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Abstract

The constant capacitance model, a chemical surface complexation model, was applied to selenite, Se(IV), adsorption on 36
soils selected for variation in soil chemical properties. The constant capacitance model was able to fit Se(IV) adsorption by
optimizing one monodentate Se(IV) surface complexation constant and the surface protonation constant. A general regres-
sion model was developed for predicting these surface complexation constants for Se(IV) from easily measured soil chemical
characteristics. These chemical properties were inorganic carbon content, organic carbon content, iron oxide content, alumi-
num oxide content, and surface area. The prediction equations were used to obtain values for the surface complexation con-
stants for four additional soils, thereby providing a completely independent evaluation of the ability of the constant
capacitance model to describe Se(IV) adsorption. The model’s ability to predict Se(IV) adsorption was quantitative on one
soil and semi-quantitative on three soils. Incorporation of these prediction equations into chemical speciation–transport mod-
els will allow simulation of soil solution Se(IV) concentrations under diverse non-calcareous agricultural and environmental
conditions without the requirement of soil specific adsorption data and subsequent parameter optimization.
Published by Elsevier Ltd.
1. INTRODUCTION

Selenium is both a micronutrient essential for animal
nutrition and a potentially toxic trace element. The concen-
tration range between Se deficiency and toxicity symptoms
in animals is narrow. Seleniferous soils, such as occur in the
Western USA, especially in South Dakota, yield enough Se
to produce vegetation toxic to grazing animals (Lakin,
1961). Concentrations of Se in soils and waters can become
elevated as a result of discharge from petroleum refineries,
disposal of fly ash, mining activities, and mineral oxidation
and dissolution (Girling, 1984). Elevated concentrations of
Se in agricultural drainage waters supplying Kesterson Res-
ervoir in the San Joaquin Valley of California caused
deaths and deformities of water fowl (Ohlendorf et al.,
1986). In recognition of the hazards Se poses to the welfare
of animals, the U.S. Environmental Protection Agency
0016-7037/$ - see front matter Published by Elsevier Ltd.
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(USEPA) has set the Se drinking water standard at a con-
centration of 0.633 lmol L�1 (50 ppb).

The dominant inorganic Se species in soil solution are
selenite, Se(IV) and selenate, Se(VI) (Adriano, 1986). Sele-
nium toxicity depends on its oxidation state with Se(IV)
generally considered to be more toxic than Se(VI) (Harr,
1978; Cobo Fernandez et al., 1993). Although Se(VI) is
the thermodynamically stable redox state under oxidizing
conditions, the transformation rates of Se(IV) to Se(VI)
are sufficiently slow that both redox states often coexist in
soil solution (Masscheleyn et al., 1990).

Soil Se content is significantly positively correlated with
clay, carbonate, and extractable Al and Fe oxide content
(Levesque, 1974; Elsokkary, 1980). Selenium adsorption
studies have been carried out on a wide range of adsorbents
including oxides, clay minerals, organic matter, carbonates,
and whole soils. Adsorption reactions on soil mineral sur-
faces can attenuate elevated soil solution Se concentrations
reducing Se contamination. Selenite adsorbs strongly on
soil surfaces while selenate adsorbs weakly or not at all
and is readily leached to groundwater (Neal and Sposito,
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1989). Therefore, careful quantification of soil solution Se
concentrations and characterization of Se(IV) adsorption
on soil surfaces is needed.

Selenite adsorption on soils and soil minerals has been
described using various modeling approaches. Such models
include the empirical distribution coefficient, Kd (Fujikawa
and Fukui, 1997; Wang and Liu, 2005), Freundlich (Del
Debbio, 1991), and Langmuir (Elsokkary, 1980; Singh
et al., 1981; Saeki and Matsumoto, 1994) adsorption iso-
therm equations, and surface complexation models: con-
stant capacitance model (Goldberg and Glaubig, 1988;
Sposito et al., 1988; Anderson and Benjamin, 1990a,b;
Duc et al., 2003, 2006), diffuse layer model (Dzombak
and Morel, 1990; Balistrieri et al., 2003), triple layer model
(Hayes et al., 1988; Balistrieri and Chao, 1990; Zhang and
Sparks, 1990; Ghosh et al., 1994; Martinez et al., 2006), and
charge distribution multisite complexation, CD-MUSIC,
model (Hiemstra and van Riemsdijk, 1999). Parameters ob-
tained from adsorption isotherm equations are empirical
and only valid for the conditions under which the experi-
ment was conducted. Chemical surface complexation mod-
els define surface species, chemical reactions, mass balances,
and charge balances and contain molecular features that
can be given thermodynamic significance (Sposito, 1983).

Selenite has been observed spectroscopically to adsorb
specifically on the iron oxides, goethite (Hayes et al.,
1987; Manceau and Charlet, 1994), hematite (Catalano
et al., 2006), and amorphous iron oxide (Manceau and
Charlet, 1994), on the aluminum oxides, gibbsite, corun-
dum (Papelis et al., 1995; Peak, 2006), and amorphous alu-
minum oxide (Peak, 2006), on the manganese oxides,
vernadite and birnessite (Foster et al., 2003), and on the
clay mineral montmorillonite (Peak et al., 2006) forming
strong inner-sphere surface complexes containing no water
between the adsorbing Se(IV) ion and the surface func-
tional group. Selenite was found to adsorb on hematite
(Catalano et al., 2006) amorphous aluminum oxide (Peak,
2006), and montmorillonite (Peak et al., 2006) as bidentate
surface complexes. A mixture of monodentate and biden-
tate Se(IV) surface complexes was observed on manganese
oxide (Foster et al., 2003).

All surface complexation modeling approaches indi-
cated above postulated monodentate inner-sphere surface
complexes for Se(IV) adsorption, with the exception of
the study of Balistrieri and Chao (1990) which considered
a bidentate surface complex on goethite and the study of
Hiemstra and van Riemsdijk (1999) which considered a
combination of mono- and bidentate surface complexes
on goethite. Duc et al. (2006) found that the fits obtained
with the constant capacitance model were of comparable
quality when using either a monodentate or a bidentate sur-
face configuration. Chemical modeling of Se(IV) adsorp-
tion has been carried out on heterogeneous natural
materials for the clay minerals, kaolinite and montmoril-
lonite (Goldberg and Glaubig, 1988) and soils using
monodentate surface complexes in the constant capacitance
model (Goldberg and Glaubig, 1988; Sposito et al., 1988).

