Contaminant Fate and Transport Site Logo
ARS Home About Us Helptop nav spacerContact Us En Espanoltop nav spacer
Printable VersionPrintable Version     E-mail this pageE-mail this page
Agricultural Research Service United States Department of Agriculture
Search
  Advanced Search
Programs and Projects
Detection, Survival, Transport, and Reduction of Human Pathogens from Animal Manure
Methyl Bromide
Methyl Iodide
Telone (1,3-D)
Choropicrin
Emission Reduction
Film Permeability
Pictures
 

Research Project: MINIMIZING AIR AND WATER CONTAMINATION FROM AGRICULTURAL PESTICIDES

Location: Contaminant Fate and Transport

Title: EFFECT OF TEMPERATURE, ORGANIC AMENDMENT RATE AND MOISTURE CONTENT ON THE DEGRATATION OF 1,3-DICHLOROPROPENE IN SOIL.

Authors
item Dungan, Robert
item Gan, J. - UC RIVERSIDE, CA
item Yates, Scott

Submitted to: Pesticide Management Science
Publication Type: Peer Reviewed Journal
Publication Acceptance Date: July 13, 2001
Publication Date: October 1, 2001
Citation: DUNGAN, R.S., GAN, J., YATES, S.R. EFFECT OF TEMPERATURE, ORGANIC AMENDMENT RATE AND MOISTURE CONTENT ON THE DEGRATATION OF 1,3-DICHLOROPROPENE IN SOIL. PESTICIDE MANAGEMENT SCIENCE. 2001.

Interpretive Summary: 1,3-Dichloropropene (1,3-D) is considered a viable alternative to MeBr, however, atmospheric emission of 1,3-D is often associated with the deterioration of air quality. To minimize environmental impacts of 1,3-D, emission control strategies are in need of investigation. One approach to reduce 1,3-D emissions is to accelerate its degradation by incorporating organic amendments into the soil surface. In this study, we investigate the effect of various organic amendments on degradation of 1,3-D in soil. The degradation half-life was reduced by adding organic material to soil. The effect of temperature and amendment rate upon degradation should be considered when describing the fate and transport of 1,3-D isomers in soil. Use of organic soil amendments appears to be a promising method to enhance fumigant degradation and reduce volatile emissions.

Technical Abstract: In this study, we investigated the ability of four organic amendments to enhance the rate of degradation of two 1,3-D isomers, (Z)- and (E)-1,3-D in a sandy loam soil. Degradation of (Z)- and (E)-1,3-D was well described by first-order kinetics and rates of degradation were similar between the two isomers. Of the organic amendments tested, composted steer manure (SM) was the most reactive. The half-life of the (Z)- and (E)-isomer in unamended soil at 20oC was 6.3 d; those of 5% SM-amended soil were 1.8 and 1.9 d, respectively. At 40oC, the half-life of both isomers in 5% SM-amended soil was 0.5 d. Activation energy values for amended soil at 2, 5 and 10% SM were 56.5, 53.4 and 64.5 kJ mol-1, respectively. At 20oC, the contribution of degradation from biological mechanisms was largest in soil amended with SM, but chemical mechanisms accounted for greater than 58% of the (Z)- and (E)-1,3-D degradation.

   

 
Project Team
Yates, Scott
Skaggs, Todd
 
Publications
   Publications
 
Related National Programs
  Air Quality (203)
  Water Resource Management (201)
 
 
Last Modified: 11/10/2008
ARS Home | USDA.gov | Site Map | Policies and Links 
FOIA | Accessibility Statement | Privacy Policy | Nondiscrimination Statement | Information Quality | USA.gov | White House