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Growing evidence from published studies has
shown increased all-cause and specific-cause
mortality from short-term exposures to air pol-
lution (Fairley 1999; Katsouyanni et al. 1997;
Pope at al. 1995; Schwartz 1993; Schwartz and
Dockery 1992). An important piece of that evi-
dence comes from the National Mortality and
Morbidity Air Pollution Study (NMMAPS)
conducted across 90 U.S. cities (Dominici et al.
2000a; Samet et al. 2000a, 2000b, 2000c).
Recent updates of this study reported excess
mortality in association with exposures to
particulate matter of aerodynamic diameter
≤ 10 µm (PM10), whereas no independent
associations with gaseous pollutants were
observed (Dominici et al. 2002, 2003). In these
previous studies, effects of pollutants were
examined using two- and multiple-pollutant
models.

From the public health perspective, when
considering the evidence of a positive associa-
tion between air pollution and mortality, it is
important to determine whether such an effect
is biased due to exposure misclassification and,
if so, to correct for that bias.

The magnitude and direction of uncer-
tainty in the observed effects of air pollution
due to exposure measurement error have been
argued by several investigators to be limita-
tions in making causal inference for the link
between air pollution and health outcomes
(Lipfert and Wyzga 1997, 1999). In a single-
pollutant model, exposure measurement error,
due to the nondifferential misclassification,

will underestimate the “true” effects of expo-
sure–response associations (bias toward the
null). Because of this, risk assessments based
on the findings of observational epidemiologic
studies may underestimate the benefits of
reducing exposures. This is particularly true for
air pollution studies, which, unlike cancer risk
assessment, rely on maximum likelihood esti-
mates of risk coefficients and not on upper
confidence estimates.

The situation is more complex in the case
of multiple correlated pollutants. Here, the
measurement error in one pollutant will tend
to bias the risk coefficient of that pollutant
toward the null. However, measurement error
in the second pollutant will contribute some
bias to the coefficient of the first pollutant.
The direction of the bias will depend on the
sign of the correlation between the pollutants.
In rare cases, when the correlation is high
between the two pollutants and the measure-
ment error in the second is large, this can
produce an upward bias in the risk coefficient
of the first pollutant. This may lead to an
overestimation of exposure effects of the bet-
ter measured pollutant (bias away from the
null) (Schwartz 2000; Zeger et al. 2000). In
the context of studies of air pollution, the
upward bias has been cited as one reason for
the positive associations between air pol-
lutants and health outcomes (Lipfert and
Wyuzga 1997, 1999). In recent analysis of
this issue, Zeger et al. (2000) demonstrated
that in the case of two pollutants measured

with error, the correlation between the two
pollutants, the variances of measurement errors
of these two pollutants, and the correlation
between the two errors would predict the
magnitude and direction of bias. The study
showed that even with hypothetically large dif-
ferences in the four parameters, upward bias
was unlikely (Zeger et al. 2000). Schwartz and
Coull (2003) reported a similar finding in a
simulation study, where under certain assump-
tions such as high correlation between the pol-
lutants and their errors (> 0.95) and/or large
difference in the error variances, upward bias
was not likely to occur.

Why is there measurement error in air
pollution studies? A recent development in air
pollution epidemiology, called time-series
design, is based on series of air pollution con-
centrations and health outcomes (events) over
a certain period of observation (which may be
months or years). Through this, one can esti-
mate the average number of events that occur
with changes in air pollution concentrations.
The unit of analysis is the day, and the out-
come data are the counts of events (mortality,
or other health outcomes). Exposure data are
usually ambient concentrations of different air
pollutants measured continuously (hourly or
daily) from fixed-site monitoring stations.
However, monitored ambient concentrations
of air pollutants are not representative of per-
sonal exposures, which are important when
evaluating the relation of exposure and health
outcome at the individual level. Unfortunately,
in time-series studies of air pollution, there
are no available calibration data (routinely
measured series of personal exposure data) on
which to base a measurement error correction.
Dominici et al. (2000b) described a method to
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estimate a correction factor, using information
on ambient and personal exposures in several
cities in the United States, addressing only one
pollutant (PM10). However, the applicability
of that approach to the population-based time
series is difficult because a more complex sce-
nario of multiple air pollutants is generally pre-
sent and usually information on only ambient
exposures is available.

