08-0010 SDMS: 158664

Corporate Environmental Programs General Electric Company 100 Woodlawn Ave., Pittsfield, MA 01201

Transmitted Via FedEx

July 11, 2000

Bryan Olson EPA Project Coordinator U.S. Environmental Protection Agency EPA New England One Congress Street, Suite 1100 Boston, MA 02214-2023

Re: GE-Pittsfield/Housatonic River Site Upper ½-Mile Reach Removal Action (GECD800) Results of Cell G1 DNAPL Investigation and Proposal to Address Presence of DNAPL in Cell G1

Dear Mr. Olson:

Enclosed is a document entitled Results of Cell G1 DNAPL Investigation and Proposal to Address Presence of DNAPL in Cell G1. This document presents the results of the recent investigation to delineate the extent of PCB-containing dense non-aqueous-phase liquid (DNAPL) encountered in Cell G1 during the Upper ½ Mile Reach Removal Action, and sets forth General Electric's proposal for further response actions to address that DNAPL. This proposal involves installation of a new sheetpile barrier wall and additional excavation of DNAPL-impacted materials. These actions will be implemented following the U.S. Environmental Protection Agency's approval of this proposal.

Please call me if you have any questions.

Sincerely yours,

Indrew T. Silfer / JTL

Andrew T. Silfer, P.E. GE Project Coordinator

Enclosure

MOG/smr F:\USERS\SMR\SMR00\58201938 doc

Bryan Olson July 11, 2000 Page 2

cc: Mark Barash, DOI Robert Bell, MDEP Jeffrey Bernstein, Bernstein, Cushner & Kimmel James Bieke, Shea & Gardner Michael Carroll, GE Tim Conway, USEPA J. Lyn Cutler, MDEP (2 copies) Mayor Gerald Doyle, City of Pittsfield Charles Fredette, CDEP Jane Gardner, GE Anton Giedt, NOAA Ray Goff, USACE Samuel Gutter, Sidley & Austin William Horne, GE Holly Inglis, USEPA Thomas La Rosa, MA EOEA Stuart Messur, BBL James Milkey, MA AG K.C. Mitkevicius, USACE Susan Steenstrup, MDEP Dean Tagliaferro, USEPA Andrew Thomas, GE Dawn Veilleux, Weston Alan Weinberg, MDEP Public Information Repositories ECL I-P-IV(A) (1) **GE** Internal Repositories

GENERAL ELECTRIC COMPANY –PITTSFIELD MASSACHUSETTS UPPER ½-MILE REMOVAL ACTION OF HOUSATONIC RIVER

<u>RESULTS OF CELL G1 DNAPL INVESTIGATION AND</u> <u>PROPOSAL TO ADDRESS PRESENCE OF DNAPL IN CELL G1</u>

I. INTRODUCTION

On May 25, 2000, during remediation of Cell G1, GE visually observed a small amount of DNAPL of unknown composition in the southwest corner of that cell. The observation was reported to the National Response Center (NRC), the United States Environmental Protection Agency (USEPA), and the Massachusetts Department of Environmental Protection (MDEP). A sample of the DNAPL was obtained on May 30, 2000 and the DNAPL was found to contain polychlorinated biphenyls (PCBs) at 449,000 parts per million (ppm) (Aroclor 1260), chlorobenzene at 266 ppm, and 1,2,4-trichlorobenzene at 159,000 ppm. In accordance with the requirements of the Removal Action Work Plan - Upper 1/2-Mile Reach of Housatonic River (Work Plan) (BBL, August 1999), on May 31, 2000 approximately one additional foot of sediment (beyond the limits identified in the Work Plan) was excavated in an approximate 20 foot by 40 foot area where the DNAPL was observed. The additional excavation did not completely remove the DNAPL-impacted materials and, in consultation with the USEPA, an investigation was proposed and implemented to further evaluate the lateral and vertical extent of DNAPLimpacted materials. This document presents the results of the investigation program and provides a proposal for installation of a sheetpile barrier wall and a proposal for additional excavation of DNAPL-impacted materials.

II. SUMMARY OF DNAPL INVESTIGATION AND RESULTS

The phased investigation program was performed between June 5, 2000 and June 28, 2000 by GE with oversight from USEPA representatives. Implementation of the program resulted in the installation of 33 soil borings, using mechanical and manual AMS probe and manual sediment core sampling techniques. The surveyed soil boring locations are shown on Figure 1. During advancement of the core barrel, the recovered soils/sediments were continuously logged and boring logs were developed and are included as Attachment A to this document. The soil samples were characterized with regard to the potential presence of DNAPL based on visual descriptions. Separate-phase DNAPL was only observed in the soil cores at five borings (HR-G1-SB4, HR-G1-SB15, HR-G1-SB17, HR-G1-SB24, and HR-G1-SB27). Geologic crosssections of this area have also been developed and are shown in Figures 2 through 4. Sheens and odors were also observed at several locations throughout the investigation area and these observations are presented on Figure 5. In addition, various samples were selected, with concurrence of the USEPA, for analysis of PCBs. The analytical results indicated PCBs ranging in concentration from 0.12 to 8,670 ppm. These results are provided in Table 1 and on Figure 5. The results of the investigation indicate that DNAPL observations in the borings were limited to the area at the downstream end of Outfall 05B and in the sediment located in front of the headwall. Additionally, the observation of DNAPL is sporadic and does not appear to be associated with a significant source area. Based on these observations, with USEPA concurrence, an intermediate cut-off sheetpile wall was installed within Cell G1 (see Figure 1) to further isolate the DNAPL area from the upstream portion of Cell G1 and thus allow completion of restoration activities in the upstream portion of that cell.

Following completion of the soil boring investigation, three locations (PZ-1, PZ-2, and PZ-3) were selected for installation of well points (see Figure 1). Table 2 summarizes the well point

construction details and the locations are shown on Figure 1. The well points were installed on June 28, 2000, and monitored on June 30, July 3, and July 5, 2000 for the presence of DNAPL. The results are presented in Table 3. As indicated in Table 3, DNAPL has not been found in the well points, although a slight oily film has been observed on the probe in PZ-2.

Finally, on June 30, 2000, four additional soil borings (HR-G1-SB29, HR-G1-SB30, HR-G2-SB5, and HR-G2-SB6) were advanced along the top of the riverbank to determine the approximate elevation of till in this area. The borings indicated that till was present at an approximate elevation of 955 to 960 feet above mean sea level. The boring logs are also provided in Attachment A

III. PROPOSED SHEETPILE BARRIER WALL INSTALLATION

Based on the results of the above investigations and observation of DNAPL within the Cell G1 excavation area, supplemental containment measures are proposed to further address the known or potential presence of DNAPL within the subsurface soils in this area. The primary component of the proposed supplemental DNAPL containment measure is the installation of a physical containment barrier along and parallel to a portion of the Housatonic River riverbank. Specifically, GE proposes the installation of an approximately 105-foot long steel sheetpile wall parallel to and along the edge of the river, as shown on Figure 6.

The proposed containment barrier will be constructed of a steel sheetpile wall with sealable joints. This type of steel sheetpiling has been successfully installed at two previous locations at GE's Building 68 area and East Street Area 2 - South. The sheetpile wall will be constructed of Waterloo brand, heavy-wall, sealable sheetpiling (WEZ95) manufactured by Canadian Metal Rolling Mills under license to the University of Waterloo. The heavier gauge sheeting has been selected for this application, since it will be necessary to attempt to advance the sheeting into the subsurface till layer. The sheeting will be driven into place with a vibratory or impact hammer. Since there will be additional excavation activities performed in the vicinity of the containment barrier, and to avoid potential joint damage that may be caused by construction-related impacts, the sheetpile joints will be left un-grouted until the completion of the sediment excavation and restoration activities up to a minimum elevation of 967 feet. Structural calculations regarding the long-term stability of the sheetpile wall are provided in Attachment B. These calculations show that the sheetpile wall will be stable under long-term (restored) conditions.

Horizontal and Vertical Extent

The location and depth of the proposed containment barrier were conservatively selected, based on the results of field investigations, to include those areas (both vertically and horizontally) where DNAPL has been identified or may be potentially present. Once this area was determined, several other technical and operational factors were considered in the detailed design activities, such as possible impacts to the existing hydrogeologic conditions in the area, possible effects of future river flooding on the migration/containment of NAPL, laboratory analytical results, historic groundwater elevations, typical river elevations, and existing bank geometry. However, the actual alignment of the containment barrier may be adjusted somewhat during construction based on actual field conditions. These field adjustments are not anticipated to be significant.

The horizontal extent of the proposed containment barrier is shown on Figure 6. The wall will be located parallel to the river approximately 5 feet up the bank measured horizontally from the water edge (at elevation 972). This location has been selected based on a review of information obtained from the recent investigations summarized in Section II. Using this information, the

location of the proposed containment barrier was established to include known areas of NAPL that could potentially migrate toward the river. The location and alignment of the proposed containment barrier have also taken into account installation difficulties associated with the outfalls in this area. As shown on Figure 6, that barrier will encompass both outfalls.

Wing walls angled at 45° will extend up the bank approximately 15 feet at both ends of the proposed barrier wall. Based on these design parameters, the length of the proposed containment barrier along the riverbank will be approximately 75 feet. With the addition of the wing walls, the overall length of the proposed containment barrier will be approximately 105 feet.

Several considerations were taken into account in selecting the vertical extent of the proposed containment barrier, including the results from recent investigations; historic, current, and predicted groundwater hydraulics; and geotechnical considerations. From this information, it is anticipated that the vertical extent of the containment barrier will extend at least to the upper surface of the till unit (i.e., approximately 955 to 960 feet). In addition, the sheetpile will extend approximately 5 feet into the till if it is physically possible for the sheetpiling installation equipment to advance the sheetpile to this elevation.

The proposed upper elevation of the containment barrier is 975 feet. This top of sheetpile elevation was selected based on the existing bank elevations in this area and incorporation of the existing outfalls.

In addition to the presence of DNAPL, groundwater hydraulics were factored into the selection of the location and configuration (e.g., vertical extent) of the proposed containment barrier. The groundwater hydraulics associated with typical hydrogeologic conditions in this area were modeled by BBL using the publicly available and well-documented MODFLOW program (Attachment C). The results of the modeling effort indicate that the groundwater mounding caused by the installation of the sheetpile wall would be minor (approximately 0.5 feet). As a result, groundwater recovery behind the wall is not anticipated. In the event that groundwater recovery becomes necessary, the modeling indicates that a pumping rate of 10 gpm would reduce the groundwater mounding effects.

IV. PROPOSED ADDITIONAL EXCAVATION

Following installation of the sheetpile wall, additional excavation will be performed in Cell G1. In addition, another intermediate cut-off sheetpile wall will be installed to isolate the upper 25 feet of Cell G2 so that excavation activities in that area may be performed concurrently. The approximate extent of initial excavation is shown on Figures 6, 7 and 8. Excavation will be performed initially to a maximum depth of 4 feet, based on visual observations, in the downstream portion of Cell G1. A portion of this area will also be excavated further to an elevation of 965 feet. If it appears that the DNAPL-impacted materials have been removed, then the area will be restored in accordance with the requirements of the Work Plan. If it appears that additional DNAPL-impacted materials remain, then additional excavations will be performed until the maximum excavation depth has been reached. It is anticipated that maximum excavation depth in the interior portion of the Cell G1 DNAPL area will be an elevation of 963 feet based on the soil borings and structural considerations. However, if the excavation becomes unsafe due to "boils," the maximum excavation depth may be further limited. The Remediation Contractor will have responsibility for the structural stability of the excavation and will evaluate the maximum possible depth to which excavation may be performed, based on conditions observed in the field. Since there does not appear to be a significant source of DNAPL, it is not anticipated that a collection system will be required. However, in the event the maximum

excavation depth has been reached and DNAPL-impacted materials remain, a DNAPL collection system similar to the one installed in the river at East Street Area 2 - South may also be installed here.

Excavation activities in the upstream portion of Cell G2 will be initially performed to the limits required by the Work Plan. The need for additional excavation will be evaluated at that time based on the observations (if any) of DNAPL, consistent with the Work Plan. To facilitate excavation activities, Outfalls 005 and 05A will be re-routed. The outfall from the water treatment facility (005) will be piped around the work area and a 3,000 gallons per minute (gpm) pump will be installed in the outfall sump for the oil/water separator (05A) to pump the design discharge volume of water (2,800 gpm) around the work area.

Excavated materials that are observed to contain DNAPL will be separately managed and will be subject to off-site disposal. Excavated materials that are not observed to contain DNAPL will be placed in the On-Plant Consolidation Areas (OPCAs)

Following completion of excavation activities in Cells G1 and G2, the areas will be restored in a similar manner to the restoration at the East Street Area 2 - South source control area. Figures 7 and 8 provide cross-sections of the proposed restoration. To avoid potential joint damage that may be caused by construction-related impacts, the area in front of the sheetpile wall will be restored to a minimum elevation of 967 feet prior to grouting of the sheetpile joints. Following backfill to this level, the sheetpile joints will be grouted and restoration activities will be completed.

The existing outfalls will be extended to the sheetpile wall. Penetrations through the wall will be made as required to maintain proper operation of the outfalls. The penetrations will also be sealed as required to prevent leakage through the sheetpile wall. The area between the sheetpile wall and the existing outfall headwalls will be backfilled with general fill or grout to approximately 1 foot below the surrounding grade. Riprap will then be placed to the surrounding grade, as a measure of erosion protection. Additionally large diameter stones (greater than 12 inches) will be used below the outfalls for erosion protection

V. SCHEDULE AND ADDITIONAL ACTIVITIES

The proposed activities outlined herein will be implemented following USEPA's approval of this proposal. It is anticipated that, following USEPA's approval of this proposal, sheetpile wall installation, excavation, and restoration activities within Cell G1 and the upstream 25 feet of Cell G2 will be completed within a 3-4 week time frame. Until such time, GE will continue to monitor the well points three times per week and maintain oil absorbent booms and pads as needed.

Finally, following completion of restoration activities in the DNAPL portion of Cell G1 and the upstream portion of Cell G2, GE will evaluate the need for additional DNAPL collection measures in this area and propose any such measures to USEPA for approval.

Tables

BLASLAND, BOUCK & LEE, INC. engineers & scientists

•

.

TABLE 1

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

REMOVAL ACTION - UPPER 1/2-MILE REACH OF HOUSATONIC RIVER

SUMMARY OF PCBs DETECTED IN CELL G1 AND G2 SOIL SAMPLES

(Results are presented in dry-weight parts per million, ppm)

	Sample	Sample			T T	T	T		
GE Sample ID.	Collection Date	Depth (Feet)	Aroclors 1016 and 1232	Aroclor 1221	Aroclor 1242	Aroclor 1248	Arocior 1254	Arocior 1260	Total Aroclors
HR-G1-SB-19	6/14/00	8-10	ND (105)	ND (105)	ND (105)	ND (105)			
HR-G1-SB-19	6/14/00	10-12	ND (3.06)	ND (3.06)	ND (3.06)	ND (105)	ND (105)	2,080	2,080
HR-G1-SB-20	6/14/00	2-4	ND (0.721)	ND (0 721)	ND (0.721)	ND (3.06)	ND (3.06)	84.6	84.6
HR-G1-SB-20	6/14/00	6-8	ND (0.0537)	ND (0.0537)	0.0605 pD	1.32 PE	ND (0.721)	11.2 AG	12.52
HR-G1-SB-21	6/14/00	2-4	ND (0.0575)	ND (0.0535)	0.0605 PD	ND (0.0537)	ND (0.0537)	0.0602 AG	0.1207
HR-G1-SB-21	6/14/00	8-10	ND (162)	ND (0.0373)	ND (0.0575)	0.382 PE	ND (0.0575)	0.586 AG	0.968
HR-G1-SB-22	6/14/00	2-4	ND (0.0534)	ND (102)	ND (162)	ND (162)	ND (162)	4,200	4,200
HR-G1-SB-24	6/23/00	2:4	ND (7.0)	ND (0.0534)	ND (0.0534)	ND (0.0534)	ND (0.0534)	0.191	0.191
HR-G1-SB-24	6/23/00	4-6	ND (0.36)	ND (7.0)	ND (7.0)	ND (7.0)	ND (7.0)	99	99
HR-G1-SB-24	6/23/00	6-8	ND (180)	ND (0.36)	ND (0.36)	ND (0.36)	ND (0.36)	3.6	36
HR-G1-SB-24	6/23/00	8-10	ND (180)	ND (180)	890	ND (180)	ND (180)	7,500	8 390
HR-G1-SB-24	6/23/00	10.12		ND (1.8)	3.7	ND (1.8)	ND (1.8)	40	43.7
HR-GI-SB-24	6/23/00	10-12	ND (0.047)	0.56	0.56				
HR-G1-SB-24	6/23/00	12-14	ND (0.45)	ND (0.45)	0.43 J	ND (0.45)	ND (0.45)	4.6	5.03
HR-G1-SB-26	6/23/00	14~10	ND (19)	ND (19)	15 J	ND (19)	ND (19)	620	625
HR GL SR 26	6/23/00	8-10	ND (0.39)	ND (0.39)	0.35 J	ND (0.39)	ND (0.39)	33	2.65
UP C1 SP 26	6/23/00	10-12	ND (0.036) [ND (0.036)]	0.14.(0.12)	3.03				
HP C1 SP 27	6/23/00	12-14	ND (0.037)	ND (0.037)	0.043	ND (0.037)	ND (0.037)	0.14[0.12]	0.14 [0.12]
HR-01-5B-27	6/23/00	0-2	ND (200)	ND (200)	170 J	ND (200)	ND (200)	0.59	0.633
HR-GI-SB-2/	6/23/00	2-4	ND (43)	8,300	8,670				
HR-G2-SB-I	6/16/00	4-6	ND (1.78)	1,800	1,800				
HR-G2-SB-2	6/16/00	6-8	ND (2.48)	41.8	41.8				
HK-G2-SB-4	6/16/00	12-14.5	ND (0.0619)	0.198 PB	ND (0.0619)	ND (0.0619)	ND (0.0610)	53	53
							ITD (0.0019)	ND (0.0619)	0.198

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Incorporated, and submitted to Northeast Analytical and CT&E Environmental Services, Inc. for PCB analysis.

