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Rodent (Abrocoma, Lagidium, Phyllotis) middens collected from
2350 to 2750 m elevation near Arequipa, Peru (16°S), provide an
~9600-yr vegetation history of the northern Atacama Desert, based
on identification of >50 species of plant macrofossils. These mid-
den floras show considerable stability throughout the Holocene,
with slightly more mesophytic plant assemblages in the middle
Holocene. Unlike the southwestern United States, rodent middens
of mid-Holocene age are common. In the Arequipa area, the mid-
den record does not reflect any effects of a mid-Holocene mega
drought proposed from the extreme lowstand (100 m below mod-
ern levels, >6000 to 3500 yr B.P.) of Lake Titicaca, only 200 km
east of Arequipa. This is perhaps not surprising, given other evi-
dence for wetter summers on the Pacific slope of the Andes dur-
ing the middle Holocene as well as the poor correlation of summer
rainfall among modern weather stations in the central Andes-
Atacama Desert. The apparent difference in paleoclimatic recon-
structions suggests that it is premature to relate changes observed
during the Holocene to changes in El Nifio Southern Oscillation
mModes.  © 2001 University of Washington.
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INTRODUCTION

Paleoclimatic records from the central Andes and Atacarr
Desert are vital to understanding the history of the Sout
American summer monsoon (SASM), and hence the role «
the tropics in South American climate variability. The northerr
Atacama Desertin southern Peru, downwind of key paleorecor
such as sediment records from Lake Titicaca (Wirrmann and C
Oliveira, 1987; Crosst al., 2000; Roweet al,, in press) and ice
core records from Nevado Sajama (Thompsbal., 1998) and
at the southern end of the tropical rainfall belt, is especially we
situated for such investigations. To date, paleoclimate recor
from high-altitude lakes, salt lake basins (salars), glacial lanc
forms, ice cores, and alluvial and wetland deposits have provid
data on the hydrologic history of the central Andes. Very little
is known, however, about the vegetation history of the centr:
Andes south of Lago Jum’(11°S, Hanseret al, 1994), with
the exception of palynological studies at Lake Titicaca (Yber!
1992) and Laguna Seca (Baied and Wheeler, 1993). Here, \
report on rich plant macrofossil assemblages from fossil rode
middens near Arequipa, the first such midden study in Peru.
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world (Betancourtt al,, 1990), rodent middens are abundantl e
preserved in rock crevices and shelters of the Atacama Deq
(Betancouret al., 2000b). Radiocarbon chronologies from ter
restrial plant material in middens are unaffected by reservoir (;/
fects that typically afflict lacustrine studies in the centre*-\/U\’

As in western North America and other arid regions of th,éowy
PERU 15°5
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Andes. These deposits also provide higher taxonomic and spg AREQUIPA

resolution than other paleobotanical records but are stratigray

cally discontinuous, thus representing only “snapshots” of flor)\/\/&lx %/\
assemblages through time. The excellent preservation of pl Logo - Jj’—m\
remains affords high taxonomic resolution, thus also provi Aricota® %

ing an opportunity for biogeographic inferences at the speci
level, and possibly to the genome level with current advances
molecular biology.

In southern Peru, rodent middens akin to North Americe
packrat middens are made bggidium peruanunfMountain
Viscacha: CHINCHILLIDAE), Abrocoma cineregd ABROC-
OMDAE), and several species &hyllotis (Lear-eared mice:
CRICETIDAE) including P. xanthopygus, P. limatusand P.
magister (Steppan, 1998). The larde peruanum weighing
900-1600 g, normally inhabits dry, rocky areas betwe8A00
and 5000 m (spotted as low as 2500 m during our field seasc
has aforaging range of 75 m, and eats most plant species grow
withinits range (Pearson and Ralph, 19 ®)yllotis(20-100 g)
live in rocky or brushy habitats between 0 and 5000 m and ha
foraging ranges of~35—70 m (Pearson and Ralph, 1978). Liki
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Lagidium, Phyllotidhas a varied diet consisting of grasses, forb MILES 7N
seeds, and insects (Pizzimenti and De Salle, 1980). Generali 6 P /“/
diets, along with the collection of plant materials for nest ar| 9 100 g
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den construction, ensure that midden assemblages are fairly || ~ 2000 MeTeRs
resentative of hillslope vegetation within the foraging ranges

