Ecological Restoration Following a Sediment and Soil Removal Action

John P. Lortie – Woodlot Alternatives, Inc. Susan C. Svirsky – USEPA, New England

Introduction

- Overview of tonight's presentation
- Ecological Restoration
 - Restoration Goals and Objectives
 - Existing Conditions
 - Integration of Restoration with Remedial Action(s)
 - Restoration Implementation
- Case Studies
 - Loring AFB East Branch Greenlaw Brook
 - Sudbury River
 - East Branch Housatonic River
- Q&A

Defining Ecological Restoration Goals and Objectives

Ecological Restoration Goals and Objectives

- Goals and Objectives:
 - provide the foundation for defining project characterization and design parameters;
 - identify potential project challenges;
 - guide project implementation (methods); and
 - establish framework for defining measures of success.
- Need to be well thought out
- Use the process of establishing goals and objectives to communicate with interested parties

Ecological Restoration Goals and Objectives

• Goals

- Statements of purpose for conducting the project
 - Broad Restore wetland functions and values
 - Specific Reestablish a cold water fishery
- Objectives
 - Provide basis for design criteria and performance standards
 - Flow regime
 - Water temperature
 - Habitat structure
 - Breeding success of target species

Defining Restoration Goals

- Can the project be successfully completed in place or does mitigation have to be considered?
- What is the desired outcome of the restoration (what should the river/floodplain look like) and the time period (by when)?
- Would functions and values be reproduced or enhanced?
- How do proposed future conditions relate to preexisting features?
- Define restoration goals with measurable objectives

Defining Restoration Goals (examples)

- Primary restoration goals
 - Restore wetland functions and values
 - Provide fish and wildlife habitat
 - Maintain flood storage
 - Insure sediment/bank stabilization
- Secondary restoration goals
 - Habitat enhancement
 - Increased recreational use

Defining Restoration Objectives

Objectives should:

- Be realistic (budget, science, engineering, space, time)
 - Ensure that hydrology will support desired habitat type (e.g. lower water table will not support scrub/shrub habitat without further excavation)
 - Consider habitat limitations (e.g. need cold, oxygenated water to support trout)
 - Insure necessary materials are available
 - Timeframe (e.g. a mature forested floodplain will not grow in 5 years but will establish over a longer duration)

Defining Restoration Objectives

Objectives should:

2. Translate to specific measures

- **Examples:**
- The river/stream will contain a self-sustaining trout population.
 - Count redds, numbers of adults/juveniles, age class distribution
 - The wetland will provide waterfowl broodrearing habitat.
 - Count numbers of broods, young per brood

Existing and Proposed Conditions

Development of Existing and Proposed Conditions Plans

- Existing Conditions detailed baseline ecological characterization
 - Describe system functions and values
 - Narrative reports, maps, plan sheets, cross-sections
- Post-Remediation Conditions status of the site following contaminated sediment/soil removal
 - Physical parameters
 - Maps, plan sheets, cross-sections
- Proposed Conditions conceptual and construction plans
 - Conceptual or % design for review
 - Detailed construction plans & specs (construction bid package)

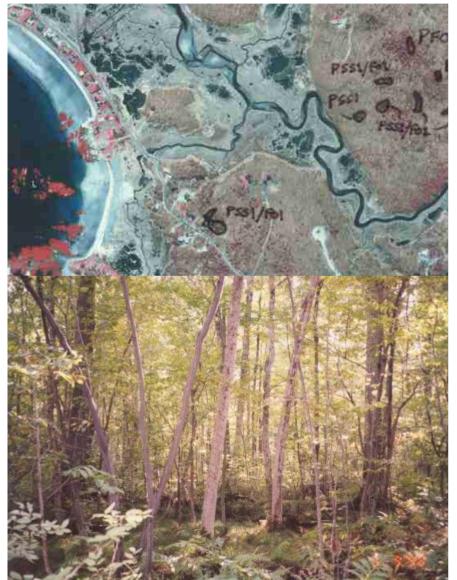
Baseline Ecological Characterization: Hydrology

Hydrologic and fluvial processes

- Verify sources of hydrology
- Establish channel type and morphological classification and evolution
- Determine patterns of erosion and accretion

