

TABLE B-1

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

PRE-DESIGN INVESTIGATION WORK PLAN FOR THE LYMAN STREET AREA REMOVAL ACTION

EXISTING APPENDIX IX+3 SOIL DATA NOT INCLUDED ON SUMMARY TABLES

					An	alyte Group	
Sample Location	Sample ID	Depth Interval	Date Collected	VOCs	SVOCs	PCDDs/ PCDFs	Pest/Herb
B-1	ROB-DPA1	4-6	11/21/91				X
B-2	ROB2B0002	0-2	11/21/91				X
E-1	ROE1B1012	10-12	3/26/91			X	X
E-1	ROE1B1012	10-12	11/3/91			X	
E-2	ROE2B0810	8-10	3/25/91				X
LSSC-01	LSSC-01-SS05	6-8	1/4/99	X			
LSSC-02	LSSC-02-SS08	12-14	12/21/98	X			
LSSC-03	LSSC-03-SS06	6-8	12/16/98	X			
LSSC-07	LSSC-07-CS2426	24-26	12/18/98			X	
LSSC-08	LSSC-08-CS2123	21-23	12/17/98			X	
LSSC-08	LSSC-08-SS15	23-24	12/18/98	X			
LSSC-10	LSSC-10-CS1015	10-15	12/16/98		X	X	
LSSC-11	LSSC-11-CS1517	15-17	12/29/98			X	
LSSC-11	LSSC-11-SS10	15-17	12/29/98	X			
LSSC-16	LSSC-16-CS1015	10-15	12/29/98		X	inggett kinning som sid til til til som kriger til stil stille som og forste til stille som og f	et televisi farinamas (1901 minumas og posicionales accountes aphilitricis casaccos og fil full deshum
LSSC-16	LSSC-16-SS08	12-14	12/29/98	X			**************************************
LSSC-17	LSSC-17-SS07	10-12	12/29/98	X			
LSSC-17	LSSC-17-CS1015	10-15	12/29/98	X			and the state of t
LSSC-17	LSSC-17-CS2325	23-25	12/18/98	X			
LSSC-17	LSSC-17-SS14	23-25	12/29/98	X			
LSSC-18	LSSC-18-CS1015	10-15	12/29/98		X		***************************************
LSSC-18	LSSC-18-SS08	12-14	12/29/98	X			
LSSC-19	LSSC-19-CS1015	10-15	12/29/98		X		

NOTES:

1. Analytical results for the samples and respective analyte groups marked with an "X" are non-detect. These results were not included in the summary tables in previous reports.

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE I AND INTERIM PHASE II REPORT FOR HOUSATONIC RIVER OXBOW AREAS A,B,C,J, AND K

SUMMARY OF VOC. DETECTED IN BOIL SAMPLES HOUSATONIC RIVER OXBOW AREAS A,B,C,J, AND K

				Oxbow A				Oxb	ow B	Oxbaw G		
Location:	Well A-1	Well A-1	Well A-1	Well A-1	Well A-1	Boiling A-2	Well A-3	Well B-1	Well B-2	Well C-1	Well C-2	Boring C-3
Depth:	4-6"	12-14"	14+16'	50-55,	22-24'	6-8"	12-14"	4-6'	0-5,	10-12'	12-14'	2-4'
Sample Date:	11/91	11/91	11/01	11/91	11/01	11/01	1/92	11/91	11/01	11/91	11/01	11/91
Parameler			·		4	1	•	•	!	!	1	<u> </u>
Methylene Chloride	0.031B	0.030B (0.037B)	0.0278	0.064B	0.044B	0.034B	0.026B	0.032B (0.051B)	0.10B	0.028B	0.058B (0.045B)	0.034B
Acetone	0.023B	0.012B (0.017B)	0.012B	0.063B	0.016B	0.017B	0.026B	0.023B (0.024B)	0.046B	0.036B	0.048B (0.044)	0.0148
Ethylbenzene	ND	ND	ND	0.019	ND	ND	ND	ND	0.005J	ND	ND .	ND
Xylene (Total)	ND	ND	ND	0.013	ND	ND	0.005J	ND	0.012J	NO	ND	ND
Toluene	ND	ND	ND	ND	ND	ND	ND	0.004J (0.002J)	0.007J	ND	ND	0.002J
2-Butanone	ND	ND	ND	0.007J	ND	ND	ND	ND	ND	ND	ND	ND

