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Preface 
Shell Solar Industries (SSI), formerly Siemens Solar Industries, has pursued the research and 
development of CuInSe2-based thin film PV technology since 1980.  At the start of subcontract 
activities with NREL, SSI had demonstrated a 14.1% efficient 3.4 cm2 active-area cell, 
unencapsulated integrated modules with aperture efficiencies of 11.2% on 940 cm2 and 9.1% on 
3900 cm2, and an encapsulated module with 8.7% efficiency on 3883 cm2. 
 
Research on High-Efficiency, Large-Area CuInSe2-Based Thin-Film Modules 
SSI began a 3-year, 3 phase cost-shared subcontract (No. ZN-1-19019-5) [1] on May 1, 1991 
with the overall project goal of fabricating a large area, stable, 12.5% aperture efficient 
encapsulated CIS module by scaleable, low-cost techniques on inexpensive substrates.  
Subcontract accomplishments were facilitated by addressing module reproducibility issues using 
small area test devices and mini-modules.  Statistical process control disciplines were adopted to 
rigorously quantify process reproducibility.  SSI addressed uniformity and reproducibility of 
absorber formation, interactions of the substrate with the absorber, and performance losses near 
interconnects.  Subcontract accomplishments included demonstration of encapsulated module 
efficiencies that were at that time the highest reported mini-module efficiencies for any thin film 
technology (encapsulated 12.8% efficient mini-module on 68.9 cm2 and an NREL-verified 
12.7% efficient unencapsulated circuit on 69 cm2 with a prismatic cover), demonstration of a 
champion large area (3860 cm2) encapsulated module efficiency of 10.3% that was the first thin 
film module of its size to exceed the 10% efficiency level, and delivery to NREL of a one 
kilowatt array of large area (~3890 cm2) approximately 30 watt modules. 
 
TFPPP-1 
From September 1995 through December 1998, SSI participated in a 3-year, 3 phase cost-shared 
Thin Film Photovoltaics Partnership Program subcontract (No. ZAF-5-14142-03) [2].  The 
primary objective of this subcontract was to establish reliable high-throughput, high-yield thin 
film deposition processes in order to make CIS a viable option for the next generation of 
photovoltaics.  Outdoor testing, accelerated environmental testing, and packaging development 
progressed throughout all phases of this subcontract.  During Phase 1, SSI rigorously 
demonstrating process reproducibility and yield for a 10x10-cm monolithically interconnected 
"mini-module" baseline process and demonstrated a 13.6% aperture area efficient mini-module.  
During Phase 2, SSI demonstrated the need to replace an existing large area reactor with a 
reactor based on a more direct scale-up of the baseline reactor, built a new large area reactor, and 
demonstrated comparable performance for the mini-modules baseline and larger 28x30-cm 
circuit plates.  SSI developed products and prototype large area modules using a new package 
designed to integrate small circuit plates into larger modules.  A one kilowatt array of Cu 
(In,Ga)(S,Se)2 modules was delivered to NREL replacing a previously installed array based on 
an older absorber formation technology without sulfur incorporated in the absorber 
(Cu(In,Ga)Se2).  This array demonstrated significant improvements in efficiency and the 
temperature coefficient for power.  SSI introduced two new 5-watt (ST5) and 10-watt (ST10) 
CIS-based products designed for use in 12 V systems, and NREL confirmed a new world-record 
efficiency of 11.1% on a SSI large area (3665 cm2) module.  During Phase 3, substrate size was 
scaled from ~30x30 cm to ~30x120 cm and good process control was demonstrated with an 
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average efficiency of 10.8%.  Commercial product samples were delivered to NREL and a 
second set of ~30x120 cm modules (32 modules totaling ~1.2 kW) was delivered to the NREL 
Outdoor Test Facility.  The NREL measured average efficiency at standard test conditions of 
11.4% was at that time the highest large area efficiency for any thin-film technology and NREL 
confirmed a world-record 11.8% large area (3651 cm2) efficiency for the champion module. 
 
TFPPP-2 
From August 1998 through November 2001, SSI participated in a 3-year, 3 phase cost-shared 
TFPPP subcontract (No. ZAF-5-14142-03) [3].  The primary objectives of this subcontract were 
to scale-up substrate size and to increase production capacity of the baseline CIS module process 
while introducing CIS-based products.  These objectives were pursued to demonstrate fabrication 
of efficient and stable thin-film modules made by scaleable, manufacturable, low-cost 
techniques.  An additional mid- to longer-term objective was to advance CIS based thin-film 
technology thereby assuring future product competitiveness by improving module performance, 
cost per watt produced, and reliability.  Throughout this subcontract, SSI capabilities were 
leveraged as a Technology Partner participating in NREL team oriented TFPPP activities to 
address near-term to longer-term R&D topics.  The SSI approach to this work was to apply 
design of experiment and statistical process control methodologies.  SSI was the first company in 
the world to produce PV modules based on CIS thin-film technology.  R&D Magazine 
recognized this major milestone in the development of PV by awarding the prestigious R&D 100 
Award to the SSI family of CIS solar modules.  NREL, the California Energy Commission and 
SSI shared this award.  SSI expanded the CIS product line in 1999 to include 20-Watt “ST20” 
modules and 40-Watt “ST40” modules.  Also during the first subcontract phase, a record-
breaking efficiency of more than 12% was verified by NREL for an ST-40 module.  This result 
in 1999 far surpassed the DOE year 2000 goal for a commercial CIS module above 10%.  During 
the second subcontract phase, SSI delivered 20 ST-40 large area modules, all with efficiencies 
over 11%, to meet the subcontract deliverables defined as large area modules with efficiencies 
over 10%.  The average efficiency based on a Gaussian fit to the main portion of the circuit plate 
efficiency distribution was increased from 10.8% prior to this subcontract to 11.6% for this 
subcontract.  These advancements were due to continuous improvement of all process along with 
particular attention to process research for two critical processes – CIS formation in new large 
area reactors and the quality of molybdenum deposited in new high capacity sputtering 
equipment.  Process development improved adhesion, decreased breakage, addressed control of 
raw materials, and decreased failures associated with patterning.  Further R&D of all CIS 
processes for part size and capacity scale-up was pursued during the third subcontract phase.  
Major accomplishments included addressing process issues for implementation of high quality 
high throughput Mo deposition and patterning, high throughput precursor deposition, and higher 
throughput reaction of the precursor.  Circuit plate production capacity was increased by more 
than an order of magnitude from the beginning of this subcontract while circuit and module 
efficiencies were steadily improved.  The second subcontract milestone – to achieve a pilot 
production rate of 500 kW per year by the end of subcontract – was first achieved in March of 
2001. 
 
TFPPP-3 
From April 2002 through April 2005, SSI participated in a 3-year, 3-phase cost-shared TFPPP 
subcontract (No ZDJ-2-30630-16) [4].  The primary objectives of this subcontract were to: 
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• Address key near-term technical R&D issues for continued CIS product improvement 
• Continue process development for increased production capacity 
• Develop processes capable of significantly contributing to DOE 2020 PV shipment goals 
• Advance mid- and longer-term R&D needed by industry for future product competitiveness 

including improving module performance, decreasing production process costs per watt 
produced, and improving reliability 

• Perform aggressive module lifetime R&D directed at developing packages that address the 
DOE goal for modules that will last up to 30 years while retaining 80% of initial power  

During the performance of this subcontract, production volume per year was ramped up to 1 MW 
and capacity was increased to about 3 MW.  Laminate efficiency distribution was tightened to a 
peak of 11% with full width of 11% of the average. Line yield improved from about 60% to 
85%. A new “sputter-dosed” process was implemented which improved cosmetics and improved 
thermal stability. NREL confirmed a 12.8% champion aperture area efficiency for an ST40 
production module. A glass/glass package was designed and equipment was procured to 
implement the processing. SSI worked with the CIS team in the TFPPP to address longer-term 
topics, but focused on the thermal transient effect. Efforts to certify the commercial CIS product 
through the IEC 61646 were not successful during the contract period. 
 
TFPPP-4 
Starting in October 2005, SSI entered a 3-year, 3-phase cost-shared TFPPP subcontract (No 
ZXL-5-44205-04). The primary objectives of this subcontract were to: 
• Address key near-term technical R&D issues for continued improvement in thin-film PV 

products 
• Continue process development for increased production capacity 
• Pursue long term R&D contributing to progress toward the MYTP goals for 2020 to increase 

the conversion efficiency to 15% and reduce module manufacturing costs to less than 
$50/m2, thus enabling PV systems with a 30-year lifetime at an installed cost of under 
$2.00/W  

• Advance the understanding of the requirements needed to achieve better thin-film PV cell 
and module performance, greater reliability and market acceptance, and investigate materials 
systems and new devices that can improve the cost/performance ratio of future thin-film PV 
factories 

In February 2006, Shell announced its decision to divest its crystalline silicon solar business 
activities to SolarWorld AG, including all the manufacturing and support activities in Camarillo. 
However, because Shell continues to believe that CIS technology is likely to become competitive 
with retail electricity in the coming years, it announced the signing of a Memorandum of 
Understanding with Saint-Gobain to further explore the Shell CIS technology and to consider 
joint development. In Camarillo today, the silicon and CIS businesses are integrated in one 
company, supported by a common infrastructure. Since the CIS business is not part of the sale of 
the silicon assets to SolarWorld, a new infrastructure would need to be put into place to support 
the remaining CIS activities.  In the discussions between Shell and Saint-Gobain, it was decided 
that the high cost of duplicating the support infrastructure could not be justified at this time. As a 
consequence, the CIS business activity in Camarillo is being brought to a close.  This is the Final 
Technical Report for this contract, and will summarize the work done for the period October 
2005 through April 2006.  Also included is a retrospective, providing some insight into the 
lessons learned over the course of these subcontracts. 
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Summary 
The primary objective of this subcontract were to: 
• Address key near-term technical R&D issues for continued improvement in thin-film PV 

products 
• Continue process development for increased production capacity 
• Pursue long term R&D contributing to progress toward the MYTP goals for 2020 to increase 

the conversion efficiency to 15% and reduce module manufacturing costs to less than 
$50/m2, thus enabling PV systems with a 30-year lifetime at an installed cost of under 
$2.00/W  

• Advance the understanding of the requirements needed to achieve better thin-film PV cell 
and module performance, greater reliability and market acceptance, and investigate materials 
systems and new devices that can improve the cost/performance ratio of future thin-film PV 
factories 

 
Emphasis during this subcontract was on developing and producing a CIS product targeted for 
the grid-connected rooftop market and meeting IEC certification standards. To that end, an 80-
watt product was designed and released. Called the “Eclipse 80-C”, this product incorporates two 
ST40-sized circuits in a glass/glass laminate sharing a common coverglass. Both module 
package design and circuit plate fabrication development led to a product that passed the IEC 
61646, the first CIS product in the market with this certification. As a refinement to the product 
strategy, the product line was split into 85-watt and 75-watt products designated the Eclipse 85-C 
and Eclipse 75-C, both of which also carry the IEC certification.   
 
The Eclipse line of products were being produced in the CIS pilot manufacturing line in 
Camarillo, with a capacity of 3 MW.  Production rate was about 2.0 MW p.a., with a line yield of 
about 85%. The safety record for this facility was outstanding; there were no recordable 
incidents or accidents for 1153 days. Process development activities during this subcontract 
included:  improved CIG ratio control, lower cost indium targets, increased gallium content in 
the absorbers, simplified molybdenum deposition, improved mechanical scribing and improved 
lead attachment. 
 
