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Executive Summary 

Purpose 

The decrease of international tensions due to recent geopolitical events brings 
with it the potential for decreased restrictions on civilian satellite data. Civilian satellite 
imagery is presently restricted to 10 m resolution or coarser. However, missions are being 
designed now to fly at 1 m resolution. Technologically, these resolutions are already 
feasible. At the same time, three issues - the demands on tra=c data collection that are 
being imposed by economic and safety considerations and recent legislation (e.g., the 
Clean Air Act Amendments of 1990), the flexibility that is being encouraged in the 
general transportation field by the Intermodal Surface Transportation Efficiency Act 
OSTEA), and the vision that is being promoted in the Intelligent Vehicle/Higbway 
Systems (IVHS), now Intelligent Transportation Systems (ITS) efforts - raise the 
question of the potential for complementing existing WIG data collection programs with 
satellite data. 

Evaluating and monitoring trafic characteristics is becoming increasingly 
important as worsening congestion, declining economic situations, and increasing 
environmental sensitivities are forcing states and municipalities to make better use of 
existing roadway capacities. There is no doubt that a large shift has occurred from adding 
more roadways and facilities to one of maximizing the use of existing facilities with 
improved and more comprehensive management techniques. Likewise, the upgrading and 
maintenance of existing infrastructures are growing concerns, since much of the 
infrastructure is nearing, or even past, time for repair and replacement. In addition, the 
Clean Air Act Amendments requires states and municipalities to conduct before and after 
project measurements of traffic parameters, and to do so at finer spatial levels than are 
currently required. Other specific needs for a continual gathering of trafflic data include: 
(1) inputs to traffic and pavement deterioration models for highway management and 
maintenance programs, (2) better surveillance of the roadways to satisfy federal 
requirements to monitor compliance with speed limits, which is an ongoing task because 
of increasing concerns with clean air, safety and litigation, and (3) better estimates of 
volume-delay functions at specific sites because of increasing problems with 
capacity/congestion management. 

The present system of using automatic counters at selected points on highways 
works well from a temporal point of view (i.e., during a specific period of time at one 
location). However, the present system does not cover the spatial aspects of the entire 
road system (i.e., for every location during specific periods of time); the counters are 
empIoyed only at points and only on selected highways. This lack of spatial coverage is 
due, in part, to the cost of the automatic counter systems (fixed procurement and 
maintenance costs) and of the personnel required to deploy them, and is evidenced by the 
fact that of Ohio's 112,000 miles of roadway by example, there are only 200 detectors 
located along these roads. This same type of pr~blem is also present in other states. 



The current procedure is believed to work fairly well in the aggregate mode, at the 
macro level (U.S. coverage). However, at the micro level (state and local), the numbers 
are more suspect. In addition, the statistics only work when assuming a certain 
homogeneity among characteristics (trucks, volumes, speed limit adherence) of highways 
in the same class, an assumption that is impossible to test when little or no data is 
gathered on many of the highways for a given class. 

Given these observations, it is clear that a remote sensing system to include 
improved spatial coverage and resolution would complement the existing system. 
Synoptic coverage provided by a satellite would be worth exploring. Satellite information 
would allow more coverage of a region and provide improved estimates at more 
disaggregate levels. If a satellite could provide repetitive coverage for a wide swath area, 
while counters are providing temporal data on vehicle movement, the spatial coverage of 
the existing system might be greatly improved. For example, satellite snapshots at 
specific times could tie trffic characteristics on segments with no automatic counters to 
those segments with counters to develop the spatial variabiiity among roads. If this spatial 
variability were assumed constant in time, the satellite data could be used to extrapolate 
traffic characteristics from the segments with continuous ground counts to those without 
ground counts during periods when there is not satellite coverage. Satellite views could 
also be used to test whether sampled roadways (i.e., roads and locations along these roads 
using mechanical counters) are representative of the roads in the class; if they are not, the 
categories could be refined. Satellite measurements are also safer, since fewer personneI 
would be required to interfere with vehicle traffic to install and operate ground 
measurements. These snapshots could also be used to identie troubIespots for either 
temporary or permanent deployment of traffic counters. 

Technical Issues 

The principal question addressed by this study is: What is the potential to 
complement existing traffic data collection programs with image data acquired from a 
satellite platform in thehture, given what we know from an aircraft platform tohy? We 
identified three major technical issues that needed to be addressed. 

ISSUE I:  The performance cqabilities of remote sensing data need to be estimated to 
determine what vehicle types could be classified and counted against a backg~ound of 
pavement types. Initial tests of remote sensing &a could be performed using digitized 
panchromatic imagery acquired@om an aircra~plaEform. 

ISSUE 2: Once the spatial resolution was &$need to count and classz& vehicle types, the 
characteristics of the orbital coverage for such a satellite sensor to meet these 
requirements need to be dejined In this way we could determine the spatial and temporal 
coverage that could be expected@om varzvarzous satellite orbit configurations. 

ISSUE 3: The availability of mxda recommendation of the characteristics for a satellite 
sensor system to meet bra#c h t a  collection requirements need to be dePneeH. 

vii 



We studied these three technical issues in detail. Specifically, Section 3 describes 
a mathematical model developed to work with digital panchromatic imagery from a 
remote sensing instrument used to image vehicles against pavements. We were led to 
such a model, since there is no imagery available to us at the resolutions required to 
identifjr vehicles and since such a model would allow us the flexibility to control and vary 
different parameters (e.g., imaging resolution, vehicle class distribution, vehicle sizes, 
angle of pixel grid, and composition of pavement) for efficient analysis. Although 
subsequent analysis showed that two of the inputs to this model (the vehicle and 
pavement reflectances) were distributed in such a way as to make this model unworkable 
at this stage, the model did lead us to first approximations of required resolutions. 
Specifically, as a first cut, we considered that we would want at least 50% of some pixel 
to be covered by the vehicle with 0.85 probability. The resolutions required to achieve 
this performance were between 3 m and 4 m for trucks and between 1 m and 2 m for cars. 
The model also showed that knowing the rotation angle between the pixel grid and the 
centerline of the pavement could provide useM information. 

We evaluated several types of digital imagery in an attempt to understand the 
characteristics that might be expected in a digital image of vehicles on pavement back- 
ground. We investigated infrared images of pavements and vehicles at the Vicksburg, 
Mississippi airport, the spectral reflectance curve data bases recently made available by 
the National Photographic Interpretation Center, and simulated panchromatic 
representations of aerial photographs at various resolutions. These analyses led us to 
believe that panchromatic reflectances of vehicles and pavements would be distributed so 
similarly that it would be difficult to use the type of mathematical model developed to 
systematically and analytically investigate the performance of remotely sensing vehicles 
on pavement within the panchromatic range. Although these results were discouraging in 
terms of our modeling efforts, we believe that they are valuable, since to ow knowledge 
they were unknown in the remote sensing literature and they imply that vehicle detection 
might have to be accomplished through indirect means. Analysis of the aerial photo- 
graphs showed that the shadows of the vehicles could be one such means. 

We present the results of a systematic study designed to investigate the ability to 
count and classify vehicles using panchromatic images (0.5-0.9 pm) at roughly I m, 2 m 
and 4 m resolutions. We first did this in a manual mode, using a subjective analysis, and 
then automated the process in an image processing procedure. We used traditional remote 
sensing concepts of correct classification, errors of omission, and errors of commission, 
but had to modify the definitions for use in our study. Based on these modified 
definitions, it appears that we can count vehicles and classify smaller vehicles at 1 m 
resolution and that we may be able to classify trucks at a coarser resolution than 2 rn. 
These are conservative estimates of requirements, since we used relatively 
unsophisticated procedures and criteria for a first-cut analysis. We discuss qualitative 
results based on our experiences with analyzing the digital representations of the aerial 
photographs and how we incorporated them into the image processing procedures. We 
witnessed problems associated with local variability in pavement types, traffic congestion 
on a highway segment, and with shadows from highway signs, tall buildings, and trees. 

. * *  
Vlll 



We believe, however, that these problems could be greatly reduced with relatively 
straightforward techniques. 

In Section 4 we describe the orbital coverage problem. Several design variables 
were considered. These included the satellite altitude, repeat period, number of orbits per 
repeat period, number of pixels (detectors) in the sensor array, physical size of the pixel 
on the detector array, number of spectral bands, and the data compression rate. We 
determined that the resolutions required would not allow the use of geo-stationary or 
geosynchronous orbits, and that the resulting coverage would imply that satellite data 
would augment, rather than replace the tr&c data collection task. We formulated the 
orbital parameter problem as a nonlinear program to determine the orbital parameters that 
would maximize coverage over the continental United States. A series of mathematical 
formulations were developed so as to easily evaluate various satellite designs that 
allowed for circular orbits. Our mathematical analysis showed that we can cover 
approximately 1% of the highways in the United States per day. 

In Sections 5 and 6 we addressed the commercial feasibility of such a satellite 
design and describe other potential remote sensing sensors. Several commercial 
companies are designing satellites that will achieve 1-m resolution in the very near future. 
One system, Eyeglassm , will be launched and operational by 1997, The only drawback to 
 eyeglass^^ is that it is planned to be in a sun-synchronous orbit. However, with its design 
of fore-and-aft and sideto-side image coverage at an angle of k45O, it will be possible to 
achieve additional times of satellite coverage. 

Recommendations 

We offer several recommendations for a satellite design for traffic data collection. 
We also offer a recommendation to carry forth the research addressed in this study. This 
future work is discussed in detail in Section 7. 

1. From our image processing tests with several highway segments we could count and 
classify vehicles at excellent levels of accuracy with 1-m resolution. Based on our tests, 
we recommend that the resolution from a satellite platform be 1 m to count and classify 
vehicles. 

2. To maximize coverage, a circular, non-sun-synchronous satellite orbit is recom- 
mended. We determined that the resolutions required would not allow the use of geo- 
stationary or geosynchronous orbits. 

3. To achieve 1 m resolution a swath width of 15 km (using a pixel array of 15,000) is 
recommended for the satellite altitudes under consideration. To achieve the maximum 
coverage per day over the continental United States, an inclination angle of 130° is 
recommended. 

4. The next step in determining the feasibility of using satellite data for traffic data 
collection should be to use  eyeglass^^ and any other near-term satellite missions offering 
fine resolution image data for testing purposes. 



Conclusions 

We were tasked to determine the possibility of using satellite remote sensing data 
to collect highway trafIic data. We determined that the resolutions required would not 
allow the use of geo-stationary or geosynchronous orbits, and that the resulting coverage 
would imply that satellite data would augment, rather than replace the traffic data 
collection task. We investigated the resolution, the orbital parameters, and the 
commercial feasibility of a satellite system that could count and classifjr vehicles. 

From our analyses, we determined that a 1-m resolution is necessary to count and 
classifL vehicles (cars and trucks) with greater than a 90% accuracy. With a satellite 
design using an inclination angle of 130' for a swath width of 15 km to achieve a I-m 
resolution, our mathematical analysis showed that we can cover approximately 1% of the 
highways in the United States per day. Systematic analysis showed that the primary 
limiting constraint to increasing coverage would be data transmission rate when acquiring 
data at 1-m resolution. 

Before satellite data could be used routinely to count and classify data on 
an operational basis, the infrastructure required to process and use the satellite data must 
be considered. The Eyeglassm system, which will provide 1-m resolution satellite data, 
will be launched and operational in 1997. This provides an excellent opportunity to 
develop the infrastructure required to process and use the satellite data on an operational 
basis for traffic data collection parameters. 



Section 1. Introduction 

Quantifying the efficiency and effectiveness of existing traffic systems and facili- 
ties is essential and requires continual estimation and measurement of traffic characteris- 
tics. The principal parameters that require measurement and data collection are volumes, 
speeds, densities, and compositions, along with the resultant measures of flow efficiency 
and safety of travel times and headways. These data allow for assessing existing situa- 
tions and levels of service and provide the required inputs for evaluating alternative 
improvements to operations, maintenance, and more efficient utilization of the facilities. 

Evaluating and monitoring traffic characteristics is becoming increasingly impor- 
tant as worsening congestion, declining economic situations, and increasing environmen- 
tal sensitivities are forcing states and municipalities to make better use of existing 
roadway capacities. There is no doubt that a large shift has occurred from adding more 
roadways and facilities to one of maximizing the use of existing facilities with improved 
and more comprehensive management techniques. Likewise, the upgrading and mainte- 
nance of existing infrastructures are growing concerns, since much of the infrastructure is 
nearing, or even past, time for repair and replacement. In addition, the recently enacted 
Clean Air Act Amendments of 1990 require states and municipalities to conduct before 
and after project measurements of traff~c volumes, speeds, concentrations and composi- 
tions, and to do so at finer spatial levels than are currently required. Other specific needs 
for a continual gathering of traffic data include: (I) inputs to trac and pavement deterio- 
ration models for highway management and maintenance programs, (2)  better surveil- 
lance of the roadways to satis@ federal requirements to monitor compliance with speed 
limits, which is an ongoing task because of increasing concerns with clean air, safety and 
litigation, and (3) better estimates of volume-delay hnctions at specific sites because of 
increasing problems with capacity and congestion management. 

The present system of using automatic counters at selected points on highways 
works well from a temporal point of view (i.e., during a specific period of time at one 
location). However, the present system does not cover the spatial aspects of the entire 
road system (i.e., for every location during specific periods of time); the counters are 
employed only at points and only on selected highways. This lack of spatial coverage is 
due, in part, to the cost of the automatic counter systems (fixed procurement and mainte- 
nance costs) and of the personnel required to deploy them, and is evidenced by the fact 
that of Ohio's 112,000 miles (180,000 km) of roadway, there are only 200 detectors 
located along these roads. This same type of problem is also present in other states. 

The current procedure is believed to work fairly well in the aggregate mode, at the 
national level. However, at the state and local levels, the numbers are more suspect. In 
addition, the statistics only work when assuming a certain homogeneity among character- 
istics (trucks, volumes, speed limit adherence) of highways in the same class, an assump- 
tion that is impossible to test when little or no data is gathered on many of the highways 
for a given class. 



Given these observations, it is clear that a remote sensing system providing 
improved spatial coverage and resolution would complement the existing system. 
Synoptic coverage provided by a satellite would be worth exploring, since it would allow 
more coverage of a region and provide improved estimates at more disaggregate levels. If 
a satellite could provide repetitive coverage for a wide swath area, while counters are 
providing temporal data on vehicle movement, the spatial coverage of the existing system 
might be greatly improved. For example, satellite "snapshots" at specific times could tie 
traffic characteristics on segments with no automatic counters to those segments with 
counters to estimate spatial variability among roads. If this spatial variability were 
assumed constant in time, the satellite data could be used to extrapolate traffic character- 
istics from the segments with continuous ground counts to those without such counts 
during periods when there is no satellite coverage. Satellite views could also be used to 
test whether sampled roadways (i.e., roads and locations along these roads where data are 
gathered using mechanical counters) are representative of the roads in the class; if they 
are not, the categories could be refined. Satellite measurements are also safer, since fewer 
personnel would be required to interfere with vehicle traffic to install and operate ground 
measurements. These "snapshots" could also be used to identify troublespots for either 
temporary or permanent deployment of traffic counters. 

The purpose of this report is to summarize what we have done over the past two 
years on the project entitled "Feasibility of Satellite-Based Traffic Data Collection." The 
objectives of our research consist of four parts: 

(1) estimate the performance capabilities of remote sensor technologies to 
determine vehicle types against a background of pavement types, 

(2) evaluate the feasibility of determining vehicle types from a simulated data set 
(digitized aircraft photography), 

(3) investigate the availability of and specify an ideal satellite sensor system to 
meet these requirements, and 

(4) analyze the spatiaI and temporal coverage that could be expected from various 
satellite orbit configurations. 



Section 2. Background on Traffic Data Collection 

2.1 Current Traffic Data Collection Efforts 

2.1.1 Trafic Flow Data 

Traffic data is currently gathered via traffic engineering studies that obtain empir- 
ical facts about existing roadway conditions and vehicular traffic movements. Such 
studies involve obtaining data by measurements in the field. These field measurements 
then add to existing databases at the federal, state and focal levels. 

There are two broad categories of data: system inventory data and traffic flow 
data. Inventories represent static conditions at the time of measurement. For example, 
these may include the numbers and types of roadways, land uses and zoning controls, 
trafic generators (e.g., businesses, schools, shopping centers, parking structures and 
spaces), or traffic control devices (e.g., signs, markings and signals). The inventory study 
consists of an accounting of the existing inf-iastructures and associated elements. The 
second category of traffic data - traffic flow data - represents the dynamic or quickly 
changing patterns and characteristics of the movement of traffic and individual vehicles 
within the system. By quickly changing, we mean anythng from on the order of seconds 
to days to even seasonal patterns. In one way, the existing infrastructure may be thought 
of as system supply, while the traffic flow data is the realization of the demand on the 
system supply. 

Inventory data are usually obtained from two sources. The first is through existing 
data that are already in office files and records in a number of locations and departments 
within agencies. However, this data may be incomplete or require periodic updating 
through field collection efforts. Many of these efforts require manual observation while 
driving through the system and recording the required items. 

Traffic flow data can be considered from an aggregated perspective of the move- 
ment of the stream of vehicles, drivers and passengers. This is a macroscopic view that is 
concerned primarily with averages, e.g., the average speed of vehicles or the average 
number of vehicles on a section or past a point of roadway over a period of time. Data 
may dso be collected on the dynamics of movements of individual vehicles in the tr&c 
stream. This is a microscopic view and yields information on individual vehicle behavior. 
Since this individual data can later be aggregated to provide averages, if collection and 
storage costs were not an issue, this microscopic data would always be preferable to 
macroscopic data. 

2.1.2 Uses of Traffic Flow Data 

The collection of dynamic or changing traffic conditions requires traffic studies 
and provides for need at the federal, state, and local levels. These needs may represent 
internal or external requests. Internal needs or requirements refer to data obtained for the 
internal use of the collecting agency, usually the state, while external needs refer to data 



provided for external uses, usually for federal reporting requirements. For example, 
federal reporting requests include vehicle miles traveled (VMT) for different classes of 
roadways from each state. The miles of each type of road - e.g., urban freeway, arterial, 
etc. - are required to provide VMT and may be obtained from the existing inventory of 
road data. Furthermore, to estimate the vehicle miles traveled requires an estimate of the 
traffic volume during the considered time period. 

We propose that traffic data needs or requirements may be classified into three 
broad areas: operations, planning and design, and research. Operations consist of the day- 
to-day operations, maintenance and management of roadways and facilities. ~ x a r h ~ l e s  of 
operations include maintenance of pavement and hardware, such as signs, pavement 
markings, channelization and signalization. These are the daily routine operations that are 
well defined and have a tendency to lend themselves to manual or handbook collection 
procedures. Volume counts and vehicle classification data are required for operations and 
system management and maintenance. Estimates of daily volumes are normaIly obtained 
at specific locations. That is, they are site-specific. Vehicle classification data, on the 
other hand, may be site-specific, but they are usually averaged by functional class of 
roadway. Volume data are required at specific sites to quantify the operating conditions at 
the site, since averages over similar facilities in the area would not be applicable. This is 
because volume measures the specific existing demand, which can then be compared with 
the existing supply or ability to handle the demand. The system may be able to handle the 
average demand, but specific sites may not adequately handle demands at critical times 
such as peak periods or during special events. 

Data requirements for planning and design, both short and long range, require 
priorities, trade-offs, and perhaps less routine collection, although there may be much 
overlap with daily operational data. This data is used for future system improvements and 
additions. It includes VMT, average daily traffic (ADT) and design hourly volumes 
(DHV), which are used as measures in planning and operations. 

ADT is the average 24-hr volume at a given location for some period of time less 
than a year. It may be measured for a period of time, such as a few days, a week, or some 
other period less than a year. It is valid only for the period over which it is measured. The 
average 24-hr trafftc volume measured at a given location over a full 365-day year is 
referred to as the average annual daily traffic (AADT). It is the total number of vehicles 
past a given location in a year divided by 365. 

Traffic volume varies considerably over a 24-hr day and usually includes morning 
and evening rush hours. The highest hour of the day is called the peak hour volume and is 
of interest in design and operations. 

Design hourly volumes may be estimated from the relation between DHV and 
AADT as DHV = AADT x K, where K represents the proportion of AADT occurring 
during the 30th highest peak hour of the year for rural roads or 15th highest peak hour for 
urban areas. An example may be used to illustrate DHV. Suppose the projected hture 
AADT in 20 years is 21,000 vehicles per day per direction for a given highway and loca- 
tion, and 20% of this volume occurs during the current peak hour (i.e., K = 0.20). If K 



does not change over time, then D I N  = 21,000 x 0.20 = 4,200 vehicles per day, a figure 
used for planning purposes. 

An estimate of VMT is obtained by assuming that a vehicle counted on a specific 
segment of road travels the entire length of that segment. Then VMT is obtained by mul- 
tiplying the volume by the segment length. For example, if the ADT was 1,124 vehicles 
and the segment length is 0.5 miles, VMT is 1,124 x 0.5 = 562 miles traveled over that 
segment. 

The third broad area of tmfEc data requirements is research. This includes model 
building and calibration primarily through the comparison of empirical data on traffic 
movement to output of theoretical models. The research results may eventually be incor- 
porated into operations, control, management, design, and planning models, but when the 
data are collected, the goal is to provide a better description of traffic conditions, 
regardless of the eventual application. 

The data collected for research may be more specific or comprehensive than the 
data required for operations and planning. Examples include the density of vehicles 
within a section of roadway or the time headways between vehicles. (Density is defined 
as the number of vehicles per distance of road and is usually expressed as vehicles per 
kilometer or mile. Time headway, or just headway, is defined as the time between 
consecutive vehicles, measured from front to front of vehicles and normally expressed in 
seconds.) Other examples of data that may be col1ected for research include the character- 
istics of platoons of vehicles as they move in the traffic stream. This requires observation 
from a vantage point above the roadway. 

2.13 Traftlc Parameters 

For each of these three classes of data collection there are specific categories of 
aggregated tmfl5c data that are currently collected and often required by state and federal 
agencies. Of particular interest in this study are traffic counts or volumes, classification of 
types of vehicles, and vehicle speeds. Other aggregated measures may be obtained from 
these measures by making use of the relationship that connect volume, density and speed. 
This relationship is defined as density (expressed in vehicles per kilometer), which is 
equal to the volume (vph) divided by average speed (km/hr). In addition, the average 
distance spacing between vehicles is the inverse of density, the average time headway 
between vehicles is the inverse of the volume, and the average travel time is the inverse 
of average speed. 

Finer or microscopic traffic flow information on individual vehicular movement 
and the observation of traffic stream disturbances require different means of data collec- 
tion than those that are routineIy encountered. Since this type of data is not collected in a 
routine or established manner, it would be difficult to base operations and planning and 
design procedures on these pafameters. Therefore, the data currently fall into the research 
area. Such data might eventually fall into the operational area, if it were more easily 
collected. The collection of density, which measures the congestion of the trmc, and 
speed distributions, which indicates individual travel times, should be considered. Both of 



these parameters measure the quality of traffic movement, and they are readily sensed by 
drivers and passengers. Traditional measures, such as volume, are not sensed by the 
driver or passenger and, therefore, may be of less relevance in determining user satisfac- 
tion. Still, volume can indicate the system demand and, perhaps, performance at the 
aggregate level. 

The principal traf'fic volume measures are AADT and VMT. AADT gives an 
indication of the average annual number of vehicles on the facility per day. (ADT, on the 
other hand, is a 24-hr average and only represents the period for which it is collected.) 
AADT may be either directly measured or estimated from shorter counts using estimated 
relations between ADT and AADT that account for day of week and monthly or seasonal 
variations. Directly measured data requires continuous counting during 24-hr periods. 
This may not be possible for all desired collection locations and times. It may also not be 
necessary if shorter collection periods can be used to estimate 24-hr volumes. The 
estimates of AADT are based on shorter counting periods, on the other hand, and they are 
only as good as the day-of-the-week, monthly and seasonal correction factors. 

To obtain VMT, it is assumed that vehicles counted on any link or section of 
roadway travel the entire length of that section. Then VMT is obtained by multiplying the 
length of the segment by the volume traversing that segment. VMT data are further strat- 
ified by highway functional classes, by regions, and by specific sites that may be of 
interest. Aggregated VMT is required by vehicle type and by roadway hnctional class to 
provide state and national statistics that are used in analysis. It has been determined that 
statewide annual traffic monitoring programs should provide VMT by knctional class of 
highway and, optionally, by region. 

Functional classes of roadways are divided into rural and urban areas, which are 
further broken into the classes shown in Table 2.1. 

Table 2.1 Functional classes of roadways for rural and urban areas. 

rban Other Principal Arterial 
rban Minor Arterial 

Since trafftc characteristics may vary significantly within a given classification 
due to terrain or region, a state may choose to further stratify some groups. For example, 
in rural areas, mountainous Principal Arterials may display different traffic flow charac- 
teristics from non-mountainous Principal Arterials. In addition to characteristic differ- 



ences due to topographical areas, such roads may also contain significantly different 
percentages of vehicle classes. 

2.1.4 The Highway Performance Monitoring System (HPMS) 

Traffic counts, speeds, vehicle classification and truck weight data are submitted 
to the Federal Highway Administration (FHWA) for use in assessing the extent of the 
roadway system, the movement of people and goods, the physical condition of the road- 
ways, and in determining national travel trends. Such data are also used to assist in 
preparing reports requested by Congress and to assess the impacts of existing national 
programs and policies and potential impacts of proposed programs and policies. As an 
example, Congress may be interested in the impact of raising the gasoline tax on the 
VMT and, subsequently, on consumption and pollutant emissions. 

The Highway Performance Monitoring System (HPMS) was introduced in 1978 
at the federal level, with the goal of consolidating previous federal data requirements and 
strengthening the methods at the state level (FHWA, 1987; FHWA, 1992; Peat Marwick, 
Mitchell and Co., 1984). The HPMS is a program management tool for annual monitoring 
of highway performance and represents a joint effort of federal, state and local 
governments. Data reporting is the task of state highway agencies. They are assisted in 
this task by local government units and Metropolitan Planning Organizations (MPOs). 

Data reported under the HPMS include "limited data that are reported for all 
mileage of a given highway system." This is referred to as universe data. The universe 
data includes identification of the type of roadway, jurisdiction, operation type (toll, non- 
toll) and length of highway section. In contrast to this data is sample data, which is 
reported for a smaller portion, or sample, of the highway system. The sampled sections 
are monitored from year to year, with a statistically designed sample plan based on a 
random seIection of road sections within predetermined AADT volume groups. These 
groups are chosen to represent each knctional roadway class in rural and urban areas of 
the state. Four summary areas are submitted: (1) mileage and daily travel, (2) accidents, 
(3) local functional system mileage, and (4) travel activity by vehicle type and functional 
system. 

This HPMS program provides a base set of locations where tr&c volumes are 
collected on a continuous basis, i.e., over 24 hours per day and 365 days per year. Actual 
data collection by the states may vary due to economic considerations and sampling 
strategies to semi-annually or perhaps once every three years for a given location as 
opposed to yearly sampling. The time duration of data collection may also vary to 48 
hours instead of 24 hours. 

Trade-offs between precision and available resources (costs, time and personnel) 
to obtain data must be considered by the states when determining their data colIection 
efforts and the subsequent frequency and amount of data to be collected. The continuous 
counts or 24-hr volume counts are used to obtain data for control and coverage counts. 
Control counts provide the confrols used to define a common basis for estimating ADT at 
other locations within a roadway system. They are used in areawide and statewide 



programs to monitor and quantifl daily, monthly and seasonal volume changes. AADT is 
obtained from ADT by adjusting with the daily, monthly and seasonal variation factors. 
Specifically, AADT = ADT x DF x MF, where DF is the daily variation factor and MF is 
the monthly variation factor. For example, suppose that a 24-hr count records an ADT of 
2,000 vehides on Monday in June. Further suppose the daily variation factor for Monday 
is 1.07 and the monthly variation factor for June is 0.91. That is, Monday has 7% more 
traffic than an average day and June has 9% less traffic then an average month. Thus 
AADT = 2,000 x 1.07 x 0.91 = 1,947 vehicles per day. 

Data for these control counts are obtained at pennanent-count sites or at sites that 
are counted periodically throughout the year with portable counters. Permanent-count 
stations use continuous automatic traffic recorders that record data 24 hours a day, 365 
days per year. They are distributed geographically and over functional classes of road- 
ways within the states. The portable control count stations are used to supplement these 
permanent station counts. Usually the portable counters are used at a different location in 
the same functional roadway class, continuously during one week of each month of the 
year or continuously during five days every other month, depending on resources 
available. The data collected serve as the control data for expanding other shorter counts 
and are adjusted for hourly, daily and seasonal variations. 

Coverage counts are broader in space, but not as deep through time as the penna- 
nent counts. They are used to estimate AADT on the roadway system within the state. 
AADT is obtained from ADT by multiplying by the daily and monthly variation factors, 
as previously illustrated. The roadway sections used for coverage counts in urban areas 
are more closely spaced than those in nonurban areas, where AADT is usually estimated 
for a two-mile (3-km) segment or a segment where flow is considered to be reasonably 
constant. The urban section is usually taken as a link between intersections or 
interchanges. 

2.1.5 Other Data 

Vehicle classification data for HPMS reporting is selected as a subset of the 
volume estimation samples. Vehicle classification data is used to determine the percent- 
age of passenger vehides and trucks within the t r s ~ c  stream. The FHWA has defined 13 
classes of vehicle types as shown in Table 2.2. 

The average weight or equivalent axle load by vehicle and functional class is 
usually desired for planning future system improvements, project design, reporting and 
research. Such information is required and used for pubIic policy, taxation and funding 
allocations. 

Speed data is normally not required for reporting at the national level for planning 
and operational purposes. Data may be required, however, for special studies concerning 
conformance to national speed limits. Although not required, this data may be useful in 
estimating fuel consumption and emissions outputs. Instantaneous or spot speeds can be 
obtained and then an average speed over these calculated to obtain the time mean speed 
of vehicles in the stream. If the average speed is calculated over a section of road, this 



Table 2.2 FHWA definitions of vehicle types. 

gives what is referred to as the space mean speed. It is this space mean speed that is 
required to describe trafic stream flow as a whole or on the average. It gives more weight 
to slower vehicles, as they are on any given section of roadway longer than faster moving 
vehicles. It may be obtained from knowing all the individual spot speeds of vehicles or 
directly calculated if volume and density is known. 

Class 

1 
2 
3 

4 

5 
6 
7 
8 
9 
10 
11 
12 
13 

2.2 Methodologies Used to Collect and Monitor Traffic Data 

Class DeJinition 

Motorcycles (optional) 
Passenger cars 
Other Zaxle, 4-tire single unit such as pick-ups, panels, vans, 
campers, motor homes, and those pulling recreational or light trailers 
Buses - traditional and school buses 

Trucks 
Z d e ,  6-tire, single unit trucks 
3-axle, single unit trucks 
4 or more axle single unit trucks 
4 or fewer axle single trailer trucks (2-units, tractor and trailer) 
5-axle single trailer trucks 
6 or more axle single unit trailer trucks 
5 or less axle multitrailer trucks (3 or more units, tractor and trailer) 
6-axle multitrailer trucks 
7 or more axle multitrailer trucks 

Traffic studies require collecting, reducing and analyzing data. These three 
elements overlap, due to the fact that the collection methodology may influence subse- 
quent reduction techniques and have an effect on the type of analysis performed. The 
collection consists of observing and recording data in the field. This effort involves 
personnel and equipment. The recording or observation can be done manually or with 
some sort of "automatic" collection technology. The automatic technology may be either 
electronic or mechanical and may be set up either as a permanent or portable installation. 

2.2.1 Manual Collection of Data 

Volume data, for example, is collected both manually and automatically, depend- 
ing on the situation. At locations such as intersections, where turning movements, 
approach volumes and queues are required, volumes are collected manually. Observers 
tally and write down the required data. When volumes are to be recorded for short 
periods (e.g., on the order of a few hours), manual collection is frequently preferred. 



Normally, the short duration does not justify the installation of automatic recording 
equipment. Manual collection still involves some equipment, such as watches with pencil 
and paper, pre-printed field sheets showing the site geometries, tally sheets, or mechani- 
cal tally counters arranged on a clipboard that allow one person to count traffic from all 
directions. Electronic intersection assemblies with memories that record and store total 
counts on manually-operated counters for later playback or direct input into computers 
are also available. 

Manually collecting data represents a problem with accuracy of recording when 
writing on field sheets or entering data into laptop computers, due to human error. Direct 
entry of data into a laptop computer does, however, offer the potential for easier data 
reduction. Forms are prepared to assist in making this task easier. Data may also be 
recorded on audio tapes for transcription later. This also offers a possibility of error when 
transcribing the data from the audio tape. The principal disadvantage of manually record- 
ing data is the amount of people required and the associated expenses in personnel time to 
cover a large number of locations. Moreover, there is a necessary amount of down time 
involved when transporting the manual collector from one location to another. 

Manual counts do, however, offer some advantages. Manual collection allows 
information on travel directions and turning movements at intersections. It also can 
provide classification of vehicles by type, size and occupancy. Also, queue lengths and 
delays can be observed and recorded. Manual collection dso  allows for the possibility of 
observing unanticipated conditions that may explain other observations. For example, an 
accident or occurrence of an incident may explain a recorded decrease in volume or 
average speed. 

2.2.2 Automatic Vehicle Recording 

Mechanical or automatic recording devices are used when data are to be collected 
over extended periods of time longer than a few hours, usually for collecting data for 24 
hours or longer. One method is to use a road tube on the road surface across the width of 
the roadway. The tube utilizes the pneumatic pulse of air created when vehicle wheels 
pass over it, closing an electric circuit. The count records the number of axles. Since not 
all vehicles have just two axles, multi-axle vehicles produce an overcount that must be 
accounted for by correction factors. For example, since in most cases a vehicle passage is 
represented by the recording of two axles, if more than two axles are recorded, an over- 
estimate of the number of vehicles will occur. A correction factor is used, which would 
estimate the percentage of multi-axle vehicles in the traffic stream. This percentage 
would be obtained from manual counts or adjustment factors. A sample manual count is 
taken to classify vehicles by the number of axles. The average number of axles per 
vehicle is obtained for the sample and is assumed to be the same for the entire count. 

If vehicles arrive simultaneously in adjacent lanes, an undercount may also be 
produced. Moreover, road tubes can be damaged by the impact of vehicle wheels and 
other physical damage. They also do not function when a vehicle is stopped with its 
wheels on the tube and are not usable on gravel roads due to possible damage. The 



placement of the tube is also limited, since a fixed object such as a pole or tree is required 
to anchor the recorder. 

Other portable counters may be actuated by tape switches, which consist of wires 
taped to the roadway surface. When a vehicle crosses the wire, it closes a Iow current 
circuit or disturbs an electromagnetic field, which in turn actuates the detector. These tape 
switches are usually connected to computers in vehicles on the roadside. These computers 
record the data automatically for later reduction and analysis. The tape switches can also 
be damaged, since they are on the surface of the road. A time clock may also be part of 
the equipment, which may be set to turn on and turn off after a period of time. On some 
recording devices, a printout may transfer the accumulated counts at predetermined 
intervals; for example, 15-minute subtotals may be printed and registered in the counter, 
and the counter can be automatically reset to zero every hour. 

Permanent automatic counters are installed at the permanent stations that are 
established at urban and rural locations. These continuous recordings of volumes provide 
hourly data for every day of the year. Such counts are used to compare hourly volumes 
among different weekdays, weekends, months and seasons to obtain volume variation 
factors. They also provide the volumes for each hour of the year and can be used to 
obtain the 15th, 30th, or other highest hourly volume, which is used for design purposes. 

