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Abstract

The variation of soil properties at the field scale can be complex. Particular challenges for the analysis of data on soil

variables arise when components of variation operate at a range of scales, show intermittent effects, and are not spatially

stationary in the variance, fluctuating more in some regions than in others.

Wavelet analysis addresses these problems. Any data set of finite variance (appropriately sampled) may be analysed with the

dilations and translations of a basic wavelet function. Wavelet functions oscillate locally and damp rapidly to zero either side of

their centre, so that they only respond to variation within a local neighbourhood. To provide a complete analysis of a data set the

wavelet must be translated across the data, generating a set of local coefficients. The basic wavelet can also be dilated to analyse

the data at a specified spatial scale. A single wavelet coefficient therefore describes the variation of a variable in some locality at

a particular spatial scale.

Data were collected at a variable, 32.4 ha salt affected site in the Tulare Lake Bed region of California using electrical

conductivity sensors (mobile fixed-array, electrical resistivity equipment). We show how wavelets can be used to analyse the

variation within these data, how the analysis partitions the variance of the data by scale and location, and how it can be used to

extract components from the data which appear to be more useful for predicting soil properties than are the raw data.
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1. Introduction

Environmental variables typically show substantial

variation over a wide range of spatial scales. This

variability is a challenge for modelling environmental

processes or characterising them by sampling in

space. In the face of such complexity we require a

method for the analysis of variation. One approach,

which has been successful for many problems, is to

treat data on an environmental variable as realizations

of a stochastic process. Some assumptions are usually

necessary, notably that the variance of the process is

constant (stationary) in space. The assumption of the

intrinsic hypothesis, that the expected variance of the

difference between values of the process at two

locations depends only on their separation in space,

underlies most geostatistical analysis (Webster and

Oliver, 2001). If this assumption is plausible then it

provides a basis for estimating values of a variable

from limited samples (Burgess and Webster, 1980),
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for describing the correlation between two variables

when this depends on spatial scale (Goovaerts and

Webster, 1994) and for filtering the data into

components of different spatial scale to aid interpret-

ation (Oliver et al., 2000).

While geostatistics has been successful there are

some kinds of variation to which it cannot be

satisfactorily applied. The most serious problem is

non-stationarity of the variance. This has been

encountered in soil variables (Voltz and Webster,

1990) who found changes in the variance of soil pH

and clay content on a transect across Jurassic

sediments in Central England. It is for this reason

that attention has been directed to alternative methods

of analysis which make less restrictive assumptions

about the nature of variability.

One approach, within the sphere of geostatistics, is

to conduct conventional geostatistical analyses in a

moving window, within which the assumption of the

intrinsic hypothesis is more plausible (Walter et al.,

2001). Another method is wavelet analysis, which is

the focus of this paper. Wavelet analysis, described

more fully below, uses wavelets and corresponding

scaling functions as basis functions to decompose a

set of data into components described by wavelet

coefficients. These coefficients are specific to spatial

scales and locations. Analysis of the coefficients can

therefore give insight into the variability of a property.

Reconstituting data from subsets of the wavelet

coefficients specific to different spatial scales allows

us to generate representations of the data at different

spatial resolution—so-called multiresolution analysis

(MRA). Lark and Webster (1999) demonstrated how

wavelet analysis could be used to analyse the complex

variation of soil properties on the same transect where

Voltz and Webster (1990) had questioned the intrinsic

hypothesis. The wavelet analysis decomposed the soil

variables into components of different spatial scale,

some of which were clearly not of uniform variability

in space. More recently Lark and Webster (2001) have

shown how the location of changes in variance may be

detected statistically using wavelet coefficients.

Wavelet analysis requires substantial numbers of

regularly sampled data. This inevitably limits the

scope for its application to environmental variables

which must be measured directly by field sampling

and laboratory analysis. For this reason Lark and

Webster (2001) suggested that wavelet analysis might

be most useful for the analysis of cheaper data

obtained using sensors.