The predictive capability of the constant capacitance
model to describe trace element adsorption has been tested
(Goldberg et al., 2000, 2002, 2004, 2005). A general regres-
sion model was used to predict model surface complexation
constants from easily measured soil chemical properties
such as: surface area, cation exchange capacity, organic car-
bon content, inorganic carbon content, aluminum oxide
content, and iron oxide content. This approach provided
a completely independent model evaluation and was able
to predict borate (Goldberg et al., 2000, 2004), molybdate
(Goldberg et al., 2002), and arsenate (Goldberg et al.,
2005) adsorption on numerous diverse soils having a wide
range of chemical characteristics.

The objectives of the present study are: (i) to apply the
constant capacitance model to Se(IV) adsorption on a set
of 45 soil samples using both monodentate and bidentate
surface configurations for adsorbed Se(IV); (ii) to relate
Se(IV) adsorption characteristics and model surface com-
plexation constants to easily measured chemical parameters
affecting Se(IV) adsorption such as surface area (SA), cat-
ion exchange capacity (CEC), organic carbon content
(OC), inorganic carbon content (IOC), aluminum oxide
content (Al), and iron oxide content (Fe); (iii) to relate
quantitatively variations in these soil properties to varia-
tions in values of the surface complexation constants ob-
tained by the constant capacitance model; and (iv) to
evaluate the ability of the constant capacitance model to
predict Se(IV) adsorption on additional soils using the sur-
face complexation constants calculated from soil chemical
properties.

2. EXPERIMENTAL SECTION

Selenite adsorption was investigated using 45 surface
and subsurface soil samples from 36 soil series belonging
to six different soil orders. The soils were chosen to cover
a wide range of chemical characteristics. Soil classifications
and chemical characteristics are provided in Table 1. The
Southeastern soil subgroup (the first 20 soil series listed:
Altamont to Yolo) constitutes a group of soils primarily
from California that had been used in prior studies of bo-
rate (Goldberg et al., 2000), molybdate (Goldberg et al.,
2002), and arsenate (Goldberg et al., 2005) adsorption. This
set of soils consists mainly of alfisols and entisols with some
vertisols, mollisols, an inceptisol, and an aridisol. The Mid-
western subgroup (the following 16 soil series listed: Ber-
now to Teller) constitutes a group of soils from Iowa and
Oklahoma that had been used in prior studies of borate
(Goldberg et al., 2004), and arsenate adsorption (Goldberg
et al., 2005). This set of soils consists mainly of mollisols
with some alfisols and vertisols. The Southwestern soils ex-
hibit a higher range in pH value, consistent with the lower
rainfall amounts experienced in this part of the country
over those experienced by the Midwestern soils.

Soil pH values were measured in deionized water at a
soil to water ratio of 1:5 as described by Thomas (1996).
Cation exchange capacities were measured by the Na satu-
ration and Mg extraction method for arid-zone soils (Rho-
ades, 1982). Surface areas were determined by adsorption
of ethylene glycol monoethyl ether (EGME) as described
by Cihacek and Bremner (1979). Free Fe and Al were ex-
tracted using a Na citrate/citric acid buffer and Na hydro-
sulphite (Coffin, 1963) and measured using inductively



Table 1
Classifications and chemical characteristics of soils

Soil series Depth
(cm)

pH CEC
(mmolc kg�1)

SA
(km2 kg�1)

IOC
(g kg�1)

OC
(g kg�1)

Fe
(g kg�1)

Al
(g kg�1)

Southwestern soils

Altamont (fine, smectitic, thermic Aridic
Haploxerert)

0–23 6.17 179 0.109 0.12 30.8 9.2 0.88

Arlington (coarse-loamy, mixed thermic Haplic
Durixeralf)

0–25 8.25 107 0.0611 0.30 4.7 8.2 0.48

Avon (fine, smectitic, mesic, calcic Pachic Argixeroll) 0–15 6.85 183 0.0601 0.083 30.8 4.3 0.78
Bonsall (fine, smectitic, thermic Natric Palexeralf) 0–25 5.92 54 0.0157 0.13 4.9 9.3 0.45
Chino (fine-loamy, mixed, thermic Aquic

Haploxeroll)
0–15 10.1 304 0.159 6.4 6.2 4.7 1.64

Diablo (fine, smectitic, thermic Aridic Haploxerert) 0–15 8.01 301 0.19 0.26 19.8 7.1 1.02
0–15 7.47 234 0.13 2.2 28.3 5.8 0.84

Fallbrook (fine-loamy, mixed, thermic Typic
Haploxeralf)

25–51 6.27 78 0.0285 0.24 3.1 4.9 0.21

Fiander (fine-silty, mixed, mesic Typic Natraquoll) 0–15 9.60 248 0.0925 6.9 4.0 9.2 1.06
Haines (coarse-silty, mixed, calcareous, mesic Typic

Haplaquept)
20 9.07 80 0.0595 15.8 14.9 1.7 0.18

Hanford (coarse-loamy, mixed, non-acid, thermic
Typic Xerorthent)

0–10 8.24 111 0.0289 10.1 28.7 6.6 0.35

Holtville (clayey over loamy, smectitic, mixed,
calcareous, hyperthermic Typic Torrifluvent)

61–76 8.82 58 0.043 16.4 2.1 4.9 0.27

Imperial (fine, smectitic, calcareous, hyperthermic
Vertic Torrifluvent)

15–46 8.53 198 0.106 17.9 4.5 7.0 0.53

Nohili (very-fine, smectitic, calcareous,
isohyperthermic Cumulic Endoaquoll)

0–23 8.01 467 0.286 2.7 21.3 49.0 3.7

Pachappa (coarse-loamy, mixed, thermic Mollic
Haploxeralf)

0–25 6.84 39 0.0151 0.026 3.8 7.6 0.67

25–51 7.03 52 0.041 0.014 1.1 7.2 0.35
0–20 9.40 122 0.0858 0.87 3.5 5.6 0.86

Porterville (fine, smectitic, thermic Aridic
Haploxerert)

0–7.6 6.76 203 0.137 0.039 9.4 10.7 0.90

Reagan (fine-silty, mixed, thermic Ustic Haplocalcid) Surface 8.34 98 0.0588 18.3 10.1 4.6 0.45
Sebree (fine-silty, mixed, mesic Xerollic Nadurargid) 0–13 5.69 27 0.0212 0.0063 2.2 6.0 0.46
Wasco (coarse-loamy, mixed, non-acid, thermic

Typic Torriorthent)
0–5.1 4.51 71 0.0309 0.009 4.7 2.4 0.42

Wyo (fine-loamy, mixed, thermic Mollic
Haploxeralf)

6.37 155 0.0539 0.014 19.9 9.5 0.89

Yolo (fine-silty, mixed, non-acid, thermic Typic
Xerorthent)

