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1.0 Summary

This report covers the design and structural analysis of the blade for the
SR-7L Large-Scale Advanced Prop-Fan (LAP). Blade stresses, resonant frequen-
cies, stability, aerodynamic and acoustic performance, and results of foreign
object impact analyses are reviewed against requirements and goals. The
SR-7L is a large scale 2.75 meter (nine foot) diameter test model of a Prop-
Fan, so called because it combines the operating efficiency of the turboprop
with the higher speed and altitude capabilities of the turbofan. Relative to
standard propellers, Prop-Fans have higher disk loadings, more blades, and
thinner blades whose tips are swept rearward to decrease relative tip Mach
number. The Prop-Fan shows promise of operation at cruise speeds of Mach 0.8
and altitudes of 9,150 meters (30,000 feet) with fuel savings of as much as
40 percent over current turbofan propulsion systems.

Design requirements for the SR-7L blade were established to define the basic
configuration, stress limits for normal and overspeed operations, critical
speed frequency margins, stability/flutter boundaries, and protection against
surface erosion. Recognizing that LAP is a research and not a production
program, additional goals were established which are desirable but not manda-
tory. These goals set standards for aerodynamic efficiency and noise levels,
expanded stability boundaries to account for frequency degradation, and re-
sistance to foreign object impact damage. Goals were also imposed to ensure
safe operation at anticipated high speed wind tunnel test conditions and at
selected flight and ground operating conditions.

The steady-state and dynamic structural evaluations of the blade were con-
ducted with finite element analyses. Iterations were conducted to determine
the proper static shape of the blade, ensuring that it will deflect to the
desired aerodynamic shape at the design/cruise condition. Non-linearities,
due to changes in centrifugal load arising from blade deflections, were eval-
uated with a piecewise linear analysis which applied air and centrifugal
loads to the finite element model in small, successive steps, updating the
geometry to account for deflections between steps. Forced response analyses
were conducted by applying cyclic airloads to the blade in its steady-state
deflected position. A comparison of combined stresses, from the steady and
cyclic analyses, to material allowables for high and low-cycle fatigue, shows
the SR-7L blade meets all requirements and goals for high-cycle fatigue, and
all requirements and most goals for low cycle fatigue, resulting in adequate
life for planned SR-7L tests.

The first five blade resonant frequencies and mode shapes of the SR-7L blade
were predicted using a deflected, pre-stiffened, finite element model. A
comparison of resonant frequencies against the first five integer-order (in-
teger multiples of design rotational speed, 1-P, 2-P, 3-P, 4-P, and 5-P)
avoidance bands shows that all frequency placement requirements are met ex-
cept for a minor infringement of the second mode on the 3-P band at the




design/cruise condition only. All frequency goals for other operating condi-
tions were met, except for the first mode in reverse which infringes on a 2-P
zone, expanded for ground operation.

Unstalled flutter stability was evaluated using an aeroelastic stability
analysis specifically developed for Prop-Fans. The SR-7L blade meets all re-
quirements and goals for unstalled flutter stability. Stall flutter stabil-
ity will have to be determined through careful monitoring during planned
static thrust tests on a whirl rig and/or on the aircraft, since two methods,
one semi-empirical and one purely empirical, give opposite results.

A three-dimensional, interactive, blade impact analysis was performed on the
SR-7L blade to investigate the resistance of the blade to the impact of a
1.814 kilograms mass (four pound) bird at the 80 percent radial station near
the leading edge with the aircraft assumed to be flying at 185 kilometers per
hour (100 knots). The analysis showed that both the aluminum spar and fiber-
glass shell meet the requirements for major impacts.

Aerodynamic and acoustic performance were calculated for the SR-7L blade.

The efficiency and near field noise level at the design/cruise condition sat-
isfy the design goals. The take-off/climb condition efficiency is slightly
less than the design goal. The far field noise level for take-off and ap-
proach is satisfactory if a cut-back power level is used during take-off.

[\V]



2.0° Introduction

In 1975, at the request of Congress, NASA established the Aircraft Energy Ef-
ficiency (ACEE) Program directed at reducing fuel consumption of commercial
subsonic air transports. Besides saving fuel, the technology developed under
the program would help U.S. aircraft manufacturers retain their dominant role
in the world commercial aircraft market. One element of the ACEE Program of-
fering the greatest potential fuel savings is the Advanced Turboprop Program
- (ATP)(reference 1). Turboprops, with their inherently higher propulsive
efficiency, have provided efficient transportation for years at speeds up to
about Mach 0.6 and altitudes around 6,100 meters (20,000 feet). However, in
order to be compatible with the current and future commercial aircraft
operational structure, future turboprop-powered aircraft will be required to
cruise at speeds of Mach 0.7 and 0.8 and at altitudes of 9,150 meters (30,000
feet) and higher, while maintaining a comfortable cabin environment.

Early aircraft engine studies have shown that the inherent efficiency advan-
tage of turboprop propulsion systems over turbofan systems at low speed may
be extended to these higher speeds by the use of a highly loaded, multi-
bladed, swept-tip propeller. This type of propeller is sometimes called a
Prop-Fan. Turboprop aircraft with a Prop-Fan type of propeller have the po-
tential of obtaining fuel savings of 15 to 20 percent relative to turbofans
with an equivalent level of core engine technology. This translates into a
30 to 40 percent fuel savings relative to current in-service turbofan-powered
aircraft.

The objective of the Advanced Turboprop Program (ATP) is to develop the tech-
nology required for efficient, reliable, and acceptable operation of advanced
turboprop (or Prop-Fan) powered aircraft at cruise speeds up to Mach 0.8
while maintaining cabin comfort levels (noise and vibration) comparable to
those of modern turbofan-powered aircraft. :

Initial work under the ATP developed a fundamental aerodynamic performance
data base on small-scale propeller models and the feasibility of the high
speed (Mach 0.7 to 0.8) turboprop concept was established. High levels of
aerodynamic performance were demonstrated in tests with these models between
1976 and 1981. However, it is generally accepted by the aircraft industry
that an advanced large-scale propeller must ultimately be tested in the real
flow environment afforded by a fiight test program to demonstrate technology
readiness for commercial applications.

In 1981, the structural feasibility of designing several configurations of
large-scale Prop-Fan blades was explored. These were 3.36 meters (eleven
feet) in diameter and were the same in external shape as the model blades
tested. As illustrated in figure 2-1, one had no sweep, one had moderate
sweep and was studied in two activity factors (chord widths), and one had a
large amount of sweep. Results of this study are reported in reference 2.
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2.0 (Continued)

A supplementary task to the study of large-scale Prop-Fans was the design of
a 2.75 meter (nine foot) diameter, flight worthy, Prop-Fan, whose blade con-
struction would be representative, within existing blade manufacturing tech-
nology, of full-size Prop-Fans in the 3.7 to 5 meter (12 to 16 ft) diameter
range. The subsequent detail design, manufacturing, and testing of that
Prop-Fan evolved into the LAP program, an acronym for Large-Scale Advanced
Prop-Fan. Iterations leading to an acceptable preliminary blade design were
conducted in 1982 and are summarized in reference 2.

The report which follows is limited to the description and evaluation of the
blade used in the final detail design phase of the LAP program, conducted in
1983. This blade is suitable for testing in the ONERA S1 Wind Tunnel
(Modane, France) and for proposed flight test portions of the Prop-Fan Test
Assessment (PTA) (ref. 3) program planned for 1986 and 1987, respectively.
This blade is sufficiently large and of such a construction that test data
obtained will be closely representative of a full-scale blade in the 3.7 to §
meter (12 to 16 foot) diameter range.

5/6




3.0 Requirements and Goals

The design objectives for the SR-7L blade are divided into requirements and
goals. The requirements are objectives which must be satisfied in the design
process. The goals are additional objectives that are desired but need not
be satisfied. Four conditions were used to assure the structural adequacy of
the design with respect to the requirements. After this was achieved, eight
additional conditions were evaluated. Satisfying the requirements for these
eight additional conditions was not mandatory.

3.1 Design Requirements

The design requirements can be divided into six categories. These categor-
ies, along with the requirements of each, follow:

3.1.1 Configuration

No. of blades per rotor.........c.cvvvuennn.. 8

Tip diameter....................; ........... 2.75 m. (9 ft.))
Tip speed. ..ottt it et e et 244 mps (800 fps)
Activity factor................... et 227.3

Direction of rotation, aft looking forward.. counter-clockwise

3.1.2 Flutter Limits

The Prop-Fan assembly shall be free of flutter instabilities over a normal
flight profile shown in figure 3-1 for a representative aircraft installation
for normal operating conditions.

3.1.3 Critical Speed Margins

For the two-per-revolution (2-P) excitation at 244 meters per second (800
feet per second), tip rotational speed, the critical speed margin shall be a
minimum of ten percent of propeller speed and resonant frequency. As indi-
cated in figure 3-2, this margin shall be reduced inversely as the exciting
order is increased from 3-P to 5-P. No 1-P critical speeds shall be permit-
ted in the operating speed range and the minimum 1-P margin shall be 40 per-
cent of the maximum Prop-Fan operating speed. For ground operation, the 2-P
critical speed margin shall be a minimum of twenty percent of the propeller
speed and frequency. These margins shall include the effect of blade angle
on frequency.
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3.1.4 Stress Limits

Figure 3-3 shows a typical Goodman diagram which illustrates the relationship
between the blade operating conditions evaluated and the required stress
limits for these conditions.

3.1.4.1 Normal Operation

A1l structural components of the blade shall be free of higher than aliowable
combined stresses during both the design/cruise and take-off/climb condi-
tions. The high cycle fatigue stress limits for these conditions are based
on 10® cycles as shown in figure 3-3, while the low cycle fatigue stress
limits are based on 50,000 start-stop cycles.

3.1.4.2 Rotor Overspeeds

The blade shall be capable of operating to 125 percent (1.5 times the normal
centrifugal load) of the maximum operating speed with no inelastic deforma-
tion. That is, all material stresses must fall below the yield strength as

shown in figure 3-3.

The blade shall be capable of operating to 140 percent (2.0 times the normal
centrifugal load) of the maximum operating speed with some allowable inelas-
tic deformation, but no material separation (metal or composite). All mate-
rial stresses must fall below the ultimate tensile strength as shown in
figure 3-3.

3.1.5 Foreign Object Damage

The outer portion of the blade leading edge shall be covered with a partial
chord width metal sheath for protection against erosion, such as from rain
and sand.

3.1.6 Flight Representative Design

The blade shall be designed to have weight and structural characteristics
that are representative of anticipated Prop-Fan systems for future aircraft
applications.

3.2 Design Goals

The design goals can be divided into five categories. These categories,
along with the goals of each, follow:

3.2.1 Net Prop-Fan Efficiency (isolated nacelle installation)

Design point cruise (forward velocity) = 0.8 Mach no.,
Altitude = 10,675 meters (35,000 feet)...78.6 percent

Take-of f (forward velocity = .2 Mach no.)........... 52.0 percent

10
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3.2.2 Noise

Near field, design point cruise, free field

maximum sideline at 0.8D (overall sound pressure level)...144 dB
Far field (take-off or approach) ....FAR-36 minus 10 EPN dB
3.2.3 Flutter Margin

3.2.3.1 Stall Flutter

The Prop-Fan shall be free of stall flutter at 100 percent of design take-off
power at 100 percent design speed and take-off conditions (Mach no. = 0.0 to
0.2). The Prop-Fan shall also be free of stall flutter in reverse thrust.

3.2.3.2 Unstalled Flutter

The Prop-Fan shall be free of unstalled high speed flutter over the normal
flight profile (see fig. 3-1) and range of power loadings at 15 percent de-
gradation in natural frequencies.

3.2.4 Foreign Object Damage (FOD)

3.2.4.1 Minor Impacts

Minor impacts are those due to sand, small stones, and birds up to 113
kilogram (four ounces). No structural damage allowed to the blade shell or
sheath. Operation will continue without impediment.

3.2.4.2 Mbderate Impacts

Moderate impacts are those due to 5.1 centimeter (two inch) hailstones and
birds up to .907 kilogram (two pounds). Damage can include loss of material
or airfoil distortion. Operation shall continue at 76 percent power for five
minutes. No fragments (metal or composite) shall be lost which can penetrate
the aircraft fuselage pressure shell. Roughness shall be tolerable and the
rotor unbalance force due to damage to one or more blades shall be kept below
22,240 newtons (5,000 pounds).

3.2.4.3 Major Impacts

Major impacts are those due to a single bird up to 1.814 kilograms (four
pounds). Damage can include loss of material or airfoil distortion. The
ability to feather the Prop-Fan must be maintained. Shutdown must be accom-
- plished without catastrophic effects on the airframe structure. The rotor
unbalance force due to damage to one or more blades shall be kept below
111,200 newtons (25,000 pounds). No fragments (metal or composite) shall be
lost which can penetrate the aircraft fuselage pressure shell.

12



3.2.5 Blade Design Life and Inherent Reliability

Replacement life with scheduled maintenance.......... 35,000 hours

Mean time between unscheduled removals
(8 blade SeL) .. i ie ittt ettt ettt tieenennnnnnanes 50,000 hours

3.3 Evaluation Conditions

3.3.1 Priméry Required Design Conditions

A description of the conditions for the primary design requirement evaluation
is given in table 3-1. These four conditions were used to determine the
structural adequacy of the design. Analysis at these conditions will be
reported in detail in sections 6 through 12.

