IN-61 58957

-

CR#171976 128P

15

A DEMONSTRATIVE MODEL OF A LUNAR BASE SIMULATION ON A PERSONAL COMPUTER

by

The Large Scale Programs Institute

and

The Center for Space Research at The University of Texas at Austin

Grant # NAG9-116 JUNNSON

(NASA-CR-171976) A DEECNSTRATIVE MODEL OF A LUNAR BASE SIMULATION ON A REESONAL COMPUTER N87-18995 CSCL 09B (lexas Univ.) 128 p

Unclas G3/61 43606

March 15, 1985

ABSTRACT

This report describes the initial demonstration model of a lunar base simulation. This initial model was developed on the personal computer level to demostrate feasibilty and technique before proceeding to a larger computer-based model. Lotus "Symphony" Version 1.1 software was used to base the demonstration model on an personal computer with an MS-DOS operating system. The personal computer-based model determined the applicability of lunar base modeling techniques developed at an LSPI/NASA workshop. In addition, the PC-based demonstration model defined a modeling structure that could be employed on a larger, more comprehensive VAX-based lunar base simulation. Refinement of this personal computer model and the development of a VAX-based model is planned in near future.

TABLE OF CONTENTS

1. 5. g. - 4.

Ĺ

Abstra	acti
Ι.	Introduction1
II.	Model Format1
III.	Model Description4
IV.	Test Cases6
۷.	Future Work7
VI.	References
Append	dix A - Model Listing13
Append	dix B - Orbital Transfer Vehicle Analysis
Append	dix C - Itemized Test Case Listing88
Append	dix D - NASA Space Station Cost Estimating Relations123
Appen	dix E - Standard Industrial Classification of Lunar Industries125

I. INTRODUCTION

The principal objective of this research is to develop a computerbased model that will enable NASA to effectively and efficiently examine the impacts of various technological advances and developments on a manned lunar base. This model should provide a graphic representation of evolution (in both time and space) of the base. The final model should detail investment, cost, and scheduling estimates for developing a lunar base, in addition to identifying key performance parameters. The model should also provide quantitative evaluations of trade studies to allow for easy analyses of the effects of alternative lunar base objectives, technologies, and elements/subsystems. The results of these analyses could then be used to develop long range plans for NASA, while near term impacts could be determined for the space station, orbital transfer vehicles, and earth-to-orbit vehicles.

An LSPI/NASA workshop in La Jolla, CA (Reference 1) defined the methodology that was to be employed in developing the lunar base simulation. The results of the workshop confirmed that the model would be both large and complex. The size of the model, along with NASA hardware capabilities, dictated that the simulation be based on a VAX or VAX equivalent computer. However, before modeling was to proceed on a large scale, a personal computer-based demonstration model was deemed appropriate as a "proof-of-concept." This report describes a first attempt at the prototype PC-based lunar base model.

The PC-based demonstration model's main function is to indicate the feasibility of employing macro-engineering techniques -developed at the LSPI/NASA workshop- to a lunar base program. Once feasibility has been determined, the demonstration model should indicate areas of the modeling structure that require refinement or complete change. This "pathfinder" model would enable designers to better define the modeling structure for the larger version of the lunar base simulation. Another equally important function of this initial model is to identify various areas that seem to violate a "reasonableness" test. The PC-based model should indicate relationships between requirements and attributes that need further study, and those which are satisfactory in their present form.

II. MODEL FORMAT

The model is intended for IBM-PC compatible computers using the Lotus "Symphony" Release 1.1 software. Utilizing the "Symphony" spreedsheet format, the simulation is screen oriented. The user need only to use the "PgDn" and "PgUp" keys to move throughout the model. However, program schedules could not be contained by one screen and thus were expanded to screens to the right. A continued screen is appropriately indicated in the upper right-hand corner of the screen by "more>>>." For user protection, a set of default input screens have been provided to allow the "lunar base designer" to change various input values, but still maintain a reference of the authors original values. The default screens appear out of the flow of the model to the right of the respective input screen.

The four different types of screens contained in the model are the information (info), input, output, and default screens. User changes may only be made to the input screens as all other screens are cell protected.

The user is required to specify desired lunar base objectives by entering an approproate value into the corresponding cell of an input screen, or to use the provided default values. The user can then "PgDn" to the desired output screen to analyze various types of data.

A flowchart of the demonstration model is shown in Figure 1 to allow the user to better understand the inter-relationships of the model. Referring to the top of the diagram, upon user selection of the top level requirements, the base population and mission support equipment is determined. The base population defines the number of habitation modules required which, along with mission support modules, determines the total mass and power requirements for housing of personnel and equipment. This mass and power requirement, coupled with that required by the initial mission equipment, contribute to the total mass and power mission requirements. The mass of the power system (type of power system selected by user) and construction equipment is added to the mission mass to yield the total mission mass. The total mission mass is incorporated with the resupply mass to determine the space transportation requirements.

Author-formulated "transforms" were used to define the relationship between desired attributes and resulting requirements. The attributes and requirements may be mission dependent, or mission independent. The general form of these transforms is:

- y = a + b(x)
- where x = Requirement-the product or service the item is to deliver, as specified by the user. Example: 150 MT of LO2 delivered to LE0.
 - y = Attribute-the result from the consequences of fulfilling the requirement with the selected technology. Example: L02 plant mass, MT.
 - a = A constant determining the value of the attribute for the case in which the value the requirement is zero. A floor value for that attribute if the item is present at the base.
 - b(x) = An empirical function which will quantify an attribute given the value of the requirement and the technology selected.

III. MODEL DESCRIPTION

As previously mentioned, the model contains four types of screens:

- (1) information,
- (2) input,
- (3) default, and
- (4) output screens (see Appendix A for model listing).

The information screens provide the user with useful insight into the purpose, use, and format of the model. First time users should consult each information screen as it appears in the general flow of the model before proceeding to the next screen of the model. Users are prohibited from making changes to the information screens by cell protection.

The input screens act as the interface between the user and the model. The modeler defines various top-level lunar base objectives such as:

- (1) science capabilities,
- (2) resources exported, and
- (3) community size

to create a base scenario he desires. The user may wish to use the author-supplied default values, or to change the default values to obtain information on a differing scenario. Any change to an input screen destroys the specific cell reference to the default screen. To return a cell reference to its original default value, the user must "page over" to the right and determine the default value, and enter that value into the appropriate cell on the input screen.

Other areas the user is allowed to define are:

- (1) the space transportation system,
- (2) the lunar orbit space station, and
- (3) technology selections.

Although a large list is supplied for the space transportation system, all of the vehicles are not yet interactive with the model. The launch vehicles that are available at this time are the Shuttle for personel transport, and a Shuttle Derived Vehicle (SDV) for equipment transport. Upper stages that are used in the model are:

- (1) a modified Orbital Transfer Vehicle (see Appendix B),
- (2) an expendable Lunar Module, and
- (3) a reusable Lunar Module.

The Orbital Transfer Vehicle recently studied by NASA was considered too small for lunar base needs, thus a derivative of this vehicle was developed for this model.

Since the lunar orbit space station was deemed an integral part of

the lunar base program, its characteristics were assumed (pending data to be supplied by NASA) to give the user a better overall picture of the requirements to establish a base on the Moon.

The technology selection screens allow the user to specify various types of:

- (1) primary power sources,
- (2) energy storage,
- (3) heat rejection,
- (4) thermal control, and
- (5) power control.

Selection of the specific technology to be present at the lunar base must be done by manual cell reference at this time.

The default screens, located one screen to the right of the respective input screen, provide a baseline for the model user, and reflect the same information as the input screen. The default screen for the upper stages of the space transportation contains more information than the respective input screen. The upper stages default screen contains performance parameters such as the delta-v, the mass ratio, and iterated payload of the vehicles. These values were displayed for those users specifically interested in the upper stage fleet. All default screens are protected against user change.

Output screens reflect equipment, manpower, and time required to emplace the user specified base on the lunar surface. The following descriptions are some of the assumptions the authors made due to lack of contradictory data.

- All housing of equipment and personnel was assumed to be provided by LEO space station common modules modified to better accomodate the lunar environment.
- Mission resupply needs were derived from a percentage of the initial hardware mass, while human resupply was taken from a University of Houston report (Reference 2).
- The construction equipment and corresponding staff of 14 was estimated by the authors. For larger bases, the construction staff size remains the same while the construction schedule is lengthened.
- The authors also estimated the phasing of base build-up and that it would be goverened by the rate of OTV flights. Another flight schedule is produced that is dictated by the rate of SDV launches.

Output screens have cell protection to prevent user change.

There are a number of output screens that are not functional at this time. These screens were left in the model to indicate, to the user, future plans to refine and expand the demonstration model. Since this is an initial model of a very large scale future civil space program, many iterations and refinements will be necessary before the level of detail, inter-relationships, and cost/benefit forecasts can be relied upon for bugdetary estimates or actual program costing. Users are encouraged to criticize the logic, pace, element description, and transforms of the present model.

IV. TEST CASES

The initial use of the model was to perform "reasonableness tests" to determine if the indicated trend of lunar base characteristics over a range of differing requirement scenarios appeared to be sensible. The thirty-four cases run are summarized in Table 1. For this report, three preliminary sensitivity studies were performed. The science capability, lunar oxygen production, and community size were varied independently to determine specific impacts on a lunar base program. In addition, ten composite cases were reviewed. It should be noted that none of these cases were permitted the advantage of lunar-supplied resources.

Runs 1 through 6 examined the impact of the magnitude of the science mission upon a lunar base. The complement of scientists were varied from zero to eight persons. The "bare bones" lunar base was assumed to have a crew size of seven persons. They required a lunar base aggregating 220 MT which, in turn, required 3.8 months for the construction crew to assemble on the lunar surface. Three expendable lunar modules were consumed, and 30 OTV flights were required to emplace the base on the Moon's surface. This included the placement of the Lunar Orbit Space Station. Sixty-two flights of an SDV and three flights of the Shuttle were needed to fufill mission requirements. The total program duration was 7.6 years, of which 0.5 years were devoted flight operations.

The base supporting eight scientists had a total base complement of 17 persons which needed 12 LEO space station "common modules" for base support. The resulting base had an aggregate mass of 502 MT, with seven months indicated as the surface construction interval. Four expendable lunar modules were expended, while 47 OTV, 96 SDV, and four Shuttle were required to provide flight operation support. In all "science only" cases, the base power supply size was less than 100 Kw.

A series of lunar bases providing only lunar oxygen were next examined. The size of the production output of the O2 plant was varied from 25 MT/month to 300 MT/month. A "reference" case of 1000 MT/year of O2 producted was supplied by Dr. Chris Knudsen of Carbotech. The smallest of these lunar O2 bases required a staff of 10, 300 Kw of power and amassed 478 MT. Ninety SDV flights were required.

The largest base in this series had a mass of 2530 MT, a 2.8 Mw power supply and required 313 SDV flights. The crew size remained at 10 persons, as no scaling of plant operators to size of plant are now available. With the automation likely in the time frame of a lunar base, this could later be found to be an accurate assessment. The final "sensitivity study" was done for bases which simply support people, or a "community." The community size was varied from five to 500 persons. The smallest base of 377 MT required 76 SDV flights and had a total crew size of 13 persons.

The largest base reviewed had a total population of 632 persons, needed 288 of the LEO Space Station "common modules" and required a 1.5Mw power source. Base mass was 15,417 MT and required over 10 years to construct. Seventy-six expendable lunar modules were consumed, while 735 OTV, 81 shuttle, and 1521 SDV missions were flown.

Large composite function bases were the final cases run. The largest of these bases accomodated 33 scientists, exported 02, Silicon, Glasses and 1000 MT of raw regolith shielding per month. One hundred persons not occupied in these tasks were also accomodated. This base had a total complement of 188 persons, required 81 "common modules," a 1.7 Mw power source, and aggregated 5118 MT. Over four years were required for construction. Twenty-three expendable lunar modules were used along with 284 OTV missions. Twenty-five shuttle flights, and 579 SDV flights provided earth launch services. Total program duration, from ATP to IOC was 12.6 years, with 5.2 years of maximum rate flight operations.

As no cost data are yet provided, no assessment of the economic factors were exposed by these test cases. The results did not appear to be totally implausible upon first examination, therefore it was concluded that the model works within its known limitations. Refinement is clearly necessary, but the "linkages" needed seem to manifest themselves appropriately.

V. FUTURE WORK

Obviously, this initial model is not in final form. Refinements and changes initiated by the authors and users will continue until confidence in the model's accuracy and completeness is established. Currently, the authors plan to incorporate NASA Cost Estimating Relationships (Appendix C) and Work Breakdown Structure (Appendix D) to the next iteration of the demonstration model. Also, values and dependencies of the key parameters of areas such as the LEO space station and program emphasis should be addressed in the future prototype model. However, care must be taken not to spend a prohibitively large amount of time on the PC-based model which delays work on the more comprehensive VAX-based model.

The value of the follow-on work to the demonstration model depends as much on NASA and its contractors inputs of data and suggestions as it does upon the efforts of the authors. More accurate transforms are needed in all of the model "modules" to make the simulation as realistic as possible. The authors look forward to your assistance.

Table 1 - Summary of Test Cases

, **.**

Test Case Base Attribute	"Bare Bones"	1 Surf Sci	l sur & 1 phy sci	l sur, 1 phy, & 1 astr sci	1 sur,1 phy, 1 astr, & 1 other
Population Number of Habitats Pwr Plnt Size (Mw) Base Mass (MT) Cnstrctn Intrvl (mo) Expendable LM's OTV Flights Shuttle Flights SDV Flights Total Time (yrs) Flgt Ops Time (yrs)	7 7 220 3.8 3 30 3 62 7.6 0.5	8 8 266 4.3 3 32 3 67 7.6 0.6	9 9 314 4.8 3 35 3 73 7.7 0.6	10 10 <0.1 373 5.4 3 38 3 79 7.8 0.7	12 10 <0.1 382 5.6 3 9 3 81 7.8 0.7
Test Case Base Attribute	8 sci, 2 ea dis	02 Prod 25 MT/mo	02 Prod 50 MT/mo	02 Prod 75 MT/mo	02 Prod 83 MT/mo
Population Number of Habitats Pwr Plnt Size (Mw) Base Mass (MT) Cnstrctn Intrvl (mo) Expendable LM's OTV Flights Shuttle Flights SDV Flights Total Time (yrs) Flgt Ops Time (yrs)	17 12 0.1 502 7.0 4 47 4 96 7.9 0.9	10 9 0.3 478 6.7 3 44 3 90 7.9 0.8	$ \begin{array}{r} 10 \\ 9 \\ 0.5 \\ 665 \\ 8.9 \\ 4 \\ 54 \\ 3 \\ 110 \\ 8.1 \\ 1.0 \\ \end{array} $	10 9 0.7 851 11.1 4 65 3 130 8.3 1.2	10 9 0.8 914 11.9 4 68 3 137 8.3 1.2

8

_ _

Table 1 (continued)

.