the animals.
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The study area is located at intermediate elevations on th&IG. 1. Map of the subtropical Andes with the location of Arequipa and
Pacific slope of the Cordillera Occidental of the Andes, ne&fher study sites mentioned in the text.
the city of Arequipa (2350 m) and within 100 km of the sea
(Figs. 1 and 2). Elevation increases rapidly to more than 4000the Gran Chaco from 2Qo 30°S (Zhou and Lau, 1998). The
to the north and northeast within the 30 kstudy area. The Bolivian High, an upper tropospheric anticyclone, develops ove
area is underlain by Cretaceous and Tertiary igneous intrustixe Bolivian Altiplano as a result of latent heat released by th
rocks and marine sediments, Tertiary and Quaternary volcananvective activity in the Amazon, Central Andes, and Sout
rocks (primarily ignimbrites), and Quaternary eolian and alluvidtlantic Convergence Zone (SACZ; Lenters and Cook, 1997
sediments. Several volcanoes rising more than 6000 m punctuaterannual variability in summer precipitation is partly influ-
the landscape. enced by El Niid Southern Oscillation (ENSO) and the strengtt

Precipitation in the northern Atacama (324°S) occurs pri- and position of the Bolivian High and SACZ (Lenters and Cook
marily during the austral summer and corresponds to the s&899). By contrast, rainfall in the southern Atacama (3% S)
sonal development of the SASM. During summer, the Intertropecurs primarily during winter when weakening of the southea:
ical Convergence Zone (ITCZ) migrates southward followinBacific anticyclone allows polar fronts and cutoff low-pressur
the thermal equator, and deep convective heating occurs owells to penetrate northward (Miller, 1976).
the Amazon Basin. A thermally induced low in the lower tro- Arequipa receives an annual average of 100 mm of precipit
posphere intensifies the moisture-laden easterly trade wintisn. Seasonal and interannual variability is evident in a three
which cross the equator, develop a north—northwesterly flalimensional graph of historical monthly precipitation for Are-
along the eastern slope of the Andes, and turn cyclonically ovgripa constructed from Global Historical Climatology Network

Salar de /
Atgcoma |
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ter precipitation occurred in Arequipa. This precipitation also a
pears to have originated primarily from the Amazon Basin, witl
the largest winter rainfall events in Arequipa corresponding t
large peaks in monthly precipitation at one or more Altiplano ste
tions (La Paz, Juliaca, Cuzco, Puno). Precipitation gradients wi
elevation are primarily a function of distance from the Andeat
crest. Thisis due to alack of rising air masses on the Pacific slo|
ofthe Andes, while the few depleted orographic storms that cro:
the Andes rain out at high elevations, creating a steep decre:
in precipitation with decreasing elevation. For everg00-m
decrease in elevation there is a 26-mm decrease in precipitati
[y = 3.8225« + 2343 ¢2 = 0.94, p < 0.01)]. Vegetation inthe
area is primarily limited by precipitation, and plant communi-
ties change rapidly along the steep elevation—precipitation gr
dient. Vegetation classification and characteristic species fc
low Linares (1996). A list of plant taxa and families appears i
Table 1.

Below ~2400 m the hyperarid “Absolute Desert” is marked
by the near absence of vegetation. Matorral Desert with col
mnar cacti occurs between 2400 and 2800 m. Xerophyt
shrubs Ambrosia fruticosa, Gochnatia arequipensis, Enceli

LOF
AREQUIPA
1€°23' S 4
Z canescens, Balbisia weberbaueri, Krameria lappa¢easum-

%
.,Pm; [5 7|“3:'9/ ’ )
nar cacti (several species@brryocactus, Oreocereus, Haageo-
FIG.2. Map of the study area northwest of Arequipa, Peru. Circles indicatsereus, and Weberbauerocergusnd small herbs and grasses
midden iocations. (Monnina ramosa, Mastigostilsp.,Eragrostis peruviana, Uro-

carpidium sephardag@ndSpergularia stenocarpaharacterize
(GHCN; http://ncdc.noaa.gov/ghcn/ghcn. SELECT.html) dajgig community. Between 2800 and 3300 m, vegetation cor