The measured bulk soil electrical conductivity

(ECa) is among the most useful and easily obtained

spatial properties of soil that influence crop pro-

ductivity (Corwin and Lesch, 2002). As a result, soil

ECa has become one of the most frequently used

measurements to characterize field variability (Cor-

win and Lesch, 2002). ECa may be measured with

electrical resistivity where the electrodes make direct

contact with the soil or may be measured non-

invasively with electromagnetic inductance. Mobi-

lized, fixed-array, electrical-resistivity and mobilized

electromagnetic induction (EM) equipment have been

developed that geo-references the ECa measurement

with GPS (Carter et al., 1993; McNeil, 1992;

Rhoades, 1992, 1993). This equipment makes it

possible to measure and map ECa at field scales in

real-time (Rhoades et al., 1999). Bulk soil electrical

conductivity is influenced by physical and chemical

properties of soil. These properties include soil

salinity, clay content and cation exchange capacity,

clay mineralogy, soil pore size and distribution, soil

moisture content, organic matter, bulk density, and

soil temperature (McNeil, 1992; Rhoades et al., 1999;

Corwin and Lesch, 2002). ECa may be used to predict

values of these soil properties using, for example,

regression models obtained from a few calibration

data (Corwin and Lesch, 2002).

The goal of this paper is to demonstrate how MRA

using wavelets may be applied to data on soils

obtained from sensors of electrical conductivity. The

analysis shows the complexity of the variation in these

data at different spatial scales. We also evaluate the

effect of filtering the data, by removing components of

particular spatial scales, on their usefulness for

predicting soil variables obtained by sampling and

analysis.

2. Theory

We denote our data as a function of location in

space, f ðxÞ: It will be noted that this is a one-

dimensional function, and in this paper the analysis is

limited to one-dimension because of the nature of the

data as discussed below. In principle wavelet analysis

is not so limited. A basic or ‘mother’ wavelet may also
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be defined as a function of location, cðxÞ: A wavelet

function must have three properties: the mean is zero,

i.e.

ð1

21
cðxÞdx ¼ 0; ð1Þ

the squared norm is 1, i.e.

ð
lcðxÞl2 dx ¼ 1 ð2Þ

and the function has a compact support. This last

condition means that the wavelet only takes non-zero

values over a narrow interval. This property is

illustrated by the so-called ‘Mexican hat’ wavelet

function in Fig. 1a.

The wavelet transform is an integral transform, that

is to say a wavelet coefficient is obtained by

integrating the product of a wavelet with the data. It

is clear that a wavelet coefficient, because of the

compact support of the wavelet, will only respond to

the data over a finite interval, and so gives a localized

description of the data’s variability. In order to

analyse data over a transect it is necessary to shift

the wavelet (translate it) as in Fig. 1b. Furthermore,

the scale at which a wavelet coefficient describes the

data may be changed by shrinking or dilating the

wavelet function (Fig. 1c). For a basic wavelet

function cðuÞ a dilated and translated version cl;xðuÞ

may be obtained with the following equation:

cl;xðuÞ ¼
1ffiffi
l

p c
u 2 x

l

� �
; l . 0; x [ R; ð3Þ

R denotes the set of real numbers. The parameter l is

the ‘scale parameter’ of the wavelet and controls its

dilation. The parameter x determines the location of

the wavelet.

The wavelet coefficient for scale parameter l and

location x, Wf ðl; xÞ is defined as the integral

Wf ðl; xÞ ¼
ð1

21
f ðuÞcl;xðuÞdu

¼
ð1

21
f ðuÞ

1ffiffi
l

p c
u 2 x

l

� �
: ð4Þ

In principle the two parameters can be varied

continuously, in practice they must be discretized,

and in the discrete wavelet transform (DWT) this is

done by setting l to integer powers, m of a basic

dilation step l0 where l0 . 1: Commonly l0 ¼ 2 so

the scale parameter increases in the dyadic sequence

lm
0 ¼ 2; 4; 8;… The location is incremented in steps

which depend on the scale parameter so that x ¼

nx0l
m
0 ; where n is an integer and x0 is a basic step

(commonly one interval between samples on the

transect). In the notation we denote a discretely scaled

and translated wavelet function by cm;n: The DWT

coefficient is Dm;n where

Dm;n ¼ kf ;cm;nl ¼ l2m=2
0

ð
f ðxÞcðl2m

0 x 2 nx0Þdx: ð5Þ

The inner product of two vectors is denoted by putting

them in the k l and f denotes our data.

A set of DWT functions, for wavelet functions with

certain properties, provides a complete orthonormal

basis for any data set of finite variance (Daubechies,

1988, 1992). In short this means that the resulting

wavelet coefficients may be used to approximate the

data to any degree of precision by the equation:

f ðxÞ ¼
X1

m¼21

X1
n¼21

Dm;ncm;nðxÞ: ð6Þ

Fig. 1. (a) A basic wavelet function (Mexican Hat) with, (b) two

translations and (c) two dilations.
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This equation follows from the basic ideas of basis

functions of vector spaces. More details can be found

in the Appendix to Lark and Webster (1999).