During prior subcontracts, the ST40 was the flagship product for the CIS manufacturing line. 
This single-substrate design continued to be produced during 2005.  The peak of the distribution 
for these ST40 modules is 11.25% with a mean efficiency of 11.1%.  The standard deviation of 
the distribution is less than 1% (corresponding to only 8.6% of the mean).  During this 
subcontract, the Eclipse 80-C product was released.  The peak of the distribution for these 
Eclipse 80-C modules is 11.0% with a mean efficiency of 10.8%.  The standard deviation of the 
distribution is less than 1% (corresponding to only 7% of the mean).  SSI accomplishments prior 
to 2003 far exceed the 2003 DOE EERE Multi-Year Technical Plan technical target of 8% 
module conversion efficiency for thin-film modules. SSI delivered modules to NREL to meet the 
Joule goals for thin films for each year from 2003 through 2006. 
 
Long-term outdoor stability has been demonstrated at NREL where ~30x30 cm and ~30x120 cm 
modules with multiple prototype package designs and multiple absorber formation have 
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undergone testing for over seventeen years.  Field failures for previous product were also 
observed but only for particular production timeframes.  Some failures were clearly related to 
particular package designs or errors during production.  Additional circuit plate or packaging 
process variables were suspected but not clearly demonstrated to have affected durability.  
Multiple past and present module deployments have demonstrated stability and when losses have 
been observed, the losses correlated with date of deployment or a particular prototype module 
configuration.  SSI developed the “glass/glass” package primarily to decrease packaging costs.  
This package design was used for the Eclipse product line, which passed ALL accelerated testing 
and test standards defined by the IEC 61646 and received IEC qualification. 
 
The demonstrated and maintained high production yield is a major accomplishment supporting 
attractive cost projections for CIS.  Process R&D at successive levels of CIS production has led 
to the continued demonstration of the prerequisites for commitment to large-scale 
commercialization.  Process and packaging R&D during this and previous subcontract has 
demonstrated the potential for further cost and performance improvements. 
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Introduction 

Overview 

Multinary Cu(In,Ga)(Se,S)2 absorbers (CIS-based absorbers) are promising candidates for 
reducing the cost of photovoltaics well below the cost of crystalline silicon.  CIS champion solar 
cells fabricated at NREL have exceeded 19% efficiency [5].  Small area, fully integrated 
modules exceeding 13% in efficiency have been demonstrated by several groups [6].  Record 
breaking efficiencies of over 12% for a commercial large area module have been verified by 
NREL [7].  Long-term outdoor stability has been demonstrated at NREL by ~30x30 cm and 
~30x120 cm SSI modules which have been in field-testing for over seventeen years.  Projections 
based on current processing indicate production costs well below the cost of crystalline 
silicon [6]. 
 
Compared to traditional wafer-based crystalline silicon technologies, new thin film technologies 
yield products of comparable performance but with significant advantages in 
manufacturing [6, 8]: 
• Lower consumption of direct and indirect materials 
• Fewer processing steps 
• Easier automation 
 
Lower consumption of direct and indirect materials results in part from the thin-film structure for 
the semiconductor used to collect solar energy.  All three of these manufacturing advantages are 
in part due to an integrated, monolithic circuit design illustrated in Figure 1.  Monolithic 
integration eliminates multiple process steps that are otherwise required to handle individual 
wafers and assemble individual solar cells into the final product. 
 

Glass
Moly
CIS

ZnO CdS

 
Figure 1.  Structure of SSI monolithically integrated thin-film circuits. 

 
 
A number of thin film photovoltaic technologies have been developed as alternatives to the 
traditional solar cells based on crystalline silicon wafers [6].  The technologies with the greatest 
potential to significantly reduce manufacturing costs are based on alloys of amorphous silicon 
(a-Si), cadmium telluride (CdTe), CIS, and film silicon (Si-film).  These photovoltaic thin film 
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technologies have similar manufacturing costs per unit area since all share common elements of 
design and construction: 
• Deposition of typically three layers on a suitable substrate – window/electrode, absorber, and 

back electrode 
• Patterning to create monolithically integrated circuit plates  
• Encapsulation to construct modules 
 
Cost per watt is a more appropriate figure of merit than cost per unit area [6].  All thin film 
technologies have similar manufacturing costs per unit area since they all use similar or 
equivalent deposition, patterning, and encapsulation processes.  About half of the total module 
cost – material, labor, and overhead – originates in the encapsulation scheme that is for the most 
part independent of the thin film technology.  Costs for alternative substrates and encapsulation 
schemes are similar or even higher.  The average efficiency of large, ~30x120 cm modules in 
pilot production at Shell Solar is approximately 11%.  This performance is at the lower end of 
the range for products based on crystalline silicon.  The lowest cost per peak watt will result 
from the technology with the highest efficiency, CIS technology, since most thin film 
technologies have similar cost per unit area. 

SSI CIS Process 

The structure of an SSI CIS solar cell is shown in Figure 2.  An SEM of the crossection of a 
typical absorber structure is show in Figure 3. 
 

2.2 µm
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ZnO
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Glass

CdS

 
Figure 2.  SSI CIS cell structure (not to scale). 
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Figure 3. SEM image of the cross-section of a CIS device. 

 
Most photovoltaic products are designed for 12-volt or higher applications, but the output 
voltage of an individual solar cell is typically about 0.5 volts.  Wafer-based technologies build up 
the voltage by connecting individual solar cells in series.  In contrast, CIS circuits at SSI are 
fabricated monolithically; the interconnection is accomplished as part of the processing sequence 
to form the solar cell by alternately depositing a layer in the cell structure and patterning the 
layer using laser or mechanical scribing.  The full process to form CIS circuit plates, including 
monolithic integration, is outlined in Figure 4. 
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Figure 4.  SSI CIS Circuit Processing Sequence. 

 
This process starts with ordinary sodalime window glass.  An SiO2 barrier layer is deposited to 
minimize sodium diffusion from the substrate and thereby improve adhesion between the CIS 
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and the molybdenum (Mo) base electrode, which avoids dead areas at pinholes and at the 
patterns in the Mo.  The Mo base electrode is sputtered onto the substrate.  This is followed by 
the first patterning step (referred to as “P1”) required to create monolithically integrated circuit 
plates – laser scribing to cut an isolation scribe in the Mo electrode. 
 
Good P1 patternability can be judged from optical micrographs and profilometry (Dektak).  Poor 
quality scribes have a characteristic ragged, partially debonded, and lifted edge.  The lifted edge 
is revealed in Dektak traces as a spike at the scribe edge, which can cause shunts between ZnO 
and Mo.  Adequate patternability and electrical performance was initially obtained by using a 
molybdenum bi-layer structure consisting of a thin first layer deposited at low pressure followed 
by a “bulk” layer deposited at higher pressure, e.g. in a 1:10 thickness ratio at 3x10-3 and 13x10-
3 mbar respectively.  While scribe quality is influenced by laser set-up, molybdenum properties 
dominate scribe quality, particularly lifting at the edges, and consistency of this process was 
problematic.  This cumbersome dual pressure process was replaced by a multi-target process at a 
single pressure (13x10-3 mbar) in which the first thin layer was deposited through a honeycomb-
form screen, or collimator, to force the molybdenum atom flux into a more normal angle of 
incidence [9].  Deposition system and process influences were identified and process 
development lead to improved consistency while transferring the process to higher volume 
production equipment.  Pattern quality was controlled by addition of a small amount of water or 
oxygen to the argon sputter gas (in the range 2-15%) during deposition of the first, thin layer. 
 
Copper, gallium and indium precursors to CIS formation are then deposited by sputtering.  
Deposition of the precursors occurs sequentially from two targets in an in-line sputtering system, 
first from a copper-gallium alloy target (15 at% Ga) and then from a pure indium target.  Sodium 
is introduced by a “sputter dose” process in which a compound containing sodium is sputtered on 
the Mo base electrodes prior to deposition of the copper-gallium and indium.  Process feedback 
is provided by a combination of measurements using quartz crystals and XRF.  For each 
precursor deposition campaign, quartz crystals on a glass carrier are run through the sputtering 
system twice, the first pass for deposition of the copper-gallium film, and the second for 
deposition of the indium film.  The thickness of each layer is determined based on crystal 
resonant frequency differences before and after the depositions.  XRF measurements are used to 
measure the consistency of precursor deposition throughout a precursor deposition campaign. 
 
As seen in the following photograph of a reactor for 1x4-foot circuit plates, Figure 5, a group of 
substrates is loaded in a carrier, placed into the tube reactor, and processed as a batch.  CIS 
formation is accomplished by sequentially heating the precursors in H2Se and H2S to form the 
CIS absorber.  This deposition of copper and indium precursors followed by reaction to form CIS 
is often referred to as the two-stage process.  Beginning at room temperature, furnace 
temperature was ramped to around 400ºC for selenization via H2Se, ramped again to around 
500ºC for subsequent sulfidation via H2S and followed by cool-down to room temperature.  The 
concentration and uniformity of sodium across the substrates is controlled using the sputter dose 
process to supply sodium, using the SiO2 barrier layer to minimize sodium diffusion directly 
from the substrate and by facing absorber layers toward one another to minimize the contribution 
of sodium transported through the reactor by sodium selenide from the uncoated side of adjacent 
substrates [9]. 
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Figure 5.  Photograph of 1x4-ft circuits in front of absorber formation reactor. 

 
A very thin coating of cadmium sulfide (CdS) is deposited by chemical bath deposition (CBD).  
This layer is often referred to as a “buffer” layer.  Good devices but with strong “transients” 
(changes in power with light soaking) were demonstrated for the same overall structure but 
without the CdS layer.  A second patterning step (P2) is performed by mechanical scribing 
through the CIS absorber to the Mo substrate thereby forming an interconnect via.  A transparent 
contact is added by chemical vapor deposition (CVD) of zinc oxide (ZnO), simultaneously 
depositing on the exposed part of the Mo substrate in the interconnect via and thereby connecting 
the Mo and ZnO electrodes of adjacent cells.  A third and final patterning step (P3) is performed 
by mechanical scribing through the ZnO and CIS absorber to isolate adjacent cells. 
 
The CIS-based absorber referred to in this report is composed of the ternary compound CuInSe2 
combined with sulfur and gallium to form the multinary compound Cu(In,Ga)(S,Se)2.  Gallium 
and sulfur are not uniformly distributed throughout the absorber but the concentrations are 
graded; hence, this structure is referred to as a “graded absorber.”  The graded absorber structure 
is a graded Cu(In,Ga)(Se,S)2 multinary with higher sulfur concentration at the front and back and 
higher gallium concentration at the back.  Elemental profiles typical of the SSI graded absorber 
structures are presented in Figure 6.  Efficiency, voltage, and adhesion improvements have been 
demonstrated for the SSI graded absorber structure [10, 11]. 
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Figure 6.  Typical elemental profile for the SSI graded absorber (SIMS from NREL). 

 
Figure 7 illustrates the module configuration used for prototypes and products during this 
subcontract.  EVA is used to laminate circuit plates to a tempered cover glass and a 
Tedlar/polyester/Al/Tedlar (TPAT) backsheet provides a hermetic seal.  Aluminum extrusions 
are used to build frames for the modules.  In addition to providing a hermetic seal, the 
combination of the TPAT backsheet and the offset between the circuit plate and the frame 
provides electrical isolation from the frame. 
 

Aluminum FrameCover Glass

EVATedlar/Polyester/Al/Tedlar  
Figure 7.  Single circuit plate module configuration with a TPAT backsheet. 