0–15 8.43 177 0.0730 0.23 11.5 15.6 1.13

Midwestern soils

Bernow (fine-loamy, siliceous, thermic Glossic
Paleudalf)

B 3.87 77.6 0.0464 0.0028 3.8 8.1 1.1

Canisteo (fine-loamy, mixed, superactive, calcareous,
mesic Typic Endoaquoll)

A 7.99 195 0.152 14.8 34.3 1.7 0.44

Dennis (fine, mixed, thermic Aquic Argiudoll) A 4.81 85.5 0.0403 0.0014 18.6 12.9 1.7
B 5.29 63.1 0.0724 0.0010 5.2 30.0 4.1

Dougherty (loamy, mixed, active, thermic Arenic
Haplustalf)

A 4.76 3.67 0.241 0.0010 7.0 1.7 0.28

Hanlon (coarse-loamy, mixed, superactive, mesic
Cumulic Hapludoll)

A 7.56 142 0.0587 2.6 15.1 3.7 0.45

Kirkland (fine, mixed, superactive, thermic Udertic
Paleustoll)

A 5.02 154 0.0421 0.014 12.3 5.6 0.80

Luton (fine, smectitic, mesic Typic Endoaquert) A 7.05 317 0.169 0.099 21.1 9.1 0.99
Mansic (fine-loamy, mixed, superactive, thermic

Aridic Calciustoll)
A 8.38 142 0.0422 16.7 10.1 2.7 0.40

B 8.78 88.1 0.0355 63.4 9.0 1.1 0.23
Norge (fine-silty, mixed, active, thermic Udic

Paleustoll)
A 3.65 62.1 0.0219 0.0010 11.6 6.1 0.75

Osage (fine, smectitic, thermic Typic Epiaquert) A 7.04 377 0.134 0.59 29.2 15.9 1.4
B 6.43 384 0.143 0.0100 18.9 16.5 1.3
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Table 1 (continued)

Soil series Depth
(cm)

pH CEC
(mmolc kg�1)

SA
(km2 kg�1)

IOC
(g kg�1)

OC
(g kg�1)

Fe
(g kg�1)

Al
(g kg�1)

Pond Creek (fine-silty, mixed,
superactive, thermic Pachic Argiustoll)

A 4.82 141 0.0354 0.0023 16.6 5.2 0.70

B 6.15 106 0.0596 0.016 5.0 5.1 0.81

Pratt (sandy, mixed, mesic Lamellic
Haplustalf)

A 5.94 23.9 0.0123 0.0026 4.2 1.2 0.18

B 5.74 23.3 0.117 0.0007 2.1 0.92 0.13
Richfield (fine, smectitic, mesic Aridic

Argiustoll)
B 7.38 275 0.082 0.040 8.0 5.4 0.76

Summit (fine, smectitic, thermic
Oxyaquic Vertic Argiudoll)

A 7.46 374 0.218 0.25 26.7 16.2 2.3

B 6.84 384 0.169 0.0079 10.3 17.8 2.5
Taloka (fine, mixed, thermic Mollic

Albaqualf)
A 4.90 47.4 0.087 0.0021 9.3 3.6 0.62

Teller (fine-loamy, mixed, active, thermic
Udic Argiustoll)

A 3.67 43.1 0.227 0.0008 6.8 3.2 0.53

CEC, cation exchange capacity; SA, surface area; IOC, inorganic carbon; OC, organic carbon.
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coupled plasma (ICP) emission spectrometry. Carbon con-
tents were determined using a carbon coulometer1 (UIC,
Inc., Joliet, IL). Organic carbon was obtained by the
difference between total carbon determined by furnace
combustion at 950 �C and inorganic carbon determined
using an acidification module and heating. The soil sam-
ples represented a broad range of chemical characteristics:
pH: 3.7–10.1, CEC: 3.7–467 mmolc kg�1, SA: 0.0123–
0.286 km2 kg�1, IOC: 0.0007–63 g kg�1, OC: 1.1–34 g kg�1,
Fe: 0.9–49 g kg�1, Al: 0.13–4.1 g kg�1 (see Table 1).

Selenite adsorption experiments were carried out in
batch systems to determine adsorption envelopes (amount
of Se(IV) adsorbed as a function of solution pH at fixed to-
tal Se(IV) mass). One gram of soil was added to 50-mL
polypropylene centrifuge tubes and equilibrated with
25 mL of a 0.1 M NaCl solution by shaking on a recipro-
cating shaker for 2 h. This reaction time was used in a prior
study of Se(IV) adsorption by soil (Goldberg and Glaubig,
1988). The equilibrating solution contained 20 lmol L�1

Se(IV) and had been adjusted to the desired pH range of
2–10 using 1.0 M HCl or 1.0 M NaOH. After reaction,
the samples were centrifuged and the decantates analyzed
for pH, passed through 0.45 lm membrane filters, and ana-
lyzed for Se concentration using ICP spectrometry. Initial
analyses using the direct speciation method of Goldberg
et al. (2006) verified that no oxidation of Se(IV) to Se(VI)
had occurred.

Carbonates were removed from subsamples of the Holt-
ville, Imperial, and Reagan soils using a modification of the
procedure described by Kunze and Dixon (1986). The soils
were washed three times with 0.5 M Na acetate which had
been adjusted to pH 5 with glacial acetic acid, washed twice
with deionized water, air dried, and passed through a 2-mm
sieve. The chemical properties of the treated subsamples
1 Trade names and company names are included for the benefit
of the reader and do not imply any endorsement or preferential
treatment of the product listed by the U.S. Department of
Agriculture.
were characterized and their Se(IV) adsorption behavior
determined under identical conditions as described above.

A detailed discussion of the theory and assumptions of
the constant capacitance surface complexation model is
available (Goldberg, 1992). In the present application of
the model to Se(IV) adsorption, the following surface com-
plexation constants were considered:

SOHðsÞ þHþðaqÞ� SOHþ2ðsÞ ð1Þ
SOHðsÞ�SO�ðsÞ þHþðaqÞ ð2Þ
SOHðsÞ þH2SeO3ðaqÞ� SHSeO3ðsÞ þH2O ð3Þ
SOHðsÞ þH2SeO3ðaqÞ� SSeO�3ðsÞ þHþðaqÞ þH2O ð4Þ
2SOHðsÞ þH2SeO3ðaqÞ� S2SeO3ðsÞ þ 2H2O ð5Þ

where SOH(s) represents reactive surface hydroxyl groups
on oxide minerals and aluminol groups on clay minerals
in the soils. By convention, surface complexation reactions
in the constant capacitance model are written starting with
the completely undissociated acids; however, the model
application contains the aqueous speciation reactions for
Se(IV). Both monodentate and bidentate Se(IV) surface
species were considered, consistent with spectroscopic
observations.