L					L wodxO					Oxbo	ow K
Location:	J-16	7-52	1-35	J-48	YB-2	Y8-4	FP-1	FP-2	FP-8	Boring K-1	Boring K-2
Depth:	0-4*	0-4*	0-4"	0.4"	4-8"	0.4	8-12'	4-8'	4-8"	14-16'	8-10'
Sample Date:	12/01	12/91	12/01	12/01	10/49	10/89	10/89	10/89	10/89	2/01	2/91
Parameter					·		4			<u> </u>	<u> </u>
Methylene Chloride	0.056B	0.0748	0.056B	0.087B	0.003BJ	0.002BJ	0.006B	0.006B	0.005BJ	0.033B	0.038B
Acetone	0.023	0.039 '	0.028	0.059	NA NA	NA	NA NA	NA NA	NA NA	0.022B	0.032B
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Kylene (Total)	ND	ND	ND	ND	NA NA	NA	NA NA	NA	NA NA	ND	ND
oluene	ND	ND	ND .	ND	0.001J	ND	0.004J	0.003J	0.0033	ND ND	ND
2-Bulanone	ND	ND	ND	ND	NA	NA	NA NA	NA NA	NA NA	ND	ND
1,1,1- Trichloroethane	ND	ND	ND	ND	0.004J	0.005J	ND	ND	ND	ND	ND
1,1,2-Trichloro-1, 2,2 trilluoroethene	ND	0.003J	0.002J	0.003J	ND	ND	ND	ND	ND	ND	ND
richloroethene	ND	ND	ND	ND	ND	ND	0.001J	ND	ND ND	ND	ND

- Concentrations reported parts per million in dry weight (ppm). Only detected analytes are shown.
- 2. B Indicates the compound was found in the associated blank, as well as in the sample.
- 3. J indicates an estimated concentration below the sample quantitation limit.
- 4. ND Not detected.
- 5. () Duplicate sample analytical result.
- 6. A, B, C, J, and K series samples analyzed by CompuChem Laboratories, Inc., Research Triangle Park, NC.
- YB and FP series samples analyzed by IT Analytical Services, Knoxville, TN.

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE I AND INTERIM PHASE II REPORT FOR FORMER HOUSATONIC RIVER OXBOW AREAS A, B, C, J, AND K