2. ND - Compound was not detected, associated detection limit presented in parentheses. 3. Duplicate sample results are presented in brackets.

4. J - Indicates an estimated value less than the associated detection limit.

5. PB - Aroclor 1221 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1221 was not detected in the sample, but is reported to more accurately quantify PCB present in the sample that has undergone environmental alteration.

6. PD - Aroclor 1242 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1242 was not detected in the sample, but is reported to more accurately quantify PCB present in the sample that has undergone environmental alteration.

7. PE - Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 was not detected in the sample, but is reported to more accurately quantify PCB present in the sample that has undergone environmental alteration.

8. AG - Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

TABLE 2

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

REMOVAL ACTION - UPPER 1/2-MILE REACH OF HOUSATONIC RIVER

Piezometer ID.	Ground Elevation (Feet AMSL)	Measuring Point Elevation (Feet AMSL)	Screen Depth (Feet)	Screen Elevation (Feet)
G1-PZ1	978.29	979.91	5-15	973.29-963.29
G1-PZ2	978.65	980.27	1-16	977.65-962.65
G1-PZ3	977.79	979.41	4-14	973.79-963.79

PIEZOMETER CONSTRUCTION DETAILS

Notes:

1. Piezometers were installed by Blasland, Bouck & Lee, Incorporated on June 28, 2000, utilizing an AMS Power Probe direct push rig.

2. Piezometers were constructed with 1-inch inside diameter PVC screens and risers.

TABLE 3

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

REMOVAL ACTION - UPPER 1/2-MILE REACH OF HOUSATONIC RIVER

Piezometer ID.	Date	Ground Elevation (Feet	Measuring Point Elevation	Depth to Water (Feet below	Depth to NAPL (Feet below	NAPL Thickness	Groundwater Elevation
		AMSL)	(Feet AMSL)	MP)	MP)	(Feet)	(Feet AMSL)
G1-PZ1	6/30/00	978.29	979.91	10.46	ND	0.00	969.45
G1-PZ1	7/3/00	978.29	979.91	10.46	ND	0.00	969.45
G1-PZ1	7/5/00	978.29	979.91	10.42	ND	0.00	969.19
G1-PZ2	6/30/00	978.65	980.27	10.89	ND	0.00	969.38
G1-PZ2	7/3/00	978.65	980.27	10.99	ND	0.00	969.38
G1-PZ2	7/5/00	978.65	980.27	10.92	ND	0.00	060.25
G1-PZ3	6/30/00	977.79	979.41	10.31	ND	0.00	909.33
G1-PZ3	7/3/00	977.79	979.41	10.39	ND	0.00	909.10
G1-PZ3	7/5/00	977.79	979.41	10.33	ND	0.00	969.02

PIEZOMETER MONITORING RESULTS

Notes:

1. Piezometers were installed by Blasland, Bouck & Lee, Incorporated on June 28, 2000, utilizing an AMS Power Probe direct push rig.

2. Piezometers were constructed with 1-inch inside diameter PVC screens and risers.

÷

y.

BLASLAND, BOUCK & LEE, INC. engineers & scientists

.

٠.

.

1

!

•

i.

. .

SECTION D-D'

SCALE: HORIZ. 1"=5' VERT. 1"=5'

X: NONE L: ON=", OFF=REF P: XS/BL 7/11/00 SYR-54-RCB PGL KMD 20197071/20197V05.DWG

1

٠.

BLASLAND, BOUCK & LEE, INC. engineers & scientists

.

Attachment A

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Soil Boring Logs

DA DA DR DR BIT RIG	ATE STARTED: 6/5/2000 ATE FINISHED: 6/5/2000 RILLING COMPANY: BBL RILLING METHOD: Direct Push IT SIZE: 2 Inch X 4 Feet Lexan Tube IG TYPE: Manual Core Driver					EHOI CRIPT THING: UND I	LE DEPTH: 4.0 FeetBORING ID: HR-G1-SB-1TONS BY: Alex MarconiCLIENT: General Electric Company Pittsfield, MAG: 533041.31SITE: Housatonic RiverSLEVATION: 967.24SITE: Housatonic River
DEPTH (f)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
0	967.24	0-4	2.7				Gray-brown fine-coarse SAND and GRAVEL.
1	966.24						
2 .	965.24						
3	964.24						
4	963.24						
							Boring terminated at 4.0 feet (963.24 feet)
5							
6							
7							
,							
E MA shee	RKS: ens or NAPL	observed	I.				

.

and the second second

Nerosal A

No. of Street, or Stre

		TE OT LDT							Page 1 of 1		
	DA DA DR DR BIT	TE START TE FINISH ILLING CO ILLING MI SIZE: 2 Ind	ED: 6/5/2 ED: 6/5/2 OMPANY ETHOD: ch X 4 Fe	2000 2000 ': BBL Direct Pi et Lexan	ush Tube	BOF DES	REHO CRIP	LE DEPTH: 4.0 Feet TIONS BY: Alex Marconi	BORING ID: HR-G1-SB-2 CLIENT: General Electric Company Pittsfield, MA		
	RIC	G TYPE: Ma	inual Core	e Driver	-	EAS' GRO	TING	ELEVATION: 966.87	SITE: Housatonic River		
	DEPTH (r)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (î)	RECOVERY (ft)	CREENING DEPTH NTERVAL (f)	HEADSPACE (ppm)	VKE TEST	S	TRATIGRAPHIC DESCRIPTION		
	0	966.87	0-4	2.2	~~~		SH,	Grav-brown fine SAND			
							1	Stay brown file SAND.			
	1	965.87						-			
	2	964.87					 		1.8' (965.07')		
								Gray-brown fine-coarse SAND.			
	3	963.87									
	4	967.97						·			
		902.07						Boring terminated at 4.0 feet (96)	2 87 feet)		
	5										
	6										
1	7				<u> </u>						
_	8										
Г		· · · · ·	<u> </u>								
	9						\neg				
<u>_</u> _	10										
–											
100000						1					

BLASLAND, BOUCK & LEE, INC. File 1.D.:U:\HOUSATON\HRG102.WPD

	DA DA DR DR BIT RIC	DATE STARTED: 6/5/2000 DATE FINISHED: 6/5/2000 DRILLING COMPANY: BBL DRILLING METHOD: Direct Push BIT SIZE: 2 Inch X 4 Feet Lexan Tube RIG TYPE: Manual Core Driver \varepsilon =				BOR DESC NOR EAST GRO	EHO) CRIP THIN FING: UND	Page 1 of 1 LE DEPTH: 4.0 Feet BORING ID: HR-G1-SB-3 TIONS BY: Alex Marconi CLIENT: General Electric Company Pittsfield, MA G: 533055.12 SITE: Housatonic River ELEVATION: 966.55 SITE: Housatonic River
	DEPTH (ft)	ELEVATION (II)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (f)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
	0	966.55	0-4	3.8				Gray fine-coarse SAND.
	1	965.55						0.4' (966.15' Gray fine SAND.
	2	964.55						2.0' (964.55')
	3	963.55						Gray fine-medium SAND.
	4	962.55						
-	5							Boring terminated at 4.0 feet (962.55 feet)
	6							
	7							
	8							
	9							
	10							
R N	EMA o shee	RKS: ns or NAPL	observed			L	<u>L</u> .,	

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG103.WPD

.

									Page 1 of 1
	D/ D/ DI BI RI	ATE START ATE FINISH RILLING CO RILLING M T SIZE: 2 In G TYPE: M	ED: 6/5/2 IED: 6/5/2 OMPANY ETHOD: Ich X 4 Fe anual Core	2000 2000 Y: BBL Direct Pi eet Lexan e Driver	ush Tube	BOR DESC NOR EAST GRO	EHO CRIP THIN FING: UND	LE DEPTH: 4.0 Feet FIONS BY: Alex Marconi G: 533060.18 : 132794.00 ELEVATION: 966.54	BORING ID: HR-G1-SB-4 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
	DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	ST I	RATIGRAPHIC DESCRIPTION
	0	966.54	0-4	2.0				Gray fine SAND, oily sheen and	oil droplets.
	1	965.54						-	
	2	964.54						-	
1	3	963.54							
	4	962.54						Gray fine-coarse SAND, oily shee	n. <u>3.5' (963.04')</u>
								Boring terminated at 4.0 feet (962	.54 feet)
	5								
	6								
	7								
	8								
	9								
1									
ſ	10								
1									
	REM	ARKS:	<u>I</u>			1	1		

	. r								Page 1 of 1
	DA DA DR DR BIJ RIC	TE START TE FINISH ILLING CC ILLING MI F SIZE: 2 Ind G TYPE: Ma	ED: 6/5/2 ED: 6/5/2 DMPANY ETHOD: ch X 4 Fe nual Core	2000 2000 2: BBL Direct Pr et Lexan 2: Driver	ush Tube	BOR DES NOR EAS GRO	EHO CRIP THIN TING: UND	LE DEPTH: 4.0 Feet FIONS BY: Alex Marconi G: 533065.71 132805.50 ELEVATION: 966.56	BORING ID: HR-G1-SB-5 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
	DEPTH (A)	ELEVATION (n)	SAMPLE DEPTH INTERVAL (î)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	ST. D	RATIGRAPHIC DESCRIPTION
	0	966.56	0-4	3.0				Gray fine-coarse SAND, oil sheer	1.
	1	965.56						Gray fine SAND and CLAY.	1.0' (965,56')
	2	964.56						Gray fine SAND, compact.	2.0' (964.56')
1	3	963.56							
1	4	962.56						Boring terminated at 4.0 feet (962	56 feet)
1	5								
Ì	6								
	7								
	8								
	9								
	10								
	_			_					
ſ	REMA	RKS:							
L									

	r							Page 1 of 1
	DA DA DR DR BIT RIC	ATE START ATE FINISH RILLING CO RILLING M F SIZE: 2 In G TYPE: M	ED: 6/5/2 ED: 6/5/2 OMPANY ETHOD: ch X 4 Fe anual Core	000 2000 ': BBL Direct Pi et Lexan Driver	ush Tube	BOR DESC NOR EAST GROU	EHOI CRIPT FHIN TNG: UND I	LE DEPTH: 4.2 FeetBORING ID: HR-G1-SB-6FIONS BY: Alex MarconiCLIENT: General Electric Company Pittsfield, MAG: 533071.91SITE: Housatonic River132815.80SITE: Housatonic River
	DEPTH (f)	ELEVATION (R)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (f)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
	0	967.32	0-4.2	4.1				Gray fine-coarse SAND, oily sheen.
	1	966.32						Gray CLAY, some fine Sand.
	2	965.32						
	3	964.32						Gray fine SAND. 2.5' (964.82')
	4	963.32						
	5							Boring terminated at 4.2 feet (963.12 feet)
	6							
	7							
	8							
	9	x						
1								
R	EMA	ARKS:	1	1	I			

	r								Page 1 of I	
	DA DA DF BI RI	ATE START ATE FINISH RILLING CC RILLING MI T SIZE: 2 Ind G TYPE: Ma	ED: 6/5/2 ED: 6/5/2 OMPANY ETHOD: ch X 4 Fea inual Core	000 2000 2: BBL Direct Pr et Lexan 2: Driver	ush Tube	BOR DESC NOR EAST GRO	BOREHOLE DEPTH: 4.0 FeetBORING ID: HR-G1-SBDESCRIPTIONS BY: Alex MarconiCLIENT: General Electric Pittsfield, MANORTHING: 533052.36SITE: Housatonic RiverEASTING: 132754.95SITE: Housatonic River			
	DEPTH (ft)	ELEVATION (II)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	ST D	RATIGRAPHIC DESCRIPTION	
	0	968.05	0-4	2.4				Gray fine-coarse SAND.		
	1	967.05								
Ê.	2	966.05								
								Dark gray fine-coarse SAND, oily	2.0' (966.05') sheen, odor.	
1	3	965.05	¢.							
1	4	964.05						Boring terminated at 4.0 feet (0(4	05.6	
1	5							Bornig terminated at 4.0 feet (964.	us reet)	
ıŀ						-				
	6									
I										
"	7									
┞										
$\left \right $	8									
$\left \right $	9						-			
ŀ	-									
t	10									
T										
				1						
	REM.	ARKS:								

DA DA DR DR BIT RIC	ATE STARTED: 6/5/2000 ATE FINISHED: 6/5/2000 RILLING COMPANY: BBL RILLING METHOD: Direct Push IT SIZE: 2 Inch X 4 Feet Lexan Tube IG TYPE: Manual Core Driver					EHOL CRIPT THING TING: UND I	E DEPTH: 4.0 FeetBORING ID: HR-G1-SB-8IONS BY: Alex MarconiCLIENT: General Electric Company Pittsfield, MAG: 533058.67 132765.63SITE: Housatonic RiverCLEVATION: 967.20SITE: Housatonic River
DEPTH (N)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
0	967.20	0-4	2.0				Gray-brown fine-medium SAND, some coarse Sand.
1	966.20						
2	965.20						
3	964.20						Gray fine-coarse SAND.
4	963.20						Boring terminated at 4.0 feet (963.20 feet)
5							
6	41						
7							
8							
9]	
10							

					T		Page 1 of 1
DA DA DH DH BI RI	ATE START ATE FINISH RILLING CC RILLING MI T SIZE: 2 Ind G TYPE: Ma	ED: 6/5/2 ED: 6/5/2 OMPANY ETHOD: ch X 4 Fe nual Core	2000 2000 V: BBL Direct Pu et Lexan e Driver	ush Tube	BOR DES NOR EAS GRO	EHOI CRIPT THIN TING: UND	LE DEPTH: 4.0 FeetBORING ID: HR-G1-SB-9TONS BY: Alex MarconiCLIENT: General Electric Company Pittsfield, MAG: 533065.08 132776.55SITE: Housatonic RiverSILEVATION: 966.55SITE: Housatonic River
DEPTH (r)	ELEVATION (II)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (fi)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
0	966.55	0-4	3.0				Gray fine SAND, some coarse Sand, oily sheen.
1	965.55						
2	964.55						2.0' (964.55')
3	963.55						Gray fine-coarse SAND and GRAVEL.
4	962.55						
							Boring terminated at 4.0 feet (962.55 feet)
6							
7							
8							
9							
10							
REM	ARKS:				l		

Box Box Box Box Box Box 1 963.68 1 1 1 1 2 964.68 1 1 1 3 963.68 1 1 1 4 962.68 1 1 1 5 1 1 1 1 6 1 1 1 1 7 1 1 1 1 8 1 1 1 1 9 1 1 1 1 10 1 1 1 1	elofl	Page			- <u>-</u>					
E V	ipany	BORING ID: HR-G1-SB-10 CLIENT: General Electric Comp Pittsfield, MA SITE: Housatonic River	E DEPTH: 4.0 Feet IONS BY: Alex Marconi G: 533072.81 132786.95 LEVATION: 966.68	BORI DESC NORT EAST GROU	DATE STARTED: 6/5/2000 DATE FINISHED: 6/5/2000 DRILLING COMPANY: BBL DRILLING METHOD: Direct Push BIT SIZE: 2 Inch X 4 Feet Lexan Tube RIG TYPE: Manual Core Driver					
0 966.68 0.4 3.9 Gray fine-medium SAND, oily sheen. 0.5 1 965.68 0 0 0.5 2 964.68 0 0 0 0.5 2 964.68 0 0 0 0.5 3 963.68 0 0 0 1.5 4 962.68 0 0 0 3.5 4 962.68 0 0 3.5 5 1 0 0 3.5 6 1 1 1 0 0 3.5 7 1 1 1 0 0 0 0 8 1 1 1 1 0 0		RATIGRAPHIC ESCRIPTION	ST D	SHAKE TEST	PID HEADSPACE (ppm)	SCREENING DEPTH INTERVAL (ft)	RECOVERY (ft)	SAMPLE DEPTH INTERVAL (ft)	ELEVATION (f)	DEPTH (ft)
Image: Constraint of the second sec		een.	Gray fine-medium SAND, oily sh				3.9	0-4	966.68	0
2 964.68 1 <td><u>5' (966.18')</u> D' (965.68')</td> <td></td> <td>Gray fine SAND and CLAY, oil s</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>965.68</td> <td>1</td>	<u>5' (966.18')</u> D' (965.68')		Gray fine SAND and CLAY, oil s						965.68	1
2 964.68 Gray fine SAND. 3 963.68 Gray fine SAND. 4 962.68 Gray fine-medium SAND. 5 Gray fine-medium SAND. 6 Gray fine-medium SAND. 7 Gray fine-medium SAND. 8 Gray fine-medium SAND. 9 Gray fine-medium SAND. 10 Gray fine-medium SAND.	5' (965.18')	1.5'	Gray CLAY.							
3 963.68 0 0 0 0 0 0 0 3.5 4 962.68 0 0 0 0 0 0 0 3.5 5 0 0 0 0 0 0 0 0 3.5 6 0			Gray fine SAND.						964.68	2
4 962.68 962.68 962.68 962.68 962.68 962.68 962.68 962.68 962.68 962.68 97									963.68	3
1 1 1 1 5 1 1 1 6 1 1 1 7 1 1 1 8 1 1 1 9 1 1 1 10 1 1 1 10 1 1 1	<u>5' (963.18')</u>	3.5'	Gray fine-medium SAND.						962.68	4
5		58 feet)	Boring terminated at 4.0 feet (962.]						
Image:		,								5
6										
7 1 8 1 9 1 10 1										6
7 1 1 8 1 1 9 1 1 10 1 1										
8										7
8										
9 10]						8
										0
										<u>´</u>
										10
				\neg						
REMARKS:							1		RKS:	REMA

