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I. INTRODUCTION

Rather than relating a specific case study with specific goals, this study aims at
presenting a range of potential applications of modem geostatistics to soil survey
problems using a real data set. Typical of the development of geostatistics, a
discipline led by engineers, many new algorithms, although well published in
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their field of inception (mining and petroleum), have not yet found their way into
mainline statistical books; hence, they may not be readily accessible to profes-
sionals outside the extractive industry (Deutsch and Joumel, 1992; Dimit-
rakopoulos,  1993; Isaaks and Srivastava, 1989; Soares, 1993). It is hoped that
this presentation may raise enough interest among soil scientists so that they find
it worth their time to learn more about modem geostatistical concepts of data
analysis, estimation, uncertainty assessment, and stochastic imaging. All results
presented in this study were obtained using standard mapping routines and the
public-domain GSLIB software (Deutsch and Joumel, 1992). FORTRAN source
code of the latter is public domain; hence, it is available to whomever wishes to
understand the details of any particular algorithm and/or to modify it to fit any
particular problem at hand.

A common denominator of many soil sciences data sets is the sparsity of
“hard” or direct measurements of the primary variable of interest, usually bal-
anced by the prevalence of “soft” or indirect information related to the primary
variable. Examples of hard data are core measurements and more generally ex-
pensive field-based data as opposed to soft data obtained, e.g., from remote
sensors. Geographical information systems (GIS) and geostatistics pursue a simi-
lar objective-that of providing tools for the integration of different objectives,
and that of providing tools for the integration of different information sources
with varying relevance/reliability to build maps that summarize and expand the
original hard data set. Geostatistics propose to add to the GIS toolbox various
spatial data analysis tools to explore and model patterns of space/time depen-
dence between the data available. The resulting numerical models, e.g., vario-
grams or conditional distributions, can then be put to use for various mapping
purposes and an assessment of the reliability of such maps.

Just as there is no unique or optimal sequence in using GIS tools, such as
concatenation, intersection, or interpolation, there is no unique geostatistical
approach to spatially distributed data. Many alternative covariance/variogram
models can be fitted to the same data set depending on ancillary information
available to the operator (including his or her own prior experience); there are
many different kriging algorithms (generalized least squares regression) that can
be used toward the same mapping goal depending on which particular aspect of
the data one wishes to capitalize on. What may be lost to statistical objectivity
(an extremely debatable concept) is gained in flexibility and ability to handle
soft, yet essential information of various types. It is better to have a somewhat
subjective but accurate assessment that accounts for all relevant information than
a supposedly objective assessment that misses critical aspects of the problem.
This chapter will illustrate the toolbox aspect of geostatistics, presenting several
alternative ways to reach the same goal and proposing cross-validation exercises
to help the operator in his or her decision.
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A. BROADVIEW SALINITY DATA SET

As mentioned previously, the data set used in the following study is more a
support for demonstration of geostatistical algorithms than the data base of an
actual case study. For such demonstrative purposes, the name of the location
involved and even the measurement units of the data could have been omitted,
and coordinate values could have been changed by any one-to-one monotonic
transform leaving unchanged the relative patterns of spatial variability of the
various attributes.

The actual and complete Broadview salinity data base and its statistical analy-
sis are presented in various papers and reports of the U.S. Salinity Laboratory
(Lesch  et al., 1995a,b).  The reader is referred to these papers for any question
related to sampling and salinity assessment in the Broadview water district. The
results of the present study are based on a limited data set ignoring, in particular,
such critical variable as soil water saturation: they should only be used to assess
the worth of adding geostatistical tools to GIS and other toolboxes available to
the soil scientist.

The Broadview data set covers approximately 6 0 0 0  acres and comprises the
following:

l a soil map digitized into 7 soil types (see Fig. la).
l 315 soil core measurements of electrical conductivity (EC,), taken at four

depths (O-l, 1-2, 2-3, and 3-4 ft) (see Fig. lb). Unit is dS/m.
l 2385 measurements of soil vertical (EM,) and horizontal (EM,) electromag-

netic response (see Fig. lc). Unit is dS/m. Each measurement is deemed
representative of the vadose zone (upper 4 ft of soil). The extent of that
electromagnetic information delineates the study area, as shown in Figs. la-
1c.

For the purpose of this study, core EC, values are considered hard data directly
related to soil salinity and represent the primary variable to be evaluated through-
out the vadose zone. The electromagnetic induction readings represent a second-
ary variable less directly related to soil salinity; they are considered soft data used
to complement the hard EC, data. With little loss of location accuracy, electro-
magnetic data have been relocated to the nodes of a 2D regular grid 100 X 100
m. The few grid nodes with no electromagnetic sample within a radius of 50 m
were left uninformed. Another option could have been to interpolate the few
missing nodal values. The grid includes 2385 EM, measurements. To allow
standardization of the grayscales, the EM, data plotted in Fig. lc have been
rescaled by a factor equal to the ratio of the standard deviations of original EC,
and EM, data.