3.3.2 Additional Secondary Conditions

In addition to the primary required design conditions listed in table 3-1,
eight additional secondary conditions listed in table 3-2 were examined to
determine the suitability of the design for a broader test envelope. Al-
though it was not mandatory that the design requirements of these additional
conditions be satisfied, it was agreed that if the results of the evaluations
pltaced severe limitations on the planned test program, blade design revisions
would have to be considered.

Case one consists of three conditions for the simulation of the ONERA S1 Wind
Tunnel tests. In the ONERA S1 Wind Tunnel, a full load blade test is plan-
ned, along with an investigation into the effects of cascade and coupling
phenomena on the blade. However, due to power limitations in the wind tun-
nel, only a two bladed Prop-Fan configuration can be tested at full load. In
order to investigate the effects of the cascade.and coupling phenomena,
four-blade and eight-blade Prop-Fan configurations will be tested separately
at partial load.

13




Table 3-1

PRIMARY REQUIRED DESIGN CONDITIONS
ANALYZED TO ASSURE STRUCTURAL ADEQUACY

Case D1 D2 D3 D4
Condition Design/ Take-off/ 25 pct. 40 pct.
Cruise Climb overspeed overspeed
'l*
Power loading,
kw/meter? 253 586 0.0 0.0
(HP/foot?) (32.0) (74.1) (0.0 0.
Forward velocity, 0.80 0.20 2** 2**
Mach no.
Altitude,meters 10,675 sea level 2** 2**
(feet) (35,000)
Tip speed,
meters/second 244 244 305° 342
(feet/second) (800 (800) (1,000) 1,120
Rotation speed, 1,698 1,698 2,122 2,37
rev./min.
Excitation factor 4.5 4.5 0.0 0.0
Beta 3/4, degrees‘ 87.57 38.26 57.57 57.57
Power, kilowatts 1,906 4,413 2** 2**
(horsepower) (2,592 (6,000)
Thrust, newtons 6,490 33,649 2** 2%*
(pounds) (1,459 (7,565)
i* based on blade tip diameter squared.

2** Overspeed conditions were evaluated as 125% and 140% design/cruise
RPM, while maintaining airloads and blade angle setting of the
design/cruise condition.

14
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4.0 Description of Final SR-7L Blade

4.1 Concept Evolution

A moderately swept, eight-blade geometry, based on the SR-3 full-scale feasi-
bility configuration shown previously in figure 2-1, was judged to be the
best starting point for the 2.75 meter (nine foot) diameter blade. Internal
construction consisted of a solid aluminum spar and fiberglass shell which is
a service-proven combination.

The feasibility study predicted that this type design would have good aero-
dynamic performance, adequate critical speed margin, and satisfactory stress
margins in all structural components. However, the SR-3 design was predicted
to be susceptible to aeroelastic instability, or flutter, at the high speed
end of the flight profile, as were all the large-scale swept blades studied.

Internal analytical study had shown that high speed flutter was directly re-
lated to the amount of torsion-bending coupling in the blades normal vibra-
tory modes. The greater the torsion-bending coupling in a blade mode the
more susceptible that blade mode is to flutter., (Ref. 4). A preliminary
study had shown that torsional content could be reduced, and stability thus
increased, by restacking the blade tip geometry to a more favorable position
"of f" the theoretical helix established by the airflow. This caused a slight
performance loss and noise increase but was deemed necessary for stability.

Unfortunately, it was found that stacking the blade tip "off" helix to in-
crease stability resulted in blade steady stresses that were unacceptably
high. Therefore, many iterations were performed on this original concept,
including changes in thickness, chord width, stacking, internal construction,
materials, etc. to obtain an acceptable design. A detailed description of
these iterations is contained in reference 2..

4.2 Final Design

The final blade design is a careful balance of performance, stress, and sta-
bility characteristics as shown in figure 4-1. The original tip sweep was
reduced and resulted in a small drop in performance, but this loss was re-
quired to increase blade stability while maintaining an adequate stress mar-
gin. The offset was changed to further increase stability with a small de-
crease in stréss margin. Stress margin was recovered at a slight cost in
performance by increasing the airfoil thickness at the mid-region of the
blade.

17
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The aerodynamic characteristics of the final design are shown in figure 4-2
and the blade stacking data is shown in figure 4-3. The untwisted planform
of the blade is projected in figure 4-4. Several computer-drawn views of an
assembled SR-7L Prop-Fan are shown in figure 4-5.

Features of the blade construction are shown in figure 4-6. These include a
central aluminum spar which forms the structural "backbone" of the blade, a
multi-layered glass-cloth-reinforced plastic shell which overhangs the lead-
ing and trailing edge of the spar, and a partial chord-width nickel sheath
which covers the leading edge of the outer two-thirds of the blade. Remain-
ing internal cavities are filled with low-density rigid foam. The outboard
portion of the spar is intentionally moved toward the leading edge to in-
crease stability by reducing overhung mass in the tip trailing edge, while at
the same time increasing the integrity of the leading edge from the stand-
point of foreign object damage.

Although some improvements in sweep/stress/stability trade-offs were pre-
dicted through the use of advanced composites, it was decided not to include
these in the final blade design. Their use would require the development of
new manufacturing technology, both in terms of suitable construction methods
and processes, and lengthy development of design allowables to reflect the
manufacturing process. .

It was felt that the scope of the program would be best served by remaining

with the service-proven combination of an aluminum spar enveloped with a
fiberglass shell for which processes and stress allowables are well known.

19
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5.0 Finite Element Modeling

Because of the swept geometry of the blade, considerable attention was given
to the analytical techniques to be used in the design process. An in-house
finite element analysis (FEA) code (Ref. 5) was used to represent the three-
dimensional blade structure. During preliminary design iterations, the blade
was modeled with a relatively course mesh of triangular plate elements, three
layers deep through the thickness of the blade. Once an acceptable prelimi-
nary design was achieved, a finer mesh FEA model was constructed.

5.1 Coordinate System

To help define the position, geometry, restraints, loading, and reactions of
the blade model, and to relate these to other models or calculations, or to
the actual Prop-Fan system, the global coordinate system shown in figure 5-1
was established. This is a right-handed cartesian system where the Y-axis is
colinear with the Prop-Fan rotation axis and is positive in the direction of
flight, the X-axis is in the plane of rotation, and the Z-axis, also in the
plane of rotation, is colinear with the pitch change axis of a typical blade
and is positive toward the blade tip.

The blade model was constructed with respect to this coordinate system in the
design/cruise position with a pitch angle setting, Beta three-quarters, of
57.57 degrees as shown in figure 5-2. The blade angle setting or "Beta"
angle is usually specified at a radial location three-fourths of the distance
from the axis of rotation to the blade tip and when so specified is the
"Beta" three-quarters angle.

For an operating condition with an angular setting other than 57.57 degrees
(for example, the take-off/climb condition has an angle of 38.26 degrees) the
Prop-Fan axis of rotation is changed relative to the global system by speci-
fying new direction cosines defining the direction of the rotation vector, as
illustrated in figure 5-3. Therefore, for any operating condition the co-
ordinates of any point on the blade are the same, although that point's rela-
tion to the Prop-fFan axis of rotation may vary.

5.2 Bond Model

The detail design blade model had a fine mesh of triangular three-dimensional
plate elements. As shown in figure 5-4, two outer layers on each side of the
blade (face and camber) were used to represent the fiberglass shell and the
leading edge nickel sheath, while a central layer was used to represent the
internal aluminum spar and leading and trailing edge foam filler (shell
cavity) regions.
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These five layers in turn were "tied" together with bond elements at each
corresponding grid point of the individual layers as shown in figure 5-5.
These bond elements are non-continuous elastic links whose size and shape in-
fluence the shear, tension, compression, and bending motions occurring be-
tween mutual layers during the solution process. They proved useful in moni-
toring adhesive and foam filler stresses throughout the blade.

This FEA bond model yielded the desired information for the design/cruise
steady-state operating condition. However, the bond model proved extremely
lengthy to solve because the bond elements introduce a large number of de-
grees of freedom. The cost and time required for steady-state response,
forced vibratory response, and resonant frequency solutions for 14 operating
conditions would have been prohibitive. The complex bond model was therefore
revised by removing the bond elements and converting it to an offset model.

5.3 Offset Model

In the offset model, shown in figure 5-6, the four outer layers of the model,
which represent the shell and sheath, were offset from the central layer,
which represents the spar and foam filler, by using an option in the FEA code
which enables it to reduce the five layers to an equivalent central layer
using rigid link connections between layers, thereby greatly reducing matrix
solution time. Translations and rotations from the displacement matrix are
then applied internally to each layer through the rigid link- connections to
obtain proper element strains and stresses for each material layer prior to
being output from the FEA code.

As seen in table 5-1, the solution time for the resulting offset model was
one-tenth that of the bond model. Stresses and deflections were nearly
identical to those of the bond model for the design/cruise case.

This supports the view that the foam and adhesive flexibilities are important
only in regard to local edge stressing of these components. The structural
influence of these components on the overall assembly is adequately modeled
by the rigid link representation. Adhesive stresses were not available from
the offset model, but these had been found to be well below the material al-
lowables for the case analyzed with the bond model. Therefore, the offset
model was used as the finite element model in the detailed design process.
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Table 5-1
COMPARISON OF MODEL STATISTICS

Item ‘ Bond Model Offset Model

Number of Nodes (Net) 1,725 608

Degrees of Freedom 10,350 3,648

Maximum Wavefront 420 138

Number of Elements 4,650 3,350

CPU, 1 Step + K-Diff. ~ 10 Hrs., 30 Min, 33 Min.

CPU, Piecewise Linear 47 Hrs. (Estimated) 2 Hrs., 40 Min.
CPU, Frequencies PROHIBITIVE 12 Min.

Note: CPU Computer Times are Per Case on an IBM 370 Computer

5.4 Retention Simulation

5.4.1 Retention System Design

The blade will be retained in the hub by a ring of ball bearings, set in
through-hardened steel races on the blade shank and integral, hardened races
in the hub as illustrated in figure 5-7.

A1l blade translations and rotations with respect to the hub, shown in
figure 5-8, are restrained by this retention system, except the blade shank
is free to rotate in the hub about the pitch change axis (which is normal to
the plane of the balls) to allow blade pitch change motion.

The pitch control mechanism, which controls blade pitch through the trunnion
and roller assembly attached to the blade shank, as shown in figure 5-9, is
designed to resist blade rotation about the pitch change axis or to rotate
the blade to a new position when required, under all operating conditions.

5.4.2 Hub Design

As seen in figure 5-10, the hub can be thought of as two rings, the forward
ring and the aft ring, connected by "bridges". The cylindrical opening be-
tween the rings and bridges is called a hub "arm" and contains a blade re-
tention. The two rings are the primary load-carrying members of the hub
while the bridges maintain the position of the rings with respect to each
other and transfer the blade loads they support to the rings.

Because of this construction, the hub is stiffer with respect to bending
loads applied normal to the plane of rotation (out-of-plane), which are
transferred directly to the rings, than with loads applied in the plane of
rotation (in-plane), which are transferred to the rings through the
bridges. Also, the flexibility of the hub and the small kinematic motions
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characteristic of an angular contact ball bearing, particularly with respect
to bending moments, cause the blade shank to "pivot" at a point somewhat be-
low the plane of the balls. The design of the hub is covered in reference 6.

5.4.3 Retention Coordinate System

A local coordinate system was defined relative to the Prop-Fan rotation axis
to help define the retention system modeling. As seen in figure 5-11, the
local Y-axis is parallel to the axis of rotation and also points in the di-
rection of flight, the local Z-axis is colinear with the pitch change axis
and points toward the blade tip. The origin of the local retention coordi-
nate system is located below the plane of the bearing at a point corre-
sponding to the base of the blade shank, approximating the "pivot" point, to
account for the flexibility of the hub and bearing as described in section
5.4.2 above.

5.4.4 Retention System Model

In order to obtain the compliance simulation necessary for static, modal,
and forced response analyses, the blade retention was modeled using a system
of spring elements and multi-point constraints. Each spring element was
given a spring rate, position, and orientation such that the system of
spring elements would reflect the compliance of the actual blade retention.
The spring rates to be simulated are listed in table 5-2.

Table 5-2
TABLE OF SPRING RATES TO BE SIMULATED

Type of
Load
Resisted Description of Load Spring Rate to be Simulated
Axial Total centrifugal pull 26.2 X 10° newtons/meter
1oad (22.4 X 10° pounds/inch)

Twisting About pitch change axis 22.6 X 10° newton-meters/
radian
(200 X 10° inch-pounds/
radian)

Bending About out-of-plane axis 1.5 X 10° newton-meters/
radian
(13.4 X 10° inch-pounds/
radian)

Bending About in-plane axis 1.15 X 10° newton-meters/
: radian

(10.2 X 10" inch-pounds/
radian)
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Translations along the local X and Y-axis are fully restrained at the local
coordinate system origin (node 4 of the model), effectively creating a pivot
point at the node. An illustration of the remaining restraints is shown in
figure 5-12, along with the equivalent spring rates used.