Intrinsic equilibrium constants for the surface complex-
ation reactions are:

KþðintÞ ¼ ½SOHþ2 �
½SOH�½Hþ� expðF w=RT Þ ð6Þ

K�ðintÞ ¼ ½SO��½Hþ�
½SOH� expð�F w=RT Þ ð7Þ

K1
SeðintÞ ¼ ½SHSeO3�

½SOH�½H2SeO3�
ð8Þ

K2
SeðintÞ ¼ ½SSeO�3 �½Hþ�

½SOH�½H2SeO3�
expð�F w=RT Þ ð9Þ

K3
SeðintÞ ¼ ½S2SeO3�

½SOH�2½H2SeO3�
ð10Þ

where square brackets indicate concentrations (mol L�1), F

is the Faraday constant (C mol�1
c Þ, w is the surface potential
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(V), R is the molar gas constant (J mol�1 K�1), and T is the
absolute temperature (K). The exponential terms can be
considered as solid-phase activity coefficients that correct
for charge on the surface complexes. The assumption is
made that the number of bidentate sites, ”S2, is equal to
one half that of the monodentate sites, ”S. However, the
number of bidentate sites available for Se(IV) adsorption
is actually less than that because the two monodentate sites
used to form the bidentate Se(IV) surface complex must be
adjacent to each other (Benjamin, 2002). In the present
application, surface complexation constants for monoden-
tate and bidentate Se(IV) surface species will be determined
in separate optimizations.

Mass balance of the surface functional groups for
monodentate adsorption only is:

½SOH�T ¼ ½SOH� þ ½SOHþ2 � þ ½SO�� þ ½SHSeO3�
þ ½SSeO�3 � ð11Þ

and mass balance for bidentate adsorption only is:

½SOH�T ¼ ½SOH� þ ½SOHþ2 � þ ½SO�� þ 2½S2SeO3� ð12Þ

Charge balance for monodentate adsorption only is:

r ¼ ½SOHþ2 � � ½SO�� � ½SSeO�3 � ð13Þ

and charge balance for bidentate adsorption only is:

r ¼ ½SOHþ2 � � ½SO�� ð14Þ

where r has units of (molc L�1).
The computer program FITEQL 3.2 (Herbelin and Wes-

tall, 1996) was used to fit surface complexation constants to
the experimental adsorption data. The program uses a non-
linear least squares optimization routine to fit equilibrium
constants to experimental data and contains the constant
capacitance model for surface complexation. FITEQL can
also be used to calculate and predict chemical speciation
using equilibrium constant values determined from previ-
ous experiments. The assumption that Se(IV) adsorption
takes place on only one set of reactive surface functional
groups is clearly a gross simplification since soils are com-
plex multisite mixtures containing many diverse surface
sites. Selenite surface complexation constants determined
for soils are average composite values that include compet-
ing ion effects and soil mineralogical characteristics.

Initial input parameter values for the model were: sur-
face area, capacitance: C = 1.06 F m�2 (considered opti-
mum for Al oxide by Westall and Hohl, 1980),
protonation constant: logK+(int) = 7.35, deprotonation
constant: logK�(int) = �8.95 (averages of a literature com-
pilation for Al and Fe oxides by Goldberg and Sposito,
1984), and total number of reactive surface hydroxyl
groups: NS = 2.31 sites nm�2 (recommended for natural
materials by Davis and Kent, 1990). Previous sensitivity
analyses showed that surface complexation modeling was
highly dependent on surface site density (Goldberg, 1991),
but more than tripling the capacitance produced only minor
changes in the values of the surface complexation constants
(Goldberg and Sposito, 1984). It is necessary to maintain
constant values of capacitance and surface site density so
that the model results can be used to predict Se(IV) adsorp-
tion by additional soils. The goodness-of-fit parameter was
the overall variance V in Y:

V Y ¼
SOS

DF
ð15Þ

where SOS is the weighted sum of squares of the residuals
and DF is the degrees of freedom.

The initial, fully specified functions for each surface
complexation constant were defined to be:

log KjðintÞ ¼ b0j þ b1jðln CECiÞ þ b2jðln SAiÞ þ b3jðln IOCiÞ
þ b4jðln OCiÞ þ b5jðln FeiÞ þ b6jðln AliÞ þ ei

ð16Þ

where logK(int) represents the specific surface complexa-
tion constant, j = 1 (Southwestern) or 2 (Midwestern) soil
groups, and e (the residual error term) is assumed to follow
the usual regression modeling assumptions of Normal er-
rors. Note that Eq. (16) represents an analysis of covariance
(ANOCOVA) model which can be recast as a multivariate
analysis of covariance (MANOCOVA) model, if one de-
sires to perform tests across both sets of estimated (surface
complexation constant) regression model parameters simul-
taneously. For this analysis, the goal of the model building
process was to determine the best set of reduced regression
model parameters for predicting these surface complexation
constants.

The model building process proceeded in three stages.
First, the MANOCOVA version of Eq. (16) was estimated
so that a joint parameter test (Wilks’ lambda) could be per-
formed (Johnson and Wichern, 1988). This test was used to
verify that at least some of the model parameter estimates
were statistically different across the two soil groups. Eq.
(16) was then analyzed separately for each surface complex-
ation constant using a backwards elimination (BWE) pro-
cedure, where the critical cut-off p-value used for
parameter removal was set to a = 0.15 (Myers, 1986). Based
on the results from this BWE procedure, a reduced predic-
tion equation was specified for each surface complexation
constant. Specifically, if the BWE procedure removed the
same regression variable from both soil groups, then this
variable was left out of the reduced equation (otherwise
the variable was retained for each group).

In the third and final stage of the model development
process, the jack-knifed prediction error (PRESS statistic)
was first calculated for the reduced equation and then the
remaining group-specific model parameters were sequen-
tially deleted and/or pooled across groups in an effort to
improve (i.e., reduce) the PRESS statistic (Myers, 1986).
In this process, each remaining parameter could be (i) de-
leted jointly across both soil groups, (ii) pooled across soil
groups (i.e., made into a common parameter), or (iii) set to
0 for just one soil group (i.e., deleted for one soil group
only). However, when any parameters were deleted, they
were always deleted jointly (across both soil groups) unless
the corresponding p-values clearly indicated a dichotomous
effect; i.e., one p-value >0.5 and another <0.05. This process
continued until the PRESS statistic was minimized; i.e., the
jack-knifed prediction variance was made as small as possi-
ble. All multivariate analysis of variance (ANOVA) tests,
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regression model development, and prediction error analy-
ses were carried out using SAS software (SAS, 1999).

