Contaminant Fate and Transport Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Detection, Survival, Transport, and Reduction of Human Pathogens from Animal Manure
Methyl Bromide
Methyl Iodide
Telone (1,3-D)
Choropicrin
Emission Reduction
Film Permeability
Pictures
 

Research Project: DETECTION, SOURCE IDENTIFICATION, ENVIRONMENTAL TRANSPORT, FATE, AND TREATMENT OF PATHOGENIC MICROORGANISMS DERIVED FROM ANIMAL WASTES

Location: Contaminant Fate and Transport

Title: DETERMINING RATE OF CHANGE IN CUCUMBER RHIZOSPHERE MICROBIAL COMMUNITY COMPOSITION IN RESPONSE TO SOIL PH, SALINITY, AND BORON

Authors

Submitted to: Proceedings of the International Salinity Forum
Publication Type: Proceedings/Symposium
Publication Acceptance Date: April 11, 2005
Publication Date: April 25, 2005
Citation: Ibekwe, A.M., Grieve, C.M., Poss, J.A., Grattan, S., Suarez, D.L. 2005. Determining rate of change in cucumber rhizosphere microbial community composition in response to soil pH, salinity, and boron. In: Proceedings of the International Salinity Forum, Managing Saline Soils and Water: Science, Technology, and Soil Issues. April 25-27, 2005. Riverside, CA pp:77-80.

Interpretive Summary: The rhizosphere (i. e. the volume of soil adjacent to and influenced by plant roots) supports a diverse microbial community. The structure and richness of the community depend on several factors including plant species, plant developmental stage, mineral nutrient uptake by plants, excretion of specific organic compounds by plants, microbial competition for nutrients, solid attachment sites, and environmental conditions. The purpose of this study was to determine the interactive effects of salinity (3 and 8 dS/m), boron (0.7, 5 and 8 mg/l), and pH (6.5 and 8) on distribution, diversity, and composition of the microbial communities associated with cucumber plants grown in sand cultures. The effects of treatment on rhizosphere microbial development dynamics were characterized by extracting community DNA from plant roots, then amplifying and separating gene fragments by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) analysis. Results of the study showed that microbial diversity increased with plant age. Microbial diversity was more severely affected by pH than any other experimental variable, especially during the early stages of plant growth. This finding suggests that, in the sand tank system, pH must be properly controlled for several weeks after planting in order to avoid adverse effects on nutrient availability to plants.

Technical Abstract: The salinity of the soil plays a prominent role in the microbial selection process as environmental stress can reduce bacterial diversity. In the San Joaquin Valley (SJV) of California, the problem of increasing salinity and consequently, decreasing crop productivity, are major concerns. An experiment was conducted in a closed, recirculating volumetric lysimeter system (VLS) consisting of 24 experimental plant growth units at determine the interactive effects of salinity, boron and pH on the rhizosphere microbial composition of cucumber (Cucumis sativus L. cv. Seminis Turbo hybrid). Plants in the VLS were irrigated from individual reservoirs containing a modified half-strength Hoagland¿s nutrient solution combined with various salinity, boron, and pH treatments. . Community DNA was extracted from plant samples and a 236-bp DNA fragment in the V3 region of the small subunit ribosomal RNA genes of eubacteria was amplified and the 16S rRNA gene was separated in a DGGE gel. The results indicated that salinity and pH were the most influential factors determining the diversity of bacteria in the rhizophere of plants. The study showed that the impact of low pH on microbial community was more severe during the first week than week seven of the study. Therefore, soil pH must be properly managed during the early stages of plant development as this may have severe impact on nutrient availability to plants.

   

 
Project Team
Ibekwe, Abasiofiok - Mark
Bradford, Scott
 
Publications
   Publications
 
Related National Programs
  Manure and Byproduct Utilization (206)
 
Related Projects
   TRANSPORT AND FATE OF NITRATE AND PATHOGENS AT DAIRY LAGOON WATER APPLICATION SITE
   TRANSPORT AND FATE OF NITRATE AND PATHOGENS AT DAIRY LAGOON WATER APPLICATION SITE
   A NEW PARADIGM FOR PATHOGEN DEPOSITION IN POROUS MEDIA: THE ROLES OF PORE STRUCTURE AND COLLOID-COLLOID INTERACTIONS
   IMPACTS OF IRRIGATION WATER QUALITY PERSISTENCE AND TRANSMISSION OF E.COLI O157:H7 FROM SOIL TO PLANTS
   IMPACTS OF IRRIGATION WATER QUALITY PERSISTENCE AND TRANSMISSION OF E.COLI O157:H7 FROM SOIL TO PLANTS
 
 
Last Modified: 11/10/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House