SUMMARY OF SVOCS AND PHENOLS DETECTED IN SOIL SAMPLES HOUSATONIC RIVER OXBOW AREAS A, B, C, J, AND K

		Oxbo	A wo	Oxbo	w B		Oxbow C	
	Location	Boring A-2	Well A-3	Well B-1	Well B-2	Well C-1	Well C-2	Boring C-3
	Depth	6-8*	12-14'	4-6*	0+5,	10-12"	12-14"	2-4'
Parameter	Sampling Date	11/91	1/92	11/91	11/91	11/91	11/91	11/91
Phenanthren	ie .	5.7	59E	0.50 (13D)	2.2	13	0.21J (1.2)	27D
Di-n-butylph	thalate	ND	ND	ND (ND)	0.085J	ND	ND (0.13J)	ND
Fluoranthen	•	6.7	49	0.76 (16D)	3.6	20	0.34J (1.5)	41D
Pyrene		5.3	42	0.77 (13D)	2.5	10	0.23J (1.1)	43D
Benzo(a)ant	hracene	3.0	17	0.51 (7.3D)	1.7	11	0.18J (0.74)	24D
Chrysene		2.7	18	0.49 (6.9D)	1.5	13	0.15J (0.71)	22D
bis(2-Ethylh	exyl) phthalate	0.35J	0.88J	ND (0.27DJ)	0.33J	0.26J	0.049J (0.20J)	ND
Benzo(b)fluo	oranthene	4.0	26X	1.1X (13D)	4.2	20X	0.14J (0.45J)	49D
Benzo(k)fiud	ranthene	7.0	26X	1.1X (13D)	4.2	20X	0.14J (0.28J)	49D
Benzo(a)pyr	ene	2.5	15	0.66 (5.7D)	2.1	10	0.15J (0.62)	22D
ldeno(1,2,3-	cd)pyrene	1.1	6.6	0.33J (3.1D)	0.97	3.6	ND (0.32J)	13D
Benzo(g,h,i)	perylene	1.1	7.6	0.35J (3.4D)	1.2	3.3	ND (0.27J)	12D
Anthracene		1.9	14	0.19J (10D)	0.71	1.6J	0.23J (0.29J)	10D
Acenaphthyl	ene	1.0	6.1	0.16J (0.50DJ)	0.75	2.2	ND (ND)	2.9DJ
1-Methylnap	hthalene	1.9	22	0.05J (0.95DJ)	0.21J	0.33J	ND (ND)	2.5DJ
Naphthalene		2.2	23	ND (1.7D)	0.22J	0.23J	ND (ND)	1.9DJ
Dibenzolura	n	1.1	7.3	ND (1.9D)	0.14J	0.27J	ND (0.064J)	2.7DJ
Acenaphthe	10	0.63J	6.1	0.05J (2.1D)	0.27J	0.24J	ND (0.095J)	3.1DJ
Dibenzo(a,h	anthracene	0.34J	2.1J	0.12J (0.88DJ)	0.23J	1.1J	ND (0.10J)	3.6D
Fluorene		2.2	17	0.079J (3.4D)	0.37J	1.2J	ND (0.14J)	5.4D
4-Aminobiph	enyl	ND	ND	ND (ND)	ND	ND	ND (ND)	ND
2-Methylnap	hthalene	0.93	17	ND (0.73DJ)	0.11J	ND	ND (ND)	1.6DJ
1,2,4-Trichio	robenzene	DN	ND	ND (ND)	ND	ND	ND (ND)	ND
3-Methylphe	noi	ND	ND	ND (ND)	0.05J	ND	ND (ND)	ND
4-Methylphe	nol	ND	ND	ND (ND)	0.05J	ND	ND (ND)	ND
2,4-Dimethyl	phenol	ND	ND	ND (ND)	ND	ND	ND (ND)	ND
2,3,4,6-Tetra	chlorophenol	ND	ND	ND (ND)	ND	ND	ND (ND)	ND
Pentachioro	phenol	0.51J	ND	0.72J (2.3DJ)	0.62J	ND	ND (ND)	ND
bis(2-chloro	ethyl)ether	ND	ND	ND (ND)	0.069J	ND	ND (ND)	ND
Benzoic acid		0.10J	ND	ND (ND)	0.085J	DN	ND (ND)	ND
Butylbenzipi	ithalate	ND	ND	ND (ND)	0.3J	ND	ND (ND)	NO
Acetophenor	18	ND	ND	ND (ND)	ND	ND	ND (ND)	ND
Methylene-b	is(2-Chioroaniline)	ND	ND	ND (ND)	ND	ND	ND (ND)	ND
N-nitrosodip	henylamine	ND	ND	ND (ND)	ND	ND	ND (ND)	ND
Total Pheno		3.6	0.93	ND (ND)	0.31	0.22	ND	ND

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE I AND INTERIM PHASE II REPORT FOR FORMER HOUSATONIC RIVER OXBOW AREAS A, B, C, J, AND K