,

Test Case	02 Prod	02 Prod	02 Prod	02 Prod	Com only
	100 MT/mo	150 MT/mo	200 MT/mo	300 MT/mo	5 per
Base Attribute		200			o per
Population	10	10	10	10	13
No. of Habitats	9	9	9	9	10
Pwr Plnt Size (Mw)	1.0	1.4	1.9	2.8	<0.1
Base Mass (MT)	1038	1411	1784	2530	377
Cnstrtn Intrvl (mo)	13.3	17.8	22.4	31.4	5.0
Expendable LM's	4	5	5	7	3
OTV Flights	75	96	117	159	37
Shuttle Flights	3	3	3	3	4
SDV Flights	150	191	231	313	76
Total Time (yrs)	8.4	8.8	9.2	10.0	7.7
Flgt Ops Time (yrs)	1.4	1.7	2.1	2.9	0.7
Test Case Base Attribute	Com only 10 per	Com only 20 per	Com only 40 per	Com only 60 per	Com only 80 per
Population	19	32	57	82	107
No. of Habitats	13	18	30	41	52
Pwr Plnt Size (Mw)	0.1	0.1	0.2	0.2	0.3
Base Mass (MT)	539	820	1453	2053	2653
Cnstrtn Intrvl (mo)	6.2	8.4	13.5	18.3	23.2
Expendable LM's	4	5	9	11	14
OTV Flights	44	56	86	113	141
Shuttle Flights	44	6	9	12	15
SDV Flights	91	117	177	234	292
Total Time (yrs)	7.9	8.1	8.7	9.3	9.8
Flgt Ops Time (yrs)	0.8	1.0	1.6	2.1	2.6

Table 1 (continued)

٠

-

Test Case Base Attribute	Com only 100 per	Com only 150 per	Com only 200 per	Com only 500 per	02 - 83 A1 - 50 Com - 8
Population	132	194	257	632	24
No. of Habitats	63	92	120	288	14
Pwr Plnt Size (Mw)	0.3	0.5	0.6	1.5	1.1
Base Mass (MT)	3252	4805	6319	15417	1296
Cnstrctn Intrvl (mo)	28.0	40.7	53.0	127.1	15.5
Expendable LM's	17	25	32	76	6
OTV Flights	169	241	312	735	88
Shuttle Flights	18	26	34	81	5
SDV Flights	350	499	645	1521	177
Total Time (yrs)	10.4	11.8	13.2	21.6	8.7
Flgt Ops Time (yrs)	3.1	4.4	5.7	13.4	1.6
Test Case Base Attribute	02 - 83 Si - 50 G1 - 50 Com - 8	02 - 83 Si - 50 Gl - 50 Shl -100 Com - 8	02 - 83 Si - 50 Gl - 50 Shl -200 Com - 8	02 - 83 Si - 50 Gl - 50 Shl -300 Com - 8	02 - 83 Si - 50 G1 - 50 Sh1 -400 Com - 8
Population	28	32	32	32	32
No. of Habitats	16	17	17	17	17
Pwr Plnt Size (Mw)	1.2	1.2	1.2	1.2	1.2
Base Mass (MT)	1393	1439	1451	1463	1476
Cnstrctn Intrvl (mo)	16.6	17.2	17.3	17.5	17.6
Expendable LM's	6	7	7	7	7
OTV Flights	94	97	98	98	99
Shuttle Flights	5	6	6	6	6
SDV Flights	189	196	197	198	200
Total Time (yrs)	8.8	8.9	8.9	8.9	8.9
Flgt OPs Time (yrs)	1.7	1.8	1.8	1.8	1.8

Table 1 (continued)

· •

I.

Test Cases	02 - 83 Si - 50	02 - 83 Si - 50	02 - 83 Si - 50	02 - 83 Si - 50
Base	G1 - 50	G1 - 50	G1 - 50	G1 - 50
Attributes	Sh1 -500 Com - 8	Sh1-1000 Com - 8	Sh1-1000 Com - 8 Sci - 33	Sh1-1000 Com -100 Sci - 33
Population	32	32	73	188
No. of Habitats	17	17	30	81
Pwr Plnt Size (Mw)	1.2	1.3	1.5	1.7
Base Mass (MT)	1488	1549	2346	5118
Cnstrctn Intrvl (mo)	17.8	18.6	28.7	51.3
Expendable LM's	7	7	10	23
OTV Flights	100	103	155	284
Shuttle Flights	6	6	11	25
SDV Flights	201	208	312	579
Total Time (yrs)	8.9	9.0	10.0	12.6
Flgt Ops Time (yrs)	1.8	1.9	2.8	5.2

VI. REFERENCES

-

- Nozette, S., and Roberts, B., editors, "Report on the LSPI/NASA Workshop on Lunar Base Methodolgy," Large Scale Programs Institute, Austin, TX, August 1985.
- 2. Bell, L., et al., "Working Draft of the Lunar Base Study Group," University of Houston, Houston, TX, December 1985.
- 3. Davis, H., "Lunar Oxygen Impact Upon STS Effectiveness," Report #EEI 83-63, Eagle Engineering, Inc., Houston, TX, May 1983.
- "Procedures for Contractor Reporting of Correlated Cost and Performance Data," NHB 9501.28, NASA Headquarters, Washington, D.C., February 1985.
- 5. Stump, B. and Christensen, E., "Analysis of Lunar Propellant Production," Report No. EEI 85-103B, Eagle Engineering, Inc., Houston, TX, December 1985.
- 6. "NASA Space Systems Technology Model," NASA TM 88174, NASA Headquarters, Washington, D.C., June 1985.
- Apel, U., Johenning, B., and Koelle, H., "Comparison of Alternative Stategies of 'Return-to-the-Moon'," Technical University of Berlin, Summer 1985.
- 8. "Aggressive Space Program," Report No. 85-109, Eagle Engineering, Inc., Houston, TX, October 1985.
- 9. "Orbital Transfer Vehicle Concept Definition and System Analysis Study," Martin-Marietta, 4 Volumes, August 1985.
- 10. Loftus, "The Elements of a Space Operations System," IAF 82-12, 1982.
- Loftus and Brashear, "Beyond Low Earth An Overview of Orbit to Orbit Stages," IAF 85-141, 1985.
- 12. Lucas, W.R., "National Space Transportation System Planning," EASCON-85, NASA-MSFC, October 1983.
- Carroll, W. F., "Research on the Use of Space Resources," JPL Publication 83-36, Jet Propulsion Laboratory, Pasadena, CA, March 1983.

APPENDIX A

. .

_

MODEL LISTING

(Listed by screen, as it appears in the model)

WELCOME TO the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

•

-

LYNDON B. JOHNSON SPACE CENTER

LUNAR BASE MODELLING PROGRAM RELEASE 1.0 MARCH 15, 1986

developed under NASA Grant NAG 9-116 by THE CENTER FOR SPACE RESEARCH, THE UNIVERSITY OF TEXAS AT AUSTIN and THE LARGE SCALE PROGRAMS INSTITUTE, AUSTIN, TEXAS (512) 478-4081 (please press "page down" key to continue) PREFACE

Screen i (Info)

This document is the current version of a long-term effort to develop a comprehensive computer simulation of a permanent Free World inhabited base on the surface of Earth's moon. Such a base is considered by many in the aerospace advanced systems community as a natural follow-on to the present United States Low Earth Orbit Space Station program. The feasibility of a lunar base can be enhanced if key technology areas that have a direct effect on lunar base emplacement and operation are identified. This simulation is devoted to the task of identifying those specific areas, when developed, capable of making a lunar base a reality.

As this is a progress report, rather than a completed model, numerous important facets of the Lunar Base program are not yet addressed. Notably, no program cost data are provided because such data produced by the model in its present, immature form could be misleading and irresponsible. Consequently, only "place-holder" screens are provided for the period beyond completion of the mature base and initial presence of the full complement of inhabitants. Therefore, no "mass payback" or "cost/benefit" ratios are calculated by this prototype model.

PRECEDENG PAGE BLANK NOT FILMED

PRECEDENG PAGE BLANK NOT FILMED

ACKNOWLEDGEMENTS

Screen ii (Info)

This effort was supported by NASA Grant NAG 9-116 from the NASA Lyndon B. Johnson Space Center. The technical monitor, Mr. Barney Roberts, offered laudable technical counsel and needed encouragement during the work on this preliminary model. Significant input data and assistance were provided by Mr. Humboldt Mandell and Mr. Kyle Fairchild of NASA-JSC and Mr. John Butler and Mr. Eugene Austin of NASA- MSFC. Many others also made contributions, including valuable assistance from Mr. Stan Sadin of NASA Hq. and Mr. Bill Stump of Eagle Engineering, Inc., who works in parallel with the team in Austin in examining the overall program. Dr. Chris Knudsen provided the lunar oxygen plant transforms.

Drs. Hans Mark and George Kozmetsky of the Large Scale Programs Institute of the University of Texas and Dr. Byron Tapley, Director of the Center for Space Research of the University of Texas at Austin, provided continuous support, counsel, and assistance.

PURPOSE

Screen iii (Info)

The purpose of this demonstration model is to permit quick assessment of the influence of changes in top-level requirements, available space infrastructure and technologies upon the characteristics, size, mass, and costs of a permanently inhabited base on the surface of Earth's moon. The model also provides a description of the mission operations needed to establish and maintain the selected Lunar Base scenario. This prototype is a preliminary "proof-of-concept model being used as a "pathfinder" for a larger model planned for the near future.

The space transportation vehicles required to emplace and sustain the lunar facilities will be characterized external to this model and only the resultant vehicle characteristics essential to this model will be employed in the internal calculations. All required vehicles must be specified in the "input" section of the model. Development, fleet acquisition, and launch/landing facilities costs must be manually added to the cost outputs if needed. Only vehicle flights and "user charges" are accumulated within this model.

INSTRUCTIONS FOR USE

Screen iv (Info)

This model is intended for IBM-PC-compatible computers using Lotus "Symphony" release 1.1 software. The minimum memory required is 512K while 640K is recommended. An 8086 or 82086 CPU will allow more rapid recomputation of a model run. To be more useful, it is screen, not page, oriented. Go to Cell A161 to begin inputs, then A1061 for summary model run outputs. Cell protection is provided for default, info, and output screens. However, the standard "backup" procedures should be followed prior to alterations of cell contents by producing a duplicate diskette kept out of daily use. Should this fail, please return your diskette to LSPI for rerecording of the original (or then-current update) template diskette.

If hardcopy is desired, set pitch to 12, margins to L10 & R125. Four printing passes are necessary to obtain the entire model. "Source" settings are A1..11060, J161..0340, S221..2240 and J761..0860, respectively. The final instruction is to recognize this as a working tool and to provide criticism or suggestions for improvement to the originator, as the work continues and this model is truly a community effort. Your help is needed.

MODEL OUTPUT FORMAT

Screen v (Info)

This model will later use a prelimary Work Breakdown Structure (WBS) in accordance with NHB 9501.2B, "Procedures for Contractor Reporting of Correlated Cost and Performance Data", February 1985. The model will produce tabular reports which are based upon the NASA Form 933 series as required by NMI 9501.1, plus textual reporting as needed for lucidity.

Obviously, since this is an initial model of a large scale future civil space program, many iterations and refinements will be necessary before the level of detail, inter-relationships, and cost/benefit forecasts can be relied upon for budgetary estimates or actual program costing. It is considered important, however, that the work begin with the recognition of the NASA procedures for generating real program cost forecasts and reports, and to conform, insofar as practicable, to these NASA policies and procedures in constructing, using and interpretating results from the use of this Lunar Base Model. Users are encouraged to criticize the logic, pace, element descriptions, and transforms to assist in its improvement. Please offer your suggestions to NASA JSC or to LSPI, Austin, Texas.

LIMITATIONS

Screen vi

(Info)

Each input parameter will have an "applicable range" indicated. The model output has been reviewed only within these limits and results are unpredictable outside these boundaries. It is therefore recommended that the user provide values of each input parameter within the applicable range. (range feature not present in this prototype model)

This model specifies the technology levels employed by "transform algorithms" internal to the model. These transforms utilize the "figures of merit" for the circa 2000 technologies selected by the user. Transforms are displayed in the screen upper LH corner for the cell selected by the cursor and can be altered by the user by editing the algorithm contained in that cell. The final printout may display the algorithm of each transform on the report printout of the final run. Figures of merit are based upon results of the August, 1985 La Jolla Conference, supplemented by the documents listed in the bibliography. These are the best forecasts of the state-of-the-art available to the authors at the time this prototype model was prepared.

INPUT SCREENS

Screen vii

(Info) The following screens are designated for input of the various elements required to define the lunar base. The following input areas must be defined by the user to initiate each run of the model:

I. Top Level Requirements

- NOTE: The follow-on model will permit entry of a range
- a. Science Objectivesb. Resources Export
- c. Lunar Community
- permit entry of a range of values for each reqm't.
- II. Space Transportation System
 - a. Launch Vehicles
 - b. Upper Stages
- III. Low Earth Orbit Space Station (not functional in this model)
- VI. Lunar Orbit Space Station
- V. Programmatic Selections (not functional in this model)
 - a. Emphasis
 - b. Fiscal and Fleet Size Constraints
- VI. Technology Selections

	LUNAR BASE TOP LEVEL REQUIREMENTS					Screen 1
	reference	value	, Mission	Resupply	Spec.Pwr.	(111242)
	parameter	mature	e Equip.	Required	(Kw/per)	
SCIENCE:		base	e mass	Miss. Eq	•	
		(per)	(MT/per)	(MT/per/y	r)	
Astronomy	persons	1	20	0.500	1.5	
Physics	persons	1	10	2.000	15	
Surface	persons	2	7	1.500	2	
Other	persons	1	8	1.500	2	
			Requi	irements d	of Product	ion
RESOURCES EXPORT	:	Output	Equipmnt	Consumbls	Energy	Power
<pre>* -(ref:Knudsen,</pre>	Feb 1986)	(MT/mo.)	(MT/MT/mo)) (MT/MT)	(KwHr/MT)	(Kw/MT/mo)
Oxygen*	shipments	83.33	4.80	0.013	27000	32.00
Hydrogen	shipments		0.00	0.000	0	0.00
Silicon	shipments		0.75	0.035	18000	25.00
Aluminum	shipments		0.00	0.000	0	0.00
Iron/Steel	shipments		0.00	0.000	0	0.00

•

LUNAR BASE TOP LEVEL REQUIREMENTS (cont)						
	reference parameter	value, mature base	Mission Equip. mass	Resupply Required Miss. Eq	Energy	Power
RESOURCES EXPORT	(cont):	(MT/mo)	(MT/MT/mo)) (MT/MT)	(KwHr/MT)	(Kw/MT/mo)
Glasses	shipments	50	0.25	0.015	2500	3.47
Shielding	shipments	150	0.10	0.006	200	0.28
Mfgr. Prod.	shipments		0.00	0.000	0	0.00
Foodstuffs	shipments		0.00	0.000	0	0.00
Water	shipments		0.00	0.000	0	0.00
COMMUNITY		value,		Equipment	Extra	Extra
	I	mature bas	se	Mass	Resupply	Energy
		(per)		(MT/per)	(MT/per)	(KwHr/per)
Additional People	, persons	8		10.00	0.050	0

,

SPACE TRANSPORTATION SYSTEM

Screen 3 (Input)

The model assumes that a fleet of launch vehicles and upper stages were developed for other space programs and are available for use in establishing and maintaining a lunar base by payment of a fixed "user charge" for each flight. Characteristics of this space transportation system are tabulated below and will be used for this version of the luna base model until new values are determined for the following parameters.

