Contaminant Fate and Transport Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Detection, Survival, Transport, and Reduction of Human Pathogens from Animal Manure
Methyl Bromide
Methyl Iodide
Telone (1,3-D)
Choropicrin
Emission Reduction
Film Permeability
Pictures
 

Research Project: DETECTION, SOURCE IDENTIFICATION, ENVIRONMENTAL TRANSPORT, FATE, AND TREATMENT OF PATHOGENIC MICROORGANISMS DERIVED FROM ANIMAL WASTES

Location: Contaminant Fate and Transport

Project Number: 5310-32000-002-00
Project Type: Appropriated

Start Date: Apr 03, 2005
End Date: Apr 02, 2010

Objective:
Detection, quantification, and characterization of pathogen behavior in different environmental matrices; determine inactivation/survival rates and transport characteristics of fecal coliform and pathogens from manure sources to surface or ground water; determine sources of nonpoint fecal pollution at the Santa Ana River Watershed by bacterial source tracking technology; quantify important mechanisms influencing the transport and retention of pathogenic microorganisms in subsurface environments; adapt and improve numerical models for simulating the environmental transport and fate of pathogenic microorganisms; and develop and optimize manure and lagoon water treatment strategies to minimize the transmission of pathogenic microorganisms to food and water resources.

Approach:
Conduct laboratory, lysimeter and field experiments to examine the important physical, chemical, and biological processes affecting the fate and transport of pathogenic microorganisms in manure-soil-water systems. Laboratory studies will determine the important processes and mechanisms affecting pathogen survival. Studies will be conducted at various scales using culture and molecular approaches to investigate pathogen movement in surface water and soil. Measurements of pathogen concentration, soil and environmental conditions will be collected to allow the simulation of pathogen transport. As new information becomes available, existing models will be improved to enhance the prediction of pathogen transport to surface water, ground water, and the environment. Coupling laboratory and field scale experiments with simulation studies, new strategies will be developed to control the movement of pathogenic microorganisms from animal feeding operations to human food and the environment. Research will be conducted in collaboration with the Food Safety Research, WRRC, Albany, CA. 5310-42000-002-00D (5/01).

   

 
Project Team
Ibekwe, Abasiofiok - Mark
Bradford, Scott
 
Project Annual Reports
  FY 2007
  FY 2006
  FY 2005
 
Publications
   Publications
 
Related National Programs
  Manure and Byproduct Utilization (206)
 
Related Projects
   TRANSPORT AND FATE OF NITRATE AND PATHOGENS AT DAIRY LAGOON WATER APPLICATION SITE
   TRANSPORT AND FATE OF NITRATE AND PATHOGENS AT DAIRY LAGOON WATER APPLICATION SITE
   A NEW PARADIGM FOR PATHOGEN DEPOSITION IN POROUS MEDIA: THE ROLES OF PORE STRUCTURE AND COLLOID-COLLOID INTERACTIONS
   IMPACTS OF IRRIGATION WATER QUALITY PERSISTENCE AND TRANSMISSION OF E.COLI O157:H7 FROM SOIL TO PLANTS
   IMPACTS OF IRRIGATION WATER QUALITY PERSISTENCE AND TRANSMISSION OF E.COLI O157:H7 FROM SOIL TO PLANTS
 
 
Last Modified: 11/04/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House