1972

Baseline Ecological Characterization: Soil Characterization

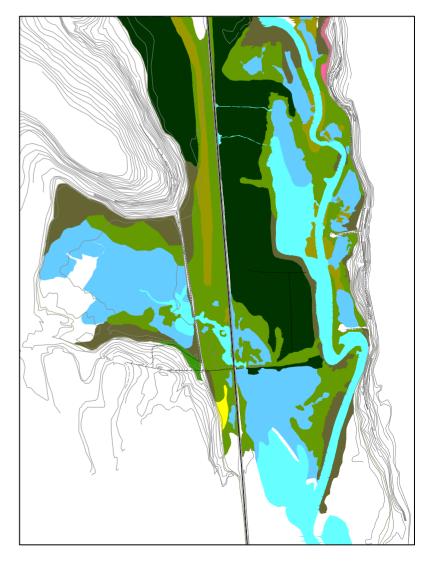

Existing Soils

- Organic Soils
 - Percent organic carbon
 - Organic horizon thickness
- Mineral Soils
 - Soil Texture
 - Oxidation
- Substrate type

Proposed Soils

- Mimic existing soil conditions
- Suitable for desired plant community
- Available in sufficient quantities

Baseline Ecological Characterization: Natural Communities/Wetland Classification



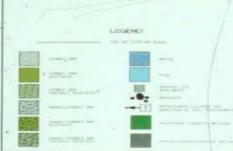
- Map using aerial photos
- Perform field surveys to ground-truth photo-interpretation
- GPS boundaries
- Develop layer for GIS data base

Develop Existing Conditions Plan Plan View

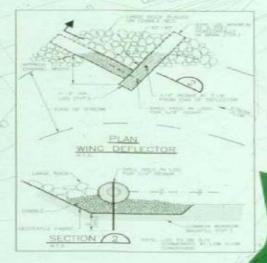
Mapping layers:

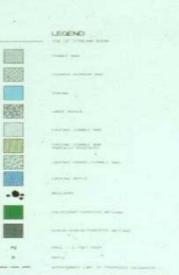
- Wetland & natural community boundaries
- In-stream structures
- Significant wildlife habitat
- Topography
- Infrastructure (roads, bridges)
- Removal area and restoration area boundaries
- Property boundaries
- Survey control locations