SUMMARY OF SVOCS AND PHENOLS DETECTED IN SOIL SAMPLES HOUSATONIC RIVER OXBOW AREAS A, B, C, J, AND K

6.600					/// Ox	L wod					Oxbow K
	Location	J-ts	J-28	J-3S	J-4S	YB-2	Y8-4	FP-1	FP-2	FP-3	Boring K-2
	Depth	0-4"	0-4*	0-4*	0-4*	4-8*	0-4"	8-12"	4-8'	4+8*	8-10"
Parameter	Sampling Date	12/91	12/91	12/91	12/91	10/89	10/89	10/89	10/89	10/89	10/89
Phenanthren	9	0.59	0.77	0.63	1.7	0.29J	0.43J	0.48J	0.48J	17	0.053J
Di-n-butylpht	halate	ND	ND	ND	0.15J	ND	ND	ND	ND	ND	0.053J
Fluoranthene		1.4	1.0	1.2	2.8	0.47J	Le8.0	0.35J	0.55J	15	0.080J
Pyrene		0.95	0.81	1.0	2.4	0.70J	0.94J	0.27J	0.42J	13	0.097J
Benzo(a)anth	racene	0.61	0.57	0.63	1.5	0.30J	0.65J	ND	0.26J	8.1	0.045J
Chrysene		0.75	0.70	0.64	2.2	0.31J	0.64J	ND	0.23J	5.8	0.059J
bis(2-Ethylhe	xyi) phthalate	0.056J	ND	0.053J	0.42J	ND	ND	ND	ND	ND	0.067J
Benzo(b)lluo	ranthene	1.5	0.58X	0.65X	3.2X	0.38J	1.0J	ND	ND	5.0	0.086JX
Benzo(k)fluo	ranthene	1.5	0.58X	0.65X	3.2X	0.46J	0.91J	ND	ND	4.2	0.086JX
Benzo(a) pyre	ne	0.70	0.45	0.50	1.5	0.37J	0.93J	ND	0.20J	5.6	0.042J
Ideno(1,2,3-c	d)pyrene	0.36J	0.32J	· 0.29J	. ND	ND	0.66J	ND	ND	3.0	ND
Benzo(g,h,i)p	erylene	0.43	0.28J	0.35J	ND	ND	0.77J	ND	ND	3.5	ND
Anthracene		0.13J	0.14J	0.10J	0.18J	ND	0.263	ND	ND	3.6	ND
Acenaphthyle	ne	0.092J	0.056J	ND	0.25J	0.27J	0.42J	ND	ND	0.43J	ND
1-Methylnaph	thalene .	ND	0.041J	ND	ND	NA	NA	NA	NA	NA	ND
Naphthalene		ND	0.043J	ND	0.15J	ND	ND	ND	ND	1.2J	ND
Dibenzofuran		ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
Acenaphthen	•	0.048J	0.052J	0.063J	ND	ND	ND	ND	ND	1.3J	ND
Dibenzo(a,h)	anthracene	0.13J	0.097J	0.088J	ND	ND	0.24J	ND	ND	0.73J	ND
Fluorene		0.054J	0.058J	0.049J	0.14J	ND	ND	ND	ND	1.5J	ND
4-Aminobiphe	nyl	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
2-Methylnaph	thalene	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
1,2,4-Trichlor	obenzene	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND
3-Methylphen	ol	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
4-Methylphen	oi	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
2,4-Dimethylp	henol	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
2,3,4,6-Tetrac	hlorophenol	ИD	ND	ND	ND	NA	NA	NA	NA	NA	ND
Pentachlorop	henol	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
bis(2-chioroe	thyl)ether	ND	ND	ND	ND	ND	. ND	ND	ND	ND	ND
Benzoic acid		ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
Butylbenziphi	Ihalate	ND	ND	NO	ND	NA	NA	NA	NA	NA	ND
Acetophenon	•	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND
Methylene-bit	(2-Chioroaniline)	ND	ND	ND	, ND	NA	NA	NA	NA	NA	ND
N-nitrosodiph	enylamine	ND	ND	ND	ND	ND	0.63BJ	ND	ND	0.25J	ND
Total Phenois	1	ND	ND	ND	0.29	ND	ND	ОИ	ND	ND	ND

Notes:

- Concentrations reported in parts per million dry weight (ppm). Only detected analytes are shown.
 - E Indicates the compound exceeds the calibration range of the gas chromatograph/mass spectrophotometer (GC/MS) instrument.