			LAUNCH	VEHICLES:		
LAUNCH	USER		PAYLO	AD	ALTITUDE	PASSENGERS
VEHICLE	CHARGE				DECREMENT	(max)
	\$Mill/Flt		Metric	tons	MT/Km.	no.
Shuttle	\$59.0		29.5	50	0.075	8
Shutt.II	\$61.3	(prelim)	3	15	0.04	16
TransAtmo	\$35.0	(prelim)		5	0.03	2
SDV	\$88.5		66.	.4	0.05	0
HLLV	\$59.0		147.	.5	0.12	0

			UPPER S	STAGES:		:	Screen 4
	_						(Input)
VEHICLE	USER	USABLE	INERT MASS	6 Isp	AEROBRAKE	LNDG GR	CREW MOD
CH	IARGE	PROPELL.		DELIV.	MASS	MASS	MASS
\$N	ill/Flt	: Metric	tons	Seconds	5 8	8	MT
THO	<u> </u>	0		000			
105 - 1	\$15.0	9	1	298	none	none	none
IUS - 2	\$35.0	3	2	301	none	none	none
CentaurG'	\$65.0	22	3	446	none	none	none
OTV-I	\$45.0	40	6	475	15	none	3
OTV-II	\$40.0	40	5	500	12	none	5
EOTV-I	TBD	TBD	TBD	2000	none	none	none
EOTV-II	TBD	TBD	TBD	3000	none	none	none
Railgun OT	7 TBD	TBD	TBD	10000	none	none	none
LM-exp	\$100.0	40	б	475	none	58	none
LM-I reu	\$50.0	40	5	475	none	5%	7
LM-II reu	\$25.0	40	5	475	none	3୫	5
2St OTVII	\$55.0	80	11	475	TBD	TBD	TBD
(to continu	le press	s "PgDn",	for Upper	Stage Pe	erformance-	see right	=)

LOW EARTH	ORBIT S	SPACE STA	TION Screen 5
NOTE: Need NASA 28.5 deg	inclina	ation orb:	it (Input)
input on Space Station	MIN	MAX	NOTES
Operational Altitude, Km.	315	325	maintain within 10 Km.
O+H Propellant on-hand, MT	100	250	available for purchase
Transient crew accom., no.	2	10	not incl. crew rotatation
STS docking ports, no.	1	3	not incl. S/S resupply
SDV/HLLV docking ports	0	2	
OTV Sortie capab., no./mo.	2	10	paced by maintenance facil.
OMV Sorties, no./mo.	5	25	paced by no. of CMV's
USER CHARGES	\$N	Aillions	
STS/SDV docking/turnaround		0	
OMV dispatch/control, mission		0	NOTE:
OTV dispatch/control, mission		0	To be provided by
Warehousing, MT-month		0	NASA-JSC for
HO propellant, MT, FOB S/S		0	follow-on model.
Subsisentance, person day		0	
Lunar Mission Support, mo.		0	

.

,

LOW LUNAR ORBIT SPACE STATION Equatorial, 100 KM Orbit

Screen 6 (Input)

It is assumed, for this model, that a low lunar orbit space station is provided as an integral part of the lunar base program. The station wil act as a forward staging base for the personnel and material destined for the lunar surface. The assumed characteristics, pending NASA data, are:

SIZE	UNITS	MASS (MT)	NOTES	
12	persons	80.4	3	LEOSS CM
	each	26.8	1	LEOSS CM
15	kW	0.3		
15	kW	0.2		
		10.0		Estimated
80	MT, wet	106.7	2	OTV loads
0.15	capacity	33.6		capacity
	SIZE 12 15 15 80 0.15	SIZE UNITS 12 persons each 15 kW 15 kW 80 MT, wet 0.15 capacity	SIZE UNITS MASS (MT) 12 persons 80.4 each 26.8 15 kW 0.3 15 kW 0.2 10.0 80 MT, wet 106.7 0.15 capacity	SIZE UNITS MASS NOTES (MT) 12 persons 80.4 3 each 26.8 1 15 kW 0.3 15 kW 0.2 10.0 80 MT, wet 106.7 2 0.15 capacity 33.6

Total:

`

τ

257.9

PROGRAMMATIC INPUT SELECTIONS Screen 7 ---to be employed in follow-on model-- (Input)

These selections will determine the sequence in which capabilities will be constructed on the lunar surface and the iteration of program pace (schedule) and content in response to specified constraints, if any.

Α.	Emphasis	Science	Resources	Community
	(insert	$0,1,2 \text{ or } \overline{3}$		
в.	Fiscal Constraints			
		Runout Costs	Peak Ye	ar Funding
	(\$Billio	ns)	(\$Billions/yr.)	
C.	Fleet Size Constraints	upon Lunar Base F	rogram	
	Shuttle	launches per year	(number	·)
	SDV laun	ches per year	(number	·)
	HLLV lau	nches per year	(number	·)
	OTV laun	ches per year	(number)
	Lunar La	ndings per year	(number	·)

TECHNOLO (select PRIMARY POWER SOURCES	GY SELECTION one from ea. Specific Mass (KG/Kw)	S categor Unit Size (Kw)	Ty) Spec. Cost (\$/Kw)	Fuel Cons. (KG/KwHr)	Screen 8 (Input) Oper. Life, (vrs)
(enter "1" if present)	· · · ·	• •	•••••		
Chem. Fuel Cells	7.7	175	10000	0.36	
Solar PV-I	5.6	250	100000	0.00	
Solar PV-II	4.0	250	90000	0.00	
Solar Dynamic-I Solar Dynamic-II					Conv.Eff.%
Nuclear RTG	125.0	100			10.5%
1 Nuc.Reactor-I	33.3	100			12.0%
Nuc.Reactor-II Other	20.0	100			12.0%

(**1**

- This prototype model uses manual cell reference ONLY --

TECHNOLOGY SELECTIONS (cont) (select one from ea. category)							
ENERGY	STORAGE	Specific	Specific	unit unit	Consum.	Life	
		Mass	Cost	Size	Losses		
		(KG/KwHr)	(\$/KwHr)	(M3/KwHr)	(KG/KH/yr) (yrs)	
	SOA Bat	t. 22.22	•		• • • •	15	
	1 Adv Bat	t. 9.09	0	0	0	10	
	Regen F	/C					
	Mechani	cl					
	Thermal						
HEAT R	EJECTION	(KG/Kw)	(\$/Kw)	(M2/Kw)	(KG/Kw/yr) (yrs)	
	1 Radiato	r 11.11	0.00	1.43	0.00	TBD	
	Droplet						
	Soil						
THERMA	L CONTROL						
	1 Pumped	4	(prelim)				
POWER (CONTROL						
	1	11.76					

•

OUTPUT SCREENS

(Info)

The following screens show the results of applying various "transforms" to the user's input selections. The results include such information as:

- 1. Habitation Requirements
- 2. Resupply Mission Requirements
- 3. Power Requirements

•

- 4. Delivery Manifest Summary
- 5. Construction Requirements
- 6. Base Delivery and Construction Schedule
- 7. Transportation Requirements
- 8. Master Program Schedule (not available in this model)
- 9. Flight Schedule
- 10. Cost Estimates (not available in this model)
- 11. Science and Resources Return (not available in this model)

--- Do NOT make entries on Output/Transform Screens ----

THE FORMAT AND USE OF "TRANSFORMS"

Screen 11 (Info)

The relationships between a stated "requirement" and the resulting system or subsystem characteristic ("attribute") are, for the purpose of this model, known as "transforms". The general form of these transforms is:

y = a + b(x), y = attribute, may be a reqmnt. for other items a = a constant, can be "0" b(x) = may a simple linear relationship, or a non-linear function to denote relationships such as cost estimation. x = the requirement value, selected by the user or defined by another transform.

Values of the constants and exponents in b(x) are determined empiricall from NASA "technology forecasts" and other sources. They are, in general, not to be altered by the user of the model except for "sensitivity study" applications of the model. Changes are possible by editing cell contents. This results in permanent user-induced changes to this volume of the model

THE FORMAT AND USE OF "TRANSFORMS" (cont) Screen 12 (Info)

- x = requirement, the product or service the item is to deliver, as specified by a user. Example: 150 MT of LO2 delivered to LEO.
- y = attribute (mass, elec. power req'd, fuel req'd, data rate, etc.)
 resulting from the consequences of fulfilling the requirement
 with the selected technology. Example: LO2 plant mass, MT.
- a = a constant determining the value of the attribute for the case in which the value of the requirement is zero, e.g., a floor value for that attribute if the item is present in the base.
- b(x) = an empirical function which will quantify an attribute
 given the value of the requirement and the technology selected.
 May be, alone, an adequate transform for defining many attributes.
BASE SHOPS/LABS/OFFICES TRANSFORM CALCULATION Screen 13 (Info)

More elaborate means of determining the requirements for housing of people and operational functions is needed in the next version of this model. For the present, it is assumed that all pressurized housing is comprised of LEO space station "common modules" modified to better accomodate the lunar environment and the operational functions of the lunar surface base. In the absence of more accurate transforms, it is also assumed that 4 persons can occupy the common module for a full

12 month tour of duty and that the base functions require that a command and communications center, a small warehouse for pressurized storage, a common eating/meeting place and a clinic be provided. This would require 2 complete modules and ancilliary items.

Similarly, although the "office" functions for the science and resource production of the base have not yet been assessed, it is assumed that each activity can be accomodated within 50% of a module. As the mission activities become better defined, this estimate will be refined.

BASE COMPLEMENT TRANSFORM CALCULATION

Screen 14 (Output)

- Core Operating Staff: It is assumed that the lunar base staff, for th base to function without output of resources or science, will be 5 persons (one for each of 2 shifts and 3 for the 1st shift of operations). Base Staff Support: It is assumed that 0.25 per. staff increase is required to assist each non-core staff perso including maintenance of pwrplnt, opns., etc. Resources Support: Although highly automated, it is assumed that each resource shipped will require 3 persons fo 150 MT/yr. prod. plus 0.5 person for each added
- Total Base Complement: For this run of the model, the total population RESULT: of the mature lunar base is 33 persons.

increment of 50 MT/yr. (Future model addition)

	BASE HABITAT TRANSFORM CALCULATION Scree (Outp	n 15 ut)
No. of Habitats:	It is estimated 4 persons can occupy each	,
RESULT	For this run of the model, 9 standard habita modules are required for housing the mature base cr	t ew.
Habitat Mass:	Each habitat, with its self-contained ECLSS, tunnel heat rejection, is estimated to have a dry mass of 26.8 MT and will require an initial inventory o consumables of 5 MT. (water, food, clothin For this run of the model, total housing babitat ma	s& f g)
RESULT	delivered for the base is: 286.1 MT.	55
Habit Pwr/Energy:	Each habitat will require a peak power level of 4.5 KW and an average annual electrical energy supply of 15779 KWHr at an average duty cycle of 40% . Total base bousing power & energy are:	,
RESULT	40.5 KW and 142009 KwHr/yr, respectfully.	

•

.

	BASE SI	HOPS/LABS/OFFICES TRANSFORM CALCULATION	Screen 16 (Output)
No. of	Habitats:	Estimates are that 2 modules are ne	eded for
		non-housing purposes of the base and	0.5 module fo
	RESULT	each activity. Therefore, 10 stand	lard habitat
		modules are required for mission-related	purposes.
Habitat	Mass:	Each mission habitat, with its self-conta heat rejection, is estimated to have an e	ained ECLSS and Empty mass of

26.8 MT and will require an inventory of equip. & consumables of 8.5 MT.(std equip, reagents, etc) For this run of the model, total mission habitat mass RESULT delivered to the base is: 352.9 MT.

Habit Pwr/Energy: Each mission habitat will require a peak power level of 6 KW and an average annual electrical energy RESULTS supply of 36817 KWHr at an average duty cycle of 70%. Base mission habitats power & energy are: 60 KW and 368172 KwHr/yr, respectfully.

RESUPPLY REQUIREMEN	its of mat (Kg/Mye) (URE BASE MT/yr)	Screen 17 (Output)
Human Needs for: 33 persons			NOTES
Food (dry)	234	8	per Larry
Water	1174	3 9	Bell, UofH
Oxygen	294	10	Draft of
Clothing Allowance (estim.)	150	5	Dec. 8, 18
Personal items (estim.)	183	6	0.5 Kg/manday
Other (estim.)	102	3	5.0% of totals
Subtotal:	2136	70	33 person bas
Mission Needs (Science & Resources, 1	ess trans	port)	-
Equipment, new		73	15.0% per year
Parts & Supplies		67	5.0% per year
Water 50.0% resupply	stores	16	10.0% loss/yr.
Hydrogen, assume 25.0% resupply	stores	13	10.0% loss/yr.
Other consumable 25.0% resupply	stores	13	10.0% loss/yr.
Subtotal:		182	· •
Total re-supply / year, no l	unar 02:	253	4.8 LM2/year

.

BASE DELIVERY/CO HU According to Dr. Larry B	Screen 18 (Output) ity of Houston			
"Lunar Base Study Group"	Working	Draft of I	Dec. 8.	1985, humans need:
Item	KG/day	Packaging	KG/mo	notes
	Mat'l.	Mat'1., %	total	
Dry Food:	0.641	25%	24.04	Larry Bell
Water (free)	2.845	20%	102.42	Larry Bell
Metabolic Wat.(Ox)	0.371	20%	13.36	Larry Bell
Oxygen	0.806	100%	48.36	Larry Bell
Clothing	0.411	10%	13.56	estimated here
Personal items	0.500	10%	16.50	estimated here
Other	0.279	108	9.20	estimated here
Total:	5.85		227.43	Bell + here

Construction crew size and time interval are derived on Screen 26.A crew of14 requires supplies of3184 KG per month.Therefore, for a construction interval of11.5 months,36.6Metric Tons of human needs consumables are required.

MAT	URE LI	JNAR BASE	MASS/POW	er summary		Screen 19 (Output)
Area			Initial Mass	Hardware Resupply	Power	Energy
			(MT)	(MT/yr)	(Kw)	(KwHr/yr)
Total Base Housing & H	Missic	on Module	s 639.0	9.6	101	5.10E+05
Central Pwrplnt @	0.97	MWe	32.5	0.5		
Pwr Control Sys @	0.97	Mwe	82.8	1.2	(seems to	o high)
Central Radtr @	8.93	MWt peak	99.2	1.5	•	
Thrml Contrl Sys @	8.93	Mwt peak	35.7	(Check est	timate w/	Stan Sadin
Operations Equipment		TBD	5507	(alcolt co		Dean Daarn
Transportation Equipme	ent	TBD				
Science Equipment			52	7.0	22.5	1.04E+05
Resources Equipment			427.5	2.7	823.1	7.225+06
Community Equipment			80.0	0.4	0.0	0 005+00
Maintenance Equipment	6	3	\$ 43.5	1.3	0.0	0.000100
Totals:			1492	24	946	7.83E+06

BASE DELIVERY MANIFEST SUMMARY LUNAR SURFACE OPERATIONS

Screen 20 (Output)

The LM load factor of 85% accounts for packing material, payloa shrouds or fairings, and equipment to accomodate transfer of the payload t the lunar surface conveyances, and loss of useful payload due to equipment unit sizes or masses. The follow-on model should approach each lunar module landing as a discrete mission and use mission planning software modules to manifest payload. LM exp vehicle mass is: 46 MT and maximum payload to the lunar surface is: 61.8 MT, gross.