Because the wavelet basis functions are orthogonal

to their dilates and translates, if we evaluate the sum

of products of the wavelets and their coefficients over

all locations but for just one value of the scale

parameter, 2k then we obtain an additive component

of the discretely sampled data. This is called the detail

component for scale parameter 2k; or Qkf ðxÞ; where

Qkf ðxÞ ¼
X1

n¼21

Dk;nck;nðxÞ: ð7Þ

One may imagine filtering the data f ðxÞ by removing

these additive components for all values of the scale

parameter 2m; m ¼ 1; 2;…; k: The result is the so-

called ‘smooth’ representation of the data for scale

parameter 2k; denoted Pkf ðxÞ: It can be shown (Mallat,

1989) that the smooth representation may be obtained

by

Pkf ðxÞ ¼
X1

n¼21

kf ;fk;nlfk;nðxÞ ð8Þ

where fk;n is a scaled and translated basis function

called the scaling function. The scaling function bears

a unique relationship to a particular wavelet function,

and can be thought of as a smoothing kernel. A full

account of how the scaling functions and wavelet

functions are related is given by Lark and Webster

(1999).

The discussion above outlines how a sequence of

discretely sampled data might be partitioned into a set

of detail components and a smooth representation

using wavelets and the corresponding scaling func-

tions. This decomposition is known as MRA.

Many wavelet functions can be used for MRA.

Daubechies (1988) provides a widely used family of

wavelet functions with the required properties to

define an orthonormal basis. We may think of a

particular dilation of the mother wavelet as defining a

filter with which the data are convolved. The DWT

coefficients are obtained by subsampling the output of

this convolution at intervals of 2m: This is most

efficiently done using the Pyramid Algorithm

(described clearly by Press et al. (1992)).

Since convolution underlies the DWT it is a

problem to obtain coefficients near the ends of

the data where the filter overlaps the first or the last

data point. In some applications of wavelet analysis

this may be solved by ‘wrap-around’ conditions, i.e.

the data are assumed to lie on a circle, but this is not

appropriate for spatial analysis. One solution, pro-

posed by Cohen et al. (1993) is to use adapted filters

near the ends of the transect. Lark and Webster (1999)

used these adapted filters, but they have limitations,

discussed by Lark and Webster (2001).

Another problem with the DWT, for some wavelet

bases, is that it is not shift invariant—the value of a

wavelet coefficient for a location will depend on

where the analysis starts. Lark and Webster (1999)

took up a proposal of Coifman and Donoho (1995)

and computed a set of MRA advancing the starting

point for each. Averaging the resulting components

removed artefacts from the analysis.

When the wavelet function in a DWT meets certain

criteria (Daubechies, 1992) then the DWT partitions

the variance of a set of data over all scales. If SSkf ðxÞ

denotes the sum-of-squares of Pkf ðxÞ and SSf ðxÞ the

sum-of-squares of f ðxÞ then

SSf ðxÞ ¼ SSkf ðxÞ þ
Xk

m¼1

Xnm

n¼1

D2
m;n ð9Þ

where there are nm DWT coefficients for scale

parameter 2m:

This is the basis of the sample wavelet variance

(Percival, 1995), ŝ2
k ; the contribution to the variance

of the data made by components for scale parameter 2k

ŝ2
k ¼

1

2knk

Xnk

n¼1

D2
k;n: ð10Þ

The wavelet variance defined in Eq. (10) is based on

DWT coefficients, and so on a subsample of the

convolution of the data with a filter. Percival and

Guttorp (1994) showed that the wavelet variance

could be more efficiently estimated by retaining all

coefficients from the convolution. These are the

maximal overlap DWT coefficients (MODWT).

Lark and Webster (2001) used MODWT coefficients

obtained with adapted filters at the ends of the data,

adapted MODWT (AMODWT) coefficients, �dk;n.