 D Indicates analysis at a secondary dilution factor.
- 2. 3. 4. 5. J - Indicates an estimated concentration below the sample quantitation limit.
- X Indicates coeluting indistinguishable isomers. () - Indicates duplicate sample analytical result.
- NA indicates parameter not analyzed.
- ND Indicates parameter not detected.

 A. B. C. J. and K series samples analyzed by CompuChem Laboratories, Inc., Research Triangle Park, NC.

 YB and FP series samples analyzed by IT Analytical Services, Knoxville, TN.

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE I AND INTERIM PHASE II REPORT FOR FORMER HOUSATONIC RIVER OXBOW AREAS A, B, C, J, AND K

SUMMARY OF PESTICIDES AND HERBICIDES IN SOIL SAMPLES HOUSATONIC RIVER OXBOW AREAS B, C, J, AND K

	Oxbow B	Oxbo	wC	Oxbow J	Oxbow K
Location	Well B-1	Well C-1	Well C-2	J-3S	Boring K-1
Depth	4-6'	10-12'	12-14'	0-4*	14-16'
Sample	11/91	11/91	11/91	12/91	2/91
Parameter					
Pesticides					
gamma-BHC (lindane)	0.10	ND	0.0067	ND	ND
delta-BHC	ND	ND	0.023	ND	ND
4,4'-DDD	ND	0.097	ND	ND	ND
4,4'-DDT	ND	ND	0.14	0.0069	ND
Herbicides					
2,4-D	ND	ND	ND	ND	0.22
2,4,5 - TP (Silvex)	ND	ND	ND	ND	0.051
2,4,5 - T	ND	ND	ND	ND .	0.052

Notes:

- 1. Concentrations are reported in parts per million dry weight (ppm). Only detected analytes are shown.
- 2. Samples analyzed by CompuChem Laboratories, Inc. Research Triangle Park, NC.

TABLE 4-8

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE I AND INTERIM PHASE II REPORT FOR FORMER HOUSATONIC RIVER OXBOW AREAS A, B, C, J, AND K