(Fig. 3). Most of the region’s moisture originates from SASMists of Matorral (shrubland) Desert with columnar cacti an
storms spilling over the Andes between December and MargBigna|. This community contains the shrifasasa operculata,
(percentage of mean annual rainfall is 80% at 4495 m and 9%Iostephium tacorens@nd Adesmia spinossissinia addi-

at 2150 m). The lower percentage of precipitation occurring bgg, t a mixture of species from the Matorral Desert and Pz
tween December and March at higher elevations is due to @f| (grassland). The Pajonal, a high-altitude grassland four
extension of the summer rainy season into November and Apfktyween 3300 and 4000 m, is characterizedStipa obtusa,

If these months are included,90% of mean annual precipita-gaccharis, Parastrephia, Tetraglochin strictum, Plantago mon
tion falls during the summer at all sites. An exception is the b”‘ﬁEoIa, Urocarpidium sepharda@ndCardionema ramossisima
period in the 1950s and 1960s when significant amounts of Wiganveen 4000 and 4300 m the bunch gragsestuca ortho-
phylla andStipa ichudominate the Pajonal-Pastizal vegetative
community. The Pajonal-Pastizal gives way to Tolar—Pajon:
above 4300 m. The vegetation in this zone inclu@@pa ichu,
Calamagrostisand spiny shrubs known as Tolar with species ir
the genearRarastrephia, Senecio, Bacchar@dTetraglochin
Finally, above 4500 m dispersed cushion plaisarella com-
pactd), grasses Stipa, Festuca, Calamagrostisand shrubs
(ParastrephiaandSenecipform the Aimohadillada—Caespitosa
community.

[}
CONTOUR INTERVAL 400 METERS

Precipitation
(mm)

September

August METHODS
1980
% Fifty-nine rodent middens were collected within a 30%m
’2;5.@ il area northwest of Arequipa, Peru (Table 2). Middens were co

lected from 2350 to 2600 m and 2600 to 2750 m (Matorre
Desert) and processed and analyzed according to we
established procedures (Spauldiegal, 1990). Macrofossil
FIG. 3. Three-dimensional graph of monthly precipitation for Arequipa@bundances were quantified on a relative scale of 1 to 5. Pl
White strip in center of graph reflects years for which no data were availablereference materials used to identify midden taxa were collecte

January
December
November %
October 1900
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TABLE 1

List of Plant Taxa and Families Mentioned in Text

Aizoaceae
Tetragoniasp.
Anacardiaceae
Schinus molle
Apiaceae
Azorella compacta
Asteraceae
Ambrosia fruiticosa
Baccharissp.
Bidenssp.
Chuquiragasp.
Diplostephium
tacorense
Encelia canescens
Galinsogacf.
parviflora
Gochnatia arequipensis
Grindeliasp.
Parastrephiasp.
Seneciep.
Tagetes multiflora
Boraginaceae
Cryptanthasp.
Pectocarya laterifolia
Tiquilia sp.
Brassicaceae
Descurianasp.
Lepidiumsp.
Sisymbriursp.
Bromeliaceae
Tillandsiasp.
Cactaceae
Arequipa hempeliana
Corryocatuscf.
brevistylus
Erdisia meyenii
Haageocereusp.
Neoraimondia
arequipensis
Opuntia sphaerica
Opuntia ighescens
Oreocereusp.
Weberbaurerocereusp.

Caryophyllaceae

Cardionema ramosissima  Andropogon flavescen

Spergularia stenocarpa
Chenopodiaceae
Atriplex sp.
Chenopodiwsp.
Cyperaceae
Cyperaceae
Ephedraceae
Ephedra americana
Fabaceae
Adesmia spinosissima
Adesmisp.
Crotalaria incanar.
incana
cf. Hoffmannseggiap.
Lupingg.
Geraniaceae
Balbisia weberbaueri
Hydrophyllaceae
Nama dichotomum
Phaceliasp.
Iridaceae
Mastygostilap.
Krameriaceae
Krameria lappaceae
Malvaceae
Cristaria sp.
Tarasa operculata
Urocarpidium sephardae
Urocarpidiumsp.
Nyctaginaceae
Allionia incarnata
Mirabilis sp.
Plantaginaceae
Plantago monticola
Plantagosp.