	· 	·····							Page 1 of 1		
	DA DA DR DR BIT RIC	TE STARTI TE FINISHI ILLING CO ILLING ME SIZE: 2 Inc G TYPE: Ma	ED: 6/5/24 ED: 6/5/2 MPANY CTHOD: 1 ch X 4 Fee nual Core	000 000 : BBL Direct Pu et Lexan ' Driver	ish Tube	BORI DESC NORT EAST	BOREHOLE DEPTH: 4.0 FeetBORING ID: HR-G1-SB-IDESCRIPTIONS BY: Alex MarconiCLIENT: General Electric Pittsfield, MANORTHING: 533079.67SITE: Housetonic Bins				
						GRO	UND I	CLEVATION: 966.90	Sinc River		
	DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHI DESCRIPTION	C		
	0	966.90	0-4	3.2				Gray fine SAND, oily sheen.			
	1	965.90						Gray CLAY.	0.5' (966.40')		
	2	964.90						Gray fine SAND.	2.0' (964.90')		
	3	963.90							3 0' (063 00')		
	4	962.90						Gray fine-medium SAND.	5.0 (203.90)		
5								Boring terminated at 4.0 feet (962.90 feet)			
	5										
	6										
È.	7										
	8										
	9										
	10										
	REM	ARKS:									
H		******									

						T			Page 1 of 1
-	DA DA DF DF BI RI	ATE START ATE FINISH RILLING CO RILLING M T SIZE: 2 In G TYPE: M	ED: 6/5/2 IED: 6/5/2 OMPANY ETHOD: Ich X 4 Fee anual Core	000 000 : BBL Direct Pu et Lexan : Driver	ısh Tube	BORI DESC NORT EAST GROU	EHOL CRIPT FHING 'ING: UND H	E DEPTH: 4.0 Feet TONS BY: Alex Marconi G: 533083.85 132808.20 ELEVATION: 967.25	BORING ID: HR-G1-SB-12 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
	DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (n)	PID HEADSPACE (ppm)	SHAKE TEST	ST D	RATIGRAPHIC DESCRIPTION
	0	967.25	0-4.2	2.0				Gray fine SAND.	
	1	966.25							
1	2	965.25							
J								Dark gray fine-coarse SAND and	GRAVEL, very slight sheen.
Ï1	3	964.25							
}	4	963.25							
S.]		+						Boring terminated at 4.0 feet (963.	25 feet)
]	5								
	6								
j	7]		
1									
, 	8								
<u>ا</u> ا	9								
ر 	10								
4						·			
∥ 									
	REM	ARKS:							

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG112.WPD

								Deve 1, 52
		ATE STAR ATE FINIS RILLING C RILLING M IT SIZE: 1.5 IG TYPE:A	TED: 6/6 HED: 6/6 COMPAN IETHOD 5 Inch X 4 MS Powe	/2000 /2000 (Y: BBL): Direct I): Feet r Probe	Push	BOR DESC NOR EAST GRO	EHOI CRIPT THIN FING: UND	Page 1 of 2 Page 1 of 2 LE DEPTH: 16.0 Feet BORING ID: HR-G1-SB-13 TIONS BY: Alex Marconi NG: 533071.02 : 132751.99 ELEVATION: 977.73
	DEPTH (m)	ELEVATION (f)	SAMPLE DEPTII INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
	0	977.73	0-4	2.6				Brown SILT.
	1	976.73						- - -
	2	975.73						2.0' (975.73')
	3	974.73						Light brown fine SAND.
]							Gray fine SAND. 3.0' (974.73')
	4	973.73	4-8	3.1				Gray-brown fine SAND, wet at 4 feet.
Т. П.	5	972.73						5.0' (972.73')
	6	971.73		· · ·				Gray CLAY.
	7	970 73						
								Gray CLAY, some coarse Sand and Gravel.
U]	8	969.73	8-12	2.1				
	9	968.73	•					
	10	967 73						
								Description continued on Page 2.
	REM Borir No st	ARKS: ng backfilled neens or NA	to to surf	ace with I ed.	pentonite.		<u> </u>	

								Page 2 of 2		
	DA' DA' DRI DRI BIT RIG	TE START TE FINISH ILLING CO ILLING MI SIZE: 1.5 TYPE:AM	ED: 6/6/2 ED: 6/6/2 OMPANY ETHOD: Inch X 4 H	000 2000 C: BBL Direct Pu Feet Probe	ish	BOREHOLE DEPTH: 16.0 Feet BORING ID: HR-G1-SB-13 DESCRIPTIONS BY: Alex Marconi CLIENT: General Electric Compar Pittsfield, MA NORTHING: 533071.02 FASTING: 132751.99				
		1	1			GRO		SITE: Housatonic River		
	DEPTH (ft)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION		
	10	967.73	8-12	2.1				Dark gray fine-coarse SAND and GRAVEL.		
	11	966.73								
	12	965.73	12-16	2.1						
	13	964.73								
	14	963.73						Grav-brown fine-coarse SAND and GRAVET		
	15	962.73								
ļ	16	961.73								
	17							Boring terminated at 16.0 feet (961.73 feet)		
	18									
]}-	19									
	20									
ŀ										
	EMA Boring No shee	RKS: backfilled to ens or NAPI	o to surfac	e with be	ntonite.		1			

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG113P2.WPD

DA DA DR BIT RIC	TE START TE FINISH ILLING CO ILLING M SIZE: 1.5 G TYPE:AN	ED: 6/6/ IED: 6/6/ OMPAN ETHOD Inch X 4 IS Power	2000 /2000 Y: BBL : Direct P Feet · Probe	ush	BOR DESC NOR EAST GROU	EHO CRIP THIN CING: UND	LE DEPTH: 16.0 FeetBORING ID: HR-G1-SB-14TIONS BY: Alex MarconiCLIENT: General Electric Compan Pittsfield, MAIG: 533078.52SITE: Housatonic RiverELEVATION: 978.41SITE: Housatonic River	Page 1 of 2 HR-G1-SB-14 eral Electric Company field, MA nic River
DEPTH (A)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION	
0	978.41	0-4	2.2				Brown SILT.	
-							0.5' ((<u>977.91</u> '
1	977.41	<u> </u>					Light brown fine SAND.	'977.41'
2	976.41	<u> </u>					Light brown St. 0.4310	976.91'
	570.41						Light brown line SAND.	
3	975.41							
4	974.41	4-8	3.2				4.0' (9	974.41'
5	072.41		 	-			Gray-brown fine SAND.	
	973.41							
6	972.41							77 411
-							Gray CLAY.	72.41)
7	971.41						7.0' (97	71.415
							Gray CLAY, some Gravel.	1.41)
8	970.41	8-12	0.8					
, 	969.41							
-								
0	968.41							
							<u> </u>	<u>68.41')</u>
							Description continued on Page 2.	

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG114P1.WPD

0.1
	·							Page 2 of 2
	DA DA DA DA DA DA	ATE START ATE FINISH RILLING CO RILLING M	TED: 6/6/2 IED: 6/6/2 OMPANY ETHOD:	2000 2000 ': BBL Direct Pi	ush	BOR DESC	ehoi Cript	LE DEPTH: 16.0 Feet BORING ID: HR-G1-SB-14 FIONS BY: Alex Marconi CLIENT: General Electric Company
		T SIZE: 1.5 G TYPE:AN	Inch X 4 I AS Power	Feet Probe		NOR EAST GRO	THIN (ING: UND I	G: 533078.52 Pittsfield, MA : 132763.19 SITE: Housatonic River ELEVATION: 978.41 .
	DEPTH (n)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (f)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
	10	968.41	8-12	0.8				Gray CLAY, some Gravel.
	11	967.41						
_	12	966.41	12-16	1.3				12 0' (966 41')
	13	965.41						Gray coarse SAND and GRAVEL.
	14	964.41						
	15	963.41						
	16	962.41						
	17							Boring terminated at 16.0 feet (961.73 feet)
	18							
	10							
	17							
	20							·
	11							
	REMA Boring No she	ARKS: g backfilled t eens or NAP	to to surfac L observed	e with be 1.	entonite.			
						. <u> </u>		

BLASLAND, BOUCK & LEE, INC. File 1.D.:U:\HOUSATON\HRG114P2.WPD

·								Page 1 of 2			
DA DA DR DR BIT	TE START TE FINISH ILLING CO ILLING MI SIZE: 1.5	ED: 6/6/2 ED: 6/6/2 OMPANY ETHOD: Inch X 4 1	2000 2000 A: BBL Direct Pu Feet	Ish	BOR DESC	BOREHOLE DEPTH: 16.0 FeetBORING ID: HR-G1-SB-1DESCRIPTIONS BY: Alex MarconiCLIENT: General Electric of Pittsfield, MANORTHING: 533086.84Pittsfield, MA					
RIC	G TYPE:AM	1S Power	Probe		EAST GRO	EASTING: 132773.35 SITE: Housatonic River					
DEPTH (n)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (f)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	s	TRATIGRAPHIC DESCRIPTION			
0	977.95	0-4	1.7				Brown SILT.	······································			
1	976.95						Light brown fine SAND.	0.5' (977.45')			
2	975.95						-				
3	974.95										
4	973.95	4-8	3.8					4.0' (973.95')			
5	972.95						Gray-orown line SAND.				
6	971.95						Gray CLAY.	6.0' (971.95')			
7	970.95										
8	969.95	8-12	4.0								
9	968.95										
10	967.95						Description continued on Page 2				
REM Borin	ARKS: Ig backfilled	to to surf	ace with l	pentonite.							

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG115P1.WPD

.

	·					- <u></u>		Page 2 of 2
	DA DA DR DR BI RI	TE START TE FINISH SILLING CC SILLING M T SIZE: 1.5 G TYPE:AM	ED: 6/6/2 (ED: 6/6/2 OMPANY ETHOD: Inch X 4 I 1S Power	2000 2000 7: BBL Direct Pu Feet Probe	ısh	BOR DESC NOR EAST GRO	EHOI CRIPT THIN FING: UND	LE DEPTH: 16.0 FeetBORING ID: HR-G1-SB-15FIONS BY: Alex MarconiCLIENT: General Electric Company Pittsfield, MAIG: 533086.84SITE: Housatonic RiverELEVATION: 977.95SITE: Housatonic River
-	DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (n)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
	10	967.95	8-12	4.0				Gray CLAY.
	11	966.95						Grav coorse SAND and CDAVEL 11.0' (966.95')
	12	965.95	12-16	29				Gray coarse SAND and GRAVEL.
			12-10	2.9				Gray fine-coarse SAND, some Gravel and Clay, contains brown oil droplets
	13	964.95						odor.
.)	14	963.95						
	15	962.95						
	16	961.95						
ļ								Boring terminated at 16.0 feet (961.95 feet)
	1/							
	18							
	19							
	20							
	REM. Borin	ARKS: g backfilled	to to surfa	L	entonite.		1	
-						·····		

0,

1005000 ·	r								Page 1 of 2		
	DA DA DRI DRI BIT RIG	FE START FE FINISH ILLING CC ILLING MI SIZE: 1.5 TYPE:AM	ED: 6/6/2 ED: 6/6/2 OMPANY ETHOD: Inch X 4 1 IS Power	2000 2000 7: BBL Direct Pu Feet Probe	ısh	BOR DESC NOR EAST GRO	BOREHOLE DEPTH: 16.0 FeetBORING ID: HR-G1-SBDESCRIPTIONS BY: Alex MarconiCLIENT: General Electri Pittsfield, MANORTHING: 533095.21SITE: Housatonic RiverEASTING: 132796.47SITE: Housatonic River				
· · · · · · · · · · · · · · · · · · ·	DEPTH (ft)	ELEVATION (II)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	ST	RATIGRAPHIC ,		
	0	976.92	0-4	2.4				Brown SILT.			
	1	975.92						-	· · ·		
	2	974.92						Light brown fine SAND.	2.0' (974.92')		
)	3	973.92									
	4	972.92	4-8	3.8				Gray-brown fine SAND	4.0' (972.92')		
	5	971.92						Grav CLAY	5.0' (971.92')		
	6	970.92									
	7	969.92									
	8	968.92	8-12	2.2				Grou CLAV ages Court	8.0' (968.92')		
	9	967.92						Gray CLAT, some Gravel.			
	10	966.92							10 በ' (ዓፋና ዓንኳ		
								Description continued on Page 2.	10.0 (700.72)		
	REMA Boring No she	ARKS: g backfilled eens or NAF	to to surfa	ace with t ed.	pentonite.	L	I				

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG116P1.WPD

	r					- <u>T</u>			Page 2 of 2
	DA DA DA DRI DRI	FE START FE FINISH ILLING CO ILLING MI	ED: 6/6/20 ED: 6/6/2 OMPANY ETHOD: 1	000 000 : BBL Direct Pu	ısh	BOR DESC	EHOL CRIPT	E DEPTH: 16.0 Feet TONS BY: Alex Marconi	BORING ID: HR-G1-SB-16 CLIENT: General Electric Company Pittefield, MA
0	BIT RIG	SIZE: 1.5 1 TYPE: AN	Inch X 4 F 1S Power	^r eet Probe		NOR EAST GRO	THING: UND I	G:533095.21 132796.47 ELEVATION:976.92	SITE: Housatonic River
· · ·	DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (n)	SCREENING DEPTH INTERVAL ((1)	PID HEADSPACE (ppm)	SHAKE TEST	S	TRATIGRAPHIC DESCRIPTION
	10	966.92	8-12	2.2				Gray CLAY, some Gravel.	10.0' (966.92')
	11	965.92						Gray-brown fine-coarse SAND a	and GRAVEL.
	12	964.92	12-16	4.0				-	
	13	963.92							13.0' (963.92').
	14	962.92						Gray fine SAND, compact.	
	15	961.92							
	16	960.92						Boring terminated at 16.0 fast (0)	(0.02 fast)
	17								JU. 92 Teet)
اد. ار	18			-					
	19								
	20								
┛╟									
	REMA Borin No sh	ARKS: g backfilled eens or NAH	to to surfa ² L observe	ice with t ed.	pentonite.				

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG116P2.WPD

TE START TE FINISH SILLING CO SILLING M SIZE: 1.5 G TYPE: AN (i) 978.55 977.55 976.55 975.55	TED: 6/12 HED: 6/12 OMPAN IETHOD Inch X 4 MS Power HL430 374 WS Power 0-4	2/2000 2/2000 Y: BBL : Direct Pu Feet Probe	ash SCREENING DEPTH INTERVAL (f)	BOR DESC NOR EAST GRO (http://www.action.com/ bit/discoversion/ GRO	EHOI CRIPT THIN THING: UND	LE DEPTH: 16.0 Feet BORING ID: HR-G1-SB-17 CIONS BY: Alex Marconi CLIENT: General Electric Company Pittsfield, MA G:533096.38 SITE: Housatonic River SITE: Housatonic River STRATIGRAPHIC DESCRIPTION
(E) NOLLYANTE 978.55 977.55 976.55 975.55	-0 INTERVAL (f)	RECOVERY (I)	SCREENING DEPTH INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
978.55 977.55 976.55 975.55	0-4	3.0			1	1
977.55				1	 	Dark brown SILT and fine SAND.
976.55			, 			
975 55						
1 9/2 22						Brown fine-coare SAND and SILT.
	-	+				
974.55	4-8	3.2				
072.55						Brown SILT, trace concrete.
973.55						
972.55						
		ļļ.				Dark brown SILT, odor.
971.55						
970.55	8-12	3.8				
						Brown SILT, saturated, contains brown oil droplets, odor.
969.55						
968.55						
						Description continued on Page 2.
	973.55 972.55 971.55 970.55 969.55 968.55 968.55	973.55 972.55 971.55 971.55 970.55 8-12 969.55 968.55 968.55	973.55	973.55	973.55 I I I 972.55 I I I 972.55 I I I 971.55 I I I 971.55 I I I 970.55 8-12 3.8 I I 969.55 I I I I 969.55 I I I I 968.55 I I I I 968.55 I I I I I 968.55 I I I I I I 968.55 I	973.55 I I I I 972.55 I I I I 972.55 I I I I 971.55 I I I I 971.55 I I I I 970.55 8-12 3.8 I I 969.55 I I I I 968.55 I I I I 9 I I I I I 9 I I I I I I 9 I I I I I I