Although measured in the same unit (dS/m),  EC, and EM, data have different
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II. EXPLORATORY DATA ANALYSIS

The aim of an exploratory data analysis (EDA)  is to acquire an overall famil-
iarity with the data, their interrelations, statistical grouping, spatial distribution,
clustering, etc. At this stage, the operator should not be constrained by any
specific goal but rather he or she should be attentive to any clue the data may give
that may prove useful in later interpretations. Because geostatistics deals with
spatial data, extensive use should be made of isopleth maps and GIS-related
routines depicting the relations between data values and their space/time coordi-
nates. Beware that random sampling (random drawing of sample coordinates)
does not make the data values independent inasmuch as it is the physical generat-
ing process that makes the data dependent and not the human decision about
where samples are taken.

A. ELECTRICAL CONDUCTIVITY DATA

Figure 2 shows the succession of four grayscale EC, maps corresponding to
the four measurement depths. The vertically averaged map is that shown in Fig.
lb. There appears to be a gradual increase in soil salinity with depth, corrobo-
rated by the histograms shown on the right in Fig. 2.

A diagonal transect Nl20”E crosscutting the N30“E  elongation of the seven
soil categories shown in Fig. la was defined, then EC, data values were plotted
against their coordinate value along that transect (see Fig. 3). At each depth
level, the n = 315 EC, data were ranked from r(i)  = 1 to rC@ = 315 and their
standardized ranks v(i) = fii)ln, or uniform scores distributed in [0,l], are gray-
scale plotted in Fig. 3. This uniform score transform allows identifying each
level-specific EC, data set to the same uniform [O,l] distribution. This transform
thus filters out the vertical trend previously observed and allows comparison of
the strictly horizontal structures. The four Nl20”E grayscale transects of uniform
scores shown on the left in Fig. 3 show similarity of the horizontal variability of
EC, data over the four depth levels. This is confirmed by the EC, uniform score
(uscore)  semivariograms calculated along the N120”E direction and given on the
right in Fig. 3. Therefore, these uscores-standardized variograms can be pooled
together into a single model valid for all four depth levels.

The rank (or uscores)  correlations between two vertically consecutive EC, data
(thus with the same horizontal coordinates) are 0.64 for l-2 ft, 0.80 for 2-3 ft,
and 0.89 for 3-4 ft. Therefore, except for the first transition from 1 to 2 ft, the
EC, data are quite redundant from one level to the next one: there is little gain to
be expected from a 3D interpolation versus a much simpler 2D exercise using
only data from the level being estimated.
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For the remainder of that study and for reason of conciseness, only the ver-
tically averaged EC, data (see Fig. 1 b) were considered together with the corre-
sponding 2D-distributed  electromagnetic data (see Fig. lc).

Note that the uniform score transform x -+ F,(x), where F,(a) is the cumula-
tive distribution function (cdf) of random variable X, is the first step of a normal
score transform (Deutsch and Joumel, 1992, p. 138). Unless properties specific
to the Gaussian distribution are to be called for, there is no need for going beyond
the standardized rank transform F,(a).  This rank transform, by definition, pre-
serves the rank of the data as does the commonly used, albeit somewhat arbitrary,
log transform. From the histograms of Fig. 2, the EC, data appear neither nor-
mal nor lognormal distributed; this was confirmed by probability graph plots
(Deutsch and Joumel, 1992, p. 201) not shown here.

B. ELECTROMAGNETIC DATA

Figure 4a shows an extreme redundancy between the two secondary data,
vertical (EM,) and horizontal (EM,) electromagnetic measurements. This redun-
dancy was confirmed by maps and variograms analysis (not shown here). Be-
cause EM, has slightly better correlation with colocated  vertically averaged EC,
(see Figs. 4b and 4c), only EM, was retained as a source of secondary data for
the rest of the study. The grayscale map of this EM, data was shown in Fig. lc.

Observe on Fig. 4b the nonlinear relation EC,-EM, To linearize that relation
and capitalize on linear regression tools (such as kriging), a transform of the
variables is necessary. If the two variables were to be made Gaussian distributed,
a normal score transform (Isaaks and Srivastava, 1989, p. 138) would be neces-
sary. Because the histograms of the original EC, and EM, values are not lognor-
mal, the log transform does not identify the normal score transform. In any case,
there is currently no need for any Gaussian assumption; hence, the rank trans-
form (uniform scores) is enough.

Figure 4d shows the scattergram of the uniform score transforms of EC, and
EM, data. Note how the rank transform has succeeded in linearizing the original
regression between EC, and EM, data (see Fig. 4b). The linear rank regression
remains though heteroscedastic, in the sense that higher ranks of EC, are better
predicted by corresponding high EM, ranks than are lower ranks. These rank
regressions will be fine-tuned later using soil type information.

C. SOIL TYPE DIFFERENTIATION

The 3 15 vertically averaged EC, data values were plotted against their coordi-
nates along the N120”E transect and grayscale coded for soil type (see Fig. 5a).
Figure 5b provides a similar profile for the 2385 EM, data.
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Figure 4 Scattergrams. (a) Soft EM, versus soft EM, data; (b) hard EC, versus soft EM, data;
(c) hard EC, versus soft EM, data; and (d) uniform scores of ECe versus EMv data.