Bending deflections in the plane of rotation and in a plane normal to it are
restrained by four axial spring elements working through moment arms defined
by multi-point constraints. These constraints are part of the FEA code and
can connect nodes at a distance from each other with a rigid link. Springs
are attached at each of these distant nodes. The spring rates are selected
to reflect the stiffness characteristics of the hub and retention with re-
spect to bending loads.

Translations along the pitch change axis (local Z-axis) are caused by centri-
fugal pull loads on the blade; these translations are restrained in part by
the four parallel axial spring elements described above. However, these
spring elements do not reflect the total stiffness of the hub and retention
with respect to centrifugal loads and, therefore, another axial spring ele-
ment was attached to node 4 of the model to complete the required stiffness.

Rotations about the pitch change axis (local Z-axis) would be restrained by

the pitch control mechanism in the actual assembly. A torsional spring ele-
ment was also attached to node 4 of the model to simulate the effect of the

pitch change mechanism.
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6.0 Steady-State Analysis

There were four operating conditions to be analyzed to comply with the design
requirement. These conditions were: design/cruise, take-off/climb, 25 per-
cent overspeed, and 40 percent overspeed (reference section 3.3.1 table 3-1).

In addition to the four design requirement conditions, ten other operating
conditions were analyzed (reference section 3.3.2 table 3-2). These condi-
tions were the three ONERA S1 Wind Tunnel conditions, static and reverse
thrust conditions, cruise at Tow and high rotational speeds, mid-altitude
climb, and two dive conditions at mid and high altitude.

6.1 Application of Loads

The Prop-Fan blade is affected by two major types of loads: centrifugal and
air. Centrifugal loads arise from the blade rotating about the axis of rota-
tion. Airloads arise from the blade moving through the air.

The blade angle setting, or "Beta" angle, is usually specified at a radial
location three-fourths of the distance from the axis of rotation to the blade
tip and when so specified is the "Beta three-gquarters" angle. The airloads
can be resolved at the blade retention to a force and moment acting against
the direction of rotation, a force and moment acting in the direction of
flight, and a moment about the pitch change axis.

6.1.1 Centrifugal Loads

Centrifugal loads arise from the rotation of the Prop-Fan about the axis of
rotation, which is not necessarily colinear with the global Y axis as ex-
plained in section 5.1. For this reason, direction cosines defining the
angle of the axis of rotation with respect to the local X and Y axes were in-
cluded in the calculation. Centrifugal loads are then developed internally
in the analysis about this relative axis.

6.1.2 Airloads

The airloads used in this analysis were the result of aerodynamic calcula-
tions (using 1ifting line theory) based on the flight condition analyzed us-
ing standard atmospheric conditions at the altitude required.

A view of the blade model, figure 6-1, shows that the blade is divided into
many radial stations. Each station, in turn, is comprised of several grid
points. The airloads are applied as discrete loads at the appropriate grid
points.

43



ORIGINAL PAEE 15
OF POOR QUALITY

_— .
Av""‘;"‘v
A o, ‘u‘“‘kev:vs

z — 3
o SESORRER
POINTS ‘:"AVAVAv::s NS
AVAV‘W\‘L‘L AN
TIP
RADIUS
ARraDIUS
F '
STATION
RADIUS
RADIAL
STATIONS

FIGURE 6-1. SR-7L BLADE "OFFSET' FEA MODEL

44



Airloads are obtained from aerodynamic calculations in the form of in-plane
and out-of-plane distributions relative to non-dimensional radial positions.
Sample distributions for the steady-state design/cruise and take-off/climb
conditions are plotted in figures 6-2 and 6-3. These distributions are inte-
grated at each increment of span to obtain the discrete in-plane and out-of-
plane loads at each FEA radial station.

The in-plane and out-of-plane loads at each radial station are then resolved
into loads perpendicular to and parallel to the blade chord, representing
1ift and drag respectively, as shown in figures 6-4 and 6-5.

Assuming a uniform distribution, each drag load (parallel to the blade chord)
is divided among the grid points at the appropriate radial station depending
on the spacing of the grid points. Figure 6~6 shows that the more removed a
grid point is from the others, the greater the share of load it will bear.

The 1ift loads (perpendicular) loads are distributed somewhat differently
than the drag loads. Provisions are made to obtain a chordwise load distri-
bution which preserves the center-of-pressure at each radial station, while
maintaining the required blade thrust and torque reactions at the hub for the
specific condition. The location of the center-of-pressure varies radially
along the blade span as shown in figures 6-7 and 6-8 for the design/cruise
and take-off/climb conditions.

The typical center-of-pressure effect is approximated with a "skewed normal"
distribution of 1ift load around the center-of-pressure at each radial
station as shown in figure 6-9. This distribution will yield a zero moment
about the aerodynamic center of pressure. Also shown is the assignment of
the forces among the grid points at the radial station. Again, as was shown
in figure 6-6, the more removed a grid point is from its neighbors, the more
load it must bear.

Each grid point now has associated with it two forces: one force parallel to
the blade chord and the other perpendicular to the chord. Since the finite
element analysis requires forces to be defined in the directions of the
global coordinate system, the parallel and perpendicular forces at each grid
point are resolved into forces acting in the directions of the global coordi-
nate system axes. Once the forces are in terms of the global coordinate sys-
tem, the aerodynamic loads are ready to be included in the analysis. A com-
puter code is available which accepts the in-plane and out-of-plane airloads
and center of pressure locations, as well as the finite element model grid
table and resolves/distributes the loads on the grid points according to the
blade angle specified. A final check is made to assure that the total loads
match the required blade thrust and torque loads for the specified condition.
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6.2 Finite Element Solution Techniques

An in-house Finite Element Analysis (FEA) code was used for the steady-state
stress analysis of all conditions analyzed. For the pre-deflection or
"roughing-in" iterations a one-step analysis was used. . For the final design
calculations a piecewise linear analysis was used. In order to better ac-
count for the effect of in-plane and out-of-plane blade deflections on the
application of centrifugal loads, both techniques use differential stiffening.

6.2.1 Differential Stiffening

Differential Stiffening is often called a "cross-coupling" effect because
element bending stiffness is increased or decreased as the axial or membrane
stresses increase or decrease, respectively. Additionally, the in-house FEA
code recognized the directionally dependent softening, or. "de-stiffening”, of
element stiffnesses relative to motion in the tangential and radial direc-
tions in a centrifugal force field. These latter effects are included and
stored as a part of the differential stiffening matrix, and are used to in-
crease the accuracy of the calculations.

6.2.2 One-Step Plus Differential Stiffening

The one-step plus differential stiffening analysis is actually a two step
calculation. First, the blade is analyzed by the in-house FEA code to obtain
the differential stiffening matrix described above. Next, the blade is ana-
lyzed by the same code; however, this time the differential stiffening matrix
calculated in the first step is included to increase the accuracy of the
analysis of the second step. This analysis was used in the preliminary pre-
deflection iterations in the blade design.

6.2.3 Piecewise Linear Analysis

To better account for the non-linear response of the blade to applied air-
loads and centrifugal loads, a Piecewise Linear Analysis (PWLA) technique was
used to predict the response of the blade. For most stiff or lightly-loaded
structures, the deflections under load are negligible and the shape is essen-
tially unchanged due to the applied loads. As a result, the structural re-
sponse to the loads is assumed to be linear. However, for the thin and
highly-loaded Prop-Fan blade, the deflections under load are sufficient to
change the blade shape and position which, in turn, alters the centrifugal
forces on deflected blade elements and also alters the assembled elemental
stiffness matrix. As a result, the response of the blade to the loads is
non-1linear. ‘
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The PWLA technique applies the loads incrementally. Each incremental load is
small enough that the blade response to each increment is essentially

linear. Also, the centrifugal loads are updated with each step to account
for the change in blade shape and position at each step, and a new differen-
tial stiffening matrix is calculated.

As the calculation progresses through the incremental load steps, the loads
and deflections of each.increment are summed. Figure 6-10 shows a typical
plot of cumulative deflections obtained from a piecewise linear analysis of a
Prop-Fan blade.

The greater accuracy of the PWLA over that of the one-step plus differential
stiffening comes at a much greater cost because the entire FEA model must be
solved at each step. In order to take full advantage of the accuracy of the
PWLA, as many as ten solution steps may be necessary whereas for the one-
step, only two solutions are required.

For the initial step of the PWLA process, the unloaded position of the blade
model is used. The blade is analyzed using only a small percentage of the
total air and centrifugal loads: The differential stiffening matrix of this
load step is calculated as a function of membrane stress.

The unloaded position of the blade is analyzed again for stresses and deflec-
tions using the first incremental load. However, this time the differential
stiffening calculated in the first analysis is included. The incremental
stresses and deflections of this calculation are saved; also saved is an up-
dated differential stiffening matrix. )

For the next and all subsequent solution steps a new blade shape is calcu-
lated by adding the summed deflections of the previous solution steps to the
original blade shape. The differential stiffening for each new step is ex-
trapolated linearly from the stiffening change between the last two steps.
Linear extrapolation is a reasonable approach because the step size is small
and differential stiffening has only a secondary effect on the solution.
Figure 6-11 is a typical plot of differential stiffening versus the incre-
mental load steps, including an example of linear extrapolation.

The new blade shape is analyzed for stresses and deflections using the finite
element code along with the new incremental load and the extrapolated dif-
ferential stiffening. The incremental stresses and deflections are added to
those of the previous load steps. The new differential stiffening is calcu-
lated and saved to be used in the next extrapolation. This incremental load
step calculation procedure is repeated until the total blade loads have been
applied.
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6.3 Pre-Deflection Iterations

The deflection and twist changes in a blade due to aerodynamic and centri-
fugal loads can affect both the aerodynamic and mechanical characteristics of
the blade. In a wide, thin, swept blade, such as the SR-7L biade, three-di-
mensional distortions can be significant. To maintain aerodynamic efficien-
cy, these distortions must be accommodated when defining the static, unloaded
shape to which the blade will be manufactured. Determining this static shape
is called "pre-deflecting" the blade. Unfortunately, the deflections of only
one operating condition can be closely matched. For the SR-7L, the condition
selected is design/cruise. Once the static shape is established, it is used
as the basis for determining deflections at all other operating conditions.
It is important to establish the steady-state deflected shape of the blade
for each condition because it affects not only the aerodynamics but also the
dynamic response of the blade, the frequencies, mode shapes, and stability.
The process of establishing the static shape of the SR-7L blade was an iter-
ative one which is described below.

6.3.1 First Iteration

The desired aerodynamic and mechanical configuration was defined at the
design/cruise condition. For initial "roughing-in" iterations a series of
one-step plus differential stiffening analyses were used.

A finite element model of the desired configuration at the design/cruise con-
dition was first constructed and a preliminary analysis conducted to deter-
mine differential stiffening effects due to aerodynamic and centrifugal
loads. The differential stiffening was then included in a second analysis to
obtain a good estimate of deflection from the desired position. The global
deflections of all grid points were then subtracted from their desired design
position to obtain a predeflected finite element model. This, then, was the
first estimate of the unloaded, or static, blade position.

If the function of blade deflection versus applied loads were linear, then
the blade would deflect from the first estimated unloaded position to the
desired design position with the application of the original design loads.
However, it is not linear because centrifugal loads change with blade deflec-
tion.

A repetition of the calculation procedure, using differential stiffening from
the first estimated static position, resulted in a significant difference be-
tween the desired design position and the newly deflected position. Thus,
further iterations were required to obtain the proper unloaded position.
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6.3.2 Additional Iterations

For each iteration, a new static position was defined by subtracting the
latest global deflection of each grid point from the desired design posi-
tion. The result was a new predeflected configuration which became the new
unloaded blade model. This process continued until the deflected, loaded
configuration closely matched the original desired configuration. A check of
the resulting “"error" (deflected vs desired) was made each time with a re-
solved deflection contour plot. Seven iterations were performed to obtain a
proper predeflected, unloaded shape with a maximum deflection error at the
leading edge of the blade tip of .023 centimeter (.009 inch). Therefore,
this shape was called static position seven. The "error" contour plot from
position seven is illustrated in figure 6-12.

6.3.3 Final Check of Predeflected Configuration

A piecewise linear finite element analysis (PWLA), that is, an analysis that
loads the blade in incremental steps as described in section 6.2.3, was per-
formed starting from static position seven. Because of the much greater
solution time required for the PWLA technigque, the PWLA was not used for the
first seven "roughing-in" iterations described above.

The translations and rotations calculated using the PWLA differed somewhat in
some locations from those calculated with the one-step analysis, both start-

ing from the static position seven blade shape. The maximum deflection error
became .259 centimeter (.102 inch) at the trailing edge near the blade tip as
shown in figure 6-13. A second PWLA iteration was performed to determine if

these discrepancies could be reduced.

As in the earlier iterations, the new deflections were subtracted from the
desired design configuration to create a ‘new unloaded blade shape, and the
second PWLA was performed. The .259 centimeter (.102 inch) discrepancy be-
tween thee calculated deflected shape and the design deflected shape was re-
duced. However, as shown in figure 6-14, a new maximum deflection error of
f.:422 centimeter (.166 inch) at the leading edge of the blade near the tip was
ound.

