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Abstract

On-farm field-scale research has become increasingly common with the advent of new technologies.
While promoting a realistic systems perspective, field-scale experiments do not lend themselves to the
traditional design concepts of replication and blocking. Previously, a farm-scale dryland experiment in
northeastern Colorado was conducted to evaluate apparent electrical conductivity (ECa) classification
(within-field blocking) as a basis for estimating plot-scale experimental error. Comparison of mean-
square (MS) errors for several soil properties and surface residue mass measured at this site, with those
from a nearby plot-scale experiment, revealed that ECa-classified within-field variance approximates
plot-scale experimental error. In the present study, we tested these findings at a second and disparate
experimental site, Westlake Farms (WLF) in central California. This 32 ha site was ECa mapped and
partitioned into four and five classes using a response-surface model. Classification based on ECa

significantly delineated most soil properties evaluated (0–0.3 and/or 0–1.2 m) and effectively reduced
MS error (P≤ 0.10). The MS’s for several soil properties evaluated at the site were then compared
with those of an associated plot-scale experiment; most MS’s were not significantly different between
the two levels of scale (P≤ 0.05), corroborating results from the Colorado experiment. These findings
support the use of within-field ECa-classified variance as a surrogate for plot-scale experimental error
and a basis for roughly evaluating treatment differences in non-replicated field-scale experiments. This
alternative statistical design may promote field-scale research and encourage a reversal in research
direction wherein research questions identified in field-scale studies are pursued at the plot-scale.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, heightened understanding of the interdependence between farm eco-
nomics, environmental quality, and production potential has encouraged the expansion of
agronomic research to evaluate farm management as it impacts an agroecosystem. Systems
research can be defined as an experimental approach used to broadly appraise land man-
agement for a variety of short- and long-term outcomes that may include economic return;
sociological implications; soil biological response, chemical composition, and physical
structure; crop biomass and yield; pest pressure; and off-site environmental consequences.
Moreover, global positioning systems (GPS), geographic information systems (GIS), and
field-scale sensors allow examination of temporal shifts in many of these factors within a
spatial context. Largely due to these technologies, systems research is increasingly con-
ducted on farms at the field scale (Fraisse et al., 2001; Johnson et al., 2001; Mueller et al.,
2002; Corwin et al., 2003b).

Systems research provides the “opportunity to test broad, integrated hypotheses”
(Drinkwater, 2002, p. 355). Experiments typically involve multidisciplinary teams of re-
searchers and rely on farmer input for planning, execution, and evaluation. Farmer involve-
ment minimizes (1) research trials that prove ineffective on farms, and (2) rejection of
experiment station trials that might have performed well on farms (Stroup et al., 1993).
Field-scale systems experiments may hasten the adoption of sustainable management prac-
tices because positive outcomes are demonstrated at a scale to which farmers can relate
(Rzewnicki, 1991).

To identify best management practices, the traditional research model uses highly con-
trolled small-plot experiments, followed by multiple location trials (still using small plots),
and finally realistic on-farm systems experiments. Yet, many investigators now suggest
that research direction be reversed to begin with the system (Sumberg and Okali, 1988;
Hargrove and Pickering, 1992; Johnson et al., 2003b), a strategy particularly appropriate
for experiments in site-specific management (Vanden Heuvel, 1996; Crawford et al., 1997)
and for assessing management-induced changes in soil, water, and air quality at farm or
regional scales (Nielsen et al., 1995). Field-scale experiments used to broadly evaluate new
management approaches can be followed by controlled small-plot experiments to test the
nuances of system response.

A major barrier to field-scale experimentation is the perception of excessive and un-
manageable variability. An acceptable level of experimental error has been documented in
several experiments involving research plots up to 36 m× 366 m (Rzewnicki et al., 1988),
plots large enough to accommodate typical farm equipment. Yet, these experiments used
replication and randomization, design features rarely feasible in increasingly larger experi-
ments. One of the greatest limitations to field-scale experimentation is a dearth of acceptable
methods for design and statistical evaluation.

Experimental error is the “failure of repeated observations, under similar conditions,
to be identical” (LeClerg et al., 1962), and soil heterogeneity is the principle source in
agronomic research (Harris, 1915). In classic experimentation, small plots are arranged in
a randomized complete block design where blocks serve to increase precision by reducing
experimental error due to soil heterogeneity. Blocks are placed in homogeneous areas based
upon measurements of yield-significant properties. While topography, soil fertility, and
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Fig. 1. Relationship between bulk soil electrical conductivity (ECa) classification and plot-scale blocking. (A)
An ECa-classified map of a≈32 ha field at the Farm-Scale Intensive Cropping Study and (B) a typical plot-scale
experiment identified within the field using ECa classification as a basis for blocking.

soil series exemplify traditional blocking factors, any method can be used that effectively
partitions an existing fertility gradient. In some cases, apparent soil electrical conductivity
(ECa) mapping can be used for this purpose.

Soil factors affecting ECa vary among locations and may include one or more of the fol-
lowing: salinity, clay type and percentage, bulk density, moisture, and temperature (Rhoades
et al., 1989). In locations where soil factors contributing to ECa are also yield limiting, clas-
sified ECa maps can be used to design and place plot-scale experiments (Fig. 1). This is
appropriate because ECa classes are related to outcome (crop yield) differences expected in
the absence of treatments, the rationale for blocking. Classified ECa maps have been used to
identify homogeneous areas within a field to both locate and block plot-scale experiments
(personal communication, Newell Kitchen).

At the Farm-Scale Intensive Cropping Study (FICS) in northeastern Colorado significant
relationships were found between ECa, soil characteristics, and crop yields (Johnson et al.,
2001, 2003c), supporting ECa-classified zones as a basis for blocking and statistically
evaluating plot-scale experiments. Background information for the FICS is provided in
Table 2. At the FICS, ECa zones provided a framework through which measurements
taken at different levels of scale (microbe, sampling-site, field, and farm) can be integrated
(Johnson et al., 2004). Johnson et al. (2003b)hypothesized that if ECa classification can be
used to block plot-scale experiments, ECa-classified within-field blocking can be used to
statistically evaluate field-scale experiments.