In recent reports, Schwartz and Coull
(Schwartz 2000; Schwartz and Coull 2003)
have developed an approach that uses hierarchi-
cal modeling to assess exposure–health outcome
associations, which is resistant to exposure
measurement error. The method is useful in
studies with multiple exposures, such as air pol-
lution time-series studies, and can provide bias-
corrected estimates for the multiple exposures in
the presence of measurement error. In the pre-
sent study, we had two goals. First, to validate
recent findings in air pollution epidemiology,
we applied this approach to examine the inde-
pendent effects of PM10 and several gaseous air
pollutants on daily deaths, using recent data and
results from NMMAPS. Second, we demon-
strated the method with the intention to make it
compelling to other researchers as a useful tool
in assessing causal relationships.

Materials and Methods

The NMMAPS study analyzed the associa-
tion between air pollution and daily deaths in
90 U.S. cities. The cities included essentially
the entire urban U.S. population living in
counties with regular air pollution monitor-
ing. Data on daily deaths in this study were
obtained from records of the National Center
for Health Statistics (Hyattsville, MD), and
air monitoring data were obtained from
the U.S. Environmental Protection Agency
(Washington, DC), for the period from
1987 to 1994. This study conducted Poisson
regressions, relating the daily death counts as
a function of each day to air pollution con-
centrations on the same day, the previous day,
and 2 days before the event, controlling for
weather and season. Under such model, a
Poisson process is assumed to describe the
number of deaths per day, with events follow-
ing a binomial process with low probability
of occurrence. The model had the form
log[E(Y )] = α + ΣβjXj + ΣβkZk, where E(Y )
was the expected daily death count, βj repre-
sented the coefficients measuring the effects of
j pollutants, and βk represented the coefficients
measuring the effects of k predictors (weather,
season). The study looked at the effects on
daily mortality from ambient concentrations of
PM10, sulfur dioxide, nitrogen dioxide, carbon
monoxide, and ozone. Further details have
been published elsewhere (Dominici et al.
2003; Samet et al. 2000b, 2000c).

The hierarchical model. The approach
from Schwartz and Coull (2003) applied to

this study was as follows: If an outcome were
linearly associated with two exposures—in
our case two pollutants (X1 and X2)—then we
would have a model such as

E(Y ) = β0 + β1X1 + β2X2, [1]

where E (Y ) is the expected daily mortality
and β1 and β2 are the unbiased effects of,
respectively, X1 and X2. If X1 and X2 were cor-
related with each other, then we could also fit
a model like the following:

X2 = γ0 + γ1X1 + e. [2]

If we now substitute X2 in Equation 1
with Equation 2, then we would obtain

E(Y ) = (β0 + β2γ0) + (β1 + β2γ1)X1. [3]

If we were to regress Y against X1 alone,
then

E(Y ) = δ0 + δ1X1. [4]

And by comparing Equations 3 and 4, we
would obtain

E(δ1) = β1 + β2γ1. [5]

Hence, as Equation 5 shows, by regressing
the coefficient relating X1 to mortality (δ1)
against the coefficient relating X2 to X1 (γ1),
we can recover β2, the coefficient relating X2
to mortality. If instead of substituting for X2
we had substituted for X1, then we would
similarly have obtained an estimate of β1.

The advantage of this method is seen when
we consider the impact of measurement error.
If X1 and X2 are both measured with error, then
the coefficients γ1 and δ1 in Equations 2 and 4
are both biased; however, that bias depends
only on the variance of X1 and its measurement
error, which are the same in both equations and
cancel out in Equation 5. This results in the
estimate of β2 in Equation 5 being unbiased.
The extension of the approach to models with
additional predictors, and Poisson regressions,
is provided in Schwartz and Coull (2003).