Except for soil types 1 and 6 (the latter being nonrepresentative because of
lack of data), the ranges of EC, values appear homogeneous across soil types.
This is confirmed by the EC, histograms per soil type (not shown).

The histograms of EMI, data per soil type (Fig. 6) would lead one to differenti-
ate the following two groups based on mean EM, value:

l A first group including soil types 1, 4, 5, and 7 with a mean EM, value
around 1.6

l A second group including soil types 2, 3, and 6 with a lower mean EM,
value around 1.2

Note that these two groups are intermingled in space.
EM, data considered to be exhaustively sampled, are used to inform un-

sampled primary EC, values. To investigate how soil type influences the relation,
EC,-EM, the seven soil-specific rank scattergrams of uscores of colocated  EC,
and EM, data are shown in Fig. 7. It appears that the linear rank regression
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Figure 5 Profiles of EC, and EM, data along a N120”E transect. The grayscale code indicates
soil type.

observed when data are pooled across all soil types (Fig. 4d) is in fact constituted
by several different regressions better fitted by power models of the type,

vEc< = ]VEM  J”n (1)
where v,, and vemv, are the uniform scores valued in [0,l], and o,, is a power
exponent specific t o  each soil type st.

The regression fits shown in Fig. 7 correspond to

US, = 1 (linear rank regression) for soil types overall and type 6.
o,, > 1 for soil types 1, 4, 5, and 7.
w,, < 1 soil types 2 and 3.

These power regression models are used later to incorporate the secondary
EM, information while accounting for soil type.

Were the electromagnetic data EM, a variable of primary interest, further
considerations would be given to splitting its spatial distribution into soil type
groups. However, because EM, represents only secondary information destined
to supplement the hard EC, data, it was decided to model its spatial distribution
across all soil types. The only soil type differentiation kept is that of the previous
rank regression power models.

D. SPATIAL AND VARIOGRAM ANALYSIS

In preparation for spatial interpolation of the EC, values, joint variogram
analysis of the EC,-EM, data was performed across all soil types.

Figure 8 shows the sample (cross)semivariograms  for the original EC, and
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The solid lines in Fig. 8 show the fit by a model of coregionalization (Joumel
and Huijbregts, 1978, p. 172; Isaaks and Srivastava, 1989, p. 390). That model
features

l An isotropic nugget effect accounting for about one-third of the total spatial
variance of the EC, data

l A first isotropic structure of range 700 m accounting for another third of the
EC, variance

l A second anisotropic structure of range 3000 m in the N120”E direction
across soil types and 16,000 m in the N3o”E  direction along soil continuity

The model for EM, is similar although with lesser nugget effect due to the
larger definition volume (averaging effect) of the electromagnetic data.

The original EC, and EM, data were then normal score transformed (Deutsch
and Joumel, 1992, p. 138) so that both histograms identify a standard Gaussian
distribution, and the corresponding sample (cross)semivariograms  were calcu-
lated and modeled (see Fig. 9). The coregionalization model features the same
characteristics as those fitted to the original data. Note that sampling fluctuations
have not been significantly reduced by the normal score transform; this would
have also been true had a log-transform been used.

The uniform scores of the EM, and EC, data used are shown in Figs. 10a and
l0b. Compare these scores to the data in Fig;. lc and lb, respectively: except for
the different grayscales, they are essentially the  same. Again, we prefer compar-
ing data through the uniform standardization in [0,l] provided by the stan-
dardized ranks (uniform scores). Figure 1Oc shows the location of 26 EC, ran-
dom samples taken from the 3 15 original EC, data; this subsample is used later in
the cross-validation exercises.

III. MAPPING THE EC, DISTRIBUTION

To demonstrate the various geostatistical mapping algorithms, four different
approaches and two sampling cases are considered. EC, estimation is performed
at each node of the 100 X 100-m grid covering the study area as defined by the
template of electromagnetic data (see Fig. lc).

The three different approaches are

1. Simple kriging (SK) (Deutsch and Joumel, 1992, p. 62): EC, is estimated
by a linear combination of the neighboring EC, data plus the overall EC, sample
mean, m = 5.24. No secondary information is used; thus, this approach repre-
sents a base case.

2. Simple cokriging (coSK) (Deutsch and Joumel, 1992, p. 71): EC, is esti-







GEOSTATISTICAL ANALYSIS OF A SOIL SALINITY DATA SET 257

value is Gaussian with mean and variance identified to the simple kriging mean
and variance. The Gaussian conditional cumulative distribution function ( c d f )
can be denoted by

Prob {Y(u) : y ( neighboring y(u,) data} = G Y - YS*K(U)
o,,(u) > (2)

where Y(u) is the normal score transform of EC, at grid location u, y&(u)  and
c&(u) are the simple kriging estimate and variance using neighboring normal
score EC, data (v(u,)); and the function G(e)  is the standard normal cdf.

