

- Replace 100% of its fossil-fuel-generated electricity
- Reduce its imported oil by as much as 89%.

2030	"The road to energy independence, economic recovery and reductions in greenhouse gas emissions runs through the Building Sactor " -Edward Mazria
The 2030 Challenge the following fossil fue standards :	asking the global building community to adopt el, GHG-emitting, energy performance
All new buildings & 50% of the regional (major renovations shall be designed to meet a or country) average.
Equal amount of exis to 50% of the regiona	ting building area shall be renovated annually a lor country) average.
The fossil fuel reducti increased to:	on standard for all new buildings shall be
60%	a in 2010
700/	in 2015
10%	···· — • · •
80%	5 in 2020

Energy			De	sign	Target	Top 10%
Energy Performance R	lating (1-100)		79		75	90
Energy Reduction (%)			32		26	45
Source Energy Use Intensity (kBtu/Sq. Ft./yr)				.3	183.0	137.1
Site Energy Use Intensity (kBtu/Sq. Ft./yr)				.5	173.5	130.0
Total Annual Source Energy (kBtu)				716.9	915,246.5	685,740.4
Total Annual Site Energy (kBtu)				802,729.6		650,115.9
Total Annual Energy Cost (\$)				160	\$ 9,901	\$ 7,419
Pollution Emissions						
CO2-eq Emissions (metric tons/year)				9	46.4	34.7
Facility Information	duction (%)		32	6	26%	45% Edit
CO2-eq Emissions Re Facility Information Hort Inc Missioula, MT 59802 United States Facility Characteristics	duction (%)	de la	329 Estimated	Design	26% Energy Estimated	45% Edit
CO2-eq Emissions Re Facility Information Hort Inc Missoula, MT 59802 United States Facility Characteristics Space Type	duction (%) E Gross Floor Area (Sq. FL)	as	Estimated Energy Source	5 Design Units	Energy Estimated Total Annual Energy Use	45% Edit Energy Rate (\$rUnit)
CO2-eq Emissions Re Facility Information Hort Inc Missoula, MT 59802 United States Facility Characteristics Space Type Office Space States	Cross Floor Area (Sq. FL) 5.00	de	324 Estimated Energy Source Electricity	besign Units kWh	Energy Estimated Total Annual Energy Use 800	45% Edit

		Quio	:k Insu	lation (Comparis	on	
Material	Type	R-Value	Ozone Depleting Blowing Agent	Density	Vapor Retarder Perm Rating	Recycled	Common or Brand Name
Fiberglass	Batts	3.6	No	3 pcf	Permeable	Doubtful	
	Loose fill	3.2	No	2-3 pcf	Permeable	Doubtful	
Cellulose	Loose Dry	3.4	No	1.5-2.0 pct	Permeable	Yes	
Expanded	Rigid Roard	4.0	No	low 1 pcf	Permeable	Doubtful	beadboard
Polystyrene	Rigid Board	4.0	No	high 2-3 pcf	Semi-imperm.	Doubtful	beauboard
Extruded Polystyrene	Rigid Board	5.0	Yes	2 pcf	Semi-imperm.	Doubtful	Styrofoam Blue Board
Polyisocyanurate	Rigid Board	7.0	Yes	3 pcf	Imperm (facing)	Doubtful	Thermax
Polyurethane	Spray Foam	3.6-3.8	No, water	low 0.5 pcf	Permeable	Doubtful	Icynene, Sealection 500
	Spray Foam	3.7-3.6	No, soy	low 0.5 pcf	Permeable	Doubtful	Biobase 501, Healthy Seal
	Spray Foam	5.5	No, soy	high 1.7 pcf	Semi-imperm.	Doubtful	Biobase 1701
	Spray Foam	6.0 - 8.0	Yes	high 2 pcf	Semi-imperm.	Doubtful	
Remarks:	1. Fiberglass in 2. Styrene and 3. In general, I 4. Vapor perm	s susceptal I urethane i ow density eability dep	ble to convect insulations ma foams are op pends thicknes	ive currents and ny give off toxic en cell and high as, especially wi	d poor installation ar gases when if burne density foams are ith foams.	nd may conta ad. closed cell.	in ureaformaldehyde.
	Perms <=0.1 0.1> and <=1.0 1.0> and <=10 >10		Vapor Imperme Impermeable Semi-impermeable Semi-permeable Permeable	ability able le			

Building Energy Use

- About one third of all energy use occurs in support of the operation and occupancy of buildings
 - Maintaining space temperature through heating and cooling
 - Maintaining air quality through ventilation
 - Lighting for Aesthetics and Functionality
 - Water Heating, Refrigeration, Cooking, Washing, etc.

