spacer
About DOE Button Organization Button News Button Contact Us Button
US Department of Energy Seal and Header Photo
Science and Technology Button Energy Sources Button Energy Efficiency Button The Environment Button Prices and Trends Button National Security Button Safety and Health Button
Office of Science Banner
Office of Advanced Scientific Computing Research Office of Basic Energy Sciences Office of Basic Energy Sciences Office of Fusion Energy Sciences Office of High Energy Physics Nuclear Physics Workforce Development for Teachers and Scientists (WDTS)

spacer
spacer
spacer
Deputy Director
for Science Programs
spacer
spacer
spacer
spacer
DOE Technology Transfer

spacer

spacer

In Your State Header


Saving the Earth's Ozone Layer
 

description or caption

The stratospheric layer of ozone 15 to 50 kilometers above the Earth absorbs ultraviolet radiation, preventing it from reaching the planet's surface. For many years, scientists assumed that this protective ozone would not be affected by release into the atmosphere of chlorofluorocarbons (CFCs), chemically inert and nontoxic gases once common in aerosol sprays and refrigerants. But in fact, CFCs do threaten the ozone layer, as explained in 1974 by F. Sherwood Rowland of the University of California, Irvine, and Mario Molina of the Massachusetts Institute of Technology. Rowland was supported by predecessors to the Office of Science for his research in hot-atom chemistry. Initially interested in species formed as a result of nuclear reactions, he extended his work to study the photochemical formation of chlorine atoms. Roland and Molina theorized that CFC molecules could be split apart by solar radiation to produce chlorine atoms, which could catalyze the destruction of ozone. They were right, as underlined later by discovery of the "ozone hole" over the Antarctic. Rowland and Molina, together with Paul Crutzen of the Max-Planck-Institute for Chemistry in Germany, shared the 1995 Nobel Prize in Chemistry for their work on the formation and decomposition of ozone.

Scientific Impact: Discovery of the effect of CFCs on the ozone layer was a seminal contribution to atmospheric chemistry.

Social Impact: Rowland and Molina's work initially led to restrictions on CFC releases; after discovery of the ozone hole, an international agreement was signed to limit the manufacture and use of these compounds. Thus, this research has helped mitigate a global environmental problem with potentially catastrophic consequences. It will take at least 100 years for the ozone layer to recover fully.

Reference: Molina, M. j., and F. S. Rowland, Stratospheric Sink for Chlorofluoromethanes: Chlorine Catalysed Destruction of Ozone, Nature, 249, 810-814 (1974)

URL: http://www.nobel.se/chemistry/laureates/1995/press.html

Technical Contact: Don Freeburn, Office of Basic Energy Sciences, 301-903-3156

Press Contact: Jeff Sherwood, DOE Office of Public Affairs, 202-586-5806

SC-Funding Office: Office of Basic Energy Sciences

http://www.science.doe.gov
Back to Decades of Discovery home Updated: March 2001

 

The White House USA.gov E-gov Information Quality FOIA
U.S. Department of Energy | 1000 Independence Ave., SW | Washington, DC 20585
1-800-dial-DOE | f/202-586-4403 | e/General Contact

Web Policies Button No Fear Act Button Site Map Button Privacy Button Phone Book Button Employment Button
spacer