Underpavement detectors are loop or magnetic detectors. Loop detectors are 
commonly used on high volume, multi-lane roads, since loop detectors can distinguish 
vehicles in separate lanes. They are often used at intersections to detect the passage of 
vehicles for use in the operation of actuated signals. These detectors, which are wire 
loops embedded in the pavement surface connected to a weak power source, carry a 
predetermined frequency signal. Vehicles passing over the loop change the inductance 
and, thus, the frequency of the signal. This change is then detected. This is the most 
common detector because of its reliability and low cost. Magnetic detectors consist of a 
wire coil embedded in the roadway surface. The detector measures the difference in the 
level of the Earth's magnetic forces caused by the presence of a vehicle. The constant 
lines of flux from the Earth's magnetic field are deflected by the passage of a vehicle, 
causing a voltage drop. 

Another type of detector is the pressure sensitive detector. A pressure plate detec- 
tor consists of a metal plate installed in the pavement that is insulated by rubber springs 
and buffers from a second plate below it. When a vehicle crosses the plate, the weight of 
the vehicle causes the two plates to connect. This connection completes a circuit, and an 
impulse is recorded. 

A sonic detector consists of a sonic meter, that, like radar, operates on the Doppler 
principle. These detectors are located at the side of the road or above the road over a lane. 
They emit sonic waves that are reflected back by vehicles and detected by the meter. 
Also, a photoelectric light beam may be emitted (e.g., electric eye) from either the road- 
side or above the road. The interruption of this beam operates a relay and causes 
detection. 



In addition, optical and video cameras mounted above or to the side of the road- 
way may be used to obtain vehicle data. These may be mounted permanently or in a 
portable set-up. An advantage of this type of recording WIC data is that it allows several 
parameters to be observed simultaneously and can be used to create a permanent record 
of the observations. 

In addition to obtaining video data from fixed locations, this method of data 
collection can be used with cameras mounted in airplanes or helicopters. This allows for 
surveillance and monitoring situations where real time information on the tr&c flow is 
desired. Reporting and visually portraying conditions at rush hour on the radio and TV 
are typical situations of these uses of aerial observation. This type of data collection also 
allows flexibility and movement of data collection locations. Volumes, speeds and densi- 
ties may be extracted automatically via computer. Since data reduction has tended to be 
expensive and time consuming, applications have thus far been limited to research, 
except for monitoring in traffic surveillance centers. This may change, however, if done 
on a large scale and if automatic data reduction programs become available at a 
reasonable cost. 

Video imagery has been used to assist in logging information on roadway condi- 
tions. A photolog laser videodisc viewing system was developed for the Connecticut 
Department of Transportation (ConnDOT) to film the entire state highway system. A 
photograph is taken every 0.01 mile (16 m) from a moving vehicle with the camera 
oriented slightly down and to the right for optimum coverage of the highway and roadside 
development. While filming is occurring, on-board sensors record route numbers, 
direction of travel, cross slope, compass reading, date, time, horizontal and vertical curva- 
ture, long-term and short-term roughness, grade, side friction and vehicle speed. In 
addition to Connecticut, the states of Delaware, Iowa, Minnesota and Wisconsin and 
Montgomery County, Maryland and Columbia, Missouri make use of video logging tech- 
nology (King, 1990; Whited and McCall, 1991). Typically, these systems are integrated 
into a geographic information system (GIs). Applications include pavement management, 
safety analysis, bridge management and sign inventory. 

A review of existing video image processing systems for roadway monitoring is 
provided in Hockaday (1991) and Hockaday et ale (1992). Their study evaluated eight 
different systems for 28 different traffic sets. In their evaIuation they categorized the 
vehicle detection technique to be a tracking or tripire model. Tripwire models are the 
simplest type and detect a vehicle by watching for a significant deviation in light intensity 
measured along a narrow band transverse to the direction of travel. An estimate of vehicle 
speed is derived using speed traps constructed using two adjacent tripwires. The tracking 
model is used to locate a vehicle in a detection zone by correlating generalized vehicle 
templates to digital images recorded of the detection zone, This technology is based on 
standard image processing techniques and uses a time series of template locations to 
count and estimate the speed of vehicles passing through the detection zone. A new 
tracking model for video-based vehicle detection was developed by Bullock et al. (1993) 
and is based on neural networks. Their work does not rely on developing or calibrating 



rigid templates, but instead learns to recognize vehicle shapes by "learning" from a 
human operator who locates example vehicles. 

Data transmission of traffic information also occurs in northwest Chicago. 
Information from 1,800 6-ft by 6-fi (1.8-m by 1.8-m) wire loops embedded in 11 8 miles 
(189 km) of expressway pavement is transmitted to the Illinois Department of 
Transportation (DOT) Traffic System Center in Oak Park, Illinois. The information is 
processed by a computer program to determine estimates of travel times between various 
points throughout the city. 

Time lapse films to measure speed, headways and delays have been replaced by 
video tape recordings (Ashworth, 1976; Polus et al., 1978). Analyzing these data can be 
quite slow and labor-intensive. Application of ime-lapse aerial photography to origin- 
and-destination survey has also been reported by Ashwood and Inglis (1975) and Garner 
and Mountain (1978). Traffic routes were determined for an area 0.7-krn by 0.5-km by 
using still photos acquired at 15-second intervals from a helicopter at an aItitude of 100 
m. Again, this involved a lot of time (four weeks of effort) to track 1,500 vehicles 
through the road system. 

2.3 Potential of Remote Sensing Techniques 

Remote sensing is defined "as the technique of obtaining information about 
objects through the analysis of data collected by special instruments that are not in physi- 
cal contact with the objects of investigation" (Avery and Berlin, 1992, p. 1). In this way 
remote sensing takes advantage of sensors - such as photographic cameras, mechanical 
line scanners and radar systems - that record images at given wavelengths taken at some 
distance away from an object. Normally platforms such as aircraft or satellites are used to 
mount the remote sensing instruments. 

The energy sensed in remote sensing is electromagnetic radiation, which is either 
reflected or emitted in varying amounts depending on the surface material. The major 
spectral regions used in remote sensing are shown in Figure 2.1. Electromagnetic radia- 
tion both inside and outside the range of wavelengths seen by the human eye can be 
recorded with these instruments. Remote sensing sensors that are used to record the 
radiation in various wavelength regions are also listed. The instruments are designed to 
capture and record the amount of energy, sometimes called reflectance, from the earth's 
surface. The data collected by the sensors is interpreted either visually or by image 
processing methods. Computer equipment has been developed with accompanying soft- 
ware that provide for the display, enhancement, processing, and automatic classification 
of image data. 

There are generally two types of remote sensing systems - passive and active 
systems. Passive sensors record reflected and emitted energy from an object, whereas 
active sensors provide their own energy source and record the reflected signal from the 
object. 
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Figure 2.1 Major spectral regions used in remote sensing with the operational 
range of remote sensing systmes (from Avery and Berlin, 1992). 

Photographic cameras were the first type of remote sensing systems. Typically, these 
cameras can record energy in wavelengths ranging from 0.3 to 0.9 pm. The cameras pro- 
duce a film emulsion product, in which a frame, typically 9- by 9-inch (22.9 by 22.9 cm), 
is exposed in one instant of time. Visual photointerpretation of the product can be 
performed. Recognition elements, such as shape, size, pattern, shadow, tone or color, 
texture, association and site, are used in the photointerpretation process to classify the 
photograph into categories of interest to the user. 

Most remote sensing imagery used today is in a digital format. This allows for 
easy incorporation into a digital data base, such as a geographic information system 
(GIs). Electromagnetic radiation is recorded by photon detectors in electro-optical 
sensors. These detectors are sensitive to predefined wavelengths. Nonnally data is 
recorded in 8 bits or 256 shades of gray that correspond to reflectance levels on the 
ground. 

Present commercial satellite systems include the U.S. Landsat and the French 
Satellite Pour I'Observation de la Terre (SPOT). These two systems are sun-synchronous 
and polar-orbiting with coverage limited to the morning hours, Landsat will only allow 
repeat coverage every 16 days over a given site. SPOT has a 26-day repeat cycle. 
However, the off-nadir pointing capability allows additional days of coverage within the 
26 days. For example, at a latitude of 4Q0N, the potential repeat coverage would be 11 
days within the 26-day time period. 



The 30-m and 80-m data from Landsat is too coarse for our purposes. The 10-m 
or 20-m spatial resolution from the SPOT satellite would be more detailed. Although the 
10-m panchromatic imagery could be used for mapping the road network system, the 
imagery is not detailed enough for identifying vehicle types. Thus, current satellite 
systems (1994 time frame) cannot be used to measure vehicle counts and speeds. 

Satellite technology should be at a stage to attain higher-resolution data capabili- 
ties within the next five years. For example, four commercial companies have been 
awarded licenses by the U.S. Department of Commerce to market high-resolution satellite 
data. Worldview Imaging Corporation of Livermore, California plans to market 3-m reso- 
lution data by 1995. Worldview's system includes a panchromatic sensor and a three- 
color sensor (sensing in the green, red and near infrared part of the electromagnetic 
spectrum). Eyeglass International, Inc. (an alliance of Orbital Sciences Corporation of 
Dulles, Virginia, Litton's Itek Optical Systems division in Lexington, Massachusetts, and 
GDE Systems Inc. of San Diego, California) intends to launch and operate a satellite by 
early 1997 for a 1-m panchromatic imagery system. Construction of their system is 
planned for 1994. Lockheed Missiles and Space Company of Sunnyvale, California plans 
a 1-m system. Ball Corporation's Aerospace and Communications group in Broomfield, 
Colorado was recently granted a commercial remote sensing license to provide 1-m 
panchromatic and 5-m multispectral imagery. Just recently, Ball Aerospace merged with 
Worldview Imaging Corporation to form a new company called Earthwatch. 

An objective of our effort for this study is to define the sensor requirements 
necessary for distinguishing vehicle types from a satellite platform in thefitwe, given 
what we know from an aircraft platform today. Most traffic monitoring tasks being done 
today involve monitoring the traffic flow on a continuous basis. This is done using high- 
resolution video cameras. However, in this study we are evaluating the potential of using 
satellite images acquired at various instants of time to provide an image that would be 
integrated with point measurements of the traffic conditions. Therefore, another objective 
of our research is to define what the design constraints would be on such a system to 
obtain imagery that could be usable for monitoring a traffic situation. 

2.4 Deficiencies in Current Data Collection and Advantages for Collecting Spatially 
Rich Data 

Current data collection provides valuable traffic flow data to use as inputs to 
current analysis and design procedures. The procedures are d e n  developed to accommo- 
date limitations of collection methodologies. However, it is enlightening to consider 
traffic data collection from an idealized point of view. What data would we choose to 
have for operations, planning and design, and research, if there were no constraints on the 
costs, technology or levels of efforts required to collect the data? 

Both quantity and quality of data collected should be considered. Data coverage is 
a quantitative concept. Ideally, we would like to have data at all possible locations and at 
all times. This is disregarding the ability to store and analyze such information and the 
costs associated with such storage and analysis. 



Coverage of traffic movement requires consideration over the dimensions of both 
time and space. Current procedures obtain data over time at a finite number of locations 
on a road network. This temporal data is quite useful, but in practice it is limited in spatial 
coverage to a relatively small number of locations. It is also limited in the type or variety 
of data obtained. When an observer or automatic data recorder is located at a fixed point, 
no upstream or downstream traffic information is observed or recorded. It is as if the 
observer has tunnel vision and cannot see upstream or downstream. This is one reason 
why the morning and evening helicopter traffrc reports are so popular; they speak to the 
driver or passenger by providing information on the overall traffic movement. 

The available data collected at a point location along a road consist of volumes 
(vehicles per hour) and spot speeds of vehicles passing a point. Although the volumes 
provide a quantitative measure of current demand on the system at the point of measure- 
ment, they provide no immediate information on the quality of trafEc flow and, thus the 
level of service that is being provided on the facility. A driver or passenger within a 
vehicle has no feel for this volume. It is an operational measure of the amount of traffic 
moving through the system. For any volume measured, the actual average traffic speed 
may be fairly high or low, depending on how many vehicles are occupying the road 
section "around" the point of measurement. Thus, the speed or density of traffic must also 
be known at the same time to estimate the quality of flow. 

It is the number of vehicles on the road (i.e., density or number of vehicles per 
mile) that is much more important to the driver or passenger. This is a spatial measure- 
ment that shows how crowded a segment of road is and provides a measure of congestion 
and level of service being provided. The speed is also a measure of quality of flow, and is 
directly available to the driver and passengers. Anyone inside a vehicle "feels" the speed 
and density of traffic flow, and can thus associate with it as a real time measure of the 
quality of tr&c movement. 

Data obtained alongside of the road may also provide the arrival times of vehicles, 
if either manually recorded or "time stamped" with automatic recorders. From this data, 
averages of speeds and volume may be found. Density may then be calculated, assuming 
steady state conditions of flow around the collection point, since density is volume 
divided by the space mean speed. (Space mean speed is the harmonic mean speed of all 
the individual spot speeds past a point over time.) 

What is not obtained using this temporal data is the density at any instant in time 
and the occurrences of disturbances in the traffic stream and their movements through the 
stream. They provide no immediate information on the conditions around a bottleneck, 
lane restrictions, entrance or exit movements on freeways, lane weaving, traffic composi- 
tion, and incident detection. This is for both uninterrupted flow on freeways and arterials, 
as well as for interrupted flow on collector streets. For interrupted flow at intersections, 
data on stop and start-up times, intersection clearance time, delay, and turning 
movements require observation and vehicle identification. 

There are a number of advantages that would be possible if spatially rich data 
could be obtained. One is the ability to observe the traffic situation over a physical area of 



road section at a point in time. This allows observation of the entire area or network 
section. If we consider looking down on the movement of traffic from above, then by 
counting the number of vehicles within any section of road and measuring the length of 
road, we know the density of traMic. This instantly provides a picture of the situation and 
the quaIity of flow. Another observation, say one second later, could then provide data on 
the distances traveled by individual vehicles. From this, speeds can be calculated and also 
volumes. Such data provide not only averages or aggregated measures, but also 
individual movement of vehicles, if observations are obtained over time. 



Section 3. Imagery Performance and EvaIuation 

3.1 Introduction 

We developed a mathematically-based model of digital vehicle imaging from a 
satellite sensor, anticipating that such a model would give us the capability of objectively 
investigating the performance of design parameters (e.g., the sensing resolution) under 
different conditions representing the state of the system (e.g., M i c  conditions, pavement 
type). The characteristics of the pavement and vehicle spectral reflectances (two inputs to 
our model), which were only discovered later, limited the usefulness of the analytical 
model. We were not able to use the model to perform the large-scale simulation of 
performance originally envisioned. Descriptions of the mathematical model (Appendix 
A) and results (Appendix B) are provided. 

The analytical model did give usefid insights into certain aspects of the problem, 
however. Specifically, we saw that we would require a 1-m to 2-m resolution to image 
cars and between a 3-m and 5-m resolution to image trucks, if the criterion was one of 
having the vehicle cover at least 50% of some pixel with a probability of at least 0.85. 
Also, the angle that the vehicle makes with the pixel grid axes would be a parameter 
influencing the imaging performance. 

In parallel to our modeling efforts, we investigated the literature and current 
research to determine what imagery was available to derive vehicle and pavement 
reflectance values. We researched four sources of information. The reflectance data that 
we needed for vehicles and pavements were not available in the published literature. 
Reflectances available from the National Photographic Interpretation Center (NPIC) are 
principally for militaq paints and materials. There is a remote sensing instrument avail- 
able from Daedalus to measure true reflectances, but using this instrument would have 
required an extensive field effort that we were not willing to take on at this stage. A 
REMIDS scanner has been used by the U.S. Army Corps of Engineers to detect mines, 
but the instrument operates at wavelengths that wouId probably not be available on a 
satellite platform. Therefore, we scanned several low-altitude aerial photographs to 
simulate a wide band panchromatic sensor at various resolutions. These data sets were 
used to estimate vehicle counts from simulated satellite resolution imagery. 

The vehicle reflectances R,,h and pavement reflectances Rpvt resulting from the 
scanned representations of the aerial photographs were so similar that we were not able to 
use the mathematical model presented in Appendix A. However, the scanned representa- 
tions did provide a product that simulates an image of traffic conditions that would be 
obtained by digitally sensing in the panchromatic region of the electromagnetic spectrum. 
We discuss our use of the scanned representations to simulate the performance of a 
panchromatic sensor for imaging vehicles on highways in this section. We analyzed the 
performance of each traffic segment using photointerpretation techniques and then devel- 
oped an image processing method to automatically process the images, thus providing a 



more objective image analysis procedure. Image processing tools developed to perfonn 
these tests could be adapted for an operational system. 

These scanned representations simulated reflectance values and served as inputs 
to our systematic investigation of sensing performance for the purposes of vehicle classi- 
fication at various resolutions. The disadvantage of this approach, compared to the 
mathematically-based simulation developed in Appendix A, is that it lacks the experi- 
mental control that we would have been able to exert in that type of study. We were 
limited to the data sets of the four aerial photographs. These data sets were rather time- 
consuming to obtain and process. They offered no control of the traffic characteristics, 
e-g., the spacing between successive vehicles, the numbers and distributions of trucks and 
cars, but we had to accept those characteristics that existed in the photos. Moreover, they 
could only yield imperfect estimates of the true traffic characteristics in the photographs, 
due to the limited ability of the aerial photograph to portray the actual characteristics and 
our limited ability to interpret the photographs. 

Still, the tests discussed in this section were usefid in two ways. First, they gave 
us a feel for the issues that would arise in remotely sensing trafic conditions in the 
manner envisioned in this study. They showed, for example, that vehicle shadows, rather 
than complicating the task, appear to be the principal means of identifying the presence of 
a vehicle. Given the importance of the shadows for detecting the vehicles, a knowledge of 
the sun angle is an important parameter for future interpretation and even design. The sun 
angle parameter was incorporated into the image processing method to use in future tests 
where the sun angle would be different. 

The second way in which the tests based upon scanned representations of aerial 
photographs proved usefirl was in their ability to allow quantitative analysis of the 
expected performance of remotely sensing vehicles at various resolutions. Based on the 
studies described below, we believe that a 2 m resolution would be sufficient for 
detecting large trucks, yet 1 m resolution would probably be required for detecting cars. 

3.2 WES ~~S Scanner Data 

Dr. Ernie Cespedes (Electrical Engineer, U.S. Axmy Engineer Waterways 
Experiment Station - WES) has developed a scanner called REMIDS. The multisensor 
line scanner was developed to help in the detection of surface mine explosives. The 
instrument is used in a helicopter platform. Typical dtitude is 30 to 125 m (100 to 400 ft), 
with the helicopter moving at 50 to 195 kmlhr (30 to 120 mph). These parameters result 
in a resolution of 4 to 15 cm (1.5 to 6 in.). The scanner transmits a beam of linearly 
polarized laser energy (1.053 pm) and senses reflected electromagnetic energy parallel 
and perpendicular to transmitted polarization. The magnitude of the two components 
depends on the depolarization, directional and reflectance properties of the surface. The 
scanner also includes a thema1 channel (8-12 pm). An example photographic image from 
this scanner showing vehicles on a pavement area is shown in Figure 3.1. Although the 
REMIDS images are outside the electromagnetic spectral region for which we performed 
our simulations, they do provide information on how vehicles appear against a pavement 
background. 



Figu Ire 3.1 Reflectance channel measurements (sum of the parallel channel 
[laser return having the same polarization as the transmitted beam] 
and the cross-polarized channel from the REMIDS scanner) of a 
parking lot showing different vehicle types. 



Example digital images from the REMDS scanner were provided by WES. 
Analysis of these images for vehicle and pavement reflectances was performed. The 
cumulative distribution of the reflectance values for a large patch of asphalt pavement is 
shown in Figure 3.2a, and those for four smaller patches of pavement at different 
locations are shown in Figure 3.2b. We also present the cumulative distribution in which 
the theoretical reflectance value of a typical asphalt pavement (Rfl18) is represented by 
a Gamma distribution with mean and standard deviation of reflectance values of 18.2 and 
3.8, respectively. To develop the Gamma distribution, we examined a theoretical 
reflectance value of an "asphalt " pavement from a typical reflectance curve developed by 
Colwell (1966). In the infrared part of the spectrum, we found the asphalt curve rising, 
and therefore, we would expect the infrared reflectances to be higher. 

The results are encouraging. Specifically, as expected, the infrared values are 
slightly above our calculated panchromatic values, i.e., the "pavement" curves lie to the 
right of the "Gamma" curve. Moreover, the variances of the different pavement patches 
are low. The statistics show that each patch had lower standard deviations than what we 
assumed would be "low" (3.6 counts). The variance across the patches would, of course, 
be higher. Recall, however, that the resolution of these WES images (6 in. or 15 cm) is 
much smaller than that which we expect from a satellite platform (1 my perhaps). 

The infrared reflectances of the parked vehicles showed much higher variances 
(Fig. 3.3a, b). It appears that some vehicles have a bi- or tri-modal frequency distribution, 
perhaps representing the windshields, cabs, and truck beds at the fine resolution of the 
image. We had no theoretical results to make relevant comparisons to the cars or trucks. 

Figure 3.4 contains several asphalt and concrete surfaces from another location 
(the Vicksburg, Mississippi airport), as well as additional areas of grass and water. We 
processed selected samples of these images through OSU-MAP-for-the-PC (a GIs 
computer program available at The Ohio State University) and produced the cumulative 
distributions shown in Figure 3.5a-c. As with Figure 3.2 above, there was very little vari- 
ability in asphalt for the specific patches of pavement analyzed. The small variability is 
represented by the steep cumulative distributions. (Each distribution represents between 
2,500 and 5,000 observations of approximately 7.6 cm by 7.6 cm.) On the other hand, 
there is more variability in concrete (Fig. 3 .5~)  than for the east and north sections of the 
asphalt curves (i.e., when comparing Figures 3.5a and 3.5b). This variability in the pave- 
ment sufiaces may not allow us to get a unique characteristic distribution for Rpvt. 

We worked with these digital data sets to get some feel for Rpvt and R- but felt 
that the spectral channels would not be suitable for a satellite platform. Laser energy 
could probably not achieve the fine spatial resolution that we would need to detect 
vehicles. 

3.3 NPIC Data Sets 

We contacted Leon Hicks (National Photographic Interpretation Center, 
Washington, DC), who sent us the Spectral Catalog, which is a reference collection of 
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Figure 3.2 Cumulative distributions of infrared pavement reflectances in WES image 
and theoretically calculated asphalt pavement with "low" variance. 
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Figure 3.3 Cumulative distributions of infrared reflectances for portions 
of parked vehicles in WES imagery. 



Fig 8.4 Reflectance channel measurements (sum of the parallel channelgaser I 

having the same polarization as the transmitted beam] and the cross- 
polarized channel from the REMIDS scanner) of various pavement tyg 
the Vicksburg, Mississippi airport. 
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a. Three patches of asphalt pavement in east section. 

Figure 3.5 Cumulative distributions of infrared pavement reflectvlces 
at Vicksburg, Mississippi airport. 



Figure 3.5 (continued) 
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b. Six patches of asphalt pavement in north section. 



Figure 3.5 (continued) 

C1 C2 C3 C4 C5 C6 

leu 148.71 136.39 141.48 135.34 112.53 130.61 
SD 6.91 5.84 8.87 21,70 7.17 7.32 
Rax 170 152 168 172 141 178 
Win 102 100 86 86 92 82 

2601 2601 2601 2601 2601 515: 

Reflec tonce 
0 C3 A C4 

c. Six patches of concrete pavement. 



different types of spectral measurements in support of the Spectral Studies Program. 
Detailed information is provided on the materials measured, descriptions of the instm- 
ments and methods used to collect and reduce the measurements, and hard-copy plots of 
the spectral reflectance measurements. Recorded visiblelnear infrared reflectances of 
various samples were measured for the 0.4-2.5 pm (visible, near infrared-VNIR- 
wavelength region) at a resolution of 0.01 pm, and the 2-14 pm (middle infrared-MIR) 
and 0.4-14 pm (combined VNWMIR) wavelength regions at a 0.15 pn resolution. 

The samples in the database included construction materials, fabrics, metals, soils, 
paints and rubber, and were primarily directed to military applications. Reflectance 
values were measured and included absolute reflectance factor (%) as a function of wave- 
length, bidirectional reflectance and hemispherical reflectance. 

We decided not to work with this data set, principally because there were not 
enough pertinent material types relevant to our study, since the materials were geared 
towards the military. We did see, however, that reflectance values for the color of paint 
varied by the number of coats of paint. For example, with two coats of green paint the 
absorption minima will be stronger due to the increased optical thickness of the paint 
(two coats instead of one). This reinforced our suspicions that it would be difficult to 
model Rveh with a unique distribution of vehicle reflectances. 

3.4 SpectraFAXTM 440 Portable Field Spectroradiometer 

We contacted Keith A. More (Manager, R&D Sales, Daedalus Enterprises, Inc., 
Ann Arbor, Michigan-an OSU Center for Mapping (CFM) corporate partner) to discuss 
the feasibility of obtaining ground signatures of vehicle and pavement refiectances. 
Daedalus specidizes in developing multispectra1 scanning instruments to use in sirnulat- 
ing satellite studies of the terrain. 

Daedafus makes a portable spectroradiometer that could be used to gather infor- 
mation on typical vehicle and pavement reflectances. There are several modes of 
operation. The radiance mode will gather and store raw data. The reflectance mode will 
perform ratios with the calibration data. An averaging mode will store up to 10 unaver- 
aged spectra with the next spectra being the average of 10 samples. The acquisition time 
is 3 seconds/spectra. Spectra are written as ASCII files. About 237 spectra can be stored 
on a 3.5-in. diskette. The instrument operates by aiming the head of the instrument at the 
object of interest from a distance of about 1 m. A trigger is squeezed and the reflectance 
spectrzlm for the selected range of wavelengths is recorded automatically. 

We did not pursue this option, since it would have entailed quite a bit of field 
work. We would need to develop a scheme to sample a number of different cars, vans and 
trucks of various colors from overhead. We thought of sampling cars, vans and small 
trucks at a local car dealership. However, the Iarger semi-trailers would have to be sam- 
pled from bridges located over highways, or we would need to visit representative local 
trucking companies to obtain reflectance samples of their vehicles. 



3.5 ODOT Panchromatic Images 

Tim Pancher (Ohio Department of Transportation (ODOT) Bureau of Technical 
Services, Columbus, Ohio) provided us with data on pavement type and car and tnrck 
ADT's for highways in Franklin County. We used this information to identify two areas 
with different pavement types that would likely contain a number of vehicles. These areas 
include the I-270W and 1-70 interchange and the 1-70 and S.R. 3 15 interchange. 

ODOT maintains a catalog of standard panchromatic aerial imagery (0.4-0.7 pm). 
The imagery is at a scale of 1" = 1000' (scale 1 : 12,000). We requested the aerial photog- 
raphy for our two selected areas from Ed Smith (ODOT, Aerial Engineering). 

The photographs were scanned to provide a digital product that we could then use 
with an image processing program. We analyzed several highway sections where we 
thresholded the image so that the vehicles are shown as "black'' (0) against a highway 
background ("whiten-1). We then counted the vehicles to develop the total number of 
vehicles. The counting was compared to visual counts taken from the photography (our 
"ground truth") to develop data on how well we can automatically count and classify the 
vehicles from an image. The results from this analysis are described in the following 
sections. 

We also examined the reflectances from several trailers and concrete pavement 
sections from the panchromatic images (Fig. 3.6% b). Remember that these images were 
scanned to result in an array of relative reflectance values (256 levels) and that they are 
not true reflectances. Comparing Figure 3.6a and Figure 3.6b shows that the trailer 
reflectance observations overlap greatly with the concrete pavement observations. Based 
on this analysis of a panchromatic image, it would be difficult to detect a vehicle from a 
concrete pavement based only on reflectance values of the vehicle and highway. This 
would make the task of distinguishing trailers from the pavements troublesome. 
Techniques need to be developed to make the vehicles stand out from the surrounding 
pavement. 

Had we known that the reflectance distributions of vehicles and pavements would 
have been so difficult to develop, we would not have developed the geometric model 
described in Appendix C that focuses entirely on the true reflectances of vehicles and 
pavements. Data on these types of reflectances was not available in the previous remote 
sensing literature, since the resolution of satellite sensors prohibited the detection of 
vehicles. Therefore, we view this finding of similar reflectances as somewhat significant. 
However, the relative reflectances of vehicles, shadows and pavements derived from our 
scanning process is still useful for simulating a satellite image of vehicles and pavements. 

In summary, our efforts to determine unique vehicle and pavement reflectances 
resulted in the conclusion that vehicles and pavements have similar reflectance values. 
This is discouraging in the sense that it will be hard to distinguish vehicles as separate 
entities from the pavement based solely on their reflectance value. It also means that the 
mathematical modeling approach described in Appendix A will have limited use. Other 
image processing techniques will be necessary to make these vehicles stand out as 



a. Trailers at loading dock. 

80 

b. Highway pavement (no median, no vehicles). 

Figure 3 -6 Histograms of panchromatic reflectance values from scanned digital 
representation of aerial photo 514, simulated 1 m pixel resolution. 



separate objects to be identified, counted and classified in a traffic situation. These were 
incorporated into our automatic image processing approach that will be described later. 

3.6 Scanning of Aerial Photographs 

Using the aerial photographs for the evaluation studies involved scanning the pho- 
tographs to obtain digital representations of the scenes, selecting highway sections from 
the digital representations for analysis, using these highway sections in an image process- 
ing package to count and classiQ vehicles, and comparing the classifications to estimates 
of the "true" vehicle characteristics. 

We scanned the aerial photographs at various scan resolution rates. Since the 
aerial photographs were at a 1 : 12,000 scale, scanning the photographs at a rate of D dots 
per inch (dpi) would simulate a resolution PS(D) of 

where, as in a satellite image, the resolution PS is given as the length along one side of a 
square area over which the scanner averages the reflectances in the panchromatic wave- 
lengths (0.4-0.7 pm) for the area. 

We scanned the four aerial photographs at rates D of 300, 144, and 72 dpi, which 
according to Eq. (3.1) simulated resolutions of 1.0 my 2.1 m, and 4.2 my respectively. To 
accomplish this, we used the HP ScanJet Plus scanner located at The Ohio State 
University's Center for Mapping. The output consisted of a matrix of integers between 0 
and 255 (representing the 256 possible values on an 8-bit scale), where the numerical 
value in a cell was the average panchromatic reflectance (grey tone) of the pixel cell area 
of the photograph. In Figure 3.7, we show a digital representation of a highway segment, 
taken on 1-70 in Franklin County, Ohio. The digital image was produced by scanning 
aerial photograph 514 as described above at a 300 dpi scan rate, i.e., a simulated resolu- 
tion of 1.0 m. The hardcopy print is produced with standard image processing software 
by associating a different grey tone with each numerical value in the digital 
representation. 

Based on comments we received at a project review at the Ohio Department of 
Transportation (ODOT), we later decided to scan at a resolution finer than 1 m. 
Specifically, we scanned at a rate of 500 dpi to simulate a 0.6 m resolution. Scanning at 
this rate required the use of the Optronics 5040 scanner at the OSUYs Center for Mapping. 
We enlisted the cooperation of the Center for Mapping staff to scan selected highway 
sections of the four images. We do note, however, that we can now aggregate these 
matrices to simulate coarser resolutions without further rescanning. 

As mentioned, the numerical vdue in each cell of the simulated digital representa- 
tion was the average reflectance or grey tone in the area of the photograph corresponding 
to the cell. This value would simulate the contrast ratio (see Appendix A) that would be 
recorded by a digital panchromatic sensor of that area. The value would not be a perfect 



Figure 3.7 Digital representation of scanned aerial photograph of highway segment on I- 
70 in Franklin County, Ohio. 

Figure 3.8 Binary representation of Figure 3.7 after threshoIding at a level of 56. 

Figure 3.9 Binary representation of Figure 3-8 with identifiers attached to clumps. 



estimate of the contrast ratio of the scene in that area, however, since the grey tone in the 
photograph wouId also be affected by the photographic development process. This source 
of error would not be present when sensing directly with a digital instrument. There 
would be some difference between the contrast ratio recorded from a digital sensor on a 
satellite platform and that recorded from an aircraft, due to the difference in altitudes of 
the platforms. We, therefore, do not believe that the numerical values obtained from 
scanning the aerial photographs would estimate the numerical values of the contrast ratios 
that would be obtained from a digital sensor. We do feel, however, that the relation 
between the numerical values in our scanned representation and those that would have 
been obtained by directly sensing the same scene with a digital sensor would be similar 
enough to perform the investigations reported in this section. 

3.7 Image Processing of Highway Sections 

To detect, count and classify vehicles we input the highway sections that were 
prepared as described above into an image processing package. We began by using OSU- 
MAP-for-the-PC, the same package used in our simulation programs described in 
Appendix B, but switched to the National Institute of Health's (NIH) Image package, 
since we found it to be more flexible for our needs. Using the NIH package required a 
great deal of subjectivity in counting and classifying the vehicles and required much 
operator interaction. Therefore, to test what we had learned with the interactive process 
using the NIW package, we developed a series of computer programs to automate the 
image processing tasks. The computer programs work in much the same fashion, 
however. Specifically, as described in Appendix B, the computer programs take a matrix 
of numbers as input and output a series of clumps (or clusters) with associated attributes 
and statistics. 

The classification process using the NM[ approach will be discussed first. The 
image (input matrix) is comprised of digital count values ranging from 0 to 255. To 
threshold an image is to convert the image to a 2-bit image, one that is comprised of only 
two grey levels - 0 and 1. The image was thresholded interactively using a command in 
Image. The threshold value was selected interactively by the operator to eliminate the 
patches of pavement that were not considered to be vehicles. This threshold value was a 
subjective evaluation, but the threshold procedure was consistent when analyzing each of 
the images. Specifically, the operator selected the largest value such that the highway 
median would just disappear. Because of changes of reflecwce in the pavement across 
the image, the threshold value was not necessarily the same firom one portion of highway 
to the next. 

To form the clumps, the user first specifies a threshold level so that all cell entries 
above this level are converted to 1's and all values below this level are converted to 0's. 
As noted in Appendix B, it is straightforward to convert values below the level to 0's and 
values above the level to 1's. We call this step "eliminating the pavement," since we 
define the threshold level so that we anticipate converting to 1 almost all cell values that 
correspond to pixels (picture element-a grid cell) of only pavement. Because the 
reflectance values of the vehicles are distributed much like the reflectance values of the 



pavement, we inevitably convert to 1 many cell values that correspond to vehicle pixels at 
this step. We discovered, however, that vehicle shadows were among the darkest 
elements in the images. Therefore, by converting to 0 all cell values below a low 
threshold value, the cells containing 0's were primarily associated with vehicle shadows. 

In Figure 3.8, we see the results of thresholding the digital representation 
portrayed in Figure 3.7 at a level of 56. Specifically, Image converted all cell values 
greater than 56 to 1's and all values less than or equal to 56 to 0's. The Image package 
then plots all pixels with 0 values as black and does not plot anything for pixels with 
values of 1. 

After obtaining a binary matrix (a matrix with cell values containing only 0's or 
1's) in this way, the counting operation forms entities called clumps (or particles) of all 
contiguous pixels containing values of 0. The program also attaches identifiers and 
attributes to each clump. The identifiers are simply integers that number the clumps. The 
two attributes of most interest to us in this phase of the analysis were the number of 
pixels in the clump (area) and the perimeter of the clump. 

In Figure 3.9 and Table 3.1, we see the results of the clumping process. The 
contiguous pixels of Figure 3.8 are grouped together into clumps and given the identifiers 
shown in Figure 3.9. The identified clumps are listed in Table 3.1, along with the number 
of pixels in the clump area and the perimeter of the clump. 

Table 3.1. Identifiers, attributes, and classification of clumps in Figure 3.9. 

Finally, we used a spreadsheet software package to produce histograms of the 
clump sizes. Figure 3.10 is the histogram of the number of pixels in the clumps identified 
in Figure 3.9 and Table 3.1. 