Let q(u;p)  be the corresponding conditional quantile function or inverse of the
previous conditional cdf:

q(u; p) such that G ‘(” “,’ ju;IK(‘) = p E [O, 1]. (3)
SK

Srivastava’s p-field approach (Srivastava, 1992) consists of simulating a
p-field, that is, a set of spatially correlated uniformly distributed p,(u) values,
then transforming them through the previous quantile function into simulated
normal score values JJ,~(u)  for EC,:

Y,(U>  =  q(w,w) (4)

Because there may be several realizations (outcomes) for p,(u)  at any location
u, there may be several “simulated” realizations y,(u), hence the subscript nota-
tion s for simulation.

The variant proposed here consists of determining, at each location u, a single
value p(u) resulting in a single estimate y*(u) for the EC, normal score value:

y*w =  qWW) (5)

with P(U)  =  bE,,,,,(u)Iw3,, as given by the power model in Eq. [I], and st is the
soil type prevailing at location u.

In words, the p-field value to be plugged into the conditional quantile function
q(u;p) is the p value obtained by the regression model [Eq. (1) and Fig. (7)]
specific to the soil type prevailing at u and to the uniform score vEMV (II) of the
electromagnetic datum at u.

This p-field approach requires the Gaussian random function model to deter-
mine the conditional cdf Eq. (2) from the only two parameters, mean and vari-
ance, provided by simple kriging.

A final step back-transforms the normal score estimate y*(u) into EC, esti-
mates expressed in the original EC, units.

Note :  The three different approaches proposed here to interpolate EC, values
do not cover the range of different geostatistical algorithms that could be used for
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this purpose. The first two approaches proposed are the most straightforward and
are likely to be familiar to many readers. The latter approach is a bit more in-
volved; it is intended to give the reader a glimpse of the forefront of applied
geostatistics in which new variants are constantly proposed to better match the
problem at hand and the specific data available.

For each of the previous three approaches, two sampling cases are considered:

1. All 315 hard EC, data are used together with the (exhaustive) EM”  and soil
type information present at all nodes being estimated

2. A subsample of only 26 hard EC, data is used (see Fig. 10c) in addition to
the previous EM, and soil type information

This latter sampling case allows a model-validation exercise using the remain-
der 289 hard EC, data. The problem with using such a small sample size (26) is
the difficulty of doing any reliable statistical inference. We have decided to set
apart the two problems of statistical inference and model validation of the estima-
tion approaches proposed. More precisely, for the latter sampling case, although
only 26 EC, data were retained for the various krigings, the statistics needed
(histogram, variograms, and regression) are those established using all 3 15 hard
data, i.e., the same statistics used for the first sampling case. This decision
corresponds to the extractive industry practice of borrowing statistics from a
similar and better sampled field but using only field-specific data for local estima-
tion.

The objective of this specific model validation exercise is twofold:

1. Observe the performance of each model or algorithm under data sparsity
2. Evaluate the worth of the secondary information (EM,) under the same

conditions of data sparsity

Three approaches times two sampling cases result in six sets of results. Each
set of results given hereafter includes

l An estimated EC, map in the original EC’, unit.
l The corresponding estimated EC, uniform score map, unit free and valued in
[0, 1]. These uniform scores are the standardized ranks of the previous EC,
estimates. Again, this standardization allows a visual comparison that is unit
free and free of color or grayscale effect.

l The semivariograms of the EC, estimated values plotted against the model
fitted to the (3 15) sample semivariograms. That model is the one depicted by
the continuous curves in the two top graphs in Fig. 8. This comparison
allows for the evaluation of the smoothing effect (Deutsch and Joumel,
1992, pp. 17, 61) of the estimation algorithm considered.

l For the three sets of results corresponding to the second sampling case, the
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Table 1

Summary of Result.@

Full sample (315) Crow. sample (289)

In uz m crz

Reference 5.24 11.00 5.30 11.02
Simple kriging 5.15 4.54 5.34 (p = 0.21) 0.49
Simple cokriging 5.21 8.29 5.43 (p = 0.76) 8.45
P-field 5.31 13.32 5.57 (p = 0.75) 13.03

u The first two columns give the mean and variance of EC, estimates to be compared to the
reference EC, sample used (size 315). The third and fourth columns give the mean and variance of
289 reestimated EC, values and their linear correlation with the 289 actual values. For the latter, the
EC, subsample size is 26.

cross-validation scattergram of the 289 “true” EC, values versus the corre-
sponding estimated values

Table I provides a summary of the major results.