,

	· ; 								Р	age 2 of 2		
	DA DA DR	TE STARTI TE FINISHI ILLING CO	ED: 6/12/2 ED: 6/12/2 MPANY	2000 2000 : BBL		BORI DESC	EHOL CRIPT	E DEPTH: 16.0 Feet IONS BY: Alex Marconi	BORING ID: HR-G1-SB-17 CLIENT: General Electric C	ompany		
0-	BI	TELING ME SIZE: 1.5 I G TYPE:AM	nch X 4 F S Power F	Direct Pu eet Probe	ish	NOR EAST GRO	NORTHING: 533096.38 EASTING: 132776.14 GROUND ELEVATION: 978.55 SITE: Housatonic River					
	DEPTH (ft)	ELEVATION (II)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (f)	SCREENING DEPTH INTERVAL (fl)	PID HEADSPACE (ppm)	SHAKE TEST	ST	RATIGRAPHIC DESCRIPTION	,		
ľ	10	968.55	8-12	3.8				Brown SILT, saturated, contains	brown oil droplets, odor.			
		967.55										
	12	966.55	12-16	3.8 [.]						12.01/07/2.520		
							[Gray-brown SILT, saturated.		12.0' (966.55')		
9	13	965.55										
		0(155										
	14	904.55						Gray-brown SILT, saturated.		14.0' (964.55')		
• J	15	963.55										
	16	962.55						Boring terminated at 16.0 feet (96	52.55 feet)			
	18											
	19											
ر . • 🔲 •	20											
	REN Bori	IARKS: ng backfilled	to to surfa	ace with	bentonite.	I	1					
Ì							······					

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG117P2.WPD

U	ſ					······			Page 1 of 2
J		DAT DAT DRII DRII	E STARTE E FINISHE LLING CO	ED: 6/12/2 ED: 6/12/2 MPANY:	2000 2000 : BBL	ch	BORI DESC	EHOL CRIPT	E DEPTH: 16.0 Feet BORING ID: HR-G1-SB-18 'IONS BY: Alex Marconi CLIENT: General Electric Company
		BIT : RIG	SIZE: 1.5 In TYPE:AM	nch X 4 F S Power F	eet Probe	511	NOR EAST GRO	THING: UND E	G: 533102.16 132785.05 ELEVATION: 978.72 SITE: Housatonic River
	Land Comment	DEPTH (A)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (fi)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
		0	978.72	0-4	2.6			ļ	Brown SILT, trace fine Gravel.
			0.7.7.90					_	-
U			9/1.12						
		2	976.72						
									Brown SILT, trace concrete.
)		3	975.72	ļ		······			
	-								-
		4	974.72	4-8	3.0		ļ	ļ	A.0' (974.72') Brown SILT trace concrete dark staining odor
1	'	5	073 72						-
	ł		913.12				1	<u> </u>	
		6	972.72		·			<u> </u>	
									Gray-brown SILT, slight odor.
		7	971.72						
		8	970 72	8-12	3.8				
	┢								Light gray-brown SILT, saturated.
	┢	9	969.72					<u> </u>	
]
] @		10	968.72						
Uj									Description continued on Page 2.
	F					<u></u>			
		REM. Borin	ARKS: g backfilled	to to surf	face with	bentonite.			
().									
	۴								

BLASLAND, BOUCK & LEE, INC. File 1.D.:U:\HOUSATON\HRG118P1.WPD

) • [- <u>r</u>			Page 2 of 2	
	DAT DAT DRI DRI BIT	TE START TE FINISH LLING CC LLING MI SIZE: 1.51	ED: 6/12/ ED: 6/12/ OMPANY ETHOD: 1 Inch X 4 F	2000 2000 : BBL Direct Pu Seet	ısh	BOR DESC NOR	BOREHOLE DEPTH: 16.0 Feet BORING ID: HR-G1-SB-18 DESCRIPTIONS BY: Alex Marconi CLIENT: General Electric C NORTHING: 533102.16 Pittsfield, MA			
	RIG	TYPE:AM	S Power I	Probe	T	EAST GROU	ING: UND I	ic River		
	DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (f)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION		
	10	968.72	8-12	3.8				Light gray-brown SILT, saturated.		
	11	967.72								
	12	966.72	12-16	3.8				Dark brown SILT and fine GRAVEL (till)	12.0' (966.72')	
	13	965.72								
	14	964.72				· ·		Dark brown SILT, coarse SAND, and fine GRAVEL	<u>14.0' (964.72')</u> (till).	
	15	963.72								
	16	962.72						Boring terminated at 16.0 feet (962.72 feet)		
	17	· · ·								
	18									
	9									
2	0									
R	EMA oring	RKS: backfilled t	o to surfac	ce with b	entonite.	<u> </u>				

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG118P2.WPD

. •

Lauren

	TF START	FD. 6/14	2000					Page 1 of 2	
DA' DRI DRI BIT RIG	TE FINISH ILLING CO ILLING MI SIZE: 1.5 GTYPE: Jac	ED: 6/14 DMPANY ETHOD: Inch X 4 J Skhammer	/2000 /2000 /: BBL Direct Pu Feet	ush	DESC NOR EAST GROU	CRIPT THING TNG: UND I	E DEPTH: 12.0 Feet TONS BY: Alex Marconi G: 533077.62 132772.66 ELEVATION: 974.18	BORING ID: HR-G1-SB-19 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River	
DEPTH (f)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (n)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	ST	RATIGRAPHIC DESCRIPTION	
0	974.18	0-4	2.9				Light brown-brown fine SAND, 1	trace Organics.	
1	973.18								
2	972.18						Gray CLAY.	2.0' (972.	<u>18')</u>
3	971.18								
4	970.18	4-8	2.8						
5	969.18								
6	968.18								~
							Gray fine SAND and GRAVEL.	6.0' (968.1	<u>8')</u>
7	967.18								
8	966.18	8-12	3.2				Dark brown fine SAND and GRA	8.0' (966.1) VEL, odor to 9 feet.	<u>8')</u>
9	965.18								
10	964 18								
							Description continued on Page 2.		
REMA Boring Analy	ARKS: g backfilled tical sample:	to to surfa s collected	nce with t I from 8-	pentonite. 10 feet and 1	0-12 fee] t.			

· _			·····		T	<u></u>		Page 2 of 2
DA DA DR DR BI' RIC	ATE START TE FINISH RILLING CC RILLING MI T SIZE: 1.5 I G TYPE: Jac	ED: 6/14/ ED: 6/14/ OMPANY ETHOD: 1 Inch X 4 F khammer	2000 2000 : BBL Direct Pu Seet	ısh	BOR DESC NOR EAST GRO	EHOL CRIPT THING TING: UND F	E DEPTH: 12.0 Feet IONS BY: Alex Marconi G:533077.62 I32772.66 ELEVATION:974.18	BORING ID: HR-G1-SB-19 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
DEPTH (f)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	S	TRATIGRAPHIC DESCRIPTION
10	964.18	8-12	3.2				Dark brown fine SAND and GR	AVEL.
11	963.18							、
12	962.18						Brown fine SAND, odor.	
13							Boring terminated at 12.0 feet (9	62.18 feet)
14								
15	<u>.</u>							
16								
17								
18								
10								
20								
REM Borin Analy	ARKS: g backfilled to tical samples	o to surfac collected	e with be from 8-1	entonite. 0 feet and 10	0-12 feet			

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG119P2.WPD

Country of the

								Page 1 of 2
	DA DA DR DR	TE START TE FINISH ILLING CO ILLING M	ED: 6/14 ED: 6/14 OMPANY ETHOD:	/2000 /2000 f: BBL Direct Pu	ısh	BOR: DESC	EHOI CRIPI	LE DEPTH: 12.0 Feet BORING ID: HR-G1-SB-20 FIONS BY: Alex Marconi CLIENT: General Electric Company DitraGold MA
	BIT RIC	SIZE: 1.5 GTYPE: Jac	Inch X 4 1 ckhammer	Feet		NOR' EAST GRO	THIN [ING: UND]	G: 533069.29 132762.80 ELEVATION: 973.92 SITE: Housatonic River
	DEPTH (ft)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
	0	973.92	0-4	3.1				Brown fine SAND, some Organics.
	1	972.92						
	2	971.92						2.0' (971.92')
) - -	3	970.92						Gray CLAY, slight odor.
	4	969.92	4-8	1.8				Gray CLAY and GRAVEL, no odor. 3.5' (970.42')
	5	968.92						
	6	967.92						Very dark brown fine SAND and GRAVEL.
	7	966.92						
	8	965.92	8-12	2.0				Gray-brown fine SAND and GRAVEL.
	9	964.92						
	10	963.92						
						MCDMW.		Description continued on Page 2.
	REMA Boring Analyt	ARKS: backfilled t ical samples	to to surfa collected	ce with b from 2-4	entonite. feet and 6-8	8 feet (du	ıplicat	e sample HR-G1-SB-DUP-1 collected from 6-8 feet).

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG120P1.WPD

DATE STARTER: 6/14/2000 DATE STARTER: BOREHOLE DEPTH: 12.0 Feet DESCRIPTIONS BY: Alex Marconi NORTHING: 533069 20 RASTING: BORING ID: HE-GI-SB-20 CLIENT: General Electric Company Published, MA NORTHING: 533069 NORTHING: 533069 20 RASTING: STRATTER: STRATTER: STRATTER: STRATTER: 10 963.92 8.12 2.0 Image: Stratter Stratter STRATTCRAPHIC DESCRIPTION STRATTCRAPHIC DESCRIPTION 11 962.92 8.12 2.0 Image: Stratter Image: Stratter Image: Stratter 12 961.92 1mage: Stratter Image: Stratter Image: Stratter Image: Stratter Image: Stratter 13 12 12 12 12 12.0 (rest.92) Image: Stratter Image: Str					um zadaran i conversaria deve a sugero				Page 2 of 2
PIC SIZE: 13 Inch X 4 Fee NORTHING: 333069.20 EXSTINC: 37262.80 STE: Houstonic River Image: Size Size Size Size Size Size Size Size		TE START TE FINISH ILLING CO ILLING MH	ED: 6/14/ ED: 6/14/ OMPANY ETHOD: 1	2000 2000 : BBL Direct Pu	ush	BOR DESC	EHOL CRIPT	LE DEPTH: 12.0 Feet FIONS BY: Alex Marconi BORING ID: HR-G1-SB-2 CLIENT: General Electric Pittsfield Ma	0 Company
Image: Base of the stand		SIZE: 1.5 I TYPE: Jac	Inch X 4 F khammer	Feet		NOR EAST GRO	THING: 'ING: UND F	G: 533069.29 132762.80 ELEVATION: 973.92 SITE: Housatonic River	
10 963.92 8-12 2.0 Image: Constraint of the stand of the	DEFTH (n)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION	
11 962.92 1 </td <td>10</td> <td>963.92</td> <td>8-12</td> <td>2.0</td> <td></td> <td></td> <td></td> <td>Gray-brown GRAVEL, some fine Sand.</td> <td></td>	10	963.92	8-12	2.0				Gray-brown GRAVEL, some fine Sand.	
12 961.92 12.0'(961.92') 13 13 14 14 14 14 14 14 14 14 15 14 14 14 14 16 16 16 16 16 17 16 16 16 16 18 16 16 16 16 19 16 16 16 16 18 16 16 16 16 18 16 16 16 16 18 16 16 16 16 19 16 16 16 16 18 16 16 16 16 19 16 16 16 16 19 16 16 16 16 19 16 16 16 16 10 16 16 16 16 10 16 16 16 16 10 16 16 16 1		962.92							•
13 Image: Constrainty of the strainty of the str		961.92							12.0' (961.92')
14 14 14 15 14 15 15 16 16 17 17 18 17 19 19 20 10 20 10 20 10 19 10 19 10 10 10 10 10 118 10 19 10 19 10 10 10 110 10 111 10 112 10 113 10 114 10 115 10 118 10 119 10 110 10 110 10 110 10 111 10 112 10 113 10 114 10 119 10 110 10 110 10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Boring terminated at 12.0 feet (961.92 feet)</td><td></td></t<>								Boring terminated at 12.0 feet (961.92 feet)	
15 16 16 1 17 1 18 1 20 1 19 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 21 1 22 1 23 1 24 1 25 1 26 1 27 1 28 1 29 1 20 1 20 1 20 1 20 1 20 1 20 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>									
16 10 10 17 10 10 18 10 10 19 10 10 20 10 10 20 10 10 19 10 10 20 10 10 20 10 10 21 10 10 22 10 10 23 10 10 24 10 10 25 10 10 26 10 10 27 10 10 28 10 10 29 10 10 20 10 10 20 10 10 20 10 10 20 10 10 21 10 10 22 10 10 23 10 10 24 10 10 25 10 10 26 10 10									
17 1 1 18 1 1 19 1 1 20 1	16		8						
18 19 19 19 10 20 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									
19 19 20 10									
20	- 19								
REMARKS: Boring backfilled to to surface with bentonite. Analytical samples collected from 2-4 feet and 6-8 feet (duplicate sample HR-G1-SB-DUP-1 collected from 6-8 feet).	20								
Analytical samples collected from 2-4 feet and 6-8 feet (duplicate sample HR-G1-SB-DUP-1 collected from 6-8 feet).	REMA	RKS:							
	Analyt	backfilled to	o to surfac collected	re with b from 2-4	entonite. I feet and 6-	8 feet (du	plicate	e sample HR-G1-SB-DUP-1 collected from 6-8 feet).	

-	D					1		Page 1 of 1
	DA DA DRI DRI BIT RIG	TE START TE FINISH ILLING CO ILLING M SIZE: 1.5 STYPE: Jac	ED: 6/14 IED: 6/14 OMPANY ETHOD: Inch X 4	/2000 /2000 (: BBL Direct Pu Feet	ısh	BORI DESC NORT EAST GROU	EHOI CRIPT THING: UND I	LE DEPTH: 10.0 FeetBORING ID: HR-G1-SB-21FIONS BY: Alex MarconiCLIENT: General Electric Company Pittsfield, MAG: 533063.35 : 132753.66SITE: Housatonic RiverELEVATION: 972.92SITE: Housatonic River
	DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
	0	972.92	0-4	2.3				Brown fine SAND, trace Organics.
	1	971.92						
	2	970.92						2.0' (970.9
	3	969.92						Gray-brown medium SAND and GRAVEL, slight odor from 2.0 to 2.25 feet.
	4	968.92	4-8	2.5				4.0' (968.92
	5	967.92						Light gray-brown medium SAND and GRAVEL.
	6	966.92						
	7	965.92						
	8	964.92	8-10	1.9				8.01/0/1.02
	9	963.92						Gray SAND and GRAVEL, odor.
	0	962.92						
								Boring terminated at 10.0 feet (962.92 feet).
R Bo Al	EMA oring nalyti	RKS: backfilled t cal samples	o to surfac	ce with be from 2-4	entonite. feet and 8-1	10 feet.		

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG121.WPD

400 0 9	·					<u> </u>			Page 1 of 1
	DA DA DR DR BI	TE START TE FINISH ALLING CO ALLING MI F SIZE: 2 Ind G TYPE: Ma	ED: 6/14/ ED: 6/14/ DMPANY ETHOD: 1 ch X 4 Fee anual Core	2000 2000 : BBL Direct Pu et Lexan Driver	ish Tube	BOR DESC NOR EAST GRO	EHOI CRIPI THIN TING: UND I	LE DEPTH: 4.5 Feet FIONS BY: Alex Marconi G: 533090.34 132819.20 ELEVATION: 968.58	BORING ID: HR-G1-SB-22 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
	DEPTH (A)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (n)	SCREENING DEPTH INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	ST	RATIGRAPHIC DESCRIPTION
	0	968.58	0-4.5	2.2				Gray fine SAND, some Organics.	
		967.58							
	2	966.58							
								Gray GRAVEL, some fine Sand.	2.0' (966.58')
1	3	965.58							
	4	964.58							
	5							Boring terminated at 4.5 feet (964.	.08 feet).
	6								
	7								
	8								
	9								
	10								
	10								
	REMA Analyt	ARKS: fical samples	collected f	from 2-4	feet (14-16	inches fr	rom top	p of core).	

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG122.WPD

							Page 1 of 1
DAT DAT DRI DRI BIT RIG	TE STARTE TE FINISHI LLING CO LLING ME SIZE: 2 Inc TYPE: Mat	ED: 6/14/2 ED: 6/14/ MPANY THOD: 1 h X 4 Fee nual Core	2000 2000 : BBL Direct Pu et Lexan Driver	ish Tube	BORI DESC NORT EAST GROU	EHOL CRIPT THING: UND H	LE DEPTH: 6.0 FeetBORING ID: HR-G1-SB-23'IONS BY: Alex MarconiCLIENT: General Electric Company Pittsfield, MAG: 533078.71 132826.04SITE: Housatonic RiverELEVATION: 969.14SITE: Housatonic River
DEPTH (A)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (N)	SCREENING DEPTH INTERVAL (ħ)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
0	969.14	0-6	3.7				Gray fine SAND, some Gravel, slight odor.
1	968.14	×					
							Gray CLAY, some fine Sand.
2	967.14						
3	966.14						
4	965.14						
							Gray fine-medium SAND.
5	964.14						
6	963.14						
7							Boring terminated at 6.0 feet (963.14 feet).
8							
y 							
10							
(EMA	.RKS:						

.

