Jump to main content.


Research Project Search
 Enter Search Term:
   
 NCER Advanced Search

Quantifying Exposure Error and its Effect on Epidemiological Studies

EPA Grant Number: R827353C002
Subproject: this is subproject number 002 , established and managed by the Center Director under grant R827353
(EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).

Center: EPA Harvard Center for Ambient Particle Health Effects
Center Director: Koutrakis, Petros
Title: Quantifying Exposure Error and its Effect on Epidemiological Studies
Investigators: Suh, Helen H.
Current Investigators: Suh, Helen H. , Sarnat, Jeremy , Schwartz, Joel , Zanobetti, Antonella
Institution: Harvard University
EPA Project Officer: Stacey Katz/Gail Robarge,
Project Period: June 1, 1999 through May 31, 2005 (Extended to May 31, 2006)
Project Amount: Refer to main center abstract for funding details.
RFA: Airborne Particulate Matter (PM) Centers (1999)
Research Category: Particulate Matter

Description:

Objective:

The overall objective of this project is to improve our ability to characterize air pollutant exposures for health effects studies. This project is one of three research studies proposed under Theme I: Assessing Particle Exposures for Health Effects Studies that were based on personal, indoor, and outdoor particulate and gas concentrations that were measured as part of our previous or current exposure studies. This project was intended to address Particulate Matter Research Topic 10 identified by the National Research Council (NRC) - Analysis and Measurement.

Data from the Atlanta exposure and health study will be used to conduct this research project. We plan to use data collected in our Atlanta, GA, multi-pollutant exposure and cardiovascular health study to determine the effect of exposure error on observed health effects in time-series morbidity and mortality studies.

Approach:

The focus of Theme I is: to assess human exposures to particles and gases in order to better understand their health effects. As such, research conducted as part of Theme I has four main objectives: (1) to determine the contribution of particles of indoor and outdoor origin to personal and indoor levels, (2) to characterize the inter- and intra-variability in personal particulate and gaseous exposures for particles of indoor and outdoor origin, (3) to quantify the effect of measurement error for fine particles and their co-pollutants (coarse mass and the criteria gases) on risk estimates from epidemiological studies, and (4) to examine the association between various exposure measures and heart function for sensitive individuals. To accomplish these objectives, Theme I includes three projects, each of which is based on data from previous and ongoing exposure studies conducted in several U.S. cities (Boston, Atlanta, Baltimore, and Los Angeles). Project Ia will use data collected in these studies to characterize the contribution of indoor and outdoor particles to both personal exposures and indoor particulate concentrations. As part of this effort, the central tendency and variability in the contribution of outdoor and indoor particles to personal exposures and indoor concentrations will be characterized. Factors affecting this variability will also be determined, as will factors affecting the relationship between outdoor concentrations and personal exposures to outdoor and indoor particles. Project Ib will also use exposure data collected in these and other studies to characterize four sources of exposure error: instrument error, spatial variation in ambient PM2.5, indoor/outdoor concentration differences, and personal factors. Once characterized, the city- and population-specific effects of exposure error on risk estimates will be determined, and the impact of differential exposure error for PM2.5 and its co-pollutants (coarse mass and the criteria gases) on risk estimates will be quantified. Project Ic will leverage exposure measurements made in on-going projects to examine the association between heart function (heart rate and heart rate variability) and various exposure measures for sensitive, free-living individuals. This association will be examined using at least four exposure measures: (1) outdoor PM2.5 concentrations, (2) indoor source-related indoor PM2.5 concentrations, (3) outdoor source-related personal PM2.5 exposures, and (4) personal PM2.5 exposures.

Publications and Presentations:

Publications have been submitted on this subproject: View all 3 publications for this subprojectView all 149 publications for this center

Journal Articles:

Journal Articles have been submitted on this subproject: View all 3 journal articles for this subprojectView all 148 journal articles for this center

Supplemental Keywords:

particulate matter, PM2.5, PM10, air pollutants, particulates, health effects, exposure, ambient particles, susceptibility, metals, public policy, biology, engineering, epidemiology, toxicology, environmental chemistry, monitoring. , Air, Scientific Discipline, Health, RFA, Susceptibility/Sensitive Population/Genetic Susceptibility, Molecular Biology/Genetics, Toxicology, Biology, indoor air, Risk Assessments, genetic susceptability, Epidemiology, air toxics, Environmental Microbiology, particulate matter, Environmental Chemistry, tropospheric ozone, ambient measurement methods, cardiopulmonary, risk assessment, exposure and effects, ambient air quality, cardiovascular disease, health effects, indoor air quality, inhalation, developmental effects, epidemelogy, animal inhalation study, respiratory disease, inhalation toxicology, air quality, ambient air, cardiopulmonary response, indoor exposure, molecular epidemiology, measurement methods, cardiopulmonary responses, human health risk, interindividual variability, monitoring, genetic susceptibility, particle exposure, quantifying exposure error, mortality studies, air pollutants, human health effects, particulates, respiratory, sensitive populations, measurement methods , ambient particle health effects, air pollution, ambient monitoring, inhaled, metals, stratospheric ozone, ambient air monitoring, chemical exposure, dosimetry, exposure, inhaled particles, pulmonary, human health, atmospheric monitoring, human susceptibility, biological mechanism , health risks, human exposure, Human Health Risk Assessment, PM, pulmonary disease

Progress and Final Reports:
1999 Progress Report
2000 Progress Report
2001 Progress Report
2002 Progress Report
2003 Progress Report
Final Report


Main Center Abstract and Reports:
R827353    EPA Harvard Center for Ambient Particle Health Effects

Subprojects under this Center: (EPA does not fund or establish subprojects; EPA awards and manages the overall grant for this center).
R827353C001 Assessing Human Exposures to Particulate and Gaseous Air Pollutants
R827353C002 Quantifying Exposure Error and its Effect on Epidemiological Studies
R827353C003 St. Louis Bus, Steubenville and Atlanta Studies
R827353C004 Examining Conditions That Predispose Towards Acute Adverse Effects of Particulate Exposures
R827353C005 Assessing Life-Shortening Associated with Exposure to Particulate Matter
R827353C006 Investigating Chronic Effects of Exposure to Particulate Matter
R827353C007 Determining the Effects of Particle Characteristics on Respiratory Health of Children
R827353C008 Differentiating the Roles of Particle Size, Particle Composition, and Gaseous Co-Pollutants on Cardiac Ischemia
R827353C009 Assessing Deposition of Ambient Particles in the Lung
R827353C010 Relating Changes in Blood Viscosity, Other Clotting Parameters, Heart Rate, and Heart Rate Variability to Particulate and Criteria Gas Exposures
R827353C011 Studies of Oxidant Mechanisms
R827353C012 Modeling Relationships Between Mobile Source Particle Emissions and Population Exposures
R827353C013 Toxicological Evaluation of Realistic Emissions of Source Aerosols (TERESA) Study
R827353C014 Identifying the Physical and Chemical Properties of Particulate Matter Responsible for the Observed Adverse Health Effects
R827353C015 Research Coordination Core
R827353C016 Analytical and Facilities Core
R827353C017 Technology Development and Transfer Core

Top of page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.


Local Navigation


Jump to main content.