SUMMARY OF PCDDS AND PCDFS IN SOIL SAMPLES - HOUSATONIC RIVER OXBOW AREAS A, B, C, AND J

		OXBOW A	OXB	OW B	AV	BOW C			
	Location	A-3	B+1	B-2	C+1			OXBOW J	Y
PARAMETER	Depth	12-14"	4-6'	0-2*	10-12*	C+2 12-14*	J-18	J-2S	J-48
	Sample Date	1/92	12/01	11/01	11/91		0-4'	0-4"	0-4*
2,3,7,8-Tetrachlorodiben		ND	ND	ND		11/91	12/91	12/91	12/91
Tetrachlorodibenzodioxin		ND	ND	ND	ND	ND	ND	ND	ND
1,2,3,7,8-Pentachlorodibe		NA	NA NA	NA NA	ND	ND	ND	ND	
Pentachlorodibenzodioxir		ND	ND		NA	NA	NA	NA	NA NA
1,2,3,4,7,8-Hexachlorodit	enzodioxin	NA	NA NA	ND	ND	ND	ND	ND	0.0016
1,2,3,6,7,8-Hexachlorodib	enzodioxin	NA	NA NA	NA	NA	NA	NA	NA NA	NA
1,2,3,7,8,9-Hexachlorodib		NA NA		NA	NA	NA	NA	NA NA	NA NA
Hexachlorodibenzodioxin		ND ND	NA NA	NA	NA	NA	NA	NA NA	H NA
1,2,3,4,6,7,8-Heptachloro		NA NA	ND	М	ND	ND	ND	ND	0.0085
leptachlorodibenzodioxir	(total)	M M	NA	NA	NA	NA	NA	NA NA	
Octachlorodibenzodioxin	(10101)		ND	0.00017	М	ND	0.00017		NA
2,3,7,8-Tetrachlorodibenz	ofuran	0.00025	ND	0.00066	0.00030	0.00018	0.00094	0.000061	0.0067
.2,7,8-Tetrachlorodibenzo	ofuran	ND	М	0.00010	м	ND	0.000047	0.00021 M	0.0020
etrachlorodibenzoluran		NA	NA NA	NA	NA	NA NA	NA NA		0.00023
,2,3,7,8-Pentachlorodibe		ND	ND	0.00051	М	ND	0.00022	NA NA	NA
.3,4,7,8-Pentachlorodiber		NA	NA .	NA	NA	NA NA	0.00022 NA	М	0.017
entachlorodibenzofuran		NA	NA	NA	NA	NA NA		NA	NA
,2,3,4,7,8-Hexachlorodibe		ND	M (0.00098)	0.00059	0.00038	ND	NA	NA	NA
		NA	NA	NA	NA	NA NA	М	0.00015	0.057
,2,3,6,7,8-Hexachlorodibe		NA	NA	NA	NA NA	NA NA	NA	NA	NA
.3,4,6,7,8-Hexachlorodibe		NA	NA	NA	NA NA		NA	NA	NA
2,3,7,8,9-Hexachlorodibe		NA	NA	NA NA	NA NA	NA	NA	NA	NA
exachlorodibenzoluran (i		М	0.0034 (0.0069)	0.00048	0.00041	NA	NA	NA	NA.
2,3,4,6,7,8-Heptachlorod		NA	NA NA	NA NA		М	0.00039	0.00017	0.022
2,3,4,7,8,9-Heptachlorod	ibenzoluran	NA	NA NA	NA NA	NA	NA	NA	NA	NA
eptachlorodibenzofuran ((total)	М	0.0020 (0.0041)		NA	NA	NA	NA	NA
otachlorodibenzoluran 💮		- м	0.0022 (0.0053)	0.00026	М	ND	0.00025	М	0.0026
			0.0022 (0.0053)	0.00024	M	ND	0.00018	0.000045	0.00031

TABLE 4-8 (cont'd) GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE I AND INTERIM PHASE II REPORT FOR FORMER HOUSATONIC RIVER OXBOW AREAS A, B, C, J, AND K

