US Forest Service
  
Treesearch

Pacific Northwest Research Station

 
 

US Forest Service
P.O. Box 96090
Washington, D.C.
20090-6090

(202) 205-8333

USA.gov  Government Made Easy

Publication Information

Title: Estimating forest canopy fuel parameters using LIDAR data.

Author: Andersen, Hans-Erik; McGaughey, Robert J.; Reutebuch, Stephen E.

Date: 2005

Source: Remote Sensing of Environment. 94: 441-449

Description: Fire researchers and resource managers are dependent upon accurate, spatially-explicit forest structure information to support the application of forest fire behavior models. In particular, reliable estimates of several critical forest canopy structure metrics, including canopy bulk density, canopy height, canopy fuel weight, and canopy base height, are required to accurately map the spatial distribution of canopy fuels and model fire behavior over the landscape. The use of airborne laser scanning (LIDAR), a high-resolution active remote sensing technology, provides for accurate and efficient measurement of three-dimensional forest structure over extensive areas. In this study, regression analysis was used to develop predictive models relating a variety of LIDAR-based metrics to the canopy fuel parameters estimated from inventory data collected at plots established within stands of varying condition within Capitol State Forest, in western Washington State. Strong relationships between LIDAR-derived metrics and field-based fuel estimates were found for all parameters [sqrt(crown fuel weight): R2=0.88; ln(crown bulk density): R2=0.84; canopy base height: R2=0.77; canopy height: R2=0.98]. A cross-validation procedure was used to assess the reliability of these models. LIDAR-based fuel prediction models can be used to develop maps of critical canopy fuel parameters over forest areas in the Pacific Northwest.

Keywords: airborne laser scanning, canopy fuels, remote sensing, forestry, mapping

View and Print this Publication (1.4 MB)

Pristine Version:  An uncaptured or "pristine" version of this publication is available. It has not been subjected to OCR (Optical Character Recognition) and therefore does not have any errors in the text. However it is a larger file size and some people may experience long download times. The "pristine" version of this publication is available here:

View and Print the PRISTINE copy of this Publication (1.4 MB)

Publication Notes: 

  • We recommend that you also print this page and attach it to the printout of the article, to retain the full citation information.
  • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.

 [ Get Acrobat ]  Get the latest version of the Adobe Acrobat reader or Acrobat Reader for Windows with Search and Accessibility

Citation

Andersen, Hans-Erik; McGaughey, Robert J.; Reutebuch, Stephen E.  2005.  Estimating forest canopy fuel parameters using LIDAR data..   Remote Sensing of Environment. 94: 441-449

US Forest Service - Research & Development
Last Modified:  January 13, 2009


USDA logo which links to the department's national site. Forest Service logo which links to the agency's national site.