Fig. 1 illustrates a clear relationship between ECa-partitioned soil heterogeneity at the
plot and field scales. The 32 ha field shown on the left is separated into four classes of ECa
(A), three of which form the basis for blocks in the traditional plot-scale experiment set in
a randomized complete block design (B). Since blocks are homogeneous, plots need not
be adjacent but could be placed anywhere in field (A) within assigned blocks. Thus, the
entire 32 ha field can be conceptualized as an enlarged version of the plot-scale experiment,
where within ECa-class variance is equivalent to experimental error in the plot-scale exper-
iment. To test this,Johnson et al. (2003b)evaluated numerous soil physical, chemical, and
biological properties measured at both the FICS and a nearby traditional plot-scale exper-
iment (Peterson et al., 1993). The ECa-classified within-field mean square error (MS) of
each property measured at the FICS was compared with MS error (derived from blocking)
for that property measured in the plot-scale experiment. Experimental errors were similar,
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Table 1
Within apparent electrical conductivity (ECa) class means and significance for selected soil properties (0–30 cm depth) measured at the Farm-Scale Intensive Cropping
Study

ECa ranges
(dS m−1)

Productivity-associated factors Erosion-associated factors

Water
content
(kg kg−1)

SOMa

(Mg ha−1)
Total C
(Mg ha−1)

Total N
(Mg ha−1)

Pa

(kg ha−1)
PMNa

(kg ha−1)
Bulk
density
(g cm−3)

Clay (%) pH

ECa zone * ** ** ** ** * + * **

Low 0.00–0.17 0.207 124.8 43.8 4.08 111.8 86.4 1.32 22.8 6.33
Medium low 0.12–0.23 0.187 115.9 35.2 3.45 69.2 67.0 1.39 24.3 6.42
Medium high 0.14–0.29 0.185 110.4 32.2 3.09 27.8 59.3 1.39 27.3 6.72
High 0.18–0.78 0.178 112.6 32.7 3.10 26.7 54.4 1.42 28.1 6.92

a SOM: total soil organic matter; P: extractable P; PMN: potentially-mineralizable NH4
+.

+ Comparisons of ECa class treatments are significant at the 0.10 level.
∗ Comparisons of ECa class treatments are significant at the 0.05 level.

∗∗ Comparisons of ECa class treatments are significant at the 0.01 level.
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indicating that field-scale ECa-classified variability effectively estimated soil heterogeneity
partitioned by plot-scale blocking. These findings support the use of field-scale systems
experiments to broadly evaluate treatments and identify research needs requiring further
study at the plot scale.

The geographic extent to which these results are transferable remains untested. Data sets
suitable for assessment are difficult to find because they must meet two criteria. First, data
must include a variety of soil indices from both an ECa-classified field-scale site and an
associated blocked plot-scale experiment. Second, the soil characteristics driving ECa at the
sites must be yield limiting. Data sets from 32.4 and 8.1 ha sites at Westlake Farms (WLF)
in the San Joaquin Valley of central California met these criteria (Corwin et al., 2003a,b). A
positive correlation between ECa and cotton yield at WLF (r = 0.51;P≤ 0.01) (Corwin et al.,
2003b) indicates potential utility of ECa classification as a basis for blocking. The objective
of this paper was to determine whether ECa-classified within-field variability can be used
to approximate plot-scale experimental error in a second and contrasting environment, the
San Joaquin Valley.

2. Materials and methods

2.1. Field-scale study

The WLF study site is a 32.4 ha field located on the west side of California’s San Joaquin
Valley and comprised of Panoche silty clay thermic Xerothents soil. The site has been
used in a drainage water reuse study since 1999. Eight 4 ha rectangular paddocks with
dimensions of 75 m× 364 m comprise the study site (Fig. 2A). To characterize the spatial
variability of soil properties, an ECasurvey was conducted in 1999 using an EM-38 electrical
conductivity meter (Geonics, Ltd., Mississauga, Ontario, Canada)1 following the survey
guidelines outlined byCorwin and Lesch (2003). Approximately 4000 ECa measurements
were taken across the site.

The ECa survey consisted of a grid of 384 sites arranged in a 4× 12 pattern within each
of the eight paddocks. At each site, ECa measurements were taken using electromagenetic
induction (EM) with the coil configuration oriented in the vertical (EMv) and in the horizon-
tal (EMh) position. The horizontal coil configuration concentrates the EM reading nearer to
the soil surface and penetrates to a depth of roughly 0.75–1.0 m, whereas the EM reading in
the vertical configuration penetrates to a depth of roughly 1.5 m and concentrates the read-
ing less at the surface. From the EM measurements the geometric mean and profile ratio
were calculated for each site. The geometric mean EM levels were defined as the SQRT
(EMv × EMh). The profile ratios were defined as EMh/EMv. In essence, the profile ratio is
analogous to the leaching fraction, while the geometric mean approximates relative salinity
in the root zone (Corwin et al., 1999).

Utilizing the EM data and ESAP statistical software (ESAPv2.0) developed byLesch
et al. (1995), 40 soil sampling sites were selected by means of a response surface sample

1 Mention of a trademark, proprietary product or vendor does not constitute a guarantee of or warranty of the
product by USDA nor imply its approval to the exclusion of other products that may be suitable.
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Fig. 2. The 32.4 ha field-scale Westlake Farms Study separated into eight paddocks (A). The site is partitioned into four classes of apparent electrical conductivity (ECa)
based upon a response surface. Class color, from light to dark, corresponds to increasing conductivity. Forty soil sampling points (�) are identified. Two paddocks on
the south end of the study site were selected for more intensive soil sampling and were used to simulate a traditional plot-scale study (8.1 ha) (B). These are shown with
three different blocking schemes (three, four, and six blocks) superimposed over a map of laboratory-measured salinity (ECe). Light to dark coloration indicates low to
high salinity where salinity ranges are: 6.988–13.288, 13.288–18.42, 18.42–26.435, and 26.435–35.6 dS m−1 for the four zones shown. Thirty randomly selected soil
sampling sites, in addition to the ten response surface sites, are identified on each map (�).
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design (Fig. 2). Conceptually, 40 sites were selected to characterize the observed spatial
variability in EM measurements that satisfy the following three criteria: (i) to represent
about 95% of the observed range in the geometric mean EM data, (ii) to represent about
95% of the observed range in the EM profile ratio data, and (iii) to be spatially distributed
across the eight paddocks in an approximately uniform manner with about five sites within
each paddock. A more detailed discussion on how a spatial response surface sample design
is used to simultaneously achieve these criteria is found inLesch et al. (1995).