There are N AMODWT coefficients for any scale

parameter 2k from a sequence of N data.
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The AMODWT variance can be obtained as

�s2
k ¼

1

2kN

XN
n¼1

�d2
k;n: ð11Þ

Lark and Webster (2001) proposed discarding the first

2k coefficients for k ¼ 1 and k ¼ 2 when using Cohen

et al.’s (1993) adapted wavelets since these are

particularly biased. When estimating �s2
k for k ¼ 1 or

2 using Eq. (11) the N in the divisor is replaced by

N 2 2k and the summation is conducted over the

range n ¼ 2k þ 1;…N:

The wavelet variance is directly related to the

power spectrum (Abry et al., 1995). As such it

represents a partition of the variance of the data by

scale (a frequency band) aggregated over all locations.

In calculating wavelet variances we therefore discard

by aggregation the information which wavelet

coefficients, because of their localized reference,

contain about changes in the variability of a variable

which may occur with location. Lark and Webster

(1999, 2001) showed that plots of the local contri-

butions to wavelet variance, for example the

AMODWT-based values

�d2
k;n

2k
; ð12Þ

may be informative showing how, at different scale

parameters, the variability of a property may change

in space. Lark and Webster (2001) have shown how

this visual interpretation may be developed into a

quantitative methods for detecting scale-specific

changes in variance within an inferential framework.

3. Materials and methods

The methods and materials that were used to

conduct the ECa survey followed the suggested

guidelines of Corwin and Lesch (2002). GPS-based

mobile electrical resistivity and EM equipment were

used to measure and geo-reference ECa at a 32.4 ha

(80 acre) study site. The tractor-mounted, invasive

fixed-array unit and the non-invasive mobile EM unit

were developed by Rhoades and colleagues (Carter

et al., 1993; Rhoades, 1992, 1993). The study site

was located in California’s San Joaquin Valley.

The soil at the site was a Lethent clay loam (fine,

montmorillanitic, thermic, typic Natrargid). These

soils are saline-sodic, and have little organic matter.

The study site was divided into 8 rectangular

paddocks roughly 4 ha in area. The ECa survey was

conducted in August, 1999, on fallow soil prior to

planting with Bermuda grass. The survey consisted of

an initial cursory EM survey followed by an intensive

fixed-array, electrical-resistivity ECa survey. A total

of 384 EM readings were taken. A total of 7288

electrical-resistivity ECa measurements were taken.

Each ECa measurement was geo-referenced using

GPS. The initial survey consisted of a grid of ECa

measurements taken with the mobile EM equipment.

The grid was arranged in a 4 £ 12 pattern within each

of the eight paddocks. At each site, both horizontal

and vertical EM measurements were taken. The

horizontal coil configuration results in a measurement

EMh that concentrates the reading nearer to the soil

surface and penetrates to a depth of approximately

1 m, whereas the reading in the vertical configuration,

EMv penetrates to a depth of 1.5 m and concentrates

the reading less at the surface. The geometric mean

EM levels were defined as
ffiffiffiffiffiffiffiffiffiffiffiffi
EMvEMh

p
: The profile

ratios were defined as EMh=EMv: The profile ratio

provided an indication of the shape of the ECa profile

(regular, inverted or uniform). Profile ratios equal to 1

indicate a uniform profile, profile ratios ,1 indicate

an increasing profile with depth, and profile ratios .1

indicate an inverted profile (i.e. conductivity

decreases with depth). In essence, the profile ratio

is analogous to the leaching fraction, while the

geometric mean approximates the relative level of

salinity in the root zone. Using the EM data from the

initial cursory survey and statistical software

(ESAPv2.0) developed by Lesch et al. (1995), five

sites within each paddock (40 total) were selected that

characterize the spatial variability in ECa across

each paddock. The first four sample locations of

each paddock were selected so that one location

satisfied each of the following four criteria:

(i) high geometric mean EM and high profile ratio,

(ii) high geometric mean EM and low profile ratio,

(iii) low geometric mean EM and high profile

ratio, and (iv) low geometric mean EM and low

profile ratio. The fifth sample site was chosen

randomly within each paddock. The highs and lows

were identified in each paddock on a paddock-

by-paddock basis. Another statistical criterion for
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the selection of each site was the minimization of

spatial clustering. At each of these 40 sites, soil core

samples were taken at two points roughly 5 cm apart.

Soil cores were taken at 0.3 m increments to a depth of

1.2 m. These cores were analysed for a variety of

physical and chemical properties related to soil

quality. Among some the properties analysed were

bulk density (r ), volumetric water content (u ), and

electrical conductivity of the saturation extract (ECe).