We applied the hierarchical model to the
NMMAPS study to estimate the unbiased
independent effects of each of the five pollu-
tants (PM10, SO2, NO2, CO, and O3) on daily
mortality. One can think of the application of
the hierarchical approach of Schwartz and
Coull (2003) as a three-step analysis. As an
example, we are presenting each step using two
pollutants (e.g., SO2 and PM10). If we were to
estimate the “true” effects of each of the two
pollutants on daily mortality, then β1 (in
Equation 1) would represent the unbiased
effect of SO2, and β2 the unbiased effect of
PM10. However, we are unable to estimate β1
and β2 directly, due to measurement error in

each pollutant. The three-stage method then
comes into play.

In the first stage, daily values of the vari-
ous air pollutants, in each city, were regressed
against each other to obtain regression slopes
for each pollutant pair, using least-squares
linear regression. In this step, we applied
Equation 2, which in our example would take
the form PM10 = γ0 + γ1SO2 + e. To enhance
comparability with the original NMMAPS
results, we obtained the daily air pollution
data used by the NMMAPS researchers, so
that their cleaning and averaging procedures
would be reflected in our analysis. These data
have been made publicly available as part of
the Internet-based Health and Air Pollution
Surveillance System (IHAPSS 2003).

The second stage involved fitting single-
pollutant models to the mortality data, in each
city, for each of the pollutants being examined
(Equation 4). In such case, if estimating
the effects of SO2 on daily mortality, then
E (Y ) = δ0 + δ1SO2. The NMMAPS study
already provided results for the single-
pollutant models in each city, relating daily
death counts to daily concentration of each
pollutant (PM10, SO2, NO2, CO, and O3) on
the day before (lag 1) the event, using Poisson
regression modeling (Dominici et al. 2003;
Samet et al. 2000b). Therefore, the slopes
relating mortality and each of the air pollu-
tants the day before death, by city, as provided
by the NMMAPS, were the coefficients (δ1) of
the second stage of the hierarchical approach.

Finally, the slopes (δ1) obtained from
the second stage were regressed against those
(γ1) obtained from the first stage, across
the 90 U.S. cities (Equation 5), using least-
squares linear regression. The slope of this
final regression is, ideally, an unbiased esti-
mate of β2, the effect of PM10 on daily mor-
tality, controlling for the effect of SO2 and of
measurement error.

The method allows one to recover the
independent effect of each pollutant, control-
ling for any other pollutant, using an approach
that is, in principle, unbiased by measurement
error and that, in simulations, appears to be
relatively unbiased under moderate violations
of the model assumptions (Schwartz and Coull
2003). Obviously, for this approach to work,
the independent variable (γ1) in Equation 5
must vary across the cities.

In the application of the three-stage analy-
ses, the five pollutants were paired with each
other. That is, for each pollutant, four unbiased
independent estimates relating that pollutant to
daily mortality were obtained, each estimate
controlling for the effects of the other four
pollutants. One limitation of the hierarchical
modeling is loss in precision in these estimates,
because the last regression (Equation 5) has
only 90 observations. This is reflected in the
confidence limits of the estimates. We could
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improve power in the effect of each pollutant,
by averaging its four estimates, using the fol-
lowing formula:

,

where β
–

j is the weighted average slope (meta-
slope) for pollutant j (i.e., PM10) defined over
k number slopes (obtained from third-stage
regressions), and βji is the unbiased slope of
pollutant j (i.e., PM10) controlling for pollu-
tant i (i.e., SO2), where i = 1 to k. Weights
for the slopes were defined as follows:

,

where vji is the variance of βji. The variance of
β
–

j is calculated as

Results
The relationship between pollutant pairs dif-
fered across the 90 cities (Table 1). The hetero-
geneity in the pollutant–pollutant regression
slopes (γ1) among all the cities, as shown in
Table 1, assured sufficient variability in the
independent variable of the third-stage regres-
sion to proceed with the analysis. Power in a
linear regression is increased by increasing the
variability in the independent variable (γ1 in
this case) and by reducing variability in the
residuals. Table 1 indicates that at least the first
condition is met. The range of variability in
slopes relating PM10 to other pollutants was
lower for traffic-related pollutants (CO and
NO2) than for SO2 or O3. This likely reflects
traffic particles always being a substantial com-
ponent of PM10, whereas the correlation with
SO2 is more varied because it depends on the
sulfur content of fuel. SO2 is poorly correlated
with O3, resulting in a very small mean slope
and large range of variation. The range of vari-
ation in the slope relating NO2 to SO2 was
smaller than for the other pollutants. It is pos-

sible that this reflects the importance of diesel
emissions for NO2 concentrations in urban
areas. Diesel fuel has much higher sulfur con-
tent than does gasoline, and this may con-
tribute to a tighter spread of the association
between the two pollutants across cities.