At each of the 40 sites, soil core samples were taken in 1999 and again in 2002. Soil
cores were taken at 0.3 and 1.2 m depth increments and analyzed for a variety of physical
and chemical soil properties listed inTable 3. Methods of analysis are provided byCorwin
et al. (2003a). The 2002 data set was used for this study with the exception of soil texture
and bulk density assessments, which were only available in the 1999 data set.

The WLF field-scale experiment was partitioned into four and five ECa classes. To
accomplish this, EMv and EMh measurements were log transformed and decorrelated to
determine principal component scores by the same process used in ESAP to create a response
surface. Resultant scores were then separated into quartiles or quantiles. All spatial data
were entered into a geographic information system (GIS) using the commercial GIS software
ArcView 3.1 (ESRI, Redlands, CA).1

2.2. Plot-scale study

Two paddocks on the south end of the WLF study (8.1 ha) were used to simulate a typical
plot-scale experiment set in a randomized complete block design (Fig. 2B). We selected
salinity as the blocking factor because it is the major soil property limiting crop production
at WLF (Corwin et al., 2003b), and it represents an obvious basis for a traditionally designed
plot-scale experiment. Salinity was assessed for soil samples (0–1.2 m) from 40 sampling
sites by measuring electrical conductivity in a 1:1 saturated paste (ECe). Soil analyses from
all available sampling points within the two paddocks were evaluated to increase degrees
of freedom. Consequently, thirty samples came from random sampling sites, selected using
SAS (SAS Institute, 1997), while the remaining ten were taken from the response surface
sites described above. Using ArcView 3.1 GIS software (ESRI, Redlands, CA)1, a map of
ECe was produced, classified, and interpolated using inverse-distance-weighting, and the
resulting ECe map used to position experimental blocks (Fig. 2).

2.3. Experimental approach

The same general approach taken at the FICS experiment in northeastern Colorado
(Johnson et al., 2003b) was applied to the WLF study in central California. Within-field
variability delineated using ECa classification (i.e. within-field blocking) was evaluated as
an estimate of traditional small-plot experimental error. Our strategy was to compare field-
and plot-scale experimental error to determine the significance of scale to experimental
outcome (crop yield) occurring in the absence of treatments.

Both field- and plot-scale experiments in this study were analyzed as complete blocks.
The field-scale experiment was separated into four and five ECa classes, and the plot-scale
experiment into three, four, and six ECe blocks (Fig. 2), numbers of blocks typically used in
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Table 2
Comparison of the Farm-Scale Intensive Cropping Study and the Westlake Farms research sites: site characteristics
and ECa mapping/classification methods

Farm-Scale Intensive Cropping
Studya

Westlake Farms Studyb

Location Northeast Colorado Central California
Climate Semiarid Arid
Soil classification Platner, Weld, and Rago loam

(fine, smectitic, mesic Aridic
Paleustolls, Aridic Argiustolls,
and Pachic Argiustolls)

Lethent clay loam (fine,
smectitic, thermic, Typic
Natrargid)

Cropping system Dryland Irrigated
Winter wheat–corn–proso
millet–fallow rotation

Bermuda grass rotational forage

Regional production challenges Maximizing
precipitation-use-efficiency

Saline drainage water disposal

Minimizing wind/water erosion Controlling toxic ion and trace
element buildup in soil and crops

Maintaining/increasing soil
organic matter

Maintenance of soil quality

Primary soil factors limiting yield Depth, organic matter,
water-holding capacity, pH

Salinity, leaching fraction, water
content, pH

Size of field-scale study site (ha) 250 32.4
Size of plot-scale study site (ha) 5.5 8.1
Depth of soil sampling (m) 0.33 1.2
ECa collection method Direct contact Electromagnetic induction:

horizontal (EMH) and vertical
(EMV) modes

Range of measured ECa (dS m−1) 0.03–0.78 EMH: 1.45–5.19
EMV: 2.56–7.95

ECa classification method Design-based Model-based
Unsupervised classification Response surface

Major soil factors driving ECa (in
order of significance)

Percent clay Salinity

Bulk density Water content
Water content Bulk density
Salinity Percent clay

a Johnson et al. (2001, 2003a).
b Corwin et al. (2003a,b).

agronomic research. Different numbers of blocks (or classes) were analyzed to investigate
the effect of block number on experimental error. The effectiveness of ECa as a blocking
factor was evaluated in two ways using analysis of variance. First, the means of measured
soil properties were pooled over the 40 sites and four depths. For each property, when within
ECa class variability (MS (site(ECa class))) was significantly smaller than among ECa class
variability (MS (ECa class)), blocking was considered effective for the property. Secondly,
ECa classes were evaluated for their ability to significantly partition soil properties across
the WLF site.
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Lastly, theF-test was used to compare ECa-classified within-field MS error, for several
soil properties assessed in the field scale experiment, to MS error derived from blocking for
those same soil properties assessed at the plot scale. All statistical analyses were conducted
using SAS (SAS Institute, 1997).

3. Results and discussion

3.1. ECa effectiveness as a blocking factor

The effectiveness of ECa classification as a basis for blocking was evaluated from two
perspectives. First, any successful blocking scheme will substantially reduce variability.
For individual soil parameters measured at WLF, when within ECa class variability (MS
(site(ECa class))) was significantly smaller than among ECa class variability (MS (ECa
class)), ECa-classified blocking was effective for the parameter. Using this criterion, ECa
proved to be a suitable basis for blocking a majority of measured soil properties (Table 3).
Secondly,Corwin et al. (2003b)identified four soil properties exhibiting the greatest effect
on cotton yields at WLF, salinity, plant-available water, leaching fraction, and pH. Three
of these were evaluated in our study. The variability of salinity and pH (with separation
into four or five ECa classes), and water content, an indicator of plant-available water
(with separation into five ECa classes), was significantly reduced by ECa classification.
The responsiveness of yield-associated soil parameters to ECa classification supports the
use of ECa as a blocking factor because it verifies the relationship between ECa classes
and outcome (yield) differences expected in the absence of treatments, the rationale for
blocking.

Increasing the number of ECa classes from four to five did not significantly reduce within
ECa class variability (MS (site(ECa class))) for any of the soil properties evaluated (Table 3).
However, partitioning into five classes produced a significantF-test (MS (ECa class)/MS
(site(ECa class))) indicating effective blocking for water content, saturation percentage (SP)
and exchangeable sodium percentage (ESP), results not found with four classes. Conversely,
partitioning into four classes effectively blocked cation exchange capacity (CEC), CaCO3,
and exchangeable K+, results not found with five classes.