To make this process operational, several issues would surface. For example, 
most of the commands used in Image can be used in more sophisticated software. The 
software runs faster, larger images can be held in memory, and macros can be written to 
automate the import of images, the analysis and the export of data, and to minimize the 
operator interaction with the image processing software. We envision that a network of 
highways would already be available for a city or rural highway system. Images received 



Figure 3.10 Histogram of areas (numbers of pixels) of clumps 
in Figure 3.9 and Table 3.1 



from the satellite platform would be georeferenced with the highway network. A buffer 
zone around the highways would be an additional overlay in the system. Image areas 
within this buffer zone would be extracted from the satellite images. The thresholding 
operation would require some user intervention initially, but with time, given threshold 
values could be used as rules-of-thumb for a given area based on levels of contrast and 
brightness within an image. The counting process could be performed automatically by 
the program. The area and perimeter of each clump could be processed through a 
computer program to classify the clump into an individual class of vehicle. These were 
the processes that we incorporated as much as possible into our automatic image 
processing programs described later in this section. 

3.8 Estimated Classification of Vehicles 

The number of clumps could serve as an estimate of the total number of vehicles 
counted. Experience with the images showed that this process would often form clumps 
of elements not associated with vehicles, however. For example, shadows of signs, over- 
passes or trees would remain after thresholding to "eliminate the pavement." Also, some 
dark patches of pavement would form clumps. Therefore, we tried to use the clump 
attributes to classify each clump as being associated with a vehicle or with a 
"nonvehicle." We used the same attributes to classify the vehicles into what we called 
"trucks" (large vehicles) and "other vehiclesy' (smaller vehicles, which could be cars, 
vans, pick-ups and the like). 

We used the number of pixels in the clump and the ratio of the clump's perimeter 
to its area to classify the clump as a truck, other vehicle or nonvehicle. (To be precise, we 
should say that we classified the clump "as being associated with" a truck, other vehicle, 
or nonvehicle, since the clump was usually produced by the shadow - perhaps with a few 
pixels actually produced by the object, such as the dark cab of a truck on a light pavement 
- of the element. We shall refer to the clump as "being" a truck, other vehicle, or 
nonvehicle, however, except where the distinction is needed for clarity.) We chose these 
attributes after noticing that the number of pixels in the clump offered a good first 
approximation of the nature of the clump and that many nonvehicle clumps were longer 
and thinner than vehicle clumps (this latter characteristic being represented by high 
perimeter to area ratios). 

We call the number of pixels in the clump A (for area) and the perimeter to area 
ratio B. One could conceive of a study designed to find which values of A and B perform 
better than others. At this stage, however, we were only interested in exploring the pos- 
sibilities of vehicle classifications and in producing a rough estimate of the performance 
of different resolutions. Therefore, we experimented only briefly before settling on A and 
B values used in our analysis. These levels can be found in the ~Iassification flow charts 
shown in Figures 3.11 a-c. As seen there, the values of A and B change with the resolution 
used, since a shadow of a given metric area would cover fewer and fewer pixels as the 
size of the pixel increases, i.e., as the resolution becomes coarser. 

As an illustration, consider again the clumps of Figure 3.9 and Table 3.1. These 
were produced from a 1.0 m simulated resolution. By applying the criteria illustrated an 



the flow charts of Figure 3.1 la  (i.e., those that correspond to 1.0 m resolution) we 
obtained the classifications seen in Table 3.1. We call the classifications produced in this 
way the "estimated classification." 

3.9 Comparison of Counted Vehicles to True Count 

The final step was to compare the estimated classification to what we believed to 
be the true classification. We did this both formally, keeping track of statistics that sum- 
marize successful and unsuccessfbl classifications, or informally, qualitatively seeing 
how well the estimated classifications were performing. 

In both cases we needed to determine what we believed to be the true classifica- 
tion for the given highway segment. We did this by having two individuals "manually" 
interpret the segment on the original aerial photograph under a magnifying lens, and 
having them come to an agreement on whether each vehicle observed was a truck or other 
vehicle. Note that this process would introduce error into our approximation of the true 
classification and, therefore, into any comparisons between the estimated classification 
and that approximated as the truth. One source of error would be the errors made by the 
individuals performing the manual classification - they could either misclassify a vehicle 
or not observe a vehicle that could be observed in the image. Another source of error 
would be that associated with the inability of the aerial photograph to capture the true 
image - e.g., vehicles in shadows would not be seen in the aerial photograph. 

Once the true classification was approximated, we could then compare the 
vehicles identified in this "true data set" to the clumps produced in the estimated 
classification. 

3.10 Discussion of Statistical Measures to Identify and Classify Vehicles 

The traditional remote sensing measures of classification accuracy compare a 
classified pixel to an approximation of the true classification of the pixel. Our task was 
somewhat different in that we were not comparing the classification pixel by pixel, but 
rather comparing clumps and objects identified in a scene. Moreover, the number of 
objects in the simulated remote sensing product (the clumps output from the image pro- 
cessing stage) and in the truth (the number of vehicles identified from the aerial photo- 
graph) could be different. We, therefore, had to modify slightly the traditional measures 
to obtain meaningful statistics for our application. 

After performing the steps described above, we could consider two lists for each 
highway segment analyzed, a list of clumps output from the image processing software 
and a list of vehicles from the analysis of the aerial photograph. Each clump in the 
"clump list" would have a location associated with it (by its x,y location in the image) 
and be classified as either a mck (t), other vehicle (o), or nonvehicle (n). Similarly, each 
vehicle in the "vehicle list" would have a location identified with it (by its location on the 
aerial photograph) and be classified as either a truck (t) or other vehicle (0). Note that 
there would be no nonvehicle classifications for the objects in the "vehicle list." We call 
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Figure 3.11. Classification logic based on number of pixels (A) and perimeter- 
to-area ratio (B) for different simulated resolutions. 



the number of clumps in the clump list NC, and the number of clumps in the vehicle list 
NV. 

First, consider the clump list. Since the objective is to identify and classify 
vehicles, the performance measure should reflect how well the classifications of the 
objects in the clump list match their true classifications. To define the appropriate terms, 
consider clump i in the clump list. It could be classified as either a truck (t), other vehicle 
(o), or nonvehicle (n). The area associated with the pixels of the clumps in the aeriaI 
photograph could be associated with the presence of a truck (t), other vehicle (o), or 
nonvehicle element (n). (We say that the area would be associated with a truck, for 
example, since the area might be imaging part of the vehicle itself, a shadow sf the 
vehicle, or the sun' s reflection off of the vehicle.) The nonvehicle designation of the area 
in the photograph is reserved for elements that could not be associated with a vehicle, 
e.g., patches of pavements or shadows of overpasses. We define an indicator variable Iu  
(i) for element i of the clump list as follows. 

Ikl(i) = 1, if the ith element in the clump list is classified as kin the estimated 
classification and the associated pixels in the aerial photograph truly 
correspond to classification 1; 

0, otherwise; 
fork = t, o, n; and I= t, o, n. (3 -2) 

For example, if the ith clump was classified as a "truck" and the corresponding 
pixels in the aerial photograph were associated with an "other vehicle," then Ito(i) = 1, 
and Itt(i) = Im(i) = Jot(i) = bo(i) = Ion(i) = In&) = Ino(i) = Inn@ = 0. In this way, a 
correctly classified clump i would be indicated by Ikl(i) = 1, when I equals k, and a 
misclassified clump would be indicated by Ikl(i) = 1 for any I not equal to k. 

We could then obtain an indicator for each clump i in the list and form the 
following sums from these indicator variables: 

The value of akl would give the number of clumps on the highway segment that 
were estimated to be of classification k, but were truly associated with classification 1 on 
the aerial photograph. The values of att and ko would give the number of clumps that 
were correctly classified as trucks and other vehicles, respectively; the values of ato and 
aw would give the number of clumps that were misclassified as trucks when they were 
truly other vehicles and nonvehicles, respectively; the values of sot and hn would give 
the number of clumps that were misclassified as other vehicles when they were truly 
trucks and nonvehicles, respectively; and the values of ant and an0 would give the number 
of clumps that truly corresponded to trucks and other vehicles, respectively, but were 
classified as nonvehicles. Finally, the value of a, would give the number of clumps that 
were classified as nonvehicles that were truly nonvehicle elements, although this measure 
would be of less interest in our study. In summary, the aa and aoo values give the number 



of clumps that were correctly classified, and the ab, aul, %t and values would give the 
number of clumps that were misclassified as vehicles. 

There could still be some vehicles that did not appear as clumps that would not be 
accounted for by the aM values. For example, the pixels associated with some of the 
vehicles might be eliminated when "eliminating the pavement" in the thresholding step of 
the image processing component. To account for the classification performance of the 
true vehicles, we considered the vehicles identified on the highway segment in the aerid 
photograph as forming a "vehicle list," consisting of W elements (vehicles). We define 
an indicator variable Jkl(i) for the ith element of the vehicle list as follows: 

JM(i) = 1, if the ith vehicle in the vehicle list is truly of classification k and the 
corresponding clump in the clump list is estimated to be of classification I; 
0, otherwise; 
fork=t,  o; andI=t, o,n. (3.4) 

For example, if the ith vehicle in the vehicle list were truly an "other vehicle" in 
the aerial photograph and the corresponding clump were classified as a "nonvehicle," 
then Jon@ = 1, and Jdi) = Jto(i) = Jtn(i) = Jot(i) = Joo(i) = 0. We note that the "n" classifi- 
cation could correspond to a clump being classified as a nonvehicle due to the attributes 
of the clump (see Fig. 3.1 I), or it could correspond to no clump having been formed in 
the image processing step that could be associated with the vehicle in the aerial photo- 
graph. We note also that since an element in the vehicle list would either be a truck (t) or 
other vehicle (o), there would be no "n" classification for the first subscript of the J 
indicator variable. Therefore, there would only be six categories when considering an 
element from the vehicle list, whereas, there would be nine when considering an element 
from the clump list. A vehicle i that was correctly classified in the image processing 
component would, therefore, be indicated by either Jtt(i) = 1 or Joo(i) = 1 (i.e., Jkl(i) = 1, 
when I equals k), and a vehicle that was incorrectly classified in the image processing 
component would be indicated by Ju(i) = 1 for any E not equal to k. 

We could then obtain an indicator for each vehicle i in the vehicle list and form 
the following sums from these indicator variables: 

NV 
J i ,  fork=t,o;andE=t,o,n. 

i=l 

The value of bkl would give the number of vehicles on the highway segment that 
were classified as kin the aerial photograph, but were estimated to be of classification I in 
the image processing step. The values of btt and boo would give the number of trucks and 
vehicles, respectively, that were correctly classified. Note that btt = an and boo = bO. The 
values of bto and btn would give the number of trucks that were misclassified as other 
vehicles and nonvehicles (including not being identified), respectively. Note that bto = aot 
and btn = ant. The values of bot and bon would give the number of other vehicles that were 
misclassified as trucks and nonvehicles (including not being identified), respectively. 
Note that bot = ato and bon = ano. 



We summarize the akl data elements in the "Clump Classification Table" (Table 
3.2a) and the bkl data elements in the "Vehicle Classification Table" (Table 3.2b). We 
can then use these data elements to form performance measures. The summary statistics 
for the performance measures used in our study - fraction correct and errors of omission 
and commission - are described in Appendix D. 

Table 3.2. Summary of classification data elements. 

a. Clump classification table. 

b. Vehicle classification table. 

3.11 Quantitative Results using the NTH Image Program 

We analyzed seven highway segments in the aerial photographs at the four simu- 
lated resolutions (0.6 m, 1.0 m, 2.1 m, 4.2 m) resulting from the scan rates discussed 
above. All segments were on interstate routes in the west-central or central part of 
Franklin County, Ohio (see Fig. 3.12). Other characteristics of the segments can be found 
in Table 3.3. The scanned images at the 1.0 m resolution for these seven segments are 
shown in Appendix E. We chose a threshold value based on the analyst's iteratively 
thresholding the image until the highway median disappeared fiom the image. The classi- 
fication criteria were those presented in Figure 3.1 1. 





Table 3.3. Characteristics of highway segments analyzed in the study. 

The nine summary performance statistics (see Appendix D) for the four resolu- 
tions can be found in the manual interpretation results of Table 3.4. We had some trouble 
determining the performance measures for some of the highway segments at the 4.2 m 
resolution, since we were comparing features manually in this study. If one were to 
digitize the locations of the vehicles in the aerial photographs, most of the difficulties 
encountered would disappear. A detailed statistical analysis of the manual interpretation 
results can be found in McCord et al. (1994). 

In general, the Fraction Correct statistics improve as the resolution becomes finer. 
Considering the Fraction of Vehicles Correctly Identified (FVCI) (Table 3.4a.i), which 
indicates the ability to identify a vehicle of any kind that is present, the 2.1 m resolution 
performs better than the 4.2 m resolution on both of the segments where we have sum- 
mary statistics for the two resolutions. Comparing the 1.0 m to the 2.1 m resolutions, the 
1.0 m resolution performs better 7 out of 7 times. Comparing the 1.0 m to the 0.6 m reso- 
lutions, the 0.6 m resolution does not necessarily outperform the 1.0 m resolution. In fact, 
the 1.0 outperforms the 0.6 m resolution 4 vs. 2 times with one tie, The overall aggregate 
statistic is highest for the 1.0 m resolution. 

Pavement 

C o n e  

Concrete 

Concrete 

Concrete, asphalt 

Asphalt, concrete 

Although the aggregate Fraction Correct statistic for the truck classifications - 
Fraction of Trucks Correctly Classified (FTCC) (Table 3.4b.i) - was worse at 2.1 m reso- 
lution than at 4.2 m resolution, this was due in part to not having statistics available at the 
4.2 m resolution for those segments where the 2.1 m performance was poor. In fact, out 
of the five segments where we had statistics for the two resolutions, the 4.2 m resolution 
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Table 3.4 Statistical performance measures for vehicles, trucks and other vehicles. 

3.4a. Fraction of vehicles correctly identified (FVCI). 

i. Manual interpretation. 

ii. Image processing. 



Table 3.4b. Fraction of trucks correctly classified (FTCC). 

i. Mmud interpretation. 

I A m p a t e  Statistic: 1 39/46 = 0.848 [ 40/46 = 0.870 1 34/46 = 0.739 1 24/29 = 0.828 1 

ii. Image processing. 

I Awegate Statistic: I 1 44/45 = 0.978 ] 45/45 = 1.000 1 36/45 = 0.800 1 



Table 3 . 4 ~ .  Fraction of other vehicles correctly classified POCC). 

i. Manual interpretation. 

ii. Image processing. 



Table 3.4d. Vehicle identification error of omission (VIEO). 

i. Manual interpretation. 

I &egate Statistic: 27/309 = 0.087 j 18/309 = 0.058 ) 61/309 = 0.197 I 44/I14 = 0.386 1 

ii. Image processing. 



Table 3.4e. Truck classification error of omission (TCEO). 

i.  Manual interpretation. 

ii. Image processing. 



Table 3.4f. Other vehicle classification error of omission (OCEO). 

i. Manual interpretation. 

I Aggregate Statistic:I 26L263 = 0.099 1 19/263 = 0.072 1 56/263 = 0.213 f 81/175 = 0.463 1 

ii. Image processing. 

L Awegate Statistic: I 1 1 7/249 = a 068 1 ~ 2 4 9  = 0.273 f 155/249 = 0.622 1 



Table 3.4g. Vehicle identification error of commission fVIEC). 

i. Manual interpretation. 

ii. Image processing. 



Table 3.4h. Truck classification error of commission (TCEC). 

i. Manual interpretation. 

ii. Image processing. 

I Aggregate Sfatistic: ( 1 0/45 = 0,000 ] 0/45 = 0.000 2/45 = 0,044 1 



Table 3.4i. Other vehicle classification error of commission (OCEC). 

i. Manual interpretation. 

ii. Image processing. 



outperformed the 2.1 m resolution in only one case - 753(1):N-S - and the improvement 
was slight - 517 versus 417 correctly classified. Moreover, comparing the 1.0 m (best) and 
2.1 m (worst) FTCC's, there appears to be no significant difference in performance. 
Specifically, in the seven segrnent-by-segment comparisons, the 1.0 m resolution outper- 
forms the 2.1 m resolution only twice. (The other five comparisons show equal perfor- 
mance.) The 0.6 m resolution slightly outperformed the 1.0 m resolution 317 vs. 2/7 
correctly classified with 2 ties. In terms of classifying trucks, the data in our analysis are 
not sufficient to say that the resolutions are not performing equally well. We would leave 
open the possibility that 4 m resolution might be sufficient to classify trucks. 

The finer resolution seems to be important in classifying "other vehicles," however 
(see Table 3.4c.i). The 2.1 m resolution's Fraction of other Vehicles Correctly Classified 
(FOCC) is better than the 4.2 m resolution's FOCC in all five of the segments where we 
had statistics for both resolutions. Similarly, the 1.0 resolution outperforms the 2.1 m 
resolution in all seven of the segment-by-segment comparisons. The 1.0 m resolution also 
slightly outperforms the 0.6 m resolution 3 times out of 7 segments with 2 ties. We would 
tentatively conclude that the 1.0 m resolution offers an improvement over the coarser 
resolutions for classifying other vehicles. 

We mentioned in Appendix A that a typical standard in remote sensing performance 
is an accuracy level of 85%. This measure is generally associated with the ability to 
correctly identify some element that is present in the image. Adapting this measure to our 
study, we could think of this as meaning a 0.85 probability of correctly identiGing or 
classifying a vehicle that is present. However, we checked with engineers involved in 
counting operations, and they desire a 90% accuracy rate. Therefore, we adopted a 
conservative value of 90% accuracy, rather than 85%. 

Summarizing the results of the Fraction Correct Analysis, we believe that the 1.0 m 
resolution performed better than the 2.1 m and 4.2 m resolutions in counting vehicles and 
correctly classifjling "other vehicles." The 1.0 m resolution also performed better than the 
90% accuracy standard in these two tasks, while the 2.1 m and 4.2 m resolutions 
performed worse than this standard. We determined that the 0.6 m resolution did not 
significantly improve our classification measures when compared to the I .O rn resolution. 
For example, for the fiaction of vehicles, trucks and other vehicles classified (i.e., FVCI, 
FTCC and FOCC, respectively), the totals and average ratios increased slightly (about 
3%) for the 1.0 resolution when compared to the 0.6 m resolution. In terms of classifying 
vehicles as trucks, it appears that we did not have enough truck obsenrations in our 
images to determine whether one resolution was significantly outperforming another or in 
determining how the resolutions compared to the 90% standard. We have already men- 
tioned this lack of control on input data as a drawback of this type of analysis and a 
reason for attempting to build the mathematical model described in Appendix A. 

The Errors of Omission statistics (Tables 3.4d-f.i) are the complements of the 
Fraction Correct statistics and exhibit the same characteristics, in terms of resolution, as 
those discussed above. 



The errors of commission indicate how many excess vehicles are being counted or 
classified in the specific vehicle class. The statistic is scaled by the number of clumps in 
the clump list, since an excess vehicle could only be counted or classified if there was a 
clump present. 

Referring to Table 3.4g-i.i, we first note that as the resolution becomes finer, more 
clumps tend to form. Investigating the original data shows that at finer resolutions some 
nonvehicle clumps form that might have been "smoothed out" into the background 
pavement at coarser resolutions. 

The Vehicle Identification Error of Commission (VIEC) ratio (Table 3.4g.i) is 
better (smaller) at the 2.1 m resolution than at the 4.2 m resolution for the two segments 
where we have data for both resolutions. The segment-by-segment comparisons between 
the 1.0 and 2.1 m resolutions show that the 2.1 rn resolution performs better in 5 out of 7 
cases. The segment-by-segment comparisons between the 0.6 and 1.0 m resolutions show 
that the 0.6 m resolution performs better in 6 out of 7 cases with 1 tie. At the finer 
resolution a lower commission error is found. 

The Truck Classification Error of Commission (TCEC) (Table 3.4h.i) shows identi- 
cal performance between the 4.2 and 2.1 m resolutions in 3 of the 5 cases where we have 
data for both resolutions. Comparing the 2.1 m and 1.0 m resolutions, the two perform 
identically in 4 of 7 segments; in the other three segments, the 2.1 m performs better in 2 
cases. Comparing the 1.0 m and 0.6 m resolutions, the two perform identically in 2 of 7 
segments; in the other five segments, the 0.6 m resolution performs better in 2 cases and 
the 1.0 m resolution performs better in 1 case. These data do not allow us to conclude that 
any of the three resolutions is performing better than any other in terms of errors of 
commission - we would need more analysis before doing so. 

The Other vehicle Classification Error of Commission (OCEC) (Table 3.4i.i) shows 
that the 2.1 m resolution outperformed the 4.2 m resolution in 5 of the 5 segments where 
we had data for both resolutions. Comparing the 2.1 m and 1.0 m resolution, the 2.1 m 
has a lower OCEC in 4 of the 7 cases. Comparing the 1.0 m and 0.6 m resolutions, the 0.6 
m has a lower OCEC in 5 of the 7 cases with 1 tie. The 1.0 m and 2.1 m resolutions 
perform equally well in terms of errors of commission, whereas the 0.6 m resolution 
would show an improvement. 

The errors of commission data, then, support the Fraction Correct data in saying the 
improved imaging offered by the 1 m resolution may not improve truck classification 
significantly, at least for the simple algorithms used here. It also appears that the 1.0 m 
resolution offers no improvement over the 2.1 m resolution in terms of errors of commis- 
sion when counting total vehicles and classifying "other vehicles." These two resolutions 
both seem to perform better than the 4.2 m resolution in terms of errors of commission 
for these two tasks, however. 



3.12 Qualitative Results using the NIH Image Program 

In addition to allowing a quantification of the accuracy and errors associated with 
counting and classifying vehicles by remotely sensing them in the panchromatic wave- 
lengths, our simulated empirical study also provided qualitative insights. These qualita- 
tive observations were made on the difficulties that might be involved when conducting 
this task in the way we have been considering and allowed us to speculate on ways to 
overcome these difficulties. 

We noticed that the shadows of the signs near the highway were often identified 
as other vehicles with the classification criteria we were using (i.e., the area and 
perimeter-to-area ratio of the clump). If remote sensing of trac characteristics were to 
become an operational process, we believe that these difficulties could be reduced signif- 
icantly in several ways. Fine-tuning of the classification criteria or using filters that 
account for shapes might eliminate many of the errors of commission associated with 
shadows from signs. This consideration for deveIoping additional criteria was accounted 
for in our automatic image processing algorithms discussed in the following section. It 
would also be possible to reduce the problem by coupling good geographic data on the 
static location of the signs with dynamic positions of the sun (from solar ephemeris) to 
estimate where the sign shadows would be located on the pavement when the satellite 
imaged the highway, Therefore, in our automatic image processing procedure, we require 
an input value of sun angle to determine the proper orientation of the vehicle shadows. 
Finally, if the satellite were equipped with two sensors imaging the highway a second or 
so apart, the stationary shadows could be separated from those that had moved in the one 
second interval and subtracted from the clump list to be analyzed. 

Although we did not have enough data and information to analyze the effect of 
pavement type on the imaging performance, we did feel that the reflectance value of the 
pavement did make a difference. We did not feel comfortable comparing the imaging 
performance of different pavement shades in the original aerial photograph, since the 
photographic grey tone would be influenced by the development process. In one segment, 
however, the pavement grey tones were different enough in a local area to call our atten- 
tion to this problem. Specifically, when thresholding the image so as to eliminate most of 
the darker pavement, we were eliminating some of the vehicles (including their shadows) 
on the lighter parts of the pavement. This resulted in increased errors of omission 
(decreased ability to identify and classify a vehicle that was present). Again, good geo- 
graphic information on pavement type and variations should allow one to fine-tune the 
thresholding methods in such trouble spots. The literature was studied to determine 
automatic ways to determine an optimum threshold level and are discussed in the 
following section. 

None of the segments analyzed in the quantitative study was in the downtown 
area. We, therefore, investigated an additional segment of 1-70 in an area where the tall 
buildings of downtown Columbus were casting large shadows on the pavement. We 
noticed that we needed to amend our area and perimeter-to-area values to make sure that 
we were not classifying the large shadows as trucks. After a simple modification, 



however, we noticed that the performance measures were similar to those recorded in 
Table 3 . 4  for those areas not in the shadows. Any vehicle that was in the building 
shadows when the photograph was taken, however, would not have been identified either 
in our estimated count and classification or in the aerial photograph (the estimate of the 
truth). Therefore, our errors of omission would be underestimated. Our experience did 
show, however, that we can amend our procedures so that large shadows are not 
incorrectly classified as trucks, and that we can do so without degrading the performance 
in areas not covered by the shadows. It should also be possible to update the estimates of 
vehicle counts (perhaps probabilistically), if the sizes of these shadows could be 
approximated. 

We also imaged an arterial street to get a feel for possible differences from the 
expressways that we had investigated in more detail. The only additional difficulty that 
we noticed in the arterial segment was that associated with the shadows of trees on the 
pavement. We tended to classifj the resulting clumps as other vehicles. This difficulty is 
similar to that encountered with the sign shadows, however, and we would expect that it 
could be handled in similar ways as those proposed there. This difficulty might be 
slightly more troublesome, however, since trees grow, and they sprout and lose leaves 
during the year. Therefore, the shadow characteristics would change. Moreover, we 
would expect that it would be much more likely to have good geographic information on 
expressway sign locations than on arterial tree locations. 

Finally, our experience made us aware of the inevitable trade-off between errors 
of omission and commission. When thresholding at lower values in an attempt to elimi- 
nate more of the background pavement, more vehicle pixels are eliminated. The 
likelihood of committing the error of identifying a dump of dark pavement as a vehicle is 
reduced, but the likelihood of omitting a vehicle that is present is increased. We would 
anticipate this trade-off with finer resolution. Although we do not foresee a way to avoid 
this problem, it should be possible to get a handle on its effect so that better estimates 
could be produced from the imaging data. 

3.13 Image Processing Techniques for Vehicle Detection and Identification 

We realized that our results using the NM Image software required a subjective 
evaluation and seIection of the proper threshold. We wanted to obtain better accuracies of 
vehicle identification and classification through advanced image processing techniques. 
This would also allow us to make the techniques more automated and objective in scope. 
Also, many more highway segments could be analyzed using this consistent approach. 
We considered three major components in our development: image processing for edge 
detection and noise removal, representing the shape of the edges by several parameters, 
and developing constraints or heuristic rules designed for vehicle detection. 

A sequence of image processing tasks was developed to process a satellite image 
into a final image showing candidate cars (see flowchart in Fig. 3.13). An example road 
segment showing the three resoIutions analyzed with the image processing approach is 
shown in Figure 3.14. 



Figure 3.13 Image processing flowchart for detecting vehicles. 
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a. 1.2 m simulated resolution. 
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c. 4.8 m simulated resolution. 

Figure 3.14 Highway segment 5 13:E-W shown at three resolutions. 
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To start the process, the original image is filtered using either a low pass filter 
(smoothing) or a median filter. The purpose of this step is to remove any noise in the 
image, but still preserve existing edges. Smoothing filters for noise reduction in the 
images were investigated. We found that the median filter provided the best noise reduc- 
tion, while still preserving the edges in the original image. Afler noise removal, edge 
sharpening techniques were applied. Several edge operators were used: Kirsch, Prewitt, 
Laplacian, LOG and the Navatia operators (see Jensen, 1986 for details). We found that 
the Laplacian and LOG operators did not detect the edges as well as the Kirsch, Prewitt 
and Navatia operators, which can account for multiple edge directions (ranging from 8 to 
12). 

Two low pass filtering (smoothing) techniques were tested on our scanned 
panchromatic aerial images taken over Columbus. The size of the windows used in the 
low pass filters were a 3-by-3 and a 5-by-5 matrix, with a weight of 5 in the middle with 
the remaining filter values as 1's. The reason for the higher weight in the middle is to 
preserve the existing edges in the image. 

The second low pass filter tested on the images was a median filter using a 3-by-3 
window. Two types of median filter were designed - a box and a cross. The cross type of 
median filter is preferred in our case, because the filter maintains the step-edge effect 
found at the comer of the shadows cast by the vehicles. 

Based on our panchromatic images, the use of filtering does not make a signifi- 
cant difference in the appearance of the images. This is probably due to the fact that our 
panchromatic images do not contain much noise. However, for the case of remotely 
sensed images acquired by satellites, the filtering techniques will most likely improve the 
images. Therefore, we kept this part of the image processing sequence of tasks for 
analyses of fbture images. 

Next, using information from a transportation network file that may be contained 
in a GIs, the roadway network is registered with the satellite image. Knowledge of the 
spatial coordinates of the road location can be used to overlay on the satellite image. Two 
parallel lines, which are on either side of the highway, are developed knowing the width 
of a given type of highway. These lines defining the road network are then overlaid on 
the image file and the highway network is extracted from the image (Fig. 3.15). The 
resulting image shows the extracted road network. The roads with vehicles can be from 
either a filtered image or the original satellite image, depending on the quality of the 
satellite image data. Next, a buffer on either side of the road centerline can be created to 
eliminate the clumps representing the median strip (Fig. 3.15). 

The road-extracted image is then processed two ways to produce information on 
the existence of vehicles on the extracted road segment. The first process, which 
corresponds to the left-side of Figure 3.13, uses only the gray scale values contained in 
the image. An interest operator, which was developed by Forstner (1986) and Forstner 
and Giilch (1987), is modified to locate the center of a small area that may be imaged 
against the background (pavement) of the image. The point detected by the interest 
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Figure 3.15 Extracted highway section 5 13 ;E-W with road medain removed. 

Figure 3.16 Histogram analysis of highway segment shown in Figure 3.15 
with a threshold value of 74 selected. 



operator is clustered with its neighborhood by a region growing algorithm. In this way 
global information is analyzed about the potential vehicle candidates. 

Selection of the threshold value to separate the vehicles from the background 
pavement is critical. For our prior analyses, a subjective value was determined by the 
image analyst. The image processing technique does this in an automatic fashion. The 
histogram analysis and Kullback thresholding process is used to extract two histograms 
from an image gray level distribution (see Haralick and Shapiro, 1987). The assumption 
for this is that there are two distributions of gray tones - the pavement and the vehicle 
shadows. Thus, the two histograms correlate to the pavement pixels and the vehicle 
shadows, with the distributions assumed to be Gaussian. The technique that we used is a 
modification of the Kittler and Illingworth method. The main thrust of this technique is to 
minimize the Kullback information distance because we have a set of observations fiom a 
mixture of two Gaussian distributions (the pavement and the vehicle shadows). This 
modification will provide an automatic threshold of the image. The program then calcu- 
lates the gray scale value that shows the optimum dividing line between the two distribu- 
tions. For example, Figure 3 .16  shows the histogram of the highway segment shown in 
Figure 3.15  with its corresponding threshold value. Again, this is a global process to 
assist in analyzing the distribution of gray scale values of the image to identify potential 
vehicle candidates. 

This process results in images showing clumps that correspond to vehicle 
locations. Decision rules were developed to classify potential vehicle "clumps" into 
vehicle types. A flowchart of these decision rules and the input parameters necessary for 
calculation are shown in Figure 3.17. The decision rules include the vehicle's shadow 
area, shadow perimeter, shadow area and perimeter ratio, shadow major axis length, 
shadow major axis and minor axis ratio, and shadow orientation. These parameters are 
calculated to sort the vehicle clumps into various classes. The area and perimeter values 
are used to correct (or discard) any long strips of median pavement that may have been 
misclassified into the vehicle list. 

On the right-side of Figure 3.13, concurrent with the process on the left-side, the 
original (or filtered) image is subjected to an edge operator. This process results in an 
edge strength image that shows the strength of the mapped edges. Thus, the stronger the 
edge, the more likely it is to be associated with a vehicle. The edges are then connected 
with the edge following algorithm to result in an image of detected vehicle candidates. 
The edge strength provides local information that the interest operator process cannot 
produce. Figure 3.18 shows example results from the thresholding and edge enhancement 
processes of the road segment in Figure 3.15. 

In applying a step edge operator, such as the Prewitt or Kirsch, the key factor is to 
decide on a threshoId number. To aid in this process, a histogram of scores (or strengths) 
of the edges defined by the edge operator is generated and analyzed on a global level for 
the image. A number of edge images can be generated for different threshold numbers. 
Based on an analysis of the histogram, a threshold number that corresponds to 3-4% of 
the edge scores is selected. However, if we find that the edges detected by the selected 
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Figure 3.17 Flowchart of the decision rules for classification of vehicles. 
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Figure 3.17 (continued) 
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a. Results of thresholding. 

b. Edge enhancement of vehicles. 

c. Final display of vehicles. 

Figure 3.18 Thresholding and edge enhancement results of highway segment 
5 13:E-W with final display of vehicles 



threshold number is not enough to generate edges, then the program automatically 
reduces the threshold number to generate more edges at the local level. 

In summary, three types of information are used to make the final decision on 
detected vehicle candidates - the region growing image, the results from the histogram 
analysis and Kullback thresholding step, and the edge following image. 

3.14 Quantitative Results using the Image Processing Approach 

We tested the automated image processing approach on the seven highway 
segments. The 0.6 m resolution images that were scanned on the Optronics 5040 were 
resampled to result in resolutions of 1.2, 2.4 and 4.8 m. The results are shown in Tables 
3.4a-i under ii - image processing. Overall, the image processing method is performing 
better than our manual method, and we are encouraged by these results. 

For example, in the fraction correct statistics (Table 3.4a-c.ii), the correctly identi- 
fied cars (FVCI) were 93.9% overall for the 1 m resolution, which is similar to the results 
found with the manual approach (0.942). However, most accuracies for the image 
processing approach were consistently above 0.90, except for highway segment 753(3). 
In this case we believe the accuracy dropped to 0.86 because of the varying shades of the 
pavement that caused confusion with the classifier. 

At the 2.4 m resolution the accuracy dropped to 0.769. We had hoped that a 2-m 
resolution would be suitable for identifling a car-sized vehicle, but our tests show that we 
cannot achieve the desired accuracy. At the 4.8 m resolution, the overall accuracy drops 
to 0.442. 

We are able to accurately map the trucks at the 1.2 and 2.4 m resolutions (see 
Table 3.4b.ii). However, at the 4.8 m resolution, we could only map all of the trucks 4 out 
of 7 times. In two cases, we were able to map 50% of the bucks and for the remaining 
segment we were able to achieve an accuracy of 0.857. For this case, if we only had to 
detect a truck-size vehicle, we could use the 2.4 m resolution. 

The other vehicles category (FOCC) was mapped to a 93.2% accuracy (Table 
3.4c.ii) at the 1.2 m accuracy. The accuracy for the 2.4 and 4.8 m resdutions drops to 
0.727 and 0.378, respectively. As with the vehicle identification category, a 1-m 
resolution is needed to detect and identify other vehicles. 

The errors of omission are similar for the vehicles and other vehicles categories 
using the image processing method when compared to the manual method (Table 
3.4d,f.ii). The errors of omission for the truck category (Table 3.4e.ii) were lower using 
the image processing approach. 

The errors of commission were much lower for the image processing method 
when compared to the manual approach (Tables 3.4g-i.ii). At the 1.2-m resolution the 
overall commission error was 0.061 when compared to 0.198 for the vehicle identifica- 
tion category. This also was the case for the other vehicle category (0.068 vs. 0.230). For 



the truck category, there were no committed errors for the 1.2 and 2.4 m resolutions. At 
the 4.8 m resolution the error of commission was lower for the image processing method 
than the manual approach (0.044 vs. 0.226). 

3.15 Additional Testing on a Congested Highway Segment 

We scanned a highway segment at resolutions of approximately 1, 2 and 4 m. 
This highway segment differed from previous segments by being heavily congested and, 
therefore, it would be more difficult to obtain good performance from our image process- 
ing utilities. Our image processing algorithm was run to determine how many vehicles 
could be successfully detected. The performance is poorer than that on less congested 
highways, but we were encouraged with the reasonable results achieved. Table 3.5 shows 
the results of our analysis. 

