Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

Tin Zeolites for Partial Oxidation Catalysis

EPA Grant Number: R825370C072
Subproject: this is subproject number 072 , established and managed by the Center Director under grant R825370
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: EERC - National Center for Clean Industrial and Treatment Technologies (CenCITT)
Center Director: Crittenden, John C.
Title: Tin Zeolites for Partial Oxidation Catalysis
Investigators: Root, Thatcher W.
Institution: University of Wisconsin - Madison
EPA Project Officer: Karn, Barbara
Project Period: January 1, 1997 through January 1, 1999
RFA: Exploratory Environmental Research Centers (1992)
Research Category: Targeted Research , Center for Clean Industrial and Treatment Technologies (CenCITT)

Description:

Objective:

This investigation of novel zeolites with tin framework substitution has the following two objectives:

1) exploration of reaction activity and selectivity for hydrogen peroxide partial oxidation of selected organic chemicals; and
2) mechanistic studies of tin active sites to define the limiting behavior possible with this class of catalysts.

Approach:

The project work plan involves several steps:

In their lab, the investigators have established new capabilities for synthesizing silicalite and tin-containing silicalites. Several routine zeolite structural characterization or verification tools have been implemented, including XRD, FTIR, and ICP, which allow us to demonstrate critical tin incorporation into the zeolite lattice.

The investigators have built, calibrated, and operated two batch microreactors that allow us to measure reaction kinetics and selectivities for our initial test reaction, oxidation of phenol to hydroquinone or catechol using hydrogen peroxide. We have also investigated the use of ethylbenzene oxidation as an alternative probe reaction. Now underway are experiments aimed at refining the zeolite synthesis, both to better control tin content and to extend products to other promising silicate lattices in addition to the MFI structure.

The investigators are also improving reactor product analysis. Substantial effort is being focused on development of 119Sn solid-state NMR as a novel probe of the active site in these poorly understood catalysts. Difficulties have been encountered in consistency of zeolite synthesis from batch to batch, especially in the crystal yield, so this is receiving ongoing attention as we strive to modify procedures to minimize variations and maximize yields.

Expected Results:

This research is significant for development of environmentally benign chemical processes. Partial oxidation reactions abound in the specialty chemicals, fine chemicals, and pharmaceuticals industries, and often use undesirable chlorinated reactants to activate the reactions, or have other inorganic co-reactants that produce substantial process waste. Replacement of these processes with new chemistry using the benign reactant hydrogen peroxide is desirable, but these new processes will require innovative catalysts that activate the peroxide and direct its selective oxidation reactions.

One successful example is the use of titanosilicalite TS-1 by an Enichem plant in Italy for the oxidation of phenol to hydroquinone and catechol (used in photography, pigments, and pharmaceuticals). Recent work has shown that substitution of tin, vanadium, or other reducible elements into silicalite can potentially produce new catalysts that allow control of the selectivity between products for these reactions. Other partial oxidation reactions using hydrogen peroxide, such as olefin expoxidation, are also possible with these catalysts, but have not yet been explored or developed into practical processes.

Publications and Presentations:

Publications have been submitted on this subproject: View all 1 publications for this subprojectView all 155 publications for this center

Supplemental Keywords:

technology for sustainable environment, environmental chemistry, clean technology, environmental engineering, pollution prevention, cleaner production, environmentally benign chemical processes, catalytic research, tin zeolites, catalytic oxidation. , Ecosystem Protection/Environmental Exposure & Risk, POLLUTANTS/TOXICS, INTERNATIONAL COOPERATION, TREATMENT/CONTROL, Sustainable Industry/Business, Scientific Discipline, RFA, Technology for Sustainable Environment, Sustainable Environment, Chemical Engineering, Technology, Chemicals, Chemistry, computing technology, Environmental Engineering, cleaner production/pollution prevention, Environmental Chemistry, Engineering, pollution prevention, computer simulation modeling, clean technology, environmental simulation and design tools, pollution prevention design, clean manufacturing designs, modeling tool, cleaner production, clean technologies, pollution prevention design tool, computer science, data sharing, environmental data, catalytic hydrogenation, tin zeolites, catalysis, polymers, catalytic studies, oxidation catalysis, modeling, Clean Process Advisory System (CPAS), pollution control

Progress and Final Reports:
1999 Progress Report


Main Center Abstract and Reports:
R825370    EERC - National Center for Clean Industrial and Treatment Technologies (CenCITT)

Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
R825370C032 Means for Producing an Entirely New Generation of Lignin-Based Plastics
R825370C042 Environmentally Conscious Design for Construction
R825370C046 Clean Process Advisory System (CPAS) Core Activities
R825370C048 Investigation of the Partial Oxidation of Methane to Methanol in a Simulated Countercurrent Moving Bed Reactor
R825370C054 Predictive Tool for Ultrafiltration Performance
R825370C055 Heuristic Reactor Design for Clean Synthesis and Processing - Separative Reactors
R825370C056 Characterization of Selective Solid Acid Catalysts Towards the Rational Design of Catalytic Reactions
R825370C057 Environmentally Conscious Manufacturing: Prediction of Processing Waste Streams for Discrete Products
R825370C064 The Physical Properties Management System (PPMS™): A P2 Engineering Aid to Support Process Design and Analysis
R825370C065 Development and Testing of Pollution Prevention Design Aids for Process Analysis and Decision Making
R825370C066 Design Tools for Chemical Process Safety: Accident Probability
R825370C067 Environmentally Conscious Manufacturing: Design for Disassembly (DFD) in De-Manufacturing of Products
R825370C068 An Economic Comparison of Wet and Dry Machining
R825370C069 In-Line Copper Recovery Technology
R825370C070 Selective Catalytic Hydrogenation of Lactic Acid
R825370C071 Biosynthesis of Polyhydroxyalkanoate Polymers from Industrial Wastewater
R825370C072 Tin Zeolites for Partial Oxidation Catalysis
R825370C073 Development of a High Performance Photocatalytic Reactor System for the Production of Methanol from Methane in the Gas Phase
R825370C074 Recovery of Waste Polymer Generated by Lost Foam Technology in the Metal Casting Industry
R825370C075 Industrial Implementation of the P2 Framework
R825370C076 Establishing Automated Linkages Between Existing P2-Related Software Design Tools
R825370C077 Integrated Applications of the Clean Process Advisory System to P2-Conscious Process Analysis and Improvement
R825370C078 Development of Environmental Indices for Green Chemical Production and Use

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.