Photosynthesis Research Unit Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Donald Ort Lab
Archie Portis Lab
Lisa Ainsworth Lab
Steven Huber Lab
 

Research Project: IDENTIFYING AND MANIPULATING DETERMINANTS OF PHOTOSYNTHATE PRODUCTION AND PARTITIONING

Location: Photosynthesis Research Unit

Title: CAN MANIPULATION OF THE C2 PATHWAY ENZYME ACTIVITIES INCREASE PHOTOSYNTHETIC RATE? AN IN SILICO ANALYSIS.

Authors
item Zhu, Xin-Guang - UNIVERSITY OF ILLINOIS
item Portis Jr, Archie
item Ort, Donald
item Long, Stephen - UNIVERISTY OF ILLINOIS

Submitted to: Plant Biology Annual Meeting
Publication Type: Abstract
Publication Acceptance Date: March 5, 2005
Publication Date: May 1, 2005
Publisher's URL: http:////abstracts.aspb.org/pb2005/public/P43/7516.html
Citation: Zhu, X., Portis Jr, A.R., Ort, D.R., Long, S.P. 2005. Can Manipulation of The C2 Pathway Enzyme Activities Increase Photosynthetic Rate? An In Silico Analysis [abstract]. Plant Biology Annual Meeting. Paper No. 266. Available: http://abstracts.aspb.org/pb2005/public/P43/7516.html.

Technical Abstract: Previous efforts to increase crop productivity have focused on modifying ribulose 1,5-bisphosphaste carboxylase/oxygenase (Rubisco) to improve its efficiency. This has been proved to be intractable. Can changes in enzymes of the photosyntheitc carbon oxygenation pathway (PCOP) lead to increased leaf photosynthetic CO2 uptake (A) and correspondingly crop productivity? To address this question, a model of photosynthetic carbon metablolism was developed which includes the complete Calvin Cycle, PCOP pathway, starch synthesis and triose phosphate export. The whole model is simulated using a system of linked ordinary differential equations with each representing the rate of concentration change of a single metabolite. This system was numerically integrated with the ode15s algorithnm in MATLAB. Initial concentrations of metabolites and enzyme activities were collected from literature. The model is stable upon changes in O2 concentration, achieves realistic photosynthetic rates and simulates the expected patterns of responses of metabolite concentrations to altered activites of enzymes in PCOP. Simulations using the model showed that the enzymes in PCOP exert negligible control over A and therefore engineering more efficient enzymes in PCOP will not lead to a substantial increase in A. Furthermore, simulations revealed that enzymes in PCOP are in excess of what is needed to maitain the flux of PCOP under current atmospheric conditions. This excess of enzyme activities may be an insurance against environmental conditions that promote photorespiration that could otherwise result in carbon accumulating within PCOP and slowing regeneration of ribulose 1,5-bisphosphate.

   

 
Project Team
Ort, Donald
Huber, Steven
Ainsworth, Elizabeth - Lisa
 
Publications
   Publications
 
Related National Programs
  Plant Biological and Molecular Processes (302)
  Global Change (204)
 
 
Last Modified: 11/10/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House