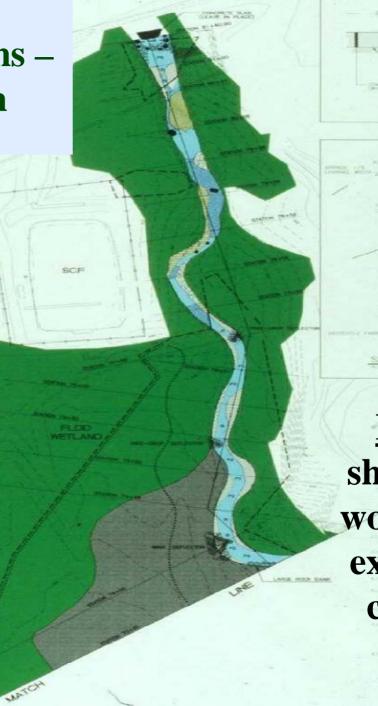
Existing Conditions Inventory -

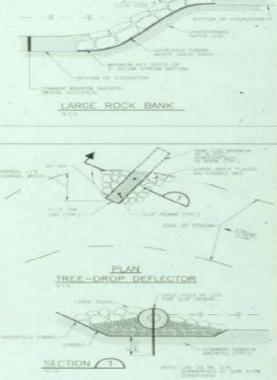

ROAD

SCF

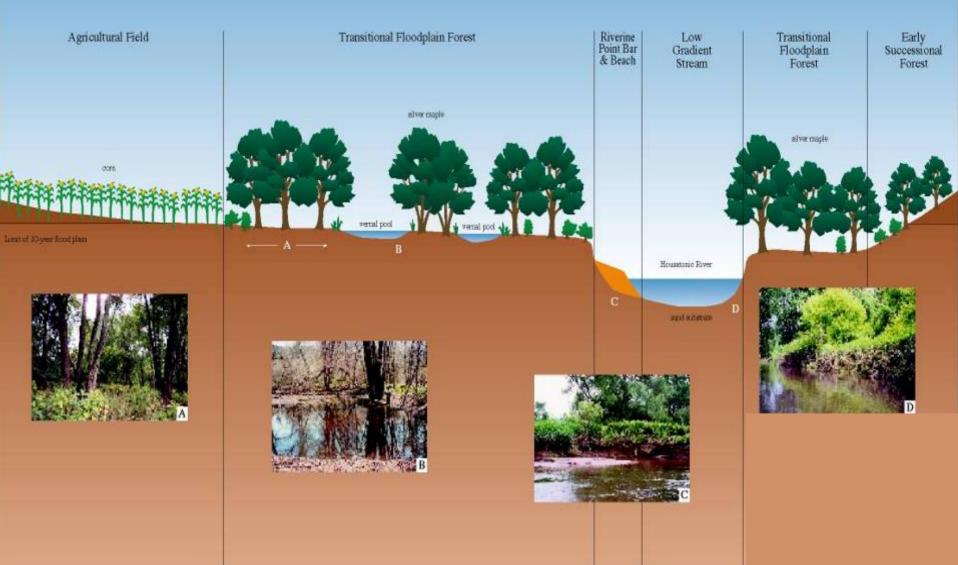

NUTTER

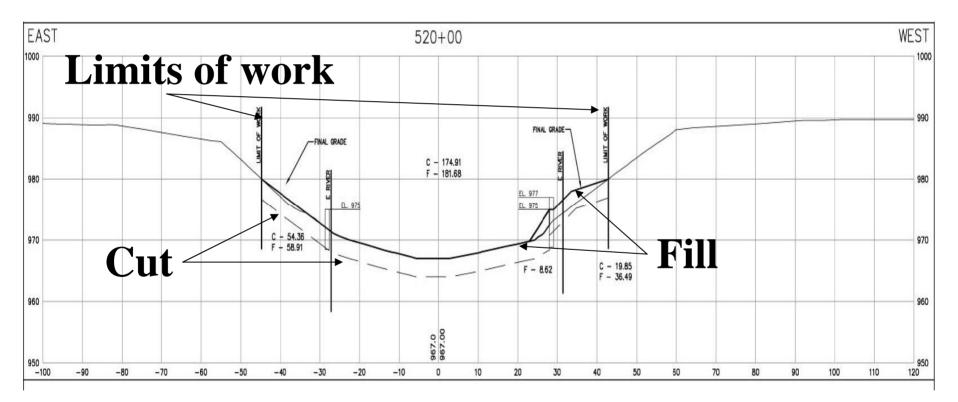

WEINMARY


<u>Plan View</u> limits of work and each existing plant community



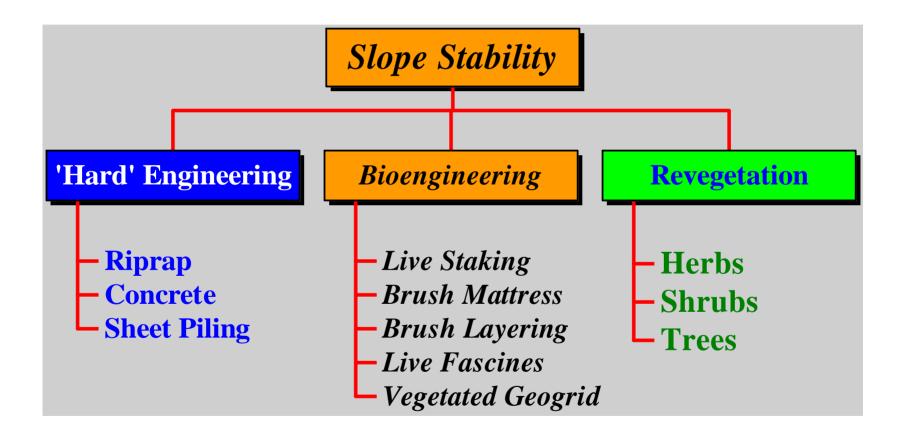
Proposed Conditions – Restoration Plan





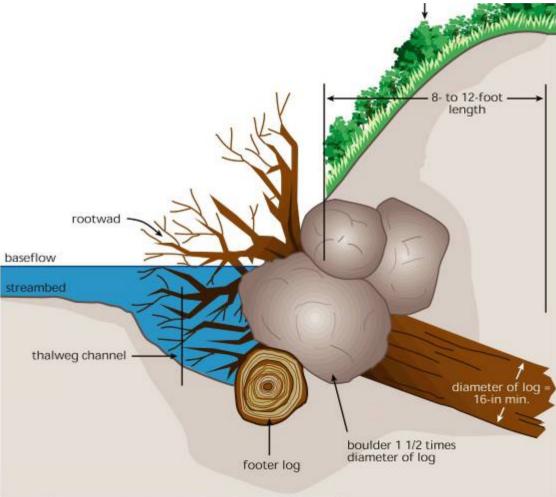
Plan View show limits of work and each existing plant community -West

Develop Existing Conditions Plan (example cross-section)


Develop Proposed Conditions Plan

Grading Plan

- Following removal of contaminated sediment/soil
 - reestablish survey control (profile & cross-sections)
 - check post removal grades & compare to proposed grades
- Develop final grading & resoiling plan (plan view and cross-sections)
 - resoil to final grade with suitable growth medium
 - use 6 to 8 inches minimum of soil
- Verify required hydrology is present



Develop Proposed Conditions Plan: Approaches to Bank Stabilization

Bioengineering of River Banks and Slopes

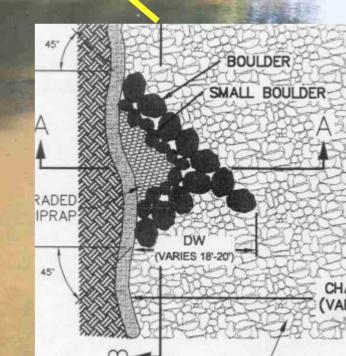
- Engineered analysis of proposed design
- Design criteria include:
 - Slope stability
 - Constructability
 - Cost
 - Ecological/biological
 Value

Source: Chapter 16 Engineering Handbook, USDA-NRCS, 1997.

Develop Proposed Conditions Plan

Planting Plan

- Show locations of each natural community (plan view)
- Provide diagram and explanation of planting density and spacing per habitat (herbs, shrubs, & trees)
 - Provide diagram, text and field training on how to plant each species


Develop Proposed Conditions Plan: Grade Control and In-Stream Structures

- Types of structures (boulders, rock weirs, and single wing deflector)