 
The SSI CIS processing facility produces nominally 1x4 ft. circuit plates for production and 
process R&D.  Full size 1x4 ft. circuit plates are used for ST40, 40W product.  Smaller modules 
in the ST series of products are cut from identical circuit plates; processing through all CIS 
device fabrication and monolithic integration process steps is the same for full size 1x4 ft. and 
smaller modules. 
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Most production infrastructure, with the exception of absorber formation reactors, is compatible 
with larger circuit plates - up to nominally 2x5 ft.  Overall capacity increases could be achieved 
by increasing the substrate size; however, higher power products are now fabricated using 
multiple circuit plates rather than larger circuit plates; prototype modules using two 1x4 ft. 
circuit plates were tested and the approach adopted for a new product – the “Eclipse 80-C”. 
 

Seal

EVA

Circuit Plate

Cover Glass

Tedlar/Polyester/Al/Tedlar

Thin Films

EVA

Glass / Glass

Aluminum
Frame

Glass / TPAT

RibbonRibbon

 
Figure 8.  “TPAT” backsheet and “glass/glass” package designs. 

 
The Eclipse 80-C was the outgrowth of “glass/glass” package designs primarily to decrease 
packaging costs.  Simplification of the package and decreased operating temperature were 
additional potential advantages.  Figure 8 is a sketch comparing ST40 and “glass/glass” package 
designs.  Figure 9 is a sketch of the Eclipse 80-C glass/glass package, which was designed for 
cost reduction and marketability.  Two nominally 40W circuit plates are laminated to a common 
tempered glass front sheet.  Laser edge deletion to remove all of the thin films forms an 
approximately 1 cm border and provides electrical isolation from the frame.  An edge seal 
selected in collaboration with the NREL sponsored National Thin-Film PV Module Reliability 
Team (TFMRT) is used at the perimeter of both plates [12].  A screen in front of the ribbons is 
included to achieve an aesthetically pleasing uniform black appearance. 
 

Ribbon

Circuit Plate Circuit Plate
Seals

Aluminum
Frame

Seal
Ribbon

Ribbons

Screen

Cover Glass
Pottant Screen

 
Figure 9.  Proposed Eclipse 80-C glass/glass package. 
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Elimination of the TPAT backsheet for the glass/glass package was planned in combination with 
polishing off contaminates on the back of the circuit plate.  However, a back cleaning system 
purchased for this task proved unable to remove all traces of contamination of the back side of 
the glass.  An alternative plan using a low-cost Tedlar backsheet and a lower cost adhesive was 
implemented (Figure 10).  Long-term options and initial subcontract work include sealing the 
back of the circuit plate with a low cost coating applied during or after lamination or eliminating 
the CdS. 
 

Ribbon
Circuit Plate Circuit PlateSeals

Aluminum
Frame

Seal
Ribbon

Ribbons

Screen

Cover Glass
Pottant Screen

Tedlar
 

Figure 10.  Eclipse 80-C glass/glass package. 
 
Figure 11 illustrates the layout of the circuit plates, buss bar ribbons and a printed circuit board 
(PCB) that connects the circuit plates and routes power to a junction box on the back of the 
module.  A black screen printed aperture on the cover glass covers the ribbons, the film-deleted 
edge and the the edge seal, to achieve an aesthetically pleasing uniform black appearance, as 
shown in Figure 12. 
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Figure 11.  Lay-up of two circuit plates. 
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Figure 12.  A cover glass with screen achieves an uniform black appearance. 
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SSI R&D Approach 

From the industrial perspective, the full process sequence anticipated for use in large-scale 
production must be mastered and rigorously demonstrated.  The SSI research approach is 
composed of two main elements: 
• Experimentation and development using structures that exercise all aspects of large area 

module production [13] 
• Application of statistical process control (SPC) as the discipline to rigorously quantify 

process reproducibility, and application of statistical methods such as analysis of variation 
(ANOVA) to rigorously quantify experimental results [14, 15]. 

 
Process predictability is a prerequisite for commercialization of thin-film PV since product 
performance ratings, yields and costs must be known before committing to produce products.  
Also, process predictability is essential for proper interpretation of process development efforts 
since experimental results may be ambiguous or misleading if compared to an unpredictable 
baseline process.  SSI has adopted SPC methodologies because SPC was developed to rigorously 
quantify process reproducibility and process capability; the essence of SPC is predictability.  
Equally significantly, SPC provides the measure of systematic progress as processes are 
developed.  Communication of this progress is typically best expressed in the language of the 
SPC discipline [16].  For example, process characterization results are demonstrated to be 
“statistically significant” based on knowledge of process repeatability as measured using the SPC 
discipline and compared to a predictable baseline process.  Confidence in the appropriate 
interpretation of experimental results is gained through application of statistical methods such as 
ANOVA to demonstrate statistically significant results. 

Subcontract Activities and Milestones 

Background 

NREL supports thin-film R&D and National R&D Team activities with team members from 
academia, the thin-film photovoltaic (PV) industry, NREL, the National Center for Photovoltaics 
(NCPV), and the Center of Excellence for Thin Film Photovoltaics at the Institute of Energy 
Conversion, University of Delaware.  The purpose of the Thin-Film Photovoltaics Partnerships 
Program (TFPPP) is to accelerate the progress of thin film solar cell and module development as 
well as to address mid- and long-term research and development issues. The long-term objective 
of the TFPPP is to demonstrate commercial, low-cost, reproducible, high yield and robust PV 
modules of 15% aperture-area efficiency, about $50/m2 area cost, and thirty-year lifetimes. 
These goals are stated explicitly for thin films in the US DOE Solar Energy Technology 
Program’s “Multi-Year Technical Plan (MYTP), 2003-2007 and Beyond” (Table 4.1.1-1, page 
50).  They are consistent with reaching the DOE long-term goal (2020) of cost-effective PV 
electricity at about 6 cents/kWh levelized energy cost. The purpose of this subcontract effort, in 
the Technology Partners Category, is to accelerate progress of thin film solar cells and module 
development as well as to address mid and long-term research and development issues by 
achieving aggressive interim goals for thin film module efficiencies; cell and module processing; 
cell and module reliability; and the technological base that supports these key areas.  This 
subcontract was executed on October 3, 2005. 
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Objectives 

The primary objectives of this subcontract effort are to: 
• Address key near-term technical R&D issues for continued improvement in thin film PV 

products 
• Continue process development for increased production capacity 
• Pursue long term R&D contributing to progress toward the MYTP goals for 2020 to increase 

the conversion efficiency to 15% and reduce module manufacturing costs to less than 
$50/m2, thus enabling PV systems with a 30-year lifetime at an installed cost of under 
$2.00/W 

• Advance the understanding of the requirements needed to achieve better thin-film PV cell 
and module performance, greater reliability and market acceptance, and investigate materials 
systems and new devices that can improve the cost/performance ratio of future thin-film PV 
factories 

Goals 

The primary goals of this subcontract effort are to:  
• Meet the 2007 MYTP technical target of 12% module conversion efficiency for large area 

Copper Indium Diselenide (CIS) production modules 
• Demonstrate progress toward development of a commercial, low-cost, reproducible, high 

yield and robust module process capable of meeting the MYTP goals for 2020 to increase the 
conversion efficiency to 15% 

• Provide subcontract deliverables including CIS-based products and representative modules 
delivered to the NREL Module Testing Team for outdoor testing and evaluation 

• Properly document progress for the thin film PV community 
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Technical Review 

Production Review 

Performance and Capacity 

Outstanding progress has been made in the initial commercialization of high performance thin 
film CIS technology.  During the previous subcontract, predictability of the SSI CIS process was 
demonstrated by continuously executing the process while increasing throughput.  Cumulative 
production for 2002 exceeded 1 MW - about twice the production rate for 2001.  Capacity in 
2003 increased to somewhat below 3 MW per year and production for 2003 was just over 
1.2 MW.  Introducing a new minimodule product accounts for the main difference between 
production and capacity.  As charted in Figure 13, the laminate efficiency distribution for 2003 
peaked at 11.0% with a full width of only 11% of the average.  This distribution is nominally the 
same as the distribution for 2002 but with an approximately 33% increase in large area laminate 
production volume. 
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Figure 13.  Production distribution for 1x4-ft. laminates produced during 2003. 

 
During the previous subcontract NREL confirmed a champion 12.8 percent aperture area 
conversion efficiency for a large area (3626 cm2) CIS module (Figure 14).  The aperture area for 
this champion module was defined by taping off the approximately 1 cm inactive boarder 
surrounding the monolithically integrated CIS circuit in a ST40, 40W, production module.  Other 
than definition of the aperture area, this module is simply one module from the upper end of the 
production distribution for standard modules.  Similar modules made using the sputter dosed 
absorber formation process were submitted to NREL for measurement as champions and for later 
use as reference modules.  Measurements for one of these modules on the NREL Large Area 
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Constant Source Simulator (LACSS) were within 2% of the NREL measurements of the 
previous champion. 
 

Module per Cell
Eff 12.8 %
Pmax 46.5 W
Voc 25.3 0.601 V
Isc 2.7 A
Jsc 30.8 mA/cm2

FF 69.2 %
Area* 3626 86.3 cm2

Cells 42
* Aperture area - including interconnect loss

 
Figure 14.  Champion ST40 module from the upper end of the production distribution. 

 
The DOE “Solar Energy Technologies Program, Multi-Year Technical Plan 2003-2007 and 
Beyond” (MYTP) defines technical targets for specific PV technologies that are deemed 
necessary to achieve national significance for PV industries [17].  A progression of targets are 
defined for assumed “baseline systems” that are deployment scenarios developed for 2020 goals.  
The 2003 MYTP technical target for the baseline system incorporating thin-film modules is 8% 
average module conversion efficiency (Table 4.1.1-1).  The distribution data in Figure 13 
demonstrates that at least a year in advance, with production modules rather than champion 
modules, SSI accomplishments far exceed the 2003 DOE EERE Multi-Year Technical Plan 
technical target of 8% module conversion efficiency for thin-film modules.  The following quote 
from the EERE Multi-Year Technical Plan (MYTP) recognizes previous SSI accomplishment,  
“After two decades of R&D, CIS is being introduced to the market, with prototype modules 
made by Shell Solar (Camarillo, CA) consistently reaching efficiencies greater than 11%—
beating a goal set in the last PV Subprogram 5-year plan by more than a year.” 
 
Production during this subcontract period was initially the 40 W single circuit plate ST40 with 
the relatively new sputter dose process.  This was followed by production of the 80 W Eclipse 
80-C glass/glass package made using two nominally 40W circuit plates laminated to a common 
tempered glass front sheet.  Figure 15 is the module distribution for 10,947 ST40 modules 
produced between February 2005 and August 2005.  The peak of the distribution for these ST40 
modules is 11.25% with a mean efficiency of 11.1%.  The standard deviation of the distribution 
is less than 1% (corresponding to only 8.6% of the mean). 
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Figure 15.  Efficiency distribution of all ST40 modules produced in 2005. 

 
The distribution for 9,011 Eclipse 80-C modules is charted in Figure 16. The peak of the 
distribution for these Eclipse 80-C modules is 11.0% with a mean efficiency of 10.8%.  The 
standard deviation of the distribution is less than 1% (corresponding to only 7% of the mean). 
 
The lower efficiency for the Eclipse 80-C distribution is in part due to decreasing the absorber 
sulfur content to decrease transients and thereby, as discussed in more detail below, pass the IEC 
61646 certification standard. 
 

 
Figure 16.  Efficiency distribution of all Eclipse 80-C modules produced in 2005-2006. 
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Line yield is defined as the ratio of two areas – the area of product produced divided by the area 
of glass started through the production line, average over time.  This is a total yield including 
both electrical yield and mechanical yield through all processing required to produce products.  
Figure 17 illustrates yield improvements over approximately the last five years.  Yield data from 
1999 through 2003, through the beginning of minimodule production, is plotted on a monthly 
basis.  Line yield increased from about 60% in 2000 to about 85% in 2002 and high yields were 
demonstrated throughout 2003.  These dramatic yield improvements were due to continuous 
improvement of all processes and this major accomplishment supports attractive cost projections 
for CIS. 
 