						- <u>i</u>			Page 1 of 2
	DA DA DA	TE START TE FINISH	'ED: 6/16 IED: 6/16 OMPANY	/2000 5/2000 Y: BBL		BOR	EHOI	LE DEPTH: 14.0 Feet	BORING ID: HR-G2-SB-1
0	DR BIT RIC	ILLING M FSIZE: 1.5 G TYPE: AN	ETHOD: Inch X 4 MS Power	Direct P Feet Probe	ush	NOR EAST GROU	THIN TING: UND	G: 533059.72 132728.06 ELEVATION: 977.01	CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
	DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (n)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	S	I TRATIGRAPHIC DESCRIPTION
	0	977.01	0-4	2.8				Dark brown fine SAND and SIL	T, trace fine Gravel.
		976.01							
	2	975.01					i.		
	3	974.01						Brown coarse-fine SAND, trace	Silt and fine-medium Gravel.
	nale water working								
	4	973.01	4-8	2.6					4.0' (973.01')
	5	972.01						Dark brown coarse SAND and fin odor.	ne GRAVEL, black stain and sheen, petroleum
	6	971.01							
	7	970.01							
	8	969.01	8-12	2.2					8.0' (969.01')
	9	968.01						Dark brown coarse SAND and SII	T, little fine Gravel, saturated.
	10	967.01							
								Description continued on Page 2.	
	REMA Borin Analyt	ARKS: g backfilled tical samples	to to surfa	ace with t	pentonite.				
		1							

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG201P1.WPD

	DA DA DRI DRI BIT RIG	TE START TE FINISH ILLING CO ILLING MI SIZE: 1.5 TYPE: AN	ED: 6/16/2 ED: 6/16/2 DMPANY ETHOD: 1 Inch X 4 F //S Power	2000 2000 : BBL Direct Pu Yeet Probe	ısh	BOREHOLE DEPTH: 14.0 FeetBORING ID: HR-G2-SB-1DESCRIPTIONS BY: Alex MarconiCLIENT: General Electric Comp Pittsfield, MANORTHING: 533059.72SITE: Housatonic RiverEASTING: 132728.06SITE: Housatonic River				
	DEPTH (ft)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRA DESCRIPT	PHIC ION	
	10	967.01	8-12	2.2				Dark brown coarse SAND and SILT, little fit	ne Gravel, saturated.	
	11	966.01								
	12	965.01	12-14	1.4 .					12.0' (965.01')	
	13	964.01						Brown-gray coarse SAND, some fine Gravel.		
	14	963.01								
	15							Boring terminated at 14.0 feet (963.01 feet)		
	-13									
_ [16									
_	17									
	18									
	19									
	20									
	REMA Boring Analyti	RKS: g backfilled cal samples	to to surfac collected :	ce with b from4-6	entonite. feet.					

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG201P2.WPD

VV whether

DA' DA' DRI DRI BIT RIG	TE START: TE FINISH ILLING CO ILLING MI SIZE: 1.5 1 TYPE: AN	ED: 6/16/ ED: 6/16/ DMPANY ETHOD: Inch X 4 F IS Power	2000 /2000 : BBL Direct Pr Feet Probe	ush	BOR DESC NOR EAST GRO	EHOI CRIPT THIN TING: UND I	LE DEPTH: 14.5 FeetBORING ID: HR-G2-SB-2FIONS BY: Alex MarconiCLIENT: General Electric Company Pittsfield, MAG: 533049.15SITE: Housatonic River132710.22SITE: Housatonic River
DEPTH (A)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (f)	SCREENING DEPTH INTERVAL (II)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
10	968.56	8-12	3.4				Olive-gray SILT, saturated.
11	967.56						
12	966.56	12-14	2.0				
13	965.56						Gray SILT and GRAVEL, saturated.
14	964.56						
15							Boring terminated at 14.5 feet (964.56 feet)
16							
7							
8							
9							
0							
	L	<u>l</u>	L				

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG202P2.WPD

.

DAT DAT DRI DRI BIT RIG	TE START TE FINISH ILLING CO ILLING MI SIZE: 1.5 TYPE: Ja	ED: 6/16 ED: 6/16 MPANY ETHOD: Inch X 4 ckhamme	/2000 5/2000 Y: BBL Direct Pr Feet Fr	ush	BORI DESC NORT EAST GROU	EHOI CRIPT THIN TNG: UND	LE DEPTH: 14.5 Feet FIONS BY: Alex Marconi G: 533035.32 132688.69 ELEVATION: 978.56	BORING ID: HR-G2-SB-3 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
DEPTH (N)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	s	TRATIGRAPHIC DESCRIPTION
0	978.56	0-4	3.2				Dark brown fine-medium SANI	D, some Silt, trace fine Gravel and Organics.
1	977.56							
2	976.56						-	
							Light brown coarse SAND, little	2.0' (976.5
3	975.56							
4	974.56	4-8	3.9					
5	973.56							
6	972.56							
_							Dark gray SILT and SAND, trace	6.0' 972.56
<u></u>	9/1.56							
8	970.56	8-12	4.0					
9	969.56						Gray fine-medium SAND, some S	Silt.
0	968.56							
							Description continued on Page 2.	

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG203P1.WPD

	·								Page 2 of 2
	DAT DAT DRI DRI BIT RIG	FE STARTI FE FINISHI ILLING CO ILLING ME SIZE: 1.5 I GTYPE: Jac	ED: 6/16/2 ED: 6/16/2 MPANY: CTHOD: 1 nch X 4 F khammer	2000 2000 : BBL Direct Pu eet	ısh	BORI DESC NORT EAST GROU	EHOL CRIPT THIN('ING: UND E	E DEPTH: 14.5 Feet IONS BY: Alex Marconi G: 533035.32 132688.69 ELEVATION: 978.56	BORING ID: HR-G2-SB-3 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
	DEPTH (f)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	ST	RATIGRAPHIC DESCRIPTION
	10	968.56	8-12	4.0				Gray fine-medium SAND, some S	Silt.
	11	967.56							
	12	966.56	12-14	2.5					
	13	965.56							
	14	964.56							
	15							Boring terminated at 14.5 feet (96	4.06 feet)
	16								
	17								
U	18								
	19								
	20								
	REMA Boring	ARKS: g backfilled t	to to surfa	ce with t	pentonite.	<u> </u>	1		
							····		

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG203P2.WPD

	r								Page 1 of 2
	DAT DAT DRI DRI BIT RIG	TE STARTI TE FINISHI (LLING CO (LLING ME SIZE: 1.5 I TYPE: Jac	ED: 6/16/2 ED: 6/16/ MPANY CTHOD: 1 nch X 4 F khammer	2000 2000 : BBL Direct Pu 'eet	sh	BORI DESC NOR EAST GROU	EHOL CRIPT THING TNG: UND E	E DEPTH: 14.5 Feet IONS BY: Alex Marconi G: 533145.05 132997.14 CLEVATION: 978.07	BORING ID: HR-G2-SB-4 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
	DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (f)	SCREENING DEPTH INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	ST	RATIGRAPHIC DESCRIPTION
	0	978.07	. 0-4	3.4				Dark brown fine SAND and SILT	Г.
1	1	977.07						-	
İ -	2	976.07							2 0' (976 07')
								Light brown fine SAND and SIL	Γ, trace fine Gravel.
	3	975.07							
	4	974.07	4-8	3.9					4 0' (974 07')
								Light gray coarse-fine SAND, sat	urated.
	5	973.07							
	6	972.07							
	7	971.07							
		970.07	8-17	3.8					
		270.07	0-12	5.0					
	9	969.07							
	10	968.07							
								Description continued on Page 2.	
	REM. Borin Analy	ARKS: Ig backfilled tical sample:	to to surf s collected	ace with 1 from 12	bentonite. -14.5 feet.		1		

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG204P1.WPD

.

	r					·······		Page 2 of 2
1	DAT DAT DRI DRI	FE STARTH FE FINISHI LLING CO LLING MF	ED: 6/16/2 ED: 6/16/2 MPANY: CTHOD: 1	2000 2000 : BBL Direct Pu	sh	BORI DESC	EHOL CRIPT	LE DEPTH: 14.5 Feet BORING ID: HR-G2-SB-4 CIONS BY: Alex Marconi CLIENT: General Electric Company
	BIT RIG	SIZE: 1.5 I TYPE: Jac	nch X 4 F khammer	eet	511	NOR EAST GROU	FHING: 'ING: UND F	G: 533145.05 132997.14 ELEVATION: 978.07
	DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
	10	968.07	8-12	3.8				Light gray coarse-fine SAND, saturated. 10.0' (968.07')
	11	967.07						Light brown SILT, some gray-brown coloring.
	12	966.07	12-14	2.5				
								Light brown fine SAND and SILT, slight odor.
	13	965.07						
•								
	14	964.07						
	15	963.07						Boring terminated at 14.5 feet (963.57 feet)
	16							
	17							
	18							
	19							
	20							
ľ								
	REMA Boring Analyt	ARKS: g backfilled ical samples	to to surfa collected	ice with l from 12	bentonite. -14.5 feet.	L	<u></u>	

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG204P2.WPD

DA DA DR BIT RIC	TE START TE FINISH ILLING C ILLING M SIZE: 1.5 G TYPE:AN	TED: 6/2 IED: 6/2 OMPAN ETHOD Inch X 4 AS Power	3/2000 3/2000 Y: BBL : Direct P Feet : Probe	ush	BOR DESC NOR EAST GRO	EHOI CRIPT THIN FING: UND	LE DEPTH: 16.0 Feet TIONS BY: Alex Marconi G: ELEVATION: 978.29	BORING ID: HR-G1-SE CLIENT: General Electri Pittsfield, MA SITE: Housatonic River	-24 c Company
DEPTII (n)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	S	TRATIGRAPHIC DESCRIPTION	
0	978.29	0-4	3.5		<u> </u>		Cobbles - removed with shows!		
1	977.29						Brown fine-medium SAND.		0.25' (978.0
2	976.29						- - -		
3	975.29								
4	974 29	4-8	20				Gray-brown fine-medium SAND	and CONCRETE.	3.5' (974.7'
			2.0				Gray-brown fine-medium SAND	, odor.	4.0' (974.29
5	973.29								
6	972.29								
7	971.29								
8	970.29	8-12	3.75						
							Gray SILT and CLAY, odor, wet.		8.0' (970.29'
9	969.29								
10	968.29								
							Description continued on Page 2.		
REMA Boring	RKS: g backfilled	to to surf	ace with h	entonita		[

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG124P1.WPD

DAT DAT DRI DRI BIT RIG	TE START TE FINISH LLING CC LLING MH SIZE: 1.5 I TYPE:AM	ED: 6/23/ ED: 6/23/ OMPANY ETHOD: 1 nch X 4 F S Power I	2000 (2000 (: BBL Direct Pu Feet Probe	ısh	BOR DESC NOR EAST GRO	EHOI CRIPT THIN TING: UND I	LE DEPTH: 16.0 FeetBORING ID: HR-G1-SB-24CIONS BY: Alex MarconiCLIENT: General Electric Company Pittsfield, MAG:SITE: Housatonic River
DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
10	968.29	8-12	3.75				Gray SILT and CLAY, odor, wet.
11	967.29						
12	966.29	12-16	3.0				
13	965 29						Gray SILT and CLAY, some Gravel odor, wet.
	, (), (2)						
14	964.29						
15	963.29						
							Gray GRAVEL odor, contains NAPL. 15.0' (963.
16	962.29		· .				
17							Boring terminated at 16.0 feet (962.29 feet)
18							
19							
20							

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG124P2.WPD

DA DA DR BI RI(TE START TE FINISH ILLING CU ILLING M I SIZE: 1.5 G TYPE: AN	TED: 6/23 HED: 6/23 OMPAN ETHOD: Inch X 4 AS Power	3/2000 3/2000 Y: BBL : Direct Pu Feet · Probe	ısh	BOR DESC NOR EAST GRO	EHOL CRIPT THING TING: UND H	LE DEPTH: 16.0 Feet BORING ID: HR-G1-SB-25 TIONS BY: Alex Marconi CLIENT: General Electric Company Pittsfield, MA G: SITE: Housatonic River
DEPTH (n)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
0	978.36	0-4	3.25			<u> </u>	Brown fine-medium SAND
	977.36						
2	976.36						2.0' (976.3
3	975.36						Brown-gray fine-medium SAND.
4	974.36	4-8	3.75				
5	973.36						
6	972.36						6.0' (972.36
7	971.36						Gray SILT, some Clay.
0	070.26	8.10					
	770.30	0-12	3.3				
9	969.36						
10	968 36						
	200.00						Description continued on Page 2.
1							

ſ	Ē									Page 2 of 2
		DATE S DATE H DRILLI DRILLI BIT SIZ RIG TY	START FINISH ING CO ING MI ZE: 1.5 PE:AM	ED: 6/23/ IED: 6/23/ OMPANY ETHOD: Inch X 4 H IS Power	/2000 /2000 /: BBL Direct Pr Feet Probe	ush	BOR DESC NOR EAST GRO	EHOI CRIPT THIN TING: UND I	LE DEPTH: 16.0 FeetBORING ID: HFIONS BY: Alex MarconiCLIENT: Gene PittsfG:SITE: HousatonELEVATION: 978.36SITE: Housaton	IR-G1-SB-25 ral Electric Company ield, MA ic River
		DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION	
		10 9	68.36	8-12	3.5				Gray SILT, some Clay.	
		1 9	67.36						Fine-coarse GRAVEL.	11.0' (967.36')
		2 9	66.36	12-16	2.75					
]		3 90	65.36							
		4 96	54.36						Gray fine GRAVEL some Silt.	14.0' (964.36')
₽.	1	5 96	53.36							
									Brown medium-coarse SAND and fine GRAVEL.	15.0' (963.36')
		0 96							Boring terminated at 16.0 feet (962.36 feet)	
	1	7								
	18	3								
		<u></u>								
U j	20	·								
	RE Bo No	MARK oring bac sheens	S: kfilled or NAF	to to surfa L observe	ice with I ed.	pentonite.				
	L			****						

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG125P2.WPD

DA DA DR BI RIC	TE START TE FINISH ILLING CO ILLING M F SIZE: 1.5 G TYPE: AN	ED: 6/23, IED: 6/23, OMPANY ETHOD: Inch X 4 1 <i>A</i> S Power	/2000 /2000 /: BBL Direct Pu Feet Probe	ish	BOR DESC NOR EAST GRO	EHOL CRIPT THIN TING: UND I	LE DEPTH: 16.0 FeetBORING ID: HR-G1-SB-26TIONS BY: Alex MarconiCLIENT: General Electric Company Pittsfield, MAG:SITE: Housatonic River
DEPTH (f)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (ft)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
0	978.01	0-4	2.0		<u> </u>		Brown fine SAND.
	977.01	-					
							Gray-brown fine SAND.
2	976.01						
3	975.01						
				·			
4	974.01	4-8	3.0				
5	973.01						
							Brown very fine-fine SAND. 5.0' (973.0
6	972.01						(0) /0 7 0 0
7	971.01						Gray SILT, some Clay.
8	970.01	8-12	2.0				
9	969.01						Gray SILT, some Clay and fine Gravel.
10	968.01						10.0' (968.0
							Description continued on Page 2.
DEM	ADVS.						

DAT DAT DRI DRI BIT RIG	TE STARTI TE FINISHI LLING CO LLING MH SIZE: 1.5 I TYPE:AM	ED: 6/23/2 ED: 6/23/2 DMPANY: ETHOD: I Inch X 4 F S Power F	2000 2000 : BBL Direct Pu eet Probe	sh	BORI DESC NORT EAST GROU	EHOL CRIPT THING TING: UND H	E DEPTH: 16.0 Feet BORING ID: HR-G1-SB-26 IONS BY: Alex Marconi CLIENT: General Electric Company Pittsfield, MA G: SITE: Housatonic River
DEPTH (ft)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
10	968.01	8-12	2.0				Gray SILT, some Clay and fine Gravel. 10.0' (968.0
11	967.01						Brown fine-coarse SAND, some fine-medium Gravel, slight odor.
12	966.01	12-16	2.5				12 0' (966
							Dark brown fine-coarse SAND and fine-medium GRAVEL, no odor.
13	965.01						
14	064.01						
14	904.01						Brown fine-coarse SAND and fine-medium GRAVEL.
15	963.01						
16	962.01						
							Boring terminated at 16.0 feet (962.01 feet)
17							
18							
19							
20							
1							

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG126P2.WPD

•

						T			Page 1 of 1
	DA' DA' DRI DRI BIT RIG	FE STARTH FE FINISHI ILLING CO ILLING ME SIZE: 2 Inc TYPE: Ma	ED: 6/23/ ED: 6/23/ MPANY CTHOD: 1 Sh X 4 Fee nual Core	2000 2000 : BBL Direct Pu et Lexan : Driver	sh Tube	BOR DESC NOR EAST GROU	EHOL CRIPT THING TING: UND H	E DEPTH: 4.0 Feet IONS BY: Alex Marconi G: ELEVATION: 966.94	BORING ID: HR-G1-SB-27 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
	DEPTH (ft)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	ST 1	FRATIGRAPHIC DESCRIPTION
	0	966.94	0-4	2.3				Brown fine SAND.	
	1	965.94							
	2	964.94						Dark brown fine-coarse SAND a	nd GRAVEL, contains NAPL.
	_							Gray SILT, some Clay, contains	
	3	963.94							
	4	962.94							
								Boring terminated at 4.0 feet (962	2.94 feet)
	5								
-	6								
-	- I								
	7								
	<u> </u>								
	9								
ļ	10								
┢									
FA	REMA Analyti	RKS: cal samples of	collected	I	feet and 2-4	feet.	1		
L									

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG127.WPD

(i) (i) H H (i) H H (i) H	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
0 967.26 0-4 2.3 1 966.26		Dark brown fine-coarse SAND and fine-medium GRAVEL.
1 966.26 2 965.26 3 964.26 4 963.26		
2 965.26 3 964.26 4 963.26		
3 964.26 4 963.26		
4 963.26		
5		
5		Boring terminated at 4.0 feet (963.26 feet)
6		
7	<u> </u>	
8		
9		
10		

	: . 							*******	Page 1 of 1
	DAT DAT DRI DRI BIT RIG	TE STARTI TE FINISHI LLING CO LLING ME SIZE: 1.5 I TYPE:AM	ED: 6/30/2 ED: 6/30/2 MPANY CTHOD: 1 nch X 4 F S Power F	2000 2000 : BBL Direct Pu eet Probe	ısh	BOREHOLE DEPTH: 24.0 Feet DESCRIPTIONS BY: Alex Marconi NORTHING: EASTING:			BORING ID: HR-G1-SB-30 CLIENT: General Electric Company Pittsfield, MA
	and the second sec					GRO	UND H	ELEVATION: 978.37	
	DEPTH (A)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (n)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	ST	RATIGRAPHIC DESCRIPTION
	0	978.37						0- to 18-feet: Not Sampled.	
		0.40.00	10.55					1	
	18	960.37	18-20	2.0				Olive-gray fine SAND and SILT	, trace coarse Sand and fine Gravel (TILL).
] 	19	959.37							
			[
	20	958.37	20-22	2.0					
	21	957 37							
		557.57							
	22	956.37	22-24	2.0					22 01 (056 271)
								Olive-gray fine SAND and SILT, (TILL).	trace coarse Sand and fine-medium Gravel
	23	955.37							
	24	954.37						Boring terminated at 24.0 fact (05	4.27.5
	25							201111 Command at 24.0 1001 (93)	4.57 ICCL)
	26								
	27								
	REM	ARKS:				1			
L									

.