SUMMARY OF PCDDS AND PCDFS IN SOIL SAMPLES - HOUSATONIC RIVER OXBOW AREAS A, B, C, AND J

	1				OXBOW J (Cantin	(beu		
	Location	OX+J-881	OX-J-852	OX-J-853	OX-J-534	OX+J-585	OX-J-SS5 DUP.	OX-J-SS6
PARAMETER	Depth	0-4*	0-4"	0-4"	0-4*	0-4"	0-4'	0-4*
	Sample Date	9/94	9/94	9/94	9/94	9/04	9/94	9/94
2, 3,7,8- Tetrachlorodibe		ND	ND	ND	0.00000055	ND	ND	ND
Tetrachlorodibenzodiox		0.00000082	0.0000035	0.0000046	0.0000099	0.00000069	0.0000011	0.0000038
1,2, 3 ,7,8-Pentachlorodi		ND Q	ND Q	ND Q	· 0.0000030 X	ND	ND	ND
Pentachlorodibenzodio		ND Q	0.000014	0.0000084	0.000011	ND	ND	T ND
1,2,3,4,7,8-Hexachloroc	dibenzodioxin	0.0000011J	0.0000019 J	0.0000020 J	0.0000043	0.00000068 J	0.00000057 J	0.00000078 J
1,2,3,6,7,8-Hexachloroc	dibenzodioxin	0.0000029	0.0000052	0.0000074	0.000023	0.0000019 J	0.0000018 J	0.00000078 J
1,2,3,7,8,9-Hexachloroc	libenzodioxin	0.0000019 J	0.0000031	0.0000038	0.0000068	0.0000011 J	0.00000000 J	0.0000022 J
Hexachlorodibenzodiox	• •	0.000024	0.000047	0.000057	0.000130	0.000015	0.000013	0.000020
1,2, 3, 4,6,7,8-Heptachio	rodibenzodioxin	0.000050	0.000091	0.000110	0.000680	0.000034	0.000031	0.000020
Heptachlorodibenzodio	xin (total)	0.000100	0.000170	0.000250	0.002100	0.000074	0.000067	0.000100
Octachlorodibenzodioxi	n	0.000390	0.000860	0.000840	0.006500	0.000260	0.000240	0.00070
2, 3,7,8- Tetrachlorodibe		0.0000068	0.000016	0.000037	0.000035	0.0000057	0.0000055	0.000270
1,2,7,8-Tetrachlorodibe	nzofuran	0.0000026	0.0000078	0.000015	0.000019	0.0000032	0.0000030	0.0000083
Tetrachlorodibenzofura	n (total)	0.000059 X	0.000160 X	0.000320 X	0.000320 X	0.000065 X	0.000045 X	0.000110 X
1,2,3,7,8-Pentachlorodi	benzoluran	0.0000023 J	0.0000059	0.0000000	0.000018	0.0000020 J	0.0000018 J	0.0000035
2,3,4,7,8-Pentachlorodi	benzofuran	0.0000098	0.000016	0.0000076	0.000039	0.0000067	0.0000078 3	
Pentachlorodibenzofura	n (total)	0.000130 X	0.000260 X	0.000460 X	0.000450 X	0.000097 X	0.0000003	0.0000069
1,2, 3 ,4,7,8-Hexachlorod	libenzoluran	0.0000046	0.000015	0.000018	0.000036	0.000007 X		0.000094 X
1,2,3,6,7,8-Hexachlorod	ibenzofuran .	0.0000066	0.000026 X	0.000030 X	0.000032 X	0.0000043	0.0000032 0.0000051 X	0.0000048
2,3,4,6,7,8-Hexachlorod	libenzofuran	0.0000094	0.000016	0.000035	0.000031			0.0000085 X
1,2,3,7,8,9-Hexachlorod	ibenzoluran	0.0000011 J	0.0000029	0.0000036	0.0000052	0.0000072 X	0.0000058 X	0.0000077 X
lexachlorodibenzofurar	(total)	0.000130 X	0.000350 X	0.000520 X		0.00000009 J	0.00000081 J	0.0000011 J
,2,3,4,6,7,8-Heptachlor		0.000026X	0.000380 X		0.000500 X	0.000092 X	0.000080 X	0.000092 X
,2,3,4,7,8,9-Heptachlor		0.000021 J	0.000006	0.000110 X	0.000150 X	0.000024 X	0.000019 X	0.000022 X
leptachlorodibenzolura		0.000061 X		0.0000064	0.000013	0.0000021 J	0.0000014 J	0.0000019 J
Octachlorodibenzoluran			0.000300 X	0.000230 X	0.000420 X	0.000052 X	0.000043 X	0.000046 X
		0.000033	0.000100	0.000089	0.000290	0.000026	0.000022	0.000022

TABLE 4-8 (cont'd) General Electric Company Pittsfield, Masbachusetts

MCP PHASE I AND INTERIM PHASE II REPORT FOR FORMER HOUSATONIC RIVER OXBOW AREAS A, B, C, J, AND K

SUMMARY OF PCDDS AND PCDFS IN SOIL SAMPLES - HOUSATONIC RIVER OXBOW AREAS A, B, C, AND J

Notes:

- 1. Results are presented in dry weight parts per million (ppm).
- 2. Q = indicates that coefuling non-dioxin isomers were noted to be present by the analytical laboratory.
- 5. J = Indicates an estimated concentration below the sample quantitation limit.
- 4. X = Indicates that a contribution from diphenyl others is suspected by the analytical laboratory,
- 5. ND = Analyte was analyzed for, but not detected.
- 6. () = indicates duplicate sample result.
- 7. NA = indicates parameter not analyzed.
- 8. M = Indicates parameter presence was noted, but not at a level which the laboratory could provide a definite identification or quantity.
- 9. A, B, C, and J series samples analyzed by ChemWest Analytical Laboratories, Inc.
- 10. OX series samples analyzed by Alla Analytical Laboratory, Inc., El Dorado Hills, CA.