Yield since restarting large area module production late in 2004 (after a campaign of minimodule 
production) has been tracked for each product in the ST product line rather than based on total 
area for all products.  Also, yield is posted weekly rather than monthly which inherently 
introduces more variability in the statistics.  Another difference between yield data for previous 
and the present baseline with the sputter does process is that aesthetic criteria have become more 
stringent.  Yield has been good but variable.  Estimates for total area yield made to be more 
consistent with earlier data, but still on a weekly basis, are plotted in Figure 17 for the last 
quarter of 2004 and the first quarter of 2005.  Weekly total area yield ranges from about 60% to 
about 90%.  This variability is expected for increasing capacity, introducing a new product, 
restaffing and retraining.  Implementation of the sputter dose process also introduced variability 
as process parameter updates were made based on R&D to decrease transients and data from the 
first production scale experience. 
 

 
Figure 17.  Yield improvements. 
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Total line yield for the Eclipse 80-C production was not tracked on an area basis.  Eclipse-75C, 
Eclipse 80-C, and Eclipse-85C modules were produced and with changes throughout this 
subcontract period in the designated cutoff efficiencies and product mix.  Combined with process 
changes, these issues make it impossible to directly compare yield for the multiple Eclipse 80-C 
product line with the previously used area based yield.  Also, restaffing and retraining occurred 
twice during this production period.  However, electrical yield based on production data for all 
timeframes and the cutoff efficiency used at the end of the subcontract for two rather than three 
product designations is presented in Table 1. 
 

Table 1.  Electrical yield by product 
Model Number of Modules Yield Average Power (W) 
Eclipse-85C 4175 46.3 82.5 
Eclipse-75C 4462 49.5 76.5 
Total 9011 95.8  

 
Electrical yield for the product line exceeded 95%.  

Process Development 

The Approach to Manufacturing — a Retrospective 

Manufacturing thin-film PV modules requires reproducible good results, on large areas and 
volumes, day-in, day-out.  This is the ultimate goal of every thin-film PV R&D program, but the 
path is difficult from the first interesting research results — usually good efficiencies on small 
area solar cells — to megawatt-scale manufacturing.  This section reflects on the method and 
philosophy employed at SSI to guide this transition. 
 
The method does not dwell on performance of “champions”. Champions often utilize special 
processing that is not practical for production or special processing or structures that are 
completely incompatible with the requirements for a real product. While champion performance 
is exciting, it demonstrates only that a certain combination of materials in a certain device 
structure can produce that exceptional level of performance. This is an often-misunderstood 
point. Every process produces a distribution of results. A champion result is by definition an 
exception, an outcome at the extreme positive end of the statistical distribution of outcomes 
when the process is repeatedly performed.  A champion most certainly does not demonstrate that 
the process employed can routinely deliver that level of performance. 
 
The method is not based on hope.  Often new approaches are proposed because a particular 
processing technology promises low cost (e.g. high throughput, non-vacuum, novel, etc.) with 
the presumption that “we’ll develop a process”.  Without the prior solid foundation of 
reproducibly good results, one is left with hope for scale-up. 
 
First, research should concentrate on reproducibility with an adequate level of performance; only 
when this is demonstrated is there a basis for scaling-up a process. At SSI this began by 
focussing efforts on a single test device format, the 10x10cm2 monolithically integrated 
“minimodule”.  These small circuits contained all of the elements whose mastery was necessary 
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for large-area production.  Early on the circuit design was frozen — most importantly the cell 
width — guided by simple modeling for minimization of the geometric and ohmic power losses 
incurred when constructing an integrated circuit.  Next, the circuit fabrication process was 
thoroughly documented and likewise frozen — all process changes were avoided unless 
deliberately targeted by an experiment.  Adopting this orientation is particularly difficult for an 
R&D group, essentially the motto:  “Don’t just do something, stand there”!  It was nevertheless 
essential to enable focus on finding and understanding sources of variation in process outcome.  
Tools such as statistical process control (SPC) and analysis of variation (ANOVA) were 
especially powerful in this context [14].  Once understood, a source of variation could be 
eliminated, or sometimes exploited if it led to a reproducible improvement.  Moreover, by 
minimizing variation in process outcome, it was easier to validate that a process change actually 
resulted in a statistically significant, reproducible improvement.  This systematic approach of 
gathering statistically meaningful data and acting accordingly is often summarized in the cycle: 
 

Plan

 Do

 Check

 Act

 
 
Work toward area scale-up can sensibly commence when the small area research process has 
reached the acceptable level of reproducibility and performance. The guiding principle for this 
next step has two parts.  First, characterize each process on a local level, along the lines of “if I 
am a small piece of CIG, or CIS, etc., what environment do I see or feel”?  This means 
thoroughly characterizing the process conditions through measurement of substrate temperature, 
process gas concentrations, sputter deposition rates, voltages, etc.  This knowledge forms the 
foundation for specification of production processing machines, the second part of the effort. 
 
Processing machines must be designed which can replicate those conditions uniformly on a 
sufficiently large area.  Often this can be accomplished by copying the design principles of small 
processing equipment into a larger format.  For example, large area reactive annealing furnaces 
(for selenization-sulfurization) were built around large diameter quartz tubes fashioned after the 
small diameter quartz tube furnaces used for research processing.  Likewise, equipment for CVD 
of ZnO was scaled in a straightforward way from the small research CVD reactors.  In other 
cases, the processing “tool” (laser or mechanical scribe tip fixture) remains the same but the 
“travel” built into the processing machine is increased to accommodate larger dimensions. 
 
It is also very important to employ a rigorous machine specification, design, and procurement 
process.  Here participation from both the research engineer and the future production personnel 
is essential—it’s not sufficient to delegate the task to a project engineer who, on completion of 
the project, will then “toss it over the wall” to manufacturing.  Instead, it is vital to incorporate 
several stages of review and acceptance into the procurement process, most especially after 
completion of the detailed design before actual construction begins.  Finally, a rigorous system 
for release of new equipment to production ensures that new machines are usable and sustainable 
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as well as functional.  A process qualification plan verifies that the machine yields results that 
fulfill requirements, and provides a mechanism for trouble-shooting and improvement if this is 
not initially the case.  Equipment release must also encompass safety requirements, 
manufacturing documentation, maintenance methods and software control, integration into 
information management systems. 
 
Also note that first-of-a-kind equipment will inevitably suffer from design mistakes and that 
there will be lessons learned while evaluating new equipment in production.  It is valuable to 
allow flexibility in procurement so that improvements can be incorporated into later versions of 
the equipment. 
 
Manufacturing is also based on far more than just a process and a set of equipment; it requires a 
quality system in the broadest sense. This quality system must encompass the definition and 
release of both equipment and processes in the form of process procedures and work instructions.  
In addition it must define and release methods for machine preventative maintenance, for safe 
trouble-shooting and repair, for replenishment of process materials, and for calibration of gauges 
and instruments on the equipment.  It must provide a system for controlling and implementing 
revisions to procedures and other documents.  It must include a system for tracking flow of 
substrates through the production line (like the SSI SWIP system, a real-time production control 
system), ideally integrated with process history and product test databases.  And finally, possibly 
most importantly, it must include a system for rigorous training of production and maintenance 
personnel, including refresher training and training of revisions. 
 

CIG Ratio Control and Indium Target Development 

The CIG ratio, Cu/(In+Ga), is a key parameter in production of high efficiency CIS devices.  In 
two-stage processing of CIS semiconductors, where reactive annealing follows the sputter 
deposition of the metallic elements, this ratio is governed by careful control of target sputter 
rates.  At SSI one indium and one copper-gallium [15at% Ga] alloy target were employed for in-
line sputtering of the metallic elements. 
 
In earlier work we described this problem, the measurement tools employed for deposition rate 
measurement, and showed how methods from statistical process control (SPC) can be used to 
maintain good control as target sputtering rate changes with target age [18].  Since that earlier 
work we have gained experience with the use of more than 20 copper-gallium targets and more 
than 50 indium targets. 
 
Performance of Copper-Gallium Targets 
As a general rule copper-gallium targets, typically provided by Heraeus Materials, exhibited very 
stable sputtering characteristics.  For somewhat more than half of the targets, the sputtering rate 
did not change at all for the entire life of the target.  This is a very convenient situation!  For the 
remaining targets only slightly poorer characteristics were found, with the sputtering rate stable 
during the first half of target life and then drifting slowly but steadily lower toward the end of 
target life.  However, the drift was sufficiently slow that over a 12-hour production shift even 
worst case drift produced only a negligible 0.6% decline in copper-gallium thickness 
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(corresponding to a mere 0.005 shift in CIG ratio).  Moreover, downward drift causes the CIG 
ratio to trend slightly lower, i.e. in the “safe” direction.  Obviously, there is some opportunity for 
further refinement through collaboration with the target vendor. 
 
Consequently the copper-gallium sputter rate could in practice be checked once prior to a 
production run (with the sputtering power adjusted if necessary) and then the sputtering power 
left constant during the entire run.  In fact, instances where the copper-gallium sputter rate was 
found outside specification limits were sufficiently rare that changing sputtering power was not 
allowed without investigation by engineering. 
 
Performance of Indium Targets 
Stability of indium targets was significantly more problematic.  Early targets suffered from 
serious arcing and other variability.  However, with further development of the target casting 
process by the vendor (Unaxis) improved targets were produced that gave good uniformity and, 
while exhibiting significant drift in sputter rate over the target’s life, were at least reasonably 
consistent from one target to the next. 
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Figure 18.  Sputter yield of early indium targets 
 
Indium target performance during this early development is illustrated in Figure 18. Sputter yield 
is defined as the quantity of material deposited at a specified substrate transport speed (here, 
0.45m/min) per KW of power applied to the sputtering target.  (For historical reasons the 
quantity of material deposited is presented in µmoles of indium per 37.5cm2).  Each cluster, or 
stripe, of points corresponds to results from an individual target, with each data point in the 
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cluster being the yield measured for one run.  In order to distinguish between the histories of 
successive targets, the symbol alternates between an “x” and a “■” with each new target. 
 
Significant drift in sputter yield over the life of the target was characteristic of these indium 
targets, typically a drop of nearly 20%, from about 9µmol/KW to about 7µmol/KW as shown in 
Figure 18.  This typical behavior is three times worse than the absolute worst cast observed for 
any copper-gallium target.  As a consequence, the relatively poor stability necessitated 
correspondingly frequent measurements to control the sputter rate and, if necessary, to adjust the 
target power.  This could cause significant operational inefficiencies, both in lost production 
time—as much as 1 hour out of 6—as well as indium target material spent during the control 
measurements. 
 
The vendor Heraeus (reorganized from Unaxis) subsequently developed a modified casting 
process (later transferred to a second vendor, Thermal Conductive Bonding) that resulted in 
much improved stability of the sputter yield over the target lifetime.  In Figure 19 it is 
immediately apparent that these new targets are typically much more stable over their life. 
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Figure 19.  Sputter yield of improved indium targets 

 
Several characteristics of these improved targets are revealed by closer inspection of the data 
used for Figure 19: 
• Yield varies from target to target by as much as ± 10%, e.g. initial sputter power to achieve 

the aimpoint thickness is typically 10KW but can be as low as 9KW or as high as 11KW. 
• Of the seventeen targets presented, about half exhibit constant yields over the full target life.  

However, the others exhibit decreasing yield with target age. 