Additionally, a base construction subroutine is needed for the future lunar base computer simulation to more carefully time-phase the arrival of personnel and equipment to accomplish the base construction tasks.

Finally, a lunar base ground operations subroutine is needed to more thoroughly address the vehicle landing, offloading, turn-around and preparations for ascent flight to lunar orbit. Also, a similar operations routine for the low earth orbit and lunar orbit (or libration point) space station activities should be developed for incorporation into the model.

BASE DELIVERY MANIFEST SUMMARY LUNAR FERRY OPERATIONS

Screen 21 (Output)

The LM-II vehicle is flown in a re-usable mode, once personnel are on the lunar surface, for cargo as well as personnel delivery. This LM-II vehicle has all-up mass of 52.6 MT and a cargo payload of 59.6 while carrying a crew module housing 6 persons. The load factor wil be improved to 90%, yielding a net cargo of 53.7 MT, includi the propellants needed to return the LM-II to Lunar Orbit. During the bas construction and initial operations intervals, this propellant will be delivered from Earth, thus launch and ferry to LO of 112.3 MT is required to deliver a net cargo of 46.1 MT, not including 7.5 of ascent propellant needed. These data will be refined in the follow-on effort, including re-sizing of all vehicles. Thus OTV/LM II = 2.38

Due to the extreme demands for LEO to LO ferry during the buildup of the lunar base, there is strong motivation for early production of luna oxygen. Re-phasing of the buildup schedule will be done in the follow-on model development to achieve the savings available with this strategy.

BASE DEL	IVERY MANIFE	ST SUMMAI	RY		Screen 22 (Output)
Area		LS Base	Exp LM	Hardware	Reusable L
		Mass	Landings	Resupply	Resupply
		(MT)	to estab	(MT/yr)	(Flts/yr)
			(refine)		
Total Base Housing +Missi	on Habitats	639.0	10.3	9.6	
Central Powerplant 0.9	7 MW output	32.5	0.5	0.5	
Power Control Sys. 0.9	7 MW output	82.8	1.3	1.2	
Central Radiator 8.9	3 MW peak	99.2	1.6	1.5	
Thermal Control Sy 8.9	3 MW peak	35.7	0.6	Chk est. w	/ S. Sadin
Operations Equipment	TBD	0.0	0.0	0.0	
Transportation Equipment	TBD	0.0	0.0	0.0	
Science Equipment		52.0	0.8	7.0	
Resources Equipment		427.5	6.9	2.7	
Community Equipment		80.0	1.3	0.4	
Maintenance Equipment @	3.00%	43.5	0.7	1.3	
Totals @ 8	5%load fact	1492	28	24	0.5

· · · ·

	MISSION	EQUIPMEN	T TRANSF	ORM CALCUL	ATION		Screen 23
							(Output)
Area	Activity		Size of	Initial	Resupply	Power	Energy
			Activity	Mass(MT)	(MT/yr)	(Kw)	(KwHr/yr)
Science	Astronomy,	persons	; 1	20	0.5	1.5	3.29E+03
Facil.	Physics ,	persons	; 1	10	2	15	6.57E+04
	Surface ,	persons	5 2	14	3	4	2.63E+04
	Other ,	persons	s 1	8	1.5	2	8.77E+03
Resource	Oxygen ,	MT/mo.	83.33	400	1.08	770	6.75E+06
Facil.	Hydrogen ,	MT/mo.	0	0	0	0	0.00E+00
	Silicon ,	MT/mo.	0	0	0	0	0.00E+00
	Aluminum ,	MT/mo.	0	0	0	0	0.00E+00
	Iron/Steel	, MT/mo.	0	0	0	0	0.00E+00
	Glasses ,	MT/mo.	50	12.5	0.75	43	3.75E+05
	Shielding,	MT/mo.	150	15	0.9	10	9.00E+04
	Mfgr. Prod	, MT/mo.	. 0	0	0	0	0.00E+00
	Foodstuffs	, MT/mo.	0	0	0	0	0.00E+00
	Water ,	MT/mo.	0	0	0	0	0.00E+00

	MISSION EQUIPMENT TRANSFORM CALCULATION (cont)					Screen 24	
Area	Activity	Number	Initial Mass(MT)	Resupply (MT/yr)	Power (Kw)	(Gutput) Energy (KwHr/yr)	
Commun.	Additional People Extra Energy used Transport-surface Transport-LEO	8 0 0	80	0.4	0.0	0.00E+00	

.

м

Total Mission Equipment	487.5	10.1	846 7.32E+06
-------------------------	-------	------	--------------

BASE DELIVERY - OTV FLIGHTS FROM LEO

Screen 25 (Output)

Through the construction phase, the demands upon the LEO space statio will be severely taxing to accomodate the traffic of vehicles and goods. This screen updates an approximation of the demands based on earlier work, EEI Report 83-63, "Lunar Oxygen Impact Upon STS Effectiveness," May 1983. Here, a single stage 5.1 MT OTV, consuming 73.4 MT of hydrogen/oxygen propellants, can deliver to lunar orbit a payload of

42 metric tons. It is assumed that the life of an OTV is 25 missions, thus requiring an OTV replacement allowance of 0.20 MT and an assumed OTV spares allowance of 2.0% of total inert mass Therefore, each metric ton delivered to the lunar orbit space station requires 0.024 OTV user charges to be spent and 1.75 MT to be launched from Earth (until lunar oxygen is available) at a SDV load factor of 92% to account for manifesting, P/L shroud, etc.

The refinement of this model should carefully assess the traffic flow and consequent capabilities needed at the LEO space station, as "design drivers" of importance to the growth space station are inevitable. Also, an update is needed of OTV propellant, inert mass, payload and maintenance

	BASE CONSTRUCTION EQUIP	MENT & S	STAFF	REQUIR	EMENTS	5	Screen 26 (Output)
Construct	ion Equipment Required:	(prel	.im)		Mass	(MT)	Notes
2 1	LOT Mobile Cranes 8	3 metric	tons tons	=		16	20M boom
2 7	mactors e	5 metric	tons tons	=		10	multi-use
3 1	Lo-boy Trlrs @	2 metric	tons	=		6	4.5M d x 1
6 H	Bucket/etc. kits @	2 metric	tons	=		12	for tracto
5 1	Nol kits @	l metric	tons	=		5	power+hand
2 3	Sets scaffolding @	L metric	tons	=		2	-
20	Items Subtotal of Consti	ruction	Equip	ment:		51	MT
=	1.0 Exp LM flts.						
Constructi	ion Staff Required:	Prdtvt	y (MT	/mnwk)	Cnstr	ctn 1	[ntrvl(wks)
2	Construction Engineers @		15			50	(prelim)
4	Riggers/Mechanical Techs	6	8			47	(prelim)
2	Electricians/Electronics	6	15			50	(prelim)
2	Pipe/Instrument Fitters (j	18			41	(prelim)
4	Operating Engineers @		10			37	(prelim)
14	Person crew constructs th	e linar	hase	in•		50	wooks

BASE DELIVERY/CONSTRUCTION SCHEDULE Large OTV Payload: 42 MT, flts./wk. = 1 Pre-placmat Phase: 23 6 weeks & delivered		Screen 27 (Output)
(based upon may OTV fit rate - needs new look)		IM flba
A Establish Imar Orbit Station 1004	UIV FILS.	
	D•T	0.0
B. Stock & Staff LO Station 100%	1.0	0.0
C. Deliver Construction Equipment 100%	1.2	1.0
D. Deliver Central Powerplant 25%	0.2	0.2
E. Deliver Pwr Cntrls & Radiators 25%	1.1	0.9
F. Deliver Thermal Control System 25%	0.2	0.2
G. Deliver Habitats 40%	6.1	4.9
H. Deliver Exp Lunar Modules 7 each	7.7	0
Subtotal:	23.6	7.0
Constr Crew Deliv: 5.5 weeks % delivered	LEO-LO	Reusable
No. or MT	OTV Flts.	LM-II flt
A. Dedicated cnstrctn crew flt. 14 persons	2.3	2.3
B. Deliver life support expendbls 36.6 MT	1.9	0.8
C. Deliver Lunar Module II stages + crew modules	2.7	
Subtotal:	5.5	2.3

,

*

.

BASE DELIVERY/CONSTRUCTION SCHEDULE (cont)		Screen 28 (Output)
Initialzatn Phase: 16.4 weeks % delivered	OTV Flts.	LM-II flt
A. Deliver Central Powerplant 25%	-	0.2
B. Deliver Power Controls & Rad 25%		1.0
C. Deliver Thermal Control System 25%		0.2
D. Deliver Habitats 40%		5.5
Subtotal:	16.4	6.9
Pwrplnt Erct Phase 3.2 weeks		
A. Deliver Central Powerplant 25%		0.2
B. Deliver Power Controls & Rad 25%		1.0
C. Deliver Thermal Control System 25%		0.2
Subtotal:	3.2	1.4
Base Erectn Ph I: 9.8 weeks		
A. Deliver Central Powerplant 25%		0.2
B. Deliver Power Controls & Rad 25%		1.0
C. Deliver Thermal Control System 25%		0.2
D. Deliver Habitats 20%		2.8
Subto tal:	9.8	4.1

r

	BASE DELIVE	RY/CONSTRUCTIO	N SCHEDULE (C	cont)	Screen 29 (Output)
Base Erectr	h Ph II:	28.4 weeks	<pre>% delivered</pre>	OTV Flts.	LM-II flt
D. Deliver	: Science Mi	ssion Equipmen	100%		1.1
E. Deliver	Resource F	Production Equi	100%		9.3
F. Deliver	· Contigency	y Constr. Equip	100%		0.1
G. Deliver	: Constructi	on Troubleshoo	100%		1.0
H. Deliver	additional	. life support	100%		0.4
		Subtota	1:	28	11.9
Base C/O Pt	ase:	9.1 weeks			
A. Deliver	: checkout e	quipment & sup	100%		1.0
B. Checkou	ut, deliver	replacement un	its for faile	ed items (10%)	2.8
		Subtota	1:	9	3.8
Crew Change	Phase:	5.5 weeks			
A. Deliver	: Lunar Base	e crew campleme	100%	6	5.5
B. Recover	constructi	on & c/o crews	100%		0.0
		Subtota	1:	6	5.5
		weeks	months	OTV Flts.	LM flts.
Total Const	ruction	78 , or	18.0	102	43

ı

EARTH LAUNCH	es to support	LUNAR BASE ESTABL	ISHMENT	Screen 30
				(Output)
Each STS delivers	29.5 MT for	\$29.5 million	s and up to	8
Each SDV delivers	66.4 MT for	\$66.4 million	S	\passenger
Each OTV requires	73.4 MT prop	ellant and 0.	4 MT spares	and incurs
a use charge of	\$1.8 millions	s per flight plus	propellant,	etc. del.
charges for	73.8 MT per	use, until lunar O	2 is availa	ble.

As a simpler transform, each metric ton launched from the LEO S/S to the lunar orbit requires 1.75 MT to be launched from Earth, includin reusable OTV spares and an allowance for OTV replacement. Therefore, each OTV flight requires 1.89 SDV Flights.

The total lunar base placement, including the complement of 33 persons, requires a total of 102 OTV flights, delivering 4269 metric tons to lunar orbit, requiring the launch of 193 SDV's. 7 expendable LM vehicles and 4.1 large reusable OTV's are expended in the operation as well as 1.4 LM-II vehicles before init. operation of the base 23.5 mos. after initial deployment from LEO

BASE DEI	IVERY/CONSTR	RUCTION H	FLIGHT SC	HEDULE	Scr	een 31
Based on SDV capaci	ty of	2 flt	s./wk	.more>>>	(00	tput)
-	RD&D Sys	s Fab Gr	nd C/Olto	O LEO IF	re-placel (o	Cr Del
Serial Time, weeks	208 -	104	52	6	22	5
ETO - Number of	Flights wit	thin Proc	ram Phase	e		5
Shuttle	•	-				2
Shutt.II						4
TransAtmo						
SDV				13	45	11
HLLV					10	11
SPACE - Number	of Flights w	vitin Pro	gram Phas	se		
OTV-I	•	_	3			
OTV-II					24	6
LM-exp					7	U
LM-I reusable					,	2
LM-II reusable						2
2St OTVII						
Total Flt. Oper.	0	0	0	13	75	20
Rate- Flt Opns/yr	Ö	Ō	õ	104	175	202
		2	v		115	202

. ·

B	ASE DI	ELIVERY	r/cc	NSTRU(CTION	FLIGHT SC	HEDUTE ((cont)		Com
		No. of	E fl	ights	with	in Program	Dhaco	CONC		Screen 31
PP	Erect	Base	EI	Base	ETTI	Checkoutlo			10	(Output)
	3		ā	1 2000	27			repup	IOPN B/U	Totals
	5		2		21	9	5			467
									months =	107.8
							4			6
										0
	6		10							0
	0		19		54	17	10	0	0	205
										0
										0
	2		• •							0
	3		10		28	9	6			102
										7
	T		4		12	4	6			36
										0
						,				Ő
	11		33		94	30	25	0	0	256
	182	1	82	1	82	182	254	FRR	U CCT	220

_ ...

LUNAR BASE DESIGN, DEVELOPMENT, TEST, & EVALUATION COSTS Screen 32 Costs, \$ Millions, 1986 \$ (Output) Developmt Test Evaluatn Totals Earth Launch Fleet Mods Upper Stage Fleet Mods LEO Space Station Upgrading Lunar Orbit Space Station Expendable Lunar Modules Reusable LM-1's Reusable LM-2's TO BE SUPPLIED IN FOLLOW-ON MODEL Lunar Base Habitats Lunar Base Powerplant Lunar Base Heat Rejection Lunar Surface Transport operations Science Mission Equipment Resource Production Plants System Test Totals:

LUNAR BASE SYSTEM ACQUISITION & CHECKOUT COSTS Screen 33 Costs, \$ Millions, 1986 \$ (Output) Hardware Software Operations Totals

Earth Launch Fleet Mods Upper Stage Fleet Mods LEO Space Station Upgrading Lunar Orbit Space Station Expendable Lunar Modules Reusable LM-l's Reusable LM-2's TO BE SUPPLIED IN FOLLOW-ON MODEL Lunar Base Habitats Lunar Base Powerplant & Controls Lunar Base Heat Rejection Lunar Surface Transport operations Science Mission Equipment Resource Production Plants System Test Totals:

.

.