Before continuing with lengthy, costly PWLA iterations, the impact on aero-
dynamic performance of the moderate discrepancies between the position seven
PWLA deflected blade and the original design blade was evaluated. The evalu-
ation showed no detectable difference in aerodynamic performance due to the
discrepancies; therefore, the static position seven blade was used as the
SR-7L static blade model.

6.4 Final Calculations

Fourteen conditions were analyzed for steady-state reactions, deflections,
and stresses. The reactions are summarized as blade shank loads in section
6.4.2, and the deflections are reported in section 6.4.3. The stresses are
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combined with the vibratory stresses discussed in section 7 (Vibratory Re-
sponse Analysis) for comparison to design allowables, and are not tabulated
in this section.

6.4.1 Conditions Analyzed

Table 6-1 lists the steady-state conditions analyzed along with the analysis
technique used.

6.4.2 Blade Shank Loads

The blade shank loads, as calculated using the offset model with the calcula-
tion technique listed in table 6-1, are summarized in table 6-2.

6.4.3 Deflections

Translation and rotation contours are plotted in figures 6-16 and 6-17 for
the design/cruise condition, and in figures 6-18 and 6-19 for the take-off/-
climb condition. Note that all translations have been resolved normal to the
chord at the three-quarter radius station.

A summary of the calculated blade deflections using the offset model and the
calculation technique listed in table 6-1 is shown in table 6-3.

Table 6-1
LIST OF CONDITIONS ANALYZED
No. Condition Analysis

Primary required design conditions:

D1 Design/Cruise Piecewise Linear
D2  Take-Off/Climb Piecewise Linear
D3  25% Overspeed One-Step Plus Differential Stiffening
D4  40% Qverspeed One-Step Plus Differential Stiffening

Additional secondary conditions:

1A ONERA, 8 Blade One-Step Plus Differential Stiffening
1B ONERA, 4 Blade One-Step Pius Differential Stiffening
1C  ONERA, 2 Blade Piecewise Linear

2 Static Thrust One-Step Plus Differential Stiffening
3 Reverse Thrust One-Step Plus Differential Stiffening
4 Cruise, Low RPM One-Step Plus Differential Stiffening
5 Cruise, Hi RPM One-Step Plus Differential Stiffening
6 Climb, Mid Altitude One-Step Plus Differential Stiffening
7 Dive, Mid Altitude One-Step Plus Differential Stiffening
8 Dive, High Altitude One-Step Plus Differential Stiffening
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No.

D2

D3

D4

1A

18

1C

* Centrifugal plus Aerodynamic Twisting Moments,

BLADE SHANK STEADY-STATE LOAD SUMMARY

Table 6-2

(See Figure 6-15 For Directions of Positive Forces and Moments)

Condition
Design/Cruise

Take-Off/Climb
25% Overspeed

40% Overspeed

ONERA,

8 Blade

ONERA,
4 Blade

ONERA,
2 Blade

Static Thrust
Reverse Thrust
Cruise,

Low RPM

Cruise,
Hi RPM

Climb, Mid
Altitude

Dive, Mid
Altitude

Dive, High
Altitude

Centrifugal,

62

newton-meters{inch-pounds)

newtons CT™ Shear, newtons (pounds)
(pounds) Plus ATM* Qut-0f-Plane In-Plane
353,000 2,000 792 8,340
(79,400) (17,700) (178) (1,875
353,000 2,169 4,137 8,629
(79,400) (19,2000 (930) (1,940)
556,000 3,186 0 8,807
(125,000 (28,200) (o)) (1,980
694,000 4,011 0 10,408
(156,000 (35,500) (o)) (2,340
353,000 2,282 178 6,983
(79,400) (20,200) (40) 1,570)
353,000 2,180 534 7,962
(79,400) (19,300 (120) 1,790)
353,000 1,977 1,334 . 10,008
(79,400) (17,500) (300 (2,250)
353,000 2,203 4,937 7,873
(79,400) (19,500) (1,110) a,770)
359,000 -102 -427 2,980
(80,600) (-900) (-96) (670)
201,000 881 592 6,316
(45,200 (7,800) (133) (1,420)
390,000 2,226 876 9,207
(87,600) (19,700) a9e7mn (2,070)
353,000 2,327 2,384 9,652
(79,400) (20,600) (536) (2,170)
355,000 2,610 -80 4,759
(79,800) (23,100 (-18) (1,070
354,000 2,395 -93 5,604
(79,500 (21,200) (-21) (1,260)



Table 6-2 (Continued)
Total Bending Moment,

newton-meters - Angle,*
No. Condition (inch-pounds) degrees*
D1 Design/Cruise 1,141 285.8
(10,100)
D2 Take-0ff/Climb 1,932 224.3
(17,100)
D3 25% Overspeed 2,497 308.0
(22,100) '
D4 40% Overspeed 2,937 307.9
(26,000’
1A ONERA, 8 Blade 1,909 294 .6
(16,900
1B ONERA, 4 Blade 1,604 285.7
(14,200)
1C ONERA, 2 Blade 1,107 251.3
(9,800)
2 Static Thrust 2,034 220.9
(18,000)
3 Reverse Thrust 5,027 261.6
' ' (44,500)
4 Cruise, Low RPM ' 169 206.0
(1,500)
5 Cruise, Hi RPM 1,243 282.3
(11,000)
6 Climb, Mid Altitude 1,412 233.0
(12,500
7 Dive, Mid Altitude 3,028 287.9
(26,800)
8 ~ Dive, High Altitude 2,485 296.2
(22,000)

* Angle, Beta, measured from plane of rotation (see figure 6-15)
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03

D4

1A

1B

1C

Condition

Design/
Cruise

Take-Off/
Climb

25% Over-
speed

40% Over-
speed

ONERA,
8 Blade

ONERA,
4 Blade

ONERA,
2 Blade

Static
Thrust

Reverse
Thrust

Cruise,
Low RPM

Cruise,
Hi RPM

Climb, Mid
Altitude

Dive, Mid
Altitude

Dive, High
Altitude

Table 6-3

BLADE DEFLECTION SUMMARY

Rotations*, Degrees

Mid Tip
3.0

4.0

Translations**, Cm. (in.)
T.E. 3/4 r/R Mid Tip L.E. 3/4 r/R

-1.0 -0.81 1.45
(-0.32) (0.57)

-1.1 -2.01 0.71
(-0.79) (0.28)

-0.9 -0.36 ' 2.34
(-0.14) (0.92)

-0.8 -0.48 2.67
(-0.19) (1.0%)

-0.5 -0.38 1.83
(-0.15) (0.72)

-0.5 -0.56 1.68
(-0.22) (0.66)

-0.9 -1.04 1.30
(-0.41) (0.51)

-1.0 -1.96 0.69
(0.77) 0.27)

-3.4 .5.31 3.61
(2.09) (1.42)

-1.1 -0.97 0.7
(-0.38) (0.28)

-0.7 -0.97 1.47
(-0.38) (0.58)

-0.9 -2.31 0.91
(-0.91) (0.36)

-0.4 -0.13 2.01
(-0.05) (0.79)

-0.5 -0.23 1.93
(-0.09) (0.76)

* positive (global) rotations are in a direction which decreases

blade angle setting

** Translations are perpendicular to chord @ 3/4 radius station(3/4 r/R)
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7.0 Vibratory Response Analysis

A vibratory response analysis was performed for a once-per-revolution, or
1-P, aerodynamic excitation for eight of the fourteen design conditions.
These conditions were: design/cruise, take-off/¢limb, the three ONERA SIi
Wind Tunnel conditions, the low and high rotational speed cruise conditions,
and the 0.5 Mach number climb. See table 3-1 of section 3.3.1 and table 3-2
of section 3.3.2 for parameters associated with these conditions.

7.1 Origin Qf The Once-Per-Revolution Excitation

The once-per-revolution (1-P) excitation occurs because of the angle (y)
which the propeller axis of rotation makes with the forward direction of the
aircraft, particularly during the climb condition, as illustrated in figure
7-1.

This results in a difference in the relative angle of attack of two horizon-
tal blades shown in the front view. That is, the advancing blade 1 sees a
reduced angle of attack (a,), while the retreating blade 5 sees an in-
creased angle of attack (as). In the top and bottom positions, the angle

of attack is equal. Therefore, a single blade experiences a sinusoidal vari-
ance in the load during each revolution. The difference in load between
blades 5 and 1 results in a small constant vertical force as shown in the
front view, while the difference in thrust results in a propeller shaft bend-
ing moment as seen in the top view. Additionally, depending on the installa-
tion and the proximity of the Prop-Fan to a wing engine inlet, and/or fuse-
lage, the Prop-Fan can operate in a flow field of varying velocity. This is
more pronounced if the wing has considerable sweep as shown in figure 7-2.

These factors add to the 1-P excitation and, in the case of the inlet and
wing, a slight amount of 2-P excitation may also be present. An example of
cyclic loading superimposed on the steady loads that occur during a typical
flight is shown in fiqure 7-3. The primary component of the cycliic load is
due to the 1-P vibration, and distortions of the 1-P sinusoidal wave form are
due to the higher order (n-P) vibrations.

It is possible to adjust the tilt angle (y) of the Prop-Fan shaft to

achieve a balance in inflow angle between extremes of flight conditions as
shown in figure 7-4, and thus to minimize the highest 1-P cyclic Toads.
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FIGURE 7-2. VARIABLE VELOCITY AIR INFLOW ACTING ON SR-7L
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7.2 Excitation Factor

In accordance with the design requirements, cyclic¢ airloads corresponding to
a 4.5 excitation factor were used for the vibratory response analysis. For a
standard propeller, the excitation factor is a measure of the severity of the
once-per-revolution aerodynamic excitation, and is a function of the air in-
flow angle to the propeller axis and the equivalent airspeed squared as shown
in figure 7-4. Normally, propeller excitation factors range from 1.5 to
about 2.5. The excitation factor used in this analysis is considerably
higher to reflect the worst case flow fields of conceptual Prop-Fan installa-
tions for a highly loaded sweep wing mounted tractor configuration (Ref. 7)
and consists of a value of 3.3 for the pure 1-P excitation, plus an allowance
of 1.2 to account for possible higher order excitations (n-P).

7.3 Calculation Of Vibratory Response

For each of the eight conditions, a finite element code was used to evaluate
the vibratory response based on several calculation parameters which in-
cluded: the cyclic airloads based on the 4.5 excitation factor at a fre-
quency corresponding to the once-per-revolution vibration, the differential
stiffening from the appropriate steady-state analysis, and the appropriate
blade model at the deflected position.

The finite element program applied the cyclic air loads to the stiffened, de-
flected model and calculated the maximum stress and deflection at each grid
point. These stresses are combined with the steady-state stresses of section
6 (Steady State Analysis) for comparison to design allowables on Goodman dia-
grams in section 8 (Stress versus Strength Evaluation) and are not tabulated
in this section.

7.4 Blade Shank Loads

The calculated vibratory blade shank loads for the eight conditions analyzed
are summarized in table 7-1.
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Table 7-1

BLADE SHANK VIBRATORY LOAD SUMMARY
Total Bending Moment,

newton-meters Angle,*
No. Condition (inch-pounds) degrees*
D1 Design/Cruise 1,718 160.8
(15,200)
D2 Take-Off/Climb 3,187 142.1
(28,200)
1A ONERA, 8 Blade 1,627 ) 159.3
(14,400)
18 ONERA, 4 Blade 2,249 159.7
(19,900)
1C ONERA, 2 Blade 2,769 160.4
(24,500)
4 Cruise, Low RPM 2,452 164.6
. (21,700)
5 ‘Cruise, Hi RPM 1,559 162.2
(13,800)
6 Climb, Mid Altitude 1,932 153.9
(17,100)

* Angle, Gamma, measured from plane of rotation (see Figure 6-15)
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7.5 Twist Magnification

After the blade was analyzed and the deflections calculated, the deflection
patterns of the blade due to the once-per-revolution excitation were checked
for potential twist magnification. Twist magnification occurs when the blade
deflects about its pitch change axis such that the aerodynamic angle of at-
tack of the blade increases and, as a result, the cyclic air loads on the
blade increase. The increased airloads will cause greater blade twist, and
this increase in twist will result in still greater airloads. Eventually,
the blade reaches a new condition of equilibrium between airloads and deflec-
tion.

Deflection patterns for the blade are shown in figures 7-5 and 7-6. Notice
that the translational deflection patterns (figure 7-5), which are resolved
normal to the chord at the three-quarter radius station, are essentially
horizontal, indicating no torsional response. As further proof, the grid
point rotations about the pitch change axis (figure 7-6) show very little
twist change. This appears to be a benefit of sweeping the blade rearward;
that is, the greater load on the tip, which is swept rearward, falls behind
the torsional axis of the mid-portion of the blade, thus reducing the poten-
tial for twist magnification.

‘If the deflection patterns showed a potential for twist magnification, then

the blade would have to be reanalyzed with new airloads which would corre-
spond to the new twisted position. However, no potential for twist magnifi-
cation was seen in the SR-7L blade as a result of the once-per-revolution
excitation.
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8.0 Stréss vs. Strength Evaluation

8.1 Establishing Design Strength Allowables

Hamilton Standard's many years of experience in establishing safe design
strength allowables for critical aircraft propeller structures is unsurpassed
and is directly applicable to Prop-Fans.

