US Forest Service
  
Treesearch

Pacific Northwest Research Station

 
 

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

USA.gov  Government Made Easy

Publication Information

Title: Co-occurring species differ in tree-ring δ18O trends.

Author: Marshall, John D.; Monserud, Robert A.

Date: 2006

Source: Tree Physiology. 26: 1055-1066

Description: The stable oxygen isotope ratio (δ18O) of tree-ring cellulose is jointly determined by the δ18O of xylem water, the δ18O of atmospheric water vapor, the humidity of the atmosphere and perhaps by species-specific differences in leaf structure and function. Atmospheric humidity and the δ18O of water vapor vary seasonally and annually, but if the canopy atmosphere is well mixed, atmospheric characteristics should be uniform among co-occurring trees. In contrast, xylem water δ18O is determined by the δ18O of water being drawn from the soil, which varies with depth. If co-occurring trees draw water from different soil depths, this soil-water δ18O signal would be manifest as differences in δ18O among the trees. We examined the variation in tree ring δ18O, over eight decades during the 20th Century, among three species co-occurring in natural forest stands of the northern Rocky Mountains in the USA. We sampled 10 Douglas-firs (Pseudotsuga menziesii ( Mirb.) Franco var. glauca), 10 ponderosa pines (Pinus ponderosa Laws.) and seven western white pines (Pinus monticola Dougl.). As expected, variation in atmospheric conditions was recorded in the δ18O of the cellulose produced in a given year, but observed climatic correlations with δ18O were weak. Significant correlations with June climate data included: daily maximum temperature (r = 0.29), daily minimum temperature (r = -0.25), mean temperature (r = 0.20), mean daily precipitation (r = -0.54), vapor pressure deficit (r = 0.32) and solar radiation (r = 0.44). Lagged effects were observed in Douglas-fir and western white pine. In these species, the δ18O of a given annual ring was correlated with the δ18O of the previous ring. Ponderosa pine showed no significant autocorrelation. Although the species means were correlated among years (r = 0.67 to 0.76), ponderosa pine was consistently enriched in δ18O relative to the other species; differences were close to 2‰ and they are steadily increasing. Relative to the mean for the three species, ponderosa pine is becoming steadily more enriched (-1.0‰). In contrast, Douglas-fir is being steadily depleted and western pine is intermediate, with an enrichment of 0.5‰. Because all trees were exposed to the same atmospheric conditions, the differences in δ18O observed between species are likely due either to differences in the depth of water extraction or led function. If the former, presumably ponderosa pine has steadily taken up more water from near the soil surface and Douglas-fir has shifted uptake to a greater depth. If the latter, we suggest the pronounced changes in leaf-water δ18O are a result of changes in leaf structure and function with tree size and age.

Keywords: cellulose, climate, conifers, Pinus monticola, Pinus ponderosa, Pseudotsuga menziesii, stable oxygen isotope ratio, tree rings

View and Print this Publication (805 KB)

Pristine Version:  An uncaptured or "pristine" version of this publication is available. It has not been subjected to OCR (Optical Character Recognition) and therefore does not have any errors in the text. However it is a larger file size and some people may experience long download times. The "pristine" version of this publication is available here:

View and Print the PRISTINE copy of this Publication (1.32 MB)

Publication Notes: 

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

Citation

Marshall, John D.; Monserud, Robert A.  2006.  Co-occurring species differ in tree-ring δ18O trends. .   Tree Physiology. 26: 1055-1066

US Forest Service - Research & Development
Last Modified:  January 13, 2009


USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.