US Forest Service
  
Treesearch

Pacific Northwest Research Station

 
 

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

USA.gov  Government Made Easy

Publication Information

Title: Does turgor limit growth in tall trees?

Author: Woodruff, D.R.; Bond, B.J.; Meinzer, F.C.

Date: 2004

Source: Plant, Cell, and Environment. 27: 229-236

Description: The gravitational component of water potential contributes a standing 0.01 MPa m1 to the xylem tension gradient in plants. In tall trees, this contribution can significantly reduce the water potential near the tree tops. The turgor of cells in buds and leaves is expected to decrease in direct proportion with leaf water potential along a height gradient unless osmotic adjustment occurs. The pressure-volume technique was used to characterize height-dependent variation in leaf tissue water relations and shoot growth characteristics in young and old Douglas-fir trees to determine the extent to which growth limitation with increasing height may be linked to the influence of the gravitational water potential gradient on leaf turgor. Values of leaf water potential, bulk osmotic potential at full and zero turgor, and other key tissue water relations characteristics were estimated on foliage obtained at 13.5 m near the tops of young (approximately 25-year-old) trees and at 34.7, 44.2 and 55.6 m in the crowns of old-growth (approximately 450-year-old) trees during portions of three consecutive growing seasons. The sampling periods coincided with bud swelling, expansion and maturation of new foliage. Vertical gradients of leaf water potential and pressure-volume analyses indicated that turgor decreased with increasing height, particularly during the late spring when vegetative buds began to swell. Vertical trends in branch elongation, leaf dimensions and leaf mass per area were consistent with increasing turgor limitation on shoot growth with increasing height. During the late spring (May), no osmotic adjustment to compensate for the gravitational gradient of leaf water potential was observed. By July, osmotic adjustment had occurred, but it was not sufficient to fully compensate for the vertical gradient of leaf water potential. In tall trees, the gravitational component of leaf water potential is superimposed on phenologically driven changes in leaf water relations characteristics, imposing potential constraints on turgor that may be indistinguishable from those associated with soil water deficits.

Keywords: Pseudotsuga menziesii, Douglas-fir, gravitational component, water potential, height growth, osmotic adjustment, pressure-volume curve, turgor maintenance.

View and Print this Publication (754 KB)

Publication Notes: 

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

Citation

Woodruff, D.R.; Bond, B.J.; Meinzer, F.C.  2004.  Does turgor limit growth in tall trees?.   Plant, Cell, and Environment. 27: 229-236

US Forest Service - Research & Development
Last Modified:  January 13, 2009


USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.