The methodology used to establish design strength allowables is illustrated
in figures 8-1 and 8-2.

Propeller blades, in addition to experiencing low cyclic fatigue due to high
steady centrifugal and aerodynamic loads, are subjected to high cyclic loads
which are a major fatigue life consideration. Over a billion cycles of sig-
nificant high cycle fatique stress during the useful 1ife is not uncommon.
Through experience, it was recognized that laboratory fatigue test specimens
alone cannot provide adequate definition of the fatigue strength of a full-
scale structure due to such things as size difference, processing variations
and hardware geometry. Hamilton Standard has conducted numerous and exten-
sive fatigue tests on full-scale propeller blades and hubs, as produced and ]
after various service exposure times. Blades tested have been both solid and
hollow structures encompassing metal alloys as well as fiberglass-reinforced
plastics. These test results have not only provided valuable assessment of
the fatigue strength of the specific structures being tested, but also, when
coupled with specimen fatigue data and service experience, have provided an
invaluable basis for extrapolation of fatigue allowables for new designs.

The application of the newer fracture mechanics methodologies by themseives
can lead to unconservative design allowables for low cycle fatigue (LCF) and
high cycle fatiqgue (HCF) life in service environments. The blade for the
SR-7 program has been designed with the allowables developed from this vast
data base of test and experience. Since all safety factors are accounted for
in the establishment of theseé design allowables, the SR-7L blade has been de-
signed directly to these limits.

8.2 Method Of Combining Steady-State and Vibratory Stresses

After completing both the steady-state and vibratory response analyses, the
next step was to combine the 1-P vibratory stresses with the steady-state
stresses to provide a structural evaluation of blade components. This was
done for each of the cyclic load conditions analyzed.

A Goodman diagram was used to show the relationship of the combined stress of
the vibratory response and the steady-state analysis with the design allow-
able limit. Figure 8-3 shows a calculation point plotted on a typical
Goodman diagram.
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CYCLIC STRESS
"SPECIMEN ONLY"
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RESULTS IN HIGH RISK

HAMILTON STANDARD
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STRESS

FIGURE 8-2. HAMILTON STANDARD DESIGN STRENGTH ALLOWABLE COMPARED WITH
"SPECIMEN ONLY" DESIGN STRENGTH ALLOWABLE
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Line A can be constructed on the Goodman diagram which connects a calculation
point with the origin of the diagram. Line B can then be drawn coincident
with the first line from the origin until it intersects the design limit
line. The percent of the first line (origin to calculation point) with re-
spect to the second line (origin to design allowable limit) represents the
percent of the allowable limit of the combined stress state at that calcula-
tion point. This is a convenient method of expressing combined stresses,
especially when evaluating results by means of contour plots. This method is
used on all stress/strength contour plots presented in this section.

8.3 High Cycle Fatique

High cycle fatigue is associated with the application of cyclic stress over a
relatively long period of time. The application of this cyclic stress will
often be in combination with a steady stress which may be much greater in
magnitude. As discussed in section 8.2, a Goodman diagram can be used to
evaluate the effect of a cyclic stress acting in a steady stress field, with
respect to design allowable Timits. The steady stress field was calculated
as part of the Steady-State Analysis (section 6). The cyclic stress levels
were calculated for the 1-P excitation with an allowance for higher order ex-
citations as described in the Vibratory Response Analysis (section 7). For
this evaluation, each of the blade components (spar, shell, sheath, and foam
filler) is required to withstand at least 10°® cycles under this combined
stress condition. '

The point with the highest percent of allowable 1imit from each of the four
required conditions (design/cruise, take-off/climb, 25% overspeed, and 40%
overspeed) is shown plotted on Goodman diagrams for each of the blade struc-
tures as follows:

"Figure No. Structure Stress
8-4 Spar Maximum Effective
8-5 Shell Maximum of Spanwise or Chordwise
8-6 Sheath Maximum Effective
8-7 Foam Filler Maximum Effective

A maximum effective stress is shown for the spar, sheath, and foam filler,
while the maximum of the spanwise or chordwise stress is shown for the

shell. A more complete explanation of effective stress may be found in
section 8.5 along with examples of stress contour plots for the design/cruise
and take-off/climb conditions. The maximum percent of allowable limit for
each of the conditions analyzed is listed in table 8-1.
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FIGURE 8-4. SR-7L BLADE SPAR STRESS/STRENGTH COMPARISON
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FIGURE 8-5. SR-7L BLADE SHELL STRESS/STRENGTH COMPARISON
(FIBERGLASS t 45° WOVEN 181 CLOTH)

86



CYCLIC STRESS

(% OF FATIGUE LIMIT)
@ DESIGN/CRUISE (D1)

Il TAKE-OFF/CLIMB (D2)
A 25% OVERSPEED (D3)
V¥ 40% OVERSPEED {D4)

100

108 cYCLES

0 STEADY STRESS 100
(% OF UTS)
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Table 8-1

HIGH CYCLE FATIGUE STRESS/STRENGTH COMPARISON

Percent of Allowable Limit*

Condition

Design/Cruise
Take-of f/Cl1imb
25% Overspeed
40% Overspeed

ONERA, 8 Blade
ONERA, 4 Blade
ONERA, 2 Blade
Static Thrust
Reverse Thrust
Cruise, Low RPM
Cruise, Hi RPM
Ciimb, Mid Altitude
Dive, Mid Altitude
Dive, High Altitude

Spar Shell Foam filler
74 67 50
76 64 60
42 61 29
52 74 35
33 76 58
86 87 77
97 93 86
26 65 22
43 67 18

100 85 63
70 64 44
77 67 57
30 61 24
30 60 25

Sheath

* percent of allowable 1imit measured diagonally on Goodman diagram and
on 10° cycles endurance limit

based
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8.4 Low Cycle Fatique

Low cycle fatigue (LCF), sometimes referred to as "start-stop" cycles, is as-
sociated with alternating between an unstressed state and the maximum stress
state. For the low cycle fatigue stresses, the steady and cyclic stresses
(presented in sections 6 and 7, respectively) are combined to determine the
maximum tensile or compressive stress, shown in figure 8-8.

For LCF evaluation, the steady and cyclic stresses are each assumed equal to
half of this maximum value, and are then plotted on a modified Goodman dia-
gram, as shown in figure 8-9, for comparison to the material allowable lim-
its. For the low cycle fatigue conditions, each of the blade components must
withstand at least 5x10° stress cycles under this combined stress condition.

The highest percent of allowable 1imit for each of the cond1tlons analyzed is
listed in table 8-2 for each of the blade components.

Table 8-2
LOW CYCLE FATIGUE STRESS/STRENGTH COMPARISON

Percent of Allowable Limit*
(Cycles to Allowable if Less Than 50,000)

No. Condition Spar Shell Foam filler Sheath
D1 Design/Cruise 56 73 57 54
D2 Take-of f/Climb 50 64 52 60
D3 25% Overspeed 71 102(20,000) 67 58
D4 40% Overspeed 86 125 (80) 81 62
1A ONERA, 8 Blade 58 81 67 50
1B ONERA, 4 Blade 60 76 69 50
1C ONERA, 2 Blade 60 77 71 53
2 Static Thrust 43 110 (1,300 50 50
3 Reverse Thrust I 113 (600 4] 13
(20,000
4 Cruise, Low RPM 48 68 48 47
5 Cruise, Hi RPM 58 74 58 51
6 Climb, Mid Altitude 52 96 53 63
7 Dive, Mid Altitude 49 102¢25,000) 55 48
8 Dive, High Altitude 49 101(35,000) 58 49

* Percent of allowable limit based on 50,000 start-stop cycles
Zero to max stress = (SS+CYC)/2 + (SS+CYC)/2
SS = Steady stress
CYC = Cyclic stress
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Of the four design requirement conditions (design/cruise, take-off/climb, and
the two overspeed conditions), the two overspeed conditions have maximum com-
bined shell stresses which are beyond the allowable limit for 50,000 start-
stop cycles. The shell is two percent beyond the allowable for the 25 per-
cent overspeed condition, and 25 percent beyond the allowable for the 40 per-
cent overspeed condition. In terms of allowable start-stop cycles, the 25
percent overspeed condition can withstand 20,000 cycles and the 40 percent
overspeed condition can withstand 80 cycles. Despite the apparent limitation
in allowable start-stop cycles, the two overspeed conditions are well within
the design requirements specified in section 3.1.4.2 for rotor overspeeds,
and do not represent any limitation in the anticipated test program. The
fact that the SR-7L blade can withstand 80 start-stop cycles to 40 percent
overspeed is another indication that, if necessary, it can safely operate in
an overspeed condition. Also, reaching the shell cycle limit implies only a
gradual reduction in modulus and not an abrupt failure. Evidence of a change
in modulus may appear as a slight crazing, visible in the fiberglass resin at
the shell surface.

Of the ten design goal conditions, four have maximum combined shell stresses
beyond the allowable limit, and one has the maximum combined sheath stress
beyond the allowable limit. The conditions with shell stresses beyond the
allowable are static thrust, reverse, and the two dive conditions. The mid-
altitude dive condition is two percent beyond the allowable and the high-al-
titude dive condition is one percent beyond the allowable. In other words,
the shell can withstand 25,000 mid-altitude dives or 35,000 high-altitude
dives. For the aircraft for which the Prop-Fan is intended, setting a goal
of 25,000 dives would still be a very conservative estimate; therefore, the
inability to withstand 50,000 dives is not considered a limitation.

For the static thrust condition, the maximum shell combined stress is ten
percent beyond the allowable limit. This overstress condition is not of
great concern, however, for three reasons. First, the shell can withstand
about 1300 static thrust start-stop cycles, which is an adequate number of
cycles for the anticipated test program. Second, the maximum stress occurs
in a chordwise direction, in a very localized area, near the spar/shell/root
junction on the camber side leading edge, while the rest of the shell is well
below the allowable limit. Third, the FEA modeling may not fully represent
the true chordwise stiffness of the shell structure in this region since the
shell is simply "cut off" at the base, while the actual shell is closed at
the base where the shell wraps around the root of the leading edge airfoil.
The real shell will have greater chordwise stiffness in this area and the
closure will act as a bulkhead to relieve chordwise stressing. Static thrust
testing is planned to take place early in the test program. During the test,
the stress in this area of the shell can be closely monitored to determine
the actual stress state.
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The maximum shell combined stress for the reverse condition is 13 percent be-
yond the combined stress allowable limit. This means that the shell can
withstand about 600 reverse start-stop cycles, and although this should be
adequate for the anticipated test program, it could represent a test limita-
tion. The overstressed area is large, well-defined, and is centered over the
shell/spar junction at about the one-third radius station on the camber side
of the blade. If one were designing a full-size blade based on the results
of this analysis, it would be possible to restack the blade in the overstres-
sed area to reduce the stress. There would be a minimal change in stability
since the restacking would be lTimited to the lower third of the blade, and
stability is more sensitive to changes in the outboard portion of the blade.

The condition where the maximum combined sheath stress exceeds the allowable
limit is reverse. The maximum sheath stress is 13 percent beyond the allow-
able, and the sheath can withstand 20,000 cycles. The maximum stress occurs
on both the face and camber sides of the sheath, toward the leading edge, and
just below the mid-span region. Although this is a condition of concern, the
shell, which can withstand only 600 reverse cycles, already represents a more
severe limitation to the reverse condition for the test program. Again, if a
full size blade were being designed based on this analysis, the high sheath
stress in the reverse condition could be corrected.