3. RESULTS AND DISCUSSION

Selenite adsorption as a function of solution pH was
determined for 45 different soil samples (examples are pre-
sented in Figs. 1 and 2). Selenite adsorption generally de-
creased with increasing solution pH. The decrease in
adsorption was observed at a much higher pH value for
the Midwestern soils (Fig. 2) than the Southwestern soils
(Fig. 1).

The constant capacitance model was fit to the Se(IV)
adsorption envelopes of all the soil samples. Surface com-
0.1

0.2

0.3

0.4

0.5
Arlington data
Arlington model
Bons all data
Bons all model

Diablo data
Diablo model
Fall brook data
Fall brook model

1 3 5 7 9
pH

0.0

0.1

0.2

0.3

0.4

Se
 a

ds
or

be
d 

(m
m

ol
 k

g-
1 )

Loam data
Loam model
Subs oil data
Subs oil model

Pachappa

2 4 6 8 10
pH

Wasco data
Wasco model
Yolo data
Yolo model 

Fig. 1. Fit of the constant capacitance model to Se(IV) adsorption
by Southwestern soils. Experimental data are represented by circles
and by squares. Model fits are represented by solid and dashed
lines.
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Fig. 2. Fit of the constant capacitance model to Se(IV) adsorption
by Midwestern soils: (a) Osage soil; (b) Pond Creek soil; (c) Pratt
soil; and (d) Summit soil. Experimental data are represented by
circles for the A horizons and by squares for the B horizons. Model
fits are represented by solid lines for the A horizons and dashed
lines for the B horizons.
plexation constants for both monodentate and bidentate
surface configurations of adsorbed Se(IV) were optimized
in separate calculations. Model fits were superior in quality
(as measured by the goodness-of-fit criterion, VY) when
monodentate Se(IV) surface species were used (V Y ¼ 9:5
for monodentate, V Y ¼ 10:4 for bidentate). Simultaneous
optimization of the two monodentate surface complexation
constants, log K1

Se(int) and log K2
Se(int) was only possible

for five of the soils. For all other soils, only the constant
for the negatively charged Se(IV) surface species,
log K2

Se(int), was optimized since log K1
Se(int) did not con-

verge. To improve the model fit, values of the protonation
constant, logK+(int), and the deprotonation constant,
log K�(int), were simultaneously optimized with the Se(IV)
constant, log K2

Se(int). Results of the initial optimizations
indicated that the deprotonated species was only required
in trace amounts (logK�(int) < �38.95). It was therefore
omitted from the final optimizations. Table 2 provides final
values for the optimized surface complexation constants.
Optimized constants are not listed for the soils having
>1.4% inorganic carbon content since the constant capaci-
tance model could not converge log K2

Se(int) and logK+(int)
simultaneously under these circumstances. Simultaneous
optimization of logKSe(int), logK+(int), and logK�(int)
was possible for only two soils using a bidentate Se(IV) sur-
face configuration. Therefore, the bidentate approach was
not pursued further.

Figs. 1 and 2 indicate the ability of the constant capac-
itance model to describe Se(IV) adsorption on 16 soils by
simultaneously optimizing log K2

Se(int) and logK+(int).
The model generally provided a good description of the
adsorption data up to a solution pH of 7–8. At higher
pH values, the adsorption data were under-predicted. We
chose a representative subset of soils for presentation in
these figures. For the Midwestern soils (Fig. 2), we chose
to present the soils for which we were able to determine
Se(IV) adsorption envelopes on both surface and subsur-
face horizons. The range in quality of model fits is well rep-
resentative of both sets of soils studied. For each
Midwestern soil, the model fit was comparable in quality
for both horizons. The quality of fit for the Midwestern
soils (Fig. 2) was better than that for the Southwestern soils
(Fig. 1).

A general regression modeling approach was used to re-
late the Se(IV) surface complexation constants to the fol-
lowing set of soil chemical properties: CEC, SA, IOC,
OC, Fe, and Al. The 35 soils used to obtain the regression
model results discussed below had the following ranges of
soil properties: CEC: 3.7–384 mmolc kg�1, SA: 0.0123–
0.241 km2 kg�1, IOC: 0.0007–10.1 g kg�1, OC: 1.1–
30.8 g kg�1, Fe: 1.1–17.8 g kg�1, and Al: 0.13–2.5 g kg�1.

Upon visual inspection, the average levels of the numer-
ically optimized surface complexation constants appeared
to be different across the two soil groups (Midwestern
and Southwestern, respectively). This difference was con-
firmed using a multivariate Hotelling’s T2 test (F = 7.01,
p = 0.003). A second multivariate parameter test (MANO-
COVA model parameter test: F = 5.35, p < 0.001) con-
firmed that the estimated regression model parameters
also appeared to change across soil groups (Johnson and



Table 2
Constant capacitance model surface complexation constants

Soil series Depth
(cm)

Fitted
log K2

Se

Fitted
logK+

Predicted
log K2

Se

Predicted
logK+

Jack-knife predicted
log K2

Se

Jack-knife
predicted logK+

Average
absolute error

Southwestern soils

Altamont 0–20 �1.42 2.72 �1.23 2.79 �1.18 2.80 0.16
Arlington 0–25 �1.04 2.82 �0.88 2.81 �0.87 2.80 0.09
Avon 0–15 �1.24 2.27 �1.21 2.16 �1.20 2.14 0.09
Bonsall 0–25 �0.90 2.80 �0.62 2.81 �0.57 2.81 0.17
Chino 0–15 �1.57 2.96 �1.42 2.72 �1.40 2.64 0.24
Diablo 0–15 �1.57 2.11 �1.47 2.68 �1.46 2.71 0.35

0–15 �1.75 2.85 �1.41 2.77 �1.34 2.75 0.25
Fallbrook 25–51 �0.73 2.53 �0.70 2.38 �0.69 2.37 0.10
Fiander 0–15 �1.01 3.20 �0.99 3.25 �0.99 3.27 0.04
Haines 20 NCa NC �1.40 2.04
Hanford 0–10 �0.53 2.68 �0.81 3.04 �0.89 3.15 0.41
Holtville 61–76 NC NC �0.82 2.87
Imperial 15–46 NC NC �1.13 3.15
Nohili 0–23 NC NC �1.10 4.44
Pachappa 0–25 2.17 �0.69 2.47 �0.69 2.50