					····				Page 1 of 1
	DA DA DI DI BI RI	ATE STARTI ATE FINISHI RILLING CO RILLING ME T SIZE: 1.5 I G TYPE:AM	ED: 6/30/2 ED: 6/30/2 MPANY: CTHOD: I nch X 4 F S Power F	2000 2000 : BBL Direct Pu Probe	ısh	BORI DESC NORT EAST GROU	EHOL CRIPT THINC TNG: UND E	E DEPTH: 24.0 Feet IONS BY: Alex Marconi G: ELEVATION: 978.63	BORING ID: HR-G1-SB-31 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
-	DEPTH (ft)	ELEVATION (ft)	SAMPLE DEPTH Interval (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (f)	РІД НЕАДЅРАСЕ (ррш)	SHAKE TEST	ST I	RATIGRAPHIC DESCRIPTION
	0	978.63						0- to 20-feet: Not Sampled.	
Π	20	958.63	20-22	2.0				Dark brown coarse SAND, trace	20.0' (958.63')
0	21	957.63							
	22	956.63	22- 23.5	1.5					22.0' (956.63')
	23	955.63						Olive-brown SILT and CLAY, th	race coarse Sand and medium Gravel (TILL).
		933.03							
	24	954.63							
	25	953.63						Boring terminated at 24.0 feet (95	54.63 feet)
	26								
	27								
	28								
	29								
U.									
0	RE	MARKS:		k		d	I		
	L	************							

r								Page 1 of 1
DAT DAT DRI DRI BIT RIG	TE STARTI TE FINISHI LLING CO LLING ME SIZE: 1.5 I TYPE:AM	ED: 6/30/2 ED: 6/30/2 MPANY: CTHOD: I nch X 4 F S Power P	2000 2000 BBL Direct Pu eet Probe	ısh	BORH DESC NORT EAST GROU	EHOL CRIPT THINC ING: UND E	E DEPTH: 24.0 Feet IONS BY: Alex Marconi G: ELEVATION: 977.06	BORING ID: HR-G2-SB-5 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
DEPTH (ft)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	ST I	RATIGRAPHIC DESCRIPTION
0	977.06						0- to 20-feet: Not Sampled.	·
20	957.06	20-22					Brown medium-coarse SAND, tra	20.0' (957. ace fine-medium Gravel, slight odor.
21	956.06							
							,	
22	955.06	22-24						
							Olive-brown SILT and CLAY, tr	race fine-coarse Gravel (TILL).
23	954.06							
24	953.06							
							Boring terminated at 24.0 feet (95	(3.06 feet)
25	952.06							
26								
27								
28								
29								
REMA	ARKS:		L	ļ		L		

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG205.WPD

	. г								Page 1 of 1
	The second	DAT DAT DRI DRI BIT RIG	E STARTI E FINISHI LLING CO LLING ME SIZE: 1.5 I TYPE:AM	ED: 6/30/2 ED: 6/30/2 MPANY: CTHOD: 1 nch X 4 F S Power F	2000 2000 : BBL Direct Pu Probe	ush	BOR DESC NOR EAST GRO	EHOL CRIPT THING TING: UND H	LE DEPTH: 24.0 Feet BORING ID: HR-G2-SB-6 CIONS BY: Alex Marconi CLIENT: General Electric Company Pittsfield, MA G: SITE: Housatonic River ELEVATION: 978.43 SITE: Housatonic River
		DEPTH (fi)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTH INTERVAL (ft)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION
		0	978.43						0- to 20-feet: Not Sampled.
0		20	958.43	20-24	4.0				Dark brown coarse SAND and medium GRAVEL, trace fine Sand.
		21	957.43						
)		22	956.43						
		23	955.43						Olive-brown SILT and CLAY, little medium Gravel (TILL).
		24	954.43						
U	-	25	953.43		· ·				Boring terminated at 24.0 feet (954.43 feet)
		26							
		20							
		27							
0		28							
		29							
	R	EMA	ARKS:]	I	I			
	L								

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG206.WPD

Attachment B

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Structural Calculations

Same Same

State Provide

構成部

紊
BBL MARKET A FERNAL	CALCULATION SHEET	LATION SHEET			
CLIENT: <u>GE</u> SUBJECT:	Sheetpile Design Calculations Case 1: Permanent Condition assuming ϕ = 35 degrees	PREPARED BY: SM	DATE: DATE:	7/5/2000	
PROJECT: Cell G1 DNAPL Area, Upper 1/2-Mile	Reach of Housatonic River				

TASK

To calculate the required embedment depth, maximum moment, and section modulus for a sheetpile wall supporting a slope at elevation 975 (u/s contact) feet with a slope of 2H:1V with riverside at elevation 972 feet.

REFERENCES

1. NAVAFAC DM-7, March 1971.

2. Das, B. M. (1990). Principles of Foundation Engineering, 2nd Edition, PWS-Kent Publishing Company.

ASSUMPTIONS AND PARAMETERS

Soli friction angle, $\phi = 35$	degree
Soil unit weight, y = 125	pcf
Buoyant soil unit weight, y' = 62.6	pcf
Unit weight of water = 62.4	pcf
U/S contact elevation = 975	feet
Groundwater elevation = 975	feel
Riverside contact elevation = 972	feet

FIGURES

Figure 1 - Net Pressure Diagram - Permaneni Case Note: Refer to Figure 6, Cell G1 DNAPL Area - Proposed Activities, for approximate location of the sheelpile wall.

ATTACHMENTS

Attachment 1 - Photocopies of pages from Reference 2 Attachement 2 - Photocopies of pages from reference 1 Attachement 3 - Site Geotechnical Information, contains borehole logs (BBL, June 2000), and interpreted top of till contours (Golder, September 1998).

CALCULATIONS

References	Calculations		
	our of the offer		Unit
	Global parameters:		
	Soll unit weight, y	125	orf
	Buoyant soil unit weight, y'	87.8	pot
		02.0	pci
	Calculate coefficient of passive pressure, Kp:		······································
Refer to Sheet 1 Attachment 2 (Ref. 1)	18/off federations and a fill		
	Solicitement fedding and the	14	degree
	Sona angle on the shamide a	35	degree
	orope angle on the nyerside, p	0	degree
Refer to Figure 6, Sheel 2, Attachment 2 (Ref. 1)	for B/o	0.00	
	for 8/6	0.00	
	Reduction factor, R	-0.4	
	Kp for δ/φ = -1	0.003	
	Therefore, Kp = R*(Kp for $\delta/\phi = -1$)	1. Company of the second se	
	Calculate coefficient of active pressure, Ka		
1	Soli internal friction annie		
	Sione apple on the u/s side a	0.61	radians
	Wall friction angle 8	0.46	radians
		0.24	radians
	Slope of wall agains vertical, 0	•	
Refer to Sheet 3, Attachment 2 (Ref. 1)	$ka = \cos^{2} \frac{1}{2} / \cos^{2} \frac{1}{1} + ((\sin(\phi + \delta) * \sin(\phi - \beta))/(\cos \delta * \cos(-\beta)))^{0.5})^{2}$	U	radians
-			
Refer to Figure 1	Active pressures and forces acting on well-		
	the presence and refees acting on wait.		
	Exposed wall height above water table, L1	0	feet
	Exposed wall height below water table, L2	3	
	ρ1= γ•L,*Ka		psf
	$p_2 = p_1 + \gamma' * L_2 * K_a + \gamma_{H20} * L_2$	100 C	psf
	Location of zero net pressure, L3 = p2/(y' *(Kp-Ka))		feet
İ. Alaşı da karalışı da kar		-	
	r = 0.5μ1 L1 +0.5 (μ1+μ2) L2+ 0.5μ2 L3		b
	location, $z_1 = (0.5^{\circ} p_1^{*} 1^{*} 1^{*} 2^{+} 1^{*} 2^{+} 1^{*} 2^{-} 2^{-} 2^{+} 2^{-} 2^{+} 2$		
	*Ka*L2)*L2*(L3+12/3)+0 5*v =*1 2^2*(1 3+1 2/3)+0 5*02*1 2*/2*1 2*01		
			feet
	p5 = y+L1*Kp + y' *L2*Kp+ymo *L2+y' *L3*/Kp-Ka)		
			pst

CALCULATION SHEET

PAGE 2 OF 2 PROJECT NO. 20197.071

		Case 1: Permanent Condition assuming	REVIEWED BY:		DATE:	//5/2000
OJECT: Cell GI DNAPL Area,	Upper 1/2-Mile	Reach of Housatonic River		*****	- DATE	
erences	·····	Calculations	·			
				Unit		
		$A1 = p5/(\gamma' *(Kp-Ka))$	4.46			
		(x - o F)(y (xp - Ka))	10.85			
		$A3 = 6*P*(2*z1*y'*(kp-Ka)+p5)/(y')^{2*}(Kp-Ka)^{2}$	60 49			
			00.10			
		$A4 = P^{*}(6^{*}z1^{*}p5+4P)/((\gamma')^{*}2^{*}(Kp-Ka)^{*}2)$	61.37			
		L4^4 + A1*L4^3 - A2*L4^2 - A3*L4 - A4 = 0				
		By Trial and error				
				Equation		
			L4	for L4		
			3.8	5		
			3	-139		
		Therefore, L4	3.8	feat		
			5.5	1001		
		n3 = 1 4*/Kn-Ka)*'				
				psf		
		p4 = p5 + γ' *L4*(Kp-Ka)		psf		
				P.0.		
		(0.5P3L4-P)/(0.5(p3+p4))	0.97	feet		
		choedment depth, D = L3+L4	and the case of the first	feet		
		Sheetpile botoom elevation at FS =1		faat		
				leet		
		increase embedment depth by 40 percent for FS = 2.0		feet		
		Sheetpile botoom elevation at FS = 2.0	007			
			965.66	reet		
		Colouista una de la colouista				
		Calculate maximum bending moment				
		Location of maximum bending moment, z' = (2*P/((Kp-Ka)*y')^0.5)		feet		
				1001		
		махитит bending moment, Mmax = P*(z1+z') - (0.5*ү' *(z')*2*(Кр-Ка))*1/3*z'	1242	lb-fl/ft		
			and the second second second	ib-in/ft		
		Required Section Modulus, S = Mmax/fb	No.22MS Company She Storage (Stragers We	in ³		
				in .		
		where, fb = 25 ksi for allowable stress on oy = 36 ksi steel.				
	ł					
	I					
clusions						
u/s bank contact elevation of 9	75 feet and the	riverside elevation of 972 feet, the required sheeting bottom elevationa are 967	.47 ft for FS=1 and 96	5.66 feet for	FS=2.0 Theref	ore use 985
De design bottom elevation of	the sheeting ba	used on geotechnical considerations.				oro, use #00;

DDT	
BR	
SAND HOUCE A LEE, NC.	

CALCULATION SHEET

.

CLIENT:	GE	SUBJECT:	Sheetpile Design Calculations	PREPARED BY:	SM	DATE:	7/5/2000
			Case 2: Permanent Condition assuming	REVIEWED BY:		DATE:	
PROJECT:	Cell G1 DNAPL Area, L	Ipper 1/2-Mile	Reach of Housatonic River	-			

TASK

To calculate the required embedment depth, maximum moment, and section modulus for a sheetpile wall supporting a stope at elevation 975 (u/s contact) feet with a stope of 2H:1V with riverside at elevation 972 feet.

REFERENCES

1. NAVAFAC DM-7, March 1971.

2. Das, B. M. (1990). Principles of Foundation Engineering, 2nd Edition, PWS-Kent Publishing Company.

ASSUMPTIONS AND PARAMETERS

Soil friction angle, ∳ ≈	30	degree
Soil unit weight, γ ≈	125	pcf
Buoyant soil unit weight, γ' =	62.6	pcf
Unit weight of water =	62.4	pcf
U/S contact elevation =	975	feet
Groundwater elevation =	975	feet
Riverside contact elevation =	972	feet

FIGURES

Figure 1 - Net Pressure Diagram - Permanent Case Note: Refer to Figure 6, Cell G1 DNAPL Area - Proposed Activities, for approximate location of the sheetpile wall.

ATTACHMENTS

Attachment 1 - Photocopies of pages from Reference 2 Attachement 2 - Photocopies of pages from reference 1 Attachement 3 - Site Geotechnical Information, contains borehole logs (BBL, June 2000), and interpreted top of till contours (Golder, September 1998).

CALCULATIONS

References	Calculations		
(verutatice.	Calculations		Unit
	Global parameters:		
	Soil unit weight, y	175	nd
	Buovant soil unit weight, y'	125	per
		02.0	pci
	Calculate coefficient of passive pressure, Kp:		
Refer to Sheet 1, Attachment 2 (Ref. 1)	Wall friction angle S		da
	Soil internal friction anole	14	degree
	Sione and on the reside 8	30	degree
	onte angle un me merade, p	0	degree
Refer to Figure 6, Sheet 2, Attachment 2 (Ref. 1)	for B/ø	0.00	
	for 8/6	0.00	
	Reduction factor, R	0.47	
	Kp for $\delta/6 = -1$	0.126	
	Therefore Kn = R^*/Kn for $\delta/h = -1$	6.5	
	(1000000, 100 = 10000000 = -1)		
	Calculate coefficient of active pressure Ka		
J			
1.	Soil internal friction angle,	0.52	radians
	Slope angle on the u/s side, B	0.48	radians
	Wall friction angle, 8	0.40	radians
		0.24	autans
	Slope of wall agains vertical A	0	radiana
Refer to Sheet 3, Attachment 2 (Ref. 1)	$ka = c_0 s^2 k / c_0 s^{8/1} 1 + ((sin(k + 5) + sin(k - 6))(c_0 s + c_0 s (. 8)))^{0.5} r^2$		1 aquans
	10 000 () 0000 () . ((3m)((+ 0)-3m)((-p)((0030-003(-p))))	2000 CONTRACTOR 100	
Refer to Figure 1	Active pressures and forces acting on wail:		
	Exposed wall height above water table, L1	0	feet
	Exposed wall height below water table 12	2	
	p1= v=L,*Ka		
			· psr
	$p_2 = p_1 + \gamma' \cdot L_2 \cdot K_a + \gamma_{LPO} \cdot L_2$		ncí
		a secondary descendent in the	hai
	Location of zero net pressure, $L3 = p2/(\gamma' *(Kp-Ka))$		feet
1	P = 0.5p1*L1 +0.5*(p1+p2)*L2+ 0.5p2*L3		lb
	location, $z1 = (0.5^{\circ} p1^{\circ} L1^{\circ} (L3 + L2 + 11/3) + p1^{\circ} L2^{\circ} (L3 + L2/3) + p5^{\circ} L2^{\circ}$		
	"Ka" 2)" 2*(13+12/3)+0.5***1.2*2*(13+1.2/3)+0.5*0?*1.3*(2)*0.5 (7		
1	100 m (20 m / 100 1420 m 2 (20 m 2/3) TU 3 p2 23 (2 23/3))/P		leet
1	$p5 = y*L1*Kp + y'*1.2*Kp+y_{pa} *1.2+y'*1.3*(Kp-Ka)$	The advance of the second second	
L	The state of the s		psr

BBL MADE HOLE FALLER

and a subscription

and the second second

ACCURATE ON A

CALCULATION SHEET

PAGE 2 OF 2 PROJECT NO. 20197.071

	Case 2: Permanent Condition assuming $\phi = 30$ degrees	REVIEWED BY: SM	DATE: 7/5/2000 DATE:
ROJECT: Cell G1 DNAPL Area, Up	oper 1/2-Mile Reach of Housatonic River		•
Herences	Calculations	Unit	
	A1 = p5/(γ' *(Kp-Ka))	5.16	
	$A2 = 8*P/(\gamma'*(Kp - Ka))$	17 64	
	43 = R*P*/2*71*/ */kmKa)+n5//// \A2*/Kn.Ka)A2		
		113.76	
	$A4 = P^{\circ}(6^{\circ}z1^{\circ}p5+4P)/((\gamma')^{2^{\circ}}(Kp-Ka)^{2})$	136.84	
	44 + 41" 443 - 42" 442 - 43" 4 - 44 = 0		
	By Trial and error:		
,		[1
		L4 for L4	
		5 956	
		4.8 12	
		4 -288	
	Therefore, L4	4.8 feet	
	p3 = L4*(Kp-Ka)*y'	psf	
	p4 ≖ p5 + γ' *L4*(Kp-Ka)	psf	
	L5 = (0.5P3L4-P)/(0.5(p3+p4))	feat	
	Embedment depth, D = L3+L4	feel	
	Sheetpile botoom elevation at FS =1	feet	
	increase embedment depth by 40 percent for FS = 2.0	feet	
	Sheetpile botoom elevation at FS = 2.0	963.77 feet	
	Calculate maximum bending moment		
	Location of maximum bending moment, z' = (2*P/((Kp-Ka)*y')*0.5)	feet	
	Maximum bending moment, Mmax = P*(z1+z') - (0.5*y' *(z)^2*(Kp-Ka)))*1/3*2' 1813 lb-8/8	
		tb-in/ft	
	Required Section Modulus, S = Mmax/fb	in ³	
	Where, fb = 25 ksi for allowable stress on $\sigma y = 36$ ksi steel.		
an u/s bank contact elevation of 975	feet and the riverside elevation elevation of 972 feet, the required sheeting bottom	elevations are 966 12 8 for ES#1 and 061	77 (oct (or EC=2.0. Therefore
963.50 feet as the design bottom ele	evation of the sheeting based on geolechnical considerations.		idei tor r o~2.0. 1 neretofe,

Figures

٠.