The effectiveness of ECa as a blocking variable was also evaluated for significant delin-
eation of soil characteristics at two depths of measurement and using four and five classes
of ECa. With partitioning into four classes, a majority of measured soil properties were
different among ECa classes (P≤ 0.10) for both surface and root-zone soils (0–0.33 and
0–1.2 m depths) (Table 4). Increasing the number of ECa classes from four to five added
water content and pH to the list of significantly partitioned soil properties at the surface,
and saturation percentage and ESP to those significantly partitioned in deeper soils (data
not shown).

3.2. MS error comparisons: field-scale ECa classification versus plot-scale blocking

Comparisons of soil property MS errors, calculated for the field-scale experiment sepa-
rated into four and five ECa classes, and the plot-scale experiment separated into three, four,
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Table 3
The 32.4 ha Westlake Study was partitioned into four and five classes based on apparent electrical conductivity (ECa)

Soil property 4 ECa classes 5 ECa classes

MS (ECa class)
(d.f. = 3)

MS (site(ECa class))
(d.f. = 36)

MS (error)
(d.f. = 120)

MS (ECa class)
(d.f. = 4)

MS (site(ECa class))
(d.f. = 35)

MS (error)
(d.f. = 12)

Water content (kg kg−1) 0.324 0.339 0.276 0.664+ 0.301 0.276
Sandb (%) 1136* 197 92.8 738* 220 92.8
Siltb (%) 637* 166 40.7 472* 172 40.7
Clayb (%) 103 49.2 53.8 32.3 57.0 53.8
Bulk densityb (g cm−3) 0.0239 0.0159 0.0250 0.0248 0.0155 0.0250
SPa (%) 519 256 117 710* 227 117
pH 0.585* 0.126 0.077 0.449* 0.129 0.077
ECe

a (dS m−1) 1009* 67 53 940* 48 53
CECa (mmolc kg−1) 2310* 510 190 1150 590 190
ESP (%) 1475 3155 1525 7327* 2534 1525
SAR 5306* 442 325 5189* 317 325
Total C (g kg−1) 2.850* 0.447 0.630 1.56* 0.525 0.630
Total N (g kg−1) 0.0057* 0.00195 0.00437 0.00509* 0.00192 0.00437
CaCO3 (g kg−1) 123* 30.8 9.20 65.7 34.6 9.20
Gypsum (g kg−1) 179 171 155 291 158 155
Mo (mg L−1) 1.04 0.507 0.0938 0.812 0.518 0.0939
B (mg L−1) 356* 80.5 33.0 265* 83.1 33.0

Anions in the saturation extract
Cl− (mmolc L−1) 5611* 896 428 5151* 814 428
HCO3

− (mmolc L−1) 6.176* 0.504 0.393 4.959* 0.481 0.393
NO3

− (mmolc L−1) 0.144 0.068 0.043 0.114 0.069 0.043
SO4

− (mmolc L−1) 172,925* 10,020 8,208 15,7871* 7,086 8,208
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191
Cations in the saturation extract

Ca2+ (mmolc L−1) 1.29 8.28 4.12 5.55 7.99 4.12
K+ (mmolc L−1) 4.291* 0.649 0.127 5.375* 0.422 0.127
Mg2+ (mmolc L−1) 1721* 109 58 1170* 126 58
Na+ (mmolc L−1) 205,035* 12,835 10,252 191,248* 8,919 10,252

Exchangeable cations
Ca2+ (mmolc kg−1) 75.0 94.0 153 186+ 81.0 153
K+ (mmolc kg−1) 1.88+ 0.840 1.95 1.78 0.830 1.95
Mg2+ (mmolc kg−1) 117.7 60.5 22.8 70.4 64.2 22.8
Na+ (mmolc kg−1) 2550* 310 140 2690* 230 140

Comparisons were made between among site (within ECa class) and among ECa class mean squares (MS’s) for several soil properties using these classification schemes.
The MS’s were calculated on the means of measured soil properties pooled over 40 sites and four depths, 0–0.3, 0.3–0.6, 0.6–0.9, and 0.9–1.2 m (160 observations).

a ECe: laboratory-measured EC using a 1:1 water saturated paste; SP: saturation percentage; CEC: cation exchange capacity.
b Degrees of freedom for MS(EC class), 4 or 5 classes; MS (site(EC class)), 4 or 5 classes; and MS(error) are 3 or 4, 30 or 29, and 102 for sand, silt, and clay,and 3 or

4, 31 or 30, and 105 for bulk density.
∗ MS (ECa class) is significantly larger than MS (site(ECa class)) at the 0.05 level.
+ MS (ECa class) is significantly larger than MS (site(ECa class)) at the 0.10 level.
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Table 4
Significance of ECa classification/ECe blocking and comparison of soil property (0–0.3 m and 0–1.2 m depths) means and mean square errors (MSE’s) within field-scale
apparent electrical conductivity (ECa) classes (with partitioning into four classes) and plot-scale blocks (with partitioning into four blocks) at the Westlake Farms Study
site

Soil property Units Field-scale experiment Plot-scale experiment

Within ECa class means Pr >F MSE Within block means Pr >F MSE

I II III IV I II III IV

0–0.3 m depth
Waterb content kg kg−1 0.193 0.192 0.185 0.196 n.s. 0.136 0.199 0.201 0.188 0.233 0.02 0.102
Saturation percentage % 56.9 62.0 66.0 74.2 0.0001 46.7 73.8 79.0 72.3 66.1 0.001 39.4
pH 7.45 7.70 7.76 7.78 n.s. 0.125 7.93 8.00 7.83 7.74 n.s. 0.0666
ECe dS m−1 7.36 8.91 11.0 19.1 0.0001 15.9 14.0 17.4 13.8 8.19 0.0005 17.9
CEC mmolc kg−1 177 185 217 240 0.02 2111 256 247 223 249 n.s. 3704
ESP % 23.4 36.3 33.2 50.6 0.03 399 34.7 55.5 44.0 18.7 0.02 583
SAR 12.8 17.5 23.5 42.0 0.0001 92.9 34.1 41.4 30.8 14.9 0.0001 123
Total C g kg−1 9.42 8.65 7.79 6.48 0.01 3.44 5.37 6.69 7.40 9.01 n.s. 1.87
Total N g kg−1 0.775 0.760 0.735 0.626 n.s. 0.0214 0.597 0.658 0.729 0.804 0.06 0.0092a