25–51 �0.53 2.50 �0.65 2.35 �0.70 2.33 0.17
0–20 �1.22 3.10 �1.09 2.63 �1.07 2.58 0.33

Porterville 0–7.6 �1.04 2.86 �1.26 2.78 �1.30 2.76 0.18
Reagan Surface NC NC �1.09 2.83
Sebree 0–13 �0.47 2.11 �0.53 2.12 �0.51 2.12 0.03
Wasco 0–5.1 �0.93 1.28 �1.19 1.45 �1.38 1.59 0.38
Wyo �0.58 2.79 �1.05 2.57 �1.13 2.52 0.41
Yolo 0–15 �0.79 3.28 �0.85 3.27 �0.87 3.27 0.04

Midwestern soils

Bernow B 0.62 2.85 0.59 2.24 0.56 2.19 0.36
Canisteo A NC NC �2.51 1.77
Dennis A 0.31 2.36 0.38 2.25 0.39 2.23 0.10

B NC NC 1.63 2.19
Dougherty A �1.77 2.11 �1.94 2.14 �2.01 2.14 0.13
Hanlon A �0.92 2.50 �0.96 2.37 �0.97 2.34 0.10
Kirkland A �0.06 1.76 �0.31 2.21 �0.33 2.24 0.37
Luton A �0.79 2.33 �0.59 2.41 �0.55 2.42 0.16
Mansic A NC NC �0.97 2.21

B NC NC �1.78 1.96
Norge A �0.24 2.08 0.06 2.33 0.11 2.35 0.31
Osage A 0.15 2.13 �0.08 2.57 �0.13 2.63 0.39

B 0.22 3.24 0.14 2.65 0.13 2.55 0.39
Pond

Creek
A �0.44 2.07 �0.46 2.26 �0.46 2.27 0.11

B 0.03 1.89 �0.11 2.13 �0.14 2.15 0.21
Pratt A �0.99 2.56 �0.92 2.23 �0.89 2.12 0.27

B �1.59 2.00 �1.73 2.29 �1.82 2.43 0.33
Richfield B �0.77 2.22 �0.40 2.23 �0.37 2.23 0.21
Summit A �0.14 2.66 �0.20 2.18 �0.21 2.07 0.33

B 0.49 1.54 0.44 2.18 0.42 2.34 0.43
Taloka A �0.88 2.38 �0.91 2.08 �0.91 2.05 0.18
Teller A �1.46 2.15 �1.25 2.11 �1.21 2.11 0.14

a NC means that the model could not converge log K2
Se(int) and logK+(int) simultaneously.
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Wichern, 1988). Additionally, a number of the parameter
estimates in the logK+(int) equation appeared to be non-
significant. For these reasons the two ANOCOVA models
for the two soil groups were optimized separately.

The initial estimate of Eq. (16) for the log K2
Se(int)

constant produced an R2 value of 0.933 and a jack-
knifed mean square error (MSE) estimate of 0.089. An
initial application of the BWE procedure removed the
ln(Al) regression variable for both groups; the secondary
application of the PRESS statistic optimization algorithm
resulted in the additional removal of the ln(IOC) and
ln(CEC) variables and the pooling of the ln(SA) param-
eter estimate (across groups). The changes in the
adjusted R2 and jack-knifed mean square error (MSE)
after each step of the optimization process are shown
in Table 3.



Table 3
Regression model identification: summary prediction statistics for each step

Constant Step Action R2 Adjusted R2 Jack-knife MSE

log K2
Se 0 Full ANOCOVA model 0.933 0.892 0.089

1 Removed all ln(Al) parameters 0.932 0.901 0.079
2 Removed all ln(IOC) parameters 0.915 0.885 0.063
3 Removed all ln(CEC) parameters 0.915 0.893 0.055
4 Applied a common ln(SA) parameter constraint 0.912 0.893 0.054

logK+ 0 Full ANOCOVA model 0.633 0.416 0.249
1 Removed all ln(CEC), ln(OC), and ln(SA) parameters 0.594 0.493 0.172
2 Constrained Midwestern ln(IOC) parameter to 0 0.594 0.510 0.152
3 Applied a common ln(Fe) parameter constraint 0.592 0.524 0.129
4 Constrained Southwestern ln(Al) parameter to 0 0.591 0.538 0.122
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After the optimization process was completed, the final
estimated prediction equation for the log K2

Se(int) surface
complexation constant was defined to be:

log K2
SeðintÞ ¼ b0j þ b1jðln OCÞ þ b2jðln FeÞ

þ b3ðln SAÞ þ e ð17Þ

where all but the ln(SA) parameter (b3) were assumed to be
different across groups. This revised model produced an R2

value of 0.912 and an optimized jack-knifed mean square
error (MSE) estimate of 0.054. The corresponding parame-
ter estimates for this model are shown in Table 4. The spe-
cific predicted and jack-knife predicted log K2

Se(int) surface
complexation constants for each group of soil samples are
shown in Table 2.

The initial estimate of Eq. (16) for logK+(int) pro-
duced a noticeably lower R2 value of 0.633 and a larger
jack-knifed mean square error (MSE) estimate of 0.249.
An application of the BWE procedure on Eq. (16) re-
moved the ln(CEC), ln(SA), and ln(OC) regression vari-
ables for both groups, suggesting that the reduced
equation should only contain the ln(Al), ln(IOC), and
Table 4
Regression model summary statistics, parameter estimates, and standard

Constant R2 Adjusted R2

Model summary statistics

log K2
Se 0.912 0.893

logK+ 0.591 0.538

Soil group Parameter Estimate

log K2
Se parameter estimates

SW Intercept 0.675
SW ln(OC) �0.083
SW ln(Fe) 0.274
MW Intercept 1.183
MW ln(OC) �0.470
MW ln(Fe) 1.033
Common ln(SA) �0.380

logK+ parameter estimates

SW Intercept 3.361
SW ln(IOC) 0.115
MW Intercept 0.613
MW ln(Al) �0.811
Common ln(Fe) 0.774
ln(Fe) variables. This reduced, group-specific equation
was used as the input model to the PRESS statistic opti-
mization routine. This latter routine identified the
ln(IOC) and ln(Al) parameter estimates as dichotomous;
setting the Midwestern soil group ln(IOC) and South-
western soil group ln(Al) estimates to 0, respectively.
Additionally, the optimization algorithm pooled the
ln(Fe) parameter estimate (across groups). The optimiza-
tion process stopped after this operation; i.e., no further
reduction in the jack-knifed MSE was obtained.