 
20



• Even the least stable TCB targets are about three times more stable than the typical Unaxis 
targets used in the earlier period. 

 
The improved stability allowed a very significant reduction in production time lost in making 
control measurements. 
 
Development to reduce indium target cost 
In addition to working with vendors to improve the sputtering characteristics of the indium 
targets we also sought ways to reduce the cost of the target manufacture.  To place this effort in 
context, first consider the standard method of target manufacture: 
1. The customer returns a used target retaining 50-60% of the original indium in the backing 

plate to the vendor. 
2. The vendor melts and removes the residual indium, crediting the customer for the indium but 

at a discount to full market price. 
3. The vendor fills the backing plate with a full charge of fresh indium and casts the target. 
4. The vendor machines away the top surface of the as-cast to produce a smooth surface and 

target to remove any surface layer impurities. 
 
The simplest, lowest cost approach would be to eliminate steps 2 and 4, that is, simply refill a 
used target with the necessary weight of fresh indium and re-cast it.  The target user would install 
the target as-is and begin the target burn-in from the unmachined as-cast surface.  Would this 
work?  Several potential drawbacks come to mind.  The relatively irregular as-cast surface might 
cause unstable sputtering or arcing.  Since the impurity distribution in the target is unaffected by 
machining, not machining off the surface may simply increase the duration of burn-in period.  
Repeated recasting could result in some concentration of copper impurity from the backing plate 
(though this might be reduced by nickel plating the backing plate). 
 
In practice, positive results were obtained in intial trials.  The first two as-cast targets performed 
exactly like conventional targets, exhibiting stable sputtering characteristics and yielding normal, 
high CIS modules.  Somewhat surprisingly, the duration of new target burn-in (the time until the 
sputter yield has stabilized) was no longer for these targets than for conventional (machined) 
targets. 
 
However, the next two as-cast targets gave poor uniformity on initial use and were removed 
without being used for production.  The fifth as-cast target initially performed very well—like 
the initial pair—but after about 20% of its projected life the uniformity deteriorated and it too 
was removed.  In fairness it must be noted that in this time period three conventional targets also 
had poor uniformity. 
 
The problem of poor uniformity appears to originate in not yet understood variations in target 
casting conditions but is not obviously related to recasting. Can inhomogeneity in targets be 
detected?  The erosion groove, or racetrack, etched into the target by the sputtering process—
appeares to reveal variations in internal grain structure between different targets. 
• For targets that gave good uniformity the indium in the racetrack was fairly consistent in 

appearance across the width of the target, not smooth, but with a sub-millimeter roughness or 
texture somewhat like medium grit (e.g. 120) sandpaper. 
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• In contrast, for targets that gave poor uniformity, the indium varied significantly in 
appearance from one end of the racetrack to the other.  Typically showing much coarser 
structure than observed in a good target, the roughness or texture was on a sub-centimeter 
scale and somewhat reminiscent of the texture coatings sometimes applied to walls in “dry-
wall” construction. Regions of coarser texture tended to give lower sputtering rates 

 
Thus, non-uniformity correlated with the texture, or internal “grain” size revealed in the target 
raceway, presumably due to variation in target casting process.  Solution of this problem will 
require more collaboration between vendor and target user. 

Sodium and Sulfur Variations 

Variations in the amount of Na introduced by the sputter dose process and S profile variations in 
the graded absorber were explored to potentially improved module efficiency and to reduce 
thermal transient behavior.  Module performance and NREL provided SIMS analysis was 
considered for a matrix of two sputter dose levels (0.73 and 1.3 relative sputter dose) and three 
levels of H2S concentration during sulfidation (100%, 33%, 10% relative to baseline).  The 
results of this matrix are summarized as follows: 
• Module efficiency increases smoothly from 11% to 12% with [H2S] increasing from 10% to 

100% - Voc increases faster than Jsc drops.  
• Thermal transients generally decrease with increasing Na sputter dose and decreasing [H2S] 

but with little difference between 10% and 33% H2S. 
• Efficiency is independent of sputter dose level except at 10% H2S where the FF is better for 

the lower sputter dose level. 
• Adhesion is excellent at the higher S levels and slightly poorer adhesion for 10% [H2S]. 
• Adhesion is independent of Na sputter dose level. 
 
For each variation, SIMS analysis included samples from the center and within the active area 
near the top edge (both from near the center relative to the long dimension).  Data from the SIMS 
analysis is plotted in Figure 20 through Figure 23.  SEM images are presented in Figure 24 
through Figure 26.  The following summarizes SIMS and SEM observations: 
• Sulfur profiles are similar in shape (log scale) but shifted in concentration for the three [H2S] 

conditions. 
• Sodium sputter dose conditions have little effect on the sulfur concentration in the front and 

center of the absorber but do have some impact the profiles at the back. 
• A large, highly variable increase in the Na concentration is observed in the Mo for some edge 

samples that may be related to Na transported through the reactor or roughness and SiO2 area 
or step coverage. 

• Increasing Na levels and implementing the sputter dose process minimizes the “fine grain 
region” and increases the “grain” size. 

• SEM and SIMS data indicate that the improvement in transient effects by adopting the 
sputter dose process may be related to improvements in absorber structure - minimization of 
the “fine grain region” and increasing the “grain” size. 

• The Na content in the absorbers did not change dramatically with sputter dose process or 
[H2S]; the Na levels near the CIS/Mo interface and through the high Ga region are not 
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significantly different and differences in Na levels near the front are relatively small but 
might be important or be a remnant indicative of reaction pathway.  

 
 



 

 
Figure 20.  Positive ion SIMS profiles - top and center, all elements. 
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Figure 21.  Positive ion SIMS profiles - top and center, emphasizing Na. 
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Figure 22.  Molecular SIMS profiles – top and center. 
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Figure 23.  Molecular SIMS profiles - top and center, emphasizing sulfur. 

 

 



 

 
Figure 24.  SEM of pre sputter dose baseline absorber. 

 
 

 
Figure 25.  SEM image of pre sputter dose baseline absorber with lower than normal Na. 
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Figure 26.  SEM images of a sputter dosed absorber. 
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High Ga absorbers 

Increasing the Ga content in the absorber was pursued for improvements in module efficiency, 
improvements in the temperature coefficient of efficiency, and for potential improvements in 
adhesion.  Precursors with both 15% and 25% Ga content were included in two sets of reaction 
runs.  For the first set the temperature of the selenization plateau was increased relative to the 
baseline.  For the second set the temperature during sulfidation was increased. 
 
Performance was similar for both sets and dominated by lower and highly variable FF.  Higher 
Ga content led to small losses in Jsc relative to baseline as expected for higher Ga content in the 
SSI graded absorber structure; the thickness of the higher bandgap, nominally CuGa(Se,S) 
without In, region is increased.  If any gain in Voc was achieved for the higher Ga content it was 
masked by the lower and highly variable FFs.  Sun soaking laminates did not significantly 
improve FF.  Hillocks (bumps in the CIS absorber) were observed for the high Ga absorbers and 
lower performance is possibly related to the presence of these hillocks. 
 
Sally Asher at NREL coordinated SIMS and SEM analysis of these absorbers with temperature 
variations during reaction and increased Ga content along with baseline samples selected from 
two reactor locations.  Figure 3 (Introduction) is an example of this SEM work.  There may be 
differences in the extent of the “fine grain region”, at the CIS/Mo interface or the grain structure; 
however, additional follow-up would be required for unambiguous conclusions. 
 
Figure 27 through Figure 34 summarize the SIMS analysis where two or more charts are 
presented for each of the scans – molecular, positive ion and negative ion.  The first chart for 
each scan type presents the data color coded by element and follow on charts present the same 
data but with the data color-coded according to experimental conditions.  The samples included 
absorbers with 15% Ga – baseline temperature, 15% Ga – elevated temperature and 25% Ga – 
elevated temperature.  The samples produced at an elevated temperature were prepared by 
etching off the ZnO from a completed device whereas all other samples were selected prior to 
CdS deposition. 
 
The following summarizes results emphasizing the absorber rather than the Mo layer: 
• The Se and In data is consistent with trends in S and Ga. 
• The high Ga region at the back is thicker and has higher Ga content for 25% Ga. 
• The Ga content at the front of the absorber (0 to ~0.3 µ) is higher for higher reaction 

temperature and for 25% Ga. 
• S content at the back and middle of the absorber may be slightly higher for the higher 

reaction temperature. 
• S content at the front of the absorber may be slightly lower for 25% Ga. 
• Na content at the front of the absorber is higher for the lower reaction temperature or related 

to sample preparation and analysis. 
• Na content is not clearly related to the Ga or S content for this data, which includes a broad 

range of concentrations through the absorber.  However, Na may be higher in the middle of 
the absorber corresponding to the higher but relatively low Ga content in the middle of the 
absorber for the 25% Ga.  
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• Oxygen concentration is relatively high through the Mo and the peak at the Mo/glass 
interface is related to the measurement method and the nonuniformity of the absorber. 

• There may be less Na in the Mo for 25% Ga. 
 
These results suggest follow-up including modification of absorber thickness and absorber 
reaction conditions. 
 
Three samples of absorbers made using baseline conditions from two locations within a reactor 
were analyzed.  Two of the samples were from edges and one from the center of each circuit 
plate.  The S content was low for one of the samples from an edge for the reactor location that 
typically give slightly lower module performance.  Otherwise there were no clear trends related 
to reactor or circuit plate position. 
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Figure 27.  SIMS molecular scan color-coded by element. 

 

 
Figure 28.  SIMS molecular scan color-coded by process variant. 
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Figure 29.  SIMS molecular scan color-coded by process variant, emphasizing sulfur. 

 

 
Figure 30.  SIMS molecular scan color-coded by process variant, emphasizing gallium 
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Figure 31.  SIMS positive ion scan color-coded by element. 

 

 
Figure 32.  SIMS positive Ion scan color-coded by process variant. 
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Figure 33.  SIMS negative ion scan color-coded by element. 

 

 
Figure 34. SIMS negative ion scan color-coded by process variant, emphasizing oxygen. 
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Non-Collimator Moly Deposition 

As described in the Introduction, the SSI CIS base electrode consisted of a ca. 500Å thick SiO2 
barrier layer followed by a 3500Å Mo electrode, deposited using a specially modified sputtering 
technique to guarantee good patternability by laser scribing [9].  While the bulk of the Mo 
coating (perhaps 3300Å) is subsequently provided by deposition from two conventionally 
configured targets, the first thin layer is deposited from a separate target through a “collimator” 
with O2 added to the sputter gas mix.  This method, while effective, increases cost due to poor 
Mo utilization (about 90% is intercepted by the collimator) and associated costs related to 
maintenance.  In addition, Mo accumulation on the collimator causes process variation, with the 
thickness of the first thin layer ranging from 200Å with a new collimator to as little as 50Å 
before the collimator is replaced.  Remarkably, this systematic variation does not produce 
discernable change in patternability or module performance. 
 
With the aim of decreasing the cost of the first thin Mo layer (and avoiding process variability), 
alternative process conditions (sputtered without a collimator) were explored and developed.  
Since P1 scribe quality is influenced by both laser set-up and, to much greater extent, the 
molybdenum properties, P1 process conditions were also later explored.  The criteria for 
selection of an improved process were laser-scribe quality and, finally, circuit performance. 
 
First, a significant number of base electrode substrates were made using a relatively broad range 
of Mo sputtering power and O2 flow rates, and all were then patterened using baseline laser 
conditions.  Optical micrographs and Dektak profiles of resultant P1 scribes were compared to 
look for evidence of lifting or partial separation of the Mo film at the scribe edges, a sign of poor 
pattern quality and probable shunting [19].  Minimal lifting at the edges was indicated for all 
explored process conditions, although some minimal cracking was observed for relatively low 
power and high O2 flow rates.  Based on these results, circuit plate production and P1 pattern 
optimization was then pursued for two selected Mo non-collimator deposition process 
conditions, one with lower and one with higher O2 flow. 
 
