spacer
About DOE Button Organization Button News Button Contact Us Button
US Department of Energy Seal and Header Photo
Science and Technology Button Energy Sources Button Energy Efficiency Button The Environment Button Prices and Trends Button National Security Button Safety and Health Button
Office of Science Banner
Office of Advanced Scientific Computing Research Office of Basic Energy Sciences Office of Basic Energy Sciences Office of Fusion Energy Sciences Office of High Energy Physics Nuclear Physics Workforce Development for Teachers and Scientists (WDTS)

spacer
spacer
spacer
Deputy Director
for Science Programs
spacer
spacer
spacer
spacer
DOE Technology Transfer

spacer

spacer

In Your State Header


Accurate Modeling of Magnetic Materials
 

Modeling of spins at zero and finite temperatures.
Modeling of spins at zero and finite temperatures.

Not long ago, techniques for modeling and evaluating magnetic materials were too simplistic to reproduce accurately all the data obtained in experiments. But in 1995, researchers at Ames Laboratory, led by Bruce Harmon, developed a "spin dynamics" computational technique that can be used to accurately represent and evaluate the fluctuations of atomic moments (magnetic orientations) in solid magnetic materials at different temperatures. Among its benefits, the method can be used to make calculations of realistic-sized systems at temperatures of practical and scientific interest. Using this technique, scientists for the first time theoretically determined the magnetic moments in iron and nickel at high temperatures, even above a key temperature at which the magnetic moments vary in magnitude and point in random directions. Current studies focus on how and why specific defects in permanent magnets are crucial in determining desirable magnetic properties. Oak Ridge National Laboratory and collaborators used the technique in a record-setting supercomputer calculation.

Scientific Impact: The spin dynamics approach is a significant contribution to the foundations of a new theory of the dynamics of magnetic moments at finite temperature and in response to external applied fields. It enables scientists to model material properties at room temperature, at which magnets typically are used.

Social Impact: Metallic magnetism is key to many technologies, including magnetic data storage and electric power generation devices. Accurate modeling of computer bit switching is essential for the design of future high-density computer disks, and the capability to optimize high-temperature magnetic materials will lead to more energy efficient motors and transformers.

Reference: Phys. Rev. Lett., 75,729 (1995).

URL: http://cyclops.ameslab.gov/

Technical Contact: Daniel A Hitchcock, Mathematical, Information, & Computational Sciences Division, Office of Advanced Scientific Computing Research, 301-903-6767

Press Contact: Jeff Sherwood, DOE Office of Public Affairs, 202-586-5806

SC-Funding Office: Office of Advanced Scientific Computing Research

http://www.science.doe.gov
Back to Decades of Discovery home Updated: March 2001

 

The White House USA.gov E-gov Information Quality FOIA
U.S. Department of Energy | 1000 Independence Ave., SW | Washington, DC 20585
1-800-dial-DOE | f/202-586-4403 | e/General Contact

Web Policies Button No Fear Act Button Site Map Button Privacy Button Phone Book Button Employment Button
spacer