8.5 Stress Contour Plots

By way of illustration, stress contour plots for HCF evaluation are presented
as the percent of the allowable 1imit (as defined in section 8.2) for each of
the blade components (spar, shell, sheath, and foam filler) for the design/-
cruise and take-off/climb conditions. Similar plots were made for all other
operating conditions to evaluate HCF and LCF stress levels. Since the spar,
sheath, and foam filler are isotropic materials, the spanwise, chordwise, and
- shear stresses at each element are combined into maximum and minimum princi-
ple stresses, and from these a maximum effective stress is obtained. The ef-
fective stress corresponds to a state of pure tensile stress as is obtained
from a tensile test specimen. This stress is plotted as a percent of the de-
sign allowable. The shell, however, being a woven composite, is an aniso-
tropic material. Therefore, the stresses at each element are not combined
into an effective stress, but are presented as spanwise, chordwise, and shear
stresses as a percent of the design allowable limit. The figure numbers cor-
responding to the design/cruise and take-off/ climb conditions are summarized
in Tables 8-3 and 8-4, respectively.
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Table 8-3
SUMMARY OF STRESS CONTOUR PLOTS FOR DESIGN/CRUISE CONDITION

Figure Blade Blade Stress Contour Plotted
No. Component Side (As a Percent of Design Limit)
8-10 Spar Face (pressure) Effective
8-11 Spar Camber (suction) Effective
8-12 Shell Face Spanwise
8-13 Shell Face Chordwise
8-14 Shell Face Shear
8-15 Shell Camber Spanwise
8-16 Shell Camber Chordwise
8-17 Shell Camber Shear
8-18 Sheath Face Effective
8-19 Sheath Camber Effective
8-20 Foam Filler Face Effective
8-21 Foam filler Camber Effective
Table 8-4

SUMMARY OF STRESS CONTOUR PLOTS FOR TAKE-OFF/CLIMB CONDITION

Figure Blade Blade Stress Contour Plotted
No. Component Side (As a Percent of Design Limit)

8-22 Spar Face (pressure) Effective

8-23 Spar Camber (suction) Effective

8-24 Shell Face Spanwise

8-25 Shell Face Chordwise

8-26 Shell Face Shear

8-27 Shell Camber Spanwise

8-28 Shell Camber Chordwise

8-29 Shell Camber Shear

8-30 Sheath Face ’ Effective

8-31 Sheath Camber Effective

8-32 Foam Filler Face Effective

8-33 Foam Filler Camber Effective
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FIGURE 8-21. DESIGN/CRUISE HIGH CYCLE FATIGUE COMBINED EFFECTIVE STRESS
(PERCENT OF DESIGN ALLOWABLE) SHEATH, CAMBER SIDE

106



""fbr‘.? 433

oRIC
OF POOR QdALITY

%VAVAV AT
%WAVAVWAVJE‘E

AN
N

FIGURE 8-22. TAKE-OFF/CLIMB HIGH CYCLE FATIGUE COMBINED EFFECTIVE STRESS
(PERCENT OF DESIGN ALLOWABLE) SPAR, FACE SIDE

107



VZi, /WA
ViV VLN VN
NAVENG N ENENN
‘MFW&‘&N&N&

VIS VAV
VW VEVEVE VL VZ Y
VARENAN/AN AN 4\
A EMAVAVIVEN A
VAV
MEVEAEVAVAVZAN
VEVAVAVANZVA
%‘WAVAVAVAVAW

;A %/AVAV My
NI
WAVA%VAVAW
%WM AV@% ;

[¢] 76% MAX

FIGURE 8-23. TAKE-OFF/CLIMB HIGH CYCLE FATIGUE COMBINED EFFECTIVE STRESS
(PERCENT OF DESIGN ALLOWABLE) SPAR, CAMBER SIDE

108



ORI frne pn

X

ius £3
OF POOR QuALTY

%2 ; :
. s U] ; l,o
T .l-l (] » 20
> 9 : i -.'- N .
. £ -. s.lql .l
L ] ! i L} 2 o /5 u'
YA e AN ANTAN R TNTEN [
(T} . L] i [ .1 [ 'ol: 3 5" L] 10
6a% MAX [@
AV NG GOVL VA A VAN AN AN
3 by YOAAVA AN AL AL AW NEAVAINEN
Ay N ON NN NENVENVAVACYLN AN,
lsala;Ju_st_xou !.l"uu, :u_“'. %] ;Ss!-l _uu-.x :.z
A N NN WAV NN N
g AT NN 5 ) 39 /\ 391\ 3% 3 31 7
VAL 3 Y ANAAVA AVA AVA AVE NN
.1 :q ysg.'.s u_zz.sg 3 A 1;2 A T,.: EF] 3 .3"21_33:3'1 29 _127
2] Ney X 28 /t3e/\ 08 TN 30 30 30 30 A 29 \R§ [\ 29
l’ I‘ J ale \ 3.0 (] lo ale :I :.
TN TN NN A AR RIS g
VNN AIN NN T NN AT [
L ATATINTAR T AN AN AN AN\ N RPN
37 AV \E ST /NS, W N 33 3 3, 3%\ /NI NT NG
» /4 A A ATAARIZANIAVATAIN w0
';’!’.’}‘.‘92 :“Js“fl’.’,., -,.',“9“.’.’".’ §
33‘ 3’ l} 51.50] » ’3 ’,l g 1] UJJ“MJ .UJ-! 'l:
199\ 28 :_s's;.! .}: b s.e.':,ug u.u-z _zq]“ Iu: -ug..:'u.:
13Y\28 :3-’ A 2} 37 Jgasggugug.wu.a .u_l .39 .3.33;.3_7 Yo
3 zv.:_u: ou. s.s _us's‘s",;‘l.“'l.zu'z_nng'bsg:'f:” _4 3
13Y\ 2% 35 a1 N0 ARS8 /A8 NG N Ry Asa A5\ 29 A 22 /”
o/ 8\ SR\ N\ AN A A PN T A9 2\ BN AR )
12 N2 7\ 26 N /SR ST/\W /138 /138 /1 SERI8 R3T 35 Ex] 3 7
RGN R,
.l y "S [J ] (] l?.\.‘l-l u. l:/é * o .0
VT NN 029 29 k31 X3 Tt [
8 a '6 (-4
(] l.l... l-‘ a,-'(r oue\.zi
(YA \'e i 1 ) 54120

FIGURE 8-24, TAKE-OFF/CLIMB HIGH CYCLE FATIGUE SPANWISE STRESS
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(PERCENT OF DESIGN ALLOWABLE) SHEATH, CAMBER SIDE

118



9.0 Resonant Frequencies and Mode Shapes

The prediction and placement of resonant frequencies of Prop-Fan blades are
important aspects of the design analysis process. The first few integer
orders of design rotational speed are important areas to avoid resonance
because excitation forces for these are highest, decreasing inversely as
P-order increases. Dynamic magnification, if insufficiently damped, could
cause undesirable vibration and stresses. Furthermore, for an eight-bladed
propeller, the 2-P, 3-P, 4-P, and 5-P modes of vibration are reactionless,
that is, vibration loads at the blade shank are reacted internally through
the hub, and no component of vibration is transmitted to the propeller
shaft. Thus the pilot has no direct sensory feedback of the vibratory
condition of the propeller. For this reason, specific bands of resonant
frequency avoidance are specified. These frequency avoidance bands decrease
in size with in- ¢reasing P-order since the magnitude of the excitation
decreases as P-order increases. Strain gages will be mounted on the blade
surface such that un- desirable vibratory levels, should they occur, can be
detected and avoided during operation.

The vibratory mode shapes corresponding to the predicted resonant frequencies
at various operating conditions are also important from the standpoint of
evaluating susceptibility of the blade to low speed stalled flutter and high
speed unstalled flutter. The use of these vibratory modes in determining
flutter is discussed in section 10. ,

For the SR-7L blade, the first five resonant frequencies and corresponding
mode shapes were predicted for the design/cruise and take-off/climb condi-
tions previously listed in table 3-1 of section 3.3.1 and for all the condi-
tions in table 3-2 of section 3.3.2.

9.1 Calculation Methéd

Because the NASTRAN eigenvalue solver is faster than the determinant search
method used by the in-house finite element code (BESTRAN), the NASTRAN solver
was used for this analysis. For each of the conditions analyzed, the mass
and stiffness matrices, and the differential stiffening matrix were generated
with the in-house code for the blade finite element mode! in its deflected
position under load. These were then implanted in the NASTRAN eigenvalue
solver to calculate the resonant frequencies and mode shapes. The differen-
tial stiffening matrix, which is described briefly in section 6.2.1, included
negative stiffening terms for vibration in the in-plane and radial directions
for a deflected rotating blade.

9.2 Results

A listing of the first five modal frequencies for each of the twelve condi-
tions analyzed is given in table 9-1.

A
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Table 9-1

SR-7L BLADE RESONANT FREQUENCY SUMMARY
Frequencies in Hz
Mode
Condition 1 2 3 4 5

Design/Cruise 43.2 80.1 101.0 148.2 168.
Take-of f/Climb 45.7 77.2  103.2 147.5 170.
ONERA, 8 Blade 43.4 79.6 100.9 149.8 167.
ONERA, 4 Blade 43.4 79.7 100.8 149.6 167.
ONERA, 2 Blade 43.4 79.9 101.2 149.4 168.
Static Thrust 46.4 76.3 103.1 148.4 169.
Reverse Thrust 50.1 73.7 94.3 138.1 148.
Cruise, Low RPM 38.8 77.6 95.6 143.2 155.
Cruise, Hi RPM 44.0 80.7 101.9 149.0 169.
Climb, Mid 44 .1 78.9 102.0 148.8 169.
Altitude

Dive, Mid 44.7 77.0 102.2 150.1 168.
Altitude

Dive, High "44.0 77.3  101.6 149.5 168.
Altitude
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The calculated modal frequencies for the required design conditions of
design/cruise and take-off/climb are also plotted on a Campbell diagram in
figure 9-1. The Campbell diagram includes the integer order resonance avoid-
ance bands specified in the design requirements. Static frequencies are also
shown. These frequencies were calculated with a clamped blade shank, and
therefore are not shown connected with the other modes that were calculated
at speed.

As can be seen from the diagrams, all resonance placement requirements have
been met except for the second mode in the design/cruise condition which in-
fringes slightly on the 3-P avoidance band. This is not of great concern
since the second mode is edgewise, and is sensitive to retention stiffness.
A reduction in frequency will accompany a reduction in stiffness. Planned
measurements of static blade frequencies early in the test program will help
identify potential problems. Generally, when there has been a deviation in
propeller blade frequency or stiffness from that predicted, past propeller
experience has shown it to be toward the low side. In other words, measured
frequency and/or stiffness has been less than that predicted. Thus, the 3-P
infringement during cruise is of less concern on the low side of the avoid-
ance band than on the high side. As mentioned above, SR-7L blade vibratory
stresses will be monitored during testing such that 3-P resonance problems
could be quickly identified. Besides, at this time, it is difficult to pro-
ject any source of 3-P load excitations for the SR-7L installation.

Figure 9-2 shows the relationship between each of the first five calculated
modal frequencies of the ten additional analysis conditions with respect to
the 2-P through 5-P resonance avoidance bands. Meeting resonance for these
conditions was a goal and not a requirement. However, most resonant frequen-
cies clear the avoidance bands comfortably. The second mode, again, in-
fringes slightly on the 3-P band. As mentioned above, placing the second
mode, which is edgewise, at the lower bound of the 3-P avoidance band is not
of great concern.

A second area of possible concern is ground operation. The static thrust
case first mode infringes slightly on the expanded avoidance zone for ground
operation, but the first mode in reverse shows a significant violation of the
expanded zone. Resonances in reverse are affected by blade angle setting,
that is, the blade angle setting of -10 degrees is such that the first mode
vibration is predominantly bending in the stiff, out-of-plane direction,
hence the increase in frequency. The motion of the second mode, which is
edgewise however, is predominantly in the reduced stiffness, in-plane direc-
tion, hence the reduced frequency. Effects on higher modes are difficult to
identify because they are altered by large steady-state tip deflections due
to airload reversal, as well as angle setting effects. Blade strain gage
responses in the reverse and static thrust conditions should be closely moni-
tored during rig testing in order to characterize these modes before testing
on an aircraft. If unacceptable stress levels due to dynamic magnification
cannot be avoided, these conditions may need to be tested at lower power
levels and/or modified blade angle settings.

.
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Figures 9-3 through 9-7 show the normalized mode shape of each of the five
modes for the design/cruise condition. The mode shape deflections are re-
solved normal to the chord line of the three-quarter radius station (see sec-
tion 5.1 for a description of this station) for the contour plotting.

9.3 Characterization of Mode Shapes

For a structure as complex as a Prop-Fan blade, most of the mode shapes cor-
responding to the natural frequencies of vibration are difficult to charac-
terize. Much of the complexity in mode shapes is due to coupling of bending
and torsional deflection characteristics caused by the sweep of the blade,
first forward in the mid-blade region, then rearward at the tip. However,
some of the lower resonant frequencies of the SR-7L blade can be charac-
terized by their mode shapes.

9.3.1 First Mode

The first mode is a flatwise bending mode. The downward slant towards the
trailing edge of the iso-deflection contours indicates a small amount of tor-
sional coupling is present. '

_9.3.2 Second Mode

The second mode is similar to the third mode in that it appears to be a com-
bination of flatwise beam bending at the outer third of the blade and local
bending at the leading edge of the inner two-thirds of the blade. One dif-
ficulty of resolving all motions to a flatwise direction, however, is that
edgewise motions are not visible. A check of shank reaction forces reveals
that the second mode is predominantly an edgewise mode, but because of the
twist and sweep of the blade, and the resolved flatwise motion plotted, it
takes on the appearance of the second flatwise mode.

9.3.3 Third mode

This is the second flatwise bending mode with torsional coupling again
evident from the slope of the node line and tip contours.

9.3.4 Fourth Mode
Mode four is the first torsional mode. The blade does not vibrate about the

pitch change axis but rather about a swept line which approximates the locus
of section shear centers.

'
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Most of the torsional movement is near the blade tip while the inboard area
of the blade shows little deflection. The fact that the node line falls off
the inboard leading edge is probably due to the resolution of deflections
normal to the three-quarters radius station. Resolution normal to an inboard
station should show the node line to be concentric to the shank.

9.3.5 Fifth Mode

The fifth mode is the third flatwise bending mode. Again torsional coupling
is evident from the slope of the contours.
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10.0 Stability

A stability analysis of the SR-7L blade was performed to assure structural
integrity in terms of aerocelastic stability over the entire fiight envelope
and wind tunnel test conditions. The requirements divide flutter into two
categories: wunstalled flutter and stalled flutter. These categories were
established because there is a distinct difference in aerodynamics during un-
stalled and stalled operation. Unstalled flutter can occur when the Prop-Fan
operates in an unstalled condition, such as during cruise at high forward
speed. Stall flutter can occur when the Prop-Fan operates in a stalled con-
dition, such as during take-off under high power and low forward speed. The
combination of high power and low speed gives rise to a high airfoil angle of
attack, causing the air to separate from the aerodynamic surface and to stall
the blade. For this reason, stall flutter is often called separated flow
flutter. Because each category of flutter involves a unique aerodynamic con-
dition, they are examined using different analytical approaches.