After step 4, the final estimated prediction equation for
the logK+(int) surface complexation constant was defined
to be:

log KþðintÞ ¼ b0j þ b1jðln IOCÞ þ b2jðln AlÞ
þ b3ðln FeÞ þ e ð18Þ

with the b12 and b21 parameters restricted to be 0. This re-
vised model produced an R2 value of 0.591 and an opti-
mized, jack-knifed mean square error (MSE) estimate of
0.122. The corresponding parameter estimates for this mod-
el are shown in Table 4. The specific predicted and jack-knife
errors

MSE Model F-score Prob > F

0.045 48.20 <0.0001
0.103 11.17 <0.0001

Standard error t-score Prob > |t|

0.231 2.92 0.007
0.053 �1.56 0.131
0.125 2.20 0.036
0.237 7.65 <0.0001
0.105 �4.45 <0.0001
0.086 12.04 <0.0001
0.051 �7.52 <0.0001

0.164 20.51 <0.0001
0.034 3.42 0.002
0.465 1.32 0.198
0.209 �3.87 0.001
0.169 4.57 <0.0001



Table 5
Relative precision and absolute accuracy statistics for the exper-
imentally derived versus model predicted Se(IV) adsorption data
(n = 35 calibration soils)

Soil series Correlation
coefficient

ARMSE
(mmol kg�1)

CIp

Altamont 0.952 0.0546 49.2
Arlington 0.975 0.0352 33.8
Avon 0.913 0.0215 32.4
Bonsall 0.966 0.0617 52.3
Chino 0.959 0.0256 24.1
Diablo clay 0.825 0.0588 58.1
Diablo clay loam 0.903 0.0631 70.9
Fallbrook 0.969 0.0215 22.7
Fiander 0.983 0.0322 22.9
Pachappa 0–20 cm 0.964 0.0371 27.6
Pachappa 25–51 cm 0.944 0.0601 39.2
Porterville 0.975 0.0654 41.7
Sebree 0.981 0.0239 23.9
Wasco 0.790 0.0577 88.7
Wyo 0.954 0.1266 81.4
Yolo 0.991 0.0290 16.8

Bernow 0.997 0.0229 6.1
Dennis A 0.968 0.0550 19.5
Dougherty 0.876 0.0351 78.0
Hanlon 0.956 0.0294 29.6
Kirkland 0.944 0.0614 33.3
Luton 0.963 0.0656 27.7
Norge 0.982 0.0861 49.7
Osage A 0.975 0.0558 18.6
Osage B 0.968 0.0529 16.8
Pond Creek A 0.931 0.0344 23.3
Pond Creek B 0.983 0.0408 16.2
Pratt A 0.765 0.0139 42.6
Pratt B 0.893 0.0226 46.5
Richfield 0.970 0.0848 42.3
Taloka 0.948 0.0350 23.7
Teller 0.976 0.0513 38.4
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predicted logK+(int) surface complexation constants for
each group of soil samples are shown in Table 2.

As shown in Table 4, both regression equations gener-
ally exhibit different parameter values across soil groups.
Additionally, as shown in Tables 2–4, the logK+(int) pre-
diction equation appears to be less accurate. This estimated
prediction equation exhibits a significantly lower R2 (0.591
versus 0.912) and larger MSE estimate (0.103 versus 0.045),
as compared to the fitted log K2

Se(int) prediction equation.
Additionally, an analysis of the soil group specific correla-
tion levels between the numerically optimized and regres-
sion model predicted surface complexation constants
suggests that the logK+(int) equation does not predict the
Midwestern constants as well (r = 0.87 for the Southwest-
ern versus r = 0.43 for the Midwestern constants). In con-
trast, the log K2

Se(int) equation appears to predict the
Midwestern constants better (r = 0.85 for the Southwestern
versus r = 0.97 for the Midwestern constants), although
both sets of coefficients tend to be accurately predicted
for this prediction equation.

A ‘‘jack-knifing’’ procedure was performed on each sur-
face complexation constant regression equation to evaluate
its predictive capability. Jack-knifing is a technique where
each observation is sequentially set-aside, the regression
model is reestimated without the use of this observation,
and the set-aside observation is then predicted using the
regression model obtained with the remaining data. The fi-
nal set of 35 jack-knife predicted surface complexation con-
stants is shown in Table 2. The average absolute error (the
average of the absolute differences between the optimized
versus the jack-knife predicted surface complexation con-
stants) for each soil is also shown. These errors tend to be
<0.3 for most of the 35 soils considered in this regression
model. The average absolute error across all 35 soils is
0.23 units. Overall, these surface complexation constants
appear to be reasonably well estimated. The general good
agreement between ordinary predictions and jack-knife esti-
mates suggests that the regression models should have pre-
dictive capabilities. The jack-knife MSE estimates for
log K2

Se(int) and logK+(int) were found to be 0.054 and
0.122, respectively. These estimates are sufficiently close to
the ordinary MSE estimates of 0.045 and 0.103 produced
by the log K2

Se(int) and logK+(int) equations to also suggest
predictive ability and parameter stability.

An analysis of the experimentally measured versus mod-
el predicted Se(IV) data was performed to assess both the
relative precision and absolute accuracy of the modeling re-
sults. The difference between the experimentally determined
adsorbed Se(IV) and the adsorbed Se(IV) predicted using
the jack-knifed regression model surface complexation con-
stants is defined as:

Error AdSe ¼ AdSem �AdSee ð19Þ

and the average mean square error, AMSE is:

AMSE ¼ 1

N

XN

i¼1

ðError AdSeÞ2 ð20Þ

The square root of this latter estimate, ARMSE, was used
to quantify square root of the total prediction error. Note
that the ARMSE represents the square root of both the pre-
diction variance and the average squared bias effects (Myers
and Montgomery, 2002), where the variance and bias reflect
the relative precision and absolute accuracy between the
experimental and jack-knife predicted Se(IV) adsorption
data, respectively. The coefficient-of-imprecision, CIp, a
coefficient-of-variation type statistic, was also calculated.
It was defined to be:

CIp ¼ 100ARMSE

ðY Sem þ Y SeeÞ=2
ð21Þ

where the denominator represents the average of the two
corresponding soil specific mean adsorbed Se(IV) levels.
This CIp statistic was used to quantify the relative variation
in the adsorbed Se(IV) error distributions with respect to
the mean adsorbed Se(IV) levels.

