APPENDIX B – REASONABLE POTENTIAL DETERMINATIONS

A water quality-based effluent limit (WQBEL) is necessary if the projected receiving water concentration (or technology-based limit concentration) exceeds the applicable water quality criteria. The following calculations determine whether limits are necessary based on Chapter 3 of EPA's *Technical Support Document for Water Quality-Based Toxics Control (TSD)*.

The spreadsheets following this document contain the calculations for determination of reasonable potential for aquatic life for the Red Dog Port Site Outfalls 001 and 005.

<u>Step 1 – Determine the maximum projected effluent concentration</u>

- Find the maximum reported effluent concentration for each parameter
- Determine the coefficient of variation for each parameter based on available monitoring data:
 - ightharpoonup If < 10 data points, CV = 0.6
 - ➤ If > 10 data points, calculate the CV (standard deviation/mean)
- Calculate the reasonable potential multiplier, assuming 99% confidence level and 99% probability basis using equations from Section 3.3.2 of the TSD:

RP multiplier = C_{99}/C_x where,

 $\delta = \ln(CV^2 + 1)$

 $C_{99} = \exp(2.326\delta - 0.5\delta^2)$

 C_x = percentile represented by highest concentration in the database

Step 2 – Determine the receiving water concentrations

The projected maximum receiving water concentration (RWC) for each parameter is calculated as follows:

 $RWC = [C_e/dilution] + C_b$ where,

 C_b = Background concentration of pollutant

C_e = Maximum projected effluent concentration

(maximum effluent concentration * reasonable potential multiplier)

Dilution = Designated mixing zone

Step 3 – Determine the Reasonable Potential

If the RWC exceeds the most stringent applicable state water quality criteria, then there is reasonable potential to exceed the criteria at the edge of the mixing zone, and WQBELs must be developed.

APPENDIX B - OUTFALL 001 REASONABLE POTENTIAL CALCULATION

						1												
			State Water Quality Standard				Max concentration at edge of											
				Stan	ndard	eage	e of											
			Ambient								Max effluent conc.							
	Metal Criteria Metal Criteria Co			teria Concentrati			Chronic		Effluent		measured					Acute	Chronic	
	Translator as					Mixing	Mixing	LIMIT	percentile		(metals as total	Coeff		# of		Dil'n	Dil'n	
	decimal	decimal	dissolved)	Acute	Chronic	Zone	Zone	REQ'D?	value		recoverable)	Variation		samples	Multiplier	Factor	Factor	
Parameter	Acute	Chronic	ug/L	ug/L	ug/L	ug/L	ug/L			Pn	ug/L	CV	S	n				COMMENTS
Cadmium	0.994	0.994	1.09	40.00	8.80	1.17	1.15	NO	0.99	0.631	2.80	0.60	0.55	10	3.02	92	140	Cadmium
ead	0.951	0.951	3.90	210.00	8.10	6.54	5.63	NO	0.99	0.631	86.00	0.60	0.55	10	3.02	92	140	Lead
linc	0.946	0.946	56.75	90.00	81.00	71.86	66.68	NO	0.99	0.631	507.00	0.60	0.55	10	3.02	92	140	Zinc
otal Ammonia as NH ₃ -N				28460.00	4270.00	358.54	235.61	NO	0.99	0.010	2500.00	0.60	0.55	1	13.19	92	140	Ammonia
Chlorine				13.00	7.50	2.38	1.57	NO	0.99	0.819	100.00	0.60	0.55	23	2.19	92	140	Total Residual Chlorin
				TUa		TUa					TUa							
Vhole Effluent Toxicity				0.30		0.06		NO	0.99	0.562	1.73	0.60	0.55	8	3.33	92		WET

NPDES Permit No. AK-004064-9

APPENDIX B - OUTFALL 005 REASONABLE POTENTIAL CALCULATION

				State Water Quality Standard		Max concentration at edge of												
arameter			Ambient a Concentrati s on (metals as dissolved)	Acute	Chronic	Acute Mixing Zone	Chronic Mixing Zone	LIMIT REQ'D?	Effluent percentile value	Pn	,	Coeff Variation			Multiplier	Acute Dil'n Factor	Chronic Dil'n Factor	COMMENTS
arameter	0.994	0.994	<i>ug/L</i> 1.09	<i>ug/L</i> 40.00	ug/L 8.80	<i>ug/</i> L 1.30	ug/L 1.23	NO	0.99	0.903	<i>ug/L</i> 9.50	<i>CV</i> 0.90	S 0.77	<i>n</i> 45	2.21	92	140	Cadmium
copper	0.994	0.994	33.30	4.80	3.10	33.08	33.15	YES	0.99	0.903	9.50	0.90	0.77	45	1.57	92	140	Copper
Mercury	0.850	0.850	0.17	1.80	0.94	0.18	0.18	NO	0.99	0.903	0.30	2.40	1.38	45	4.15	92	140	Mercury
ead	0.951	0.951	4.04	210.00	8.10	8.52	6.99	NO	0.99	0.903	123.00	1.89	1.23	45	3.56	92	140	Lead
inc	0.946	0.946	56.75	90.00	81.00	67.31	63.69	NO	0.99	0.898	533.83	0.76	0.67	43	2.04	92	140	Zinc
lickel	0.990	0.990		74.00	8.20	1.28	0.84	NO	0.99	0.010	8.99	0.60	0.55	1	13.19	92	140	Nickel
elenium	0.998	0.998		290.00	71.00	0.26	0.17	NO	0.99	0.010	1.80	0.60	0.55	1	13.19	92	140	Selenium
				TUa		TUa					TU _a							
Vhole Effluent Toxicity				0.30		0.06		NO	0.99	0.518	1.63	0.60	0.55	7	3.54	92		WET