A. COMMENTS ON RESULTS

1. Simple Kriging

The results of the base case, simple kriging using only the full sample of hard
EC, data (3 15), are shown in Fig. 11. The grayscale map of the EC, estimates
(top map) reveals a severe smoothing effect: the variance of the estimates is only
4.54 versus the 315 hard data variance of 11.00. This smoothing effect is a well-
known shortcoming of all linear weighted average-type estimators including
kriging (Joumel and Huijbregts, 1978, p. 450): typically, the distribution of
estimates understates the actual proportions of extreme values, whether high or
low values. If detection of spatial patterns of extreme values is the goal of the
study, then kriging is not an appropriate mapping algorithm (Joumel and Alabert,
1988). Instead, one should consider one of the stochastic imaging algorithms,
also known as conditional simulations (Deutsch and Joumel, 1992, p. 117),
which aim to reproduce the patterns of spatial variability seen from the sample
and modeled through the variogram. Conditional simulations are the topic of the
latter part of this chapter (see Section VII).

The uniform score transform (middle map in Fig. 11) filters the effect of
smoothing on the global variance and reveals N3O”E  structures clearly associated
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sample data. Although globally unbiased, the distribution of the 289 reestimated
values fails badly in reflecting the actual proportions of nonmedian EC, data
values outside the interval [4.0, 8.0] (see scattergram at the lower right in Fig.
12). This is known, in geostatistical jargon, as conditional bias (Joumel and
Huijbregts, 1978, p. 458).

2. Simple Cokriging

When using the densely sampled secondary (EM,) information, the smoothing
of the EC, estimates is partially corrected to 8.29, a value still less than the
original sample variance of 11 .OO. The variograms of the cokriging estimates
approach those of the model much better. The spatial structures of the cokriging
estimates closely reproduce those of the EM, data (compare the uscores  maps of
Figs. 13 and 10a);  this is as expected given the large EM, sample size and the
relatively strong correlation (0.73) between colocated  EC, and EM, data (see
Fig. 4b).

The contribution of the dense EM, secondary information is more dramatic
when only 26 hard EC, data are available (compare Figs. 12 and 14). The
scattergram of true versus reestimated EC, values (lower right graph in Fig. 14)
indicates a substantial correction of the smoothing effect and related conditional
bias of the simple kriging estimates. In this cross-validation exercise, cokriging
(using the secondary information) has raised the true-versus-estimate correlation
from a low 0.21 to a reasonable 0.76.

3. P-Field Estimates

In addition to the secondary EM, data, the p-field approach implemented here
accounts for the soil type information.

From the results of Fig. 15, it appears that the smoothing effect seen on the
simple kriging and cokriging estimates in Figs. 11 and 13 has been overcor-
rected. The variance of the p-field estimates, 13.30, is now larger than that of the
original EC, sample values, 11 .OO;  the overcorrection takes place in the N120“E
direction across soil continuity (see the lower right variograms in Fig. 15). The
soil type information appears to have imposed too much of the soil discontinuity
along that direction.

The cross-validation results of Fig. 16 confirm the correction of the smoothing
effect: the variogram model is well reproduced in both N3O"E and N120”E
directions. The correlation true-versus-reestimated values is not significantly
improved from the results of cokriging (Fig. 14). Note that the two dots departing
most from the 45” line of the scattergram in Fig. 16 are the same as those in Figs.
12 and 14: no estimation algorithm can improve the estimation of outlier values,
i.e., values departing significantly from the statistics of the data used. At best,
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B. INFLUENCE OF EMv DATA

In the two latter estimation algorithms, the sheer density of soft information
(one EM, datum at each location being estimated) coupled with the good EC,-
EM, correlation (0.73) tend to overwhelm the few hard data available. One
should then wonder how much of the structures seen on the EC, estimated maps
in Figs. 13 and 15 pertain to EC, and how much is mere EM, import.

Figure 17 recalls the sample EC,-EM, scattergram as given in Fig. 4b, then
gives the four scattergrams of EC, estimates versus colocated EM, values. The
correlation EC,-EM, is lowest (0.59) for simple kriging estimates, as expected.
Accounting for EM, data increases that correlation to a level (0.86, 0.90) higher
than that of the original sample (0.73). This higher correlation indicates that
indeed there may be too much import of the EM, structures into the EC, mapping
exercise. Note that the cokriging estimates show a linear relationship when
plotted against the secondary EM, data (Fig. 17c). The p-field estimates (Fig.
17d) reproduce better the nonlinear relationship seen in the sample EC,-EM,
scattergram (Fig. 17a).

At the limit, one may think of forfeiting altogether the EC, data and use the
EM, map after proper rescaling to identify the sample EC, histogram (Joumel
and Xu, 1994). The geostatistical toolbox offers one such algorithm that allows
transforming any data set, e.g., the grid of EM, values, with any given histo-
gram H, into another set of values identifying a target histogram H,, with H,
possibly quite different from H, . In addition to approximating the target histo-
gram, this algorithm allows reproducing (freezing) a few original data values at
their specific locations. This algorithm is a generalization of the well-known
normal score transform whose target histogram is the standard Gaussian distribu-
tion (Deutsch and Joumel, 1992, p. 138).