CaCO3 g kg−1 20.9 14.5 10.6 5.16 0.008 92.1 1.13 1.33 6.67 11.1 0.0001 14.6a

Gypsum g kg−1 23.0 36.4 34.7 59.3 0.0005 288 52.9 69.5 57.0 38.8 0.0004 159
Mo �g L−1 498 457 668 885 n.s. 275 657 817 493 345 0.006 81.9a

B mg L−1 8.79 12.4 15.7 19.8 0.002 33.8 19.3 17.6 14.1 11.8 0.04 25.1
Exchangeable Na+ mmolc kg−1 39.2 58.2 71.8 122 0.0001 852 101 108 97.0 94.7 n.s. 1002
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0–1.2 m depth

Water content kg kg−1 0.241 0.249 0.233 0.254 n.s. 0.0845 0.251 0.249 0.248 0.260 n.s. 0.0497
Saturation percentage % 59.1 65.9 64.6 67.6 n.s. 64.0 69.6 66.9 65.0 62.9 n.s. 35.9
pH 7.74 7.94 8.02 7.94 0.008 0.0316 8.08 8.09 7.98 7.92 0.09 0.0275
ECe dS m−1 13.7 17.1 19.9 24.2 0.0001 16.7 20.7 27.8 25.3 16.0 0.0001 20.0
CEC mmolc kg−1 144 168 163 204 0.006 1267 207 207 197 202 n.s. 1926
ESP % 60.9 70.1 73.0 70.5 n.s. 788 60.9 68.6 60.8 48.5 n.s. 408
SAR 30.7 40.1 47.8 54.6 0.0001 110 50.4 66.2 56.5 34.7 0.0001 121
Total C g kg−1 6.11 5.55 4.77 4.13 0.001 1.12 3.18 3.87 4.35 4.77 0.0001 0.311a

Total N g kg−1 0.484 0.500 0.443 0.421 0.06 0.0049 0.385 0.419 0.442 0.494 0.0001 0.0020a

CaCO3 g kg−1 19.7 12.7 12.0 5.86 0.02 76.9 1.75 2.51 6.18 5.75 0.01 11.6a

Gypsum g kg−1 50.8 59.6 58.84 65.8 n.s. 42.8 68.5 71.3 70.4 56.9 0.05 144a

Mo �g L−1 467 541 775 812 0.09 128 879 848 550 455 0.008 94.4
B mg L−1 15.5 17.9 21.9 21.4 0.009 20.1 24.4 24.7 19.5 18.1 0.005 20.7
Exchangeable Na+ mmolc kg−1 73.5 102 105 130 0.001 782 104 125 108 88.1 0.02 530

a Field- and plot-scale MSE’s are significantly different at the 0.05 level.
b The number of degrees of freedom for each variable is 36/36 (field-scale/plot-scale).
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Table 5
Comparison of field- and plot-scale mean square errors for analyzed soil properties (0–0.3 m depth) at the Westlake Study

Soil property Units Field-scale experiment Plot-scale experiment

4 ECa classes
(MS within
ECa class)

5 ECa classes
(MS within
ECa class)

3 Blocks
(MS within block)

4 Blocks
(MS within block)

6 Blocks
(MS within block)

Water contenta kg kg−1 0.136 0.0992 0.113 0.102 0.105
Saturation percentage % 46.7 36.1 44.9 39.4 46.4
pH 0.125 0.119 0.0713 0.0666 0.0712
ECe dS m−1 15.9 19.0 21.9 17.9 20.2
CEC mmolc kg−1 2111 2236 3527 3704 3201
ESP % 399 401 691 583 688
SAR 92.9 103 154 123 154
Total C g kg−1 3.44 3.73 1.374,5 1.875 0.8394,5

Total N g kg−1 0.0214 0.0229 0.007844,5 0.009234,5 0.007124,5

CaCO3 g kg−1 92.1 91.2 14.74,5 14.64,5 11.84,5

Gypsum g kg−1 288 341 1725 1595 1635

Mo mg L−1 27.5 297 94.84,5 81.94,5 91.74,5

B mg L−1 33.8 35.7 27.0 25.1 25.5

Anions in the saturation extract
Cl− mmolc L−1 99.4 91.5 173 136 172
HCO3

− mmolc L−1 0.644 0.623 0.777 0.748 0.823
NO3

− mmolc L−1 0.0348 0.033 0.0224 0.0222 0.0222
SO4

− mmolc L−1 2860 3404 2746 2403 2471
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Cations in the saturation extract

Ca2+ mmolc L−1 4.16 3.91 2.43 2.27 2.57
K+ mmolc L−1 0.205 0.176 0.235 0.224 0.221
Mg2+ mmolc L−1 56.8 68.8 20.44,5 20.74,5 14.14,5

Na+ mmolc L−1 2986 3509 3718 3107 3452

Exchangeable cations
Ca2+ mmolc kg−1 1290 1034 33084,5 32544,5 30164,5

K+ mmolc kg−1 6.62 6.88 3.204,5 3.66 2.604,5

Mg2+ mmolc kg−1 171 155 54.04,5 48.64,5 40.84,5

Na+ mmolc kg−1 852 933 1209 1002 1249

Field-scale mean square (MS) is the variance among sites within apparent electrical conductivity (ECa) classes, where the field is partitioned into four or five ECa classes.
Plot-scale MS is the variance among sites within blocks, with partitioning of the plot-scale experiment into three, four, and six blocks.4,5Plot-scale MS’s are significantly
different from field-scale MS’s (0.05 level) with partitioning into four or five ECa classes, respectively.

a Degrees of freedom for each variable were 36/37, 36/36, and 36/34 (field-scale/plot-scale), with field-scale experiment partitioning into four ECa classes and plot-scale
experiment partitioning into three, four, and six blocks, respectively. Degrees of freedom were 35/37, 35/36, and 35/34 (field-scale/plot-scale),with field-scale experiment
partitioning into five ECa classes and plot-scale experiment partitioning into three, four, and six blocks, respectively.
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and six blocks, are shown inTables 5 and 6. The MS errors for the majority of measured soil
properties were not different (P≤ 0.05) between the two levels of scale. Furthermore, most
of those that were different showed only a 2–4-fold disparity, a degree of heterogeneity with
little effect on ANOVA (Scheffe, 1959). These findings were similar to those at the FICS
site in Colorado (Johnson et al., 2003b).