10.1 Unstalled Flutter Analysis

The unstalled flutter stability of the SR-7L blade was examined using an
aeroelastic stability analysis that was specifically developed to model the
structural and aerodynamic complexities of a Prop-Fan.

Briefly, the analysis is a linear modal formulation in which the structure is
modeled with fully-coupled mode shapes obtained from finite element analysis
and the unsteady aerodynamic loads are based on linear, compressible, two-di-
mensional theory (ref. 8). Because the aeroelastic analysis uses two-dimen-
sional aerodynamic theory to model the three-dimensional flow about the
blade, the application of the theory has been guided by existing model test
results to give consistent and accurate predictions. This tailoring has
taken the form of programmed options selected to best model the installa-
gionéi Three basic options exist in the analysis that perform the following
unctions:

a) 1isolated and cascade unsteady airfoil data can be combined to account for
large blade spacing effects,

b) a blade tip load reduction (tip loss factor) can be implemented to model
the three-dimensional flow about the tip of an unducted fan, and

c) steady state empirical airfoil 1ift and moment curve slopes can be used
to model the actual airfoil section and to account for some transonic effects.
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The SR-7L calculations were based on a conservative combination of these
options. The calculations were carried out using theoretical airfoil data,
no blade tip losses, and combined cascade and isolated aerodynamic data to
account for the close blade spacing at the root and high blade spacing at the
tip. Specifically, the combined cascade/isolated airfoil option (called the
partial cascade option) uses cascade data for blade gap-to-chord ratios of
two or less, and isolated data for blade gap-to-chord ratios greater than
two. For the SR-7L blade this results in the using cascade effects out to 80
percent of the blade radius, and isolated effects for the remaining outboard
20 percent.

10.1.1 Unstalled Flutter Requirements and Results

The design requirement for unstalled flutter is that no instability should
occur in the operating flight envelope shown in figure 10-1. Also shown in
figure 10-1 is the goal of an extended flutter-free flight envelope used for
the SR-7L design. The same flight profile is shown in figure 10-2 in terms
of altitude versus Mach number (see also figure 3-1), with the ONERA Si Wind
Tunnel condition indicated.

To ensure that the entire operating regime is free of instability, many
operating conditions were analyzed.

Initially, ten operating conditions were studied for stability. These condi-
tions are listed in table 10-1, along with the calculated flutter Mach number.
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Table 10-1
PREDICTED FLUTTER MACH NUMBER FOR TEN SR-7L OPERATING CONDITIONS

Altitude,
Operating meters Flutter Flutter
Case Condition Mach no. (feet) RPM Mach no. mode

D1 Design/Cruise .80 10.675 1,698 .95 3
(35,000

D2 Take-of f/C1imb .20 0 1,698 .60 3
0)

1A ONERA, .80 4,270 1,698 .85 3
8 blades « (14,000)

18 ONERA, .80 4,270 1,698 1.00 2
4 blades (14,000)

1C ONERA, .80 4,270 1,698 .95 2
2 blades (14,000

4 Cruise, .80 10,675 1,273 1.00 -
Low RPM (35,000)

5 Cruise, .85 10,675 1,783 .92 3
High RPM (35,000

6 Climb, Mid .50 3,050 1,698 .76 3
Altitude (10,000)

7 Dive, Mid .60 6,100 1,698 .92 3
Altitude (20,000)

8 Dive, High .80 10,675 1,698 1.00 3
Altitude (35,000)
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For each condition, the flutter Mach number was greater than the required
Mach number for that condition, indicating a stable configuration. Figure
10-3 shows in summary that all stability requirements and the .85 Mach number
goal were exceeded with regard to unstalled flutter.

10.1.2 Stability Determination

Each flutter Mach number point listed in table 10-1 was obtained using the
following calculation procedure. At each condition, a set of stability cal-
culations were performed over a range of Mach numbers to arrive at the typi-
cal damping plot shown in figure 10-4. This plot illustrates the 10,675
meter (35,000 foot) cruise condition (case D1 in table 10-1), and shows that
mode three becomes unstable at .95 Mach number which is well above the .80
Mach number requirement. Each point on the damping curve represents the
least stable inter-blade phase angle of a mode at the analyzed Mach number.

For multi-bladed rotors where blade-to-blade interaction is important, the
phase relationship between blades (called the inter-blade phase angle) be-
comes an important parameter affecting system stability. For the eight-
bladed SR-7L Prop-Fan, eight phase angles are significant: 0, 45, 90, 135,
180, 225, 270 and 315 degrees. The least stable angle is determined by ex-
amination of the damping prediction at each angle, as shown by the root Tocus
plot in figure 10-5. This plot shows the imaginary portion of the root Tocus
of the solution eigenvalue, which is the damped natural frequency, plotted
against the real portion of the eigenvalue, which is the indicator of stabil-
ity. The least stable inter-blade phase angle shown in this figure occurs at
315 degrees.

10.1.3 Stability Discussion

The predicted blade instability, which occurs well above the required Mach
number for the design/cruise condition, does not involve frequency coales-
cence as is typical of fixed-wing unstalled flutter. The lack of frequency
change with increasing Mach number is illustrated by the flat frequency
curves in figure 10-6.

The predicted high Mach number instability occurs in the third mode at nearly
the third mode natural frequency. This mode can be characterized loosely as
a second flatwise mode. The predicted flutter mode is dominated by the third
natural frequency mode of the blade as shown in table 10-2, which lists the
percent contribution of the natural modes to the flutter prediction. The
lack of mode coupling shown in table 10-2 would suggest single mode flutter,
if the mode shape of the flutter mode was not considered.
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FIGURE 10-3. UNSTALLED FLUTTER STABILITY SUMMARY BY CONDITION NUMBER
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FIGURE 10-6. EFFECT OF UNSTEADY AIRLOADS ON SR-7L FREQ. FOR CONDITION D1
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Table 10-2

CONTRIBUTION OF THE NATURAL MODES TO THE THIRD COUPLED
AEROELASTIC MODE FOR CASE DI

Condition: Design/Cruise
10,675 meter (35,000 feet)
1698 revolutions per minute
0.8 Mach number
57.57 degrees Beta three-quarter angle

Mode Percent Contribution
1 3.0
2 3.2
3 84.8
4 2.6
5 3.0
6 1.6
7 0.8
8 0.9

The coupling that does exist modifies the third natural mode at the blade tip
~as shown in figure 10-7. This coupling reduces the tip torsional motion and
causes it to be out of phase with the blade bending, resulting in a destabil-
izing condition. This change in mode shape at the blade tip is significant
because the loads and mode shape displacements are highest at the tip.
Therefore, the predicted high Mach number instability is a second flatwise
flutter controlled by the blade tip loads.

10.1.4 Stability Modal Evaluation at Nine Other Conditions

Damping plots for the other nine conditions listed in table 10-1 are shown in
figures 10-8 through 10-16.
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A comparison of the stability results for the three ONERA SI Wind Tunnel con-
ditions (figures 10-9 through 10-11) offers further insight into the SR-7L
blade stability. Because of tunnel operating restrictions, the blade cannot
be operated at full power in the tunnel in an eight-bladed configuration.
Therefore, two- and four-bladed configurations with higher loading per blade
will be tested. The larger spacing between the blades in the two and four-
bladed configurations eliminates any aerodynamic cascade effects and in-
creases the stability. The four-bladed configuration has an even further in-
crease in stability over the two-bladed configuration because it has a Tower
power loading per blade. This lower loading causes the blade to deflect
less, resulting in a more stable set of mode shapes since mode shape is de-
pendent on the spatial position of the blade. Although the eight-bladed con-
figuration has the lowest loading per blade, the stability decreases due to
the close blade proximity, which causes destabilizing cascade effects.

10.1.5 Effects of Aerodynamic and Structural Variations

The stability of the SR-7L blade was further examined to determine the ef-
fects of variability in the aerodynamics and structure. Initially, an over-
all flutter boundary was established using the 10,675 meter (35,000 foot), .8
Mach number cruise condition (case D1) mode shape.

The same analysis was then performed assuming that cascade effects exist over
the entire span of the blade. The resulting change in aerodynamics decreased
the stability prediction to below the design goal, but the design require-
ments were still satisfied, as shown in figure 10-17.

The next variation was to assess the effect of frequency degradation on the
stability prediction. Using a 15 percent across-the-board frequency reduc-
tion of the original frequencies, the required flight profile was not met.
This is also shown in figure 10-17. Both of these additional checks are
severe, but they demonstrate the sensitivity of the blade stability to
changes in structure and aerodynamics.
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An additional note of importance is that the third mode instability predicted
for the blade has never been confirmed experimentally, even where model
Prop-Fan predictions have indicated that this instability should occur. Be-
cause this type of flutter is unconfirmed experimentally and because it is
controlled by the high loads at the blade tip, an aerodynamic tip loss factor
was incorporated into the analysis. With this tip loss factor, the aeroelas-
tic stability analysis program gives results that show higher stability of
the third mode and better correlation with experimental data. Figure 10-18
shows that the use of this tip loss factor on the design/cruise condition,
case D1, eliminates the previous instability found in the third mode. This
demonstrates the conservatism of the analytical procedure discussed in
section 10.1.

10.2 Stall Flutter Evaluation

To study stall flutter, two methods of analysis were used. One was a semi-
empirical formulation that has been incorporated in the aeroelastic stability
analysis computer program. The other method was a purely empirical method
used for conventional propeller stall flutter analysis. Two methods were
chosen for stall flutter analysis because the theoretical analysis of stall
flutter is not a well-established procedure due to the complexity of the air
flow about a stalled blade section.

10.2.1 Semi-Empirical Method

The semi-empirical method uses combined bending and torsion modes, but does
not couple the modes since stall flutter is generally a single mode phenome-
non. The unsteady airfoil coefficients are developed from steady-state em-
pirical airfoil data. The results from this analysis give the onset of stall
flutter, not the magnitude of the response, because large amplitude stall
flutter response is non-linear while the analysis assumes a linear response.

Table 10-3 lists the conditions examined for stall flutter along with the re-
sulting predictions. The predictions are in terms of blade angle because
stall flutter occurs at high power when the blade is stalled and increasing
power corresponds to increasing blade angle.
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Table 10-3
STALL FLUTTER ONSET PREDICTION SUMMARY

Take-of f/Climb Static Thrust Reverse
Speed, RPM 1698 1698 1698
Mach no. 0.2 0.0 0.0
Nominal blade angle, deg 38.0 33.0 -10.0
Flutter blade angle, deg 40.0 31.0 No flutter
Flutter mode of vibration 4 4 . No flutter

The predictions show that stall flutter occurs at a lower blade angle than
required by the static thrust condition. This prediction is illustrated by
the predicted damping plot, figure 10-19. The fourth mode, which is the
first torsional mode, becomes unstable at a 31 degree blade angle.

When the blade is subjected to a small amount of forward flight speed, the
stall flutter stability is greatly improved, as seen by the take-off/climb
condition damping predictions shown in figure 10-20.

This improvement in stability indicates that with the proper pitch change
schedule, stall flutter will not be a problem at take-off, even though stall
flutter is predicted statically at full power.

As seen in figure 10-21, no flutter was found for the reverse thrust condi-
tion. Therefore, no flutter problems would be encountered during landing.

10.2.2 Empirical Method

Since the SR-7L blade has a distinct torsional mode, and stall flutter was
predicted for this mode, a stall flutter parameter was applied to the blade.
The stall flutter parameter is an empirical design factor that was developed
for conventional propeller design to prevent the occurrence of torsional
stall flutter. This parameter is calculated for a given configuration and
plotted on a stall flutter design chart to see if torsional stall flutter is
possible. The calculated stall flutter parameter for the SR-7L blade for a
blade angle of 33.0 degrees is 1.35, which is well inside the stable region
of a stall flutter design chart shown in figure 10-22, indicating that no
flutter will occur in the torsional mode.

The two methods used to predict the stall flutter stability of the SR-L blade
give different results. The first method, the semi-empirical method which
predicted the blade angle when flutter would occur, shows stall flutter oc-
curring in a mode that the second method, using the stall parameter, showed
to be stable. Therefore, the stall flutter results are inconclusive. The
best procedure for determining stall flutter stability is testing the
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full-scale blade with careful monitoring of the stresses. Stall flutter
boundaries for model Prop-Fan blades were successfully determined by monitor-
ing stresses during testing. The stress rise during stall flutter is gradual
and reaches a limit amplitude. For this reason, the stall flutter phenomenon
is non-destructive when studied with careful test procedures.
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11.0 Foreign Object Damage

To assess the FOD tolerance design goals of section 3.2.4, gross blade
stresses resulting from moderate and major impacts have been calculated for
the SR-7L blade. A moderate impact is one with a bird of up to .907 kilogram
(two pounds) while a major impact involves a bird of up to 1.814 kilogram
(four pounds). :

11.1 Calculation Procedure

A three-dimensional, computerized, impact analysis program (ref. 9) was used
to calculate the gross blade stresses due to a 1.814 kilogram (four pound)
bird impact.