Complete analytical results are reported in Corwin

et al. (2002). The fixed-array, electrical-resistivity

electrodes were set to determine ECa to a depth of

1.2 m. The data were collected on 80 passes east-to-

west across the field, ECa measurements were taken at

4 m intervals. The data were therefore closer together

east–west than north–south, and the north–south

spacing of the passes was not entirely regular. This

precludes a two-dimensional wavelet analysis so the

following one-dimensional analyses, as described in

Section 2, were conducted on each pass.

1. MRA was done using Cohen et al.’s (1993)

adaptation of Daubechies’ (1988) wavelet with

two vanishing moments. The Shift-averaging

procedure of Lark and Webster (1999) was used.

This generated average detail components for

scale parameter x02m where x0; the basic step, is

the 4 m interval along the pass and m ¼ 1; 2;…; 4;

with a smooth component for the coarsest scale

x024 ¼ 64 m: Below we refer to the scale par-

ameter in terms of the dyadic sequence of

multipliers of the basic step (i.e. 2m), where

necessary reminding the reader of the value of the

scale parameter in metres.

2. AMODWT coefficients were computed for scale

parameters 2, 4, 8 and 16 using the AMODWT

transform of Lark and Webster (2001). The

AMODWT coefficients were used to compute

wavelet variances—Eq. (11)—for all scales on

two selected passes and an average over all passes.

The local contributions to the wavelet variances—

Eq. (12)—were also calculated.

3. The variation of ECa on the two selected passes

was tested for uniformity at each scale parameter.

This was done following the work of Whitcher

et al. (2000) and Lark and Webster (2001), by

computing a normalized sum-of-squares statistic,

Sk;r; which is a function of location r and specific

to scale parameter 2k

Sk;r ¼
1

2kN �s2
k

Xr

n¼1

�d2
k;n: ð13Þ

The normalising term in front of the summation

simply scales the statistic to a maximum value of 1.

Under an assumption of uniform variance at scale

parameter 2k Sk;r is expected to increase linearly from

0 to 1. If there is a change in variance at this scale at

one or more locations then the plot of Sk;r will change

slope at these locations. The location r0 for which Sk;r

deviates most from the bisector is the first candidate

location for a change in variance at scale parameter

2k: The wavelet variances may be computed for the

two segments either side of location r0 and the

variance ratio computed. Because of the complex and

scale-dependent correlations among the AMODWT

coefficients a Monte Carlo method was used by Lark

and Webster (2001) to compute percentage points of

the wavelet variance ratio under a null hypothesis that

the variance of the underlying process is stationary.

The same procedure was used here to test the

evidence for a change in variance at the first

candidate change point for each scale parameter.

The ECa data and the smooth and detail com-

ponents from the MRA were extracted at each of the

40 sites where the soil has been sampled for analysis.

The soil properties at each depth were then regressed

on (i) the raw ECa data, (ii) the smooth representation

at scale parameter 23 (32 m), (iii) the smooth

representation at scale parameter 24 (64 m) and (iv)

the smooth representation at scale parameter 24

(64 m) and the detail component for this scale

parameter as a separate predictor. Note that the sum

of the two predictors in (iv) is equal to the predictor in

(iii). The regression was done by a model-based

Maximum likelihood method described elsewhere by

Lark (2000) based on the work of Cook and Pocock

(1983). In summary, estimates of the n regression

coefficients for m observations of n predictor variables

are contained in the vector b where

b ¼ ðXTA21XÞ21ðXTA21yÞ; ð14Þ

where A is the m £ m matrix of autocorrelations

among the errors. X is an n £ m matrix of values of

the n predictors and the vector y contains the n

observed values of the soil property. The error
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variance is estimated by

ŝ2 ¼
1

n
ðy 2 XbÞTA21ðy 2 XbÞ: ð15Þ

In order to evaluate these two expressions the matrix

A is needed. It may be defined with reference to the

parameters of a variogram model, specifically the

distance parameter and the ratio of the nugget to

the sill variance. This entails the assumption that the

autocorrelation of the errors of the regression model at

locations xi and xj depends only on the vector xi 2 xj:

The maximum likelihood regression is fitted by

finding the variogram parameters which maximize

the log-likelihood term

2loglAl2 n log ŝ2
: ð16Þ

This must be done numerically.

The inference of the significance of the regression

model was based on the Wald statistic. In order to

compare models with different numbers of predictors

the variable portion of the Akaike Information

criterion was computed

a ¼ loglAlþ n log ŝ2 þ 2P; ð17Þ

where P is the number of predictors in the model. If

adding extra predictors to a model (which increases

the term 2P ) reduces the value of a (due to the

reduction in ŝ2) then this is evidence that the

additional predictors add information to the model

which justifies its extra complexity.