	LUNAI Costs.	R BASE Smill	DELIN	/ERY/(1865	CONSI		ION (COSTS	TIM	ELINE		Scre	en 34
Task			1		2		3		4		5		.puc) 6
ATP Lunar Bas System Ac System Gr Marshall Pre-placm Crew Delv Initialza Pwrplnt E Base Erec Base C/O Crew Chan Prepare C Initial C Operation	e DDT&H quisiti ound C/ @ LEO S nt Phas th Phase th Phase Phase: ge Phase peratic apabili s Build	+ Sion (0 S/S Se: Se: Se: Se: Se: Se: Se: Se	+++++	-+++++	- +++	++++ ATIVI	E ONI	-++++- ++++-	+++++	titit	+++++	++++ ++++	-+++++ -+++++

— ·

с (

---- ----

Cost	LUNAR Costs, Element	BASE D \$Million 	ELIVE ns '8 1	RY/C 6\$:	ONSTRUC Cal 2	CTION (.endar 3	COSTS - Year 4	BY ELEM .more>>	1ENT >> 5	Scre (Out) 	en 35 put) 6
Launc LEO S OTV S Lunar Habit Power Scien Resou Const Crew Groun Re-su	h Services /S Services ervices Orbit S/S Modules ats plant, etc. tific Equip rces Equip. nity Equip ruction, all & Support d Support	•	T	O BE	SUPPLI	ED IN	Follow	i-on moe	DEL		
	Total		0		0	0		0	C)	0

-- --- -

,

۲

- -

			LUNAR	BASE	DEI	LIVER	(/CONS	STRUC	TION	COST	S -BY	ELE	MENT	Screen 35
				Cost	ts,	\$Mil:	lions	' 86\$		Cal	endar	Yea	r	(Output)
1	8	1	9		10	1	11	1	12		13	1	14	Totals
														0
														0
														0
														0
														0
														0
														0
														0
														0
														0
														0
														0
														0
														0
	•					_	_		_					0
	0		C)		0	0		C)	0		0	0

ï

,

	LUNAR	BASE	REQU	IREM	IENTS	DURII Yea:	NG OP r aft	ER/	ATIONAL IOC	BUII	DUP	Screen 36 (Output)
WBS	Element	I	1	I	2	1	3	I	4	I	5	Totals
Resu Crew SDV STS 2St LM- LM-1 LM-2 LEO LO S Eart	pply req'd, M Rotation, no Flts Flts OTV Ferry Flt exp Flts. Reusable Flt Reusable Flt S/S Use Units h Support, My	TT S S S S S S S S		TO	BE SI	JPPLII	ED IN	FC	DLLOW-OI	n Moe	EL	

,

WBS	BASE Element	OPERATIONS	COSTS	DURI 2	NG ST Year 	ART-U afte 3	P (r 1 	OF OPE (OC 4	RATIC	ons 5	Screen 37 (Output) Totals
Resu Crew SDV STS 2St LM-1 LM-2 LEO LO S Eart Oper Othe Cont	pply req'd Rotation, Flts user Flts user OTV Ferry exp Flts c Reusable S/S Use Cha h Support, tns & Mgmt r Costs ingency Fu Total	a, \$ chrg chrg chrg chrg chrg chrg chrg arge s arge \$., \$ nd s	TO	3e sui	PPLIE	D IN I	fol	LOW-OI	1 Moe	ÆL	

-

٠

.

TYPICAL FULL SCALE OPERATIONS YEARLY PERFORMANCE

3

Screen 38 (Output)

.

SCIENCE DELIVERED, MM/yr. Astronomy Physics Surface Other RESOURCES DELIVERED, MT/yr. Oxygen Hydrogen Silicon TO BE SUPPLIED IN FOLLOW-ON MODEL Aluminum Iron/Steel Glasses Shielding Mfgr. Prod. Foodstuffs Water

 TYPICAL FULL SCALE OPERATIONS ANNUAL REQUIREMENTS
 Screen 39 (typical of 20 years of full scale operations)
 Screen 39 (Output)

 Chargeable to
 WBS Element
 SCIENCE RESOURCES OTHER TOTALS

 Resupply req'd, MT Crew Rotation, no.
 Total

Crew Rotation, no. SDV Flts STS Flts 2St OTV Ferry Flts LM- exp Flts. LM-1 Reusable Flts LM-2 Reusable Flts LEO S/S Use Units LO S/S Use Units Earth Support, MYE

•

1

TO BE SUPPLIED IN FOLLOW-ON MODEL

TYPICAL FULL SCALE OPERATIONS ANNUAL COSTS

_ - -

Screen 40 (Output)

Chargeable to SCIENCE RESOURCES OTHER TOTALS

Resupply req'd, MT Crew Rotation, no. SDV Flts STS Flts 2St OTV Ferry Flts LM- exp Flts. LM-1 Reusable Flts LM-2 Reusable Flts LEO S/S Use Units LO S/S Use Units Earth Support, MYE Total Costs Figure of Merit

WBS Element

•

TO BE SUPPLIED IN FOLLOW-ON MODEL

SCIENCE & RESOURCE RETURNS Screen 41 (Output) Benefits, \$Millions '86\$ Calendar Yr. after IOC more> Benefit SCIENCE, MYe | 1 | 2 | 3 | 4 | 5 | 6 Astronomy Physics Surface Other RESOURCES SUPPLIED, MT Oxygen Hydrogen Silicon TO BE SUPPLIED IN FOLLOW-ON MODEL Aluminum Iron/Steel Glasses Shielding Mfgr. Prod. Foodstuffs Water COMMUNITY, No.

- -

, '

					SCIENC	E 8	RESO	URCE	E RETUR	RNS				Screen 4	1
Be	mefit			Bei	nefits	s, \$	Millia	ons	' 86\$	Ca]	endar	Yr.	after	ICC	
	8	1	9	1	10	1	11		12	1	13	1	14	Totals	;

•

.

LUNAR BASE TOTAL PROGRAM SUMMARY Screen Value	42	(Output) Units
Population of Lunar Surface Base, incl. LO S/S	33	persons
Science Manyears on Lunar Surface		person yea
Oxygen delivered to space users		MT, total
Hydrogen delivered to space users		MT, total
Silicon delivered to space users		MT, total
Aluminum delivered to space users		MT, total
Iron/Steel delivered to space users		MT, total
Glasses delivered to space users		MT, total
Shielding delivered to space users		MT, total
Mfgr. Products delivered to space users		MT, total
Foodstuffs delivered to space users		MT, total
Water delivered to space users		MT, total
TO BE SUPPLIED IN FOLLOW-ON MODEL		·
Development Costs		\$, Billion
System Acquisition & Placement Costs		\$, Billion
Operations costs		\$, Billion
Total Program Costs	0	\$, Billion

COST/BENEFITS ANALYSIS TO BE SUPPLIED IN FOLLOW-ON MODEL	value	Screen 43 (Output)
Development Interval		ware
Placement Interval		years
Buildup Interval		years
Operational Interval	20	years
Total Program Duration	20	years
	20	years
Net Present Value of Program Costs, '86 \$		\$, Billion
Net Present Value of Resources Provided to Space		\$, Billion
Net Present Value of Science Conducted		\$, Billion
Net Present Value of Space Operations Support		\$. Billion
Net Present Value of Commercial Applications		S. Billion
Net Present Value to National Security		S. Billion
Net Costs (Benefits) to taxpayer, total program	0	S. Billion
Net Costs (Benefits) to taxpayer, per year	õ	\$, Billion

- -

- -

Benefits/Costs Ratio

- ---

•

ERR dimensionl

_ - - - - - -

;	Synopsis of	Run	No 01:08 AM 01-0	Jan-80
INPUT:			OUTPUT: Screen 44 (Out	tput)
Science (persons))		Total Base Population:	34
Astronomy	1		No. of Habitable Modules:	20
Physics	1		Powerplant rating, Megawatt	0.9
Surface	2		Mass of Base, Metric Tons:	1492
Other	1		Size of Construction Crew:	14
Resources Export	(MT/mo)		Construction Interval, mos.	18.0
Oxygen	83.33		No. of Expendable LM's:	7
Hydrogen	0		OTV Flights:	102
Silicon	0		Shuttle Flights:	6
Aluminum	0		SDV Flights:	205
Iron/Steel	0		Max. OTV flts/wk. (an input)	1
Glasses	50		Max. SDV flts/wk. (an input)	2
Shielding	150		Time, total, years, SDV cons	9.0
Mfgr. Products	0		Time, flight operations, years,	
Foodstuffs	0		SDV Constrains pace:	1.9
Water	0		Time, flight operations, years,	
Community-person	8		OTV Constrains pace:	1.5

.

-
OUTPUT MENU LISTING

Bill of Materials of lunar surface facil. & stores Total LV Flights, no., type, fleet size increase Total OTV Flts, no., type, fleet size increase Total LMexp Flts, no. used Total LM flts, no., type, fleet size Launch Transportation Cost, \$B Orbit Transport Cost, \$B Landing/Launch Transport Cost, \$B Equipment Required, MT Equipment Cost, \$B Commodities Consumed, 1000's MT, type, total Commodities Exported, 1000's MT, type, total Buildup Phase Timeline, events, time spans Buildup Phase Cost, \$B Operational Phase Cost, \$B Export Sales Value, \$B, by type, total Science Conducted, Manyears

Screen x (Output) Commodity Production Product Production Operational MPR Total MPR, 25 yrs. o Total Cost NPV Exports NPV Costs-1 NPV Costs-2 NPV Costs-3 NPV Costs-4 B/C-1B/C-2B/C-3 B/C-4

OUTPUT MENU LISTING (con't.)

Screen x+1 (Output)

Time-phased Plots (per year of construction and operational phases) Lunar Base Mass, by WBS major element, total LSB Population, by type: base staff, science, resources, other, total LV Flights, by type, total user charges, total mass launched from earth OTV Flights, by type, user charges, propellants required from LEO & LLO LM Flights, by type, user charges, propellants consumed from LLO and LS Lunar Surface Production, by type, totals Imports, not including vehicles, propellants or people Exports - by type, total commodities/products arriving at LEO station Sales by Commodity & Product, total Science MM, by type, total Costs by WBS major element, total Sunk Capital, \$B

	LUNAR BASE TOP LEVEL REQUIREMENTS					Screen 1D (Default)
	reference	value,	Mission	Resupply	Spec.Pwr	•
	parameter	mature	Equip.	Required	(Kw/per)	
SCIENCE:		base	mass	Miss. Eq	•	
		(per)	(MT/per)	(MT/per/y	r)	
Astronomy	no.person	1	20	0.500	1.5	
Physics	no.person	1	10	2.000	15	
Surface	no.person	2	7	1.500	2	
Other	no.person	1	8	1.500	2	
			Requi	irements	of Produc	tion
RESOURCES EXPORT:		Output	Equipmnt (Consumbls	Energy	Power
<pre>* -(ref:Knudsen,</pre>	Feb. '86)	(MT/mo.)	(MT/MT/mo)) (MT/MT)	(KwHr/MT)	(Kw/MT/mo)
Oxygen*	shipments	83.33	4.80	0.013	27000	32.00
Hydrogen	shipments					
Silicon	shipments		0.75	0.035	18000	25.00
Aluminum Iron/Steel	shipments shipments					

. .

LUNAR BA	SE TOP LEVE	L REQUIREN	IENTS (C	ont)		Screen 2D (Default)
	reference parameter	value, mature base	Mission Equip. mass	Resupply Required Miss. Eq	Energy	Power
RESOURCES EXPORT	(cont):	(MT/mo) (N	T/MT/mo)) (MT/MT)	(KwHr/MT)	(Kw/MT/mo)
		Pr	relimina	ry Estima	tes – ref	ine!
Glasses	shipments		0.25	0.015	2500	3.47
Shielding Mfgr. Prod. Foodstuffs Water	shipments shipments shipments shipments		0.10	0.006	200	0.28
COMMUNITY	m	value, ature base (per)] •	Equipment Mass (MT/per)	Extra Resupply (MT/per)	Extra Energy (KwHr/per)
Additional People	no.person	4		10.00	0.050	

. .

SPACE TRANSPORTIATION SYSTEM

_ _ _ _

Screen 3D (Default)

Values taken from NASA OAST "Space Systems Technology Model", Executive Summary, June, 1985, 6th Edition, page 1-108, except as noted by "*".

* 4

		DEFAULT	VALUES	(cells	to	be protected)
VEHICLE	USER		PAYI	.OAD		Altitude*	PASSENGERS
	CHARGE					Decrement	(max) *
	\$Mill/Flt		Metric	tons		MT/Km.	no.
Shuttle	59		29.	50		0.075	8
Shutt.II	61.3			35		0.04	16
TransAtmo	> 35	*		5		0.03	2
SDV	88.5		66	.4		0.05	0
HLLV	59		147	•5		0.12	0

			UPPER ST	TAGES	(more >>>>	>> :	Screen 4D	
							(Default)	
VEHICLE	USER	USABLE	INERT MASS	Isp	Aerobrake	Lndg. Gr	Crew Mod	Tot DV
	CHARGE	PROPELL.		deliv.	mass	mass	mass	
	\$Mill/Flt	Metric	tons	Seconds	8	MT	MT	M/sec.
IUS - J	15	9.43	0.93	298	none	none	none	2530
IUS - 2	2 35	2.72	1.70	301	none	none	none	1768
CentaurG	65	21.77	3.25	446	none	none	none	4299
OTV-I	45	40.00	5.98	475	15	none	3.40	4299
OTV-II	40	40.00	5.38	500	12	none	4.54	4299
EOIV-I	TBD	TBD	TBD	2000	none	none	none	
EOTV-II	TBD	TBD	TBD	3000	none	none	none	
RGOTV	TBD	TBD	TBD	10000	none	none	none	
LM-exp	100	40.00	5.98	475	none	5%	none	2073
LM-I reu	50	40.00	5.38	475	none	5%	6.80	2073
LM-II reu	ı 25	40.00	4.84	475	none	38	4.54	2073
2St OTVII	I 55	80.00	10.65	475	TBD	TBD	TBD	

.

UPPER STAGES

Screen 4D (continued

MR	Wp/(MR-1) = PL +Wi	Payload	Iterated Payload
	MT	MT	MT Mission
2.38	6.8	5.9	exp GTO
1.82	3.3	1.6	exp GEO
2.67	13.0	9.8	exp GEO
2.52	26.3	20.4	exp GEO
2.40	28.5	23.1	exp GEO
1.00	ERR	ERR	-
1.00	ERR	ERR	
1.00	ERR	ERR	
1.56	71.3	65.3	61.8 LunarIndg
1.56	71.3	65.9	55.2 M.Lunar Del.
1.56	71.3	66.5	59.6 M.Lunar Del.
1.00	ERR	ERR	Lun Ferry

• •

LOW EARTH ORBIT SPACE STATION 28.5 deg inclination orbit

Screen 5D (Default)

	MIN	MAX	NOTES
Operational Altitude, Km.	315	325	maintain within 10 Km.
O/H Propellant on-hand, MT	100	250	available for purchase
Transient crew accom., no.	2	10	not incl. crew rotatation
STS docking ports, no.	1	3	not incl. S/S resupply
SDV/HLLV docking ports	0	2	
OTV Sortie capab., no./mo.	2	10	paced by maintenance fac.
OMV Sorties, no./mo.	5	25	paced by no. of CMV's

USER CHARGES

STS/SDV docking/turnaround OMV dispatch/control, mission OTV dispatch/control, mission Warehousing, MT-month HO propellant, MT, FOB S/S Subsisentance, person day Lunar Mission Support, mo. \$Millions

LOW	LUNAR	ORBI	T SF	ACE	STATION
Eq	quatori	ial,	100	KM	Orbit

.

Screen 6D (Default)

It is assumed, for this model, that a low lunar orbit space station is provided as an integral part of the lunar base program. The station will act as a forward staging base for the personnel and material destined for the lunar surface. The assumed characteristics include:

FEATURE	SIZE	UNITS	MASS (MT)	NOTES	
Habitation for personnel:	12	persons	80.4	3	LEOSS CM
Command/Communications Center		each	26.8	1	LEOSS CM
Solar Electric Power Supply	15	kW	0.3		
Radiator heat rejection	15	kW	0.2		
Truss structure storage			10.0		Estimated
Propellant storage system	80	MT, wet	106.7	2	OTV loads
Contingency	15%		33.6		
Total:			257.9		

PROGRAMMATIC INPUT SELECTIONSScreen 7D(to be employed in follow-on model)(Default)

These selections will determine the sequence in which capabilities will be constructed on the lunar surface and the iteration of program pace (schedule) and content in response to specified constraints, if any.