The moment and deflection mode shapes are assumed to be uncoupled, and are
based on beam calculations of the SR-7L blade. However, the beam frequencies
were replaced with frequencies calculated using finite element techniques. A
comparison of the beam analysis frequencies with those of the finite element
analysis is shown in table 11-1. .

Table 11-1
NATURAL FREdUENCY COMPARISON AT CRUISE CONDITION, 1698 RPM
Mode 1 , Mode 2 :
First Bending, First Bending, Mode 4
Method Flatwise Edgewise Torsion
Beam Analysis 42.1 ' 83.3 131.4
Finite Element 43.7 80.1 146.7

Analysis

The comparison shows that agreement between the beam and finite element anal-
ysis bending mode frequencies is quite good, whereas the torsional mode fre-
quencies are significantly different. To neglect the higher torsional fre-
quency of the finite element analysis could have produced significantly dif-
ferent results from the foreign object impact analysis. Therefore, all beam
frequencies were revised to those of the FEA.

11.1.1 Flight Condition

A single flight condition was analyzed: 185 kilometers per hour (100 knots)
take-off at a blade angle of 37 degrees, measured at the three-quarter radial
station of the blade. Impact was assumed to occur at 80 percent of blade
span, as shown in figure 11-1, resulting in an impact angle of 20 degrees and
a relative impact velocity of 210 meters per second (689 feet per second).

PRECEDING PAGE BLANK NOT FILMED
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FIGURE 11-1. SPANWISE BIRD IMPACT LOCATION
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11.1.2 Bird Impact Model

Figure 11-2 shows a typical geometry impact model used for analysis of the
major impact resulting from a 1.814 kilogram (four pound) bird. Similar
models were used for smaller size birds to determine stress variations rela-
tive to bird size. It is felt that the model illustrated is most typical of
actual impact conditions.

11.2 Effect of Sweep

The effect of sweep on the foreign object damage of the blade was accounted
for in the beam model by redefining the chordwise locations of the elastic
axis and the center of mass at the impact site of the blade. The chordwise
locations of the elastic axis and the center of mass were determined to be
about 25 and 40 percent of the chord, respectively, measured from the leading
edge of the blade. These are also shown in figure 11-1.

A small separate study was performed to evaluate the effect of sweep on FOD
by also analyzing the blade without sweep, that is, the section mass center
and the elastic axis at the impact station were assumed to be coincident at
40 percent of chord. The non-swept blade showed a slight increase of ten
percent in gross blade stressing, which is within the tolerance band of the
analysis, and probably should not be taken as an absolute trend.

11.3 Deflection and Stress Results

To illustrate the perturbation effects shown by the analysis and the depen-
dence of deflection on impact load and time, the results of the 1.814 kilo-
gram (four pound) bird impact case are reproduced in figures 11-3 through
11-6. .

The peak impact load lasts only 1.75 millisecond and reaches a peak of
109,000 newtons (24,500 pounds) as shown in figure 11-3. After about seven
milliseconds, the maximum flatwise tip deflection is predicted to reach about
24.6 centimeters (9.69 inches) as shown in figure 11-5, while the maximum
torsional deflection is about 19 degrees and occurs at the impact site after
approximately four milliseconds, as shown in figure 11-6.
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To assess blade stresses, both the spanwise normal stresses and the torsional
shear stresses must be determined so that a combined effective stress, in-
cluding normal blade operating stresses, could be obtained. The spanwise
normal stresses were calculated directly by the foreign object impact anal-
ysis computer program. However, the torsional shear stresses must be deter-
mined from the maximum twist and displacement predicted by the program.
First, the maximum twist and displacement were corrected to account for the
low thickness-to-chord ratio of Prop-Fan blades.

Second, the maximum gross torsional shear stress near the foreign object im-
pact site was estimated as a function of this corrected twist and displace-
ment, the maximum blade or spar thickness, and the blade or spar shear
modulus. The resulting maximum shear stress was then combined with the span-
wise bending stress in order to obtain the maximum Von Mises effective stress
defined by the following:

1
OEFFECTIVEVON MISES 3‘/: \/Z(aFoo + Ooper)? + 6(Trop)?
2
Results calculated with the above equation are summarized in table 11-2 for
the case of a 1.814 kilogram (four pound) bird ingestion.
Table 11-2
FOD 1.814 KILOGRAM (FOUR POUND) BIRD

Stress, Thousands of Newtons per Square Centimeter
(Thousands of Pounds per Square Inch)
]

Effective
Maximum Maximum Operating Von Mises
Bending Torsional stdy. + cyc.* @ max. bend.
Spar Shell Spar Shell Spar Shell Spar Shell
42.0 17.1 11.6 7.5 =3.1 -1.9 40.2 16.5
(61.0) (24.8) (16.8) (10.9) (-4.5) (-2.8 (58.4) (24.0)

* Camber steady stress is negative
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11.4 Establishing "True" Ultimate Spar Strength

Since the foreign object impact loading is a suddenly applied shock load, the
effective ultimate strength, or "true ultimate", of the blade spar must be
consistent with the typical strain rates or impact times for the specific ma-
terial analyzed. Therefore, the "true ultimate" strength of the aluminum
spar for these strain or impact rates was estimated to be a function of the
minimum value of the reduction in area ( AA/A for a tensile specimen), equal
to two times the material elongation. This is consistent with the fact that
the maximum ultimate strength will not be realized due to the high impact or
strain rates which limit the full yielding prior to fracture. The "true
ultimate" strength is a function of:

1) the engineering Ultimate Tensile Strength (UTS engrg),

2) the plastic capacity for pure bending stress (F), which is 1.5 for a
rectangular section, and

3) the material elongation (a1/1), which is taken to be .13 for hard atum-
inum alloys. -

UTS "true" = F UTS engrg | = 2.03 |UTS engrg
@ impact time 1 - 2(41/1)

For the spar aluminum material (7075-T73) the “true ultimate" is 92,300
n/cm? (134,000 PSI).

11.5 Stress/Strength Comparison

The maximum spar and shell gross blade stress for .454, .907, and 1.814 kilo-
. gram (one, two, and four pound) bird impacts, along with the maximum effec-
tive stress, are compared to their respective material yield and ultimate
strengths on the plot in figure 11-7.

11.5.1 Effect On Blade

For the bird impact, the blade appears to be in good shape. A sizeable por-
tion of the bird hits the blade, while the remaining portion is separated.
The portion which strikes the blade imparts enough momentum during its slid-
ing path across the width of the blade to cause the spanwise spar and shell
stressing shown in figure 11-7. For moderate impacts, birds up to .907 kilo-
gram (two pounds), both the spar and shell spanwise stresses are well below
their respective strengths and thus there is no problem meeting the require-
ments for moderate impacts. For major impacts, birds up to 1.814 kilogram
(four pounds), the spar begins to yield, spanwise, at about the 1.814 kilo-
gram (four pound) level, while the shell is still slightly below its tensile
strength. Again, there is no problem meeting the requirements.
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11.5.2 Effect On Retention

A cursory review of the retention loads was made by comparing the retention
moment caused by the 1.814 kilogram (four pound) bird to the moment capacity,
or the initiation of rocking of the retention, which is approximately equal
to LR/2, where L is the centrifugal load and R is one-half of the bearing
pitch diameter. The results indicated that the maximum moment for the 1.814
kilogram (four pound) strike is about 75 percent of capacity or rocking ini-
tiation, assuming steady and 1-P moments add directly.
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12.0 Aerodynamic and Acoustic Performance

A major objective of the Advanced Turboprop Program was to develop an ef-
ficient Prop-Fan while maintaining acceptable noise levels. During the
evolution of the SR-7L (see section 4.1), the efficiency and noise level of
each design iteration were calculated. The final SR-7L design achieves high
efficiency and satisfactory noise levels while possessing the necessary
stress, stability and frequency characteristics. .

The results of the performance calculation are listed in table 12-1. The ef-
ficiency and the noise level for the design/cruise condition meet the design
goal requirements. The efficiency at take-off/climb is 0.4% below the design
goal. Modification of the blade geometry may permit increasing this effic-
fency without adversely affecting other characteristics.

The far-field noise design goal is to satisfy FAR-36, minus 10 dB, which is
79 dB. The take-off condition at full power is above this noise level; how-
ever, a take-off at cut-back power will meet the design goal. The far-field
noise for an approach condition also satisfies the design goal.
TABLE 12-1
SR-7L AERODYNAMIC AND ACOUSTIC PERFORMANCE

Design/cruise condition
Efficiency 79.4%

Near-field noise 143 dB

Take-off/climb

Efficiency ; 51.6%
Far-field noise (full power) 86.7 dB
(cut-back power) 76.3 dB

Approach condition

Far-field noise 77.3 dB
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13.0 Conclusions

It has been demonstrated, in detail, in the preceding sections of this report
that the final design of the SR-7 blade is structurally adequate to meet the
test requirements and goals of the planned test program. The metal spar/com-
posite shell design is a service-proven concept which is representative of
future full-size Prop-Fan designs, while utilizing today's manufacturing
technology. Analytical techniques used to evaluate structural adequacy are
state-of-the-art, and have been correlated with test results as well as with
other comparable analyses. Blade stresses have been compared to material de-
sign strengths which were appropriately adjusted to reflect years of blade
test and flight experience. Further conclusions about the four primary
structural aspects of the blade are presented below.

13.1 Stress/Strength Evaluation

A1l blade components easily meet High-Cycle Fatigue (HCF) and Low-Cycle
Fatigue (LCF) stress requirements for the four primary conditions analyzed,
which include design/cruise, take-off/climb, and two overspeed conditions:
25 percent and 40 percent.

The blade is also adequate in that it meets its stress goals for almost all
of the ten other design conditions analyzed, including three muiti-bladed
tests to be run in the ONERA S1 Wind Tunnel to simulate design/cruise condi-
tions. AIll HCF goals are satisfied for the ten additional operating condi-
tions. Some LCF limitations exist for four of the conditions, but most of
these can be discounted as unimportant for the proposed test program.

Only the LCF shell stress on the camber side in the reverse operating condi-
tion has the potential of limiting testing to 600 cycles. This prediction
may not be a serious limitation, but should be monitored during testing. It
should be noted that reaching 600 cycles implies only a potential reduction
in fiberglass modulus, and not a shell failure. The effect on the blade pro-
perties would be minimal since the area in question is over the spar in the
mid-blade camber zone, and the shell is secondary structure.

13.2 Resonant Frequencies

Resonant frequency requirements for the design/cruise and take-off/climb pri-
mary design conditions have been met, except for a minor infringement of the
second mode into the lower portion of the 3-P (third multiple of operating
speed) avoidance band at the design/cruise rotational speed. This should in
no way limit the design because:

1) no source of 3-P excitation is envisioned in the test installation;

2) vibratory stresses will be continuously monitored such that dynamic mag-
nification, if detected, could be alleviated by a change in rotational speed;
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3) early test of static resonant frequencies will help identify potential
problems;

4) measured resonant frequencies tend to be lower than predicted;

5) the second mode is first edgewise, and is closely tied to retention
stiffness, which also tends to be lower than predicted.

Most resonant frequency goals for eight other conditions analyzed have also
been met. The only notable exception is the first mode frequency in reverse
which is predicted to climb into an expanded avoidance zone for ground opera-
tion. This is because the blade angle setting orients the blade to a flat-
pitch setting, in the plane of rotation. This orientation results in maximum
centrifugal stiffening for flatwise bending. Very little can be done to al-
ter the characteristics of this mode without major design revision. There-
fore, careful stress monitoring should be exercised, and testing in reverse
in moderate to high cross-wind conditions should be avoided.

13.3 Stability

The SR-7L blade meets all design requirements and goals for unstalled flut-
ter. No instability exists in the flight profile or in the ONERA S1 Wind
Tunnel. The stall flutter resuits on the other hand were inconclusive, and
no analysis is presently available to confidently predict the blade stability
in the complex stalled environment. Therefore, stall flutter stability will
have to be determined by tests with the full-scale hardware. If stall flut-
ter should be found in the operating region, it can be eliminated with the
appropriate pitch change schedule.

'13.4 Foreign Object Damage

A three-dimensional, interactive, blade impact analysis of the SR-L blade
shows that both the aluminum spar and fiberglass shell meet the requirements
for major impacts. During a major impact, the maximum spar stress will be at
the material yield point, and the shell stress will be slightly below the
tensile strength. Although some permanent airfoil distortion could occur, no
shell or spar material should be lost.

13.5 Aerodynamic and Acoustic Performance

The SR-7L blade exceeds the efficiency and noise level design goals for the
design/cruise condition. The efficiency at take-of f/climb is slightly less
than the design goal, however, the noise level at take-off/climb meets the

design goal for a cut-back power condition.
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13.6 MWeight

The calculated weight of the SR-7L blade, from the finite element analysis,
is 41.65 pounds. The breakdown of this weight by components is:

. spar 33.8 pounds
. shell 6.75 pounds
) sheath 0.3 pounds
. fill 0.8 pounds
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