Highway Investment Scenario Estimates

Impacts of Analytical Assumptions

Briefing for the
National Surface Transportation Revenue
and Policy Study Commission
July 25, 2006

The Economic Approach to Investment Analysis

Capital Investment Scenarios

Maximum Economic Investment Level for Highways and Bridges: \$131.7 billion (\$2004)

- Average annual investment from 2005-2024 to eliminate bridge economic backlog by 2024 and implement all cost-beneficial highway improvements.
- Represents an "investment ceiling" above which one shouldn't invest, even assuming unlimited funding availability
- Higher than estimate in 2004 C&P report (\$118.9 billion)
- Reflects investment on all roads (non just Federal-aid highways)
- Assumptions impact results

Capital Investment Scenarios

Average Annual Cost to Maintain Highways and Bridges: \$78.8 billion (\$2004) for 2005-2024

- Cost to maintain current bridge preservation backlog and maintain conditions and performance such that average highway user costs in 2024 equal 2004 levels.
- Higher than what was reported in the 2004 C&P report (\$73.8 billion), mostly due to inflation.
- Reflects investment on all roads (not just Federal-aid highways)
- Assumes retention of current financing structure

Investment Scenario Estimates Compared with Current Spending

Sources of Highway Investment Scenario Estimates

Maximum Economic Investment for Highways and Bridges

- HERS model estimates
- NBIAS model estimates
- Highway classes not reported in HPMS
- Improvement types not modeled in HERS or NBIAS

Operations Strategies and ITS

- Technologies and Strategies Modeled
 - Ramp metering
 - Electronic monitoring and traffic management centers
 - Incident detection, verification, and response
 - Variable message signs
 - Upgraded signal control
- Future Deployment
 - Assume continuation of existing trends

Alternative Assumptions - Operations

- If Operations/ITS Deployment were to Accelerate...
 - Cost to Maintain
 - \$76.9B (Down 2.4%) assuming Aggressive Deployment.
 - \$73.6B (Down 6.6%) assuming Universal Deployment.
 - Maximum Economic Investment level down slightly, but performance of system much better.
 - By 2024, users save \$10B annually assuming aggressive deployment or \$27B per year assuming full deployment.

Benefits Considered in HERS

- Benefits expressed as reductions in
 - User costs
 - Travel time costs
 - Vehicle operating costs
 - Crash costs
 - Maintenance costs
 - Emissions costs
 - Work zone delay costs
- Benefits are not tied to specific condition and performance measures

Other Items Not Fully Considered

- Other Impacts
 - Environmental (e.g., noise)
 - Productivity and Economic Development
- Network Effects
- Multimodal Analysis
- Other Items Documented in Part V of 2004
 C&P report

Potential Additions to the C&P Investment Requirements Analysis

- Other Highway Expenditures (Not Counted)
 - Planning
 - Maintenance and Operations
- Other Capital Improvements (Partially Counted)
 - Interchanges
 - Intermodal Connectors
 - New Construction (e.g. for New roads intended to promote Economic Development)
 - Highway-Rail Grade Crossings

Sensitivity Analysis - Construction Costs

- If highway construction costs were to rise 25%....
 - Cost to Maintain up by comparable percentage
 - (\$19B to \$20B higher than baseline)
 - Maximum Economic Investment level \$146.4B
 - Up only 11.2% from baseline level.
 - Some marginal projects no longer cost-beneficial
- Not just a hypothetical scenario
 - Data through 9 months of 2005 shows sharp jump in highway construction costs of roughly this size, but index is highly volatile.

Investment Analysis and Financing Mechanisms

- Increasing investment levels would require additional funds from some source (Federal, State, local, private)
 - Impact on investment analysis depends on the type of financing mechanism used to raise revenues
- If revenues were raised from general taxpayers (e.g., sales taxes, property taxes, general funds): no impact on travel
- If revenues were raised from additional user fees: would affect travel demand and thus investment requirements
 - Impact depends on the structure of the user fee
 - » Non-usage-based fees (e.g., registration fees, etc.)
 - » Fixed usage-based fees (e.g., VMT tax, fuel tax)
 - » Variable usage-based fees (e.g. congestion pricing)

Sensitivity Analysis - Pricing

- Baseline scenarios assume current financing structure
- If Universal Congestion Pricing Implemented...
 - Cost to Maintain \$57.2B (down 27.5%)
 - This is well below current spending level.
 - Max. Econ. Investment Level \$110.8B (down 15.9%)

Caveats

- Ignores start-up and administrative costs of new toll system
- Assumes perfect knowledge on part of highway agencies and drivers, so that economically efficient toll could always be imposed, and drivers would respond in most effective manner.