The bias-corrected estimates from the
third-stage analysis are presented in Table 2.
The results presented are percent increase in
daily deaths for a 10-µg/m3 increase in PM10,
or a 10-ppb increase in each of the gaseous air
pollutants, except CO (100 ppb). For PM10,
the percent increase in daily mortality ranged
from 0.14 to 0.35% (controlling for other
pollutants), with an overall estimate of 0.24%
[95% confidence interval (CI), 0.05–0.42%].
In contrast, we found small and nonsignifi-
cant associations of daily deaths with SO2,
NO2, and O3.

We found increased daily mortality in asso-
ciation with CO in the present analyses, with an
overall relative excess daily mortality of 0.06%
per increments of 100 ppb of CO, estimated
with fair precision (95% CI, 0.02–0.10%).

Discussion

The validity of exposure–response associa-
tions in epidemiologic studies depends on the
precision of exposure measurements (Dominici
et al. 2000b; Schwartz and Coull 2003; Zeger
et al. 2000). Environmental studies of air pol-
lution often lack precisely measured exposures,
which can lead to exposure misclassification
and biased estimates of exposure–response
associations (Dominici et al. 2000b; Schwartz
and Coull 2003; Zeger et al. 2000). Usually,
an exposure measured with error will bias the
association toward the null. A more com-
plicated problem occurs when two or more
exposures are measured with error and are cor-
related with each other. Zeger et al. (2000)
reported that, in such a case, the better meas-
ured exposure may, rarely, capture some of the
effect of the other exposure, which could bias
away from the null. In any event, the extent of
downward bias in each pollutant effect still
depends on the measurement error in the
other exposure. Hence, environmental studies
of multiple air pollutants may inherit bias
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Table 2. Percent increase in daily deaths associated with each pollutant, controlling for measurement error in other pollutants, based on data and results from
the NMMAPS study, including the period between 1987 and 1994.

Independent effects of pollutants on daily mortalitya

PM10 SO2 NO2 CO O3
Paired pollutantb R 2c Sloped T e R 2 Slope T R 2 Slope T R 2 Slope T R 2 Slope T

PM10 NA NA NA 0.048 1.14 1.77 0.008 0.033 0.69 0.029 0.078 1.56 0.008 0.0003 0.77
SO2 0.047 0.28 1.73 NA NA NA < 0.001 –0.004 0.06 0.154 0.086 3.25 0.012 –0.0004 0.83
NO2 0.012 0.16 0.83 0.007 –0.29 0.54 NA NA NA 0.007 0.032 0.64 0.024 –0.0019 1.15
CO 0.006 0.14 0.69 0.030 0.65 1.33 0.001 –0.004 0.27 NA NA NA 0.045 0.0011 1.87
O3 0.036 0.35 1.70 0.039 –0.76 1.52 0.007 –0.025 0.63 0.002 –0.018 0.34 NA NA NA
Meta-slopef NA 0.24 2.80 NA 0.10 0.34 NA –0.004 0.27 NA 0.062 3.16 NA 0.0002 0.74

NA, nonapplicable.
aCorrected slopes (effects) removing the effect of each pollutant shown in the first column. bThe independent pollutant of first-stage regression. cAdjusted R 2 from regressions of the
third stage (see text for details). dSlope for PM10 presented as percent increase per 10 µg/m3. Slopes for other pollutants are presented as percent increase per 10 ppb (100 ppb for CO).
et-Statistic from regressions of the third stage. fMeta-slope of the four alternative estimates.