Figure 18a shows the histogram of the 315 EC, data (the target histogram).
Figure 18b  shows the histogram of the 2385 EM, data transformed to match the
target histogram: note the excellent histogram reproduction. These transformed
EM, data, expressed in EC, units, are taken as estimates of EC, with their map
shown in Fig. 18c. Per definition of the transformation algorithm, the uscores of
these EC, estimates identify exactly the EM, uscores (Fig. 10a).  Figure 18e
shows the scattergram of EC, estimates (actually transformed EM, values) ver-
sus the original EM, values: this scattergram has a rank correlation 1 .OO  reflect-
ing the rank-preserving algorithm underlying the transform used. Recalling the
scattergrams of Fig. 17, we have, indeed, gone all the way into importing all
EM, structures into the EC, mapping exercise. This time, although there is a
good linear correlation coefficient of 0.89 between the EC, estimates (EM,
transformed) and the EM, data, the nonlinear relationship EC,-EM, is over-
reproduced (cf. Figs. 18e  and 17a). The EC, variogram model shape is not
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This model includes a large nugget effect, a first isotropic structure with range of
700 m, and a second anisotropic structure with long range of 16,000 m in the
N30”E  direction of soil continuity and short range of 3000 m in the N120”E
direction across continuity. The factorial kriging algorithm (Deutsch and Joumel,
1992, p. 68) allows filtering out from the simple kriging estimated map at the top
of Fig. 11  (reproduced in Fig. 19a) the influence of both nugget effect and short-
scale (700 m) structure, leaving the large-scale anisotropic structures (see Fig.
19b).  Alternatively, one can filter out the influence of the large-scale variogram
component leaving the short-scale structure (see Fig. 19c). The “sum” of Figs.
19b  and 19c plus the nugget effect values at sample locations (not shown) add up
to the original simple kriging map of Fig. 19a.

Because the nugget effect and short-scale structure account for such a large
proportion of the EC, spatial variance, the impact of the previous filtering is
better seen on the corresponding uscore maps (see Fig. 20). Recall that the
uniform score transform standardizes all distributions (hence variances) to a
uniform distribution in [0,l].

Figures 19b and 20b depict the clear anisotropy of the large-scale structure
associated to the soil type distribution (cf. Fig. la). Conversely, Figs. 19c and
2Oc  zoom on shorter scale patterns of soil salinity possibly related to human
activities: note the appearance of 1 X l-km quadrats  delineating different soil
usage (Lesch  et al., 1995b). Recall that these maps are based on simple krig-
ing-that is, ignoring the EM, information.

Instead of being integrated in the simple kriging system (Deutsch and Joumel,
1992, p. 68),  the factorial kriging algorithm can be used on any already available
map such as the cokriging EC, map shown at the top of Fig. 13. Figures 2 1 and
22 give for simple cokriging the same series of maps as given in Figs. 19 and 20
for simple kriging, the difference being utilization of the secondary EM, infor-
mation. As noted in the previous section, accounting for the dense EM" informa-
tion adds considerable local resolution to the estimated EC, maps (cf. Figs. 21a
and 19a).

After filtering, the EC, cokriging maps (Figs. 21b and 22b) depict the same
large-scale structure (related to soil type) seen on the filtered simple kriging maps
(Figs. 19b and 20b). However, the short-scales structures seen on the cokriging
maps (Figs. 21c and 22c) differ markedly from those seen on the simple kriging
maps (Figs. 19c  and 20c). To further investigate that difference in short-scale
structures, the EM, data rescaled to the EC, variance 11 .O were directly filtered
(see Figs. 23 and 24, whose layouts are the same as those in Figs. 21 and 22). It
appears that the large-scale structure of the EM, data is indeed similar to that
observed on both the simple kriging and the cokriging EC, estimates (cf. Figs.
23b and 24b to Figs. 19b and 20b and to Figs. 21b and 22b).  However, the short-
scale structures of the EM, data (Figs. 23c and 24c) are clearly different from
those of the simple kriging EC, estimates (Figs. 19c and 20c). The short-scale
EM, structures reveal a NS-EW lattice possibly linked to the layout of the
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K X K standardized (cross)covariance functions pkk,  (h) between any two RV’s
Z,Ju) and Zk,(u  + h) separated by vector h. h, = ui - ui is the vector separating
the two samples i, j at locations ui, uj. Typically, the (K X K) weight matrix
[okk,]  is identified to the Mahalanobis distance: [ok,‘]  = 2-t.

Spatial continuity, anisotropy, and cross-correlation are accounted for through
the term r(h$ in the definition [Eq. (6)] of the similarity measure S,. Cluster
analysis using this measure will result in grouping of samples with similar
attribute values (term sij) but also spatially close together [term r(h$].

The spatial cluster analysis algorithm is demonstrated using only the two
densely sampled electromagnetic attributes, EM, and EM,. No soil data were
used in order to check that cluster analysis using only electromagnetic data does
result in groups consistent with soil type differentiation.

The algorithm progresses as follows:

An initial number of groups is chosen arbitrarily, not too large to allow
statistical characterization of each group. Here, seven groups were retained
according to the actual number of soil types.
All 2385 electromagnetic (EM, and EM,) samples are randomly assigned,
with equal probability f, to one of the seven groups.
For each sample i, with i = 1;.*,2385,

l Calculate its average similarity with group (g) defined as

%,(g) = &,c S,,Vg= l;**,G=7groups (7)
I%?)

where l(g)1 is the number of samples j currently classified in group (g).
. Assign sample i to the group with which it has the highest similarity, then

update the constitution of all groups.