Patternability was explored on the two selected candidates by varying the laser power and 
checking the scribe lines for consistent isolation, lifting at the edges that could cause shunting, 
and damage to the underlying glass.  For typical setups, the P1 scribe conditions do not have an 
impact on breakage or the amount of Na in the absorber [20].  The interaction between the laser 
beam and the Mo is a probe of Mo properties and the run-to-run repeatability of these properties.  
Therefore, process selection criteria included process depth of field and the impact of Mo 
deposition conditions on the interaction between the laser and the base electrode.  This 
interaction can be quantified with a model that assumes the crater or scribe diameter is 
determined by a Gaussian intensity profile for the laser beam and threshold intensity for removal.  
Fitting data for crater diameter versus intensity (or power for otherwise fixed beam properties) 
yields both the beam diameter and the threshold power for Mo removal.  Figure 35 is an example 
of scribes made with a progression of scribe widths made by varying laser power.  
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Figure 35.  A progression of P1 scribes made made by varying laser power 

 
Results for baseline Mo deposition conditions, thin Mo, an electrode without the thin Mo, and 
two experimental Mo deposition process conditions are presented in Figure 36.  The relative 
positions (or intercepts in alternative data presentations) of the data for different deposition 
conditions and the associated fit curves indicates that the threshold for removal of thin Mo is the 
lowest and baseline Mo is the highest.  Repeatability of the relative thresholds for removal is 
indicated by consistency with repeated runs – “Run A” and “Run B”.  A process depth of field 
(sensitivity to focus, power or Mo deposition conditions) can be determined by expanding on this 
approach.  
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Figure 36.  P1 scribe diamater vs. Mo process and P1 power 

 
Thus, both candidate non-collimator Mo processes were found to have robust, good quality P1 
patternability.  However, initial circuits fabricated on these substrates were found to have Voc 
systematically low compared to control circuits fabricated on baseline substrates.  Since 
molybdenum and sodium concentrations can influence Voc, the experiment was broadened to 
include circuits prepared from precursors with an elevated as well as a baseline sodium dose.  
Surprisingly, increased sodium dosing level was also ineffective in regaining the lost Voc, as 
seen from average circuit performance in Table 2, summarized from 18 baseline and 36 non-
collimator circuits. 
 

Table 2.  Average circuit performance vs. Mo method and sodium dose 
Mo Na dose Eff (%) Voc (V) Jsc (mA/cm2) FF Pm (W) 

Non-Collimator Mo 
130% Bsl 11.6 +/- 0.2 0.507 +/- 0.007 36.4 +/- 0.7 0.629 +/- 0.013 42.1 +/- 0.8lower O2

Bsl 11.5 +/- 0.4 0.499 +/- 0.008 36.7 +/- 0.5 0.626 +/- 0.011 41.6 +/- 1.5
130% Bsl 11.6 +/- 0.6 0.500 +/- 0.009 37.1 +/- 0.8 0.623 +/- 0.014 42.0 +/- 2.1higher O2

Bsl 11.5 +/- 0.3 0.497 +/- 0.007 36.9 +/- 0.7 0.627 +/- 0.010 41.7 +/- 1.0
Baseline Mo with collimator 

130% Bsl 12.2 +/- 0.5 0.520 +/- 0.007 37.4 +/- 0.9 0.627 +/- 0.017 44.2 +/- 1.7 
Bsl 12.2 +/- 0.3 0.521 +/- 0.002 36.7 +/- 0.5 0.638 +/- 0.006 44.3 +/- 1.0

 
A t-test showed that only the 4-point difference in Voc is statistically significant.  This study 
shows that the base electrode Mo structure influences device performance in ways still not 
understood. 
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Cadmium-Free modules 

Development of high efficiency cadmium-free CIS modules is an important world-wide research 
focus.  At SSI this has been achieved by simply skipping the CdS “dip” process step, entirely 
omitting the “buffer layer” conventionally applied between the CIS semiconductor and ZnO 
transparent conductor.  (This is the only process change—the modules are in all other ways 
baseline processed).  This remarkable result appears to be a consequence of the unique properties 
of CVD ZnO, possibly the gentle, “low-energy” deposition process.  It should also be recognized 
that CVD produces a kind of “inherent” buffer—it is known from earlier studies that the first few 
tenths of a micron of deposition are highly resistive and have a different crystal structure from 
the bulk of the conductive window layer [21].  (This is true even when the entire film is 
uniformly doped). 
 
However, it must be noted that modules produced in this way show relatively poor performance 
initially but improve strongly with sun exposure to a normal level.  Since implementation of the 
new sodium sputter-dose process produced modules with reduced light-dark performance 
transients, it was interesting to produce a new set of modules without the CdS “Dip” process to 
test if these would also show reduced transient behavior. 
 
In general, the new sputter-dosed cadmium-free modules exhibited the same behavior as the 
inherent (gas-phase) sodium-dosed modules [22] made earlier:  tested without lightsoaking, 
initial module performance was low, but improved strongly with sunsoaking.  Figure 37 shows 
initial, pre-sunsoak efficiency ranging between 8% to 10%.  

 
Figure 37.  Performance of cadmium-free CIS modules—as built and after rooftop exposure 
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After 2 hours of sunsoaking, efficiency improved to between 10% and 11%.  When next tested 
after 10 days of sunsoaking, the average efficiency of the whole group had improved to 11.6%, 
indistinguishable from baseline modules incorporating the CdS layer!  This dramatic 
improvement resulted from strong gains in Voc and FF partly offset by a drop in Jsc (likely a 
result of solarization of cover glass and UV-induced increase in ZnO conductivity). 
 
Figure 37 also shows that after 198 days the efficiency of the group had declined slightly to 
11.1%, with the drop from small but equal declines in the Jsc and FF, while Voc remained 
completely stable.  Additional measurements and tracking would be necessary to determine how 
much of this change is from measurement variability and if the performance has stabilized. 
 
Three conclusions can be drawn: 
1. High efficiency cadmium-free CIS modules are possible 
2. CVD ZnO offers a means to achieve this goal without any additional buffer layer 
3. The transient mechanism reduced by sputter-dosing is probably not the transient mechanism 

reduced with the CdS “dip” process. 
 

Narrower Patterning 

Experience with the mechanical pattern machine led to confidence in its reliability and 
repeatability.  The baseline total pattern width had been 19 mils for 0.27-inch wide cells.  Each 
of the 14 tips of the MS2 machine were carefully aligned and the patterning software was 
modified to reduce the total interconnect width to 12 mils resulting in 2.6% more active area.  
Modules with the narrower interconnects demonstrated 2.7% better Jsc at the 95% confidence 
level.  There were no losses due to pattern mistakes or pattern crossover. 
 

Mechanical Scribing - Diamond Tipped Needles 

Mechanical scribing reliability, reproducibility and productivity were improved by increasing 
scribe tip lifetime.  Mechanical scribing is done using needle like tips to scribe lines in the films 
parallel to laser scribes in the Mo (P1).  The tips are fixed and touch the film surface while the 
plate moves under the tips.  The tips are oriented at about a 70 degree angle to the plates, aligned 
with the direction of plate motion. For the baseline method,  the first stroke is a “rake” - the tip 
points in the same direction as the motion of the substrate.  This is followed with a “plow” stroke 
- tips pointing into the approaching material. 
 
With use, the tip wears, producing a flat spot at the contact area. Eventually this flat spot causes 
the tip to ride along the top of the film and to not scratch through. This failure to scribe typically 
happened after one to two thousand “Rake/Plow” cycles during a ZnO (P3) scribe. When the 
scribe failure is seen, the errant tip is rotated 90 degrees and the tip number and rotation state is 
noted. When the fastest wearing tip has been rotated 360 degrees, i.e. back to the initial flat spot, 
the whole tip set is replaced and the number of total cycles for that tip set is recorded. 
 
Two modifications improved this process: change from carbide tips to diamond tips and change 
from first executing a rake stroke to first executing a plow stroke.  Tip set life data in terms of 
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the total number of passes made with a set is presented in Figure 38 for before and after these 
changes.  Starting at tip set 21, diamond tips replaced carbide tips leading to last much longer tip 
life. 
 

 
Figure 38.  Lifetime comparison of carbide and diamond tips for mechanical scribing. 

 
For tip sets 26 and 27, the patterning method was changed to the “plow-first” stroke.  This also 
improved tip life.  The “rake-first” approach apparently led to ware from the tip riding up onto a 
chip of the broken out ZnO and riding along the relatively abrasive ZnO surface. With the 
“plow-first” method the ZnO chips are immediately pushed up and away from the tips.  At tip set 
28 both “plow-first” and diamond tips became the baseline method.  At tip set 31 the metal shafts 
of the diamond tips were found to be more malleable than the carbide tips and they could be 
more readily bent or damaged. The longer run cycles of tip sets 32 and 33 resulted from better 
training in the method to install and rotate the diamond tips. 

Indium/Silver Solder – Secondary Vendor 

During the contract period, a secondary supplier of indium / silver solder (97% In, 3% Ag) was 
evaluated.  A series of performance tests was conducted to verify that the material from the new 
vendor was equivalent to the previous material. Specifically, all dimentional requirements were 
duplicated: 
• Solder bead width 2.5 +/- 0.5 mm (by direct measurement) 
• Solder bead thickness 2.0 +/- 0.5 mils (by direct measurement) 
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• Adhesion met spec of 200 grams average (pull test verified bond strength of 351 to 385 
grams) 

• Equivalent electrical performance (electrical distributions of 20-part populations showed 
equivalent powers) 

 
Furthermore, the new solder did not discolor with idle time on the tinning machine and was 
delivered more reliably to the solder heads. As a consequence, maintenance was reduced and 
productivity increased.  The new solder has been adopted as the standard material, displacing the 
previous solder. 

Production Experience with Diethylzinc (DEZ) for CVD ZnO 

The organometallic compound diethylzinc (DEZ) is the zinc reagent employed in chemical vapor 
deposition of ZnO transparent conducting film [23].  This material, produced by Akzo 
Chemicals, is a pyrophoric liquid with vapor pressure (14.5 torr @ 20 C) and density (1.2) 
similar to those of water.  DEZ is supplied in large (roughly 100 L) tanks, from which the liquid 
is transferred as required to a vapor generator, generally referred to as a “bubbler” because an 
inert “carrier” gas such as nitrogen is metered though the liquid to promote evaporation and help 
transport the generated vapor to the deposition reactor. 
 
This method for supplying the process chemical is elegant in that it is essentially a distillation 
process, purifying the DEZ as it is delivered.  This works because the anticipated impurities have 
substantially lower vapor pressure.  However, in sufficient concentration this could with time 
cause a different problem: impurities could accumulate to a significant amount in the bubbler, 
even ultimately filling the bubbler!  If this actually occurred, it would be necessary to 
periodically drain the bubbler, with the attendant engineering and equipment complexity. 
 
In practice this proved to be a negligible problem.  During decommissioning of the two CVD 
systems the opportunity arose to inspect the contents of the bubblers after the DEZ was removed.  
First, the DEZ bubbler of each was (presumably) emptied by passing nitrogen through it for an 
extended period of time, well past the time where net weight of the bubbler reached zero.  Then, 
the nitrogen in the bubbler was carefully displaced with air—no evidence of any reaction was 
seen.  Finally, the bubblers were opened and inspected.  An oily residue, probably no more than 
10cc of liquid, was found at the bottom of each bubbler.  The residue was slightly air-reactive, 
transforming after a number of minutes into a thin solid crust.  These are exactly the 
characteristics expected for organometallic impurities. 
 