Table 3.5. Results of image processing procedure for the congested highway segment 
on S.R. 3 15-S near Columbus, Ohio, at the l-m resolution. 

There were 149 vehicles on this stretch of highway (Fig. 3.19). Of these 149 
vehicles, there were 4 trucks, the remaining 145 vehicles were cars. The highway 
segment is of S.R. 315-S located just north of Columbus, Ohio. Tr&c congestion can be 
observed on the Ieft side (west) of S.R. 315. For this example case, there are also over- 
lapping vehicle shadows and some vehicle separations of less than 2 m. 

We find that all four trucks were detected by the image processing algorithm at 
the l-m resolution (Table 3.5). However, we do count one vehicle as a truck, when in 
reality it is not (commission error of 1). The interest operator detected 85% of the 
remaining vehicles, omitting several vehicles (22), but there were no commission errors. 

At the 2-m resolution all four trucks were detected by the interest operator (Table 
3.6). Again, we do count one vehicle as a truck, when in reality it is not (commission 
error of 1). Because of the extremely tight car spacing, there are not enough pixels in 
between the vehicles to cause an adequate separation distance to detect all vehicles. Thus 
several vehicles are omitted and the accuracy decreases to 32% for vehicles. 



Figure 3.19 Highway segment S.R.-3 15-S scanned at a 1 m resolution 
located just north of Columbus, Ohio 



Table 3.6. Results of image processing procedure for the congested highway segment 
on S.R. 3 15-S near Columbus, Ohio, at the 2-m resolution. 

At the 4-m resolution only one truck was detected by the interest operator (Table 
3.7). Three of the trucks were omitted and overall, the accuracy decreases to 7% for 
vehicles. 

Table 3.7. Results of image processing procedure for the congested highway segment 
on S.R. 3 15-S near Columbus, Ohio, at the 4-m resolution. 

Thus, in these congested traffic conditions, the 4-m resolution was not adequate 
for detecting vehicles of any size. The 2-m resolution appeared adequate for trucks, but 
not for the remaining vehicles. At the 1-m resolution, the overall accuracy was 85%. 

In summary, the image processing method demonstrated that one can automati- 
cally count and classify vehicles at reasonable levels of accuracy. The method incorpo- 
rates image processing methods for enhancing the edges of vehicles. The edge-enhanced 
map is then used in conjunction with decision rules to test whether a particular object is a 
car, truck or other vehicle. Accuracies above 90% are achievable for the highway 
segments tested in this study. Based on these tests, we recommend that the resolution 
from a satellite platform be I m to count and classify vehicles. 



Section 4. Orbital Coverage 

4.1 Introduction 

Satellite orbits are governed and constrained by physical relations. A satellite can 
orbit above the equator in such a way that it orbits in unison with the rotation of the earth 
and is always stationed above the same point on the earth. Satellites in these 
"geostationary orbits" have the advantage of continually covering (subject to the imaging 
limitations from darkness or cloud cover) an area of interest. To remain in unison with 
the earth's rotation, a geostationary satellite must not only orbit in a plane containing the 
equator, it must do so at very high altitudes. For example, GOESMSAT is a geostation- 
ary satellite that orbits at an altitude of over 35,000 krn (Pease, 1991). At such high 
altitudes, it is currently impossible to obtain the 1 m resolution needed to count and 
classify vehicles with the precision and methods we have been investigating. Orbiting 
above the equator also means that higher latitudes would be viewed at oblique angles, 
leading to poorer quality of data, and there may be limited spatial coverage. Therefore, 
we limited our analysis to satellites that orbit at a given inclination angle to the equator. 

Like a geostationary satellite, the orbital plane of a non-geostationary satellite 
contains the center of the earth. Unlike in the case of a geostationary satellite, however, 
the orbital plane is different than that containing the equator, and the net result is that the 
satellite will be located over different points on the earth's surface at different times. 
Geosynchronous satellites are designed to repeat these locations with each orbit (Elachi, 
1987). Because of their high altitudes, limited spatial coverage, and the poor data quality 
that would result from the oblique, off-nadir views that would be required, we did not 
consider geosynchronous orbits either. Satellites that are neither geostationary nor 
geosynchronous have much more extensive spatial coverage of nadir views. This cover- 
age is often represented by mapping out the satellite's ground tracks, where the ground 
tracks are the projection of the satellite orbit on the earth's surface and can be thought of 
as the intersection of the earth's surface with a line passing through the satellite and the 
center of the earth. For example, Figure 4.1 depicts the "ground tracks" of a satellite that 
repeats its coverage patterns with respect to the earth every eight days, makes 14.875 
orbits per day, and crosses the equator at an inclination angle of 97.8 1 O. 

The ground tracks shown in Figure 4.1 represent all the locations that the satellite 
would cover in its orbital cycle of eight days. The width of coverage (swath width) along 
a ground track that would be possible for the resolutions that would be required to count 
and classify vehicles would be approximately 15 km (see below), and it becomes 
apparent that there would be large areas that are never imaged by the sensor. All areas 
could be imaged, but at the expense of poorer temporal coverage. For example, the 
satellite corresponding to the ground tracks of Figure 4.1 would repeat its set of ground 
tracks approximately every eight days. One can calculate that to cover the entire earth 
with the same swath width would increase the length of the repeat period to 179 days. 
That is, if these were the only two options, the choice would be between covering the 



Figure 4.1 Ground tracks for an 8-day repeat period satellite with inclination 
angle i of 97-81' 

highway segments within the 15-km band around the ground tracks of Figure 4.1 every 
eight days or covering all highway segments once every 179 days. 

i 

In short, spatial-temporal coverage becomes an issue of interest for an orbiting 
satellite. In this section, we investigate the coverage of an orbiting satellite for imaging 
U.S. highways. The approach is to approximate the area of the continental U.S. covered 
by the ground tracks per unit time - we use a day. In this feasibility study we consider 
that highways are equally distributed per unit area. That is, we assume that if a satellite 
can cover x% of the area of the continental U.S. per day, it would image x% of its 
highways. Although this assumption would not hold when comparing specific areas - 
e.g., there would be fewer highway miles per unit area in Nevada than in New Jersey - 
the approach should approximately hold for aggregate U.S. coverage. 

We investigate the coverage issues by developing an analytical system based on 
orbital relations. We were surprised that we could not find literature offering the type of 
analysis presented here. Moreover, orbit design software did not allow the type of 
coverage investigation in which we were interested. 

We find that a 1-m resolution satellite would cover approximately 1% of the 
highways in the continental United States per day. If the resolution could be increased to 
2 m and still maintain acceptable accuracy, the coverage would increase by a factor of 
more than two. Other than the spatial resolution, the critical parameter appears to be the 
data transmission rate for such a satellite sensor. 



4.2 Coverage Parameters 

Satellite orbits that are used to image the Earth are generally circular or elliptical, 
with the earth located at one of the focal points @lachi, 1987). Circular orbits are the 
most common for nonmilitary purposes, such as observing and monitoring earth 
resources. Moreover, they lead to easier imaging, since satellites in circular orbits main- 
tain approximately the same altitude above the earth at all times (Elachi, 1987). (The 
oblate shape of the earth would make the altitude vary at different Latitudes by a few 
kilometers, even for circular orbits.) Therefore, we considered circular orbits in our 
analysis. 

In a circular orbit, the satellite can be considered to orbit at a constant radius from 
the earth's center. The circle and center of the earth are contained in the same orbital 
plane. While the satellite traces the circle, the earth is rotating beneath, leading to cover- 
age such as that depicted in Figure 4.1. The pattern, location, and swath width of the 
ground tracks, and, therefore, the characteristics of the coverage, will depend on the angle 
of the orbital plane and on parameters that can be considered independently of the orbital 
plane. In this subsection, we present these parameters and relationships among them that 
allow us to develop a system of constraints on the coverage measure presented in Section 
4.3. 

In our analysis we considered that the highway kilometers imaged per day would 
be proportional to the area per day covered by satellite ground tracks. The area covered 
by ground tracks would be equal to the width of the ground tracks times the length of the 
tracks. The width and length depend on several parameters and the relations among them. 

Swath Wzdth: The swath width S W  of the image on the ground can be found by 
multiplying the number of pixels that are contained on a scan line of the sensor PPAL 
(pixels per array line) by the width that the pixel images on the ground. Since we are 
using square pixels, the width of the pixel is given by its resolution RES. The SW is 
usually given in kilometers and RES is usually given in meters. Therefore, a conversion is 
necessary, and we have: 

SW = RES * PPAL * 10-3 [krn], (4.1) 

where, as mentioned above, W i s  the swath width in kilometers, RES is the resolution of 
the square pixel in meters, and PPAL is the number of pixels per array line on the 
scanner. 

For a given resoIution, the swath width varies only with the number of pixels per 
array line. Coverage would increase in PPAL, and one would, therefore, want to maxi- 
mize the value of this parameter. PPAL7s of 15,000 are feasible (Al-Obaida, 1993), 
leading to a swath width of 15 km for 1 m resolution. To consider the impact of techno- 
logical advances, we considered the maximum number of pixels per array scan line as a 
parameter. Letting PPAL,, denote this parameter yields the following constraint: 

PPAL 5 P P k .  (4.2) 



Altitude, Orbitsper Day, and Velocity: In Appendix F,  we determine the relation- 
ship between the number of orbits n that the satellite would make per day and the altitude 
H of the satellite above the earth's surface that would lead to the gravitational force 
required to produce the centripetal acceleration allowing these n orbits per day. 
Specifically, we have: 

where, H is the altitude of the satellite above the earth's surface in kilometers and n is the 
number of orbits that the satellite makes per day. 

Limits on H will limit the number of orbits per day. The atmospheric drag on 
satellites orbiting at altitudes less than 200 km (Elachi, 1987) will be such that the 
satellite could not maintain the velocity required to stay in the orbit, and the gravitational 
force of the earth will cause the satellite to fall out of its orbit to the earth. Therefore, to 
maintain a given orbital altitude for inclination angles suitable for imaging the earth, we 
are limited to satellite altitudes greater than 200 km. Thus we are constrained by: 

H 2 200 [km], (4.4) 

which combined with Equation (4.3), implies: 

The primary parameter of interest for the imaging system is the focal length FL of 
the sensor. In Appendix F, we show that the focal length FL required to image at resolu- 
tion RES meters when the sensor is at altitude H kilometers above the earth's surface is: 

= H * PWPD * 103 / RES Em], (4-6) 

where FL is the focal length in meters, PWPD is the physical width of the pixel on the 
detector in micrometers (=lo-6 m), and, as above, RES is the pixel resolution in meters. 
From Equation (4.6) the required focal length can be seen to decrease as the size of the 
pixel on the detector PWPD decreases. Currently, PWPD's between 7 and 15 pm are 
feasible @.L. Light, pers. comm., 1993; C. Ullathorne, pers. comm., 1994), and we used 
PWPD = 10 in our analysis. The required focal length increases as the resolution 
decreases and as the altitude increases. To image at 0.5 rn resolution at an altitude of 400 
km would require a focal length of FL = 400 * 10 * 10-3 / 0.5 = 8 m, which is feasible (J. 
Johnson, pers, comm., 1994; C. Ullathorne, pers. comm., 1994; K. More, pers. comm., 
1994). 

Substituting PWPD = 10 in Equation (4.6) and solving for H yields H = 

FL*RES*102 [km]. Limits on the maximum focal length will limit the maximum altitude 
at which the satellite can orbit and obtain the desired resolution. Letting & denote the 
maximum focal length achievable, we have the following constraints on the altitude: 

H 5 F L m  * RES * lo2 [krn]. (4.7) 



Combining this with Equation (4.3) yields: 

n 2 8,681,665.8 / ( F L  * RES * 102 + 6371)l.S. 14-8) 

We see below that making fewer orbits per day may actually increase coverage because 
of the impact, through data transmission constraints, on PPAL and because of the impacts 
on the length of the ground track per orbit. Therefore, the inequality of (4.8) may lead to 
a binding constraint on coverage. 

Data Transmission and Compression: Given the number of pixels being imaged 
and the amount of information that needs to be transmitted per pixel, the number of orbits 
per day will influence the amount of data transmitted. Limitations on the data transmis- 
sion rate could, therefore, affect the relationship between the number of orbits per day 
that can be obtained and the number of pixels that are being imaged. 

A satellite making n orbits per day (= 86,400 seconds) would cover nY2*p*R 
kilometers of the earth's surface in the day, where R is the (mean) radius of the earth. 
Taking 6371 [km] for R (Light, 1992a), one could derive the "satellite velocity on the 
ground" (Light, 1992a) - i.e., how fast the satellite progresses with respect to the surface 
of the earth - as: 

If the number of pixels per scan array Iine is PPAL and the resolution of a square 
pixel on the ground is RES, the instrument would image PPAL pixels every time the 
satellite progresses a distance R E S  on the ground. That is, it would image 
PPAL*Vg/(O.OO 1 *RES) = 463.3 *n*PPAL/RES pixels per second. 

Storing data onboard the satellite should be avoided where possible, because of 
the unreliability of the tape recorders. Therefore, the data has to be transmitted at the rate 
that it is coIlected. If the sensor images NBP bands per pixel, there are NBB bits of infor- 
mation per band, and the data can be compressed by a factor COW before transmission, 
the data transmission rate DTR required to keep up with a satellite making n orbits per 
day with P P A L pixels per array line would be: DTR = 
(463.3*n*PPAL*NBP*NBB)/(RES*COMP) [bits/sec]. Data transmission rates are 
usually provided in mega-bits per second (1 @fbit/sec] = 106 [bits/sec]). Therefore, the 
data transmission rate becomes: 

DTR = (4.633*n*PPAL*NBP*NBB*lO-4) / (RES*COMP) wits/sec]. (4.10) 

The panchromatic imaging system we have been investigating would image 1 band per 
pixel (NBP=l) with 8 bits per band (NBB=8). Therefore, the data transmission rate would 
be: 

DTR = (3.706*n*PPAL* 1 0-3)/(RJB*COMP) wits/sec]. (4.1 1) 

Rearranging (4.11) to find the relation between n and PPAZ; yields: 
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PPAL = (2.698*RES*DTR*COMI?* 1@)/n. (4.12) 

Given a limit on the data transmission rate DTR and ability to compress data 
COMP, Equation (4.12) shows, as expected, that as the number of orbits per day 
increases, the number of pixels that a sensor can image per scan array line must decrease 
for a fixed resolution, and vice-versa. Considering the effects of data transmission and 
compression together and letting @TR*COMPbx denote the maximum rate at which 
"usefUlm data can be transmitted, Equation (4.12) yields the following constraint: 

PPAL < 2.698 * (DTR * C O M P h  * RES * 102 / n. (4.13) 

Note that when data transmission constraint (4.13) is binding, the influence of 
resolution on the PPAL is linear - i.e., a doubling of the resolution would allow a dou- 
bling of the number of pixels per array line that could be transmitted. The effect on 
coverage would be quadratic, however, since increasing the resolution by a factor of x 
would increase PPAL by a factor of x, but the increased resolution would lead to the 
width on the ground covered by the pixel being increased by a factor of x (see Eq. (4. I)), 
thereby leading to an increase of coverage per unit time of x2. 

Inclination Angle: The satellite orbital plane must contain the center of the earth, 
but the angle that the plane makes with the equator is a parameter of the problem. The 
orientation of the orbit is specified in relation to the earth's equatorial plane and the 
vernal equinox (Elachi, 1987). The angle between the orbital plane and the equatorial 
plane is the inclination angle and denoted i, is typically greater than 90°, and corresponds 
to the greatest latitudes north and south of the equator that the satellite will cover. 
Specifically, for inclination angle i, i 2 90°, the satellite will orbit between north and 
south latitudes of 180"-i. 

Figure 4.2a shows the ground tracks that would be covered in one day by the 
satellite used to generate the complete (8-day) tracks in Figure 4.1. Figure 4.2b shows the 
ground tracks that would be covered in one day by a satellite orbiting with the same 
parameters, but with an inclination angle of 120'. Comparing the ground tracks of 
Figures 4.2a and 4.2b, one can see that, since less time is spent at the higher latitudes in 
Figure 4.2b, a greater proportion of the coverage is over the continental United States. 

To increase coverage, then, we would want to make the inclination angle i as 
small as possible while ensuring that the satellite covers the highest latitudes of interest. 
Our interest was in imaging highways in the continental U.S. We considered the northern 
border of the continental U.S. to correspond to 50°N, leading to the following constraint: 

A potential difficulty associated with an inclination angle of 130' is that it does 
not allow for the satellite to be sun-synchronous, i.e., to always cover a specific 
locationon the earth at the same local time (Elachi, 1987). The inclination angle of a sun- 
synchronous orbit must be between 96.3" and 100.2". 



a. Oneday ground tracks for the satellite corresponding to Figure 4.1 
with inclination angle of 97.8 1 

b. One-day ground tracks for the satellite corresponding to Figure 4.1 and 
4.2a, but with inclination angle i of 120' 

Figure 4.2 One-day ground tracks for the satellite corresponding to Figure 4.1 



Although there is no reason that the satellite has to return to locations at the same local 
time, sun-synchronous orbits often make interpretation of traditional remote sensing 
images involved with the monitoring of natural resources easier because of similar light- 
ing conditions. Returning at the same local time may also be of some value in the 
panchromatic sensing systems we have been considering by possibly allowing easier 
detection of fixed, nonvehicle objects (e.g., shadows from signs or overpasses, pavement 
patches) that depend on the orientation of the sun. This could conceivably reduce the 
errors of commission. We believe that an imaging processing system similar to that 
discussed in Section 3 could be developed to distinguish nonvehicle objects fairly 
accurately, however, and that the increased coverage obtained by orbits that are not sun- 
synchronous would compensate for any decrease in sensing accuracy. Still, we investi- 
gated coverage for sun-synchronous orbits, as well as for orbits with an inclination angle 
of 130". 

4.3 Coverage Measure 

As mentioned above, we found nothing in the literature on how to measure 
satellite coverage of a dynamic system such as traffic data. What we found (Al-Obaida, 
1993; Light, 1990, 1992a, 1992b; CNES, 1987; Colvocoresses, 1979) deals with 
complete spatial coverage between certain latitudes. Traffic parameters are continually 
changing, however, and it may be preferable to cover certain areas more frequently at the 
expense of not covering some areas at all. Therefore, we developed our own measure of 
coverage. This measure, presented below, is based on the daily percentage of the 
continental U.S. covered by ground tracks, PCDW: 

where Asatus is the area of the continental United States covered by the satellite ground 
tracks and Am is the area of the continental United States. 

We approximated PCDus by assuming that the continental U.S. is contained 
between north latitudes 25" and 50" with eastern and western boundaries along a merid- 
ian. Since the ground tracks of orbits are regularly spaced, the percentage of this regular 
area - i.e., an area whose borders are two latitudes and two longitudes, a quadrilateral in a 
plane projection - representing the continental U.S. covered daily by the satellite ground 
tracks would be the percentage of the earth between 25ON and 50°N latitudes covered 
daily by the satellite ground tracks. That is: 

where Asat125N50NI and Amsow respectively, are the area between latitudes 25O and 50" 
north covered by the satellite ground tracks per day, and the area of the earth between 
latitudes 25" and 50" north. 



The area of the earth between any two latitudes LATl and LAT3 LATl < LAT2 
with both LATI and LAT2 either north or south of the equator, can be found (Eshbach, 
1947) to be: 

where R is the mean radius of the earth. Taking R = 6371 km, LATl = 25' and LAT2 = 
50°, we approximate the area of the continental U.S. as: 

On a given orbit a satellite would cross the zone between LATl and LAT2 two 
times. For example in Figure 4.1 we see a set of (descending) ground tracks going 
primarily from northeast to southwest and a second set of (ascending) ground tracks 
going primarily from southeast to northwest. There is one descending and one ascending 
track per orbit, and, therefore, each would cross the zone between LATl and LAT2, as 
long as the inclination angle i is such that 180'4 is greater than both LATl and LAT2. 
Therefore, the area between LATl and LAT2 covered per orbit would be two times the 
swath width of the ground track times the length of the orbit between LATl and LAT2. 
Since the swath width is the number of pixels in a scan line PPAL times the resolution of 
the pixel on the ground RES, this area per orbit, AmtlUTILAT2~ given in km2, would be 
2*PPAL*RES*L~LATILAnl*105, where LlhtlLar2] is the length of one of the ground 
tracks between LATI and LAT2 in km, and RES is given in m. Since there are n orbits per 
day : 

A~'~LATILAnl = 2 * n * PPAL * RES * LlraTIAAml * 1e3 

The length of the ground tracks between LATI and LAT2 would depend on the 
inclination angle i. As i increases, the length of the track between LAT1 and LAT2 would 
increase, as depicted in Figure 4.2. Given i ,  however, it is still not straightforward to 
determine the length of the satellite ground track between LAT1 and LAT2 because the 
earth is rotating beneath the orbit of the satellite. The trace and, therefore, length of the 
ground track will depend on the distance that the earth has rotated during the time that the 
satellite has traveled between LATI and LAT2. This will depend on the speed of the 
satellite. As we discussed above, the satellite speed is directly related to its elevation, 
which uniquely determines the number of orbits per day n that the satellite makes. 
Therefore, the length of the ground track between LATI and LAT2 depends on the 
inclination angle i and the number of orbits n that the satellite makes per day. We denote 
this: 

In Appendix G, we present the algorithmic approach we used to evaluate this ground 
track length. 



To approximate the percentage of the continental U.S. that would be covered by 
the satellite ground tracks for a given inclination angle i, number of orbits per day n, 
number of pixels in a scan line PPAL, and resolution RES, we would: i) determine 
L[25N,50Nl from the algorithm given in Appendix G using i and n; ii) determine 
ASatL25N,50Nl using Equation (4.19), n, PPAL, RES, and LL25N,50h'l; and iii) divide 
Amt[25N50Nl by 8.758* 1 O7 and multiply by 100%. 

This would yield PCDus, the percentage of the continental U.S. covered by 
satellite ground tracks per day. To approximate the percentage of the number of highways 
that could be imaged per day, we would have to factor this down to account for times that 
we could not obtain images of the surface. There would primarily be two reasons that the 
satellite could not image the ground. It would not be able to image when it is nighttime 
and when it is cloudy. Letting f, be the fraction of ground tracks that pass over the conti- 
nental U.S. during the night, andf, be the fraction of ground tracks that pass over the 
continental U.S. during the day when it is cloudy, we can find the aggregate fraction of 
"nonproductive ground tracks" LPg as: 

The fraction of productive passes, then, would be 1-fnpgt and the approximate percentage 
of highways in the continental U.S. imaged per day, PIDus, would be: 

4.4 Numerical Results 

Different values of orbital parameters would lead to different measures of cover- 
age. We investigated the maximum coverages that could be obtained as a finction of the 
various parameters presented above. We also investigated coverage measures that would 
be produced for orbits with additional constraints. 

4.4.1 Maximum Coverage 

To determine the maximum feasible coverage we would choose the orbital deci- 
sion variables that would maximize PIDus in Equation (4.22), subject to the constraints 
presented in Section 4.2. Specifically, we would need to solve the following nonlinear 
program: 

Maximize: PDUs = (1-fnpgt) * (2*n*PPAL*RES *L(25,50; i,n) 
n,PPAL,i *lo-3/8.758*107)) * 100% 



subject to: 
PPAL 5 PPAL- 
PPAL 5 2.698*@TR*COMP)max*RES* 1 @In 
n < 15.6 

> 8,65 1,665. 8/(Fbm*RES* 1 @+6371)1.5 n - 
1 - > 90' 
1 < 130' 
PPAL, 0 
n 2 0 ,  

where all variables are defined as before. 

The aggregate fraction of nonproductive ground trackshPgt would be an exoge- 
nously determined constant; i.e., it would not depend on the values of the decision 
variables, and it could be factored in after solving the problem. Likewise, the resolution 
RES would be determined exogenously to the problem. Using the approach of Section 3, 
a 1 m resolution would be needed to count and classify vehicles with 90% accuracy. We, 
therefore, consider RES = 1 m as the base value of the parameter in the results. To allow 
for future developments or different requirements, however, we consider it an exoge- 
nously determined parameter to the problem. We saw above that maximum coverage 
would occur at i = 130'. To investigate the effect of the inclination angle on the solution, 
however, we considered i as an exogenously set parameter. The maximum number of 
pixels that could fit on a scan line of the detector PPAL-, the maximum rate at which 
useful data could be transmitted @TR*COMP)),, and the maximum focal length that 
could be used FLma, would be determined exogenously from technological constraints. 
We investigated their influence on coverage performance by solving the problem for 
various values and interpolating curves based on the results. 

With these considerations, the solution to Program (PI) could be found by 
defining: 

PIDTJs~ = 8.758*PIDuS* 1 07/(2(1-fnpgt)*RES* 100% 
= n * PPAL * L(25,50; i,n); (4.23) 

fixing fnPgt RES, i, PPAL,,, (DTR*COMP)m, and FL,, at exogenously determined 
values; and solving the following nonlinear program for these values: 

Maximize: PIDu,y = n * PPAL * L(25,50; i,n) 
n, PPAL 

subject to: 
PPAL < P P L  
PPAL < 2.698*@TR*COMP)max*RES* 102/n 
n 5 15.6 
n - > 8,65 l7665.8/(Fk*RES*1021-6371)1.5 
PPAL 2 0 
n - > 0. 



The coverage performance measure PIDus would be found by solving Program 
(P2) for PIDusl and rearranging and solving Equation (4.23) for PIDm given this value 
of PIDml. 

We solved Program 0 2 )  576 times, once for each combination of the input 
parameter values shown in Table 4.1. (We describe how to solve Program (P2) for PIDust 
in Appendix H and present a listing of the program in Appendix I.) We used RES = 0.5 
m, 1.0 m, 2.0 m and 4.0 m to represent (approximately) the resolutions investigated in 
Section 3. The base case value was set at RES = 1.0 m, based on our results there. We 
used inclination angle i = 130' to allow for maximum coverage per day in the continental 
U.S., as described above. We used i = 1'00' to approximate a maximum inclination angle 
value. The ability to point the sensor would allow coverage of the poles at latitudes of 80' 
(= 180'-100') north and south. We used i = 115' as an intermediate value between the 
two extremes. We chose the lowest values of the other input parameters in Table 4.1 - 
namely, @TR*COMP),, = 400, PP&, = 15 and FL, = 6 - to represent current 
designs (Light, pers. comm., 1993; J. Johnson, pers. comm., 1994; Itek, 1981; K. More, 
pers. comm., 1994; Ullathorne, pers. comm., 1994). We chose the largest values of the 
input parameters in Table 4.1 - namely, @TR*COMP),, = 1600, P P L X  = 30 and 
FL, = 14 - as values that might stretch present technologies, but that could probably be 
obtained in the near future. The other values were chosen as intermediate values. The 
base case values were chosen to reflect what could probably be used today, but are not 
currently in place on a satellite (Light, pers. comm., 1993; J. Johnson, pers. comm., 1994; 
Itek, 1981; K. More, pers. comm., 1994; Ullathorne, pers. comm., 1994). 

We used fn = 0.5, assuming that on average 50% of the satellite passes would fly 
over the continental United States during nighttime hours, and f, = 0.23, based on a crude 
analysis of aggregate cloud cover statistics for the continental United States (Solar 
Energy Research Institute, 198 1) and recalling that f, represents the fraction of total (day 
and night) coverage that could not be obtained due to cloud cover in daytime hours. This 
resulted in a value of 0.73 for fnpgt, and thus a factor of (I-fnpgt) = 0.27 for use in 
determining PIDus. 

The base case result is PIDus = 0.9%. That is, based on these results, a satellite 
could image approximately 0.9% of the U.S. highways per day. The output for the 576 
combinations and the cases described in Appendix H to which the combinations corre- 
spond are presented in Appendix J. (For programming reasons, the coverage measures in 
Appendix J are in terms of PIDus*(l-f,), i.e., the daily coverage measure times the 
fraction of ground tracks that pass over the continental U.S. during the day. The PIDus 
value is found by multiplying by (I-fqgt)/(l-fJ, which we considered to be 0.54 in this 
study.) 

We show the effect of the input parameters with the values of the other input 
parameters set at their lowest (those designed today), base (those that could be designed 
today), and highest (those that could probably be designed in the near hture) values in 
Figures 4.3-4.6. 



Table 4.1 Values of input parameters and base case values to determine maximum daily 
satellite coverage in the continental U.S., PIDus. 

*A 6-m focal length will not allow 0.5 rn resolution for altitudes considered here (above 400 km). An 8-m focal length 
was used in its place for the 0.5 m resolution only. 

By examining all the figures one can see the importance of the resolution. When 
increasing the resolution from 1 m to 2 rn, the daily coverage always increases at least by 
a factor of two, and often (depending on the values of the other input parameters) by a 
factor of more than two. When the other parameters are set at their base case values, 
increasing the resolution from 1 m to 2 m would increase the daily coverage by a factor 
of almost three (from 0.9% to 2.5%). Similarly, if the resolution could be increased from 
1 m to 4 m the daily coverage would always increase at least by a factor of four, and 
often by a factor of more than four. When the other parameters are set at their base case 
values, increasing the resolution from 1 m to 4 m would increase the daily coverage by a 
factor of almost six (from 0.9% to 5.0%). 

Base case 
v h e  

1 .O 
130 
800 

20 

10 

0.9 

Parameter description notation 
(units) 

I 

Pixel resolution on ground, RES (m) 
Inclination angle of satellite orbit at equator, i (O) 
Maximum product of data transmission rate and 
compression factor, @TR*COMP),, O/lbits/sec) 
Maximum number of pixels that could be held per array 

The influence of the inclination angle is shown in Figure 4.3. The effect of i on 
daily coverage increases as the inclination angle increases. That is, the effect when 
increasing the inclination angle from 1 15" to 130' is greater than when increasing it from 
100' to 1 IS0 for dl combinations of the other input variables shown there. 

Input values 

0.5, 1.0,2.0,4.0 
100,115, 130 

400,800,1200, 
1600 

15,20,25, 30 

Finally, Figures 4.46, 4.5b, and 4.6b indicate that the value of (Z)Z??*COMP),, 
has more of an impact on daily coverage than PPRL,,  or FL- when the other variables 
are at their base values. Specifically, daily coverage increases approximately linearly (see 
Fig. 4.4b) with (DTR*COMP),,, either when this parameter increases or decreases from 
its base value (@TR*COWL, = 800) at the base 1 rn resolution, whereas daily cover- 
age remains constant when PPAL,, (Figure 4.5b) and FL,, (Fig. 4.6b) increase or 
decrease from their base values at the base 1 rn resolution. 

line of the sensor, PPAL,, (103) 
Maximum sensor focal length that could be deployed, 
F L ,  (m) 
Daily coverage of continental United States, PDus (%) 

6*, (8*), 10, 14 

see App. I and 
Figures 4.3-4.6 
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Figure 4.3 Effect of inclination i on daily satellite coverage of the contmental 
United States PIDm by resolution. 
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satellite coverage of the continental United States PIDm by resolution. 
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Figure 4.6 Effect of maximum possible focal length constraint FL- on daily satellite 
coverage of the continental United States PIDus by resolution. 



4.4.2 Coverage for Systems with Additional Constraints 

The results presented above are in terms of maximum daily coverage when the 
satellite is restricted only by the constraints of Section 4.2. We discussed that a sun- 
synchronous orbit would allow the satellite to return to the same spots on the earth at the 
same local times. This might make it easier to distinguish moving vehicles from fixed 
objects on the highway - e.g., sign shadows. The inclination angle i is restricted to be 
between about 97' and 100' for a sun-synchronous orbit, and the inclination angle and 
the altitude of the satellite H must respect certain relations to ensure that the satellite 
orbits at a speed and angle that allow the synchronized orbits (King-Hele, 1964). Based 
on the results of our numerical analysis, we saw that at i = 100°, RES = 1 m, and the 
other input parameters set at their base case values, the maximum coverage was obtained 
by having the satellite orbit at altitudes as high as possible (see App. H and 3). We, 
therefore, calculated that the maximum daily P m s  for a sun-synchronous orbit with 
other parameters set at the base case values would be 0.4%. That is, requiring a sun- 
synchronous orbit would decrease the daily coverage by 0.5% per day (from 0.9% to 
0.4%). 

We also determined the coverage that would be provided by a planned 1 m 
resolution satellite. EyeglassTM (C .  Ullathorne, pers. comm., 1994) is a commercial 
satellite that will be in a sun-synchronous orbit and is planned for launch in 1997. In 
addition to its 1 m resolution (RES = l), EyeglassTM is designed to have an inclination 
angle z of 98.173', 15,000 pixels per scan line (PPAL = 15), a focal length FL of 5.6 m, 
and orbit at an altitude H of 700 km (which leads to n = 14.6 orbits per day). With these 
parameters, we calculated that EyeglassfM would cover 0.4% of the continental United 
States per day. That is, compared to our base case analysis, EyeglassTM would have 0.5% 
less coverage over the continental United States. 



Section 5. Costs of a SateIlite System 

Costs of a satellite system are described in this section. These costs are estimates 
and given for illustrative purposes. Technical issues are discussed that will impact the 
costs of a designed satellite system. Detailed costs would need to be developed once a 
final satellite sensor design is decided. 

5.1 Typical Satellite Costs 

We researched the literature to obtain costs of comparable satellite systems (see 
Table 5.1). These costs range from a high of $660 million for the Canadian Radarsat 
satellite to a low of $81 million for Mapsat. The most recent successll launch of an earth 
resources satellite was the French SPOT system in September, 1993 for $250 million. 

Table 5.1 Typical costs of comparable satellite systems in 1992 dollars 
(from KPMG Peat Marwick and NASA, 1992). 

The system with properties most similar to those we studied would be the Mapsat 
satellite. The Mapsat satellite was a proposed satellite system for acquiring 2.5-m stereo 
panchromatic (0.5 1-0.73 pm) imagery for a 60 by 60 km area. The estimated cost for this 
system was $81 million. The $81 million includes $75 million for the satellite and $6 
million for ground tracking, telemetry, and control of the satellite. 

ADEOS 
Radarsat 

KPMG Peat Marwick and NASA (1992) provided details about the MAPSAT 
costs. A $15 million cost during the first year of operation is necessary for the initial 
launch of the satellite. Operation of the satellite would require an additional $5 million 
per year ($4 million for the ground operations and $1 million for producing image data 
products). 

553 
660 

1995 
1995 



5.2 Purchasing Data from a Commercial Company 

We checked with a proposed commercial company, Eyeglass International, to 
determine the costs of acquiring imagery from a private company. This company will 
provide I -m panchromatic image data in 1997. The images from Eyeglassm for a 15 by 
15 krn area will cost $2,000 per image. Their system will provide for a revisit period of 
two days. There will be two ground stations with direct downlink capability that will 
acquire imagery over the conterminous United States, providing for about 180 images per 
day. If cloud cover were not a problem arid if we obtained all images taken over the 
United States, this would amount to $36,000 per day or $4.32 million per year. For this 
large purchase, we would qualify for "bronze level" status - a preferred customer. This 
permits us a discount on imagery because of the large volume of imagery purchased. 
Once $2.5 million is purchased, then a 25% discount is applied. This would reduce the 
price for a year's worth of  eyeglass^ data to $3.24 million. Based on our approximation 
of the continental U.S. area in Section 4, these 180 images of a 15 x 15 km area (225 
km2) would cover approximately 0.05% (= (180*225)/8.75*107) of the U. S. highways 
(not accounting for cloud coverage per day). 

Purchasing imagery from a commercial company would be a less expensive alter- 
native when compared to building, launching, and operating a dedicated satellite system. 
However, satellite launch costs are decreasing. Recently, when talking with a company 
that launches small satellites for specific purposes, a cost of $75 to $80 million would be 
possible (W.D. Thompson, pers. comm., 1995). This includes $25 million for the bus, 
$35 to $40 million for the payload and $1 5 million for the launch. 