4. Results

Fig. 2 shows the histogram of ECa data. These are

more or less symmetrically distributed with a

coefficient of skew of only 20.13. It was found that

log-transformation of the raw ECa data reduced their

correlation with the observed soil properties at most

depths. Given these two observations we worked with

the ECa data in their original units (dS m21).

Fig. 3 is a post-plot of the raw ECa data and

Fig. 4 is a corresponding plot of the smooth

representations generated by the MRA for four

scales. The corresponding detail components are

shown in Fig. 5.

Fig. 6 shows the overall wavelet variances from the

whole field for each scale parameter. The individual

contributions to this variance from locations across

the field—Eq. (12)—are shown in Fig. 7. Note that

these are square-root transformed back to units of

conductivity.

The overall partition of variance in ECa between

the spatial scales appears to be more or less uniform,

but the results of the wavelet analyses make it clear

that this conceals a complex pattern of spatial

variability. Fig. 7 shows that there is considerable

heterogeneity in the contributions to variation,

particularly at the three finest scales where the

north-eastern corner of the site shows much greater

variation than does the rest of the site. The detailed

examination of pass 2 (second from the bottom on the

plots) and the northernmost pass 80 confirm this. Fig. 8

shows the wavelet variances for these two passes. Pass

80 is more variable than the average for scale

parameter 2–8 (8–32 m). Pass 2 is less variable

than average at the two finest scales. Both passes show

similar variance at the coarsest scale and the

confidence intervals for the wavelet variances both

overlap the average value for the whole site.

Within both passes the variability changes, as is

seen in Fig. 9 which shows the contributions to

wavelet variance at each location and scale parameter.

Fig. 10 shows the data and the smooth representation

at scale parameter 16 (64 m) and Fig. 11 shows the

detail components for each scale parameter.

Table 1 shows that significant changes in variance

can be detected in both passes at the three finer

spatial scales. It should be noted that the two

segments identified by this procedure at any scale

could be investigated for further changes in variance.

This complex variability is not surprising. Soil

Fig. 2. Histogram of ECa data (dS m21).
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conductivity will be influenced by many properties of

the soil which may be complex and non-stationary in

their effects.

The extreme heterogeneity in the northeast corner

is due to contact problems between the four fixed-

array electrodes and the soil. The soil in the northeast

corner was extremely dry in the top 15–22 cm. This

dryness was highly variable across the soil surface.

Because of this dryness, the electrodes would

sporadically lose electrical contact with the soil as

reflected by ECa measurements falling near or below

0.1 dS m21. Ideally, ECa measurements with invasive

electrical-resistivity equipment should always to

taken with the soil at field capacity to insure good

contact, but in this instance that was not possible. It is

notable that the contrast between this corner and

the rest of the field is most pronounced at the finest

spatial scale.

These results cast some doubt on the assumption of

intrinsic stationarity which would be made in

geostatistical analysis of these data by kriging or

cokriging. The intrinsic hypothesis includes the

second-order assumption that a variogram gðhÞ exists,

E{ZðxÞ2 Zðx þ hÞ}2� ¼ gðhÞ; ð18Þ

which depends only on the lag vector h and not on the

location vector x where ZðxÞ is the random function

invoked in geostatistics as an abstract process of

which the observed data are assumed to be a

realization. Clearly the changes detected in

the variance here give rise to doubts about

Fig. 3. ECa data (dS m21) for the site.
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the assumptions of geostatistics. While the kriged

estimates of a variable are unlikely to be much

affected by non-stationarity of the variance, the

kriging variances are likely to be misleading.

The results of the regression analysis, shown in

Table 2, are interesting. With the exception of the u at

one depth, the best predictors of soil variables are the

variables generated by the MRA. In the case of

Fig. 4. Smooth representation of ECa data from one-dimensional wavelet transforms.

Fig. 5. Detail components of ECa data from one-dimensional wavelet transforms.
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the variable ECe the reduction in the error variance on

using the smooth components can be quite substantial,

particularly at depth. This implies that the finer scale

components of the ECa data may be regarded as noise

for the purpose of predicting this soil property. Where

using the detail component (scale parameter 16 (64 m)

and the smooth component at this scale as separate

predictors gives an improvement in the fit of the model

over using the smooth representation at scale 8 (32 m)

as a single predictor (e.g. for ECe at 30 or 120 cm),

this implies a difference in the information about this

soil property contained in different scale components

of the ECa data.