In general, surface soil MS’s (0–0.3 m) compared more favorably between plot- and field-
scale experiments than did MS’s for soil properties evaluated at deeper depths (0–1.2 m)
(Tables 5 and 6). This is likely a reflection of increasing heterogeneity with depth at WLF
(Corwin et al., 2003b), but is contrary to findings at the FICS in Colorado where variabil-
ity is greatest at the soil surface (Johnson et al., 2003b). The MS’s for soil properties in
surface soils (0–0.3 m depth) were most alike when field- and plot-scale experiments were
partitioned into four ECa classes and four blocks, respectively (Table 5). The number of
surface soil properties showing different MS’s at the field and plot scales increased when
the number of ECa classes was increased from four to five.

As was true for surface soils, MS’s for deeper soil (0–1.2 m) properties were most similar
between field- and plot-scale experiments when the experimental sites were partitioned into
four ECa classes and four blocks, respectively (Tables 5 and 6). The MS comparisons
changed little when partitioning was increased from four to five ECa classes with four plot-
scale blocks. Only extractable Na+ was added to the list of soil properties with different
MS’s between the two levels of scale.

The MS for ECe was expected to compare favorably between the field and plot scales,
since ECe was the basis for plot-scale blocking and the major contributor to measured ECa at
WLF (Corwin et al., 2003b). This was confirmed for surface soils where soil water content,
SP, and B, all highly correlated with ECe (Corwin et al., 2003b), also showed comparable
MS’s between the field- and plot-scale experiments. Interestingly, these relationships were
not as strong at deeper soil depths. Comparisons of field- and plot-scale MS’s for ECe (four
or five ECa classes versus three or six ECe blocks) and SP (four or five ECa classes versus
six ECe blocks) revealed significant differences. This may reflect the increasing ECe and
soil heterogeneity found with depth byCorwin et al. (2003b). It is also possible that spatial
patterns in salinity changed slightly between 1999, when soils were ECa mapped, and 2002
when soils were sampled (Johnson et al., 2003a).

3.3. Field-scale within-field blocking versus traditional plot-scale blocking

In a traditional randomized complete block design, blocks are positioned to frame homo-
geneous regions in a field. Two or more blocks may include soils with similar characteristics
as was the case with each of the salinity-based blocking schemes used for the WLF plot-
scale site (Fig. 2B). For example, when apportioned into four blocks, the ECe map shows
block 2 to be highest in salinity, block 4 lowest, and blocks 1 and 3 of similar mid-range
salinity. This is verified by soil analyses (Table 4).

In contrast, the soil property means within ECa classes were directionally stratified for
most properties examined, indicating a degree of linearity between those properties and ECa
(Table 4). Total C and N, soil properties associated with yield potential, were negatively
correlated with ECa at one or both depths of measurement. Properties indicative of increased
salinity and decreased yield (SP, pH, ECe, CEC, ESP, sodium adsorption ratio (SAR), B,
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Table 6
Comparison of field- and plot-scale mean square errors for analyzed soil properties (0–1.2 m depth) at the Westlake Study

Soil property Units Field-scale experiment Plot-scale experiment

4 ECa classes
(MS within ECa class)

5 ECa classes
(MS within ECa class)

3 Blocks
(MS within block)

4 Blocks
(MS within block)

6 Blocks
(MS within block)

Water contenta kg kg−1 0.0845 0.0748 0.0486 0.0497 0.0441
Saturation percentage % 64.0 56.6 34.3 35.9 27.04,5

pH 0.0316 0.0322 0.0288 0.0275 0.0259
ECe dS m−1 16.7 11.9 26.84,5 20.0 25.04,5

CEC mmolc kg−1 1267 1471 1801 1926 1471
ESP % 789 633 442 408 3814

SAR 111 79.1 1655 121 1665

Total C g kg−1 1.12 1.31 0.2784,5 0.3114,5 0.2644,5

Total N g kg−1 0.00489 0.00479 0.00204,5 0.00204,5 0.00214,5

CaCO3 g kg−1 76.9 86.6 11.04,5 11.64,5 8.164,5

Gypsum g kg−1 428 396 1194,5 1444,5 1284,5

Mo mg L−1 127 130 93.5 94.4 78.6
B mg L−1 20.1 20.8 22.5 20.7 21.2

Anions in the saturation extract
Cl− mmolc L−1 224 203 206 173 211
HCO3

− mmolc L−1 0.126 0.120 0.3304,5 0.2794,5 0.3564,5

NO3
− mmolc L−1 0.0170 0.0174 0.4904,5 0.5154,5 0.5194,5

SO4
− mmolc L−1 2505 1771 72524,5 59494,5 66824,5
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Table 6 (Continued )

Soil property Units Field-scale experiment Plot-scale experiment

4 ECa classes
(MS within ECa class)

5 ECa classes
(MS within ECa class)

3 Blocks
(MS within block)

4 Blocks
(MS within block)

6 Blocks
(MS within block)

Cations in the saturation extract
Ca2+ mmolc L−1 2.07 2.00 5.074,5 4.744,5 5.204,5

K+ mmolc L−1 0.162 0.105 0.3564,5 0.3124,5 0.3294,5

Mg2+ mmolc L−1 27.3 31.6 99.74,5 89.94,5 68.34,5

Na+ mmolc L−1 3209 2230 77714,5 61465 73624,5

Exchangeable cations
Ca2+ mmolc kg−1 446 411 10984,5 11994,5 11114,5

K+ mmolc kg−1 2.11 2.06 0.7404,5 0.8424,5 0.6904,5

Mg2+ mmolc kg−1 151 160 89.8 82.5 61.64,5

Na+ mmolc kg−1 782 580 604 530 611

Field-scale mean square (MS) is the variance among sites within apparent electrical conductivity (ECa) classes, where the field is partitioned into four or five ECa classes.
Plot-scale MS is the variance among sites within blocks, with partitioning of the plot-scale experiment into three, four, and six blocks.4,5Plot-scale MS’s are significantly
different from field-scale MS’s (0.05 level) with partitioning into four or five ECa classes, respectively.

a Degrees of freedom for each variable were 36/37, 36/36, and 36/34 (field-scale/plot-scale), with field-scale experiment partitioning into four ECa classes and plot-scale
experiment partitioning into three, four, and six blocks, respectively. Degrees of freedom were 35/37, 35/36, and 35/34 (field-scale/plot-scale),with field-scale experiment
partitioning into five ECa classes and plot-scale experiment partitioning into three, four, and six blocks, respectively.
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and exchangeable Na) were positively correlated with ECa. Although relationships between
specific soil properties and yield potential at the FICS in Colorado are quite different from
those of WLF, similar directional stratification of soil properties by ECa classification was
identified (Table 1). In other soils, ECa predicts yield in a non-linear fashion, where yield
is maximized at mid-range ECa values (Kitchen et al., 1999).

