Beneficial Reuse of Ground Residential Construction Wood Waste

Julia W. Gaskin

Agricultural Pollution Prevention Program

Sponsored by the

Pollution Prevention Assistance Division

Biological & Agricultural Engineering Dept.

University of Georgia

Grind and Reuse Wood Products

Georgia EPD

No treated wood

No concerns with dimension lumber

Questions about engineered wood products

Builders won't separate

Engineered Wood Products

EWP glues – phenol formaldehyde, isocyanate resins, resorcinol

Finger-jointed studs glues – vinyl acetates and polyurethane

Engineered Wood Product Study

Evaluating environmental and plant growth effects of EWP mulch

- Changes in soil chemistry
- Compounds in surface runoff
- Plant growth effects

Treatments

EWP - 100% Engineered Wood Products

TRM - Typical Residential Mix

BSC - Bare Soil Control

DLC - 100% Dimension Lumber

Treatments – 100% EWP

60% OSB

20% Plywood

5% Laminated veneer

5% Glulam

10% I-joist

Treatments - Residential Mix

30% EWP

25% Finger-jointed studs

45% Dimensional lumber

25% White wood

20% Yellow pine

First Screen - TCLP

100% EWP

Barium 0.295 mg/L; reg limit 5mg/L

Residential Mix

Pentachlorophenol 0.83 mg/L; reg limit 100 mg/L

Barium 0.299 mg/L; reg limit 5mg/L

Rainfall Simulation

May '02 – 4 in/hr 100-yr 1 hr rainfall Drought

May '03 – 2.5 in/hr 10 yr 1 hr rainfall

Very wet

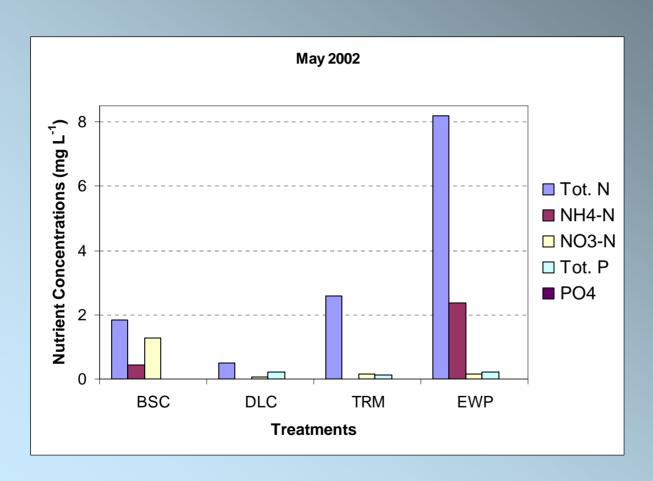
Initial soil moisture conditions measured - TDR

Rainfall Simulation

Volume-weighted runoff analyzed:

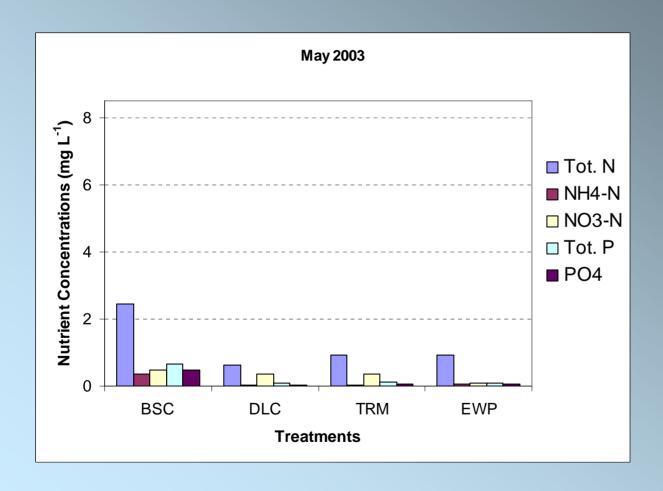
Tot N, NO₃-N, NH₄-N, Tot P, Ortho P, DOC, pH, specific conductance, BOD₅, volatile organics, total phenol; Runoff volume and TSS every 5 min.