5. Discussion and conclusions

These results have practical implications. First,

they show that the information about soil properties

contained in a signal from a sensor is not necessarily

equally distributed among the spatial scales. Decom-

posing the signal into components of different spatial

scale may improve the predictive value of the sensor

data, since the different spatial scales may then be

weighted differently. Second, the results call into

question any approach to the analysis of such data

which assumes that they are generated by a spatially

stationary process. So, for example, to use raw ECa

data for co-kriging soil properties might be of

Fig. 6. Overall wavelet variances from the whole field for each scale

parameter.

Fig. 7. Components of the wavelet variance (square-root transformed) for each scale parameter.
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questionable value. A better procedure would be first

to filter out those components at finer scale which

appear to be noise (from the perspective of predicting

soil properties) then to use the resulting smooth

representation of the data either to predict the soil

properties by regression, or as an external drift

Fig. 11. Detail components for two passes. Detail components for

each pass are stacked with scale parameter 16 at the bottom and 2 at

the top. The origins of each graph are shifted, the vertical bar shows

the scale of the components in dS m21.

Fig. 10. Data (symbols) and the smooth representation (line) at scale

parameter 16 (64 m) for two passes.

Fig. 9. Contributions to wavelet variance at each scale parameter at

locations on two passes.

Fig. 8. Wavelet variances for two passes. Solid circle and crosses—

sample wavelet variances for pass 80 and 95% confidence limits.

Open circle and crosses—sample wavelet variances for pass 2 and

95% confidence limits. Line—wavelet variances for the whole data

set.
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variable for kriging with external drift (Goovaerts,

1997).

In Section 1 it was noted that one approach to the

analysis of data which cannot be assumed to arise

from a stationary process is to conduct conventional

geostatistical analysis within a local window (Walter

et al., 2001). Both wavelet analysis and this approach

will require large data sets, and both provide an

approach for filtering spatial data into components of

different scale which might then be used for further

inference or prediction. Odeh and McBratney (2000)

illustrate how the local geostatistical analysis might

be used in this way.

The particular advantage of the local geostatistical

analysis is its flexibility. A local variogram can be

computed from data which are regularly distributed in

a local window or irregularly distributed. By contrast

the standard wavelet analysis used in this paper

requires regularly spaced data. Wavelet methods can

be applied to data from spatially irregular sample

points (Daubechies et al., 1999) but these wavelets

cannot be translates or dilates of a basic function so do

not generate a MRA comparable to that obtained for

our data in this paper.

The particular advantage of wavelet analysis over

local geostatistical analysis is a fundamental one,

and has been recognised in signal analysis where

windowing is used to generate a localized analysis,

e.g. by the windowed Fourier transform (Kumar and

Foufoula-Georgiou, 1994). In windowed Fourier

analysis or localized geostatistical analysis a con-

ventional analysis is conducted on data within a

specified local window. We estimate, for example,

the variogram of the data for a range of lag intervals

from those data within the fixed window. It is clear

that the choice of window will have consequences

for the results. At any lag close to or larger than the

radius of the window the estimated variogram will

be subject to edge effects. At shorter lags the

variogram may be well estimated, but it will be

poorly localized. The estimate will be largely

derived from pairs of observations which are some

distance from the centre of the window. In summary

at most lags the window size will be poorly adapted

to a localized geostatistical analysis unless we have

some prior information to suggest that the under-

lying process is stationary within a particular

neighbourhood over all spatial scales. In wavelet

analysis, by contrast, the wavelet coefficient is

estimated from within a scale-specific window

since the underlying wavelet function is obtained

by a dilation of the basic wavelet. The estimation

window is therefore adapted to the scale of interest.

This adaptive property of wavelet analysis has been

widely recognised as an advantage over windowing

methods (Kumar and Foufoula-Georgiou, 1994).

To conclude, wavelet analysis shows that the

variation of ECa data may be very complex and not

directly compatible with simple assumptions of

statistical stationarity. MRA allows us to explore

this complexity within the framework of a coherent

mathematical analysis of the data which imposes no

assumptions beyond that of finite variance. This may

give insight into the data. It may also help in the

practical problem of extracting most information from

the data for the purpose of predicting soil properties

from limited calibration data.