Heating Ventilation and Air-
Conditioning Savings Opportunities \overbrace \bigcirc \overbrace \overbrace \bigcirc <

HVAC Savings

Central Plant Improvements

- New high-efficiency boilers or chillers
- Burner replacements
- Variable speed combustion air (large units)
- Electric to gas conversions?
- Exhaust gas heat recovery (economizer, condenser unit, etc.)
- Equipment staging to optimize part-load efficiencies

HVAC Savings

Distribution System Improvements

- Variable speed motors on pumps and fans
- Pipe or duct friction loss reduction
- System conversion (i.e., constant volume dual-duct to VAV multi-zone)
- Steam trap maintenance
- Steam to hot water conversion

HVAC Savings

End-Use Equipment Improvements

- High SEER / High COP / High Eff. area units
- Thermal Shell Improvements
- Programmable Thermostats
- Direct Digital Control Systems
- Exhaust Air Heat Recovery

HVAC Savings

Air Flow Improvements

- Minimize outside air flow, within design constraints
- Match air flows to zone requirements
- Use VFDs to control fan/pump speeds instead of dampers or valves
- Shut off fans during unoccupied time periods

HVAC Savings

- Control System Improvements
 - Energy management systems
 - Outside air temperature resets
 Return air CO or CO₂ sensors
 - Automated demand shedding

Lighting Technologies and Savings Opportunities

Definition of Light

- That which makes things visible
- An electromagnetic radiation or energy transmitted through space or materials in the form of electromagnetic waves
- Visually evaluated radiant energy

Fluorescent More Efficient (60% of electricity converted to heat) Glass Tube with Luminous Interior Coating which is Excited by an Electric Arc Passing Through the Tube Needs a Ballast to Control Electric Current Recent Innovations Include Smaller Diameters (T-8, T-5) Non-Linear Shapes (i.e., Spiral Compact Fluorescents)

Lighting Quality
 The relative intensity of light is typically measured in foot- candles, a standard value roughly equivalent to the amount of light produced by a single candle – measured one foot away from the flame.
 The amount of light hitting a one square foot surface one foot away from a one foot-candle source is called a lumen.
 The light output of commercially available light sources is commonly measured in terms of initial and mean lumens.
 The number of foot-candles present on a surface (such as a desk top) is a function of the number of lumens produced by all contributing light sources, the height and spacing of the lighting fixtures, and the efficiency and cleanliness of the lighting fixtures
 The relative ability of light sources to provide accurate color perception by the human eye is measured and reported in its CRI – Color Rendition Index (Higher CRI = Better Color Perception)
AT

Performance of Light Sources				
Light Source	Lumens per Watt	CRI		
Incandescent	10 - 35	95 - 100		
Mercury Vapor	20 - 60	20 - 40		
Fluorescent	40 - 100	60 - 90		
Metal Halide	50 - 110	65 - 90		
High Pressure Sodium	50 - 140	20 - 30		
Low Pressure Sodium	100 - 180	0		

Efficient Design Parameters

- Set ambient lighting levels close to minimum recommended foot-candle values
- Boost lighting levels in specific areas, as needed to support specific tasks, using task lighting strategies
- Use lighting sources with high lumen/Watt values and adequate CRI values
- Current energy codes specify energy budgets of near 1.0 Watts of connected lighting loads per square foot, older designs run as high as 3-4 Watts/square foot.
- Retrofit projects should target 1.0-1.5 Watts/square foot
- Consider combinations of de-lamping and re-lamping to address lighting system improvements
- Consider benefit of reduced lighting levels on reducing airconditioning loads

Lighting Controls

- · Shut off lights when they are not needed
- Take advantage of multilevel switching to turn on just enough lighting for the current task
- Use occupancy sensors to shut off and turn on lights automatically, as needed
- Consider using photocells, daylight sensors and time clocks, where appropriate
- Integrate lighting controls into facility energy management systems

Process Equipment Savings

- Air/water/steam leakage reduction eliminate unnecessary usage
- Premium efficiency motor replacements
- Control Improvements
- · Match equipment capacities to loads

Process Equipment Savings

- Consider incremental energy efficiency improvements whenever replacements or upgrades are evaluated
- Make sure that energy efficiency is a primary consideration during planning for retooling or process expansions

Case Study Examples

- Billings Medical Office Building
 - VAV conversion from High-Pressure Dual Duct
 - Premium Efficiency Motors
 - DDC Controls
 - CO₂ Based Outside Air Controls
 - Fan Lock-Outs and Outside Air Reset Controls
 - \$60,000 cost, \$14,400 Incentive, \$30,350 Annual Bill Savings – 1.5 Year Simple Payback

More Projects

- Helena Industrial Manufacturing Facility

 HID to T-5HO Fluorescent Lighting
 - T-12 to T-8 Fluorescent Tubes with Electronic Ballasts
 - Modified Illumination Levels
 - Occupancy Sensors
 - \$60,000 Cost, \$14,325 Rebate, \$25,800
 Annual Bill Savings 1.8 Years Simple
 Payback

More Projects

- Public School District
 - Elementary Schools, Jr. High School, High School, Warehouse, Administrative Building, Transportation Building
 - T-12 to T-8 and T-12 to T-5 Conversions
 - Low Wattage (25W) T-8 Fluorescent Tubes and
 - Occupancy Sensors in Halls, Offices and Classrooms
 - T-5HO Fluorescent Tubes and Occupancy Sensors in Gyms
 - \$500,000 Cost, \$134,000 Rebate, \$108,000 Annual Bill Savings – 3.5 Year Simple Payback

More Projects

- Cold Storage Warehouse Billings

 High Pressure Sodium to T-8 High Bay fixtures with Occupancy Sensors
 - Cost \$195,000, Rebate \$95,000, \$54,600 Annual Bill Savings – 1.8 Years Simple Payback
- Bank / Office Building
- DDC Controls
 - VAV Conversion from Dual Duct
 - Smaller PE Motors
- \$245,000 Project Cost, \$98,000 Cash Incentive, \$41,000 Annual Bill Savings – 3.3 Years Simple Payback