Another important distinction must be made between ECa-classified within-field block-
ing and traditional randomized complete block designs. Traditional blocks are defined as
grouped sets of experimental units to which treatments are independently applied. As a
result, each block encompasses several experimental units. In contrast, with ECa-classified
within-field blocking each treatment is independently applied to a field, where a field is
the experimental unit. Each experimental unit encompasses several blocks; hence, the term
within-field blocking.

There are frequently limitations associated with conducting an experiment based upon
an existing dataset. In this study, a response surface model was applied to identify ECa
classes at WLF because it was the basis previously established to identify soil sampling
sites for the data set examined. The response surface approach favors the identification of
soil sampling sites at the extremes of ECa (personal communication, Scott Lesch) and may
not be the optimal method for classifying soils for the purpose of blocking (to minimize
within-class variance). Yet, despite this possible deficiency MS errors for most soil proper-
ties were similar between field-scale ECa-classified and plot-scale salinity-based blocking
schemes. It is possible that field- and plot-scale variances at WLF would show even greater
similarity had unsupervised ECa classification methods been applied as at the FICS in
Colorado.

By the same token, the plot-scale study was positioned in a location predetermined
by the availability of soil analyses from randomly-selected sampling sites at WLF. More
homogeneous blocks may have been possible in another location. Analyses made in this
study should be regarded as reasonable estimates of field- and plot-scale experimental errors
for WLF.

4. Conclusions

At WLF in the San Joaquin Valley of central California, ECa classification significantly
delineated a majority of soil factors tested and effectively reduced their variance. Addition-
ally, field-scale ECa-classified MS (within-field) variability and traditional plot-scale MS
error were found to be similar. These findings corroborate those from the FICS in Colorado
(Johnson et al., 2003b), reinforcing the proposal that ECa-classified within-field block-
ing can be used for the statistical design of field-scale studies and as a means to estimate
plot-scale experimental error. The fact that the Colorado and California experimental sites
exemplify widely contrasting climates, cropping systems, soil characteristics, production
challenges, and ECa classification methods further bolsters the potential application of this
alternative statistical approach.

It is important to note that ECa classification can be used as a basis for blocking only when
ECa and yield are correlated, a relationship found in locations where the soil characteristics
driving ECa also limit yield. At WLF, salinity dominated measured ECa and best predicted
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yield, while at the FICS clay content drove ECa and defined erosion phase/yield poten-
tial across fields. Although ECa and yield are not always correlated (Kitchen et al., 1999;
Johnson et al., 2003a), the ECa-yield relationship has been documented in multiple loca-
tions within and outside the U.S. (Kitchen et al., 1999, 2003; Johnson et al., 2003a; Veris
Technologies, 2004). This indicates widespread potential application for ECa in experimen-
tal design and analysis.

Within-field blocking, based on ECa, offers a compelling tool in statistical design. It is
well suited for examining environmental response (soil, water, and atmosphere) to a single
treatment or management practice and provides a foundation for the study of these responses
within a spatial context. For instance, the impact of management on soil quality could be
evaluated across a gradient of soil fertility delimited by ECa classes.

Within-field blocking also offers the opportunity to compare two or more treatments
without benefit of replication. Many landowners are understandably hesitant to commit
multiple fields and ongoing management to create replicated treatments in on-farm exper-
iments. However, when multiple replicated treatments are not feasible, landowners may
be willing to split a field into two parcels to provide room for one additional treatment.
Within-field blocking, based on ECa classification, could then be used to roughly compare
the two treatments. Two or three treatments could also be applied to separate fields that
could be roughly compared using this approach. In agronomic research, the opportunity to
add one or more additional treatments can significantly improve the potential value of an
experiment.

Wide-spread acceptance of within-field blocking as a bonafide statistical design will
require its continued assessment over space and time. In order to broaden the scope of
inference beyond the WLF and FICS, multi-site comparisons of field- and plot-scale exper-
imental error are necessary. For this reason, we take a conservative stance, suggesting that
ECa-classified within-field variance be used in a systems approach to agronomic research,
as a rough estimate of plot-scale experimental error and a means to identify questions re-
quiring further research at the plot scale. Such alternative statistical methods will encourage
the study of intact agroecosystems that are realistic in terms of scale, management, farm
equipment, and soil heterogeneity. Because farmers can relate to experimental goals ex-
amined in systems similar to their own, field-scale experiments may also lead to greater
acceptance and implementation of sustainable management practices.

Acknowledgements

The authors wish to acknowledge the University of California Kearney Foundation of
Soil Science and the University of California Salinity-Drainage program for the funds that
supported the chemical analyses of the soil core samples. Ceil Howe, Jr., and Ceil Howe III
provided the site. The authors thank Nahid Vishteh and Harry Forster for their analytical
technical support, James Wood for his help in collecting soil core samples, and especially
acknowledge the conscientious work and diligence of Clay Wilkinson and Derrick Lai
who performed the preparation and chemical analysis of the soil samples. Thanks are also
extended to Scott Lesch for technical expertise and assistance with ECa classification of the
Westlake Farms site.



C.K. Johnson et al. / Computers and Electronics in Agriculture 46 (2005) 181–202 201

References

Corwin, D.L., Lesch, S.M., 2003. Application of soil EC to precision agriculture: theory, principles, and guidelines.
Agron. J. 95, 455–471.

Corwin, D.L., Carrillo, M.L.K., Vaughan, P.J., Rhoades, J.D., Cone, D.G., 1999. Evaluation of a GIS-linked model
of salt loading to groundwater. J. Environ. Qual. 28, 471–480.

Corwin, D.L., Kaffka, S.R., Hopmans, J.W., Mori, Y., van Groenigen, J.W., van Kessel, C., Lesch, S.M., Oster,
J.D., 2003a. Assessment and field-scale mapping of soil quality properties of a saline-sodic soil. Geoderma
1952, 1–29.