However, there is a disadvantage to the Eyeglass" data. The data will be acquired 
at the same local time each day, since  eyeglass^^ is in a sun-synchronous orbit. For the 
satellite design described in this study, we recommend a non-sun-synchronous orbit so 
that imagery can be acquired at different local times throughout the day. 

5.3 Technical Design Considerations 

We also checked with a camera manufacturer in an attempt to determine the 
relationship between costs and focal length, pixels per array line, and data transmission 
rate for a given sensor. Unfortunately, such relationships do not seem available presently. 
It is difficult to derive costs for a specific component of a sensor package, as the cost 
depends on the total integrated design of a sensor system. Therefore, modeling as a 
b c t i o n  of individual components would require a concentrated research effort. 

A bus (launch vehicle) would need to be supplied for the sensor package. Launch 
services and buses can be readily obtained. The more difficult cost to be determined, 
however, is for the sensor package to place on the launch vehicle. 

In general, the satellite is a very stable platform for a linear array sensor, such as 
that proposed to acquire 1-m panchromatic imagery. Space-qualified linear arrays are 
now being designed using TDI (time delay integration). The integration time can be 
increased for an individual scan line, depending on image motion and the scan rate 



desired. Integration time is the amount of time that the sensor has to "stare" at the ground 
to receive and record the signal for a given scanline. By using TDI technology, we can 
get a better signal to noise ratio (S:N). If pixels are placed close enough together and the 
scan rate is synchronized appropriately, high resolution pixels can be acquired for large 
spatial areas. For example, Eastman Kodak is making a 9,000 by 64 TDI array (C. 
Mondello, pers. comm., 1 994). 

In conclusion, final costs for a satellite sensor to acquire high resolution imagery 
would need to be developed by a commercial manufacturer. However, in this study we 
have developed the preliminary design specifications for an ideal sensor that would be 
required to acquire high resolution imagery from a satellite pla$orm to classify and count 
vehicles from space. Based on the figures in Table 5.1, it appears that to launch and 
operate a 1-m satellite system would cost on the order of $100 million. Purchasing data 
from a scheduled mission such as Eyeglassm would cost on the order of $3 million per 
year. 



Section 6. Evaluation of Other Potential Remote Sensors 

6.1 Introduction 

Our study has focused principally on using high resolution panchromatic imagery 
for classifying and counting vehicles. This was principally done such high spatial resolu- 
tion imagery will be commercially available within the next few years. From our tests 
with simulated satellite data we found that the data would have to be approximately 1 m 
for remote sensing imagery taken in the visible part of the electromagnetic spectrum (i.e., 
panchromatic imagery). However, we realize that cloudy conditions will prevent image 
acquisition. Therefore, we evaluated other types of remote sensing data that are available 
from satellites now or in the near h r e  to assess the feasibility of these techniques. 

6.2 Radar Sensors 

Radar (radio detection and ranging) systems operate in the microwave band of 
the electromagnetic spectrum at wavelengths from about 0.1 cm to 1 m. Passive and 
active sensors have been designed for this wavelength region. Passive microwave 
radiometers record the natural microwave radiation that is emitted by the earth. Radar is 
an active system and generates short pulses or bursts of microwave radiation of known 
frequency and wavelength and records the reflection from the earth's surface. Table 6.1 
shows the wavelengths or bands of the microwave spectrum that are commonly used in 
imaging radars. Because radar provides its own energy and does not rely on the sun, the 
radar can operate day or night. Also, the long wavelength band radars (e.g., L- and P- 
bands) can penetrate clouds and precipitation and thus can operate during inclement 
weather conditions. The angle and look direction of the microwave signal can also be 
controlled to enhance features of interest. 

Table 6.1 Band designations and radar wavelengths 
(from Avery and Berlin, 1992). 

The tones seen on a radar image are a measure of the microwave echo strength. 
They are a function of the feature (dielectric properties), and ground and radar system 
properties. Normally, features that are good reflectors ofthe radar signal are shown in 



light tones, whereas features that are poor reflectors are shown in dark tones; likewise 
features that are moderate reflectors are shown in medium tones. Features with no 
measurable echo are shown in black. 

Synthetic aperture radar (SAR) was developed to achieve fine resolution at typical 
satellite altitudes. The radar signal is directed to the side of the spacecraft at some look 
angle and look direction. There have been two NASA spacecraft that have operated 
successfU1 SARs. Seasat was operated in 1978 and was designed to observe the ocean 
waves, sea ice and coastlines. Seasat used a 23-cm &-band) radar and achieved a ground 
resolution of 25 m for a 100 km swath width. The Space Shuttle has operated three radar 
missions - SIR-A (November 1981), SIR-B (October 1984) and most recently SIR-C 
(April 1994). SIR-A used a 23.5-cm (L-band) radar and achieved a ground resolution of 
40 m for a 50-km swath width. SIR-B used a 23-cm (L-band) radar and achieved a 
ground resolution of 25 x 17 m (at 60° depression angle) or 25 x 58 m (at a 15' depres- 
sion angle) for a 40 to 50 km swath width. SIR-C used 24-cm (L-band) and 5.6-cm (C- 
band) radars and achieved a ground resolution of either 25 or 40 m for a 40 to 90 km 
swath width. It is apparent that these radar systems do not have the fine spatial resolution 
that is required to detect vehicles. 

Existing systems include the ERS-1 (Eurimage - European consortium), which 
has a 30 m resolution SAR and the JERS-1 (Japanese government), which has a 18 m 
resolution SAR. Radarsat is expected to be launched by the Canadian government in mid- 
1995. The best resolution that this SAR can attain is 8 to 10 m. The standard mode of 
operation for Radarsat is typically 25 m. Again, all these resolutions would be too coarse 
to count and classifjr vehicles. 

We talked to experts in the radar field to determine if radar could potentially be 
used to count and classify vehicles. The answer is yes. This has been done in the classi- 
fied sector, principally to detect military targets. The military use radar systems primarily 
depend on a high geometric resolution. However, in a practical mode, the answer would 
be no. The problem is trying to detect the cars from a background with only a single look 
image. We can eliminate one problem of determining where the background is by 
integrating our road network from a GIs to overlay on the radar image. This then tells us 
where the background is, and the road would typically be smooth (or dark). Next, we 
would need to determine what is different on that background, which would be the 
moving vehicle. We would probably see the glint off of a vehicle, but to truly determine 
if the glint is indeed a vehicle, we would need a strong radar cross-sectional area. At this 
time the best SAR resolution is 8 m. There may not be enough cross-sectional area of a 
potential target with the SAR to correlate the signal with a vehicle. Another problem is 
speckle or noise, as radar data normally contains a lot of speckle. It will be difficult to 
determine the targets (vehicles) from the speckle. Also, counting and classifying many 
cars is different than looking for one stationary military target. 

6.3 Thermal Sensors 

Thermal imagery has also been suggested as an alternative. The principal means 
of detecting a vehicle would be to map the warmer temperatures (recorded as the light 



tones) that would be associated with the vehicle's engine with the assumption that the 
highway segments would be cooler. Again, we would need fine spatial resolution to do 
this. 

The present satellite system that contains thermal data is the Landsat Thematic 
Mapper (TM) sensor. TM has one thermal band - TM band 6 - that records in the wave- 
lengths of 10.4 to 12.5 pm. However, the spatial resolution is 120 m and, thus, detecting 
vehicles and even locating the highway would not be possible. 

A fbture sensor to be launched on the EOS platform in mid-1998 is the Advanced 
Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Although five 
bands of thermal data between 9 to 12 pn will be acquired at a better spatial resolution 
(90 m) than the TM sensor, the resolution will still be too coarse for locating the highway 
or detecting vehicles. 

6.4 Digital Cameras in a Tethered Balloon 

We also investigated the resolutions available when using a tethered balloon to 
image a highway segment. We investigated available digital video cameras. Two cameras 
used at the Center for Mapping include one with a variable focal length from 1.4 to 5 mm 
and a second camera with a fixed focal length of 8 mm. For the second camera, we have 
an additional technical specification that a pixel has a width of I I pi and a height of 13 
pm on the CCD (charge coupled device). Typical image array sizes for a video frame 
would be 480 pixels wide by 640 rows. 

Tables 6.2 and 6.3 shows varying altitudes ranging from 25 to 500 rn with the 
corresponding spatial resolution (m) and area covered on the ground (km2) from the 
resulting image. 

From Table 6.2 the best spatial resolution would be with the 5-mm focal length at 
an altitude of 25 m. At this altitude, the resolution would be 13 cm for an area of 0.01 
km2. When moving the balloon to a higher altitude of 500 m, then the resolution of the 
image decreases to 2.65 m, but the image will contain a larger spatial area (2.15 km2). 
The 8-mm camera (Table 6.3) will give a finer resolution, ranging from a 3 by 4 cm pixel 
at a 25-m altitude to a 69 by 81 cm pixeI at an altitude of 500 m. The spatial area covered 
with a digital image would increase from 0.0004 km2 at a 25-m altitude to 0.1716 lun2 at 
the 500-m altitude. Therefore, such an approach would rarely be able to count and 
classify vehicles. The system would be useful for looking at specific areas. Compared to 
a satellite-mounted sensor, however, the spatial coverage would be extremely limited. 



Table 6.2. Analysis of spatial resolution (m) and area covered (krn2) from a tethered 
balloon using a digital video camera with a varying focal length (1.4 to 5.0 mm). 



Table 6.3. Analysis of spatial resolution (m) and area covered (km2) from a tethered 
balloon using a digital video camera with 8 mm focal length. 

6.5 Future Commercial Satellites 

Even though the U.S. Landsat-6 satellite failed shortly after launch in September 
1993, there have been a number of privately funded firms and government initiatives to 
collect and market satellite data. For example, Eosat has added the Russian Soyuz data to 
their commercial product line. These data are available at a 3 m spatial resolution for the 
visible bands. However, this product is available only in a photographic form and not in a 
digital mode. Moreover, according to our analysis the 3-m resolution would not be 
sufficient to class@ small vehicles. 

Eosat also markets the Indian government satellite IRS-1B data in both digital and 
photographic formats. Two Linear Imaging Self Scanners @ASS-I and LISS-11) collect 
data in four spectral bands, all of which are nearly identical to the Landsat TM?s visible 
and near infrared bands (TM bands 1 through 4). LISS-I has a 36 rn resolution, whereas 
LISS-I1 has a resolution of 72 m. IRS-1C is due to be launched in the summer 1995 and 
will have additional spectral coverage in the shortwave infrared region, stereo viewing 
capability, a Wide Field Sensor, and a 10-m panchromatic band. 

In addition, Eosat markets JERS-1, the Japanese Earth Resources Satellite-1, 
multispectral and radar data. The products include data from the Optical Sensor (OPS), 



which collects data in four visible and near infrared bands at a 18.3 x 24.2 m resolution, 
and a Synthetic Aperture Radar (SAR), which acquires data at a resolution of 18 m and is 
capable of penetrating clouds. OPS is also capable of stereoscopic observation by forward 
(15.4') and nadir look angles in the near infrared band 4. 

The U.S. government has started opening selected Central Intelligence Agency 
(CIA) image archives to the commercial marketplace. Initially, these images will 
probably be available in hard copy photographic form. 

GDE Systems, Inc., Litton's Itek Optical Systems Division and Orbital Sciences 
Corporation was issued a filly operating license from the U.S. Department of Commerce 
for a newly-formed company called Eyeglass International. They are proposing high 
resolution satellite imagery at a 1-m resolution (panchromatic - 0.5-0.9 pm) available in 
early 1997. The satellite will be in a sun-synchronous orbit at 700 km and will provide 
images at a 15 km swath width. A revisit period of 2 days is possible by using a k45' in- 
and cross-track capability. The pointing capability also allows for stereo coverage, both 
fore and aft. The stereo images are designed for a B:H (base to height) ratio of 1.0 with 
the time between images being approximately two minutes (100 sec). This will make it 
difficult to determine vehicle speeds between two images when they are separated by this 
long time interval. EyeglassTM will be launched and operational by 1997. 

Space Imaging was formed in 1994 as a satellite imaging venture. Lockheed 
Missiles and Space Company, a Sunnyvale Lockheed subsidiary, recently received a U.S. 
government license to produce 1 m data. They plan to develop, launch and operate a 
high-resolution system that will include an optical sensor that operates like a digital 
camera. Black and white images with a resolution of 1 m and multispectral images with a 
resolution of 4 m are planned with data available in 1997. 

Worldview Imaging (San Francisco, California) was the first company to receive 
a license from the U.S. Department of Commerce to build and operate a high resolution 
commercial remote sensing system. Ball Corporation's Aerospace and Communications 
Group (Broomfield, Colorado) received a commercial remote sensing license in the 
summer 1994. Just recently, Ball Aerospace merged with Worldview Imaging 
Corporation to form a new company called Earthwatch. A commercial remote sensing 
satellite - EarlyBird - with a spatial resolution of 3 m (panchromatic black and white 
images) will be launched in early 1996. A multispectral sensor at 15 m resolution will 
also be included. In mid-1997 they will Iaunch QuiclrBird with a 1-m panchromatic 
sensor and a 4-m multispectral sensor. 

In summary, fine resolution data will be available from the commercial market- 
place in the very near future. Some of these satellite systems will provide products at the 
I-m resolution, which is within our required design to count and classify vehicles from a 
satellite platform. However, one drawback is that these fbture satellite systems will be 
from sun-synchronous orbits. Such orbits will not allow U.S. highways to be imaged at 
various times throughout the day. These systems will only provide one view at the same 
time of day for any given location. 



Section 7. Future Efforts 

The previous sections have discussed the work that was performed over the past 
two years. Throughout our study we have found several interesting problems that would 
warrant additional work. This section outlines future research topics. 

7.1 Additional Vehicle Detection Tests 

In our analysis of the ODOT panchromatic imagery, we determined that the 
shadows of the vehicles rather than the vehicles themselves were being detected from the 
pavement. Although we were able to count and classify vehicles with fairly good 
accuracy based on their shadows, the shadows can be highly variable depending on the 
orientation of the highway, the time of day, and the time of year. We also determined that 
additional factors of -c and pavement conditions can influence how well we would be 
able to count and classify vehicles. Additional tests should be directed to examining the 
following conditions: varying shadow lengths from the vehicles, overlapping shadows 
from several vehicles, different orientations of the highway with respect to the sun, 
different types of pavement, oily patches on the pavement, and rush-hour conditions of 

flow. It should be possible to develop rules to control for some of these factors. 

7.2 Coordinated Aircraft Imagery with Ground Counts Test 

Since the 1-m satellite data is not immediately available, the techniques developed 
during our study could be applied directly to aircraft data at the present time. We propose 
to acquire digital image data from an aircraft platform over a test site at a fine spatial 
resolution to simulate high resolution satellite data. This could be a cooperative effort 
with the Ohio Department of Transportation (ODOT). ODOT is willing to fly the aircraft 
to acquire the imagery and to gather ground counts. The image data can be processed and 
merged into a GIs containing the highway network in the test site area, Data concurrently 
collected from traditional ground-based methods can then be processed and merged as a 
second data set into the GIs. The data sets can be combined to estimate traMic parameters 
(e.g., VMT, percent trucks, densities during specific time periods, velocities) under 
various scenarios (e.g., having fewer sources of ground-based count information). The 
results can be compared against those obtained when combining dl of the ground-based 
information and the aircraft information, which is considered to be an accurate estimate 
of ground truth. 

7.3 Calculating Vehicle Speeds 

We did not have the resources in this project to calculate vehicle speeds from two 
images. To determine vehicle speeds from a set of two images, one needs to solve a 
correspondence problem (matching problem). A vehicle detected on one image needs to 
correspond with the same vehicle on a second image so that a change in speed can be 
calculated. There are two major methods used to solve the correspondence problem- 
area-based matching and feature-based matching. These two methods take into account 
the geometric relationship between two or more images and assume that the objects to be 



matched are stationary, rather than dynamic. This procedure is followed when creating 
digital elevation models (DEMs), as one assumes that the landscape (elevation of the land 
surface) does not change from one image to the next. Thus the two matching methods 
cannot provide the information for computing the speed of moving vehicles because the 
vehicles are changing in x,y,z location while the image is being acquired. Any required 
matching method should contain the geometric and topological relationships between two 
or more images taken within a short period of time. Because of this constraint, a 
suggested matching method is relational matching, which matches the geometric and 
topological relations between the features existing in two or more images. 

The relational matching method compares two relational descriptions between the 
two images and finds the best match between two data descriptions and their relation- 
ships. To find the best match, there should be measures of similarity. These measures 
incIude an evaluation fbnction using an eficient search method. 

The basic elements of data descriptions are called primitives. These eIements 
were used in our image processing routines to describe the various types of vehicles. For 
example, the primitives defined included the size of shadow, semi-major and semi-minor 
axis of the shadow, shape parameter of the clump, gray level distribution, and the shadow 
orientation. Thus the data descriptions are merely the list of primitives, which are the 
feature-based descriptions. The geometric relationship of each primitive is the locational 
relation, which is termed the structural description. 

The evaluation function (cost function) shows the best match between the list of 
primitives with their relations. The objective of the evaluation function is to move 
through the search method to reach the best match. The best match is obtained when the 
evaluation fbnction is minimized. The search space will be large in size, so the evaluation 
function and search method should be interactive to reduce the amount of search space 
while still optimizing the evaluation function. There are many search methods that could 
be used in such a study and include tree search, simulated annealing and relaxation 
labeling. 

The search space of the correspondence problem in relational matching can be 
represented as a tree. The search begins at the root level (the top of the tree), which repre- 
sents the initial probIem state. At each level the primitives are tested and then assigned to 
satisfy the predefined relations until the bottom leaf level is reached. At the end of the 
process there will be only one path in the tree that will best match and optimize the 
evaluation (cost) function. The simulated annealing process simulates the physical 
process of annealing. The annealing process can be compared to a physical system where 
the temperature is slowly lowered until the system is reduced to its lowest energy state. In 
this analogy the "energy" is the value of the evaluation function, which is minimized by a 
stochastic optimization technique. A drawback is that the simulated annealing method 
requires a large amount of computation time. The relaxation labeling method is an 
iterative process that finds the best match using the constraints, such as the relations 
between the primitives. The relaxation labeling is not guaranteed to converge to a single 
solution, however, this could be implemented in parallel processing to overcome this. 



Once the correspondence problem between two images is solved, the vehicle 
speed can be computed by a simple calculation. Since any digital image will be co- 
registered with a map coordinate system, the distance that a vehicle moves from one 
image to the next can be easily measured. The vehicle speed will be a ratio of the distance 
and time traveled between the two images. 

The important part of computing vehicle speeds is to solve the correspondence 
problem between two images, since the vehicles are changing from one image to the next 
image. As long as the matching between two images is well established, the computation 
of vehicle speeds is a simple numerical calculation. 

Section 7.4 Demonstration Project to Prepare for EyeglassTM Data 

The work proposed here would be a further extension of the work described in 
Section 7.2. The objective is to develop the infrastructure required to conduct a satellite 
demonstration project based in Ohio. We would demonstrate the use of satellite imagery 
to count and classifl vehicles for traffic data collection. Specifically, we aim to process 
aerial photographs at a resolution simulating 1-m satellite panchromatic imagery, use this 
processed imagery to count and classify vehicles on selected highway segments, georef- 
erence the counts and classifications into a geographic information system (GIs) 
database, georeference concurrent tr&c ground counts to the same GIs database, and 
compare the aerial-based and ground-based vehicle counts and classifications. In a 
satellite-based demonstration project in 1997, all of these tasks would be conducted 
automatically. However, in this preliminary study, we plan to conduct the tasks with 
limited automation to understand the technical components. In this way we can be in a 
better position to prioritize the tasks required to eventually achieve the required level of 
automation for a large-scale satellite-based project. 

In conjunction with ODOT's Bureau's of Aerial Engineering and Technical 
Services, we could define a set of highways in a limited geographic area near Columbus. 
The Bureau of Aerial Engineering could obtain aerial panchromatic imagery of the high- 
ways. The Bureau of Technical Services could obtain ground-based traffic counts and 
vehicle classification data on the highways concurrently with the aerial imagery. We will 
scan the aeriaI imagery to simulate 1-m data and use the image processing programs 
developed in this project to count and classify vehicles into at least three categories based 
on our developed decision rules. We will input the classifications obtained from the aerial 
imagery and from the Technical Services ground counts into the same geographically- 
referenced database. We will then compare the data in several ways. We will need to 
develop a means to compare the traffic density information estimated from the aerial 
imagery to the traffic volume data estimated from the ground counts. We then would 
compare the vehicle counts and classifications on the highway segments. We also antici- 
pate comparing differences among highway segments in tr&c densities obtained from 
the aerial imagery to differences among the same highway segments in traffic volumes 
obtained from the ground counts. The results from this effort would be essential to 
understanding the required technical components necessary for a larger demonstration. 



The major benefit of this project would be to have simulated on a small-scale the 
process that would be used for a large-scale project. Our work would uncover the areas 
where development efforts would need to be concentrated on in the future to prepare for 
the satellite demonstration project in 1997. Developing suitable statistics to make mean- 
ingfbl comparisons, automating the aerial image-based classification routines, automati- 
cally referencing the aerial image-based classifications to the GIs database, and automat- 
ically referencing the ground counts to the GIs database will all need different levels of 
development effort. 



Section 8. Conclusions 

Recent legislation requires the collection of more and better quality traffic data. 
At the same time, the end of the Cold War has loosened restrictions on civilian use of fine 
resolution satellite data. The coincidence of these two trends motivates an interest in 
using satellites as an of-the-road traffic data sensor to complement traditional sources of 
data. 

We were tasked to investigate the feasibility of using satellite remote sensing data 
to collect traffic data. We determined that the resolutions required to count and classify 
vehicles would not allow the use of geo-stationary or geosynchronous orbits, since 
satellites in these orbits must be at extremely high altitudes (around 35,900 krn). Thus, it 
would be necessary to place an orbiting remote sensing satellite into a near-polar, circular 
orbit at altitudes ranging from 400 to 1,000 km that would take about 90 to 100 minutes 
to circle the earth. The resulting coverage from an orbiting satellite would imply that 
satellite data would augment, rather than replace tr&c data collection. We investigated 
the resolution, the orbital parameters, and the commercial feasibility of a satellite system 
that could count and classify vehicles. 

To determine the necessary spatial resolution, tests were performed with simu- 
lated satellite data at various resolutions (1.2 m, 2.4 my and 4.8 m) of panchromatic 
imagery (0.5-0.9 pn) over selected highway segments in Franklin County, Ohio. From 
our analyses, we determined that a 1-m resolution would be necessary to count and 
classifjr vehicles (cars and trucks) with greater than a 90% accuracy. 

The next technical issue that was addressed included the coverage that could be 
obtained from an orbiting satellite with a 1-m sensor onboard. This coverage would be a 
function of the sensor and orbital design parameters. Mathematical formulations were 
developed to represent the interrelations among these parameters and to allow easy 
evaluation of various satellite designs for circular orbits. We formulated a percent 
continental US. coveredper day performance measure and related this measure to the 
orbital and sensor parameters. Based on present and anticipated limits on sensor parame- 
ters and on physical relations among the parameters, we developed a nonlinear program 
to determine the maximum coverage based on sensor parameters. 

We recommend an inclination angle of 130' to achieve the maximum coverage 
per day over the continental U. S. A swath width of 15 krn (using a pixel may of 15,000) 
was used for the satellite altitudes under consideration to achieve the 1-m resolution. 
With this satellite design, our mathematical program results showed that, after factoring 
down for unavailability of images during night and cloud cover, we can cover approxi- 
mately 1% of the highways in the U.S. per day. The primary limiting constraint that we 
have at present is the data transmission rate, Given that satellites would cover spatial 
traffic parameters at an instant of time, whereas existing traffic data collection systems 
capture temporal parameters at a point in space, the effects of such daily satellite 
coverage on estimates of trsaff~c parameters when combining the two systems is still an 
unanswered question. 



The last technical issue is the commercial feasibility of such a satellite design. 
Comparing to planned satellite missions with similar specifications, it appears that 
launching and operating a required system would cost on the order of $75-100 million. 
Several commercial companies are designing satellites that will achieve l-m resolution in 
the very near fbture. One system, Eyeglassm, will be launched and operational by 1997. 
The only drawback to this system is that Ey e g l a s s ~ ~  is in a sun-synchronous orbit. 
However, with its design of fore-and-aft and side-to-side image coverage using angles up 
to * 4 5 O ,  it will be possible to achieve additional times of satellite coverage. We deter- 
mined that acquiring enough  eyeglass^^ data to cover approximately 0.05% of the U.S. 
highways per day (if possible) would cost on the order of $3 million per year. 

Before satellite data could be used routinely to count and classify traffic data on 
an operational basis, the infrastructure required to process and use the satellite data must 
also be considered. With preliminary testing of Eyeglassm-type sensor data as proposed 
in Section 7, several of these technical issues should become clearer. Also, unanticipated 
problems that may be encountered with the image data flow and processing could be 
worked out before actual demonstration and use of  eyeglass^^ data in future traffic data 
collection studies. 

The planned future commercial remote sensing missions were not designed, or 
even conceived, with traffic data collection in mind. Moreover, determining how to 
integrate the spatial data collected from a satellite with the temporal data collected from 
ground counts and developing the infrastructure to collect, process and transmit the 
information are issues that need to be addressed before satellite data could be used on an 
operational basis. Therefore, we believe that at this time it is premature to attempt to use 
high resolution remote sensing data from commercial missions on an operational basis. 

These missions do, however, offer a fortuitous opportunity to conduct operational 
tests and address the development issues in a realistic setting. Our simulation results 
indicate that a l-m resolution (panchromatic data) is required to distinguish trucks from 
passenger cars. The decisions to launch l-rn panchromatic sensors, which were made 
independently of our results, will allow the civilian world to work with 1-m data for the 
first time. Also, researchers can test prior simulation results with actual satellite 1-m data. 
At the same time, planning for operational tests in limited areas in which the data are 
collected, processed, and delivered to selected users would hasten the design of the 
necessary supporting infrastructure. Conducting operational tests first with the  eyeglass^^ 
data and later with the Earthwatch and Space Imaging data would indicate the weak links 
in the preliminary design of such an operational system. 

Given the lead time required to plan and implement operational tests and the 
added value of testing concepts in theJield by testing them in the Zuboratory, we recom- 
mend that the next step in determining the feasibility of using satellite data for traffc data 
collection should be to take advantage of Eyeglass=, EarthWatch and Space Imaging 
data, and any other near-term satellite missions. In this way we can test and demonstrate 
concepts and identify the relative magnitude of problems that would need to be resolved 
before satellite data could be used in a routine manner to collect highway traffic data. 
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Notation 

The following symbols are used in this report: 

Section 2: 
AADT average annud daily traffic 

ADT average daily traffic 
DF daily variation factor 

DHV design hourly volumes 
K the proportion of AADT occurring during the 30th highest peak 

hour of the year for rural roads or 15th highest peak hour for 
urban areas (K factor) 

MF monthly variation factor 
VMT vehicle miles traveled 

Section 3: 

b, 

bot 

boo 

bon 

number of clumps that were comectly classified as trucks 
number of clumps that were correctly classified as other 
vehicles 
number of clumps that were classified as nonvehicles that were 
truly nonvehicle elements 
number of clumps that were misclassified as trucks when they 
were truly other vehicles 
number of clumps that were misclassified as trucks when they 
were truly nonvehicle elements 
number of clumps that were misclassified as other vehicles 
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dots per inch (dpi) 
scanned pixel resolution 
reflectance from pavement 
reflectance from vehicle 

area of the continental United States covered by the satellite 
area of the continental United States 
area between latitudes 25" and 50" north covered by the satellite 
area of the earth between latitudes 25' and 50' north 
area of the earth between two latitudes, designed as LATl and 
LAT2 
data compression rate before tmnsrnission 
data transmission rate in megabits per second 
maximum product of data transmission rate and compression 
factor in megabits per second 
focal length in meters 
maximum focal length in meters 
fraction of ground tracks that pass over the continental U.S. 
during the nighttime 
fraction of ground tracks that pass over the continental U. S. 
during the daytime when it is cloudy 
fraction of nonproductive ground tracks 
altitude of satellite in kilometers 
inclination angle of satellite orbit 
length of a ground truck between LATl and EAT2 
orbits per day 
number of bits of information per band 
number of bands per pixel 
percentage of the continental U.S. covered by the satellite per day 
percentage of highways in the continental U. S. imaged per day 
number of pixels per array line 
physical width of the pixel on the detector in micrometers 
the (mean) radius of the earth in kilometers 
resolution of the square pixel in meters 
swath width in kilometers 
satellite velocity on the ground in kilometers per second 

vehicle width 
area of element i in the pixel 
area of the pixel 
area of the pavement 
area of the vehicle 
vehicle length 
contrast ratio of a pixel 
orientation angle 
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pixel size 
panchromatic spectral reflectance of element i in the pixel 
reflectance of the vehicle 
reflectance of the pavement 

Fraction of Other Vehicles Correctly Identified 
Fraction of Trucks Correctly Classified 
Fraction of Vehicles Correctly Identified 
Other vehicle Error of Commission 
Other vehicle Classification Error of Omission 
Truck Classificaiton Error of Commission 
Truck Classification Error of Omission 
Vehicle Identification Error of Commission 
Vehicle Identification Error of Omission 

detector aperture 
centripetal force 
gravitational force exerted by the earth 
gravitational constant 
mass of satellite 
radius of the earth plus the satellite height above the earth 
linear velocity 

great circle arc length between two points 
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Appendix A. Mathematical Modeling of Imaging Performance 

A1 Contrast Ratio Model 

The ability to sense an object using a remote sensing instrument is related to the degree to 
which the object contrasts with its background. In our case, the vehicle to be imaged would have 
to contrast sufficiently with the surrounding pavement. Considering a digital product, the 
contrast would be obtained by the pixels in which the vehicle is located having sufficiently 
different contrast ratios from those in which the vehicle is not located. In our case, the pixel 
contrast ratio is a numerical encoding of the panchromatic reflectance of the pixel and is deter- 
mined by the weighted (by area) average of the panchromatic spectral reflectances of the objects 
in the pixel. Specifically, the contrast ratio of a pixel CRpix could be modeled as: 

where Ri is the panchromatic spectral reflectance of element i in the pixel, Ai is the area of 
element i in the pixel, the sum is over all elements contained in the pixel, and Api, is the area of 

I 

the pixel (i.e., Apix = C Ai). 
i=l 

For our analysis, we considered there to be at most two elements in the pixel (I=2), a 
vehicle element and a pavement element. We could, therefore, write Eq. (A. I) as: 

cRPk = rWVeh* ~veh)+@pvt*~pvt)]f~pix 
or: 

CRpix = Rveh*(AvedAPlx) + Rpvt(l -Aveh/Apur) 

where the subscripts veh, pvt, and pix, stand for the vehicle element, the pavement element, and 
the pixel, respectively. 

In assuming that there would be no elements in the pixel other than vehicle and pavement 
elements, we were assuming that there would be no off-highway elements in the pixels of 
interest, i.e., the pixels containing a vehicle element. We believed that this would be an 
acceptable assumption for a first approximation model. We believe that the pixel size would 
eventually be small enough that, in all but very rare cases of vehicle positioning, any pixel 
containing a large enough vehicle area to be of interest would be far enough from the pavement 
edge that there could not be any significant area of off-highway element in the pixel. Any error 
due to the approximation would be reduced even more when considering highways with 
shoulders of the same material as the highway pavement. 

Our "two-element approximation" also assumed that there would be no shadow effects in 
the pixel. We had intended to consider these as secondary effects after obtaining preliminary 
results. As we determined later, however, the shadows appear to be the principal means of 
vehicle detection, rather than a complication of it. 



A.2 Geometric Model 

The objective of the model is to investigate the properties of an array simulating remotely 
sensed contrast ratios corresponding to vehicles on pavements through the use of Eqs. (A.2) or 
(A.3). To accomplish this we anticipated simulating the superposition of vehicles with known 
geometry and location on a grid of pixels of specified dimensions to determine Aveh/Apix for 
each pixel, inputting Rveh and values to each pixel, and determining CRpk according to Eq. 
(A.3). Although our results of Section 3 show that the Rveh and Rpvt values are such that this 
model would not work, the geometric part of the model that involved determining AvedApix led 
to interesting conclusions. 

To determine Aveh and Api, we superimposed a rectangular vehicle on a grid of square 
pixels. As illustrated in Figure A. 1, the rectangular vehicle had width of a meters and length of b 
meters. The parameters a and b would distinguish the type of vehicle, e.g., a car or a truck. Some 
different classes of vehicles in FHWA's 13-category vehicle classification scheme (see Table 2 -2, 
Sect. 2.1.5) have very similar width and length, but differ by number of axles. Therefore, we 
realized that vehicle type could not be completely distinguished by the a and b parameters. In 
this investigation we were interested in the remote sensing of general vehicle groups, however, 
so that the process would lend itself to large-scale, operational use, as opposed to a detailed 
investigation of precise vehicle classes. 

We considered square pixels of length PS (pixel size), as is also illustrated in Figure A. 1. 
A square pixel with length PS meters is said to have PS m resolution. Pixels do not have to be 
square, but they usually are with recent satellite sensors. Indeed, since the objects of interest, the 
vehicles, are rectangular, a rectangular pixel size might be of interest. We felt that this would be, 
at most, a secondary consideration, however. Moreover, without going into any detailed study, 
we also felt that, since the highways to be monitored would not have any dominant orientation, 
any improved performance that might be obtained by correlating the axes of a rectangular pixel 
grid with a given highway orientation would lead to decreased performance on those highways 
90' from this orientation. The pixel resolution P S  was a design parameter, and we were 
interested in studying its effect. 

Referring again to Figure A.1, we called 8 the orientation between the longitudinal vehicle axis 
(which would correspond to the centerline axis of the highway) and an axis taken along an axis 
of the pixel grid. The symmetry of the square pixels implied that either axis of the pixel grid 
could be chosen. This orientation parameter 8 might be considered an unknown (to an observer 
or a software algorithm that would eventually be used to interpret the remotely sensed image) 
random variable over which the results might have to be integrated to make for meaninghl 
interpretation. Or, it could be considered a known parameter upon which the results might have 
to be conditioned to lead to better interpretation. The orientation of the pixel grid would be 
known accurately to some external coordinate or reference system. We also believe that the 
centerline orientation of highways important enough to be monitored could be known accurately 
to the same external reference system. We, therefore, propose that 0 would be a known 
parameter. In either case, as described below, the results obtained from our geometric analysis 
indicate that the orientation angle can influence the characteristics of the remotely sensed image 
(see Section A.3). 



Figure A.l Modeled geometry of a vehicle in a pixel grid 

Given the parameters a, b, PS, and 8, representing, respectively, vehicle width, vehicle 
length, pixel resolution, and orientation angle, locating the center of the vehicle in the pixel grid 
uniquely determined the geometry of the problem. By "the geometry of the problem" we mean 
the constant pixel area Apix and the vehicle pixel area Aveh and, therefore, the ratio A*fipi, in 
each pixel of the array of pixels (see Fig. A.l). Due to the symmetry of the problem we only 
needed to consider centers in one of the four "quadrants" of the pixel, where the four quadrants 
(see Fig. A.2) are mutually exclusive and collectively exhaustive regions of the pixel consisting 
of sets of points (x,y). They can be defined by considering one comer of the pixel to have 
coordinates (0,O) in a coordinate system with axes parallel to the sides of the pixel and calling: 

Quadrant 1 = ((x,y) such that 0 5 x I PS/2,O I y 5 PS/2); 
Quadrant 2 = ((x,y) such that PS/2 I x SPS, 0 Sy 5 PS/2); 
Quadrant 3 = {(x,y) such that 0 5 x 5 PSl2, PSI2 I y I PS); 
Quadrant 4 = ((x,y) such that PSI2 I x I PS, PS/2 Sy S PSI. 