Runoff Water Quality



2002 organic compound screening, compounds associated with perfumes and plastics

2003 quantitative analyses of purgeable halocarbons, BTEX, and phenols – non detected


Runoff Water Quality

Nitrogen from EWP significantly higher than other treatments due to organic nitrogen and ammonium-nitrogen

Phosphorus concentrations fairly low (< 1 mg L⁻¹), but higher than USEPA criteria for streams (0.03 mg L⁻¹)

Runoff Water Quality

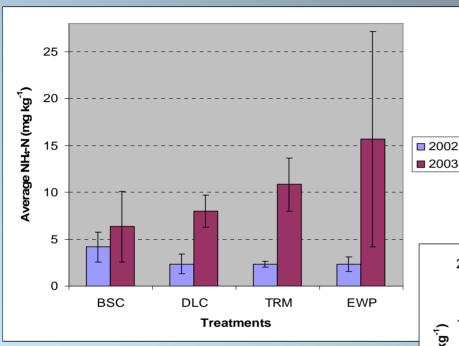
Note decreases in nutrient concentrations, particularly nitrogen, after one year

Sampling May 2002

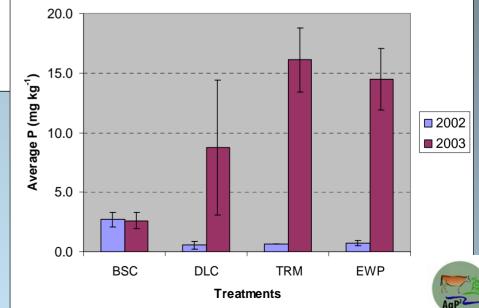
Turbidity
during 1 hr 4
inch rainstorm;
very effective
for erosion
control

Soil Sampling

Soils 0-2 and 2-6 in.


pH, lime requirement, avail P, Ca, Mg, Mn, Zn, tot N, NO₃-N, NH₄-N, S, Na, OM and microbial biomass

Before mulch put out and 1 year later



Surface Soils

Increase in ammoniumnitrogen and available phosphorus in surface (0-2 in.) Did not see increase at 2-6 in.

Plant Growth Study

Azalea

Lorapetalum

Burford holly

Center for Applied Nursery Research, McCorkle Nursery Dr. Wayne McLaurin

Plant Growth Study

Treatments:

standard potting mix

standard potting mix + 3 in TRM mulch

standard potting mix + 2 in EWP mulch and topdress pine needles

Measure – Ht + width; dry wt, visual roots

Plant Growth Study

No growth difference, no adverse impacts; roots grew into EWP mulch

Study indicate mulches with EWP component safe

One-time application

Loadings low

Can be used for:

Erosion control,

Heavy use substrate, or

Landscape mulch

(Published in Trans. ASAE 48(5): 1731-1738.)

Erosion control

Blankets and berms (similar to compost)

Heavy use areas or delivery pads

Mulch

No more than 2 to 3 inches

Keep 6 to 8 inches from foundation (termites)

Can top dress with pine needles

Thanks to All!

Funded by P2AD through the Solid Waste Trust Fund.

We appreciate the help of Steve Sandell – APA, Packer Industries, Tim Mayo – Universal Forest Products, Mr. Walter Boyles – Timber Products Inspection. Dr

Dr. David Radcliffe, Dr. Larry West, Britt Faucette, Rebecca Byrd, Javier Sayago, Seth Sokol, Brian Bibbins, Jason Foster, Jason Governo, Anna Cathey, Jared, University of Georgia

AGRICULTURAL POLLUTION PREVENTION PROGRAM

www.agp2.org

Sponsored by

GA Pollution Prevention Assistance Division

Georgia Cooperative Extension Service
Biological & Agricultural Engineering Dept,
College of Agricultural & Environmental Sciences
University of Georgia

Julia Gaskin jgaskin@engr.uga.edu

