2007 Program Update Timeline for Vehicle and Engine Integration

Facilitating Field Testing

John Campbell

7 August 2003

CATERPILLAR®

Timeline for Vehicle and Engine Integration Facilitating Field Testing

Topics

 2007 Program Objectives
 2007 Aftertreatment Technology Options and Challenges

 » Particulate Reduction Systems
 » NOx Reduction System

 2007 Timeline

 2007 Field Testing Plans
 Summary

- **2007 Program Objectives**
 - Develop and Demonstrate Systems Achieving 2007 Emissions
 - Maximize Reliability & Fuel Economy
 - Minimize Product Cost & Development Cost (for OEM & Engine Manufacturer)
 - Develop Solutions for Heavy Duty and Midrange
 - Allow Customers to demonstrate performance and reliability

Particulate Reduction Technologies

Wall Flow Filter Technology

Filter Substrate

Soot Collects on Inlet Walls

Exhaust Inlet (Soot, CO, HC, NO_x)

Clean **Exhaust Out** (CO2, H2O)

- Diesel Particulate Filter (DPF)
- Collects Soot
- Oxidizes / Burns Soot
- Wall Flow Ceramic Filter
- Optional Diesel Oxidation Catalyst

Temperature Is Key to Filter Regeneration

Optimum is 350°C (660°F)

- Below 300°C (570°F) too Slow

»Low Temperature

- Above 400°C (750°F) also Slow

»NO - NO₂ Equilibrium Limits Soot Burning

Best Value Solution will be if Engine Can be Tailored for Thermal Management

Temperatures Vary With Application and Duty Cycle

System integration ensures successful filter regeneration.

Filters must be successful in all possible application scenarios

Note: 250 degrees is minimum temperature supplier recommends for this type of particulate filter

Diesel Particulate Filters Other Issues

- Minimize Backpressure Effects
- Servicing To Remove Ash From Filter
- Active Generation Transparent To The Operator
- Size Of System Impacts Chassis
- Cost High Due To Precious Metal Content

NOx Reduction Technologies and Options

NOx Reduction Options

- Engine-Out NOx Measures Can Reduce Size / Cost of Aftertreatment
- Aftertreatment Options Need to Be Evaluated for Maturity and Cost
- Combination of Engine-Out and Aftertreatment May Provide Best Value Path

Advanced DeNOx Catalyst

 Aftertreatment Technology to Reduce NOx Emissions

- Capable of Substantial NOx Reduction

Current Development Work:

- Integration of DeNOx With Engine Measures for NOx Reduction
- –System & Component Design
- -System Performance & Packaging
- Catalyst Development
- Catalyst Performance Evaluation

2007 Emissions Development Timeline

Field Demonstrations of Aftertreatment Technologies

2007 Field Demonstrations Program Objectives

Real World Conditions "Stretch the Envelope" Evaluate varying Aftertreatment Technologies

2007 Field Demonstrations "Stretch the Envelope"

Applications/Temperatures/Thermal Cycling Duty Cycles/Service Intervals Operating Fluids (Fuels/Oils)

Aftertreatment Field Demonstrations Examples

Internal Development and Demonstration Vehicles Retrofit Opportunities – School Bus/Transit Bus Fleet Programs Government Funded – Federal/State Off Road Applications

Primary Retrofit Markets

Particulate Control Devices

Aftertreatment Field Demonstrations Testing Limitations

Ultra Low Sulfur Fuel Availability Cost of Aftertreatment Installations Current Technology Not Demonstrating 2007 Emission Levels Not Demonstrating All Applications/Conditions

2007 Program Aftertreatment Field Demonstration Summary

Technologies Required for 2007 Engine Manufacturers Timeline Test Activities