4. Step 3 is repeated until no change is observed in the constitution of the G
groups.

5. The targeted number G, with G, d G, of groups is obtained by concatenat-
ing groups having similar characteristics; for example, in the case of Fig.
29, G, = 2 corresponding to the two super groups having mean EM,
values greater (lesser) than the overall mean EM, = 1.47.

Figures 26b and 26c show the GO = 2 super groups resulting from a standard
clustering algorithm using similarity measure sii and the proposed spatial cluster-
ing algorithm using measure S,. Figure 26a shows the reference binary soil type
map regrouping the seven original soil types into only two super groups depend-
ing on whether the mean EM, values exceed the overall mean 1.47. Utilization
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of spatial information results in a much cleaner image closer to the reference
image obtained from soil type data.

VI. STOCHASTIC IMAGING

In the previous sections, various estimated EC, maps have been presented but
their accuracy was not assessed. As opposed to mere interpolation algorithms,
the main contribution of a geostatistical approach is to provide an assessment of
the reliability of any given estimated value. What is the reliability of the EC,
estimated value at any specific location u? What is the reliability of any cluster
of, e.g., high EC, estimated values as seen on the estimated map of Fig. 13? Can
there be alternative estimated maps using the same information?

Besides the kriging estimated value, the solution of any kriging system yields
a kriging variance-that is, the minimized error variance (Isaaks and Srivastava,
1989, p. 286). Unfortunately, because this kriging variance is data values inde-
pendent, it is a poor measure of estimation accuracy; instead, it is only a ranking
index of data configuration-the data configuration corresponding to a lesser
kriging variance would yield on average (over all possible data values for that
configuration) a more accurate estimate.

Even if the kriging variance ai(u) was a measure of accuracy of the estimated
EC, value at location u, the two kriging variances a&(u)  and ai would not
provide assessment of joint accuracy at the two locations u and u’. For example,
these two kriging variances would not allow assessing the probability that the
two unsampled values Z(u), Z(u’) be jointly above a given threshold zc.

The concept of stochastic simulation (stochastic imaging) was developed to
answer this need for a joint spatial measure of uncertainty (Deutsch and Joumel,
1992, p. 17). As opposed to kriging or any other interpolation algorithm,
stochastic simulation yields not one but many alternative equiprobable* images
of the distribution in space of the attribute under study (in this case, EC,; see Fig.
29). The difference between these alternative realizations, or stochastic images,
provides a visual and numerical measure of uncertainty, whether involving a
single location u or many locations jointly.

Similar to kriging, there are many stochastic simulation algorithms (Deutsch
and Joumel, 1992, p. 117) depending on which particular feature (statistics) of
the data ought to be reproduced. The first goal of geostatistical simulations is to
correct for the smoothing effect observed in any (co)kriging  estimated map.

2These  stochastic images are equiprobable in the sense that, for a given simulation algorithm with

its specific computer code and choice of statistics, each image is uniquely indexed by a seed number

that starts the algorithm. The seed numbers are drawn from a probability distribution uniform in

[0,1]; hence. each image is equal likely to be drawn.
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Hence, the simulated values have a similar spatial continuity (variogram) to that
of the sample data set used. In the following section, we present an indicator
simulation algorithm modified to account for the soft information provided by
electromagnetic (EM,) data. The indicator simulation algorithm (Deutsch and
Joumel, 1992, p. 146) allows the simulated values to display different spatial
continuities (variograms) for different classes of values.

A. SIMULATION ALGORITHM

Any unsampled EC, value at location u is interpreted as a random variable
Z(u). This random variable (RV) can be seen as a set of possible outcome values
or realizations, z(‘)(u),  1 = 1, 2 ***.
denoted Prob {Z(u) I z](n)}, where

characterized by a probability distribution,
thee notation j(n) is read as “conditional to the

information set (n).”  In the approach adopted here, this probability distribution is
modeled by a weighted linear combination of neighboring indicator data i(u,;z),
which is set to 1 if the EC, datum value z(u,) at sample location u, does not
exceed threshold z and set to zero otherwise:

n
Prob {Z(u) I z](n)} = c h,(z) * i(u,; z)

LX=1
(8)

The weights h,(z) are given by an indicator kriging system specific to each
threshold value z (Deutsch and Joumel, 1992, p. 150). The n indicators retained
correspond to the hard EC, sample values found in the neighborhood of location
u. Nine threshold values z corresponding to the nine deciles of the EC, sample
histogram (sample size is 3 15) were retained to discretize the range of variability
of Z. In this case, the indicator simulation algorithm accounts for the spatial
continuity specific to each decile of the EC, data values.