Each reactor processed about 1.9 metric tons of DEZ over several years of production service, 
during which the bubblers were never emptied or purged.  The small residue found at the end of 
this cumulative production implies that the diethylzinc contained only about 10 ppm impurity. 
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Reliability 

Reliability will be addressed from the following perspectives: 
1. IV Measurements 
2. Certification testing 
3. Test to failure 
4. Outdoor testing 
5. Warranty considerations 
 

IV Measurements 

The techniques used to measure the IV curves of PV modules are defined in IEC 904-1, with 
temperature corrections defined by IEC 891. These procedures assume that the IV properties of 
the devices behave like crystalline silicon. CIS, however, has the additional complication that the 
measurement of the IV curve is sensitive to the recent history of the module [24]. The 
measurement is sensitive to factors that are less important for crystalline silicon (putting aside 
LID effects): 
• Recent (forward) voltage bias 
• Recent light exposure 
• Recent exposure to high temperatures (over 80°C). 
 
Exposure of CIS laminates to elevated temperatures during processing (or during accelerated 
environmental testing) causes a decrease in the measured fill factor.  The loss is reversible, and 
light exposure or forward bias accelerates the recovery. This initial loss and subsequent recovery 
of fill factor is called the “thermal transient effect” (almost the inverse of the Stabler-Wronski 
effect in amorphous silicon) and is the largest problem for reliability testing of CIS modules. 
 
The measurement is also sensitive to the sweep rate of the voltage bias used to measure the IV 
curve. Outdoor measurements are typically very slow compared to pulsed “flasher” 
measurements made indoors. 
 
Any discussion of reliability testing must therefore begin with a decision regarding the testing 
methodology.  Given the sensitivity of the measurement of CIS devices to their previous 
exposure to voltage bias, thermal exposure or light exposure, the most defensible choice is to use 
outdoor measurements, with a relatively slow voltage sweep, corrected back to standard test 
conditions.  However, outdoor measurements are impractical for routine, high volume testing.  
Outdoor testing is tedious to perform and can only be done for a short time around noon, 
provided there are clear skies.  Therefore, methodologies were developed to use a pulsed solar 
simulator as the standard. A minimum outdoor exposure (at open circuit) of two hours at 1/3 sun 
or more (even under overcast skies) prior to the pulsed simulator measurement was adopted. 
Forward voltage biasing to Voc immediately before the measurement was found to be necessary 
to minimize short-term transients [24]. The difference between the outdoor and such indoor 
measurements was found to be small, particularly for more stable devices. 
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Calibration 
Primary calibration of the pulsed solar simulator was based on outdoor measurements using a 
Daystar tester.  A set of temperature coefficients was developed to correct the measurements 
back to standard test conditions.  Good agreement has historically been demonstrated between 
SSI and NREL measurements.  In order to recheck simulator calibration, and to estimate the 
difference between simulators, SSI, NREL and FSEC measurements were compared for 60 CIS 
modules provided to NREL for the High Voltage Array testing.  These modules first went to 
NREL, where they were measured on the SOMS, LACSS and Spire testers, then to FSEC where 
they were measured outdoors with a Daystar tester. For the purpose of comparing the 
measurements, the data from the NREL SOMS was used as a reference value, and ratios of the 
numbers from the other testers were compared to this reference. Figure 39 through Figure 42 
show the comparison of these measurements. The NREL SOMS is an outdoor measurement 
corrected to STC, the NREL LACSS is a large-area indoor constant light source simulator, and 
the NREL Spire is a commercial indoor pulsed tester. The SSI measurements were made using 
an indoor pulsed simulator after 2 hours of outdoor sun soaking. 
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Figure 39.  The ratio of the Voc measured on the SSI LAPSS, the NREL Spire, the NREL LACSS 

and the FSEC Daystar are compared to the Voc measured on the NREL SOMS. 
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Figure 40. The ratio of the Isc measured on the SSI LAPSS, the NREL Spire, the NREL LACSS and 

the FSEC Daystar are compared to the Isc measured on the NREL SOMS. 
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Figure 41.  The ratio of the Fill Factor measured on the SSI LAPSS, the NREL Spire, the NREL 
LACSS and the FSEC Daystar are compared to the Fill Factor measured on the NREL SOMS. 
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Figure 42.  The ratio of the Power measured on the SSI LAPSS, the NREL Spire, the NREL LACSS 

and the FSEC Daystar are compared to the Power measured on the NREL SOMS. 
 
A summary of these results for the measured cell parameters is presented in Table 3. 
 

Table 3.  Average ratios of the IV parameters from a set of 60 ST40 modules measured at SSI, 
NREL and FSEC compared to the NREL SOMS values. 

Average Ratios Voc Isc FF Pmax
SSI / SOMS 0.96 1.03 0.99 0.97 
Spire / SOMS 0.99 0.99 0.95 0.93 
LACSS / SOMS 1.00 0.95 1.00 0.94 
FSEC / SOMS 1.01 0.99 0.97 0.97 

 
All four testers measure power, on average, lower than the NREL SOMS outdoor measurements. 
As seen from the individual charts, there is variation in the IV measurements even for properly 
maintained equipment with controlled testing procedures. 
 
This experiment was repeated for a set of 18 Eclipse 80-C modules sent to NREL as a 
deliverable for this subcontract. The data for this comparison, shown in Table 4, looks very 
similar to the previous measurements. 
 

Table 4.  Average ratios of the IV parameters from a set of 18 Eclipse 80-C modules measured at 
SSI and NREL compared to the NREL SOMS values. 
Average Ratios Voc Isc FF Pmax 
SSI / SOMS 0.98 1.02 0.99 0.99 
Spire / SOMS 0.99 0.99 0.99 0.97 
LACSS / SOMS 0.99 0.95 1.00 0.94 
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Temperature Coefficients 
Temperature coefficients for CIS modules appear to vary slightly from module to module. This 
may be a consequence of the slight variation in band structure from one absorber to another as a 
function of the degree of sulfur incorporation. It also appears that the temperature coefficients 
may change slightly with outdoor exposure or stress testing. The values shown in Table 5 are the 
average of two ST40 modules tested at TUV. We quote these values in our specification sheets, 
but quite a range of values has been reported. 
 

Table 5.  Average temperature coefficients of the IV parameters measured at TUV for two ST40 
modules. 

Temperature Coefficients Units Value +/- 
α Voc [%/°C] -0.38 0.02 
α Isc [%/°C] 0.01 0.00 
α Pmpp [%/°C] -0.49 0.03 
α Vmpp [%/°C] -0.42 0.09 
α Impp [%/°C] -0.09 -0.06 
NOCT [°C] 45.4 0.10 

 

Certification testing 

CIS modules need to have the same product certifications as crystalline silicon to be competitive.  
The standard test for certification of CIS modules is the IEC 61646 “Thin-film terrestrial 
photovoltaic (PV) modules – Design qualification and type approval”. The current standard is the 
First edition, 1996-11.  This standard was derived from the IEC 61215 “'Crystalline silicon 
terrestrial photovoltaic (PV) modules - Design qualification and type approval” (currently 
released as Edition 2), but was adapted to meet the requirements for testing amorphous silicon 
modules and therefore lacks appropriate considerations for CIS technology. Extension of this 
standard to the testing of other thin-film PV technologies is anticipated by the guidance that 
“Modifications to this test sequence may be necessary due to the specific characteristics of these 
other new technologies”.  SSI Eclipse modules have passed the IEC 61646. See certificate in 
Figure 43. 
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Figure 43.  IEC 61646 certificate for the SSI CIS module Eclipse 80-C family. 

 
Working Group 2 of Technical Committee 82 of the IEC is currently revising the IEC standard. 
This will be a major revision in the details of the sequence, particularly in the definition of the 
pass/fail criteria. The old standard required that relative measurements, before and after an 
exposure, be within 5% of each other. The revised standard requires that at the end of the test 
sequence, all modules measure within 10% of the manufacturer’s minimum rated power (an 
absolute measurement), after a sun-soak exposure. The change in the requirements shifts the 
emphasis of the test from identifying failure mechanisms to verifying product quality. This 
change will make the standard more general and it should be straightforward for CIS modules to 
pass this revision. 

Test to Failure 

Another kind of accelerated test is to subject a module to a test, such as damp heat, until it fails. 
The number of hours until failure is a gauge of the “robustness” of the design. While it is not 
possible to predict field lifetime from such experiments, the mechanism of the failure can 
provide insight into what elements of the design are the weakest and may suggest approaches to 
improve the package. Experiments with this kind of testing have begun, with an emphasis on 
comparing the results on CIS modules with silicon modules. 
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Accelerated testing beyond the normal damp heat test, 1000 hours of exposure to 85ºC and 85% 
relative humidity, was pursued to identify potential weaknesses in glass/glass package designs 
(Figure 44).  Control modules were exposed for the same duration at 85° C but without humidity 
thereby allowing distinction between humidity induced effects and solely thermally induced 
transient effects.  There was no significant difference in electrical performance and no visible 
corrosion after 1000 hours of exposure.  Variable corrosion from none to up to 3 cm in from the 
edge was visible only after 3000 hours in damp heat.  One module failed catastrophically after 
3500 hours of damp heat exposure due to failure of solder connections and the majority of 
modules failed after 4000 hours due to this failure mechanism or breakage.  The glass/glass 
package provides protection from humidity ingress well beyond the standard 1000-hour 
accelerated environmental test. 
 

 
Figure 44. Test to failure shows good protection from humidity ingress well beyond the standard 

1000-hour accelerated test. 
 

Outdoor Testing 

While IEC certification is generally necessary to validate product design from a marketing 
standpoint, it is clearly not sufficient for lifetime prediction. Certification tests may accelerate 
mechanisms that do not occur in the field (such as corrosion of coverglass, once a common 
failure in damp heat that is not observed in the field) and may completely miss mechanisms that 
do occur in the field (such as corrosion of circuits or frames). The only way to find out what 
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kinds of failures will actually occur in the field is to deploy products and see what happens. 
While such testing may take a very long time, some failure mechanisms may be detected in a 
relatively short time. 
 
To interpret the data from this kind of testing, we have found that it is most useful to deploy CIS 
products in a side-by-side arrangement with crystalline silicon products. This provides a kind of 
internal standard for comparison. While accurate absolute measurements of PV modules is quite 
difficult, relative measurements provide a simple means of comparing CIS to the de facto 
industry standard, crystalline silicon. 
 
Outdoor measurements for our CIS modules have shown mixed results. In some tests, CIS 
modules have shown field degradation, in some cases as high as 2.8% per year [25]. Other tests 
have shown very little change with time.  In side-by-side testing with silicon products in both 
Camarillo and Munich, the long-term behavior of the CIS modules have been at least as good as 
the silicon controls. 
 
Long-term Outdoor Exposure Testing 
SSI has provided NREL with samples of CIS modules since 1988. These modules have been 
deployed outdoors at the NREL Outdoor Test Facility during all the subsequent years. The 
modules are measured at periodic intervals, both using the indoor Spire tester and an outdoor 
tester. Shown below are two sets of data from these modules. The first set of data (Figure 45) 
was measured indoors, using a Spire 240A; the second set of data (Figure 46) was measured 
outdoors and corrected to STC. While the trends in the data are similar, they are not identical. As 
explained above, we believe that the outdoor measurements are more accurate than the indoor 
measurements. 
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Figure 45.  Efficiency measured using an indoor Spire tester on CIS modules deployed outdoors 

at NREL. 
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Shell Solar Industries  CIS Modules
Measured Outdoors At Near STC
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Figure 46.  Efficiency measured using outdoors on CIS modules deployed at NREL. 