Corwin, D.L., Lesch, S.M., Shouse, P.J., Soppe, R., Ayars, J.E., 2003b. Identifying soil properties that influence
cotton yield using soil sampling directed by apparent soil electrical conductivity. Agron. J. 95, 352–364.

Crawford, C.A., Bullock, D.G., Pierce, F.J., Stroup, W.W., Hergert, G.W., Eskridge, K.M., 1997. Experimental
design issues and statistical evaluation techniques for site-specific management. In: The State of Site-Specific
Management for Agriculture. American Society of Agronomy, Madison, WI, pp. 301–335.

Drinkwater, L.E., 2002. Cropping systems research: reconsidering agricultural experimental approaches. Hort.
Technol. 12 (3), 355–361.

Fraisse, C.W., Sudduth, K.A., Kitchen, N.R., 2001. Delineation of site-specific management zones by unsupervised
classification of topographic attributes and soil electrical conductivity. Trans. ASAE 44 (1), 155–166.

Hargrove, W.W., Pickering, J., 1992. Pseudoreplication: asine qua nonfor regional ecology. Landscape Ecol. 6,
251–258.

Harris, J.A., 1915. On a criterion of substratum homogeneity (or heterogeneity) in field experiments. Am. Nat.
49, 430–454.

Johnson, C.K., Doran, J.W., Duke, H.R., Wienhold, B.J., Eskridge, K.M., Shanahan, J.F., 2001. Field-scale elec-
trical conductivity mapping for delineating soil condition. Soil Sci. Soc. Am. J. 65, 1829–1837.

Johnson, C.K., Doran, J.W., Eghball, B., Eigenberg, R.A., Wienhold, B.J., Woodbury, B.L., 2003a. Status of
soil electrical conductivity studies by central states researchers. American Society of Agricultural Engineers
Annual International Meeting, Las Vegas, NV, Paper No. 032339.

Johnson, C.K., Eskridge, K.M., Wienhold, B.J., Doran, J.W., Peterson, G.A., Buchleiter, G.W., 2003b. Using
electrical conductivity classification and within-field variability to design field-scale research. Agron. J. 95,
602–613.

Johnson, C.K., Mortensen, D.A., Wienhold, B.J., Shanahan, J.F., Doran, J.W., 2003c. Site-specific management
zones based on soil electrical conductivity in a semiarid cropping system. Agron. J. 95, 303–315.

Johnson, C.K., Drijber, R.A., Wienhold, B.J., Wright, S.F., Doran, J.W., 2004. Linking microbial-scale findings
to farm-scale outcomes in a dryland cropping. Precision Agric. 5, 311–328.

Kitchen, N.R., Sudduth, K.A., Drummond, S.T., 1999. Soil electrical conductivity as a crop productivity measure
for claypan soils. J. Prod. Agric. 12, 607–617.

Kitchen, N.R., Drummond, S.T., Lund, E.D., Sudduth, K.A., Buchleiter, G.W., 2003. Soil electrical conductivity
and topography related to yield for three contrasting soil–crop systems. Agron. J. 95, 483–495.

LeClerg, E.L., Leonard, W.H., Clark, A.G., 1962. Field Plot Technique, second ed. Burgess Publishing Co.,
Minneapolis, MN.

Lesch, S.M., Strauss, D.J., Rhoades, J.D., 1995. Spatial prediction of soil salinity using electromagnetic induction
techniques: 2. An efficient spatial sampling algorithm suitable for multiple linear regression model identifica-
tion and estimation. Water Resour. Res. 31, 387–398.

Mueller, J.P., Barbercheck, M.E., Bell, M., Brownie, C., Creamer, N.G., Hu, S., Kin, L., Linker, H.M., Louws, F.J.,
Marra, M., Mueller, J.P., Raczkowski, C.W., Susko, D., Wagger, M.G., 2002. Implementation of long-term
agricultural systems studies: challenges and opportunities. Hort. Technol. 12 (3), 362–368.

Nielsen, D.R., Wendroth, O., Parlange, M.B., 1995. Opportunities for examining on-farm soil variability. In:
Site-Specific Management for Agricultural Systems. American Society of Agronomy, Madison, WI, pp. 95–
132.

Peterson, G.A., Westfall, D.G., Cole, C.V., 1993. Agroecosystem approach to soil and crop management research.
Soil Sci. Soc. Am. J. 57, 1354–1360.

Rhoades, J.D., Manteghi, N.A., Shouse, P.J., Alves, W.J., 1989. Soil electrical conductivity and soil salinity: new
formulations and calibrations. Soil Sci. Soc. Am. J. 53, 433–439.



202 C.K. Johnson et al. / Computers and Electronics in Agriculture 46 (2005) 181–202

Rzewnicki, P.E., Thompson, R., Lesoing, G.W., Elmore, R.W., Francis, C.A., Parkhurst, A.M., Moomaw, R.S.,
1988. On-farm experiment designs and implications for locating research sites. Am. J. Alt. Agric. 3, 168–173.

Rzewnicki, P., 1991. Farmer’s perceptions of experiment station research, demonstrations, and on-farm research
in agronomy. J. Agron. Educ. 20, 31–36.

SAS Institute, 1997. SAS/STAT Software: changes and enhancements through Release 6.12. Cary, NC, 1997.
Scheffe, H., 1959. The Analysis of Variance. Wiley, New York, NY.
Stroup, W.W., Hildebrand, P.E., Francis, C.A., 1993. Farmer participation for more effective research in sustainable

agriculture. In: Technologies for Sustainable Agriculture in the Tropics. American Society of Agronomy
Special Publishers 56, Madison, WI, pp. 153–186.

Sumberg, J., Okali, C., 1988. Farmers, on-farm research and the development of new technology. Exp. Agric. 24,
333–342.

Vanden Heuvel, R.M., 1996. The promise of precision agriculture. J. Soil Water Conserv. 51, 38–40.
Veris Technologies, 2004. [Online]. [2 p.] Available at:http://www.veristech.com[cited 31 July 2004; verified 31

July 2004]. Veris Technologies, Salina, KS.

http://www.veristech.com/

	Apparent soil electrical conductivity: applications for designing and evaluating field-scale experiments
	Introduction
	Materials and methods
	Field-scale study
	Plot-scale study
	Experimental approach

	Results and discussion
	ECa effectiveness as a blocking factor
	MS error comparisons: field-scale ECa classification versus plot-scale blocking
	Field-scale within-field blocking versus traditional plot-scale blocking

	Conclusions
	Acknowledgements
	References