- Dimensions
- Locations
- Orientation

Develop Proposed Conditions Plan: In-Stream Habitat Enhancements

Define purpose of in-stream structures – Habitat - Fluvial Control Design target structures - Habitat structures (e.g., vortex weirs, boulders) Fluvial control (e.g., check dams)

Restoration Implementation/Integration with Remedial Action

Restoration Construction

- Perform construction oversight using restoration specialist
- Establish/maintain erosion controls and water management system
- Restoration of:
 - Hydrology
 - Vegetation
 - Soils
 - Habitat

Restoration Construction

Relationship with contaminated sediment/soil removal

- Reuse structural materials if possible (trees, rocks)
- Sequence removal of removal/remedial infrastructure (roads, water control) to benefit restoration construction

River and Stream Construction

D

Riverbanks -

- Erosion Control Installation
- Clearing and Grubbing
- Resolling
- Replanting
- Invasive Control

River and Stream Construction

River bed

- Native materials
- In-stream Structures

Rock "w" weir

Wetland Construction

- Grading and Resoiling
 - Establish hydrology
 - Establish micro-topography
 - Soil
 - Appropriate organic content and matter
 - Free of invasives
- Revegetation
 - Procure plants
 - Plant installation and inspection
 - Seeding and mulching

Wetland Construction

Hydrology

Wetland Construction

Microtopography, pit & mound

Long-Term Monitoring

Collect data to determine if Performance Standards (developed as measures of project goals and objectives) have been achieved

Monitoring Plan specifies:

- Physical, chemical, biological measures
- Engineering measures
- Frequency and duration of monitoring
- Methods