That is, given a set of parameters [(a,b),PS, 81 and the location of the center of the vehicle in 
some quadrant, the geometry portrayed in Figure A. 1 could be obtained with the center of the 
vehicle at unique points with unique rotation angles in each of the other quadrants. We, 
therefore, analyzed the geometry by varying the center of the vehicle (a, b) systematically 
throughout one quadrant and the rotation angle 8 systematically from 0 to 2.n for each location 
of the center. We wrote a computer program to perform the mathematical computations. A listing 
of this program and a description of its logic can be found in Appendix C. 

A.3 Geometric Study 

In remote sensing studies, one is often interested in obtaining at least one pixel that is 
dominated by the object sought so that it would appear sufficiently distinct from its background. 
In our case, this would imply that the Aveh/Apix ratio would be "large enough" in at least one 
pixel. How large this ratio would need to be could not be determined without further study (the 
types envisioned are described in Section A.4 below), but we could investigate the distribution of 
the maximum Aveh/Apjx ratio that would occur for a vehicle class and pixel resolution. 

Our approach was to specie [(a7b), PS, 81 and fix the center of the vehicle at some point 
fqy) in a quadrant of the pixel. For this specification, we then used the computer program of 
Appendix C to determine Aveh for each of the pixels in which part of the vehicle would lie, 
found the maximum Aveh thus determined, and divided this by the pixel area, PS~. We then 
repeated these steps for the same [(a,&), PS, 81, but for a different center location (x,y) in the 
quadrant. We did this for 360 center locations equally distributed throughout one quadrant of the 
pixel, recording one (the maximum) AvedApix ratio each time. We then changed the rotation 
angle 8 and repeated the same procedure for the same 360 center locations. We did this for 20 
rotation angles, specifically, for all rotation angles from .n/20 to a, incrementing by n/20 
radians each time. We then could form distributions of the maximum Aveh/Apix ratios as a 
hnction of the vehicle class (a,&), the pixel resolution PS, and, if desired, the rotation angle 8 .  
We could then form different distributions for different vehicle classes and pixel resolutions. 

As mentioned in Section A.2, if we were to consider the rotation angle unknown, we 
should aggregate the results over all values of 8, as well as all center locations (over which we 
would have no control and for which we would have no knowledge). In Figures A.3a and b, we 
present the maximum AvedApix cumulative distributions for 1 m, 2.5 m, 5 m, and 10 m 
resolutions for the case in which we would have no knowledge of 8 .  

In Figure A.3a, we present the distributions for vehicles with a = 1.5 m and b = 5 m, 
values representative of cars. In Figure A.3b, we present the distributions for vehicles with a = 
2.5 m and b = 15 m, values representative of large trucks. Considering the criterion of "having at 
least one pixel dominated by the object of interest," it would appear that 1 m would be sufficient 
resolution to detect both cars and trucks. Specifically, the 1 m resolution cumulative distribution 
curve in Figure A.3a shows that there would be less than 0.10 probability of a car covering 96% 
or less of the maximally covered pixel, and almost no probability of a car covering less than 80% 
of the maximally covered pixel. For trucks, Figure A.3b shows that there would be virtually no 
probability of a truck covering less than 99% of the maximally covered pixel at this resolution. 



Figure A.2 Illustration of "pixel quadrants" 

There seems to be an important decrease in car imaging potential when decreasing the 
spatial resolution from 1 m. Figure A.3a shows that, while there would be no chance of a car 
covering less than 50% of the maximally covered pixel at the 1 m resolution, there would be 
between a 0.35 and 0.40 probability of a car covering less than 50% of the pixel at the 2.5 m 
resolution, and that there would be no chance of a car covering 50% or more of a pixel at 5 m or 
10 m resolution. 

Changing the resolution fiom I m to 2.5 m does not seem to affect truck imaging as 
much. Figure A.3b shows that the probability remains at approximately 0.0 of the truck covering 
less than 50% of the maximally covered pixel. The slope of the cumulative curve, which gives 
the probability density, indicates a high probability that the vehicle would cover between 85% 
and 90% of the maximally covered pixel. The probability of a truck covering at least 50% of a 
pixel would decrease dramatically to between 0.5 and 0.6 at 5 m resolution and to 0.0 at 10 m 
resolution. 

These results led us to believe that, based on geometric considerations, it might be 
possible to image cars at somewhere around 2.5 m resolution and that it would definitely be 
possible to image trucks at this resolution. Therefore, we investigated the maximal Aveh/Apix 
ratios at resolutions around 2.5 m. In Figures A.3c, d we present the results for 2.0 rn, 2.5 m, and 
3.0 m resolutions. From Figure A.3c, we see that a car would definitely (i.e., with probability of 
1.0) cover approximately 36%, 30%, and 25% or more of the maximally covered pixel for the 
2.0 m, 2.5 m, and 3.0 m resolutions, respectively, and cover at least 50% of the maximally 
covered pixel with probabilities of approximately 0.9, 0.6, and 0.1 for these resolutions. Figure 
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a. Vehicle type representative of passenger car: a = 1.5 m; b = 5.0 m; 
Pixel resolutions = 10 m, 5 m, 2.5 m, and 1 m. 
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b. Vehicle type representative of large truck: a = 2.5 m; b = 15.0 m; 
Pixel resolutions = 10 rn, 5 m, 2.5 m, and 1 m. 

Figure A.3 Cumulative distributions of maximum AvedApi, 



Figure A.3 continued 

c. Vehicle type representative of passenger car: a = 1.5 m; b = 5.0 m; 
Pixel resolutions = 3 m, 2.5 m, and 2.0 m. 

d. Vehicle type representative of large truck: a = 2.5 m; b = 15.0 m; 
Pixel resolutions = 3.0 rn, 2.5 m, and 2.0 m. 



A.3d shows that a truck would definitely cover approximately 65%, 55%, and 45% of the maxi- 
mally covered pixel at the 2.0 m, 2.5 m, and 3.0 m resolutions, and almost certainly cover at least 
50% of the maximally covered pixel for all of these resolutions. 

As mentioned above, the percentage of the pixel that would need to be covered by the 
vehicle for the vehicle to dominate the pixel could not be precisely determined without knowing 
the relative reflectances of the vehicle and pavement. As a first approximation, however, we 
might consider that the vehicle should cover at least 50% of some (i.e., the maximally covered) 
pixel. Remote sensing studies have typically used an 85% accuracy rate (Anderson and others, 
1976) as a standard for accuracy. In our case, we interpret this as meaning that the vehicle should 
cover at least 50% of some pixel with at least 0.85 probability. The preceding discussion and the 
cumulative distributions of Fig. A.3 show that we would need between I. m and 2 m resolution to 
meet this standard when imaging cars and between 3 m and 5 m resolution to meet this standard 
when imaging trucks. 

The above results are obtained by aggregating over the rotation angle 0, representing the 
case where 8 would be unknown to the human or computer interpreter. As we mentioned above, 
we believe that if 8 were a parameter that influenced the interpretation, efforts would probably 
be made to make it known to the interpreter. We, therefore, investigated the results stratified by 
rotation angle 8. 

In Figure A.4 we present maximum AvedApix cumulative distributions, aggregated across 
different locations of the vehicle's center, as described above, but at fixed values of 8 for 1 m, 3 
m, and 5 m resolutions. Note that at 1 m resolution (Fig. A.4a), 8 = 0 produces a very different 
result for cars than do the other values of 0. We verified this result with a scde model and in 
Figure A.5 examined in more detail the rotation angles around 8 == 0. We obtained different 
results for 0 < 7~115 radians and, therefore, within + n/15 radians of 0, n12, n, and 3 7~12 
radians. There is no influence of 0 on the Aveh/Apix distributions for trucks at 1 m resolution 
(Fig. A.4b); as seen earlier in Figure A.3bY the truck always covers the entire pixel at 1 m 
resolution. 

Figure A.4c shows that the car Av,dApi, distributions depend on all of the values of 8 
investigated at the 3 m resolution. The dependence of the buck's A,,dApix distributions on the 0 
values at the 3 m resolution (Fig. A.4d) resemble those of the carts dependence at the 1 m 
resolution. 

The 5 m resolution is so coarse with respect to the car's dimensions that the angle has little 
effect on the distribution (Fig. A.4e). On the other hand, the truck is large enough that the angle 
still makes a difference in the Aveh/Apix distributions (Fig. A.40. Figure A.5 shows additional 
cumulative distributions for AvedApi, ratios for a car vehicle type at different rotation angles for 
a 1 m resolution. These results further verify that the rotation angle does make a difference in our 
calculations. 
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b. Vehicle type representative of large truck: a= 2.5 rn; b = 15.0 m; 
Pixel resolutions = 1.0 m. 

Figure A.4 Cumulative distributions of maximum A,,dAPh ratios fw two vehicle 
types and three pixel resolutions for rotation angles of 
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Figure A.4 continued 

c. Vehicle type representative of passenger car: a = 1.5 m; b = 5.0 m; 
Pixel resolutions = 3.0 m. . . 
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d. Vehicle type representative of Iarge truck: a = 2.5 m; b = 15.0 m; 
Pixel resolutions = 3.0 m. 



Figure A.4 continued 
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Figure A.6 Flowchart for logic of simulation model based upon mathematical 
model of imaging performance. 



In conclusion, we recommend that if the criterion were one of having at least one pixel 
sufficiently covered by the vehicle, then we would not need to condition the analysis on the 
rotation angle 0 only if we were simply interested in detecting trucks with 1 m or finer pixel 
resolution. We would probably have to be sensitive to the rotation angle when detecting cars, 
however, or when using coarser resolutions for trucks. 

A. 4 Simulation Model 

The geometric modeling led to the conclusion that we would need between 1 m and 2 m 
resolution to image cars and between 3 m and 5 m resolution to image trucks, if the criterion 
were one of the vehicle covering at least 50% of some pixel with probability 0.85. These results 
served as a first estimate of resolutions of interest for the studies in Section 3. The geometric 
modeling also showed that if the angle between the pixel axes and the longitudinal axis of the 
vehicle is close to an integer multiple of ~ 1 2 ,  then the coverage of the maximum pixel will be 
different from the coverage obtained at other angles. 

We had anticipated coupling the geometric models that we developed with image 
processing and Monte Carlo simulation components to perform large scale simulation of the 
characteristics of vehicle imaging at different resolutions in the panchromatic region. Two inputs 
to these anticipated simulations were distributions of vehicle reflectances Rwh and pavement 
reflectances Rpfi. In parallel to our development of the simulation, we were trying to obtain 
empirical estimates of these values (see Sect. 3). This investigation showed that the distributions 
of these values seem to overlap so much that this approach to vehicle detection wouId not work. 
Therefore, we only ran the simulation model with fabricated values for vehicle reflectances Rveh 
and pavement reflectances Rgvt and we shall not report: on these results. 

We briefly describe our approach to generating the digital representation,'however, since 
it appears that the characteristics of the vehicle shadows and perhaps of the vehicle edges (see 
Sect. 3) may make it possible to detect and classify vehicles using images in the panchromatic 
region. Also, it may be possible to alter this aspect of the simulation model to handle these char- 
acteristics. The image processing component of the model is also of interest, since it was used in 
our empirical investigation of Section 3. 

Our computer simulation consisted of: i) generating a digital representation to simulate 
the image that would be obtained by remotely sensing vehicles on a highway with a panchro- 
matic sensor; ii) processing the digital representation through an image processing software 
package to reduce the dimensionality of the representation; and iii) summarizing the resuIts 
according to developed criteria. 

To simulate the digital representation, we generated rectangular vehicles of various 
widths a and lengths b with given spacings between pairs of vehicles along a lane of highway. 
We then overlaid a grid of pixels of resolution PS rotated at angle 0 from the longitudinal direc- 
tion of the highway, and determined the geometry as explained in Section A.2 above. Next, we 
generated Rm values from a distribution (fabricated) of pavement reflectances for each pixel 
containing some pavement area and Rveh vdues from a distribution (fabricated) of vehicle 



In conclusion, we recommend that if the criterion were one of having at least one pixel 
sufficiently covered by the vehicle, then we would not need to condition the analysis on the 
rotation angle 8 only if we were simply interested in detecting trucks with 1 m or finer pixel 
resolution. We would probably have to be sensitive to the rotation angle when detecting cars, 
however, or when using coarser resolutions for trucks. 

A. 4 Simulation Model 

The geometric modeling led to the conclusion that we would need between 1 m and 2 m 
resolution to image cars and between 3 m and 5 m resolution to image trucks, if the criterion 
were one of the vehicle covering at least 50% of some pixel with probability 0.85. These results 
served as a first estimate of resolutions of interest for the studies in Section 3. The geometric 
modeling also showed that if the angle between the pixel axes and the longitudinal axis of the 
vehicle is close to an integer multiple of 7~12, then the coverage of the maximum pixel will be 
different from the coverage obtained at other angles. 

We had anticipated coupling the geometric models that we developed with image 
processing and Monte Carlo simulation components to perform large scale simulation of the 
characteristics of vehicle imaging at different resolutions in the panchromatic region. Two inputs 
to these anticipated simulations were distributions of vehicle reflectances Rveh and pavement 
reflectances Rpfi. In parallel to our development of the simulation, we were trying to obtain 
empirical estimates of these values (see Sect. 3). This investigation showed that the distributions 
of these values seem to overlap so much that this approach to vehicle detection would not work. 
Therefore, we only ran the simulation model with fabricated values for vehicle reflectances Rveh 
and pavement reflectances Rpvb and we shall not report on these results. 

We briefly describe our approach to generating the digital representation, however, since 
it appears that the characteristics of the vehicle shadows and perhaps of the vehicle edges (see 
Sect. 3) may make it possible to detect and classify vehicles using images in the panchromatic 
region. Also, it may be possible to alter this aspect ofthe simulation model to handle these char- 
acteristics. The image processing component of the model is also of interest, since it was used in 
our empirical investigation of Section 3. 

Our computer simulation consisted of: i) generating a digital representation to simulate 
the image that would be obtained by remotely sensing vehicles on a highway with a panchro- 
matic sensor; ii) processing the digital representation through an image processing software 
package to reduce the dimensionality of the representation; and iii) summarizing the results 
according to developed criteria. 

To simulate the digital representation, we generated rectangular vehicles of various 
widths a and lengths b with given spacings between pairs of vehicles along a lane of highway. 
We then overlaid a grid of pixels of resolution PS rotated at angle 8 from the longitudinal direc- 
tion of the highway, and determined the geometry as explained in Section A.2 above. Next, we 
generated Rpt values from a distribution (fabricated) of pavement reflectances for each pixel 
containing some pavement area and Rveh values from a distribution (fabricated) of vehicle 



reflectances for each vehicle. Last, the Rpa and Rveh values were used with the modeled geome- 
try and Eq. (A.3) to determine a single numerical value of the contrast ratio CR for each pixel. 

The inputs to the simulation were user-specified, fixed values of PS and 8, distributions 
of Rveh and Rm, a dishibution of the types of vehicles (i.e., probabilities of a random vehicle 
having width and length parameters a and b from among a set of (a,b) pairs), and a distribution 
of gaps or spacings between successive vehicles on the highway. The output of this component 
was a matrix of numbers representing the contrast ratios in each pixel of the grid. The logic for 
this component of the model can be found in Figure A.6, and is shown in the Input Block and 
Simulation Block. 

We used OSU-MAP-for-the-PC as the geographic information system (GIs) component 
of our simulation model. We were successful in coupling this program with the output of the 
previous component (the matrix of contrast ratios) by rewriting parts of OSU-MAP-for-the-PC. 
Since OSU-MAP-for-the-PC is a copyrighted program, we do not present the listing here. As an 
overview, however, OSU-MAP-for-the-PC works by converting the numerical value in each cell 
of the matrix of pixels (i.e., the contrast ratio of each pixel) to a 0 if the numerical value is less 
than or equal to some threshold value and to a 1 if the numerical value is greater than the thresh- 
old value. We refer to this as "eliminating the pavement," since, after this step, we expected the 
pavement to be represented primarily by 0's and the vehicles to be represented by 1's (or vice- 
versa, depending on the characteristics of the pavement). The 0's could then be "eliminatedt' 
from hrther consideration. The program then forms clumps or clusters of all cells with values of 
1 that are contiguous, and determines characteristics of the clumps, such as the number of pixels 
in the clumps. The number of pixels in a clump would indicate its size and would be the basis for 
classifying it as a certain type of vehicle or as some nonvehicle element. The output from the 
program can then be used to develop distributions of the clump sizes. We note that the program 
is flexible enough to assign 0 values to cell values above a second threshold and that with 
algebraic operators it is straightfornard to change 0's to 1's and 1's to 0's. Therefore, it is possible 
to form clumps based on contrast ratios in user-specified intervals. The general logic is presented 
in the GIs Block and Output Block in Figure A.6. 

The input to this stage, then, is the matrix of numbers representing the contrast ratios in 
each pixel of the grid. The outputs are distributions of the clump sizes, i.e., the number of clumps 
in which the number of pixels falls within a given range. Once we determine the clump sizes 
(number of pixels in the clumps) that would correspond to each vehicle type, the program can 
summarize the number of vehicles estimated for each class and compare this to the number of 
vehicles that the program generated in each class to obtain a measure of aggregate performance 
in the vehicle class. The program would allow one to investigate the effects on classification 
performance of pixel resolution, thresholding values for "eliminating the pavement," and ranges 
of clump sizes to be associated with vehicle classes. Illustrative results can be found in Appendix 
B. We call these results illustrative and shall not describe them here because of the arbitrary 
distributions (fabricated) of Rveh and Rpvt that were used as inputs. 



APPENDIX B 

Description and Illustrative Results of a Simulation Model 
for Vehicle Imaging Performance 



Appendix B. Description and Illustrative Results of a Simulation Model 
for Vehicle Imaging Performance 

We simulated digital images on pavement background by coupling the software 
we developed with the OSU-MAP-for-the-PC GIs package. We ran these simulations 
primarily to give us a feel for the capabilities and the limitations of the analysis, since the 
validity of the outputs is constrained by the rather arbitrary input data used for the Rpw 
and Rveh distributions. Typical images of the output are seen in Figure B. 1. Although the 
vehicles can be seen in these images, we cannot rely on visual inspection for large scale 
use and must use a procedure that works in an automatic fashion. A flow chart for the 
simulation is given in Figure A.6. 

The process basically works as follows. The user specifies the desired number of 
vehicles to be generated, the probabilities of generating small and large vehicles (to 
represent cars and trucks, respectively), the rotation angle between the pavement and the 
pixel grid, and the pixel resolution. The program then randomly generates the locations of 
the vehicles (with some constraints) with respect to the pixel array, generates (from stored 
distributions) reflectance values for pixels completely covered by vehicles and those 
completely covered by pavement, and calculates the reflectances of the pixels covered by 
a combination of vehicle and pavement according to the weighted average of pavement 
and vehicle area. The user then inputs a range of "cleaning" values meant to be represen- 
tative of the anticipated pavement reflectances. The OSU-MAP-for-the-PC program 
deletes pixels with these values and then "clumps" or clusters the remaining pixels 
together. The output is a distribution of the size of the clumps, where size is measured by 
the number of pixels in the clump. 

The results of six simulation runs are presented in Tables B.la-B.lc and Tables 
B.2a-B.2c. A11 runs reported were for a highway rotated 45" from the pixel array. To 
illustrate how to read the results, consider the simulation run summarized in Table B. la. 
In this run, we generated 1000 vehicles, 538 of which are "cars7' and 462 of which were 
"trucks." 

The far left column, called "Size Range,"lists ranges of numbers of pixels. The 
538 under "Gen VeWVeh 1" in the 16-22 row indicates that 538 "cars" (vehicle type 1) 
were generated that actually covered (at least partially) between 16-22 pixels. The 538 in 
the 10-28 row indicates that 538 "cars" (the same 538 vehicles as above) were generated 
that actually covered between 10-28 pixels. The 462 values in the "Gen VehNeh 2" 
column indicate that 462 "trucks" (vehicle type 2) were generated that actually covered 
(at least partially) between 57-70 (and, therefore, between 51-76 and between 44-83) 
pixels. The next sets of columns, labeled "18-22" and "19-21," present the results when 
pixels with reflectances between 18-22 and between 19-21, respectively, are eliminated 
("cleaned") in an attempt to eliminate the pavement from the scene. The last set of 
columns, labeled "No Cleaning," presents results when the cieaning step is not used. 



Consider the "No Cleaning7' columns first. The "No CleaningNeh 1" column of 
Table B.la shows that if we did not first clean the pavement, we would identifjl 2085 
groups (clumps) with between 16-22 pixels and 8507 groups with between 10-28 pixels, 
ranges we think would be representative of cars. Since we only input 538 cars, many of 
these clumps are groups of pavement. Therefore, an approach that simply says "any 
clumps with between 10-28 pixels or between 16-22 pixels are cars," does not work well 
at all. For the large vehicles, the "No CleaningNeh 2" column shows that when the 
cleaning step is not used, we identify 2, 4, and 17 groups of between 57-70, 51-76, and 
44-83 pixels, respectively, ranges we think would be representative of the trucks. (The 
"Gen VeWeh 2" column shows that all 462 generated vehicles touched between 57-70 
pixels, and, therefore, between 51-76 and between 44-83 pixels.) Since we input 462 
trucks, identifying trucks as cIumps of large number of pixels without a cleaning step is 
not performing well; somehow, the large vehicles are being broken into several clumps of 
a smaller number of pixels. 

When we first clean the pavement, the performance does much better, however. 
The "18-22" columns, for example, present the results when we clean all pixels with 
reflectances between 18-22 reflectance counts. The "Veh 1" coiumn says that 336 and 
507 clumps had sizes between 16-22 and between 10-28 pixels, respectively. Ewe  were 
to say that a clump falling within this range was a car, we see from the "% Gen Veh" 
column that we would have predicted 62.45% (=3361538) and 94.24% (=507/53 8), 
respectively, of the true number of observations. The variation in the results when 
cleaning pixels with reflectance counts between 19-21 (see "19-21" columns) and when 
classifjling large vehicles (see "57-70," "5 1-56," and "44-83" rows under the "1 8-22Neh 
2" and "19-21Neh 2" columns) show that we need to look closely at the mechanisms 
when trying to determine the accuracy of this approach to vehicle classification. Among 
other things, some of the clumps classified as cars, for example, may be clumps of 
pavement or portions of the generated trucks. 

To investigate more closely, we repeated the exercise twice, first generating only 
1000 cars and then generating only 1000 trucks. The results are presented in the same 
format as those in Table B.la. Table B. lb portrays the results for the simulation with only 
1000 cars, and Table B. l c  portrays those for the simulation with only 1000 trucks. 

As before, the "No Cleaning" method performs very poorly, leading to too many 
clumps in the 16-22 and 10-28 pixel ranges to allow us to identify these clumps as cars 
and too few in the 57-70, 51-76, and 44-83 ranges to allow us to classify these clumps as 
trucks. 

Comparing the cleaning options in Tables B.la and B.lb, we see that the 
percentages of generated vehicles in the 16-22 and 10-28 ranges are very close; the 
largest difference is less than 5% (67.0% for Table B.lb vs. 62.45% for Table B. la in the 
16-22 classification range). Moreover, in this largest difference case, we witness a higher 
"%GV in the simulation when we onIy generated cars than in the simulation when we 
generated both cars and trucks. This Ieads us to speculate tht ,  in the simulations leading 



to Table B. la, the algorithm was not clumping small portions of trucks in the 16-22 or 10- 
28 ranges to any troublesome degree. 

Similarly, comparing Tables B. l a  and B. lc, we see extremely similar percentages 
in the 57-70, 51-76, and 44-83 size ranges. This gives us confidence in the replication of 
the results. If we could be sure that different situations would behave like this, we would 
conclude that we should clean the pavement using a range of 19-21 and then identify all 
clumps between 44-83 as trucks. The tables say that we would find 96% or 97% of the 
trucks with this approach. Although we do not have good estimates of the Rw and R m  
inputs and our results should, thus, be illustrative only, this exercise has still forced us to 
realize that one must distinguish how many of these clumps are clumps of pavement and 
how many are truly the vehicles. We considered this phenomenon when developing the 
classification rules presented in Section 3. 

We repeated the three sets of simulations, but using a 2 m pixel resolution. The 
results are presented in Tables B.2a-B.2c. The columns are the same as those in Table 
B. la-B. lc. The "Size Range" rows should be read as before, but now they consider 
clumps with fewer pixels because the pixels are now bigger (2 m x 2 m, instead of 1 m x 
1 m). Comparing Tables B. l a  and B.2a, B. lb and B.Zb, and B. l c  and B.Zc, we notice 
similar performances, except when trying to classify cars when cleaning with reflectance 
counts between 19-21. Although one would need to investigate the mechanisms leading 
to these results to determine whether the summary numbers are artifacts of the simulated 
data, they raise the possibility that there may not be any great advantage in improving the 
resolution from 2 m to 1 m if the vehicle reflectance was the characteristic leading to 
detection. 



Table B.l Summary results for simulations with 1 m pixel resolution, 
highway rotated 45' from pixel array. 
("Vehl" is a car and "Veh2" is a truck) 

a. 538 cars and 462 trucks generated 

b . 1000 cars and 0 trucks generated 

c. 1000 trucks and 0 cars generated 



Table B.2 Summary results for simulations with 2 m pixel resolution, 
highway rotated 45' from pixel array. 
("Vehl" is a car and "Veh2" is a truck) 

a. 534 cars and 468 trucks generated 

b. 1000 cars and 0 trucks generated 

c. 1000 trucks and 0 cars generated 



APPENDIX C 

Description and Computer Listing of Geometric Modeling Program. 



P!X - VEH Computer Program 

The objective of this progrzm is to compute h e  area covered by the vehicle in the different 

pixels containing parts of the vehicle. TO achieve that dj-ive, the program uses the logic - that 

we describe in the following paragraphs. After that, we present a description of the computer 

program itself; showing how this logic has been programmed. 

Program Logic 

The vehicle is assumed to be of rtdangular shape with sides of length a and b, with a c b. The 

pixels are square with sides of kPgth PS AU these quantities ean be specified by the user- ?he 

position of the vehicle o w  the grid of pixels is &ermined by the position of its center (xc, yc) 

with respect to a center of modnates (0, Q and the angle Theta fhat the longest side of the 

vehicle (b) forms with fhe vertical axis (see 1). Tfis figure a h  shows that for a given 

position of the vehicle (determined by (xc, yc) and Theta), different pixels in its vicinity are 

covered, The "south" coma of the pixel containing the center of the vehicle (call it ceater pixel) 

w a s s e l c d e d t o d & e ~ c e n ~ o f t h e s y s t a a o i f ~ t e s  Inthissystemofcoo~tes,the 

abscissa axis ~verlaps the lower side of the center pix4 and the ordinate axis the left side, and 

the point where these two sides intercept having c0ord'in;lte (0, O), being the- enter (see Egure 

1)- 

For a given position of the vehicle, charactexid by Theta, xc, and yc, we determined the 

equations for the Iines that descni  the sides of the vehicle (Eqs. (la) to (4b)), in terms of the 

slope mi and the interception E of those lines 0 -- L4). That is, Y = mi X + Ii See Appendix 

A for details about the derivation of mi and Ii- 
- 



We also determined the location of the vehicte curners (Eqs, (5a) to (8b)) with resped to the 

system of coordinates defined above (see Figure 2)- In these last set of equations, xcj is tbe 

abscissa of comer j and ycj is the ordinate of that corner (j = l.,-,4). 

With these equations set up, we are ready to compute fhe area covered by the vehicle in each 

pixel of its surroundings. Basically, there are two cases, whit% depend on the position @C 
coordinates) of the vehicle's comers In the first case, aLI 4 cornas of the vehicle are contained 

in one pixel. Therefore, the area oocylied by the vehide in that pixel Amax is the area of the 

vehicle. That is: Amax = a&. In tbe other case thae is no pix4 that oantains at1 4 corners of 

the vehicle. Hence, it is necesq to determine which pix& contain paft of the vehicle, and then 

compute how much area of these pixels is occupied Again, two sub-cases are possible. One 

in which the pixel in &-on is totaliy covered by the vehide, For that type of pixeIs the 

area covered is also Amax (see figure 3)- ?fiat is: Amax = PSA2 

In the second subcase, which is the most general and also tbe most cornpiex, the pixel is partiall? 

occupied by the vehicle (see Epre 4). In what follows we will assume that we are studying a 

pixel partially covered by the vehicle and we will describe bow w e  determined that area. 



Because the pixel is partially occupied by the vehicle, at Ieast one of the tines defining the sides 

of the vehicle will go through this pixel. For example, Figure 4 shows that Line I defines one 

of the borders of the area CA that we are trying to compute, and that line intercepts the pixels 

borders at points B and C. 

For any given pixel it is possible to define the equations of its border lines in the system of 

coordinates defined above. For example, Eqs. (9) to (12) show these fines for a pixel with its 

' t ~ ~ ~ t h " ,  "north", "", and "east" borders located at a distance PB, PT, PL, and PR, respectively, 

from the center of coordinates (i-e., l ies  BB, TB, LB, and RB in Egure 4). 
. - 

The intersection points between these pixel borders and the vehicle border-lines, defined by Eqs. 

(la) to (41, are given by Eqs. (13a) to (28b). In these equations xij is the abscissa of rhe 

intersection point between pixel border i (i = 1, ...., 4, where 1 = BB, 2 E LB, 3 e= 733, and 4 = 

RB) and vehicle Iine j (j = 1,..,,4), and yij is the ordinate of this point (see Appendix A for 

details about obtaining these intersection points). 

x l l  = xc + (PB - a / (2 * SDJ(Theta)) - yc) * SIN(Theta) / COSmeta) 

yll = PB 

x12 = xc i- (PB + a / (2 * SINPeta)) - yc) * S1[19(Theta) l COSQ%eta) 

y12 = PB 

x13 = xc - (PI3 - b / (2 * COS(Theta)) - ye) * O m e t a )  / SINPeta) 

y13 = PB 

x14 = xc - (PB .+ b / (2 * COS(Theta)) - yc) * COSpheta) / SIN(Theta) 

y 14 = PI3 



x21 = PL (1%) 

y21 = yc + (a / (2 * COSmeta)) + (PL - xc)) * CDS(Theta) / SIN(Theta) 

x22 = PL 08) 
y22 = yc - (a / (2 ' C o w e t a ) )  - (PL - xc)) * CX)S(Theta) / SIN(Theta) mi) 
x23 = PL 0%) 
y23 = yc + @ / (2 * SiNmeta)) - (PL - xc)) * SIN(Theta) / COS(Theta) @el 
x24 = PL rn) 
y24 = yc - @ / (2 * SINmeta)) + (PL - xc)) * SIN(Theta) / mS(Thet.a) Pi 

x31 = xc + (PT - a / (2 * SIN(Tkta)) - yc) * SINmeta) / C0Sp'bet.a) 

x32 = xc + (IT + a / (2 * SIN-)) - yc) * SINmeta) / OOS(Iheta) 

y32 = PT 

x33 = xc - (PT - b / (2 * Om)) - yc) * C o w e t a )  / SIN(Theta) 

x34 = xc - (PT + b / (2 * aE('Ihe&)) - yc) * CosCfheta) / SINO[neta) 

y34 = PT 

x41 = PR 

y41 = yc + (a / (2 * OS(Theta)) + (PR - xc)) * COS(Theta) / SINmeta) 

x42 = PR 

y42 = yc - (a / (2 * 0!5(Theta)) - (PR - xc)) * COS(Theta) / SIN(Theta) 

x43 = PR 

y43 = yc + @ / (2 * SIN(Theta)) - (PR - xc)) * SINfrheta) / COS(Theta) 

x44 = PR 

y44 = yc - @ / (2 * SIN(l%eta)) + (PR - xc)) * SIN(Theta) / CDSffheta) 

In our example, only points B = (x31, y31) and C = (x21, y22) in Figure 4 are relevant for the 

computation of area CA. All the other intersection points between the vehicle borders and the 

pixel borders (marked with and X in Figure 4) are outside the pixel in consideration. To ckeck 

whether an intersection point is inside or outside the pixel i t  is necessary to determine if the 



coordinates of that point are within the borders of the pixel or not. 

On top of the intersection points between vehicle tines and pixel borders, there may be other 

reIevant points in determining the perimeter of the area to be computed. In our example there 

are three more points that define the perimeter of area CA. These points are the corners of the 

pixel that are covered by the vehide (points A, D, and E in Figure 4). 

Once a11 the points defining the pe&neter of the area to be computed are known, we are ready 

to calculate that area. There are basically two piactid methods -integration and triangulation- 

to do so. The integration method has the diszdvantage that it is necessary to work with 

functions, which is somehow ambersome to program. The srianguhtion method, on the other 

hand, only requires that we know the points where the Imes in the perimeter of the area to be 

computed intersect ~ L C  points A, 113, C, D, and E in figure 4). We adopted this method. To 

use the triangulation methodology it is necessary to divide the area CA into non overiapping 

triangles that cover it entirely- Thc first step in defining these triangles is to find a point V to 

serve as vertex for these triangies lhis point can be anywhere inside or outside of the area C& 

but because of simplicity, we to have point V inside the area (see F i e  5). 5). pint  V 

is outside, then it is necessary to compute the are% of two sets of triangles and subtract them, as 

it will become apparent when we expIain the method01ogy~ 

After selecting point V, the area CA is divided in triangles that have as vertices point V and two 

adjacent1 corner points on the perimeter of the area to be computed. Figure 5 shows that in our 

example we can define 5 triangls T1 to T5, that completely tile the area Ck Notice that the 

number of triangles is always equal to the number of m e r  points defining the perimeter of the 

area to be computed, if point V is inside that area. The next step is to compute the area TA of 

each one of these triangles and add them all to have the area of CA. One way of doing this 

computation is to determine for each triangle the length of its sides (for example dl, cX& and d3 

for triangle T1 in Figure 6) and use trigonometric relation in Eq. (29) to calculate the area of that 

triangle (see Appendix A for details): 

'There will be a subroutine in the computer program which deteminzs whether two points on the perimeter are 
adjacent or not. 



Notice that the length of the sides dl, d2, and 63 are very easy to compute once the coordinates 

of points V, A, and B are known, which is our case. The lengths are just the Eucliidiean 

distances. 

We have seen in the preceding parag;taphs how to determine the area occupied by the vehicle in 

any pixeL Ln the next section we will introduce an overview of how we implemented these 

calculations in a computer program. 

Computer Program 

The aim of this computer pro- is to identify, from ail the pixels occupied by the vehicle, the 

one that contains the maximum area To do so the progmrn first determines which are the pixtis 

containing parts of the vehicle. After that it calculates the areas occupied by the vehicle in those 

pixels and then it determines the maximum covered area (Amax). This pnxess is to be re- 

by varying the position of the vehide so &at we can construct a probability distribution of the 

ratio between Amax and PSA2 (the pixel area), for a given vehicle type (represented by its sib 

a and b) and a pixel size PS. Therefore, the selection must be as a function of the location and 

orientation of the vehicle with respect to the pixel. 

Since this is a spatiai problem, we first need a model representing the space surrounding t&e 

vehicle in study. Due to the fad that the only relevant information at this stage is the a m  

occupied by the vehicle in the diiefent pixels, we decided to depict the space around the v e K i  

as an array in which each element represents a pixel. In this array, the position of an element 

defined by its row and column indices has a correspondence to the spatial position of the pixel 

being represented. For example, suppose we restrict the region around the vehicle to a squa~e 

area of n pixels per side. In this case, the pixel located in the north position of the area wouEd 

correspond to the first element (i-e.; row 1, column 1) in this array, while the southeast pixel u-21 

be represented by the element (n, n) (see Figure 7). The program starts by computing &e 



dimensions of this array, which is done by determining the distance, in terms of number of 

pixels, to the pixel that is the farthest from the vehicle center and that contains parts of the 

vehicle. Some slack is added (i-e-, 2 is added to the computed array dimension) to be on the safe 

side (for some combination of the vdues of angle Theta and vehicle's center position (xc, yc) 

the vehicle may cover some pixel outside the area defined by the pixels in the original array). 