Poaeae

Avristida peruviana
Bouteloua simplex
Bromus trinii
Calamagrostisp.
Enneapogon desvauxii
Nassella pubiflora
Munroa decumbens

Posp.

Eragrostis peruviana
Festuca orthophylla
Stipaichu
Stipa annua
Stipa macbridei
Stipa obtusa
Stipasp.
Polygalaceae

Monnina ramosa

Polygonaceae
Chorizargpe

Portulacaceae
Calendriniasp.
Cistanthessp.
Rosaceae

Tetraglochin strictum
Rubiaceae
Galiumcf. aparine
Scrophulariaceae

Castillefp.
Solanaceae
Lycopersicorsp.

Solansm
Urticaceae
Parietaria debilis
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Atacama. More than 50 taxa from 23 families were identifiec
comparable in taxonomic resolution to recent packrat midde
studies in North America (e.g., Betancoettal, 2000a). The
relative abundances of macrofossils from the middens (aft
épauldinget al, 1990) are shown in Figure 4. The sites are
divided into elevations above and below 2600 m. This divisio
corresponds to a transition within present Matorral Desert, wit
vegetation above-2600 m characterized by a noticeable in-
crease in plant cover, especially large shrubs.

Several patterns characterize the vegetation history of bo
the lower and higher elevation sites. Most notable is the st
bility and dominance of cacti throughout the Holocene, es
pecially Corryocactuscf. brevistylus, Opuntia sphaerica, Are-
quipa hempelianaand the Cereus cact\gberbaurerocereus,
Oreocereusand Haageocereusvere indistinguisable in mid-
den materials)Pectocarya laterifolia, Plantag@p., Solanum
sp., andTagetes multifloraare also persistent and abundant ir
the midden record at all elevations. In addition, many specie
occur only during the periods where middens are clustered, fro
010 1000 cal yr B.P. and 2800 to 9560 cal yr B.P. These incluc
annualsCastillejasp.,Cryptanthasp.,Galinsogecf. parviflora,
Lepidiumsp.,Monnina ramosa, Parietaria debilis, Sisymbrium
sp.), small cactirdisia meyenii, Opuntia ignescén€, annual
grasses Bouteloua simplex, Munroa decumbens, Stipa )chu
and perennialsAllionia incarnatg Baccharis sp.Chorizanthe
sp.,Encelia canescen€rotalaria incanavar.incana, Grindelia
sp, Phaceliasp., andTillandsiasp.).

At the lower-elevation sites, vegetation changes noticeab
around 2800 cal yr B.P. with the disappearance or increased r
ity of Galiumcf. aparine Urocarpidiumsp.,Allioniaincarnatg
Chenopodiunsp.,Chorizanthesp.,Lycopersicorsp., Tetrago-
nia sp., Bromus trinii and Mirabilis sp. All of these species,
however, persisted at higher elevation sites exceptAlbo-
nia incarnata, Chorizanthep., andMirabilis sp., which are
rare or absent above 2600 m during the entire Holocene. At
shortly after 2800 cal yr B.PTiquilia sp.,Munroa decumbens,
Stipa annuaandEphedra americanérst appear, whil®pun-
tia sphaerica, Tarasa operculata, Enneapogon desvaaxid
Krameria lappacea@crease markedly in abundangenbrosia
fruticosaandAtriplex sp. are present and abundant throughot

from field sites and from the herbarium at the Museo de Histtiie Holocene at these sites.

ria Natural de la Universidad Nacional Mayor de San Marcos Vegetation at higher elevation sites appears more stable th
in Lima, Peru. Plants presently growing within 100 m of that the lower sites. Heré&alium cf. aparine Lycopersicorsp.,
midden sites were identified in the field or collected and lat€alandriniasp.,Chenopodiunsp., Tagetes multifloraUrocar-
identified at the Museo de Historia Natural. Calib 4.0 (Stuivesidium sp., andBromus trinii all persist during the Holocene.
and Reimer, 1993) was used to correct!fi¢ fractionation and However, a lack of middens between 3380 and 670 cal yr B.
convert all corrected dates to calibrated ages.