Table 1

Detecting changes in variance for two passes from the ECa data. The

p values were obtained by Monte Carlo analysis

Scale

parameter

Segment

(positions)

Wavelet

variance

Variance

ratio

p

Pass 2

2 (8 m) 3–35 0.04

36–88 0.145 4.06 p , 0.001

4 (16 m) 5–27 0.04

28–88 0.23 5.67 p , 0.001

8 (32 m) 1–23 0.112

24–88 0.641 5.71 p , 0.01

16 (64 m) 1–34 2.15

35–88 0.7 3.06 p . 0.05

Pass 80

2 (8 m) 3–23 0.41

24–82 1.83 4.44 p , 0.01

4 (16 m) 5–21 0.33

22–82 1.3 3.84 p , 0.05

8 (32 m) 1–58 0.59

59–82 4.46 7.5 p , 0.001

16 (64 m) 1–62 0.45

63–82 1.74 3.89 p . 0.05
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Table 2

Results for maximum likelihood regression of soil properties r (bulk density) (g cm23), u (volumetric water content) (cm3 cm23) and ECe

(electrical conductivity) (dS m21). Predictors are smooth representations at scale parameter 16 or 8 (P16, P8) and detail component at scale

parameter 16 (Q16)

Soil property, depth Predictor(s) Error variance Wald statistic p* aa

r, 30 cm ECa 8.59 £ 1023 5.20 0.023 2189.50

P16 7.82 £ 1023 10.09 0.001 2193.66

P8 8.45 £ 1023 5.87 0.015 2190.05

P16, Q16 7.47 £ 1023 12.63 0.002 2193.64

u, 30 cm ECa 3.37 £ 1023 2.41 0.12 2231.47

P16 3.71 £ 1023 0.05 0.83 2229.28

P8 3.29 £ 1023 2.11 0.35 2231.00

P16, Q16 3.26 £ 1023 11.66 0.003 2236.82

ECe, 30 cm ECa 77.6 0.001 0.97 149.49

P16 78.42 2.02 0.16 147.53

P8 77.35 0.12 0.73 149.4

P16, Q16 74.32 7.82 0.02 144.43

r, 60 cm ECa 8.54 £ 1023 4.70 0.030 2190.01

P16 8.69 £ 1023 4.89 0.027 2190.05

P8 8.84 £ 1023 3.53 0.06 2188.9

P16, Q16 8.65 £ 1023 5.08 0.079 2188.21

u, 60 cm ECa 1.98 £ 1023 2.95 0.086 2256.86

P16 2.08 £ 1023 1.95 0.162 2256.01

P8 1.94 £ 1023 3.42 0.06 2257.2

P16, Q16 1.87 £ 1023 3.97 0.137 2255.62

ECe, 60 cm ECa 19.69 13.80 ,0.001 117.80

P16 19.01 13.43 ,0.001 119.32

P8 17.80 17.34 ,0.001 115.65

P16, Q16 17.84 17.84 ,0.001 117.04

r, 90 cm ECa 1.50 £ 1022 0.005 0.94 2160.90

P16 1.50 £ 1022 0.511 0.47 2161.40

P8 1.51 £ 1022 0.08 0.77 2161.0

P16, Q16 1.43 £ 1022 1.58 0.45 2160.44

u, 90 cm ECa 1.92 £ 1023 9.51 0.002 2238.71

P16 2.56 £ 1023 3.20 0.073 2235.33

P8 2.25 £ 1023 6.25 0.012 2237.4

P16,Q16 2.16 £ 1023 7.25 0.027 2236.01

ECe, 90 cm ECa 25.4 34.04 ,0.001 116.48

P16 19.3 43.68 ,0.001 113.34

P8 19.1 53.56 ,0.001 108.82

P16,Q16 19.1 54.26 ,0.001 110.66

r, 120 cm ECa 1.7 £ 1022 13.1 ,0.001 2126.6

P16 1.8 £ 1022 13.2 ,0.001 2126.7

P8 1.7 £ 1022 15.8 ,0.001 2128.5

P16, Q16 1.7 £ 1022 15.9 ,0.001 2126.6

u, 120 cm ECa 2.3 £ 1023 1.19 0.28 2192.6

P16 2.4 £ 1023 0.04 0.84 2191.5

P8 2.3 £ 1023 0.51 0.48 2191.9

P16, Q16 2.1 £ 1023 3.13 0.21 2192.5
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