This array is named M d V e h  in the program and its dimension is (n%, n%12, where, as we 

explained above, .the first index damks the row position of a pixel and the second one its 

column position. 

After this, the program starts +bee loops fhat vary h e  position s f  the center of the vehicle (xc, 

yc) between 0 and PS/2 in both the x and y dimensions, and the angle Theta between 6 and 180 

degrees, to allow, ultimately, the amputation of the probabiiity distribution of the maximum 

pixel area covered by the vehicle. The htervaIs with which xc, yc, and Theta are incremented 

are to be provided by the user in the pmgmm (see top of page 2 of the program listing). Once 

Theta, xc, and yc have been assigned values, the program computes the equations for the lines 

that desaibe the sides of the vehicle and the location of the vehicle corners (see Figure 3 and 

Eqs. (la) to (8b)). See page 2 of the progtam f i .  

Much of the logic to determine the area covered by the vehicle in the different pixels is based 

on the observation that there is no point on lines 1 to 4 that belongs to the vehicie and for which 

the distance to the center is larger than d (see Figure 2), where d is the Euclidean distance fiom 

one of the vehicle corners to the centa of the vehicle. The program therefore, computes this 

distance 4 which is caIled MmDiag (see bottom of page 2 of the program listing). 

The next step is to determine if all fhe four corners of the vehicIe are within a single pixel. This 

is done by a conditional clause that rsts whether the four corners of the vehicle, described by 

Eqs. (5a) to (8b) are within the central pixel. If this is the case, then the vehicle touches only 

that pixel and the area covered is just Aveh = a * b, The program stores this area and increments 

'lo the latgaage t L t  the pro- is writka (QuickBaic v 4.0). to indicate that a \ariable is integer rhc character fi must be rtrached to 
the name of r L r  variabk. A donbk p r c c i s h  variable, t&e angk Tbeo. rcqaires 10 anacb the character # to its aarnc. 



the indexes of the three variables Thai, x c  and yc- if the vehicle's corners are not located in 

only one pixel. then the p r o p m  analyzes all the pixels in die area of (XI x n) pixels around the 

vehicle, computing the area occupied by the vehicle in each of these celk As we explained 

above, there is a direct c o r r e s ~ o n d ~  between tbe space represented by the (n x n) pixels and 

the elements of the MarAVeh array. Therefore, in order to investigate systematically all the 

pixels in the (n x n) area the program ases taro Ioops to ~ u o l  wbich is the pixel that is being 

andyzed (see page 3 of the program iisting) The firsf loop with index i%, controls the vertical 

position of the pixel in the square area of (a x n) pixels, M e  tbc seccmd loop, with index j%, 

controls 3s hizmtal position. 

Fara pixel p in this (nxn) aachacacterizcdby thevairrrof theindicesi%and j%, the 

program comprtts the pusition of that pix4 in the absolute amdinate system defined above, 

determining theaKxdimtesoftheBwrcomersof &pix& Ifdrefourcome-rsofthepixei p 

are outside the vehicle, which is determined by analyzing if the distance of the pixel's comers 

t o t b e c c n t c r o f ~ v c h i d e i r t a c g e t ~ ~ ~ ~ , ~ t b e ~ ~ d ~ m t r o a t a i n a n ~ ~ o f  

the vehide. F v  8 shows that the cIistances of the 4 comers of the m#th pixel to the center 

of the vchide are all simuiww larger ttran M d i a g ,  hqdying that the pixel does not 

contain any part of the vehick. In rhat case the pmpm increameats the indices i% and j% and 

goes to the foliowing pixel. If this is the case, then the p q p m  detamines whether a11 four 

corners of the pixd are inside the vehicle. ff the answer is yes, then the area occupied by the 

vehide in that pixel is the area of the pixel, that is PSM2 (see F m  3). If only some, or wen 

none of the pixel% conws an: inside the FPthide @e, pixeI's unners are outside vehicle but 

distances to inmsztion points between vehicle lines and pixel bader are all less than d), then 

the program coqmes the intersedim of the vehicle lines (ie, the lines that define the vehicle 

borders) and the anrent pixel lines 6% the hes that define the arrnent pixel borders> See Eqs. 

(13a) to (28b) and subroutine Inter in he pragra.m listing,. 

After that, the-program dctennines if the points just found beIoqg td the vebide and to the pixel: 

p at the same time (for example points A B, C, D. and E in Fwre 4). Those intersection 

points between the lines de f inh  the pixel borders a r i  the vehicte border-lines that are not inside 

or on the border of pixel p are eliminated (irnxerxccon poi@& marked with an X in Figure 4). 



Those that remain are the ones used to compute the area covered by the vehicle in this pixel. 

Notice that these points always define a convex area. which we called CA in Figure 4. 

The calculation of the area covered by the vehicle in the pixeI p is done by triangulation. A 

point inside area CA is first defined by finding the middle point between any two corner points 

in the perimeter of CA (see subroutine Centralpoint in the computer listing). For example, point 

I1 in Figure 9 is the middle point between comer points A and B. Once point I1 is identified, 

a new middle point V between I1 and another corner point an the CA's perimeter, for example 

point D in Figure 9, is identified. Notice that there will always be at least three points known 

on the perimeter of CA, since the minimum number of sides to encfose a convex area is 3. Point 

V is then used as a vertex to compute the area of the triangles defined by that point and those 

on the perimeter of CA as we explained be&re. 

Before computing the areas of the different triangles that make up area CA, it is necessary to 

order the points on the perimeter. Those points were determined as expIahed a b v e  and stored 

in two vectors (i-e., px(.) and py(.) in the program) that contain their abscissa and ordinate, 

respectively. However, these points may no? be in a consecutive order on the perimeter of Ck, 

which is a necessary mnditiw to compute the coma area CA by meam of the triangulation 

procedure, The consecutive order is accomplished by associating to each of the points on the 

perimeter the angle that a Iine passing t h u g h  the point and the vertex V forms with the 

horizontal line. Then the points are ordered by this angie: the point with the smallest angle is 

assigned the first place, the point with the second smallest angle, the second place, and so on. 

See subroutines Arrange and dist in the program Iisting. 

Once the area of a11 the triangles is computed, the area covered by the vehicle in the current pixel 

is the summation of these areas. This information is stored in MatAVeh which is later saved in 

a file, in which the name starts with the Ietter M, followed by the vehicle type, and information 

about the vehicle dimensions. Another file produced by the program stores the maximum pixeI 

area covered by a vehicle. The name of this file starts with the letter S, followed by the vehicle 

type, and infomat ion about the vehicle dimensions. These names and the directory where these 

files are to be saved must be provided by the user (see page 1 of the program listing). 
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Vehicle Border Lines 

To determine the parameters of the lines defining the borders of a vehicle of side lengths (a,b) 

we proceeded as follows. Consider Line 1 in Figure Al, which represents the left side of the 

vehicle. Generically, we can write the equation of that line as: 

where rnl is the slope of the line and i l  is the intersection of bhe line with the ordinate axis, 

From Figure Al, the slope of Line 1 is: 

Now we need a point on that line to compIetely specify it. Consider point A. Using itriangIe 

ACF, it is easy to see that the coordinates of that pint  are: 

If Line 1 passes through Point A, then using Eqs. (Al) and (A2), w e  can write: 

yA = cos 8 /s in 8 * xA + I1 (As) 

where the only unknown is i l .  Now, replacing Eqs. (A3) and (A49 in (A5), we can write: 

and solving for f 1: 



which can be writen as: 

and then 

and since sin2 8 + d 8 = 1 then 

Equations (A2) and (A10) completely specify Line 1. We pmceaied in the same way to 

determine the other three limes. Once the equations for these lines are known, then the corners 

of the vehicle can be easily found as the interseaion between two border lines. For example, 

comer C4 is the intersection point between Line 1 and 2 (see Figure Al). 

Intersection Between Pixel's Border Lines and Vehicle Lines 

Consider for example the intersection between the south border of a given pixel Eq. (A1 1) and 

vehicle fine 1, Eq. (A121 (see Eqs. (A2) and (AIO)). 

y = cos 0 / sin 0 x + yc + a / (2 * sin 0) - cos 8 / sin 8 * xc (A121 

To find the intersection between these two lines, we sirnpIy equalize Eqs. ( A l l )  and (A12) 

obtaining the abscisa of the intersection point (call i t  x l l )  as shown in Eq. (A13): 



xll = [ P B + c o s 8 / s i n O * x c - y c - a / ( 2 ' s i n e ) j  s ine /cos8  

which after some manipulation gives Eq. (A14): 

x l l  = xc + [PB- yc - a / (2 * sin 8)j sin 8 1 a s 8  

The ordibnate of the intersection point, which we call y11 is shown in Eq. (A15) 

yll = PB (A151 

In the same way, it is p i b l e  to find the intersedon paints between all 4 pixel's borders and 

all 4 vehicle's lines. 

Area of a TraingIe as a Function of Its Side Lengths 

The area of the triangle shown in Figure A2 can be calculated as: 

From trigonometry we can write: 

d3'= dl2  + d2'- 2 * d l  * d2 * cos a 

which gives 

cos a = (dl2 + d2' - d3*) / (2 * dl  * d2) 

Squaring Eq. (A18), we have: 



Also from trigonometry, we can wrile: 

from which 

sin a = (1 - cos2 a)5 

Replacing Eq. (A19) in Eq. (A21), we have: 

which replaced in Eq. (A16) give= 

and after some manipulation 
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PREL-VEHICLE Computer Program 
'Program Name: P V - P W 1  .BAS 
'Program Language: QuickBasic v 4.0 
'Author : O s w  Franzese 
'Date: July 3, 1992 

' - - - - - -  - - - - - - - ---- - -- -- - ......................... -- 
'Wen a grid of square pix& with side PS and a car of sides a and b, this program computes the area 
'occupied by tha car in the different pkek that it touches The program permits the computation of 
Yfiese seas for &fferent angles between the kngiudnal axis of the veh'rde and the grid of pb<efs, and 
'for d i i en t  positions of the center of the v e h i i  
I - ---- ------------ - - 
'MAIN PROGRAM 

D E M  SUB OmWS'oInt 0 
DEC3AfE SUB SeelflnCeU (PC PR!, PB!, PT!) 
MCLAsE SUE3 Rrranga 0 
E C L A E  SUB WAe#MAVeh (n%) 
DECmFE FUNCTION CompDistrC (x!, y!) 
DECLAF(E SUB IsPointfnor-On @!, y!) 
DECtARE SUB Inter (PB!, PT!. PU. PR! 
DEcLAF3E SUB VerifyPk (AreaT#, P ' i  
DECLARE SUB WdeWRk (n%) 
O E M  SUB dist @6) 
COMMON SHARED MeoinO;O, xO, YO. PS, do. p a .  WO, W, F, by k% 
COMMON SHARED MatAV-, vx, y. N o P M ,  Theta#, Wdia@, Area#. MPAtooO 

I --- --- -- - 
'Name and Location of Files (lo be entered by user) 
CLS : PWNT 'Start at: '; TIMES 
N a  e *a-.PRNm 
Nal$ = 'FAEHPINSA' + NaOS 
Na2$ = 'FAEHP1)<\MAw + NaOS 
OPEN Nal$ FOR OUTPUT AS #I 
OPEN Na2$ FOR OUTPUT AS #2 



(---,--,-,-------,------------------------------------- -----------_-----__---------------------------------- 
'Dimension of array to hold pixels that get iluminated 0.e.; those in vhich vehicle's parts lie) 

DlAG= ( a A 2 +  b A 2 )  ̂ . 5 / 2  
n% = 1 + (INTOIAG) + 1) * 2 
DIM MatAVeh(n%, n%) 
WRITE #2, 

FOR yc = .00001 TO -5001 STEP .5 / 19 
FOR xc = .00001 TO ,5001 STEP -5 1 19 
FOR Theta# = 0 TO PI# STEP PI# I 19 

IF Theta# = 0 THEN Theta# = .000001 
IF Theta# = PI# THEN Theta# t PI# - .000001 
IF Theta# = PI# / 2 M E N  Theta# = PI# / 2 + .000001 

Area# = 0 'Total area of v e h i i  in pixel 
AreaT# = 0 'Area of triangle in co,nsicIm&ion 



MaxDiag# = CompDist#(xc(l), yc(1)) 
DistDiag# = CompDist#(xc(2), yc(2)) 
IF DiiDiag# > MaxDiag# THEN MaxDiig# = DistDiag# 
DistDiig# = CompDist#(xc(3), yc(3)) 
IF DisfDiag# > MaxDiag# THEN MaxDiag# = DistDiag# 
DistDiag# = CompDist#(xc(4), yc(4)) 
IF DistDiag# > MaxDiag# THEN M W i g #  = D i s t D i i  

IF ((xc(l) >= 0 AND xc(1) <= PS) AND >= 0 AND xc(2) <= PS) AND (xc(3) >= 0 AND xc(3) <= 
BS) AND (xc(4) >= 0 AND xc(4) <= PS) AND (yc(1) >= 0 AND yc(1) <= PS) AND (yc(2) >= O AND yc(2) 
<= PS) AND (yc(3) >= 0 AND yc(3) <= PS) AND (yc(4) w= 0 - 
AND yc(4) <= PS)) THEN 

Area#=a*b /PSm2 
CALL Verifyfii(Area#, P i  
MatAVeh((n% + 1) / 2 (n% + 1) / 2) = Area# 
GOT0 aaa 

END IF 

FOR i% = 1 TO n% 
FORj% = I  Ton% 

'----Computations for pixel i%, j%: 
'4 = counts the number of verhices in the axrent pixel 
'-Area is the area of the vehide on t k  current p-ucd 
k % = O  
Area# = 0 

'*--Gakwlates the wordhates of the current pixel's comer 
'-PL- vertical left line in pixel (k of west side) 
'-PR: vertical right line in pixel (x of east side) 
'-PB: horizontal bottom line in +el (y of south side) 
I- PT: horizontal top line in @el (y of north side) 
NWx% = (j% - (n% + 1) / 2) PS 
NWy%=(-i% + (n%+ 1 ) / 2 +  I ) *PS 
PL = NWx% 
PT = NWy% 
SEX% = w- (n%+ 1)/2+ 1)*PS 
SEy% 3: (4% + (n% + 1)/2) *PS 
PR = SEX% 
PB 5 SEy% 
NEx% = SEX% 
NEy% = NWy% 
swxS6 = NWx% 
SWy% = SEy% 

'-Determines if the pixel corners are outside the vehicle silhouette. 
'-----If they are outside, then the area covered is null and it moves 
'------to the next *el. 



IF (MaxDiag# > PS) THEN 
~ c N W = ( ( X C - P L ) " ~ + ( ~ C - P T ) ~ ~ ) ~ . ~  
dcNE = ((XC - PR) A 2 + (yc - P7) A 2) A .5 
~ c S W = ( ( X C - P L ) " ~ + & C - P ~ ) ~ ~ )  "-5 
dcSE = ((XC - PR) 2 + (YC - PB) A 2) " -5 
IF (dcNW > MaxDiag# AND dcNE > MaxDiag# AND dcSW > MaxDiag# AND dcSE > MaxDiag#) 

GOT0 Endloop 
END IF 

'-Determines if the pixel corners are inside the v e h i i  silhouette. 
'-If the 4 corners are inside, then the whole pkel is muff by 
'--the vehicle (k% is Wemerited by 4). 
kbefore% = k% 
YlL = a1 * NWx% + bl  
Y2L = a2 * NWx% + b2 
Y3L = a3 * NWx% + b3 
Y4L = a4* NWx% + b4 
YIR = a1 *SEX% + bl  
Y2R =&*SEX% + b2 
Y3R = a3*SEx% + b3 
Y4R=a4*SEx%+b4 
IF Theta# <= PI# 12 MEN 

IF NW$% <= YIL AND NWy% <= Y3L AND NWy% >= Y2L AND NWy96 >=r Y4L THEN 
k % = k ? 4 + 1  
MPoints(k?!, 1) = NWx% 
MPoint~(k%,2) = NMFy% 

END IF 
IF SWy% <I Y1 L  AND SWy% <= Y3L AND SWy% >= Y2L AND SWy% >= Y4l THEN 

k % = k % + l  
MPoints@%, 1) = SWx% 
MPoWS(IC%, 2) = S W h  

END IF 
IF NEy% <= Y1R AND NEy% <= Y3R AND NEy% >r Y2R AWI NEy% >= Y4R THEN 

PA = k% + 1  
MPoints(k%, 1) = NEx% 
MPoints(k%, 2) = NEy% 

END IF 
IF SE- <= YIR AND SE@ <= Y3R AND SEy% >= YaR AN) SEy96 >= Y4R MEN 

k%=k%+l  
MPoints(ko?, 1) = SEX% 
MPoints(k%, 2) = SEy% 

END IF 
ELSE 

IF NWy% <= Y4L AND NWy% <= Y1 L AND NV@% >= Y3L AM3 MNy% >= Y2L M E N  
k % = k % + l  
MPoints(k%, 1) = NWx% 
MPoints(k%, 2) = NWy% 

END IF 
IF SWyS6 c= Y4L AND SWy% <= Y1L AND SW@ >= Y3L AKI S W  >= Y2L THEN 

k % = k % + 1  



MPoints(k%, I )  = SWx% 
MPoints(k%, 2) = SWy% 

END IF 
IF NEyOX, <= Y4R AND NEy% <= Y1R AND NEy% >= Y3R AND NEy% >= Y2R M E N  

k % = k % + l  
MPoints(k%, 1) = NEx% 
MPoints(kS6, 2) = NEy% 

END IF 
IF SEy% <= Y4R AND SEy% <= Y1R AND SEy% >= Y3R AND SEy% >= Y2R M E N  

k o ! = k % + l  
MPoints(k96.1) = SEX% 
MPoints(k%, 2) = SEy% 

END IF 
END IF 
IF k% = kbefore% + 4TtlW 

MatAVeh(ii, j%) = 1 
GOT0 Endbop 

END IF 
'---Determines if some of the vehii's comers are inside this 
'--pixel. 
IF (xc(1) <= PR AND xc(l) >= PL AND yc(1) c= FT AND yc(l) >= PB) WEN 

k% = k% + l 
MPoints(k96.1) = xc(1) 
MPoints(k%, 2) = yc(l) 

END IF 
IF (xc(2) <= PR AND m(2) >= PL AND yc@ c= PT AND yc(2) >= P6) T E N  
ko/o=k%+l 
MPoints(k%, 1) = xc@) 
MPoints(k96. 23 = yc(2) 

.END IF 
IF (xc(3) <= PR AND xcf3) >= PL AND yo(3) <= PT AND ya(3) >= PB) WEN 

k % = k % + 1  
MPoints(k%, 1) = xc43) 
MPoints(k%. 2) = yc(3) 

END IF 
IF (xc(4) <= PR AND x*) >= PL AND yc(4) <= Pf AND yc(4) >= P8) M E N  

k%=P%.+I  
MPoints(k96, I) = xc(4) 
MPoints(k%. 2) = yc(4) 

END IF 

'-Betermines the ird- points between the pkd lines and 
'-the vehicle lines. Then it computes which of the 'ntersectim 
'-points, if any. belongs to the vehide and adds it to the Iist 
'-4 vertices. 
CALL lnter(PB, PT, PL, PR) 
FOR il% = 1 TO 4 

FOR jl% = 1 TO4 
C A U  lsPointln.or.On(x~1%. jl%), y(il%. jl%)) 

NEXT 11% 
NEXT il% 



'-Up to here we have d the points that may be)ong to the 
'-perimeter that we are bying to determine. Now it is necessary 
'----to determine wether a nat these points are inside the current 
'4 
CALL Seelflalm PR, PB, PT) 

'----At this moment, d the points tt\at are relevant in We 
'----compubtkn af tire area covered by the vehicle in the current 
'---pixel have bee n defmired and stored in MPWO. 
'-Thenadstepistoarrarrgethesepointsinanacderlymanel 
' - - - s s ~ c o m p l t e t h e a r e a d t h e ~ ~ t r i a n g l e s ~ f i a v e b e e n  
'----deCined A l i h b i s d o n e b y t h e ~ ~ ~ -  Butfirst 
a - w o i n i m a p a i r c t i r s i d e t h e -  

' ----regbnintf~ewWe~einlheamentpkeL Thispoint 
' ---- isrsedasverticebrih?axnpltationdthe~areas 
CALL -&t 
ERASE d 
DIM d(12 7 )  
FOR i1% = 1 TO k% 

px(il%) r: MPoinEs(il%, I) 
~ 0 1 % )  = MPoink@l%, ?) 
CALL dist(ii%) 

NEXT il% 
Area# = 0 

CALL V w i e a f ,  P i i  
MatAVqi ,  j96) = Are# 

aaa: 
maxA = 0 
FOR i% = 1 TO n% 

FORj%=lTOn% 
IF MWVeh(i%, j96) > maxA TtfEN 

ma- = MWVeh(%, j%) 
END IF 

NEXT j% 
NEXT i% 
WRITE #I, maxA 

FOR i% = 1 TO n% 
FOR j% = 1 TO n% 



MatAVeh(i%, j%) = 0 
NEXT j% 

NEXT i% 

NEXT Theta# 
PRINT 'End of Theta#: '; TIME$ 
NUCT xc 
PRINT 'End of xc: '; TIME$ 
NDCT yc 
PRINT 'The End: '; TIME3 

SOUND 340, 25 
CLOSE 
END 



SUB Arrange 
'----------------------------------------------- ................................................... 
'This subroutine arranges the @nts on the perimeter of the area to be 
'computed such that they are in the right order for the computation by 
'triangles. The order is by angle from the point used as the center or 
'vertice. 
'After that this subroutine dadates the total area occupied by the 
Vehicle in this pixel (Area = sum of all triangle areas AreaT). 
' - - - - - - - - - - -  - - -  ------ ------------------------------- 

FOR j% = 1 TO PA 
min# = 2 * PI# 
FOR i% = 1 TO k% 

IF (d(ii, 6) c min# AND dci, 7) = 0) MEN 
rrrin# = do%, 6) 

= -a 
END IF 

NDCTW 
d(miru.%, 7) = j% 

NEXrj96 

j% = 1 
if: 
FOR i% = 1 TO k??-+ 1: 

IF d(i%, 7) = j% THEN 
j%= j%+1  
dl = do%, 3) 
.PI = wCfi) 
PY1 = wcw 
FORI%=1 T O P ? +  1 

IF do%, 7) = j% THEN 
m = d(l%, 3) 
w = ~ 0 % )  
W2 = Wfl%) 
1% = k% + 1 

END IF 
NDCT 1% 
io?=kOA,+l 

END IF 
NEXT i% 
d3=(@Dtl - & ~ Q ) ~ 2 + @ y l - W 2 ) ~ 2 ) ~ . 5  
R&=(4*d l  A 2 * d 2 A 2 - ( d l A 2 + c t 2 A 2 - c t 3 A 2 ) A 2 )  
I F  Raiz < 0 AND ABS(Raiz) < .000001 M E N  Raiz = 0 
IF Raiz < 0 THEN Raiz = 0 
AreaT#=.2!3*RaizA.!j 
Area# = Area# + AreaT# 
IFj%<k% + 1 GOTOil 





SUB CenlralPoint 
' ~ _ _ - - ~ - ~ ~ ~ ~ ~ ~ ~ ~ _ _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~  ---------I--------------------------------&----- 

'This subroutine identifies a point inside the convex region in the vehicle 
'silhouette in the current pbcel. R k  point is used as vertice Bx the 
'computation of the triangle areas. 
'___ . . . . . . . . . . . . . . . . . . . . . . .  ---_ 
----------------------------I- 

xmin = xl 
ymin = yl  
xMAX=x2 
w=y2 
IFx2<xl THEN 

xmin=x2 
ymin = y2 
XMAX = x l  
W = Y ~  

END IF 

x12 = xmin + (M - xrnin) / 2 
y12 = ymin + (yhiIM - ymin) / 2 
x3 = MPoints(3, 1) 
y3 = MPoints(3,2) 

h n  = d2 
ymin = y12 
xMAX=x3 
M = y 3  
IF x3 < x12 M E N  

wnin=x3 
ymin = y3 
XMAX = x12 
yMAX =y12 

END IF 

vx = m * n +  (xMAX- wnin)/2 
vy=yrrdn+ &MAX- ymin) / 2  

END SUB 



S U B  dist (i%) 
'-------------------------------_--_-___---- ........................................... 
'This subrroutine computes the distance from each of the points on the 
'perimeter of the area to the vertice V. It also computes the angle between 
'the line passing through the point in m-deratim and vertice V and the 
'horizontal line. This angle is later used to order the points in a consecutive 
'wayforthecomputatiiaftheareaocarpiedby thevehideinthearrentcell. 
' ---- - ---------- - - - - - - - -  ------------------- ----------- 

d(%, I) = px(i"3) - vx 
d(i%, 2) = py(iO9) - vy 
d(ii, 3) = (d(il, 1) A 2 + do%, 2) * 2) * -5 
dCi, 4) = do%, 1) / do%, 3) 
dCi, 5) = d(%, 2) / do%, 3) 
IF d(ii. 4) = 1 THEN 

dci, 6) = 0 
U S n F  do%, 4) = -1 THEN 

dci. 6) = PI# 
UsUF do%, 4) = 0 WEN 

IF d(ii, 5) = 1 THEN 
d(ii* 6) = PI# 1 2 

ELSE 
d(ii, 6) = PI# *3/2 

END IF 
ELSE 

IF (d(i%, 4) > 0 AND d(ii* 5) > 0) THEN 
dCi, 6) = AWd(i%, 5) / d[6,4)) 

ELsnF (d(ii, 4) < 0 AND d(i, 5) > 0) THEN 
d(i%, 6) = Pi# + ATN(d(ii, 5) / d(i%, 4)) 

. , ESUF (d(i%, 4) < 0 AND d(i, 5) < O) THEN 
d(i%. 6) = PI# + AM(d[i, 5) / d(ii,'4)) 

U S E  
d(i%, 6) = 2 * PI# + ATN(d(ii.5) / d[i, 4)) 

END iF 
END fF 

END SUB 



SUB Inter (PB, PT, PL, PR) 
' ---------- - - - - - - - - - - - - - - - - - -_  - _-- - - -  ------ .................... ---------- 
This subroutine computes the intersections between vettide lines and pixel 
'lines. 
'x(pixel line #, vehicle line #) 
'y@bcd line #, vehicle line #) 

*--Point PBVl 
~ ( 1 ,  I )=xc+  pB-a / (2 *S INOheta# ) ) -yc ) *s lN~ ICOS~~heta# )  
y(1, 1) = PB 
'--Point PBV2 
~(192) =xc + (PB + a/ (2 *SIN-) -F) *SINCTtre ta# ) /COSo  
y(1,2) = PB - - 
'-POW PBV3 
x(l,3) ~ X C -  (PB- b / ( 2 *  COS(T~&@)-~C) * - /S INM 
y(1,3) = PB 
'-Point PBV,! 

'-Point FXVI 
. ~(2 '1 )  = PL 

y& 1) = yc + (a / (2 C O S O )  + (Pl - xc)) * C O S o  I SIN- 
*-Point PLW 
~(2 .2 )  = PL 
~(2.2) =yc- (a / (2*  C O S ~ a # ) ) - ( P L - x c ) ) * o / s l ~ -  
'-Point PLV3 
x(2, ,3) = PL 
~ ( 2 , 3 ) = ~ c +  @ / ( ~ * S ~ N ~ ) - ( P ~ - X ~ ) ) * S I N ( T ~ ~ ~ ~ # ) / C O S M  
'-Point Ptve--- 
x(2, 4) = & 
~(2.4) =F- (b/(2*SINFet@) +(PL-xd)) * S l ~ Q T h e t r z # ) / W S o  



'---Point PRVl--- ---------------- 
x(4, I) = PR 
y(4, 1) = yc + (a / (2 COSWa#))  + (PR - xc)) * COSFeta#) f  SIN^^#) 
'--Point PRV2---- 
x(4, 2) = PR 
~ ( 4 ,  2) = yC - (a / (2 m m )  - (PR - XC)) * C O S O  / 8 N m a # )  
'--Point PRV3- 
x(4, 3) = PR 
~(4 ,3 )  = Yc + @ / (2 * SiNClheMff) - (PR - XC)) * SIN- / 
'-Point PRVr. 
~ ( 4 . 4 )  = PR 
y(4,4) = yc - @ / (2 * SINma%)) + (PR - XC)) * S I N 0  / C O S M  

END SUB 



SUB IsPointln.or.On (x, y) 
'_- ------ ----- _-- - ------------- -- - 
Thii subroutine determines whehe!f a lla an intersedm pht behveen 
tehide lines and pixel l i  b on the perkneter of Uie vehide or atside 
'it. If itisonthatperimetec,thepoinekaddedtothesetd~ 
?or the of the M e  area m e d  in the current @eL 
= - - -  - - - -  -- 
-----ap-- - - 

orstoiag# = CompDisC#(x. y) 
IF DistDiag# <= Msa8iagti MEN 

k96=k%+1 
MPoints(ko!., 1) = x 
MPoiras(k'?k. 2) = y 

EN0 IF 
END SUB 



SUB SeelflnCell (PL, PR, PB, PT) 
' ----- - -- ----------- - --- -- - - - - - - -  - - ---------------------------------------------- 
This subroutine c m  if the points lhat have been identified belong 
'to the pixel in consideration. 
' - - - -  - ---- - - - - - - -  ------------- 
-----------------------P-------------p 

k l% = 0 
ERASE MPAw 
DIM MPAux(l6,Z) 
FOR PA = 1 TO k% 

xaux = MPoints(i%, I) 
yaux = MPoints(i%, 2) 
IF X m  >= PL AND x m ~ c  c= PR AND yam >= PB AND y a w  <= FT MEN 

kl%= k l % +  1 
MPAux(kl%, 1) = xaux 
MPAwc(kl%, 2) = yaux 

END IF 
NDCT i% 
k% = kl% 
FOR*%=l TO16 

MPoints(i%, 1) = MPAux(i. 1) 
MPoints(i%, 2) = MPAw(ii. 2) 

NDCT i% 

END SUB 
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Appendix D. Summary Statistics of Vehicle Identification and Classification 

The ability to detect and classify vehicles on the highway is summarized in the 
fraction correct measures. These give the number of correctly identified or classified 
vehicles on a highway segment divided by the total number of vehicles on the segment. 
Specifically, we define the Fraction of Vehicles Correctly Identified (FVCI) as the 
number of vehicles on the segment correctly identified as vehicles (even if misclassified 
as to whether they are trucks or other vehicles), divided by the total number of vehicles 
on the segment. Using the data elements described in Section 3: 

FVCI = (ba+bto+bot+boo) (ba+bb+b+bot+boo+bod (D. 1) 

FVCI reflects the accuracy in vehicle counting. Regarding vehicle classification, 
we define the Fraction of Trucks Correctly Classified (FTCC) as the number of trucks on 
the segment correctly classified as trucks, divided by the total number of trucks on the 
segment. That is: 

FTCC = bt-1 (btt+bto+btd p.2) 

Similarly, we define the Fraction of Other Vehicles Correctly Classified (FOCC) 
as the number of other vehicles on the segment correctly classified as other vehicles, 
divided by the total number of other vehicles on the segment: 

FOCC = boo / (bot+boo+bon) p . 3 )  

(Since bn = at- and boo = aoo, att and aoo could be used in the numerators for FTCC and 
FOCC, respectively.) 

The Fraction Correct indicates how well the remote sensing process (simulated by 
the image processing analysis) performs on the vehicles that are present. The error of 
omission is the complement of this measure and indicates how many vehicles are being 
omitted in the process. 

We define the Vehicle Identification Error of Omission (VEO) as the number of 
vehicles on the highway segment that were not identified as vehicles of any kind in the 
image processing step, divided by the total number of vehicles on the segment. Using the 
data elements described in Section 3: 

VlEO = (btn+bod / (btt+bto+btnfbot+boO+bOn) = 1 - FVCI 03.4) 

VIE0 represents how many vehicles are "missed" in vehicle counting. Regarding 
vehicle classification, we define the Truck Classification Error of Omission (TCEO) as 
the number of trucks on the highway segment that were not classified as trucks in the 
image processing step, divided by the total number of trucks on the segment: 

TCEO = (bto+b) / (btt+bb+bd = 1 - FTCC @ - 5 )  



Similarly, we define the Other vehicle Classification Error of Omission (OCEO) 
as the number of other vehicles on the highway segment that were not classified as other 
vehicles in the image processing step, divided by the total number of other vehicles on 
the segment: 

OCEO = (bot+boa I (bot+boo+boI1) = 1 -FOCC P.6) 

Errors of commission represent the errors that are made in counting a nonvehicle 
object as a vehicle, classifling a nontruck element as a truck, or classifjling a non-other 
vehicle element as an "other" vehicle. They are based on committing errors made in the 
image processing step, and they are, therefore, scaled by the number of relevant elements 
in the clump list. We define the Vehicle Identification Error of Commission (VIEC) as 
the number of nonvehicle clumps that are identified as vehicles, divided by the total 
number of clumps identified as vehicles. That is: 

VIEC represents the errors of commission in vehicle counting. 

Regarding vehicle classification, we define the Truck Classification Error of 
Commission (TCEC) as the number of nontruck clumps that are classified as trucks, 
divided by the total number of clumps classified as trucks. That is: 

TCEC = (ato+atn) 1 (aE+atO+ad @. 8) 

Similarly, we define the Other vehicle Classification Error of Commission 
(OCEC) as the number of non-other vehicle clumps that are classified as other vehicles, 
divided by the total number of clumps classified as other vehicles: 

We report all of these summary performance measures as ratios (i.e., report both 
numerator and denominator), as well as the decimal equivalent (see Section 3), to indicate 
the number of vehicles involved in the evaluation tests. These statistical measures were 
used to analyze the four aerial photographs that were scanned at the four spatial 
resolutions. 
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Scanned Images at 1-m Resolution for the Seven Highway Segments 



Figure E. 1 Highway segment 5 14:E-W 

Figure E.2 Highway segment 5 13 :E-W 

Figure E.3 Highway segment 791 :NW-SE 



Figure E.4 Highway segment 79 1 :E-W 

Figure E. 5 Highway segment 753(1): NNW-SSE 



Figure E.6 Highway segment 753(2): NW-SE 
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Appendix F. Deviation of Orbit Parameter Equations 

F.1 Derivation of Equation (4.2) 

A satellite at elevation H above the surface of the earth would be a distance R+H 
from the center of the earth, where R is the distance from the center of the earth to the 
surface. To maintain a circular orbit of radius R+H, the centripetal force Fc on the 
satellite must be: 

where m is the mass of the satellite, v2 is the linear velocity of the satellite, and R and H 
are defined above. 

The net force on the satellite is primarily a result of the gravitational attraction 
between the satellite and the earth. The gravitationd force Fg exerted by the earth on the 
satellite would be: 

where m is again the mass of the satellite, GM is the gravitational constant at the surface 
of the earth, and R and H are again defined above. 

To maintain the circular orbit, the net force on the satellite must equal the required 
centripetal force. That is, Fg = F,. Equating (F-1) and (F.2), and solving for v: 

v = [GM I (R+H)ll.S (F-3) 

The length (circumference) of an orbit at radius R+H would be 2p(R+H). A 
satellite traveling at linear velocity v would, therefore, require a time of 2p(R+H)lv to 
complete one orbit. The time to complete one orbit, called the period of the satellite, is 
usually given in minutes. This implies that v is given in units of length corresponding to R 
and H (usually, kilometers) per minute. Given that there are 1440 minutes per day, the 
number of orbits n that the satellite would make in one day, would be: 

where v is fixed to be in units of appropriate length per minute. We can substitute (F.3) 
for v, as long as v in (F.3) is guaranteed to be in units of the appropriate length per 
minute. This requires that the gravitational constant is in units of the length used for R 
and H to the third power per minute squared. Substituting (F.3) into (F.4): 

where the units on GM are the units of the length used for K and H to the third power per 
minute squared. There are several values given for GM. We used that given by Light 



(1992a) - GM = 398,601 [km3/sec2]. Converting to [km3/min2j and substituting in (F.S), 
we get: 

where the units of R and H must now be kilometers. In our analysis, we used 6,371 km as 
the mean radius of the earth. 

