APPENDIX C – DEVELOPMENT OF WATER QUALITY-BASED EFFLUENT LIMITS

The calculations for water quality-based effluent limits are done according to procedures in Chapter 5 of EPA's *Technical Support Document for Water Quality-Based Toxics Control (TSD).*

The spreadsheets following this document contain the calculations for water quality-based limits for the Red Dog Port Site Outfalls 001 and 005.

Step 1 – Determine the Wasteload Allocations (WLAs) for each parameter

WLAs define the allowable concentration of pollutant in the effluent. The water quality criteria are converted to WLAs for the receiving water based on the following mass balance equation:

$$WLA = (C_r - C_b) * dilution where,$$

Cr	=	Criteria that cannot be exceeded at the edge of the mixing zone
C _b	=	Background concentration of pollutant
Dilution	=	Designated mixing zone

Step 2 – Determine Long Term Averages

The acute and chronic WLAs are converted to Long Term Averages (LTA_{acute} and LTA_{chronic}) using the following equations:

 $LTA_{acute} = WLA_{acute} * e[0.5\sigma^{2} - z\sigma] \text{ where,}$ $\sigma^{2} = ln(CV^{2} + 1)$ CV = Coefficient of variation of the effluent data $z = 2.326 \text{ for the } 99^{th} \text{ percentile probability basis}$ $LTA_{chronic} = WLA_{chronic} * e[0.5\sigma^{2} - z\sigma] \text{ where,}$ $\sigma^{2} = ln(CV^{2}/4 + 1)$

σ^2	=	$\ln(CV^2/4 + 1)$
CV	=	Coefficient of variation of the effluent data
Z	=	2.326 for the 99 th percentile probability basis

Step 3 – Determine Average Monthly and Maximum Daily Limits

To protect a waterbody from both acute and chronic effects, the more limiting of the calculated LTA_{acute} and $LTA_{chronic}$ is used to derive the effluent limitations. The TSD recommends using the 95th percentile for the Average Monthly Limit (AML) and the 99th percentile for the Maximum Daily Limit (MDL).

To derive the MDL and the AML, the following calculations are used:

MDL = LTA * $e[z\sigma - 0.5\sigma^2]$ where,

σ^2	=	$\ln(CV^2+1)$
CV	=	Coefficient of variation of the effluent data
Z	=	2.326 for the 99 th percentile probability basis

AML = LTA * $e[z\sigma - 0.5\sigma^2]$ where,

σ^2	=	$\ln(CV^2/n + 1)$
CV	=	Coefficient of variation of the effluent data
n	=	Number of sampling events required in permit per month
Z	=	1.645 for the 95 th percentile probability basis

Step 4 – Compare Aquatic Life and Technology-based Effluent Limits

Compare water quality-based (aquatic life) and technology-based effluent limits and put the more stringent limits in the permit.

APPENDIX C - OUTFALL 001 WATER QUALITY BASED PERMIT LIMIT CALCULATIONS

	Dilution (Dil'n) factor is the inverse of the percent effluent concentration at the edge of the acute or chronic mixing zone.										Waste L		ation (WLA)		Statistical variables for permit limit							
					P	ermit Limit	t Calculatio	n Summar	у				(LTA) Calcı	ulations						calculatio	m	
	Acute Dil'n	Chronic Dil'n	Translat r or		Ambient Concentr	Water Quality Standard	Water Quality Standard	Average Monthly Limit	Maximum Daily Limit	Limits used in	WLA	WLA		LTA	LTA Coeff. Var.	LTA Prob'y	Limiting	Coeff. Var.	AML Prob'y	MDL Prob'y	# of Samples per	
PARAMETER	Factor	Factor		or	ation	Acute ug/L	Chronic	(AML)	(MDL)	permit	Acute	Chronic	LTA Acute	Chronic	(CV)	Basis decimal	LTA	(CV)	Basis	Basis	Month	
			Acute	Chronic	ug/L	· · ·	ug/L	ug/L	ug/L		ug/L	ug/L	ug/L	ug/L					decimal		n	
Total Residual Chlorine	92	140				13.00	7.50	502.1	1196.0	TB	1196	1050.00	384.0	553.8	0.60	0.99	384.0	0.60	0.95	0.99	12.00	1.00
									тр	= Technology B	aaad											
									ID	= recrimology b	aseu											

APPENDIX C - OUTFALL 005 WATER QUALITY BASED PERMIT LIMIT CALCULATIONS

	Dilution (Di chronic mix		he inverse o	f the percen			edge of the act				Waste	e Load Al				g Term		S			for permit	limit	This spreadsheet	
PARAMETER	Acute Dil'n Factor	Chronic Dil'n Factor	Metal Criteria Translat or Acute	Metal Criteria Translat or Chronic	Ambient Concentr ation ug/L	Water Quality Standard Acute ug/L	it Calculat Water Quality Standard Chronic ug/L	Average Monthly Limit (AML) ug/L	Maximum Daily Limit	Limits used in permit	WLA Acute ug/L	WLA Chronic ug/L	LTA Acute	LTA Chronic	LTA Coeff. Var. (CV)	LTA Prob'y Basis decimal	Limiting LTA ug/L	Coeff. Var. (CV) decima	AML Prob'y Basis decimal	MDL Prob'y Basis decimal	n # of Samples per Month n		calculates water quality based permi limits based on the two value steady state model. The procedure and	t
Cadmium Mercury Lead Zinc	92 92 92 92	140 140 140 140	0.994 0.850 0.951 0.946	0.994 0.850 0.951 0.946	1.09 0.15 3.90 56.75	40.00 1.80 210.00 90.00	8.80 0.94 8.10 81.00	811.8 56.5 360.9 1471.9	1957.1 178.8 1098.4 3293.6	Technology Based Technology Based Technology Based Technology Based	3581 152 18965 3116	1080.49 110.75 591.90 3451.75	804.4 15.9 2300.5 814.4	437.0 19.2 126.7 1572.6	0.90 2.40 1.89 0.76	0.99 0.99 0.99 0.99	437.0 15.9 126.7 814.4	0.90 2.40 1.89 0.76	0.95 0.95 0.95 0.95	0.99 0.99 0.99 0.99	4.00 4.00 4.00 4.00	0.994 0.850 0.951 0.946	calculations are done per the Technical Support Document for Water Quality-based Toxic	
																							Control, U.S. EPA, March, 1991 (EPA/505/2-90-001)	