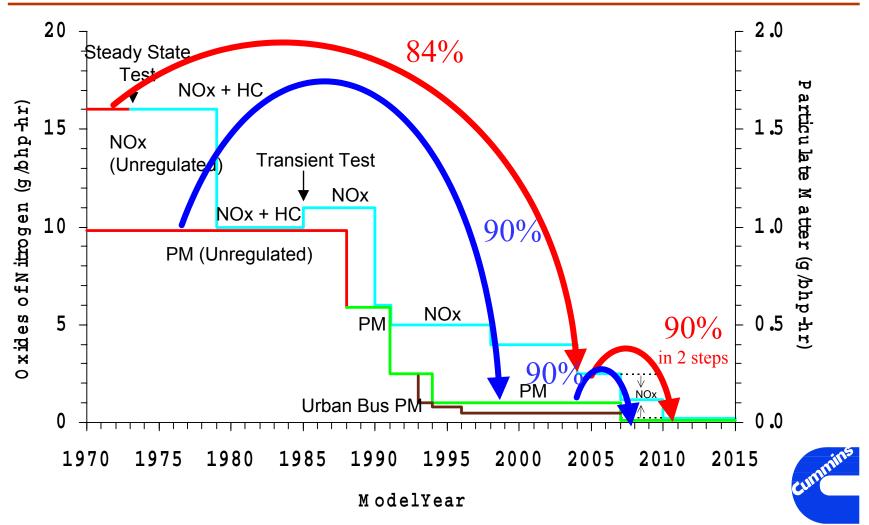
EPA Clean Diesel Engine Implementation Workshop

Kevin Otto Cummins Inc.

August 6-7, 2003



Implications of On-Board Diagnostics for Engine Manufacturers

Kevin M. Otto Cummins Inc.

EPA Heavy-Duty Engine Emission Standards

Future Emissions Standards

- Compliance represents a significant task
- Reducing NOx and PM the additional 90% will require more resources than the 84% and 90% already delivered
- Already are implementing a manufacturer led in-use compliance program
 - Testing required in 2007 with pilot to begin in 2005
 - In-use emission test 25% of our engine families per year
 - Approximately 10 vehicles per family

KMO - 8/6/2003 - 4

Emission Reduction Strategies

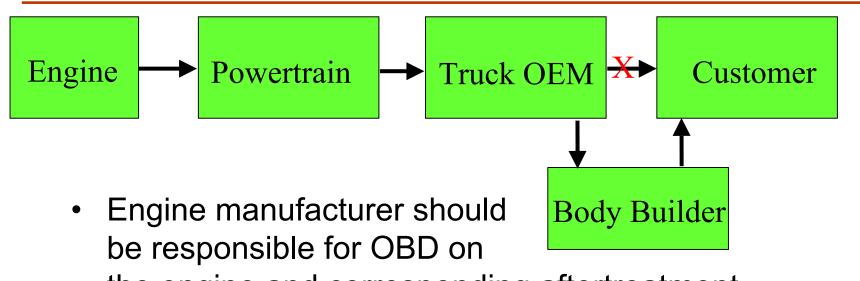
- Particulates and Hydrocarbons
 - Oxydation Catalyst
 - PM Filtration

- NOx
 - Selective Catalytic Reduction (SCR)
 - NOx Adsorbers
 - Exhaust Gas Recirculation (EGR)
 - Combustion
 System and Fuel
 Injection Equipment
 Improvements

KMO - 8/6/2003 - 5

July 25 CARB HD OBD Draft Regulation - Concerns from a quick review

- Compliance Date of 2007 Vehicle Model
 Year is specified, not Engine Model Year
- Diagnostic Monitoring of all electrical inputs and outputs, plus major systems for:
 - Engine, Aftertreatment, Transmission and Vehicle Systems
 - Major System Monitors that are Vehicle
 Dependent
 - This presents a calibration issue for items like vehicle cooling/electrical systems and transmissions



July 25 CARB HD OBD Draft Regulation - Concerns from a quick review

- Engine OEM responsible for the certification process including vehicle functions
 - OBD test cycles for validation/demonstration
 - Significant pre- and post-production requirements
- Specified Scan Tool protocol and connector
 - Does not allow J1939 or existing connector
- Different service language and process vs. today's
 - Confirmed fault, pending, readiness, continuous, noncontinuous, etc.
 - Emissions vs. other faults
 - Impact on technician training and procedures

Who is Responsible for OBD Certification?

the engine and corresponding aftertreatment system

- Multiplexed sensors and systems present additional challenges
- Engine manufacturer should not be held responsible for OBD requirements beyond its expertise and influence

Magnitude and Complexity of OBD Work (Cummins Example)

Year	Engine Platforms	Ratings/ Engine	OEM's	Complexity Index
2003	1	4	1	4
2005/7	4	5	3	60
When >14K GVW included	10 CI/SI	7	5	350

Bodybuilder scenario adds additional complexity

Resources and Timing

- Significant resources are required to implement
- The Industry has insufficient leadtime to fully implement OBD compliance
 - Light Duty OBD II promulgated in 1989 and implemented in 1996
 - Time of over 6 years with several years prior experience on OBD I
 - Current draft regulation allows 3 5 years for Heavy Duty

Recommendation

- Cummins advocates a phased implementation approach to Heavy Duty in-use compliance assurance
 - First phase should be the manufacturer run in-use test program
 - OBD requirements should be deferred to a later phase
- Cummins would like to be involved in further discussions on the listed concerns