F.2 Derivation of Equation (4.6) 

The imaging system in a satellite works on the principle of positive lens optics 
(Moffitt and Mikhail, 1980). The principle leads to the proportional relation, illustrated in 
Figure F. 1 : 

where DA is the detector aperture of the instrument, SW is the swath width imaged on the 
ground, FL is the focal length of the instrument, and H is the height of the lens above the 
earth. As described in Section 4.2, the swath width is the number of pixels in the scan line 
PPAL times the imaging resolution of a pixel on the ground RES - i.e., SW = PPAL * 
RES. Also, the detector aperture is the width of the scan line on the instrument, which is 
the width of the individual sensing pixel in the instrument PWPD (physical width of the 
pixel on the detector) times the number of pixels in the scan line PPAL - i.e., DA = 

PWPD * PPAL. Substituting these relations for DA and SW in (F.7) and solving for FL, 
we find: 

FL = H * PWPD / RES (F.8) 

Since the altitude of the satellite H i s  normally given in kilometers, the physical width of 
the pixel on the detector is normally given in pm (104 m), and the focal length is usually 
given in meters, we write (F.8) as: 

K = H * PWPD * / RES [m] (F.9) 

where His  in kilometers, PWPD is in pm, and RES and FL are in meters. 



Figure F. 1 Relation among detector aperature DA, swath width SW: 
focal length FL, and satellite attitude H 
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Appendix G. Determining Satellite Ground Track Lengths Between Two Latitudes 

We are interested in determining the length of a satellite ground track between 
two latitudes LATI and LAT', given that the orbit has an inclination angle i and is at an 
altitude that leads to n orbits per day. We denote this length L&ATl,LAT2; i,n). 

First consider Figure G. 1, which depicts the geometry of a track ascending from 
the southeast to the northwest, if the earth did not rotate beneath the satellite. Consider 
the point where the ground track crosses the equator as the reference point. Based on 
Snyder (1981), one can show that the longitude at which the satellite would cross some 
latitude LAI;. is: 

where i is the inclination angle (in radians) of the orbit. 

The angle A@AT$, in radians, subtended by the arc of the satellite track between 
the reference point at the equator and the point where the satellite crosses latitude LAG is 
(Snyder, 198 1): 

where i is the inclination angle of the orbit. The angle I(LATi,LATl), in radians, subtended 
by the arc of the satellite track between the points where the satellite crosses latitudes 
LATI andLAT then, is: 

i9 

where I(LATJ and I(ZATJ can be found from equation (G.2). 

We now need to consider the rotation of the earth during the time that the satellite 
was covering the arc of its track between LATI and LAq. The time f(LAq,LATI) that it 
would take the satellite to cover this arc would be the length of the arc on the ground, 
I(LATj9LATI)*R (where R is the radius of the earth), divided by the speed of the satellite 
on the ground V%: 

Using R = 6371 km as the mean radius of the earth (Light, 1992a), and VSg = 0.4633*n 
[kmlsec], where n is the number of orbits per day (see Eq. (4.5)), and converting to 
minutes, the time becomes: 

t(LATj,LAT1) = 229.2*1@ATj,LAT1) I n [mins] (G.5) 

At latitude LAq, the earth rotates at a speed: 



\ i  I n4-I 

Figure G. 1 Satellite track when earth does not rotate 

where R is the radius of the earth, and dividing by 1440 puts 7 in units of El per minute. 
The distance that the earth rotates at latitude LAG while the satellite bavels between LATI 
and LAq, which we denote by rPr(ZAl;; LA1;,LATI), would be the time it took to travel 
this distance times the velocity of the earth's rotation. Therefore, multiplying Eq. (G.5) by 
Eq. ((5.61, we get: 

This gives the distance in units of R that would be added along LA3;. to LUNGj in Figure 
G.l due to the earth's rotation to determine the location where the satellite would cross 
latitude LATj. To determine the number of radians that would need to be added along 
LA?, we divide (G.7) by R*cos(LATj) - i.e.,. the radius at LAl;. Calling this number of 
radians the "offset" at latitude LA? while the satellite travels from LATl to LA?, and 
denoting this OFF(ZAq; LAq,LAT1), we have: 

We illustrate this longitudinal offset in Figure G.2. 



Lot j  

_ _ _ _ _ _ - - - - - -  Loti 

Figure G.2 Longitude offset due to earth rotation 

As illustrated in Figure (2.2, we can then approximate the length of the satellite 
track between LATl and LA$ by taking the great circle an: length between the point 
where the satellite would cross LAT1 - i.e., the point whose longitude is LONGl and 
latitude is LAT1 - and the point where the satellite would cross L A q -  i.e., the point 
whose longitude is LONGj + OFF(LA5; LAq,UT1) .  The error in this approximation 
decreases as LA? becomes closer to LATI. The great circle GC arc length between points 
(XI ,Y1) and (X2,Y2),where Xdepicts longitude and Y depicts latitude is (Robinson et aZ., 
1984): 

GC[(X1,Y 1),(X2,Y2)]=R*cos-~[cos~~)cos~1)~~~~~-X~)+sin~~)sin(Y~)] (G.9) 

where R is again the radius of the earth, and the arc length is given in units of R. 

To determine the length of the satellite track between two latitudes LATI and 
LAT2, then we use the following procedure: 

STEP 0. Choose the inclination angle of the satellite orbit i. Choose the altitude of the 
orbit H and from Eq. (F.6) determine the number of orbits per day n. Choose a 
suitably small increment in latitude DLAT. Set lq = 0, Lo = 0 and LATo = LATI. 

STEP 1. Compute LATHl = LATk + DLAT. 

STEP 2. Calculate OFF = OFF(L,ATbI; LAThI,LATd using Eq. (G.2), (G.3) and (G. 8). 



STEP 3. Calculate xl = LONG(LATk) and x;! = LONG(LATHl) using Eq. (G. I). 

STEP 4: Set X1 = xl and X2 = x, + OFF. 

STEP 5: Calculate DL = GC[(XI ,LATk),@2,LATk+1)] using Eq. (G.9). 

STEP 6: Set Lk = & + DL. 

STEP 7: ELAT, 2 LAT2, set L(LATl,LAT2;i,n) = Lk. If not, set k = k+l, and return to 
STEP 1. 

For calculating the length of track for our approximation of the continental U.S., 
we used LATl = 25'N, LAT2 = 50°N, and DLAT = 5'. We experimented with the sensi- 
tivity of the approximation to the value of DLAT at various values of i and n. We used a 
very small increment for DLAT, namely DLAT = 0.5' as an approximation of the true 
value. When we used DLAT = So,  the length of the arc never differed from the 
approximation of the true value by more than 0.1%. 
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Appendix H. Solving Program (P2) 

To approximate the maximum percentage of highways that could be imaged per 
day in the continental U.S. for given values off,pgt, RES, z, PPAL,, (Di7?*COMP),, 
and FL,, we saw in Section 4.4 that we could solve the following nonlinear program 
for given values of RES, i, P P A L , ,  @TU*COW},, and FL,,: 

Maximize: PIDus, = n * PPAL * L(25,50; i,n) 
n, PPAL 

subject to: 

PPAL < PP& (a) 
PPAL < 2.698*@TR*COMP~m*RES* 10% 
n < 15.6 

(b) 
(c) 

n - > 8,65 1,665.8/(F&*RES* 1&6371)1.5 
PPAL > 0 

(d) 
(el 

n - > 0. (0 
0'2) 

To solve (P2) first note that constraints (c) and (d) require the following 
condition: 

To ensure a feasible solution, we would, therefore, need to ensure that 
8,651,665.8 1 &*RES*l@+637l)l.s 5 15.6, or 3.79 5 FL,," RES. Our analysis 
was conducted for FL,, > 6 m when RES 2 1.0 m and FL, > 8 m and RES = 0.5 m. 
Therefore, Condition (G.l) is satisfied. Moreover, since the right hand side of constraint 
(d) is strictly positive when FL,, and RES are strictly positive, which would be the case 
for realistic remote sensing systems, this constraint will require that n is greater than 0. 
Constraint (0 is, therefore, redundant and can be eliminated. 

Next, note that the right hand side of constraint (b) - namely, 
2.698*@TR*COMP),,*RES* 10% - decreases monotonically in n. Moreover, it is 
strictly positive when @TU*COMP),, RES, and n are all strictly positive, which would 
be the case for any remote sensing system. Therefore, when considered in the n x PPAL 
decision variable space, the trace of the right hand side of constraint (b) would always lie 
above the PPAL = 0 axis and either: i) lie entirely above the trace of constraint (a); ii) lie 
entirely below the trace of constraint (a); or iii) intersect the trace of constraint (a) at 
exactly one point. These three possibilities, therefore, lead to the three cases for the 
feasible region shown in Figure H.la-c, which we denote Cases 1-3, respectively. In 
Figure H. 1, we use: 



a. Case 1 
PP AL 

b. Case 2 

Figure H. 1 Possible cases for feasible region of program (P2) 
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Figure H. 1 (continued) 

PPAL 

PPAL( nn in ) 

," . 

c. Case 3 

i) nmin to denote the right hand side of constraint (d) - i.e., 
n,i, = 8,65 1,665.8 / (F~*RES*1@+6371)1.5; 

ii) PPA.L(nmiJ to denote the value of the right hand side of constraint (b) 
evaluated at n = n h  - i.e., 
PPAL(n&) = 2.698*@TR*COMP~*RES* 10%- 

iii) PPAL(15.6) to denote the value of the right hand side of constraint (b) 
evaluated at n = 15.6 - i.e., 
PPAL(15.6)=2.698*@TR*COMP~*RES*l02/15.6; 

iv) n h  to denote the value of n at which constraints (a) and (b) intersect. 

Next note that for a given value of n, the objective function of Program (P2) is 
maximized by maximizing PPAL. This restricts the search from the two-dimensionaI 
feasible regions shown in Figure G. la-c to one-dimensional searches along the traces of 
the greatest feasible PPAL's shown in the figures. We now consider the cases 
individually. 



Case 1 : In Case 1, constraint (b) will be nonbinding and does not need to be considered. 
Given that the optimal solution occurs at the greatest feasible PPAL value for a given n, 
(P2) becomes: 

Max: PPALma * n * L(25,50; i,n) 
n 

subject to: n- 5 n 5 15.6. (P2.1) 

All other things being equal, L(25,50; i,n) decreases in n. This can be shown 
mathematically by considering the algorithm used to determine L(25,50; i,n) presented in 
Appendix G. IntuitiveIy, n increases because the speed of the satellite increases. 
Therefore, the time for the satellite to cover the distance between 25W and 50°N 
decreases, and the earth does not rotate as far. This decreases the longitudinal offset of 
the satellite and, thus, the length of the ground track between the two latitudes. Since 
L(25,50; i,n) decreases in n, it is not obvious whether n * L(25,50; i,n) (and, therefore, the 
objective function) increases or decreases in n. Numerically, we found that this product 
increases in n for values of n and i considered in our analysis. (This means that the effect 
of having more orbits per day outweighs the effect of having longer tracks per orbit 
within the continental U.S.) This result implies that we should maximize n. The optimal 
solution in Case 1, therefore, occurs at n = 15.6, PPAL = P P G ,  and the correspond- 
ing optimal value of PIDus is P m s ? *  = 15.6 * P P L  * L(25,50; i,15.6). 

Case 2: In Case 2, constraint (a) will be nonbinding and does not need to be 
considered. Given that the optimal solution occurs at the greatest feasible PPAL value for 
a given n, the solution will occur along the trace of the right hand side of constraint (b), 
i.e., at PPAL = 2.698 * @TR*COMP),, * RES * 102/n. Substituting this for PPAL in 
the objective function, Program (P2), therefore becomes: 

Max: n* {2.698*@TR*COMP)-*RES* 1021nf *L(25,50; i,n) 
n 

= 2.698 *@TR*COMP)mm * RES *I02 * L(25,50; i,n) 

subject to: n- 5 n < 15.6. (P2.2a) 

As explained when discussing Case 1, L(25,SO; i,n) decreases in n. Therefore, the 
objective function is maximized at n = n-. (This means that the effects on coverage of 
increasing the swath width by increasing the number of pixels per scan line and increas- 
ing the length of the ground track per orbit outweigh the effect of increasing the number 
of orbits per day.) The optimal solution in Case 2, therefore, occurs at n = n,*, PPAL = 

PPAL(n,b), and the corresponding optimal value of PIDUS~ is PIDusl* = nmin * 
PPAL(n& * L(25,50; i,n&. 

Case 3: In Case 3, constraint (a) will be nonbinding for n > n& and constraint (b) 
will be nonbinding for n < nab. Given that the optimal solution occurs at the greatest 
feasible PPAL value for a given n, the solution will occur along the trace of constraint (a) 
- i.e., at PPAL = PPAL,, - for n < m, and along the trace of constraint (b) - i.e., at 



PPAL = 2.698 * @TR*COMP)m, * RES * 102/n - for n 2 nab. As explained when 
discussing Case 1, for values of n and i considered in our analysis, the objective function 
increases with increasing values of n when PPAL is fixed at a constant value. Therefore, 
for n- 5 n 5 rh/b, the objective fbnction is maximized at n = and PPAI, = P P k .  
As explained when discussing Case 2, the objective function increases with decreasing 
values of n when the solution is constrained to occur along the trace of constraint (b). 
Therefore, for n& 2 n 5 15.6, the objective function is also maximized at n = n& and 
PPAL = PPALmax. The global maximum, therefore, occurs at this point. The optimal 
solution in Case 3, therefore, occurs at n = n h  PPAL = PP-, and the corresponding 
optimal value of PIDusg is P m s *  = PP& * na/b * L(25,50; i,n&). 

In summary, Program (P2) can be solved by first calculating PPAL(nmid and 
PPAL(15.6) and comparing these values to P P k  to determine whether the problem 
corresponds to Case 1, Case 2, or Case 3. If the problem corresponds to Case 1, use the 
algorithm presented in Appendix G to calculate L(25,50; i, 15.6), and find the optimal 
solution as (n, PPAL, PIDusq) = (15.6, PP&= 15.6 * PP-, * L(25,50; iJ5.6)). If 
the problem corresponds to Case 2, use the algorithm presented in Appendix G to calcu- 
late L(25,50; i,nmi,J, and find the optimal solution as (n, PPAL, P m s * )  = (nmin, 
PPAL(n&, n,i, * PPAL(n& * L(25,50; i,n&). If the problem corresponds to Case 3, 
find the value of (n& = 2.698 * @TR*COMPb * RES * 102 / P P h ) ,  use the 
algorithm presented in Appendix G to calculate L(25,50; i ,nd) ,  and find the optimal 
solution as (n, PPAL, Pmsq) = (w PP& P P G  * m* L(25,50; i,rh/b)). 
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! File fl area.f 
!234567890~234567890!234567890!234567890!234567890!234567890!234567890 

program fl dtr area 
!234567890!234567890!23~67890!234567890!234567890!234567890!234567890 

implicit none 
integer case,icase(4,3),k,j,jj,kk,ress 
double precision pi 
real R , H , l a t l , l a t 2 , i , p p a l , p p a l m a x , p p a l n , r e s , d i n  
real na b,i r,sw,sw - p - r,a - latl - 2 
real coiiip ~ T ~ , ~ ~ m a x , p w p d  
real area-l1,area tot,p-area 
real areat(4,3) ,areap(4,3) ,nn(4,3) ,hh(4,3) 

data R,pi,j,k/ 6371.0,3.1415926535897932385,0,0/ 
data latl,lat2,delta,p~pd/25.~50.~5.~10./ 

nmax = 15.6 
a latl 2=2*pi*(R**2)*(sind(Lat2)-sind(lat1)) 
open(unit= 3, file= 'fl.datr) 

do i = loo., 130., 15, 
if (i.le.129.99999)then 

i r = i*pi/l80.0 
else- 

i r = (i-. 00001) *pi/180.0 
end Tf 
do ppalmax=15000.,30000.150000 
do ress=1,4 
if (ress.eq. 1) Res = .5 
if (ress.eq.2) Res = 1.0 
if (ress.eq.3) Res = 2.0 
if (ress.eq.4) Res = 4.0 
write(3,200)ppalmax ,res,i 
do comp DTR = 400.,1600.,400. 
k = k+? 
j = O  
do FLmax = 6.,14.,4. 

j= j+l 
H = FLmax*res*lOOO./pwpd 

if (H. lt. 400) then 
case = 0 
area tot = 0. 
p area = 0. - 

else 
nmin=8681665.8*(pwpd/(FLmax*res*1000+pwpd*R))**l.5 
call checkcase(comp - DTR,Res,ppalmax,15.6,nninIcase) 
if (case.eq.2)then 

ppaln= comp - DTR*Res*1000/(3.7064*nmin) 
sw-p-r= ppaln *res/ 1000. 
call area(Pat1,lat2,delta~swWpPrIiirInmin,pi,R~ 
a latl - 2, p area,area - tot,area - 11) 

nn (k, j ) = nmin 



else if (case. eq. 1) then 
sw - p - r= ppalmax * res /1000. 
call area(latll1at2,delta,sw - p - r,i-r,l5.6,pi1R, 
a latl - 2, p - area,area - tot,area - 11) 

nn ( E l  j) = nmin 
else if (case.eq.3)then 

na b = comp DTR*Res*1000/(3.7064*ppalmax) 
swzp-r=  aimax ax * res /1000. 
call area(latl,lat2,delta,sw - p - r,i r,na - b,pi,R, 

a latl 2, p area, area - tot, area - 51) 
nn(k7-j) =-na - b- 

end if 
end if 
areat (k, j ) =area tot 
areap (k, j ) =p - area 
icase(k,j)= case 

end do 
end do 
write (3,180) 
do kk = l,k 
write(3,220)(areap(kk,jj),icase(kk,jj),jj=l1j) 
end do 
j = O  
k = O  

end do 
end do 
end do 

,80 format(l5xI1%Area (case # )  I ,  

+ //lf FL-6 FL-10 FL-14 I/, 
+ 3~ 1 - - - - - - - - - - - - I  ) )  ! , 2 ~ , 3 ( ~  ---! 1 )  

!OO f0rmat(50(~-~)//,~This is for thecaseoff / ,  
+ 'ppalmax = ',f6.0, 
+ /'Resolution = f,f3.1,/1inclination = ',f5.1/) 

!20 f o r m a t ( 4 ~ , 3 ( f 8 . 4 , ~ ( ~ ~ i l , ~ ) ~ , 4 ~ ) )  !,2x13(i1,3x)) 
stop 
end 

1234567890!234567890!234567890!234567890!234567890!234567890!234567890 
subroutine checkcase(comp DTR,Res,ppalmax,nmaxInminIcase) 

!234567890!234567890!234567890!~34567890!234567890!234567890!234567890 
implicit none 
integer case 
real comp DTR,Res,ppalmax,nmax,nmin 
real ppal-nmin,ppalnmax,ppal,nn,r,c~dtr 
ppal nmin-= comp D~R*~es*1000/ (3.7064*nmin) 

- 
case =2 

else if(ppa1 nmax.ge.ppalmax)then 
casew= 1 

else 
case = 3 

end if 
return 
end 



!234567890!234567890!234567890!234567890!234567890!234567890!234567890 
subroutine area(latl,lat2,deltaIswliirIn1piIRI 

+ a latl 2, p-areatarea tot,area 11) 
!234567890!234567890!2%567890!234567890!2~4567890!%34567890!234567890 

implicit none 
double precision pi 
real latl,lat2,delta,sw,i r,n,R,a - latl - 2 
real p-areatarea tot,area-11 
real lat,lat 2,12 r,l r,o?f 
real lol,lo2~thet~,de~tal,L 
L= 0. 
do lat =latl,lat2-delta,delta 
lat 2= lat+delta 
12 r= lat 2*pi/180.0 
1 7  = latzpi/180.0 
call offset(l2 r,l r,i r,n,pi,off) 
101 = asin(tanT1 r)/tan(pi-i r)) 
102 = (asin (tan (15 r) /tan (pi-T r) ) ) +off 
theta= cos (1 r) *cos (12 - r) *cosTlo2-101) +sin (1 - r) *sin (12 - r) 
deltal= acosTtheta) *R 
L= L +delta1 

end do 
area 11 = L *sw 
area-tot - = area 11 * n 
p area = (area - tot/a - latl - 2)*100.0 
return 
end 

!234567890!234567890!234567890!234567890!234567890!234567890!234567890 
subroutine offset(latj,lati,i - r,n,pi,off) 
implicit none 
double precision pi,lambdai,lambdaj, lambda - ij 
real latj, lati, i r,n,off ,off1 

lambdaj= asin(sTn(latj)/sin(pi-i r)) 
lambdai= asin(sin(lati)/sin(pi-i-r)) - 
lambda ij=(lambdaj-lambdai) 
off = rambda ij/n 
off1 = (lambza - ij*180./pi)/n 

return 
end 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  



APPENDIX J 

Objective Function Values, in Terms of Pms/(l-fc), for 576 Combinations 
of Input Combinations of Input Parameter Values in Table 4.1 



This is for the case of 
ppa lma x = 15000. 
Resolution = 0.5 
inclination = 100.0 

% Area (case #) 

DTR*comp/ *FL-8 FL- 10 FL-14 -------- ------------ ------------ 

This is for the case of 
ppalmax = 15000. 
Resolution = 1 .0  
inclination = 100.0 

% Area (case #)  

DTR*comp/ FL- 6 FL-10 FL-14 

This is for the case of 
ppalmax = 15000. 
Resolution = 2.0 
inclination = 100.0 

% Area (case #) 

DTR*comp/ FL-6 FL- 10 FL-14 

T h i s  is for the case of 
ppa lmax = 15000. 
Resolution = 4.0 
inclination = 100.0 

% Area (case #) 

DTR* camp/ FL-6 FL- 10 FL-14 -------- ------------ ------------ 
4 00 3.0859 (1) 3 - 0859 (1 )  3.0859 (1 )  
800 3.0859 ( 1 )  3.0859 (1 )  3.0859 (1 )  

1200 3.0859 (1) 3.0859 (1 )  3.0859 (1 )  
1600 3.0859 (1) 3.0859 (1) 3.0859 (1)  .................................................. 



This is for the case of 
ppa lmax = 20000. 
Resolution = 0.5 
inclination = 100.0 

% Area (case #) 

This is for the case of 
ppalmax = 20000. 
Resolution = 1.0 
inclination = 100.0 

% Area (case #) 

DTR*comp / FL-6 FL-10 FL- 14 -------- -----I-----I ------------ ------------ 

This is for the case of 
ppalmax , = 20000. 
Resolution = 2.0 
inclination = 100.0 

% Area (case #) 

This is for the case of 
ppalmax = 20000. 
Resolution = 4.0 
inclination = 100.0 

% Area (case #) 

DTR*comp / FL-6 FL- 10 FL-14 



This is for the case of 
ppa lmax = 25000. 
Resolution = 0.5 
inclination = 100.0 

% Area (case # )  

DTR*comp/ *FL-8 FL- 10 FL-14 -------- ------------ ------------ -------_--_- 
4 00 0.0890(1) 0.0890 (2) 0.0890 (2) 
8 00 0.1779(1) 0.1780(2) 0.1781 (2) 
1200 0.2669 (1) 0.2669 (2) 0.2671(2) 
1600 0.3558 (1) 0.3559(2) 0.3561 (2) .................................................. 
This is for the case of 
ppalmax = 25000. 
Resolution = 1.0 
inclination = 100.0 

Z Area (case #) 

DTR*comp/ FL-6 FL-10 FL- 14 -------- ------------ ------------ ------------ 
4 00 0- 3560(2) 0.3565 (2) 0.3569(2) 
800 0.7121 (2) 0.7129 (2) 0.7139 (2) 
1200 1.0681 (2) 1.0694 (2) 1.0704 (3) 
1600 1.2858 (1) 1.2858 (1) 1.2858 (1) .................................................. 
This is for the case of 
ppalmax . = 25000. ' 

Resolution = 2.0 
inclination = 100.0 

% Area (case #) 

DTR*comp/ FL- 6 FL-10 FL-14 -------- ------------ ------------ ----------I_ 

4 00 1.4268 (2) 1.4306(2) 1.4348 (2) 
800 2.5716 (1) 2.5716 (1) 2.5716 (1) 
1200 2.5716 (1) 2.5716 (1) 2.5716 (1) 
1600 2.5716 (1) 2.5716 (1) 2.5716 (1) .................................................. 
This is for W e  case of 
ppalmax = 25000. 
Resolution = 4.0 
inclination = 100.0 

% Area (case # I  

DTR*comp/ FL-6 FL-10 FL- 14 -------- ------------ ------------ ------------ 



This is for the case of 
ppalmax = 30000. 
Resolution = 0.5 
inclination = 100.0 

% Area (case f )  

This is for the case of 
ppalmax = 30000. 
Resolution = 1.0 
inclination = 100.0 

% Area (case #) 

DTR*comp/ FL- 6 FL- 10 FL- 14 

This is for the case of 
ppalmax . = 30000. 
Resolution = 2.0 
inclination = 100.0 

% Area (case #) 

DTR*comp/ FL-6 FL- 10 FL-14 -------- ------------ ------------ ------------ 

This is for the case of 
ppa lmax = 30000. 
Resolution = 4.0 
inclination = 100.0 

% Area (case #) 

DTR*comp/ FL-6 FL-10 FL- 14 -------- ------------ ------------ ------------ 
400 5.6994 (3) 5.6994 (3) 5.6994 (3) 
800 6.1718 (1) 6.1718 (1) 6.1718 (1) 
1200 6.1718(1) 6.1718 (1) 6.1718 (1) 
1600 6.1718(1) 6.1718(1) 6.1718 (1) 



This is for the case of 
ppalmax = 15000. 
Resolution = 0.5 
inclination = 115.0 

% Area (case #) 

DTR*comp/ *FL-8 FL- 10 FL- 14 -------- ------------ ------------ ------------ 
400 0.1053 (1) 0.1054 (2) 0.1055 (2) 
800 0.2106 (1) 0.2107 (2) 0.2110(2) 
1200 0.3159(1) 0.3161(2) 0.3165 (2) 
16 0 0 0.4212 (1) 0,4214 (2) 0.4220 (2) .................................................. 
This is for the case of 
ppalmax = 15000. 
Resolution = 1.0 
inclination = 115.0 

% Area (case #) 

This is for the case of 
ppalmax = 15000. 
Resolution = 2.0 
inclination = 115.0 

% Area (case # )  

DTR*comp/ FL- 6 FL-10 FL-14 -------- ------------ -----------m ------------ 
4 0 0 1.6886 (3) 1.6886 (3) 1- 6886 (3) 
800 1.8264 (1) 1.8264 (1) 1.8264 (1) 
1200 . 1.8264 (1) 1.8264 (1) 1.8264 (1) 
1600 1.8264 (1) 1.8264 (1) 1,8264 (1) .................................................. 
This is for the case of 
ppalmax = 15000. 
Resolution = 4.0 
inclination = 115.0 

% Area (case 8 )  

DTR*comp/ FL- 6 FL-10 FL-14 



This is for the case of 
ppa lmax = 20000. 
Resolution = 0.5 
inclination = 115.0 

% Area (case #) 

This is for the case of 
ppalrnax = 20000. 
Resolution = 1.0 
inclination = 115.0 

% Area (case #) 

DTR*comp/ FL- 6 FL-10 FL- 14 -------- ------------ ------------ ------------ 

This is for the case of 
ppalmax , = 20000. 
Resolution = 2.0 
inclination = 115.0 

% Area (case f )  

DTR*comp/ FL- 6 FL-10 FL-14 

This is for the case of 
ppa lmax = 20000. 
Resolution = 4.0 
inclination = 115.0 

% Area (case #) 



This is for the case of 
ppalmax = 25000. 
Resolution = 0.5 
inclination = 115.0 

% Area (case #)  

DTR*comp/ *FL-8 FL- 10 FL-14 

This is for the case of 
ppalrnax = 25000. 
Resolution = 1.0 
inclination = 115.0 

% Area (case b) 

DTR* camp/ FL-6 FL-10 FL-14 

This is for the case of 
ppalmax . = 25000. 
Resolution = 2.0 
inclination = 115.0 

% Area (case #) 

DTR*comp/ FL- 6 FL-10 FL-14 

This is for the case of 
ppa lmax = 25000. 
Resolution = 4.0 
inclination = 115.0 

% Area (case # I  



This is for the case of 
ppalmax = 30000. 
Resolution = 0.5 
inclination = 115.0 

% Area (case # )  

DTR*comp/ *FL-8 FL- 10 FL-14 -------- ------------ ------------ ------------ 
4 00 0.1053 (1) 0.1054 (2) 0.1055 (2) 
800 0.2106(1) 0.2107 (2) 0.2110(2) 
1200 0.3159 (1) 0.3161(2) 0.3165(2) 
1600 0.4212 (1) 0.4214(2) 0.4220 (2) .................................................. 
This is for the case of 
ppalmax = 30000. 
Resolution = 1.0 
inclination = 115.0 

% Area (case # )  

DTR*comp/ FL-6 FL-10 FL- 14 -------- ------------ ------------ ------------ 
400 0.4217 (2) 0.4228 (2) 0.4239 (2) 
80 0 0.8434 (2) 0.8456 (2) 0.8478 (2) 
1200 1.2651 (2) 1.2684 (2) 1.2717 (2) 
1600 1.6868 (2) 1.6886(3) 1.6886 (3) .................................................. 
This is for the case of 
ppalmax , = 30000. 
Resolution = 2.0 
inclination = 115.0 

% Area (case # )  

This is for the case of 
ppa lmax = 30000. 
Resolution = 4.0 
inclination = 115.0 

% Area (case #) 



This is for the case of 
ppalmax = 15000. 
Resolution = 0.5 
inclination = 130.0 

% Area (case #) 

DTR*comp/ *FL-8 FL- 10 FL-14 -------- ------------ ----------I- ---_-------- 
4 00 0.2015(1) 0.2017 (2) 0.2021 (2) 
8 0 0 0.4030 (1) 0.4034 (2) 0.4041 (2) 
1200 0.6045(1) 0.6051 (2) 0.6062 (2) 
1600 0.8060 (1) 0.8068 (2) 0.8082 (2) .................................................. 
This is for the case of 
ppa lmax = 15O0Oe 
Resolution = 1.0 
inclination = 130.0 

% Area (case # )  

DTR*comp/ FL-6 FL-10 FL- 14 -------- ------------ _----------- ------------ 
400 0.8075 (2) 0.8104 (2) - 0.8135(2) 
800 1.6150 (2) 1.6175 (3) 1,6175 (3) 
1200 1.7476(1) 1.7476 (1) 1.7476(1) 
1600 1.7476 (1) 1.7476 (1) 1.7476 (I) -------------------------------------------------- 
This is for the case of 
ppalmax . = 15000. 
Resolution = 2.0 
inclination = 130.0 

% Area (case #) 

DTR*comp/ FL-6 FL- 10 FL-14 

This is for the case of 
ppalmax = 15000. 
Resolution = 4.0 
inclination = 130.0 

% Area (case #)  

DTR*comp/ FL- 6 FL- 10 FL-14 -------- ------------ ------------ ------------ 
400 6.9905 (1) 6.9905 (1) 6.9905(1) 
800 6.9905 (1) 6.9905 (1) 6.9905 (1) 
1200 6.9905 (1) 6.9905 (1) 6.9905 (1) 
1600 6.9905 (1) 6.9905 (1) 6.9905 (1) 



This is for the case of 
ppalmax = 20000. 
Resolution = 0.5 
inclination = 130.0 

% Area (case # )  

This is for the case of 
ppalmax = 20000. 
Resolution = 1.0 
inclination = 130.0 

% Area (case #) 

DTR*corap/ FL-6 FL- 10 FL-14 -------- ------------ ------------ ------------ 
4 00 0.8075 (2) 0.8104 (2) 0.8135 (2) 
800 1.6150 (2) 1.6209 (2) 1.6270 (2) 
1200 2.3302 (1) 2.3302 (1) 2.3302 (1) 
1600 2.3302 (1) 2.3302 (1) 2.3302 (1) 

This is for the case of 
ppalmax . = 20000. 
Resolution = 2.0 
inclination = 130.0 

% Area (case #) 

DTR*comp/ FL-6 FL- 10 FL-14 

This is for the case of 
ppa lmax = 2'0000. 
Resolution = 4.0 
inclination = 130.0 

% Area (case 8 )  

DTR* camp/ FL-6 FL- 10 FL-14 



This is for the case of 
ppalmax = 25000. 
Resolution = 0.5 
inclination = 130.0 

% Area (case # )  

This is for the case of 
ppa lmax = 25000. 
.Resolution = 1.0 
inclination = 130.0 

% Area (case #)  

DTR*comp/ FL-6 FL- 10 FL- 14 -------- ------------ ------------ ------------ 
400 0.8075 (2) 0.8104 (2) 0.8135(2) 
800 1.6150 (2) 1.6209 (2) 1.6270 (2) 
1200 2.4225 (2) 2.4313 (2) 2.4379 (3) 
1600 2.9127 (1) 2.9127 (1) 2.9127 (1) .................................................. 
This is for the case of 
ppalmax , = 25000. 
Resolution = 2.0 
inclination = 130.0 

% Area (case #) 

DTR*comp/ FL- 6 FL- 10 FL-14 -------- ----c-----c- ------------ ------------ 
400 3.2478 (2) 3.2728 (2) 3.2990 (2) 
800 5.8254 (1) 5.8254 (1) 5.8254 (1) 
1200 5.8254 (1) 5.8254 (1) 5.8254 (1) 
1600 5.8254 (1) 5.8254 (1) 5.8254 (1) .................................................. 
This is for the case of 
ppalrnax = 25000, 
Resolution = 4.0 
inclination = 130.0 

% Area (case # )  

DTR*comp / FL- 6 FL- 10 FL-14 



This is for the case of 
ppalmax = 30000. 
Resolution = 0.5 
inclination = 130.0 

% Area (case #)  

This is for the case of 
ppalmax = 30000. 
Resolution = 1.0 
inclination = 130.0 

% Area (case 8 )  

DTR* camp / FL-6 FL-10 FL- 14 -------- ------------ ------------ ------------ 
400 0.8075 (2) 0.8104 (2) 0.8135 (2) 
800 1.6150 (2) 1.6209 (2) 1.6270 (2) 
12 00 2.4225 (2) 2.4313 (2) 2.4404 (2) 
1600 3.2300 (2) 3.2349 (3) 3.2349 (3) -------------------------------------------------- 
This is for the case of 
ppalmax , = 30000. 
Resolution = 2.0 
inclination = 130.0 

% Area (case #) 

DTR*comp/ FL-6 FL-10 FL- 14 -------- ------------ ------------ ------------ 
400 3.2478 (2) 3.2728 (2) 3.2990 (2) 
800 6.4698 (3) 6.4698 (3) 6.4698 (3) 
1200 6.9905 (1) 6.9905 (1) 6.9905 (1) 
1600 6.9905 (1) 6.9905 (1) 6.9905(1) .................................................. 
This is for the case of 
ppalmax = 30000. 
Resolution = 4.0 
inclination = 130.0 

% Area (case #) 

DTR* CO~P/ FL-6 FL-10 FL-14 -------- ------------ ------------ ------------ 
4 0 0 12.9397 (3) 12.9397 (3) 12.9397 (3) 
800 13.9810 (I) 13.9810 (1) 13.9810(1) 
1200 13.9810(1) 13.9810 (1) 13.9810 (1) 
1600 13.9810 (1) 13.9810 (1) 13.9810 (1) 




