Native Surface	76	36	
9	0.73	Entrenched	Native Surface	36	33	
10	0.07	Out Sloped Road	Native Surface	4	50	
10a	2.74	Out Sloped Road	Native Surface	123	38	
11						
12	0.08	Entrenched	Native Surface	0	0	
Total	16.53					

Estimated Cumulative Sediment Loss from Trails since Construction

Trail #	Miles Surveyed	Max Trail Grade %	Sediment Loss Entrenched Sections (tons/mile)	Sediment Loss Entrenched Sections (tons)
1	1.52	22	0.00	0.00
2	1.42	32	1,904.78	2,704.79
3	1.02	8	2,424.18	2,472.66
4	2.51	15	751.11	1,885.28
5	1.51	23	1,534.75	2,317.48
6	-	-	-	-
7	0.59	35	4,112.69	2,426.49
8	4.34	19	768.91	3,337.07
9	0.73	30	8,455.71	6,172.67
10	0.07	24	7,383.57	516.85
10a	2.74	17	691.33	1,894.25
11	-	-	-	-
12	0.08	40	25,618.00	2,049.44
Total	16.53			25,776.98

Results (continued):

Sediment Transport Assessment - Field Measurements:

	# Sites Sediment Movement (ft)			Potential for Sediment Movement to Stream						
Trail #	Surveyed	min	max	mean	# high	% high	# med	% med	# low	%low
1	50	1	70	29	26	52	12	24	12	24
2	56	1	101	33	20	36	15	27	21	38
3	85	1	111	32	33	39	16	19	29	34
4	180	1	300	67	87	48	36	20	56	31
5	81	1	121	45	45	56	17	21	19	24
6										
7	34	1	186	56	18	53	9	27	7	21
8	109	1	280	36	47	43	28	26	31	28
9	47	1	337	48	22	47	11	23	14	30
10	8	1	35	15	5	63	2	25	1	13
10a	146	1	185	48	51	35	52	36	42	29
11										
12										

Sediment Movement & Potential Movement from Trail

Sediment Transport Assessment - Field Measurements:

Sediment to Streams & Channel and Slope Instability

	# Sites % of sites within		Sediment	to Stream	Channel or Slope Instability			
Trail #	Surveyed	100' of stream	# sites	% site s	# yes	%yes	# no	% no
1	50	76	26	52	14	28	36	72
2	56	54	15	27	7	13	49	87
3	85	69	33	39	13	15	65	76
4	180	55	104	58	25	14	154	86
5	81	78	51	63	20	25	61	75
6								
7	34	56	23	68	8	24	27	79
8	109	63	44	40	26	24	80	73
9	47	68	29	62	12	26	35	75
10	8	100	4	50	3	38	5	63
10a	146	57	53	36	34	23	112	77
11								
12								

Sediment Transport Assessment - WEPP:

<u>WEPP Model Results – Predicted Annual Sediment Yield</u> <u>from Trails & Delivery to Streams</u>

		Leaving	Leaving Trail	Entering Stream	Entering Stream	Leaving Trail & Entering Stream
	Trail #	Trail (tons)	(tons/mile)	(tons)	(tons/mile)	(%)
ſ	1	91	60	49	32	54
	2	41	41	34	24	58
	3	27	26	15	15	56
	4	85	34	47	19	55
	5	34	23	24	16	71
	7	21	36	13	22	61
	8	101	23	61	14	61
	9	76	104	43	59	56
	10a	101	37	55	20	54

WEPP will be used for comparing recommendations for trail maintenance & rehabilitation

Findings:

For trail segments surveyed:

- Soil loss from the trails since their construction is extensive (>2,000 tons) in trails 2, 3, 5, 7, 8, 9, and 12.
- Most trails have failing drainage structures.
- Sediment from trail erosion entering stream channels is a function of trail proximity to stream, trail gradient, & the frequency & functionality of trail runoff drainage structures.
- Maintenance of existing drainage structures is inadequate.
- Silt traps were effective at reducing sediment only when associated dips were functioning, they were properly sized, a sufficient buffer between trail and stream was available, and removed sediment was placed in a stable area.
- Three bridges were found deficient and needing repair/replacement.

Assessment Team Members

Brady Dodd - Forest Hydrologist, 15 years experience Sheryl Bryan - Forest Fisheries Biologist, 20 years experience Jason Farmer - Zone Fish Biologist, 8 years experience Barry Jones - Civil Engineer, 8 years experience Pete Russell – Civil Engineer, 6 years experience Mike Cody – Civil Engineer Tech., 38 years experience Max Riddle – Civil Engineer Tech., 20 years experience Drew Selig – Forest GPS / Civil Engineer Tech., 22 years experience David McFee – Operations Forester, 26 years experience Todd Sharkey – OHV Ranger, 4 years experience Kerri Lyda – District Biologist, 6 years experience Lorie Stroup – Zone Fish Biologist, 10 years experience Luke Decker - Forestry Tech., 3 years experience Bill Champion – Safety Officer, 30 years experience