.

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Attachment 1

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Photocopies of Pages from Ref. 2

BLASLAND, BOUCK, & LEE FEB-22-1999 28:13 Cantilever Sheet Piling Penetrating Sandy Soils 333 Water Lable Zone A Aclive Sand pressure Dredge line Passive Active pressure pressure Zone B 0 Active Passive Zone C Sand pressure pressure (a) (Ъ) (c)

5.3

The following sections (Sections 6.3 through 6.6) present the mathematical formulation of the analysis of cantilever sheet pile walls. Note that, in some waterfront structures, the water level may fluctuate as the result of tidal effects. Care should be taken in determining the water level that will affect the net pressure diagram.

Cantilever Sheet Piling Penetrating Sandy Soils

To develop the relationships for the proper depth of embedment of sheet piles driven into a granular soil, we refer to Figure 6.7a. The soil retained by the sheet piling above the dredge line is also sand. The water table is located at a depth of L_1 below the top of the wall. Let the angle of friction of the sand be ϕ . The intensity of the active pressure at a depth $z = L_1$ can be given as

$$p_1 = \gamma L_1 K_{\bullet} \tag{6.1}$$

where $K_s = \text{Rankine}$ active pressure coefficient = $\tan^2 (45 - \phi/2)$ $\gamma = \text{unit weight of soil above the water table}$

Similarly, the active pressure at a depth of $z = L_1 + L_2$ (that is, at the level of the dredge line) is equal to

$$p_2 = (\gamma L_1 + \gamma' L_2) K_a \tag{6.2}$$

where $y' = \text{effective unit weight of soil} = \gamma_{\text{soil}} - \gamma_{\text{soil}}$

Note that, at the level of the dredge line, the hydrostatic pressures from both sides of the wall are of the same magnitude and cancel each other.

334

Ø2008 ₽.Ø8∕28 315 449 4111

Figure 5.7 Camilever sheet pile penetrating sand: (a) variation of net pressure diagram. (b) variation of moment

In order to determine the net lateral pressure below the dredge line up to the point of rotation O, as shown in Figure 6.64, one has to consider the passive pressure acting from the left side (water side) roward the right side (land side) and also the active pressure acting from the right side toward the left side of the wall. For such cases, ignoring the hydrostatic pressure from both sides of the wall, the active pressure at a depth s can be given as

$$p_{a} = [yL_{1} + \gamma L_{1} + \gamma (z - L_{1} - L_{2})]K_{a}$$
(6.3)

Also, the passive pressure at that depth z is equal to

$$p_{p} = \sqrt{(z - L_{1} - L_{2})K}, \qquad (6.4)$$

where $K_{\mu} = \text{Rankine passive pressure coefficient} = \tan^2 (45 + \phi/2)$

Hence, combining Eqs. (6.3) and (6.4), the net lateral pressure can be obtained as

$$p = p_{o} - p_{o} = (\gamma L_{1} + \gamma' L_{2})K_{o} - \gamma'(z - L_{1} - L_{2})(K_{o} - K_{o})$$

= $p_{2} - \gamma'(z - L)(K_{o} - K_{o})$ (6.5)

where $L = L_1 + L_1$

FEB-22-1999 08:14

BLASLAND, BOUCK, & LEE

4:2 ::

•

335

The net pressure, p, becomes equal to zero at a depth L_3 below the dredge line; or

$$p_2 - \gamma'(z - I.)(K_p - K_q) = 0$$

Cantilever Sheet Piling Penetrating Sandy Soils

or

$$(z - L) = L_3 = \frac{p_2}{\gamma(K_p - K_o)}$$
(6.6)

From the preceding equation, it is apparent that the slope of the net pressure distribution line DEF is 1 vertical to $(K_p - K_e)y'$ horizontal. So, in the pressure diagram

$$\overline{HB} = p_3 = L_4 (K_p - K_a) \gamma' \quad \bigstar$$
(6.7)

At the bottom of the sheet pile, passive pressure (p_p) acts from the right toward the left side, and active pressure acts from the left toward the right (side of the sheet pile. So, at z = L + D

$$p_{p} = (rL_{1} + \gamma'L_{2} + \gamma'D)K_{p}$$
(6.8)

At the same depth

$$p_a = \gamma' D K_a \tag{6.9}$$

Hence, the net lateral pressure at the bottom of the sheet pile is equal to

$$p_{p} - p_{a} = p_{4} = (\gamma L_{1} + \gamma' L_{2})K_{p} + \gamma' D(K_{p} - K_{a})$$

= $(\gamma L_{1} + \gamma' L_{2})K_{p} + \gamma' L_{3}(K_{p} - K_{a}) + \gamma' L_{4}(K_{p} - K_{a})$
= $p_{5} + \gamma' L_{4}(K_{p} - K_{a})$ (6.10)

where $p_{5} = (\gamma L_{1} + \gamma' L_{2})K_{p} + \gamma' L_{3}(K_{p} - K_{e})$ (6.11)

$$D = L_3 + L_4 \tag{6.12}$$

For the stability of the wall, the principles of statics can now be applied; or

 \sum horizontal forces per unit length of wall = 0 $\stackrel{\frown}{\leftarrow}$

and

 \sum moment of the forces per unit length of wall about point B = 0 \iff For summation of the horizontal forces,

area of the pressure diagram ACDE - area of EFHB

+ area of FHBG = 0

or

$$2 - \frac{1}{2}p_{3}L_{4} + \frac{1}{2}L_{5}(p_{3} + p_{4}) = 0$$

(6.13)

where P = area of the pressure diagram ACDE

336

Chapter & SHEET PILE WALLS

Summing the moment of all the forces about point B

$$P(L_{4} + \dot{z}) - \left(\frac{1}{2}L_{4}p_{3}\right)\left(\frac{L_{4}}{3}\right) + \frac{1}{2}L_{3}(p_{3} + p_{4})\left(\frac{L_{5}}{3}\right) = 0$$
(6.14)

From Eq. (6.13)

$$L_{5} = \frac{p_{5}L_{4} - 2P}{p_{5} + p_{4}}$$
(6.15)

Combining Eqs. (6.7), (6.10), (6.14), and (6.15) and simplifying them further, one obtains the following fourth-degree equation in terms of L_{\pm} .

$$L_{4}^{4} + A_{1}L_{4}^{3} - A_{2}L_{4}^{2} - A_{3}L_{4} - A_{4} = 0$$
(6.16)

where

$$A_1 = \frac{p_s}{\gamma'(K_p - K_a)}$$
(6.17)

$$A_2 = \frac{8P}{\gamma'(K_p - K_e)} \tag{6.18}$$

$$A_{3} = \frac{6P[2\bar{z}\gamma'(K_{p} - K_{s}) + p_{5}]}{\gamma'^{2}(K_{p} - K_{s})^{2}}$$
(6.19)

$$A_{4} = \frac{P(6\bar{z}p_{5} + 4P)}{\gamma^{\prime 2}(K_{p} - K_{a})^{2}}$$
(6.20)

Step-by-Step Procedure for Obtaining the Pressure Diagram

Based on the preceding theory, the step-by-step procedure for obtaining the pressure diagram for a cantilever sheet pile wall penetrating a granular soil is as follows:

1. Calculate K_s and K_s .

2. Calculate p_1 [Eq. (6.1)] and p_2 [Eq. (6.2)]. Note: L_1 and L_2 will be given.

3. Calculate L₁ [Eq. (6.6)].

4. Calculate P.

5. Calculate \exists (that is, the center of pressure for the area ACDE) by taking the moment about E.

6. Calculate p_5 [Eq. (6.11)].

- 7. Calculate A_1, A_2, A_3 , and A_4 [Eqs. (6.17) to (6.20)].
- 8. Solve Eq. (6.16) by trial and error to determine L_4 .
- 9. Calculate p. [Eq. (6.10)].

518

337

(6.23)

6.3 Cantilever Sheet Piling Penetrating Sandy Soils

TO: Calculate p_{5} [Eq. (6.7)]: -

- 11. Obtain L_5 from Eq. (6.15).
- 12. Now the pressure distribution diagram as shown in Figure 6.7a can

casily be drawn. 13. Obtain the theoretical depth [Eq. (6.12)] of penetration as $L_3 + L_4$.

The actual depth of penetration is increased by about 20-30%.

Note: Some designers prefer to use a factor of safety on the passive earth pressure coefficient at the beginning. In that case, in Step 1

$$K_{p(decign)} = \frac{K_p}{FS}$$

where FS = factor of safety (usually between 1.5 to 2)

For this type of analysis, follow Steps 1 through 12 with the value of $K_s = \tan^2 (45 - \phi/2)$ and $K_{p(detign)}$ (instead of K_p). The actual depth of penetration can now be determined by adding L_3 , obtained from Step 3, and L_4 , obtained from Step 8.

Calculation of Maximum Bending Moment

The nature of variation of the moment diagram for a cantilever sheet pile wall is shown in Figure 6.7b. The maximum moment will occur between the points E and F'. To obtain the maximum moment (M_{max}) per unit length of the wall, one must determine the point of zero shear. Adopting a new axis z'(with origin at point E) for zero shear

$$P = \frac{1}{2}(z')^{2}(K_{p} - K_{s})\gamma$$

or

$$z' = \sqrt{\frac{2P}{(K_n - K_n)\gamma'}} \tag{6.21}$$

Once the point of zero shear force is determined (point F^* in Figure 6.7a), the magnitude of the maximum moment can be obtained as

$$M_{max} = P(\bar{z} + z) - [\frac{1}{2}\gamma' z'^{2}(K_{p} - K_{p})](\frac{1}{3})z')$$
(6.22)

The sizing of the necessary profile of the sheet piling is then made according to the allowable flexural stress of the sheet pile material, or

$$S = \frac{M_{max}}{\sigma_{all}}$$

Chapter 6

338

where S = section modulus of the sheet pile required per unit length of the structure

- $\sigma_{\rm all}$ = allowable flexural stress of the sheet pile
- Example 6.1

SHEET PILE WALLS

B

Refer to Figure 6.7. For a cantilever sheet pile wall penetrating a granular soil, given: $L_1 = 2 \text{ m}$, $L_2 = 3 \text{ m}$. The granular soil has the following properties:

 $\phi = 32^{\circ}$ c = 0 $y = 15.9 \text{ kN/m}^3$ $\gamma_{m1} = 19.33 \text{ kN/m}^3$

Make the necessary calculations to determine the theoretical and actual depth of penetration. Also determine the miminum size of sheet pile (section modulus) necessary.

Solution

The step-by-step procedure given in Section 6.3 will be followed here.

Step 1

$$K_{\bullet} = \tan^{2} \left(45 - \frac{\phi}{2} \right) = \tan^{2} \left(45 - \frac{32}{2} \right) = 0.307$$
$$K_{\phi} = \tan^{2} \left(45 + \frac{\phi}{2} \right) = 3.25$$

Step 2

$$p_1 = \gamma L_1 K_a = (15.9)(2)(0.307) = 9.763 \text{ kN/m}^2$$

$$p_2 = (\gamma L_1 + \gamma L_2) K_a = [(15.9)(2) + (19.33 - 9.81)3]0.307$$

$$= 18.53 \text{ kN/m}^2$$

Step 3

$$L_{3} = \frac{p_{1}}{\gamma(K_{p} - K_{q})} = \frac{18.53}{(19.33 - 9.81)(3.25 - 0.307)} = 0.66 \text{ m}$$

Step 4

$$P = \frac{1}{2}p_1L_1 + p_1L_2 + \frac{1}{2}(p_2 - p_1)L_3 + \frac{1}{2}p_1L_3$$

= $\frac{1}{2}(9.763)(2) + (9.763)(3) + \frac{1}{2}(18.53 - 9.763)3 + \frac{1}{2}(18.53)(0.66)$
= $9.763 + 29.289 + 13.151 + 6.115 = 58.32 \text{ kN/m}$

Step 5. Taking the moment about E

$$\tilde{z} = \frac{1}{58.32} \left[9.763 \left(0.66 + 3 + \frac{2}{3} \right) + 29.289 \left(0.66 + \frac{3}{2} \right) \right. \\ \left. + 13.151 \left(0.66 + \frac{3}{3} \right) + 6.115 \left(0.66 \times \frac{2}{3} \right) \right] = 2.23 \text{ m}$$

BLASLAND, BOUCK, & LEE

412 231+6147 P.20

340

SHEET PILE WALLS Chapter 6 8

S

=

And the second states of the second

1.1.1 Hauber 1.

Size of Sheet Piling

$$x' = \sqrt{\frac{2P}{\gamma'(K_p - K_p)}} = \sqrt{\frac{(2)(58.32)}{9.52(2.943)}} = 2.04 \text{ m}$$

From Eq. (6.22)

$$M_{max} = P(\bar{z} + z') - \left[\frac{1}{2}\gamma z'^2 (K_p - K_s)\right] \left(\frac{z'}{3}\right)$$

= (58.32)(2.23 + 2.04) - $\frac{1}{2}$ (9.52)(2.04)²(2.943) $\left(\frac{2.04}{3}\right)$
= 249.03 - 39.64 = 209.39 kN-m

The required section modulus of the sheet pile

$$S = \underbrace{M_{max}}_{sn}$$

With $\sigma_{\rm all} = 172.5 \ \rm MN/m^2$

$$S = \frac{209.39 \text{ kN-m}}{172.5 \times 10^3 \text{ kN/m}^2} = 1.214 \times 10^{-3} \text{ m}^3/\text{m of wall}$$

6.4

Special Cases for Cantilever Wall (Penetrating a Sandy Soil)

Following are two special cases of the mathematical formulation shown in Section 6.3.

Case 1: Sheet Pile Wall with the Absence of Water Table

In the absence of the water table, the net pressure diagram on the cantilever sheet pile wall will be as shown in Figure 6.8, which is a modified version of Figure 6.7. For this figure

$$p_2 = \gamma L K_{\bullet} \tag{6.24}$$

$$p_{1} = L_{4}(K_{p} - K_{e})\gamma \tag{6.25}$$

$$p_4 = p_3 + \gamma L_4 (K_p - K_e)$$
(6.26)

$$p_{5} = \gamma L K_{p} + \gamma L_{3} (K_{p} - K_{a})$$
(6.27)

$$L_{3} = \frac{p_{2}}{\gamma(K_{p} - K_{a})} = \frac{LK_{a}}{(K_{p} - K_{a})}$$
(6.28)

$$P = \frac{1}{2}p_2 L + \frac{1}{2}p_2 L_3 \tag{6.29}$$

$$\bar{z} = L_3 + \frac{L}{3} = \frac{LK_a}{K_p - K_a} + \frac{L}{3} = \frac{L(2K_a + K_p)}{3(K_p - K_a)}$$
(6.30)

Attachment 2

ς.

