spacer
About DOE Button Organization Button News Button Contact Us Button
US Department of Energy Seal and Header Photo
Science and Technology Button Energy Sources Button Energy Efficiency Button The Environment Button Prices and Trends Button National Security Button Safety and Health Button
Office of Science Banner
Office of Advanced Scientific Computing Research Office of Basic Energy Sciences Office of Basic Energy Sciences Office of Fusion Energy Sciences Office of High Energy Physics Nuclear Physics Workforce Development for Teachers and Scientists (WDTS)

spacer
spacer
spacer
Deputy Director
for Science Programs
spacer
spacer
spacer
spacer
DOE Technology Transfer

spacer

spacer

In Your State Header


A New Class of Carbon Structures
 
A new allotrope of carbon that consists of 60 carbon atoms, shown above, in the shape of a soccer ball
A new allotrope of carbon that consists of 60 carbon atoms, shown above, in the shape of a soccer ball.

Several lines of research—in spectroscopy, astronomy, and metallic clusters—converged in 1985 to lead to the discovery of an unusual molecule. This cluster of 60 carbon atoms was especially stable because of its hollow, icosahedral structure in which the bonds between the atoms resembled the patterns on a soccer ball. The molecule was named Buckminsterfullerene after the geodesic domes designed by architect Buckminster Fuller. The identification of this form of carbon (also called buckyballs) sparked broad interest in the chemistry of an entire class of hollow carbon structures, referred to collectively as fullerenes. Formed when vaporized carbon condenses in an atmosphere of inert gas, fullerenes include a wide range of shapes and sizes, including nanotubes of interest in electronics and hydrogen storage. The initial discovery was recognized by the 1996 Nobel Prize in Chemistry, awarded to Richard E. Smalley and Robert F. Curl, both supported by the Office of Science, and Curl's colleague Sir Harold W. Kroto of Great Britain. More recently, scientists at Lawrence Berkeley National Laboratory reported a new synthetic method for producing, extracting, and purifying a cluster of 36 carbon atoms in quantities useful for research purposes; they also confirmed the high reactivity and other unusual electrical and chemical properties of this material.

Scientific Impact: The discovery of fullerenes launched a new branch of chemistry, and related studies have contributed to growing interest in nanostructures in general and the principles of self-assembly. Fullerenes also have influenced the conception of diverse scientific problems such as the galactic carbon cycle and classical aromaticity, a keystone of theoretical chemistry.

Social Impact: Fullerenes are highly versatile (there are literally thousands of variations) and thus have many potential applications. For example, fullerene structures can be manipulated to produce superconducting salts, new three-dimensional polymers, new catalysts, and biologically active compounds.

Reference: "C60: Buckminsterfullerene," H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, and R.E. Smalley, Nature 318, 162, November 14, 1985"

URL: http://www.lbl.gov/Science-Articles/Archive/carbon-36-superconductor.html
           http://enews.lbl.gov/Science-Articles/Archive/backyball-transistor.html

Technical Contact: Don Freeburn, Office of Science, 301.903.3156

Press Contact: Jeff Sherwood, Office of Public Affairs, 202.586.5806

SC-Funding Office: Basic Energy Sciences

http://www.science.doe.gov
Back to Decades of Discovery home Updated: March 2001

 

The White House USA.gov E-gov Information Quality FOIA
U.S. Department of Energy | 1000 Independence Ave., SW | Washington, DC 20585
1-800-dial-DOE | f/202-586-4403 | e/General Contact

Web Policies Button No Fear Act Button Site Map Button Privacy Button Phone Book Button Employment Button
spacer