RESULTS

from higher sites makes it impossible to assess whether vege
tion remained stable or experienced change comparable to |
lower elevation sites during this period. One noticeable occu
rence at higher elevation sites is the appearancgtipa ichu

Radiocarbon dates from 38 middens provide a record of vepndOpuntia ignescenduring the mid-Holocene around 5000—
etation history in southern Peru spannin@600 cal yr B.P. 4500 cal yr B.P. Both of these species are characteristic of higr
(Table 2). The macrofossil record from the rodent middens prelevations and represent the largest shifts in species distributic
vides one of the first patevegetation records from the northern(450 m and 750 m, respectively) in our study.
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Midden ages show a clustering between 0-1000 cal yr BI®95). The occurrence of many species in middens only du
and 2800-9560 cal yr B.P. In other midden studies (Webb aimd) these periods also indicates increased moisture, because
Betancourt, 1990; Betancouet al., 1993; Spaulding, 1995), increase in species richness would be expected to occur d
clusters of radiocarbon dates have been interpreted as eifhgr more productive periods. Finally, it appears that sever:
sampling bias for middens of a particular age or variability ihigher elevation species retreated from lower elevations aft
ecosystem productivity and midden formation. In Peru, we sai@800 cal yr B.P., implying increasing aridity from middle to late
pled all middens encountered in the field, thus offsetting amjolocene.
sampling bias. As a first approximation, we suggest that greateiThere is considerable disagreement among regional paleoc
abundance of middens during certain times reflects wetter, monate records regarding mid-Holocene precipitation levels, esp
productive periods. We recognize that this interpretation witially between high- and low-altitude sites (see Fig. 1 for loca
be tested as more middens are collected and dated in southienms of sites). Ice cores from Nevado Sajama, the highest altitu
Peru. record at 6542 m, display hight®O values and dust concentra-

Among vertebrate remains in the middens (TableFd)yl- tions between 9000 and 3000 yr B.P., interpreted as indicatir
lotis limatusand Abrocoma cinereare the most common. No aridity (Thompsoret al,, 1998). Likewise, multiproxy studies of
remains ofLagidium peruanunwere found, suggesting that itLake Titicaca (3800-m elevation) show lake levels were abol
may be less responsible for midden building tHarimatus 100 m lower betwees-6000 and 3800 yr B.P. (Wirrmann and
andA. cinerea Chinchillula sahama@ndNeotomys ebriosys De Oliveira, 1987; Crosst al, 2000; Roweet al,, in press). A
found in only a few middens, are rare at elevations below 350did-Holocene arid phase (undated, but correlated to the Titica
m today. LikewiseQligoryzomys andinuis restricted to areas record) is inferred for Laguna Seca (4500 m) based'8@ re-
adjacent to water arf@hyllotis magisteandAkodon subfuscus sults from ostracods and authigenic carbonates (Schetalh
although more independent of water, are not found in d&999). Pollen analyses from this lake suggest aridity from abo
sites. 7000-5000 yr B.P. and a moister period from 5000-3500

B.P. (Baied and Wheeler, 1993). This moist period is also set
DISCUSSION in the Rio Desaguadero, Lake Titicaca’s outlet into Lago Roop
and Salar de Coipasa and Salar de Uyuni. Fluvial terraces