.

۹

Įį.

A.	Emphasis	Science	Resources	Cammunity
		(insert 0,1,2 or 3)		
в.	Fiscal Constr	aints		
		Runout Costs	Peak	Year Funding
		(\$Billions)	(\$Billions/yr.)) _
С.	Fleet Size Co	nstraints upon Lunar Base F	program	
		Shuttle launches per year	(numbe	er)
		SDV launches per year	(numbe	er)
		HLLV launches per year	(numbe	er)
		OTV launches per year	(numbe	er)
		Lunar Landings per year	(numbe	er)

TECHNOL (select Primary Power Sources	OGY SELECTION one from ea. Specific Mass	S categor Unit Size	Spec. Cost	Fuel Cons.	Screen 8D (Default) Oper. Life,
(enter "1" if present in	Ky/Kw	KW	\$/KW	KG/KwHr	years
Chem. Fuel Cells	7.7	175	10000	0.36	
Solar PV-I	5.6	250	100000	0	
Solar PV-II	4.0	250	90000	Ō	
Solar Dynamic-I Solar Dynamic-II					Conv.Eff.%
Nuclear RTG	125.0	100			10.5%
1 Nuc.Reactor-I	33.3	100			12%
Nuc.Reactor-II Other	20.0	100			128

•

.

	TECHNOLOGY SELECTIONS (select one from ea. category)						Screen 9D (Default)	
Energy	Storage SOA Batt. Adv Batt. Regen F/C Mechanicl Thermal	Specific Mass Kg/KwHr 22.22 9.09	Specific Cost \$/KwHr	Unit Size M3/KwHr	Consum. Losses KG/KH/Y	Life Years 15.00 (10.00 (Sec. cells Sec. cells	
Heat Re	ejection Radiator Droplet Soil	Kg/Kw 11.11	\$/Kw	M2/Kw 1.43	KG/Kw/Y	Years TBD		
Thermal Power (Control Sy 1 Control 1	rstem (Q. 1 4 11.76	Does NASA	SSTM, p	1-119 refer	to this	s system?)	

ð

.

LUNAR BASE HABITATION MODULE MASS ESTIMATION Screen						
		(Default)				
NASA JSC Memo EZ-85-38 provide	s mass prope	erty estimates for the LEO				
Space Station. Relevant data from	this memorar	ndum are:				
Module	Mass, Kg.	Mass, less Equipment (est				
Laboratory 1	32,581	16,000				
Habitation 1	16,238	16,238				
Laboratory 2	19,283	16,000				
Habitation 2	15,765	15,765				
Logistics	17,145	17,145				
Nodes (6)	15,005	15,005				
Tunnels (3)	3,927	3,927				
Airlocks (2)	7,072	7,072				
Totals:	127,016	107,152				

_ _ _

.

.

The LEO S/S Laboratory modules include equipment book-kept separately fo this lunar base model, but the lunar base will require support modules similar to the LEO S/S. An "average" LSB module mass is thus: 26,788 APPENDIX B

* *

ORBITAL TRANSFER VEHICLE ANALYSIS

OTV PERFORMANCE INPUT DATA	Screen 1
OTV SIZING	
References: Martin-Marietta Report MCR-85-2601, "Orbi	tal Transfer Vehicle
Concept Definition and System Analysis St	udy", 22 August, 1985
Eagle Engineering Report 8363, May 1983,	Appendix A
OTV Concept: The MMC study defined a "growth" cryoge	nic OTV to meet post-
space station needs, including dual 36.7 MT	propellant capacity
stages to deliver the 6.8 to 36.3 MT lunar	payloads, utilizing:
a. STS ET "Aft Cargo Carrier" initial deli	very to LEO
b. Dual 33.3 KN thrust cryogenic "Advanced	Space Engines"
c. Aerobraking for Earth return via a 867	KG rigid aerobrake
Derivations: Since MMC provided an inert mass, less	aerobrake, of 2.47 MT
for the 24.9 MT Wp stage, and a scaling law :	for inert mass,
(p23,Vol II,Bk 1), conservative inert mass of larger s	tages may be estimated:
Prop. Cap., MT 24.94 36.73 49.89	61.68 73.47
Inert Mass, MT 2.69 3.09 3.51	3.88 4.23
Mass fraction 0.90 0.92 0.93	0.94 0.95
Conclusion: Since cost per flight will favor a single	e, larger vehicle, the
largest vehicle above will be used for p	erformance estimation.

×

OTV PERFORMANCE INPUT DATA (con't.) DELIVERIES TO LUNAR ORBIT

Screen 2

As the large OTV will be required to eventually deliver large H2 payloads to LO and return a crew cabin, it will be assumed that this large stage will be flown w/TPS for LO stockpiling, returning empty, and that the 0.868 MT aerobrake will suffice for empty return missions. The mass is 5.10 475 sec. The delivery performance, using MT, with a delivered Isp of velocity increments from Appendix A, EE18363, May 1983, w/ 3/4 % FPR, is: Final D-V,mps MR TotalWp P/L, MT Initial Inbound: 1.2672 5.10 1102 1.36 0 6.47 Outbound: 21.47 4297 2.5148 32.52 15 52.62 26.47 4297 2.5148 40.09 20 65.19 31.47 4297 25 2.5148 47.66 77.76 36.47 4297 2.5148 55.24 30 90.34 4297 41.47 2.5148 62.81 35 102.91 46.47 4297 2.5148 70.39 40 115.49 4297 47.47 2.5148 71.90 41 118.00 Full Wp > 48.47 4297 2.5148 73.42 42 120.51 Thus, an OTV requiring 42 73.4 MT prop., delivers (in MT):

	C	TV PERFOR	MANCE INP	UT DATA (C	on't.)	S	creen 3
	DELIVERIES FROM LUNAR ORBIT TO LEO S/S						
The	MMC August	., 1985 es	timate fo	r the OTV '	TPS is	9.5%	of mass
entered (less aerob	rake mass). OTV p	erformance	for retu	rn missi	ons with
TPS deliv	ery outbou	ind and lu	nar orbit	servicing	may now	be estim	ated.
Payload	EntryMass	TPS mass	Tot mass	Wp in	H2 in	H2+tank	+TPS
0.00	4.23	0.40	4.63	1.24	0.18	0.24	0.64
25.00	29.23	2.78	32.01	8.55	1.22	1.63	4.41
50.00	54.23	5.15	59.38	15.87	2.27	3.02	8.17
75.00	79.23	7.53	86.76	23.18	3.31	4.42	11.94
100.00	104.23	9.90	114.13	30.50	4.36	5.81	15.71
125.00	129.23	12.28	141.51	37.81	5.40	7.20	19.48
150.00	154.23	14.65	168.88	45.13	6.45	8.60	23.25
175.00	179.23	17.03	196.26	52.44	7.49	9.99	27.02
200.00	204.23	19.40	223.63	59.75	8.54	11.38	30.78
225.00	229.23	21.78	251.01	67.07	9.58	12.78	34.55
247.00	251.23	23.87	275.10	73.51	10.50	14.00	37.87
For	a full OTV	, the TPS	mass is	23.9 MT	, (partly	lunar-d	erived?).
Thus	, an OTV r	equiring	73.5 M	T Wp return	ns	247.0 M	T P/L.

,

,

9

- -

APPENDIX C

, ,

ITEMIZED TEST CASE LISTING

	Run No.	09:50 PM 05-Mar	-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Screen	44
Science (persons	5)	Total Base Population:	7
Astronomy	0	No. of Habitable Modules:	7
Physics	0	Powerplant rating, Megawatt (0.0
Surface	0	Mass of Base, Metric Tons:	220
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	3.8
0×ygen	0.00	No. of Expendable LM's:	3
Hydrogen	0	OTV Flights:	30
Silicon	0	Shuttle Flights:	3
Aluminum	0	SDV Flights:	62
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	0	Max. SDV flts/wk. (an input)	2
Shielding	0	Time, total, years, SDV cons	7.6
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	0.5
Water	0	Time, flight operations, years,	
Community-persor	n 0	OTV Constrains pace:	0.3

	Run No.	2 09:51 PM 05-M	ar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scre	en 44
Science (persons	;)	Total Base Population:	8
Astronomy	0	No. of Habitable Modules:	8
Physics	0	Powerplant rating, Megawatt	0.0
Surface	1	Mass of Base, Metric Tons:	266
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	4.3
Oxygen	0.00	No. of Expendable LM's:	3
Hydrogen	0	OTV Flights:	32
Silicon	0	Shuttle Flights:	3
Aluminum	0	SDV Flights:	67
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	0	Max. SDV fits/wk. (an input)	2
Shielding	0	Time, total, years, SDV cons	7.6
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	0.6
Water	0	Time, flight operations, years,	
Community-persor	n 0	OTV Constrains pace:	0.4

	Run No.	3 09:51 PM 05-M	ar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scre	en 44
Science (persons	5)	Total Base Population:	9
Astronomy	0	No. of Habitable Modules:	9
Physics	1	Powerplant rating, Megawatt	0.1
Surface	1	Mass of Base, Metric Tons:	314
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	4.8
Oxygen	0.00	No. of Expendable LM's:	3
Hydrogen	0	OTV Flights:	35
Silicon	0	Shuttle Flights:	3
Aluminum	0	SDV Flights:	73
1ron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	0	Max. SDV fits/wk. (an input)	2
Shielding	0	Time, total, years, SDV cons	7.7
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	0.6
Water	0	Time, flight operations, years,	
Community-persor	n 0	OTV Constrains pace:	0.4

	Run No	4		09:51	PM 05-Mar-86
INPUT:	SYNOPSIS OF	CURRENT	MODEL RUN	OUTPUT:	Screen 44
Science (persons	5)	Т	otal Base (Population:	10
Astronomy	1	N	o. of Habit	table Modules	: 10
Physics	1	Р	owerplant i	rating, Megawa	att 0.1
Surface	1	M	ass of Base	e, Metric Ton	s: 373
Other	0	S	ize of Con	struction Cre	w: 14
Resources Export	: (MT/mo)	С	onstruction	n Interval, m	os. 5.4
Oxygen	0.00	N	o. of Expen	ndable LM's:	3
Hydrogen	0	0	TV Flights	:	38
Silicon	0	S	huttle Flig	ghts:	3
Aluminum	0	S	DV Flights	:	79
Iron/Steel	0	M	ax. OTV fl	ts/wk. (an in	put) l
Glasses	0	М	ax. SDV fit	ts/wk. (an in	put) 2
Shielding	0	Т	ime, total	, years, SDV (cons 7.8
Mfgr. Products	0	T	ime, flight	c operations,	years,
Foodstuffs	0		SDV Const	trains pace:	0.7
Water	0	Т	ime, flight	coperations,	years,
Community-persor	0 ו		OTV Const	crains pace:	0.4

	Run No	5		09:52 PM	05-Mar-86
INPUT:	SYNOPSIS O	F CURRENT	MODEL RUN	OUTPUT:	Screen 44
Science (persons	5)	Т	otal Base Po	pulation:	12
Astronomy	1	N	o. of Habita	ble Modules:	10
Physics	1	P	owerplant ra	iting, Megawatt	0.1
Surface	1	M	ass of Base,	Metric Tons:	382
Other	1	S	ize of Const	ruction Crew:	14
Resources Export	: (MT/mo)	С	onstruction	Interval, mos.	5.6
Oxygen	0.00	N	o. of Expend	lable LM's:	3
Hydrogen	0	0	TV Flights:		39
Silicon	0	S	huttle Fligh	its:	3
Aluminum	0	S	DV Flights:		81
Iron/Steel	0	M	ax. OTV fits	/wk. (an input) 1
Glasses	0	M	ax. SDV fits	/wk. (an input)) 2
Shielding	0	Т	ime, total,	years, SDV cons	s 7.8
Mfgr. Products	0	Т	ime, flight	operations, yea	ars,
Foodstuffs	0		SDV Constr	ains pace:	0.7
Water	0	Т	ime, flight	operations, yea	ars,
Community-persor	n 0		OTV Constr	ains pace:	0.5

,

	Run No.	6		09:52 F	M 05-Mar-86
INPUT:	SYNOPSIS OF	CURRENT	MODEL RUN	OUTPUT:	Screen 44
Science (persons	5)	T	otal Base Po	pulation:	17
Astronomy	2	N	o. of Habita	ble Modules:	12
Physics	2	P	owerplant ra	ting, Megawat	t 0.1
Surface	2	M	ass of Base,	Metric Tons:	502
Other	2	S	ize of Const	ruction Crew:	14
Resources Export	: (MT/mo)	C	onstruction	Interval, mos	5. 7.0
Oxygen	0.00	N	o. of Expend	able LM's:	4
Hydrogen	0	0	TV Flights:		47
Silicon	0	S	huttle Fligh	ts:	4
Aluminum	0	S	DV Flights:		96
Iron/Steel	0	M	ax. OTV flts	/wk. (an inpu	it) 1
Glasses	0	M	ax. SDV flts	/wk. (an inpu	it) 2
Shielding	0	Т	ime, total,	years, SDV co	ons 7.9
Mfgr. Products	0	Т	ime, flight	operations, y	ears,
Foodstuffs	0		SDV Constr	ains pace:	0.9
Water	0	Т	ime, flight	operations, y	ears,
Community-persor	0		OTV Constr	ains pace:	0.6

,

	Run No.	7 09:52 PM 05-Mar	86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Screer	1 44
Science (persons	5)	Total Base Population:	10
Astronomy	0	No. of Habitable Modules:	9
Physics	0	Powerplant rating, Megawatt	0.3
Surface	0	Mass of Base, Metric Tons:	478
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	6.7
Oxygen	25.00	No. of Expendable LM's:	3
Hydrogen	0	OTV Flights:	44
Silicon	0	Shuttle Flights:	3
Aluminum	0	SDV Flights:	90
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	0	Max. SDV flts/wk. (an input)	2
Shielding	0	Time, total, years, SDV cons	7.9
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	0.8
Water	0	Time, flight operations, years,	
Community-persor	n 0	OTV Constrains pace:	0.6

	Run No	8		09:53	PM 05-Mar-86
INPUT:	SYNOPSIS O	F CURRENT	MODEL RUN	OUTPUT:	Screen 44
Science (persor	ns)	Т	otal Base Po	pulation:	10
Astronomy	0	N	o. of Habita	ble Modules:	9
Physics	0	P	owerplant ra	ting, Megawa	att 0.5
Surface	0	M	ass of Base,	Metric Tons	665
Other	0	S	ize of Const	ruction Crew	/: 14
Resources Expor	t (MT/mo)	С	onstruction	Interval, mo	s. 8.9
Oxygen	50.00	N	o. of Expend	able LM's:	4
Hydrogen	0	0	TV Flights:		54
Silicon	0	S	huttle Fligh	ts:	3
Aluminum	0	S	DV Flights:		110
Iron/Steel	0	M	ax. OTV flts	/wk. (an inp	out) I
Glasses	0	M	ax. SDV flts	/wk. (an inp	out) 2
Shielding	0	Т	ime, total,	years, SDV o	ons 8.1
Mfgr. Products	0	т	ime, flight	operations,	years,
Foodstuffs	0		SDV Constr	ains pace:	1.0
Water	0	т	ime, flight	operations,	years,
Community-perso	on O		OTV Constr	ains pace:	0.7

-

.