Three types of statistics are shown in Table 5 for each of
the 35 calibration soils considered in the study: the ARMSE
and CIp estimates (which quantify both relative precision
and absolute accuracy) and the Pearson correlation coeffi-
cient, CORR (which measures just the relative precision after
adjusting out any bias). The adsorption correlation coeffi-
cients are all generally quite high; the average correlation
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level (for all 34 soils) is r = 0.941, and 28 of the 34 soils
exhibit CORR estimates >0.9. Only one soil exhibits a
CORR estimate <0.8 (Pratt A, r = 0.765). The ARMSE
estimates appear to be quite reasonable, exhibiting an
average ARMSE level of 0.0477 mmol kg�1. Only one soil
produced an ARMSE estimate >0.1 (Wyo, ARMSE =
0.1266 mmol kg�1). Likewise, the CIp estimates also appear
to be very reasonable. That is, the average CIp level is
about 37% and 28 of the 35 soils exhibit CIp levels <50%.
All of these various summary prediction statistics derived
from the jack-knifed constant capacitance model suggest
that the corresponding regression equations are both stable
and reasonably reliable.

Since the constant capacitance model predictions were
generated using the regression model surface complexation
constants, one should expect a certain amount of within-
soil prediction bias. We tested for this within-soil bias effect
by fitting a one-way analysis of variance (ANOVA) model
to the error data of Eq. (19). In this ANOVA model, the F-
test for the soil type effect corresponds to a test for detect-
able within-soil prediction bias (Montgomery, 1997). The
formal test results for this bias are given in the upper por-
tion of Table 6. Note that this ANOVA model explains
about 48% of the total error variation, and the F-score per-
taining to the within-soil bias effect is highly significant
(F = 14.21, p < 0.0001). This apparent bias was also con-
firmed using a non-parametric Kruskal–Wallis Chi-square
test (v2 = 222.9, p < 0.0001). Not surprisingly, there is a
noticeable amount of within-soil prediction bias in the ad-
sorbed Se(IV) errors.

To test for between-soil prediction bias, we calculated
the mean adsorption errors for each soil and then analyzed
the overall average values of these errors using both a t-test
and a non-parametric sign-rank test. These test results are
Table 6
Parametric and non-parametric tests for prediction bias in exper-
imentally derived versus constant capacitance model predicted
Se(IV) adsorption levels

Adsorbed Se(IV)

Individual experimental versus model predictions

ANOVA N 559
USS/N 0.00284 (mmol kg�1)
MSE 0.00152 (mmol kg�1)
R2 0.480
F-score 14.21
ndf, ddf 34, 524
Probability > F 0.0001

Kruskal–Wallis Chi-square 222.9
Df 34
Probability > Chi-square 0.0001

Average error analysis (averaged across soils)

N 35
Mean 0.0110 (mmol kg�1)
Standard error 0.0062 (mmol kg�1)
t-score 1.79
Probability > |t| 0.0819

Signed rank sr-score 105.0
Probability > |sr| 0.0854
shown in the lower portion of Table 6. Both tests suggest
that a minimal degree of between-soil prediction bias is
present (both tests are significant at the 0.1 level, but not
the 0.05 level). A closer examination of these data indicates
that the predicted mean adsorption levels tend to be (on
average) about 7% lower than the observed mean adsorp-
tion levels. In turn, these lower mean levels appear to be
caused by an apparent under-estimation bias in the individ-
ual lowest adsorption levels (i.e., adsorption levels
<0.03 mmol kg�1). In other words, the constant capaci-
tance model predictions generated from the jack-knifed
surface complexation constants appear to slightly under-
predict the lowest adsorption levels. This low-end predic-
tion bias disappears once the model predictions exceed
0.03 mmol kg�1.

Figs. 3 and 4 present the ability of the constant capaci-
tance model to predict Se(IV) adsorption from chemical
properties for the soils presented in Figs. 1 and 2. For the
Midwestern soils, the prediction equations provide descrip-
tions of the experimental adsorption data that are virtually
identical in quality to the fits obtained by optimizing the
adsorption data (compare Figs. 2 and 4). For the South-
western soils, the predictions describe the experimental
adsorption data less closely than the model fits for most
of the soils (compare Figs. 1 and 3). However, the model al-
ways correctly predicted the shape of the adsorption enve-
lopes. Since these soils had been used to develop the
prediction equations, this evaluation is not an independent
assessment of their predictive ability.

The prediction equations were also used to predict sur-
face complexation constants for four soils that had not been
used to obtain the general regression model. The constant
capacitance model containing these surface complexation
constants was used to predict Se(IV) on the four soils. Since
the data from the four soils had not been used to develop
the prediction equations, this represents an independent
evaluation of their ability to predict Se(IV) adsorption.
Fig. 5 indicates the ability of this approach to predict
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Se(IV) adsorption on four soils not used to obtain the pre-
diction equations. Prediction of Se(IV) adsorption on the
Dennis B soil was excellent (Fig. 5a). The Holtville, Impe-
rial, and Reagan soils all contained >1.6% inorganic carbon
and model fitting was not successful. Since application of
the surface complexation modeling approach to carbonate
systems requires the inclusion of additional surface species:
>CO3H, >CO�3 , >CO3S+, >SHCO3, and >SCO�3 (S = Ca,
Mg, etc., van Cappellen et al., 1993), this is not surprising.
Selenite adsorption is indicated in Fig. 5b–d for soil samples
where carbonates had been removed using a dilute acetate
buffer solution. Model predictions of Se(IV) adsorption
by the treated soils deviated from the experimental adsorp-
tion data by at most about 30%. However, the model was
able to accurately predict the shapes of the Se(IV) adsorp-
tion envelopes. We consider these results to be reasonable,
since they are predictions obtained without optimization of
any adjustable parameters. The model predictions were ob-
tained independent of any experimental measurement of
Se(IV) adsorption on these soils, using values of easily mea-
sured soil chemical parameters. Since our model results are
predictions, zero adjustable parameters were used.

4. CONCLUSIONS

The constant capacitance model was able to fit Se(V)
adsorption by optimizing one monodentate Se(IV) surface
complexation constant and the surface protonation con-
stant. A general regression model was developed for pre-
dicting these surface complexation constants from easily
measured soil chemical characteristics: inorganic carbon
content, organic carbon content, iron oxide content, alumi-
num oxide content, and surface area. The prediction equa-
tions were used to obtain values for the surface
complexation constants for four additional soils, providing
a completely independent evaluation of the ability of the
model to describe Se(IV) adsorption. The present study
was carried out at a constant initial Se(IV) concentration.
Thus the effect of Se(IV) loading remains to be investigated.
Incorporation of these prediction equations into chemical
speciation–transport models should allow simulation of
Se(IV) behavior on non-calcareous soils under agricultural
and environmental conditions. Future research will deter-
mine to what extent adequate simulations of Se(IV) adsorp-
tion, release, and transport are possible without the need to
perform time consuming, detailed adsorption studies for
each soil.
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