Table 1. Mean ± SD of the distribution of pollutant–pollutant regression slopes (γ1),a and their coefficients
of variation (CV), across 90 U.S. cities, for each pollutant pair.

Pollutant–pollutant regression variables Pollutant–pollutant regression slopes
Dependent pollutant Independent pollutant Mean ± SD CV (%)

PM10 SO2 1.31 ± 1.45 110.3
NO2 0.83 ± 0.64 77.2
CO 0.01 ± 0.01 62.7
O3 0.27 ± 0.38 143.6

SO2 PM10 0.09 ± 0.08 87.9
NO2 0.22 ± 0.20 91.6
CO 0.003 ± 0.003 92.0
O3 –0.03 ± 0.10 377.6

NO2 SO2 2.64 ± 5.09 192.8
PM10 –0.22 ± 1.83 831.1
CO –0.01 ± 0.08 1030.7
O3 0.19 ± 2.03 1064.6

CO SO2 61.58 ± 74.64 121.2
NO2 34.19 ± 19.39 56.7
PM10 13.73 ± 9.26 67.4
O3 –9.58 ± 9.47 98.8

O3 SO2 136.66 ± 535.82 392.1
NO2 24.76 ± 95.82 387.0
CO –0.59 ± 3.26 550.6
PM10 –63.99 ± 292.61 457.2

aThe slopes were obtained from first-stage regressions (Equation 2), pairing each of the five pollutants with the other four
(pollutant pairs), for each U.S. city.



in both directions and with varying degrees.
Underestimating the public health conse-
quences of air pollution exposure can result in
suboptimal measures to reduce these health
consequences, particularly when cost–benefit
or cost-effectiveness analysis is used as part
of the decision process. Uncertainties about
upward bias in the effect estimates can under-
mine the credibility of observed associations,
raising questions about the appropriateness of
proposed air quality standards. Hence, reduc-
ing both potential errors can improve environ-
mental health.

Schwartz and Coull (2003) recently
described a method that uses hierarchical mod-
eling to deal with confounding and measure-
ment error bias in epidemiologic studies. Their
approach yielded an exposure–response esti-
mate that was unbiased under certain assump-
tions and showed small downward biases when
those assumptions were not met—for example,
when the measurement errors among the mul-
tiple exposures were correlated. Although not
entirely eliminated, the bias effect in this case
was much less than the one produced by the
two-pollutant model under the same circum-
stances (Schwartz and Coull 2003).

In the present study we applied the
method of Schwartz and Coull (2003) to data
and results from NMMAPS to estimate the
independent effects of air pollutants on daily
mortality. The application of this approach to
the NMMAPS results was used in the case of
two concurrent pollutants, both assumed to be
measured with error. The method provided
minimally biased independent effect estimates
for each pollutant–daily mortality association.
The price of this reduced bias was a reduction
in precision. However, when we averaged over
the results for each different pollutant, impor-
tant associations appeared for PM10 and CO.

Recent results of NMMAPS had shown
positive associations between PM10 and daily
mortality for 90 U.S. cities (Dominici et al.
2003; Samet et al. 2000b, 2000c). The
relative increase ± SE in daily mortality was
0.21 ± 0.06% per 10-µg/m3 increase of PM10
concentration 1 day before the event. The
presence of other pollutants in the model did
not change this effect (Dominici et al. 2003).
Our estimate for this pollutant was slightly
greater after reducing measurement error bias
(0.24 ± 0.09% increase in mortality).

The NMMAPS had reported no indepen-
dent associations between daily mortality and
concentration of other air pollutants 1 day
before the event, including SO2, NO2, CO,
and O3 (Dominici et al. 2003). The findings
for gaseous pollutants from that study were
based on two- and multiple-pollutant models.
For comparison with our results, we report the
estimates from this previous study for incre-
ments in concentration of 10 ppb. The esti-
mates for SO2 from the two- and multiple-

pollutant models from the NMMAPS ranged
between 0.4 and 0.5% increase in daily mor-
tality. NO2 showed relative increases in daily
mortality from 0.3 to about 0.4%. Relative
increase in daily mortality for O3 varied
between 0.08 and 0.2%. Percent increases of
0.02–0.06 in daily mortality were associated
with increments of 100 ppb in CO concen-
trations. None of these reported effects was
estimated precisely, which resulted in the
summary of the evidence from this previous
study of no association between any of
the gaseous pollutants and daily mortality
(Dominici et al. 2003).