C-2

•

	Run No.	9		09:53	PM 05-Mar-86
INPUT:	SYNOPSIS OF	CURRENT	MODEL RUN	OUTPUT:	Screen 44
Science (persons	5)	To	tal Base Po	pulation:	10
Astronomy	0	No	o. of Habita	able Modules:	9
Physics	0	Po	werplant ra	iting, Megawa	tt 0.7
Surface	0	Ma	iss of Base,	Metric Tons	: 851
Other	0	Si	ze of Const	ruction Crew	: 14
Resources Export	: (MT/mo)	Co	onstruction	Interval, mo	s. 11.1
Oxygen	75.00	No	o. of Expend	iable LM's:	4
Hydrogen	0	רס	V Flights:		65
Silicon	0	Sh	nuttle Fligh	nts:	3
Aluminum	0	SD	V Flights:		130
Iron/Steel	0	Ma	x. OTV fits	/wk. (an inp	ut) 1
Glasses	0	Ma	x. SDV flts	/wk. (an inp	ut) 2
Shielding	0	Ti	me, total,	years, SDV c	ons 8.3
Mfgr. Products	0	Ti	me, flight	operations,	years,
Foodstuffs	0		SDV Constr	ains pace:	1.2
Water	0	Τi	me, flight	operations,	years,
Community-persor	0		OTV Constr	ains pace:	0.9

.

	Run No.	19		09:53 PM	05-Mar-86
INPUT:	SYNOPSIS C	OF CURRENT	MODEL RUN	OUTPUT:	Screen 44
Science (persons	5)	Т	otal Base Po	pulation:	10
Astronomy	0	N	o. of Habita	ble Modules:	9
Physics	0	P	owerplant ra	ting, Megawatt	: 1.0
Surface	0	М	ass of Base,	Metric Tons:	1038
Other	0	S	ize of Const	ruction Crew:	14
Resources Export	: (MT/mo)	С	onstruction	Interval, mos.	13.3
Oxygen	100.00	N	o. of Expend	able LM's:	4
Hydrogen	0	0	TV Flights:		75
Silicon	0	S	huttle Fligh	ts:	3
Aluminum	0	S	DV Flights:		150
Iron/Steel	0	M	ax. OTV fits	/wk. (an input	:) 1
Glasses	0	М	ax. SDV fits	/wk. (an input	:) 2
Shielding	0	т	ime, total,	years, SDV cor	s 8.4
Mfgr. Products	0	т	ime, flight	operations, ye	ears,
Foodstuffs	0		SDV Constr	ains pace:	1.4
Water	0	т	ime, flight	operations, ye	ears,
Community-persor	n 0		OTV Constr	ains pace:	1.1

v

- -

	Run No.	09:53 PM 05-Ma	3r-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scree	en 44
Science (persons	5)	Total Base Population:	10
Astronomy	0	No. of Habitable Modules:	9
Physics	0	Powerplant rating, Megawatt	1.4
Surface	0	Mass of Base, Metric Tons:	1411
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	17.8
Oxygen	150.00	No. of Expendable LM's:	5
Hydrogen	0	OTV Flights:	96
Silicon	0	Shuttle Flights:	3
Aluminum	0	SDV Flights:	191
lron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	0	Max. SDV flts/wk. (an input)	2
Shielding	0	Time, total, years, SDV cons	8.8
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	1.7
Water	0	Time, flight operations, years,	
Community-persor	n 0	OTV Constrains pace:	1.5

	Run No.	<u>12</u> 09:54 PM 05	5-Mar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Se	creen 44
Science (persons	5)	Total Base Population:	10
Astronomy	0	No. of Habitable Modules:	9
Physics	0	Powerplant rating, Megawatt	1.9
Surface	0	Mass of Base, Metric Tons:	1784
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	22.4
Oxygen	200.00	No. of Expendable LM's:	5
Hydrogen	0	OTV Flights:	117
Silicon	0	Shuttle Flights:	3
Aluminum	0	SDV Flights:	231
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	0	Max. SDV flts/wk. (an input)	2
Shielding	0	Time, total, years, SDV cons	9.2
Mfgr. Products	0	Time, flight operations, years	3,
Foodstuffs	0	SDV Constrains pace:	2.1
Water	0	Time, flight operations, years	5,
Community-persor	n 0	OTV Constrains pace:	1.9

•

Ł

	Run No.	13 09:54 PM 05-Ma	ar-86	
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scree	en 44	
Science (persons	5)	Total Base Population:		
Astronomy	0	No. of Habitable Modules:	9	
Physics	0	Powerplant rating, Megawatt	2.8	
Surface	0	Mass of Base, Metric Tons:	2530	
Other	0	Size of Construction Crew:	14	
Resources Export	: (MT/mo)	Construction Interval, mos.	31.4	
Oxygen	300.00	No. of Expendable LM's:	7	
Hydrogen	0	OTV Flights:	159	
Silicon	0	Shuttle Flights:	3	
Aluminum	0	SDV Flights:	313	
Iron/Steel	0	Max. OTV flts/wk. (an input)	1	
Glasses	0	Max. SDV flts/wk. (an input)	2	
Shielding	0	Time, total, years, SDV cons	10.0	
Mfgr. Products	0	Time, flight operations, years,		
Foodstuffs	0	SDV Constrains pace:	2.9	
Water	0	Time, flight operations, years,		
Community-persor	0	OTV Constrains pace:	2.6	

•

٠

.

1

	Run No.	14 09:54 PM 05	-Mar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Sc	reen 44
Science (persons	5)	Total Base Population:	
Astronomy	0	No. of Habitable Modules:	9
Physics	0	Powerplant rating, Megawatt	0.8
Surface	0	Mass of Base, Metric Tons:	914
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	11.9
Oxygen	83.33	No. of Expendable LM's:	4
Hydrogen	0	OTV Flights:	68
Silicon	0	Shuttle Flights:	3
Aluminum	0	SDV Flights:	137
Iron/Steel	0	Max. OTV fits/wk. (an input)	1
Glasses	0	Max. SDV flts/wk. (an input)	2
Shielding	0	Time, total, years, SDV cons	8.3
Mfgr. Products	0	Time, flight operations, years	,
Foodstuffs	0	SDV Constrains pace:	1.2
Water	0	Time, flight operations, years	,
Community-persor	n 0	OTV Constrains pace:	1.0

-

•

1

_ _ ~ ~

	Run No.	15 09:55 PM 05-Ma	ar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scree	en 44
Science (persons	;)	Total Base Population:	13
Astronomy	0	No. of Habitable Modules:	10
Physics	0	Powerplant rating, Megawatt	0.0
Surface	0	Mass of Base, Metric Tons:	377
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	5.0
Oxygen	0.00	No. of Expendable LM's:	3
Hydrogen	0	OTV Flights:	37
Silicon	0	Shuttle Flights:	4
Aluminum	0	SDV Flights:	76
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	0	Max. SDV fits/wk. (an input)	2
Shielding	0	Time, total, years, SDV cons	7.7
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	0.7
Water	0	Time, flight operations, years,	
Community-persor	n 5	OTV Constrains pace:	0.4

	Run No.	16	09:56 PM 05-Ma	r-86
INPUT:	SYNOPSIS O	F CURRENT MODEL RUN	OUTPUT: Scree	n 44
Science (persons	5)	Total Base P	opulation:	19
Astronomy	0	No. of Habit	able Modules:	13
Physics	0	Powerplant r	ating, Megawatt	0.1
Surface	0	Mass of Base	, Metric Tons:	539
Other	0	Size of Cons	truction Crew:	14
Resources Export	: (MT/mo)	Construction	Interval, mos.	6.2
Oxygen	0.00	No. of Expend	dable LM's:	4
Hydrogen	0	OTV Flights:		44
Silicon	0	Shuttle Flig	nts:	4
Aluminum	0	SDV Flights:		91
Iron/Steel	0	Max. OTV flt	s/wk. (an input)	1
Glasses	0	Max. SDV flt	s/wk. (an input)	2
Shielding	0	Time, total,	years, SDV cons	7.9
Mfgr. Products	0	Time, flight	operations, years,	
Foodstuffs	0	SDV Const	rains pace:	0.8
Water	0	Time, flight	operations, years,	
Community-persor	n 10	OTV Const	rains pace:	0.5

*

- -

	Run No.	09:56 PM 05-	Mar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scr	een 44
Science (persons	5)	Total Base Population:	32
Astronomy	0	No. of Habitable Modules:	18
Physics	0	Powerplant rating, Megawatt	0.1
Surface	0	Mass of Base, Metric Tons:	820
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	8.4
Oxygen	0.00	No. of Expendable LM's:	5
Hydrogen	0	OTV Flights:	56
Silicon	0	Shuttle Flights:	6
Aluminum	0	SDV Flights:	117
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	0	Max. SDV flts/wk. (an input)	2
Shielding	0	Time, total, years, SDV cons	8.1
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	1.0
Water	0	Time, flight operations, years,	
Community-persor	n 20	OTV Constrains pace:	0.7

· _ __ -

	Run No	18	09:56 PM 05-Mar-86		
INPUT:	SYNOPSIS 0	F CURRENT MODEL RUN	OUTPUT: Screen 44		
Science (persons	5)	Total Base Pop	ulation: 57		
Astronomy	0	No. of Habitab	le Modules: 30		
Physics	0	Powerplant rat	ing, Megawatt 0.2		
Surface	0	Mass of Base,	Metric Tons: 1453		
Other	0	Size of Constr	uction Crew: 14		
Resources Export	: (MT/mo)	Construction I	nterval, mos. 13.5		
Oxygen	0.00	No. of Expenda	ble LM's: 9		
Hydrogen	0	OTV Flights:	86		
Silicon	0	Shuttle Flight	s: 9		
Aluminum	0	SDV Flights:	177		
Iron/Steel	0	Max. OTV flts/	wk. (an input) 1		
Glasses	0	Max. SDV flts/	wk. (an input) 2		
Shielding	0	Time, total, y	ears, SDV cons 8.7		
Mfgr. Products	0	Time, flight o	perations, years,		
Foodstuffs	0	SDV Constra	ins pace: 1.6		
Water	0	Time, flight o	perations, years,		
Community-persor	n 40	OTV Constra	ins pace: 1.1		
	Run No.	19		09:56 PM	05-Mar-86
------------------	-----------	------------	------------------------	------------------	-----------
INPUT:	SYNOPSIS	OF CURRENT	MODEL RUN	OUTPUT:	Screen 44
Science (persons	5)	Т	otal Base Po	opulation:	82
Astronomy	0	N	o. of Habit	able Modules:	41
Physics	0	P	owerplant ra	sting, Megawatt	0.2
Surface	0	М	ass of Base	, Metric Tons:	2053
Other	0	S	ize of Cons	truction Crew:	14
Resources Export	: (MT/mo)	С	onstruction	Interval, mos.	18.3
Oxygen	0.00	N	o. of Expen	dable LM's:	11
Hydrogen	0	0	TV Flights:		113
Silicon	0	S	huttle Flig	nts:	12
Aluminum	0	S	DV Flights:		234
Iron/Steel	0	М	ax. OTV flt:	s/wk. (an input)	1
Glasses	0	м	ax. SDV fit:	s/wk. (an input)	2
Shielding	0	т	ime, total,	years, SDV cons	9.3
Mfgr. Products	0	т	ime, flight	operations, yea	irs,
Foodstuffs	0		SDV Const	rains pace:	2.1
Water	0	т	<pre>ime, flight</pre>	operations, yea	irs,
Community-persor	n 60		OTV Const	rains pace:	1.5

-

•

	Run No	20		09:56	PM 05-Mar-86
INPUT:	SYNOPSIS C	F CURRENT	MODEL RUN	OUTPUT:	Screen 44
Science (persons	;)	т	otal Base Po	pulation:	107
Astronomy	0	N	o. of Habita	ble Modules:	52
Physics	0	P	owerplant ra	ting, Megawa	tt 0.3
Surface	0	М	ass of Base,	Metric Tons	: 2653
Other	0	S	ize of Const	ruction Crew	: 14
Resources Export	: (MT/mo)	С	onstruction	Interval, mo:	s. 23.2
Oxygen	0.00	N	o. of Expend	able LM's:	14
Hydrogen	0	0	TV Flights:		141
Silicon	0	S	huttle Fligh	ts:	15
Aluminum	0	S	DV Flights:		292
Iron/Steel	0	М	ax. OTV fits	/wk. (an inp	ut) 1
Glasses	0	М	ax. SDV flts	/wk. (an inp	ut) 2
Shielding	0	Т	ime, total,	years, SDV c	ons 9.8
Mfgr. Products	0	т	ime, flight	operations,	years,
Foodstuffs	0		SDV Constr	ains pace:	2.6
Water	0	т	ime, flight	operations,	years,
Community-persor	n 80		OTV Constr	ains pace:	1.9

z

	Run No.	2) 09:56 PM 05-Ma	r-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scree	n 44
Science (persons	;)	Total Base Population:	132
Astronomy	0	No. of Habitable Modules:	63
Physics	0	Powerplant rating, Megawatt	0.3
Surface	0	Mass of Base, Metric Tons:	3252
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	28.0
Oxygen	0.00	No. of Expendable LM's:	17
Hydrogen	0	OTV Flights:	169
Silicon	0	Shuttle Flights:	18
Aluminum	0	SDV Flights:	350
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	0	Max. SDV flts/wk. (an input)	2
Shielding	0	Time, total, years, SDV cons	10.4
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	3.1
Water	0	Time, flight operations, years,	
Community-persor	100	OTV Constrains pace:	2.3

1

- .

	Run No	22	09:57 PM 0	5-Mar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN	OUTPUT: S	creen 44
Science (persons	;)	Total Base P	opulation:	194
Astronomy	0	No. of Habit	able Modules:	92
Physics	0	Powerplant r	ating, Megawatt	0.5
Surface	0	Mass of Base	, Metric Tons:	4805
Other	0	Size of Cons	truction Crew:	14
Resources Export	(MT/mo)	Construction	Interval, mos.	40.7
Oxygen	0.00	No. of Expen	dable LM's:	25
Hydrogen	0	OTV Flights:		241
Sílicon	0	Shuttle Flig	hts:	26
Aluminum	0	SDV Flights:		499
iron/Steel	0	Max. OTV flt	s/wk. (an input)	1
Glasses	0	Max. SDV flt	s/wk. (an input)	2
Shielding	0	Time, total,	years, SDV cons	11.8
Mfgr. Products	0	Time, flight	operations, year	S,
Foodstuffs	0	SDV Const	rains pace:	4.4
Water	0	Time, flight	operations, year	s,
Community-persor	150	OTV Const	rains pace:	3.4

. .