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Photocopies of Pages from Ref. 1

1/3

TABLE 1Ultimate Friction Factors and Adhesion for Dissimilar Materials

Interface Materials	Friction factor, tan &	Friction angle,8 degrees
Mass concrete on the following foundation materials: Clean sound rock Clean gravel, gravel-sand mixtures, coarse sand Clean fine to medium sand, silty medium to coarse sand, silty or clayey gravel Clean fine sand, silty or clayey fine to medium sand Fine sandy silt, nonplastic silt Very stiff and hard residual or preconsolidated	0.70 0.55 to 0.60 0.45 to 0.55 0.35 to 0.45 0.30 to 0.35	35 29 to 31 24 to 29 19 to 24 17 to 19
clay Medium stiff and stiff clay and silty clay (Masonry on foundation materials has same friction factors.)	0.40 to 0.50 0.30 to 0.35	22 to 26 17 to 19
Clean gravel, gravel-sand mixtures, well-graded rock fill with spalls Clean sand, silty sand-gravel mixture, single size hard rock fill Silty sand, gravel or sand mixed with silt or clay Fine sandy silt, nonplastic silt Formed concrete or concrete sheet piling against the	0.40 0.30 0.25 0.20	22 17 14 11 -
<pre>following soils: Clean gravel, gravel-sand mixture, well-graded rock fill with spalls Clean sand, silty sand-gravel mixture, single size hard rock fill Silty sand, gravel or sand mixed with silt or clay Fine sandy silt, nonplastic silt Various structural materials:</pre>	0.40 to 0.50 0.30 to 0.40 0.30 0.25	22 to 2 17 to 2 17 14
Masonry on masonry, igneous and metamorphic rocks: Dressed soft rock on dressed soft rock Dressed hard rock on dressed soft rock Dressed hard rock on dressed hard rock Masonry on wood (cross grain) Steel on steel at sheet pile interlocks	0.70 0.65 0.55 0.50 0.30	35 33 29 26 17
Interface Materials (Cohesion)	Adhesion (C _a (psf)
Very soft cohesive soil (0 - 250 psf) Soft cohesive soil (250 - 500 psf) Medium stiff cohesive soil (500 - 1000 psf) Stiff cohesive soil (1000 - 2000 psf) Very stiff cohesive soil (2000 - 4000 psf)	0 - 250 - 500 - 750 - 950 -	250 500 750 950 1,300

in the second second

.

Attachment 3

κ.

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Site Geotechnical Information

and the second					-				Page 1 of 1			
	DATE STARTED: 6/30/2000 DATE FINISHED: 6/30/2000 DRILLING COMPANY: BBL DRILLING METHOD: Direct Push BIT SIZE: 1.5 Inch X 4 Feet RIG TYPE:AMS Power Probe						EHOL RIPT THINC ING: JND E	E DEPTH: 24.0 Feet IONS BY: Alex Marconi G: ELEVATION: 978.37	BORING ID: HR-G1-SB-30 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River			
	DEPTII (A)	ELEVATION (ft)	SAMPLE DEPTH INTERVAL (fi)	RECOVERY (f)	SCREENING DEFTII INTERVAL (f)	PID HEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION				
	0	978.37						0- to 18-feet: Not Sampled.				
	18	960 37	18-20	20								
			10 20			· ·		Olive-gray fine SAND and SILT.	trace coarse Sand and fine Gravel (TILL).			
	10	0.00.27										
	19	959.37				<u> </u>	 					
9499	20	958.37	20-22	2.0								
	21	957.37										
	22	956.37	22-24	2.0								
_								Olive-gray fine SAND and SILT.	22.0' (956.37') trace coarse Sand and fine-medium Gravel			
		055.27						(TILL).	and course suite and inte-medium Graver			
	23	955.37										
	24	954.37										
					-			Boring terminated at 24.0 feet (95	4.37 feet)			
	25											
	•	-	-									
	26											
	27											
	REM	ARKS:										

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG130.WPD

ľ	r					· · · · · ·			Page 1 of 1			
	DAT DAT DRI DRI BIT RIG	TE STARTE TE FINISHI LLING CO LLING ME SIZE: 1.5 II TYPE:AM	ED: 6/30/2 ED: 6/30/2 MPANY: THOD: I nch X 4 F S Power P	2000 2000 BBL Direct Pu eet Probe	ısh	BOREHOLE DEPTH: 24.0 Feet DESCRIPTIONS BY: Alex Marconi NORTHING: EASTING: GROUND ELEVATION: 978.63			BORING ID: HR-G1-SB-31 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River			
	DEPTN (A)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (A)	RECOVERY (ft)	SCREENING DEFTII INTERVAL (fi)	PID IIEADSPACE (ppm)	SHAKE TEST	STRATIGRAPHIC DESCRIPTION				
	0	978.63						0- to 20-feet: Not Sampled.				
									-** -			
	20	958.63	20-22	2.0					20.0' (958.63')			
								Dark brown coarse SAND, trace r	mediumGravel.			
	21	957.63										
2	22	956.63	22- 23.5	1.5				Olive-brown SILT and CLAY, tr	22.0' (956.63') ace coarse Sand and medium Gravel (TILL).			
┝									· · ·			
	23	955.63										
╞		054.62										
		954.63										
	25	062 (2						Boring terminated at 24.0 feet (95	4.63 feet)			
	25	953.63										
┛┝	26											
\square	20											
┛┝	27											
╞		·	-									
┛┝	28											
\mathbf{h}												
┠	29											
\mathbb{P}												
ł	REM	ARKS:	[]					
	•••••••	****										

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG131.WPD

.

		······			······				Page 1 of 1
	DATE STARTED: 6/30/2000 DATE FINISHED: 6/30/2000 DRILLING COMPANY: BBL DRILLING METHOD: Direct Push BIT SIZE: 1.5 Inch X 4 Feet RIG TYPE:AMS Power Probe						EHOL CRIPT THING: UND I	E DEPTH: 24.0 Feet TONS BY: Alex Marconi G: ELEVATION: 977.06	BORING ID: HR-G2-SB-5 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
	DEPTH (A)	ELEVATION (f)	SAMPLE DEPTH INTERVAL (f)	RECOVERY (f)	SCREENING DEPTH INTERVAL (fi)	PID IIEADSPACE (ppm)	SIIAKE TEST	ST	RATIGRAPHIC DESCRIPTION
	0	977.06						0- to 20-feet: Not Sampled.	
	20	957.06	20-22						20.0' (957.06')
								Brown medium-coarse SAND, tra	ace fine-medium Gravel, slight odor.
	21	956.06	ļ						
1									
Ļ	22	955.06	22-24						
]								Olive-brown SILT and CLAY, tra	ace fine-coarse Gravel (TILL).
Ļ	23	954.06							
] -									
₩ 	24	953.06							
								Boring terminated at 24.0 feet (95.	3.06 feet)
ر ا	25	952.06							
₿ +	26								
- -	27								
		* -	-						
, –	28								,
_	29								
L									
_									
ļ	REM	ARKS:							

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG205.WPD

Service and

									Page 1 of 1
	DATE STARTED: 6/30/2000 DATE FINISHED: 6/30/2000 DRILLING COMPANY: BBL DRILLING METHOD: Direct Push BIT SIZE: 1.5 Inch X 4 Feet RIG TYPE:AMS Power Probe						EHOL CRIPȚ CHING ING: UND E	E DEPTH: 24.0 Feet IONS BY: Alex Marconi G: CLEVATION: 978.43	BORING ID: HR-G2-SB-6 CLIENT: General Electric Company Pittsfield, MA SITE: Housatonic River
	DEPTH (A)	ELEVATION (f)	SAMPLE DEPTII INTERVAL (f)	RECOVERY (ft)	SCREENING DEPTII INTERVAL (f)	PID IIEADSPACE (ppm)	SHAKE TEST	ST I	RATIGRAPHIC DESCRIPTION
•	0	978.43						0- to 20-feet: Not Sampled.	
and a second second									
8	20	958.43	20-24	4.0			L		20.0' (958.43')
ALC: NO DECIDENT							ļ	Dark brown coarse SAND and me	edium GRAVEL, trace fine Sand.
	21	957.43							
	22	956.43							
		955.43						Olive-brown SILT and CLAY, lit	23.0' (955.43')
		054.42							
		754.45						Boring terminated at 24.0 feet (95	4 43 feet)
	25	953 43							
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	26								
	27							· · ·	
	۰		-						
	28								
	29								
	REM	ARKS:							

BLASLAND, BOUCK & LEE, INC. File I.D.:U:\HOUSATON\HRG206.WPD

Attachment C

BLASLAND, BOUCK & LEE, INC. engineers & scientists

Summary of Groundwater Modeling

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS BUILDING 64-W AREA SOURCE CONTROL

SUMMARY OF GROUNDWATER MODELING

Introduction

The publicly available and well-documented Visual MODFLOW[™] program was used for the groundwater modeling effort associated with the Building 64-W Area Source Control activities. Visual MODFLOW[™] is a proprietary pre- and post-processing program (Waterloo Hydrogeologic, Inc., 1996) formulated to allow quick and efficient model setup and graphical presentation of model results for the MODFLOW, MODPATH, and MT3D groundwater programs. MODFLOW is a three-dimensional groundwater flow model developed by the USGS to simulate groundwater movement (McDonald, M. G. and A.W. Harbaugh, 1988). MODPATH is a three-dimensional advective particle tracking program designed for use with MODFLOW steady-state flow simulations. MODPATH was also developed by the USGS (Pollack, D. W., 1989). MT3D is a three-dimensional solute transport program developed by S. S. Papadopolus & Associates, Inc. (Zheng, C., 1992) for use with programs such as MODFLOW that accounts for advection, dispersion, and chemical reactions. For this model application, only MODFLOW and MODPATH were applied.

Model Setup

The area subject to modeling extends in a north-south direction from East Street to the Housatonic River. In the east-west direction, the model extends from, and includes, the East Street Area 2 - South recharge pond westward to just east of the Buildings 63/65. Portions of the model grid (Figure 1) that extend beyond these model boundaries (i.e., south of the Housatonic River) are set as inactive and are not incorporated in the model calculations. The model grid is designed with 188 rows, 268 columns, and 3 layers (Figure 1).

Horizontally, the grid spacing is a uniform 5 feet in the X and Y directions. Vertically (Z direction), Model Layer 1 is 13 feet thick, and Model Layers 2 and 3 are each 10 feet thick. There is no differentiation between the different geologic deposits encountered above the till. Since the till has a substantially lower hydraulic conductivity than the overlying fill and alluvium, the top of till surface has been modeled as the impermeable base of the model. For most of the model domain, this impermeable surface is the base of Model Layer 3, which was set at an elevation of 955 feet. This includes the Building 64-W area and the location of the proposed sheetpile wall. In the northern and central portion of the model domain (where the top of till is observed at higher elevations), this impermeable till surface is the base of Model Layer 2, which was set at an elevation of 965 feet (Figure2).

The input data required for the model includes stratigraphic, groundwater elevations, and hydraulic properties for each layer, estimates regarding the amount of water entering and leaving the hydrogeologic system, and the description of the model boundary conditions. Much of this input was duplicated from the East Street Area 2 - South model and the Lyman Street model, and supplemented with data from borings and monitoring wells within the modeled area.

Layer hydrostratigraphic elevations were chosen to discretize the fill and alluvial materials between ground

7/11/00 C:\BBLPRO~1\PITTSF~1\64WMOD~2.WPD surface elevation and the top of till elevation between Building 64-W and the East Branch of the Housatonic River. The top of Layer 1 was set at 988 feet amsl and the base of Layer 3 was set to an elevation of 955.0 feet amsl.

Based on the East Street Area 2 - South model, and site geologic logs, the top of till is a sloping surface (from north to south), with till elevations range from 940.0 feet amsl along the Housatonic River to 970 feet amsl closer to East Street. A sloping till surface was not used in this model partly due to time constraints and the lack of sensitivity to a sloping till surface that was demonstrated in the East Street Area 2 - South model. However, and as indicated above, a portion of Model Layer 3 was inactivated (made impermeable) in those areas where the till elevation was greater than the elevation of the top of Layer 3 (Figure 2).

The horizontal hydraulic conductivity for all the saturated overburden materials above the till was set to 2×10^{-2} cm/sec (56.7 feet/day) and the vertical hydraulic conductivity was set 10 times less. This approach and hydraulic conductivity values were the same as used in the East Street Area 2 - South model. The model boundary conditions include recharge, the Housatonic River, the recharge pond, the till, and regional groundwater flow lines.

Recharge due to precipitation was set to 10 inches per year based on the previous modeling efforts. The eastern and western model boundaries were impermeable or 'no flow' boundaries presumed to correspond with groundwater flow lines. The till also was modeled as a no flow boundary on the bottom and northern side wall of model. Constant heads were used to represent the Housatonic River with the river stage held constant at 971.6 feet amsl all along the southern edge of the model, which was the high stage value used in the Lyman Street model prepared by HSI GeoTrans (1999). Constant heads were also set along the northern model boundary in Layer 1 to allow upgradient inflow of groundwater. This line of constant heads was set at 979.5 feet amsl, generally parallel to the 980.0 foot contour shown on the April 1998 groundwater elevation contour map. The recharge pond was simulated with a lower permeability pond bottom. The elevation of the recharge pond was set to 983.0 feet amsl and the bottom of recharge pond (set as 3 feet thick) was assigned conductance values ranging from 225 feet²/day. This conductance value is reflective of a vertical hydraulic conductivity of approximately 28.35 feet/day (1 x 10^{-2} cm/sec) applied across the area of each grid block.

Additional boundary features incorporated into the model include the existing recovery wells and the proposed sheetpile wall. The well was set at the location shown on the site map. The wells included in the model and the pumping rates used for each well are as follows:

Well ID	Pumping Rate
64S RW-1(S) RW-1(X), RW-2(X), 64X(W) combined	25 gpm 20 gpm 20 gpm

The actual pumping rates for RW-1(X), RW-2(X), 64X(W) were combined and then half that amount was input into the model (assuming symmetry) as a single well since these recovery wells are all along the models eastern boundary. Standard vertical tubular well designs were used for all the pumping wells.

7/11/00 C:\BBLPRO-1\PITTSF~1\64WMOD-2.WPD The proposed sheetpile wall was incorporated with the MODFLOW wall option. The sheetpile wall was placed across all three model layers, and wing walls were incorporated. The width of the sheetpile wall was 0.021 feet (0.25 inches) and the hydraulic conductivity was set at 1×10^{-9} cm/sec (0.00000284 feet/day). Figures 3 and 4 shows the simulated sheetpile wall configuration.

A limited calibration was implemented since calibration of the East Street Area 2 - South model already helped identify appropriate hydraulic input parameters. The model was calibrated to approximate the April 1998 ground water elvation contours primarily by adjusting the recharge pond elevation (from 984 to 983 feet amsl), by removing a portion of Model Layer 3 to represent areas with higher till elvations, and slightly adjusting the pumping rates of RW-1(S) and combined the RW-1(X), RW-2(X), and 64(X)W wells. The pumping rate of these simulated wells were reduced by 5 gpm (from 25 to 20 gpm) because the higher pumping rate dried out the grid blocks where the wells were located.

Preliminary analysis of the mounding potential following sheetpile emplacement is that the ground water north of the sheet pile wall would mound by approximately 0.5 feet. This mounding has the potential to divert ground water flow around the wall. The mound, and ground water flow around the sheetpile wall could be averted by pumping ground water immediately north of the wall at a rate of approximately 10 gpm. The presheetpile wall groundwater ("calibrated") contours elevations are shown on Figure 5. The post-sheet pile wall ground water elevation contours are shown on Figure 6. The increase in the ground water elevation (mounding) due to emplacement of the sheetpile wall is shown on Figures 7 and 8.

Figure 1 - Model finite-difference grid

Blasland, Bouck & Lee, Inc. Project: 64w20 GE 1/2-Mile Reach Description: Finite-Difference Grid 11 Jul 00

and a second

Visual MODFLOW v.2.8.2. (C) 1995-1999 Waterloo Hydrogeologic, Inc. NC: 268 NR: 188 NL: 4 Current Layer: 2

Blasland, Bouck & Lee, Inc. Project: 64w20 GE 1/2-Mile Reach Description: Layer 3 Inactive Zone 11 Jul 00

Visual MODFLOW v.2.8.2, (C) 1995-1999 Waterloo Hydrogeologic, Inc. NC: 268 NR: 188 NL: 4 Current Layer: 3

360 \square 300 ۵ ES2,12 250 6 200 150 54-W 00-× 20 BRANCH EAS \vdash S 0 450 490 560 630 200 770 840 910 97C Figure 4 - Close-up of simulated sheet pile wall Blasland, Bouck & Lee, Inc. Visual MODFLOW v.2.8.2, (C) 1995-1999 Project: 64W21 - GE 1/2-Mile Reach Waterloo Hydrogeologic, Inc.

NC: 268 NR: 188 NL: 4 Current Layer: 2

.

Project: 64W21 - GE 1/2-Mile Reach Description: Simulated Sheetpile Wall 11 Jul 00

Figure 5 - Simulated pre-sheet pile wall groundwater elevation contours

Blasland, Bouck & Lee, Inc. Project: 64w20 GE 1/2-Mile Reach Description: Pre-Wall GW Contours 11 Jul 00

Visual MODFLOW v.2.8.2, (C) 1995-1999 Waterloo Hydrogeologic, Inc. NC: 268 NR: 188 NL: 4 Current Layer: 2

Figure 6 - Simulated post-sheet pile wall groundwater elevation contours

Blasland, Bouck & Lee, Inc. Project: 64W21 - GE 1/2-Mile Reach Description: Post-Wall GW Contours 11 Jul 00

Visual MODFLOW v.2.8.2. (C) 1995-1999 Waterloo Hydrogeologic. Inc. NC: 268 NR: 188 NL: 4 Current Layer: 2

Figure 7 - Simulated groundwater elevation increase (mounding) due to emplacement of sheet pile wall

Blasland, Bouck & Lee, Inc. Project: 64W21 - GE 1/2-Mile Reach Description: Mounding Due to Wall 11 Jul 00

Visual MODFLOW v.2.8.2, (C) 1995-1999 Waterloo Hydrogeologic, Inc. NC: 268 NR: 188 NL: 4 Current Layer: 2

Blasland, Bouck & Lee, Inc. Project: 64W21 - GE 1/2-Mile Reach Description: Mounding Due to Wall 11 Jul 00

Visual MODFLOW v.2.8.2, (C) 1995-1999 Waterloo Hydrogeologic, Inc. NC: 268 NR: 188 NL: 4 Current Layer: 2