We found the effects for SO2, controlling
for other pollutants, to vary greatly, with an
overall estimate of 0.1% increase in daily mor-
tality. For NO2, we found essentially no effect
on daily mortality (estimate = –0.004%). O3
effects in our study were found to be between
two and three orders of magnitude smaller than
the observed effects for the same pollutant from
the NMMAPS. However, none of these esti-
mates was precise, which made our summary
finding for these pollutants qualitatively similar
to the one reported from the NMMAPS study.

Unlike in the NMMAPS finding, we
observed an association between CO and
daily mortality. The estimates, controlling for
other pollutants, ranged from –0.02 to 0.09%,
with the greater effects being estimated fairly
precise. The pooled effect of CO showed a
0.06% increase in mortality with a tight con-
fidence interval (95% CI, 0.02–0.10% per
100 ppb).

One explanation for the different finding
for CO in our study, compared with that of
NMMAPS, could be related to the high degree
of measurement error in this pollutant. There
is a possibility that the spatial heterogeneity in
ambient concentrations of CO is greater than
that of any other air pollutant. This would pro-
duce a greater amount of measurement error
when monitoring ambient concentrations of
CO from a central monitoring site. Whether
the greater effect seen using the hierarchical
modeling approach reflects a true association
with CO per se, or whether CO is a surrogate
for traffic particles or some other component
of vehicular exhaust (Sarnat et al. 2001), is not
clear. Nevertheless, the results for CO indicate
the potential use of the approach and suggest
that attention should be focused on CO or on
traffic pollution. The similar results of this
study with those of NMMAPS for PM10 were
reassuring.

Several limitations in the application of the
Schwartz and Coull (2003) approach must be
acknowledged. First, because the third-stage
regression had only 90 observations, the power
of the method was reduced. The power depends
in part on the R 2 values of the third-stage
models. In our case, these were low (Table 2),
forcing us to apply meta-analysis as an ad hoc

approach to improve power. In other applica-
tions, R2 may be larger, and this approach may
be unnecessary. We are currently developing a
multivariate version of the approach that is less
ad hoc in improving power, by using multiple
predictors at the last-stage regression.

Second, we did not have season-specific
regression coefficients relating air pollution to
mortality in the NMMAPS. The use of this
approach with season-specific relationships
offers increased power because of the increased
number of risk coefficients by pollutant, and
also because the relationship between many
pollutants varies seasonally. We expect these to
be available from NMMAPS in the future.

Third, in the present analyses we assumed
that the concentration–response relation
between air pollution and daily deaths is
linear. This question has been subject to a
number of investigations using splines and
smoothing in single-city studies and combin-
ing splines or smooth curves in multicity stud-
ies (Schwartz and Zanobetti 2000; Schwartz
et al. 2002). At least for PM10, linear associa-
tions were seen in concentration ranges similar
to those of the present study.

Finally, our model implies that each pollu-
tant, as measured at a central site in each city,
is a surrogate for exposure to the same pollu-
tant. However, Sarnat et al. (2001) have pro-
posed recently that ambient concentrations of
gaseous air pollutants may be serving as surro-
gates not for exposure to those gases but for
exposure to particles or particles from particu-
lar sources. For example, in Baltimore, CO was
a good surrogate for exposure to particles from
traffic (Sarnat et al. 2001). This suggests that
there must be caution in interpreting the pre-
sent results for CO. We think that personal
exposure studies of intermediate outcomes may
be necessary to resolve the question.

Despite these limitations, the approach of
Schwartz and Coull (2003) is useful to studies
of air pollution and mortality. In our study, it
provided evidence of a slightly greater effect
of PM10 than that reported previously by
NMMAPS, when controlling for measurement
error in other pollutants, and suggested that
greater attention be paid to CO and possibly
traffic pollution.
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