	Run No	23	09:5	7 PM 05-Mar-86
INPUT:	SYNOPSIS 0	F CURRENT MODEL	RUN OUTPUT:	Screen 44
Science (persons	;)	Total B	ase Population:	257
Astronomy	0	No. of	Habitable Module:	s: 120
Physics	0	Powerpl	ant rating, Megaw	watt 0.6
Surface	0	Mass of	Base, Metric Tor	ns: 6319
Other	0	Size of	Construction Cre	ew: 14
Resources Export	: (MT/mo)	Constru	ction Interval, r	nos. 53.0
Oxygen	0.00	No. of	Expendable LM's:	32
Hydrogen	0	OTV Fli	ghts:	312
Silicon	0	Shuttle	Flights:	34
Aluminum	0	SDV Fli	ghts:	645
Iron/Steel	0	Max. OT	V flts/wk. (an in	nput) 1
Glasses	0	Max. SD	V flts/wk. (an in	nput) 2
Shielding	0	Time, to	otal, years, SDV	cons 13.2
Mfgr. Products	0	Time, f	light operations	, years,
Foodstuffs	0	SDV	Constrains pace:	5.7
Water	0	Time, f	light operations	, years,
Community-persor	200	OTV	Constrains pace:	4.4

``

	Run No.	24 09:57 PM 05-M	ar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scree	en 44
Science (persons	5)	Total Base Population:	632
Astronomy	0	No. of Habitable Modules:	288
Physics	0	Powerplant rating, Megawatt	1.5
Surface	0	Mass of Base, Metric Tons:	15417
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	127.1
Oxygen	0.00	No. of Expendable LM's:	76
Hydrogen	0	OTV Flights:	735
Silicon	0	Shuttle Flights:	81
Aluminum	0	SDV Flights:	1521
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	0	Max. SDV fits/wk. (an input)	2
Shielding	0	Time, total, years, SDV cons	21.6
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	13.4
Water	0	Time, flight operations, years,	
Community-persor	n 500	OTV Constrains pace:	10.6

8

•

	Run No	25	09:58 PM 05-Mar-86
INPUT:	SYNOPSIS C	F CURRENT MODEL RUN	OUTPUT: Screen 44
Science (persons	5)	Total Base Po	pulation: 24
Astronomy	0	No. of Habita	ble Modules: 14
Physics	0	Powerplant ra	ting, Megawatt 1.1
Surface	0	Mass of Base,	Metric Tons: 1296
Other	0	Size of Const	ruction Crew: 14
Resources Export	: (MT/mo)	Construction	Interval, mos. 15.5
Oxygen	83.33	No. of Expend	able LM's: 6
Hydrogen	0	OTV Flights:	88
Silicon	50	Shuttle Fligh	ts: 5
Aluminum	0	SDV Flights:	177
Iron/Steel	0	Max. OTV fits	/wk. (an input) 1
Glasses	0	Max. SDV flts	/wk. (an input) 2
Shielding	0	Time, total,	years, SDV cons 8.7
Mfgr. Products	0	Time, flight	operations, years,
Foodstuffs	0	SDV Constr	ains pace: 1.6
Water	0	Time, flight	operations, years,
Community-persor	n 8	OTV Constr	ains pace: 1.3

	Run No.	26 09:58 PM 05-	Mar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scr	een 44
Science (persons	5)	Total Base Population:	28
Astronomy	0	No. of Habitable Modules:	16
Physics	0	Powerplant rating, Megawatt	1.2
Surface	0	Mass of Base, Metric Tons:	1393
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	16.6
Oxygen	83.33	No. of Expendable LM's:	6
Hydrogen	0	OTV Flights:	94
Silicon	50	Shuttle Flights:	5
Aluminum	0	SDV Flights:	189
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	50	Max. SDV flts/wk. (an input)	2
Shielding	0	Time, total, years, SDV cons	8.8
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	1.7
Water	0	Time, flight operations, years,	
Community-persor	n 8	OTV Constrains pace:	1.4

	Run No.	<u>27</u> 09:59 PM 05-Ma	ir-86
INPUT:	SYNOPSIS O	F CURRENT MODEL RUN OUTPUT: Scree	in 44
Science (persons	5)	Total Base Population:	32
Astronomy	0	No. of Habitable Modules:	17
Physics	0	Powerplant rating, Megawatt	1.2
Surface	0	Mass of Base, Metric Tons:	1439
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	17.2
0xygen	83.33	No. of Expendable LM's:	7
Hydrogen	0	OTV Flights:	97
Silicon	50	Shuttle Flights:	6
Aluminum	0	SDV Flights:	196
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	50	Max. SDV flts/wk. (an input)	2
Shielding	100	Time, total, years, SDV cons	8.9
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	1.8
Water	0	Time, flight operations, years,	
Community-persor	8	OTV Constrains pace:	i.4

-

٠

	Run No.	28	09:59 PM	05-Mar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RU	JN OUTPUT:	Screen 44
Science (persons	5)	Total Base	e Population:	32
Astronomy	0	No. of Hat	oitable.Modules:	17
Physics	0	Powerplant	rating, Megawatt	1.2
Surface	0	Mass of Ba	ase, Metric Tons:	1451
Other	0	Size of Co	onstruction Crew:	14
Resources Export	: (MT/mo)	Construct	ion Interval, mos.	17.3
Oxygen	83.33	No. of Exp	pendable LM's:	7
Hydrogen	0	OTV Flight	:s:	98
Silicon	50	Shuttle Fi	lights:	6
Aluminum	0	SDV Flight	:5:	197
Iron/Steel	0	Max. OTV 1	its/wk. (an input)	1
Glasses	50	Max. SDV f	<pre>fits/wk. (an input)</pre>	2
Shielding	200	Time, tota	al, years, SDV cons	8.9
Mfgr. Products	0	Time, flig	pht operations, yea	rs,
Foodstuffs	0	SDV Cor	nstrains pace:	1.8
Water	0	Time, flig	pht operations, yea	rs,
Community-persor	n 8	OTV Cor	nstrains pace:	1.4

4

.

.

	Run No.	21		09:59 PI	1 05-Mar-86
INPUT:	SYNOPSIS	OF CURRENT	MODEL RUN	OUTPUT:	Screen 44
Science (persons	;)	Т	otal Base Po	opulation:	32
Astronomy	0	N	o. of Habita	able Modules:	17
Physics	0	P	owerplant ra	sting, Megawati	t 1.2
Surface	0	М	ass of Base	, Metric Tons:	1463
Other	0	S	ize of Const	truction Crew:	14
Resources Export	: (MT/mo)	С	onstruction	Interval, mos	. 17.5
Oxygen	83.33	N	o. of Expend	dable LM's:	7
Hydrogen	0	0	TV Flights:		98
Silicon	50	S	huttle Fligh	nts:	6
Aluminum	0	S	DV Flights:		198
Iron/Steel	0	М	ax. OTV fits	s/wk. (an input	t) 1
Glasses	50	M	ax. SDV flt:	s/wk. (an input	t) 2
Shielding	300	Т	ime, total,	years, SDV con	ns 8.9
Mfgr. Products	0	Т	ime, flight	operations, ye	ears,
Foodstuffs	0		SDV Consti	rains pace:	1.8
Water	0	т	ime, flight	operations, ye	ears,
Community-persor	n 8		OTV Consti	rains pace:	1.5

- ---

.

-

	Run No.	30 09:59 PM 05-Mai	r-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scree	n 44
Science (persons	5)	Total Base Population:	32
Astronomy	0	No. of Habitable Modules:	17
Physics	0	Powerplant rating, Megawatt	1.2
Surface	0	Mass of Base, Metric Tons:	1476
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	17.6
Oxygen	83.33	No. of Expendable LM's:	7
Hydrogen	0	OTV Flights:	99
Silicon	50	Shuttle Flights:	6
Aluminum	0	SDV Flights:	200
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	50	Max. SDV flts/wk. (an input)	2
Shielding	400	Time, total, years, SDV cons	8.9
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	1.8
Water	0	Time, flight operations, years,	
Community-persor	n 8	OTV Constrains pace:	1.5

•

.

_ _ _

	Run No	31 09:59 PM 05-Ma	ar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scree	en 44
Science (persons	5)	Total Base Population:	32
Astronomy	0	No. of Habitable Modules:	17
Physics	0	Powerplant rating, Megawatt	1.2
Surface	0	Mass of Base, Metric Tons:	1488
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	17.8
Oxygen	83.33	No. of Expendable LM's:	7
Hydrogen	0	OTV Flights:	100
Silicon	50	Shuttle Flights:	6
Aluminum	0	SDV Flights:	201
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	50	Max. SDV fits/wk. (an input)	2
Shielding	500	Time, total, years, SDV cons	8.9
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	1.8
Water	0	Time, flight operations, years,	
Community-persor	n 8	OTV Constrains pace:	1.5

- -

4

.

	Run No	32 09:59 PM 05-M	ar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scree	en 44
Science (persons	5)	Total Base Population:	32
Astronomy	0	No. of Habitable Modules:	17
Physics	0	Powerplant rating, Megawatt	1.3
Surface	0	Mass of Base, Metric Tons:	1549
Other	0	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	18.6
Oxygen	83.33	No. of Expendable LM's:	7
Hydrogen	0	OTV Flights:	103
Silicon	50	Shuttle Flights:	6
Aluminum	0	SDV Flights:	208
Iron/Steel	0	Max. OTV fits/wk. (an input)	1
Glasses	50	Max. SDV flts/wk. (an input)	2
Shielding	1000	Time, total, years, SDV cons	9.0
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	1.9
Water	0	Time, flight operations, years,	
Community-persor	n 8	OTV Constrains pace:	1.5

-

· __ __

.

٠

	Run No.	33 10:00 PM 05-M	ar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scre	en 44
Science (persons	5)	Total Base Population:	73
Astronomy	3	No. of Habitable Modules:	30
Physics	6	Powerplant rating, Megawatt	1.5
Surface	12	Mass of Base, Metric Tons:	2346
Other	12	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	28.7
Oxygen	83.33	No. of Expendable LM's:	10
Hydrogen	0	OTV Flights:	155
Silicon	50	Shuttle Flights:	11
Aluminum	0	SDV Flights:	312
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	50	Max. SDV fits/wk. (an input)	2
Shielding	1000	Time, total, years, SDV cons	10.0
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	2.8
Water	0	Time, flight operations, years,	
Community-persor	n 8	OTV Constrains pace:	2.4

~

4

- ----

	Run No.	10:01 PM 05-Ma	ar-86
INPUT:	SYNOPSIS OF	CURRENT MODEL RUN OUTPUT: Scree	n 44
Science (persons	5)	Total Base Population:	188
Astronomy	3	No. of Habitable Modules:	81
Physics	6	Powerplant rating, Megawatt	1.7
Surface	12	Mass of Base, Metric Tons:	5118
Other	12	Size of Construction Crew:	14
Resources Export	: (MT/mo)	Construction Interval, mos.	51.3
Oxygen	83.33	No. of Expendable LM's:	23
Hydrogen	0	OTV Flights:	284
Silicon	50	Shuttle Flights:	25
Aluminum	0	SDV Flights:	579
Iron/Steel	0	Max. OTV flts/wk. (an input)	1
Glasses	50	Max. SDV flts/wk. (an input)	2
Shielding	1000	Time, total, years, SDV cons	12.6
Mfgr. Products	0	Time, flight operations, years,	
Foodstuffs	0	SDV Constrains pace:	5.2
Water	0	Time, flight operations, years,	
Community-persor	100	OTV Constrains pace:	4.3

APPENDIX D

. **b**

· _

NASA SPACE STATION COST ESTIMATING RELATIONS

NASA SPACE STATION COST ESTIMATING RELATIONSHIPS

		Costs, \$ Millions, 1982 \$
	Subsystem Element	Design&Development Flight Hardware
1.	Pressurized Structures	y = .7018WT .5488 y = .1027WT .6265
2.	Secondary Structures	$y = .2889WT^{6386}$ $y = .0034WT^{9724}$
3.	Mechanisms	$y = .8656WT^{-}.4265$ $y = .0311WT^{-}.7034$
4.	Tanks	$y = .0811WT^{7177}$ $y = .0407WT^{5803}$
5.	Thermal Control	$y = .8630WT^{.5}$ $y = .1151WT^{.7}$
6.	Attitude Control	$y = 6.5468WT^{.5995} y = .7061WT^{.7}$
7.	Reaction Control	$y = .1322WT^{.6995}$ $y = .0025WT^{1.323}$
8.	Power - Excluding Solar Array	$y = 1.614WT^{\circ}.6548$ $y = .0035WT^{\circ}1.064$
9.	Solar Arrays	$y = 7.652PW^{-}.3974$ $y = 4.058PW^{-}.6743$
10.	Environmental Control & Life S	$y = .2838WT^{7155}$ $y = .2652WT^{6665}$
11.	Crew Accomodations	y = .6488WT .4663 y = .1975WT .4801
12.	Command & Data Handling	$y = .0852WT^{.9328}$ $y = .0659WT^{.7785}$
13.	Displays & Controls	y = 2.172WT.5 $y = .0663WT$.9004
14.	Instrumentation	$y = 2.982WT^{-5}$ $y = .0662WT^{-7}$
15.	Communications	$y = 5.701WT^{-5}$ $y = .2904WT^{-7}$

		Costs, \$ Millions, 1982 \$
	System Level Elements	Design&Development Flight Hardware
1.	Systems Test Hardware	$y = 1.362BC^{2}.9947$ 0
2.	Integration, Assembly & C/O	$y = .0891BC^{\circ}.9916$ $y = .4638BC^{\circ}.7406$
3.	Systems Test Operations	$y = .2022BC^{1}.058$ 0
4.	Ground Support Equipment	$y = .7691BC^{-}.8105$ 0
5.	Systems Engineering & Integr.	$y = 7.276BC^{-}.4514$ $y = .5414BC^{-}.7214$
6.	Program Management	$y = .9801BC^{\circ}.6546$ $y = .0468BC^{\circ}1.047$

.

Legend: BC = Base Cost (1982 \$M) = Summation of Subsystem Elements Costs WT: Weight (lbs.) PW = Power (kW)

Cost Estimating Procedure: (note: apply escalation factors to FY'82 costs)
a. Determine mass of all subsystem elements, per 15 items of Sc 26A
b. Determine cost of each subsystem element D&D and Flt Hardware
c. Sum element costs to derive BC for each cost category: D&D, FH
d. Using "learning curve" and size of fleet, determine fleet cost.
e. Compute and add "systems level" cost elements for program cost.

APPENDIX E

P

STANADARD INDUSTRIAL CLASSIFICATION OF LUNAR INDUSTRIES

STANDARD INDUSTRIAL CLASSIFICATION OF LUNAR INDUSTRIES Use of a four digit Codes for prospective ventures (incomplete) Ref:"Standard Industrial Classification Manual", GPO 041-001-0066-6, 1972 Industry Title Industry Number Title Number 22XX Textile Mill Products 182 Food crops grown under cover 2813 Industrial Gases 219 General Livestock 2819 Inorganic Chemicals 279 Fish farms 2899 Chemical Preparations 1011 Iron Ores 3211 Flat Glass 1051 Aluminum Ores 3231 Glass Products 1081 Metal Mining Services 3241 Cement, Hydraulic 1099 Titanium, etc. mining 325X Structural Clay Products 1429 Crushed & Broken Stone 33XX Primary Metals Industries 1459 Ceramic & Refractory Minerals 34XX Fabricated Metal Products 1499 Miscellaneous Normetallic Minerals 3674 Semiconductors 1541 General Building Contractors 3832 Optical Instruments & Lense 1629 Heavy Construction 4XXX Transport, Comm & Utilities 1799 Special Trade Contractors 6XXX Finance, Insur & Real Est 20XX Food & Kindred Products 9661 Space Research & Technology

NASA-JSC