 
What we see in the outdoor data is the evolution of our CIS products as they became larger and 
more efficient. The two green curves show data for modules deployed in 1988 that were 1 ft2 in 
size and about 8% in starting efficiency. Both modules show loss in efficiency and had visible 
evidence of yellowing of the EVA by the mid-1990’s. One module was taken out of service for 
additional diagnostics, but no other damage was found. The average annual changes for the 
modules, based on the outdoor measurements from 1996 to date, are shown in Table 6. 
 

Table 6.  Average annual percent change for CIS modules deployed at the NREL OTF, based on 
outdoor measurements from February 1996 to date. 

Deployment
Date 

Average Change
[% per year] 

Jan-99 -1.67 
Jan-99 -1.48 
Mar-95 -0.34 
Mar-95 -0.23 
Aug-92 -0.49 
Aug-92 -0.13 
Sep-91 0.18 
Sep-91 -0.10 
Oct-88 -1.16 

 
Outdoor Exposure Testing, 1-kW Arrays 
SSI has provided four 1-kW CIS arrays to NREL. These arrays have been deployed in the 
Outdoor Test Facility and characterized for extended periods.  In each case, a newer generation 
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of modules has been used to replace the previous design using the same test site.  The first two 
arrays demonstrated stability and that thermally induced transients, which are observed after 
exposure to high temperatures during accelerated environmental testing, are not observed in the 
field despite daily and seasonal changes in module temperature. 
 
Data acquisition began on November 18, 1998 for the third 1kW array of prototype modules.  
The system was comprised of 28 modules with an average aperture efficiency of 11.4% at STC.  
The aperture area of each module was 0.3651m2 and of the total array is 10.2 m2.  The array was 
fixed at a 40° tilt aligned true south and was connected to a resistive load through three 
maximum power trackers.  Continually logged data was corrected for temperature.  Only data for 
incident solar irradiance of between 950 and 1050 W/m2 was used for array characterization.  
NREL measurements indicated array performance over 1kW. 
 
With time, the array data indicate that the third array began exhibiting power losses. (See Figure 
47) As reported in the Final Report for the previous subcontract [4], array data from test sites 
throughout the country and from individual modules illuminated this issue with the array at 
NREL.  Field failure mechanisms related to particular package designs and errors during 
production were clearly identified.  Additional circuit plate or packaging process variables may 
have affected durability during particular production timeframes; when losses were observed, the 
losses correlated with date of deployment or prototype module configuration. For comparison, 
crystalline silicon arrays typically show annual losses of 1 to 2 percent per year [26, 27]. 
 

 
Figure 47.  Outdoor measurements of the third CIS array delivered to NREL. Power losses of 2.5 to 

2.8 percent per year were observed. 
 
Fourth 1-kW Array 
As deliverables for the previous subcontract, SSI shipped 22 Eclipse 80-C prototype modules to 
NREL for deployment as a 1 kW array and for other testing at the OTF.  As seen in following 
picture, Figure 48, the array consists of two strings of seven modules and is oriented at a 40-
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degree tilt facing true south.  The modules are oriented so that the long thin cells are oriented 
vertically thereby avoiding shadowing problems associated with dirt buildup previously seen for 
deployment with cells in the horizontal orientation and aggravated by an earlier module design 
with a deep frame (which concentrated the dirt over the edge cells). 
 

 
Figure 48.  The fourth 1-kW array provided to the NREL Outdoor Test Facility. The array is 

comprised of 14 Eclipse 80-C modules. 
 
NREL IV measurements of the array are shown in Table 7. These modules are Eclipse 80-C 
designs, which have a frame aperture and a window aperture defined by a screen-printed mask 
on the coverglass. The following areas have been used for calculating the efficiency: 
 
Inside the frame 8281 cm2

Aperture defined by the coverglass mask 7358 cm2

Aperture defined by the circuit dimensions 7275 cm2
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Table 7.  IV measurements of the modules provided to NREL as a deliverable under this 
subcontract. 

 
 
Communication with Jill Adelstein (NREL) provided array power measurements based on 
PVUSA measurement criteria.  For these measurements with the array at the nominal operating 
temperature rather than for correction to standard test conditions at 25ºC, three measurements 
made between January and March, 2006 averaged 989 W. 
 
Effects of rain washing 
SSI deployed a 245kW CIS array on the rooftop of one of its manufacturing buildings [28]. This 
array is monitored for energy delivery and the company is compensated for the excess power 
produced. The buildings are located next to agricultural fields and the arrays are mounted at a 
very shallow angle. The effect of rain washing the dirt off the modules can be seen in Figure 49. 
The loss in power caused by the soiling of the modules is estimated at 60% based on the step 
increase after they were cleaned. Note that these modules are installed in the “landscape” 
orientation with a nearly horizontal tilt angle. As a consequence, dirt accumulation is severe, 
obscuring entire cells and groups of cells. 
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Figure 49.  Daily energy production from the 245-kW rooftop array. It rained 1.02 inches of water 

on October 17, 2005, resulting in a dramatic increase in production. 
 
Side-by-Side Arrays 
Shell Solar has set up two side-by-side arrays to directly compare CIS and silicon technologies. 
One is located on the grounds of the Shell Solar R&D facility in Munich Perlach [29], where 
single-crystal silicon, polycrystalline silicon and CIS modules are monitored for their daily 
energy output (Figure 50). 
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Figure 50.  Photo of the outdoor test facility in Munich-Perlach. Several technologies are 

compared in a side-by-side arrangement. 
 
The energy production data was analyzed by calculating the ratio of the energy produced by each 
array relative to the energy produced by a silicon array (the SE160 modules). From the chart 
below, Figure 51, the energy produced by the CIS array is within 1% of the energy produced by 
the silicon array over the lifetime of the experiment. 
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Figure 51.  The ratio of the energy produced by several technologies compared to the energy 

produced by a silicon array (the SE 160 array). The CIS ST40 modules show no difference from the 
silicon array within 1%. 

 
In another side-by-side test, an array of 80 ST36 modules (2.88 kW) and 40 SP75 single-crystal 
silicon modules are installed on the roof of the R&D building in Camarillo. (see Figure 52). Two 
power trackers log the energy output from each array. The ratio of the energy produced by the 
CIS array is then normalized by the size of the arrays and compared to the energy produced by 
the silicon array. 
 

 
Figure 52.  On the left is a 2.88 kW CIS array of 80 ST36 modules. On the right is a 3.0 kW CZ array 

of 40 ST75 modules. 
 
This data is shown in Figure 53. The offset in the energy production by 20% is likely due to 
differences in the initial rating of the two products. The increase that starts in June of 2005 is not 
yet explained. 
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Figure 53.  The ratio of the energy produced by a CIS array compared to a silicon array in a side-

by-side test on the roof of the R&D building in Camarillo. 
 

Warranty considerations 

Typical PV module warranties guarantee a minimum amount of power for a fixed period of time. 
For example, in addition to the 2-year warranty on materials and workmanship, the warranty on 
SSI CIS modules reads as follows: 
 
For the PV-modules (excluding the inverter/converter) ST5, ST10, ST20, ST36, and ST40, Shell 
Solar additionally warrants: 
 
If, within ten (10) years from date of sale to the Customer any PV-module(s) exhibits a power 
output less than 90% of the minimum Peak Power at STC as specified at the date of delivery in 
Shell Solar's Product Information Sheet, provided that such loss in power is determined by Shell 
Solar (at its sole and absolute discretion) to be due to defects in material or workmanship, Shell 
Solar will replace such loss in power by either providing to the Customer additional PV-modules 
to make up such loss in power, or by repairing or replacing the defective PV module(s), or by 
refunding the Purchase Price taking into account a yearly depreciation of ten (10)% of the 
Purchase Price, at the option of Shell Solar. 
 
In other words, if a customer buys an array of modules from us, and the power of the array falls 
below 90% of the specified minimum power, we are responsible for making up the lost power. 
The minimum power for our CIS modules is 90% of the rated power. For an ST40 module, the 
rated value is 40 watts and the minimum power is 36 watts. If the power falls below 32.4 watts 
within 10 years, we will make up the missing power. 
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Many PV module warranties today have been extended to over 20 years. While this makes them 
easier to sell by providing a basis for calculating a long-term financial return, there have been 
very few modules (of any technology) which have been in the field long enough to determine 
their service lifetimes. Additional field deployment and monitoring is needed to establish a better 
understanding of lifetime prediction. 
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Conclusions 
Outstanding progress has been made in the initial commercialization of high performance thin 
film CIS technology.  The following are highlights of accomplishments during this subcontract: 
• Executing the CIS process continued to demonstrate process predictability. 
• ST40 (40 W) products were initially produced and then obsoleted with production of the 

Eclipse 80-C, (80 W) product fabricated using two 1x4 ft. circuit plates. 
• SSI Eclipse 80-C modules with a new glass/glass package passed ALL accelerated testing 

and test standards defined by the IEC 61646 standard and received IEC qualification. 
• The peak of the distribution for 40 W single circuit plate ST40 modules produced during this 

subcontract period is 11.25% with a mean efficiency of 11.1%.  The standard deviation of the 
distribution is less than 1% (corresponding to only 8.6% of the mean). 

• The peak of the distribution for Eclipse 80-C modules is 11.0% with a mean efficiency of 
10.8%.  The standard deviation of the distribution is less than 1% (corresponding to only 7% 
of the mean). 

• Electrical yield for the Eclipse 80-C product line exceeded 95%.  Line yield, defined as the 
ratio of the area of product produced divided by the area of glass started through the 
production line, increased from about 60% in 2000 to about 85% in 2002.  High line yield 
was again demonstrated in this subcontract period. 

• High efficiency cadmium-free CIS modules were demonstrated with performance 
indistinguishable from baseline modules (incorporating CdS) after outdoor light exposure. 

• SSI accomplishments prior to 2003 far exceed the 2003 DOE EERE Multi-Year Technical 
Plan technical target of 8% module conversion efficiency for thin-film modules.  SSI 
delivered modules to NREL to meet the Joule goals for thin films for each year from 2003 
through 2006. 

• Extended accelerated testing of the glass/glass package at 85ºC and 85% RH demonstrated 
protection from humidity ingress well beyond the standard 1000-hour exposure.  

• The long-term behavior of CIS modules deployed in side-by-side testing with silicon 
products has demonstrated performance that is at least as good as the silicon controls. 

• Process development activities during this subcontract included:  improved CIG ratio control, 
lower cost indium targets, increased gallium content in the absorbers, simplified 
molybdenum deposition, improved mechanical scribing and improved lead attachment. 

• Deliverables for this subcontract included 20 Eclipse 80-C modules for evaluation, 8 ST10 
modules for exhibits, 36 six inch square mini circuits for lamination experiments at NREL, 
and samples with laser edge deletion for surface roughness analysis at NREL related to 
packaging development. 

• Long-term outdoor stability has been demonstrated at NREL where multiple prototype 
package designs have undergone testing for over seventeen years.  

 
Further device and production R&D can lead to higher efficiencies, lower cost, and longer 
product lifetime. Production volume, efficiency and yield data supports attractive cost 
projections for CIS.  Prerequisites for commitment to large-scale commercialization have been 
demonstrated at successive levels of CIS production.  Remaining R&D challenges are to scale 
the processes to even larger areas, to reach higher production capacity, to demonstrate in-service 
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durability over longer times, and to advance the fundamental understanding of CIS-based 
materials and devices with the goal of improvements for future products. 
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