Elevational displacements of plant species found in middetise northern Rio Desaguadero valley mark an interval of hig
should reflect shifts in easterly trade-wind intensity and tropicadater from 4500 to 3900 yr B.P., which could be due to eithe
rainfall that spills over to the Pacific slope of the Andes. In thispillover from the lake or local changes in precipitation whel
study, we found that several species were remarkably stable dliticaca was below the spill level (Baucom and Rigsby, 1999
ing the Holocene. Many species present in southern Peru havmis, while many Altiplano records indicate a mid-Holocent
very large ecological amplitudes (i.e., broad elevational rangedjpught, others indicate increased moisture.
which may explain the observed stability. Across 500 min eleva- Evidence of a wet mid-Holocene is more common at site
tion (~130-mm difference in precipitation) the more noticeablen the Pacific slope of the Andes than on the Altiplano. A we
changes may be in community structure (species abundanga#sdse from 7100 to 3500 cal yr B.P. is seen in fossil rodel
rather than community composition (species presence or atiddens (2400-3200 m) and wetland deposits (2500-2700 1
sence). Macrofossil relative abundance, subject to several filtaesar the Salar de Atacama in the central Atacama—-22S)
(animal preferences, distance to plants, duration of depositiolssert (Betancourt al., 2000b). In addition, paleoshorelines
episode, etc.), may or may not be sensitive to changes in plaft.ago Aricota (2800 m), on the Pacific slopel 70 km south
community structure. Hence, the apparent stability in Holocené Arequipa, were highest between7100 and 3500 cal yr
midden floras may mask actual instabilities in plant communi®.P. (Placzeket al., 2001 ). The catchment for Lake Aricota
structure. In addition, no middens were encountered from thpans from 5000 to 2800 m, so this record integrates both hig
Pleistocene—Holocene transition where the greatest instabilityd low-altitude precipitation. Thus, the mid-Holocene drougt
in vegetation is expected. inferred from several Altiplano records is not visible in these

Despite the relative stability, however, there does appearrtcords nor in our midden record of vegetation from souther
be evidence for a wetter middle Holocene consistent with tiReru.
greater frequency in midden ages and, hypothetically, ecosysterithe discrepancies among records, especially between t
productivity during this time. Because productivity is limitedAltiplano and Pacific slope, call into question assumptions abo
primarily by rainfallin the Atacama, clusters of middé dates the regional coherence of summer precipitation in the centr
should represent wetter periods during the Holocene, and a l&akdes. The predominance of summer-flowering plants in mic
of dates should represent drier periods. This is supported by edéns throughout the Holocene indicates that precipitation se
dence from the southwestern United States, where the paucitgohality did not change. Changes in the strength of the SAS
middens during the mid-Holocene (Webb and Betancourt, 199@)uld be invoked to explain precipitation variability within the
corresponds to a well-documented period of winter drougtegion during the mid-Holocene if storms have strong loca
(Webb and Betancourt, 1990; Betancaatrl., 1993; Spaulding, but not regional, effects. Linear regression of GHCN historice
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summer (December—March) precipitation values from Arequipale in clarifying past patterns of vegetation and climate vari
and Puno (Lake Titicaca) shows little similarity?(= 0.17, ability in the central Andes.

p = 0.128) between stations. The apparent greater correlation

QUring some winter mOﬂthS. (AUgUSE = 0695,p < 00001) ACKNOWLEDGMENTS

is due to the fact that Arequipa and Puno receive no winter pre-

cipitation except during rare years when a few frontal stormswe thank M. Betancourt, J. Dohrenwend, C. Latorre, H. Paisley, an
bias the correlation. Juliaca and Puno, located only 50 km ap@rtPlaczek for field assistance; A. Cano for logistical support and permis
on the shores of Lake Titicaca, exhibit no better correlation th&ign to sample herbarium specimens at the Museo de Historia Natural in Lim
do Arequipa and Puncu:( — 0.18, p = 0.120). J. Dohrenwend for map support; M. Dillon for assistance in determining plar

. lowering seasons; O. Davis for valuable comments; the Instituto Nacional
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station network in the central Andes may be inadequate to capperu; Geochronology Laboratory for conventiofC dates; and the Uni-
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storms with narrow track5<(10 km Wide) can easily miss one?accelerator mass spectrometf¢ dates. This study was supported by an Inter-
station and hit another particularly when stations are more trérﬂerican Institute grant to J. L. Betancourt and V. Markgraf and a NSF grar

' . g t0 J. Quade and J. L. Betancourt.
100 km apart. Thus, the SASM may have highly variable local
effects that confound regional interpretations. Changes in SASM
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