The model [Eq. (8)]  accounts only for the hard data. Introduction of the soft
EM, information was done through the “external drift” concept (Deutsch and
Joumel, 1992, p. 67) whereby the set of n weights h,(z) is constrained such as to
ensure that the expected value of the estimator [Eq. (8)] identifies a prior proba-
bility deduced from the EM, information. More precisely, the constraint is

n

c X,(z) * PC& z) = m 2) (9)
a=1

where p(u;z)  = Prob {Z(u) 5 z]Y(u) = y(u)} is the prior probability of EC, value
Z(u) given the colocated EM, sample value y(u). The qualifier, “prior,” indicates
that this probability value is obtained prior to using the neighboring values.
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VII. ASSESSMENT OF SPATIAL UNCERTAINTY

The availability of the 50 equiprobable stochastic images of the distribution in
space of EC, values allows derivation of multiple measures of uncertainty be-
yond a mere visual inspection of these images.

l Local uncertainty: The uncertainty about EC, at any location u can be
assessed by any measure of spread of the 50 simulated EC, values at that
location, z(‘)(u),  1 = 1 ;**, 50. For example, one could consider the standard
deviation of these 50 values. The corresponding grayscale map is shown in
Fig. 30b. Note that as opposed to the kriging variance, a variance of simu-
lated values is an estimation variance conditional to the data values retained
to simulate these values. At EC, sample locations, that conditional estima-
tion variance is zero (white pixels in Fig. 30b). Elsewhere, that estimation
variance depends on the data values and not only on the data configuration;
this property is known in statistics as heteroscedasticity. Here, the estimated
high E-type values are also the most uncertain in that the corresponding
variance between simulated values is larger (see the scattergram in Fig.
3Oc).

l Probability maps: At each location u one can count the proportion of simu-
lated values z(‘)(u) lesser (or greater) than any given threshold value z, then
map these proportions. Figure 31 shows two such probability maps: (i) the
probability that EC, is no greater than the first decile zi = 2.18 of the sample
EC, histogram. Dark areas (high probability) on this map are areas where
EC, is surely low valued; and (ii) the probability that EC, exceeds the ninth
decile zg = 10.0 of the sample EC, histogram. Dark areas (high probability)
on this map point to areas where EC, is surely high valued. Note that
probability maps are unit free, valued in [0,l].

l Quantile maps: For some applications it is convenient to merge in a single
map an “estimate” of the attribute value and the assessment of the accuracy
of that estimate. Quantile maps provide such joint assessment.

Figure 32a provides a low (0.1) quantile map; more precisely, the map of the
EC, value that is exceeded by 90% of the simulated values at the same location
u. Therefore, a location appearing high (dark) in Fig. 32a has a high probability
(90%) to be actually higher. Dark areas on a low-quantile map are areas that are
surely high valued.

Conversely, Fig. 32b shows a high (0.9) quantile map; more precisely, the map
of the EC, value that is higher than 90% of the simulated values. Therefore, a
location appearing low (light gray) in Fig. 32b has a high probability (90%) to be
actually even lower. Light gray spots on a high quantile map point to areas that
are surely low valued.









GEOSTATISTICAL ANALYSIS OF A SOIL SALINITY DATA SET 291

VIII. RANKING OF STOCHASTIC IMAGES

The various stochastic images can be ranked according to a criterion relevant
to their usage. If the attribute value is a pollutant concentration, one may want to
rank the stochastic images according to their global mean concentration. If the
concentration z(u) is weighted by a “criticality” factor c(u), with c(u) high in
critical zones such as playgrounds and c(u) low in less critical zones such as
fenced industrial yards, one may consider the stochastic images of the new
variable c(u) x z(u) and rank them according to their global mean. Typically,
such operation can be achieved with the help of GIS tools.

Figure 33a shows the histogram of the 50 simulated global mean EC, values.
Figs. 33b and 33c show the corresponding two realizations with, respectively,
the lowest and highest global EC, mean value.

IX. CONCLUSIONS

The aim of this study is not so much assessment of soil salinity but rather to
present a typical geostatistical analysis of a data set representative of the diversity
and complexity of data sets handled through GIS. There is much more to geo-
graphical (spatial) data analysis than performing elementary operations of over-
lay, merge, and split and then merely mapping data with somewhat arbitrary,
eye-pleasing, spline algorithms. The data talk when their geographic interdepen-
dence is revealed; there is an essential third component to any two data values
taken at two different locations in space or time-their relation is seen as a
function of the separation vector linking these two locations. Pictorial and nu-
merical models of patterns of space/time dependence allow us to go far beyond
data locations into alternative (stochastic equiprobable) maps that depict the true
complexity of the data while always preserving an assessment of uncertainty.
Present GIS essentially fail to read between the lines of data.

When statistics is used, it is elementary statistics, which ignores data locations
and the relation of data with space and/or time. It is suggested that the most
robust geostatistical tools, as presented in this study, be made available to soil
scientists and users of geographical information systems. There cannot be effi-
cient data utilization without data interpretation and modeling. When data are
distributed in space, such interpretation and modeling necessarily call for geo-
statistics.
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