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE I AND INTERIM PHASE II REPORT FOR FORMER HOUSATONIC RIVER OXBOW AREAS A, B, C, J, AND K

SUMMARY OF METALS, SULFIDE, CYANIDE, AND TOC DETECTED IN SOIL SAMPLES -

HOUSATONIC RIVER OXBOW AREAS A, B, C, J, AND K

		A wodxO		T	Oxbow	B			Oxbow C		Oxbow J		
Location	Well A-1	Boring A-2	Well A-3	Well B-1	Well B-2	19-4-14A	10-4-14C	Well C-1	Well C-2	Boring C-3 J	J-15	J-2S	
Depth	22-24"	6-8"	12-14"	4-6*	0-5,	0-6	0-6"	10-12	12-14'	2:4'	0-4'	0-4*	
Parameter Sample Date	11/91	11/01	1/92	12/01	11/01	8/92	8/92	11/01	11/91	12/91	12/01	12/91	
Aluminum	5,590E	6,120	4,980*	6,950 (7,790)	5,220	NA	NA NA	6,650	6,330 (9,850)	8,840	9,730*	5,670*	
Antimony	4.3JN	4.2JN	ND	4.4JN	ND	NA	NA	ND	ND (ND)	ND	NLQ.8	.10.5JN	
Arsenic	5.8QN	6.5QN	5.7Q*	8.6AN (4.8AN)	5.1AN	NA	NA	4.3	3.6 (4.8)	4.9N	9.4Q	21.9A	
Barlum	24.1E	27.6	18.4J*	91.1 (68.1)	37.7	NA	NA	36.5	17.4J (29.6J)	40.7	57.3	41.5J	
Beryllium	ND	0.29J	0.15J	0.33J (0.41J)	0.21J	NA	NA	0.19J	0.15J (0.22J)	0.28J	U.39J	ND	
Cadmium	ND	ND	ND	0.63 (ND)	0.80	NA	NA	ND	ND (ND)	NO	ND	ND	
Calcium	51,600E	57,400	15,100*	16,100 (3,310)	8,340	NA	NA	17,200*	8,050* (12,400*)	23,100	6,750E	0,570E	
Chromium	7.5*	6.7	7.0*	15.1 (13.4)	13.1	NA	NA	0.1	8.3 (12)	8.6	17.2	41	
Coball	5.2J	7.0	6.1	7.9 (8.8)	5.1J	NA	NA	6.6	6.6 (10.2)	7.4	9.5J	9.4J	
Copper	13	19.6	19.8	333 (62.6)	36.5	NA	NA	287N*	15.3N* (18N*)	123	30.8N	95.6N	
Iron	15,100E*	17,400E	12,500	19,800E (15,200E)	11,400E	NA	NA	16,100E	15,400E (20,700E)	21,200E	19,600*	68,700	
Lead	21.1Q*	16.3	28.8	285N (97.5N)	94.2N	NA	NA	104N	28.9A (33.3A)	26.8	97.8*	121*	
Magnesium	15,100	32,900	8,650*	4,000 (4,280)	5,950	NA	NA	9,560*	4,820* (5,740*)	. 14,000	6,980	7,150	
Manganese	226E	448	376*	379 (273)	190	NA	NA	351	223 (298)	430	517N*	854N*	
Метситу	ND	, 0.18N*	ND	0.37N° (0.23N°)	0.61N*	ÑĀ	NA	ND	ND (ND)	ND	0.20	0.60	
Nickel	0.3	14.2	11.3	23.1 (15.6)	11.1	NA	NA	12.6	13.1 (17.7)	16.4	17.7	43.8	
Potassium	207J	648	3313	599 (637)	671	NA	NA	435J	404J (534J)	772	1,070J	393J	
Selenium	0.46JWN	0.36JWN	ND	ND (0.41JN)	0.38JN	NA	NA	ND	ND (ND)	ND	ND	ND	
Silver	ND	ND	ND	1.1J* (3.8*)	0.77J*	NA	NA	ND	ND (ND)	ND	ND	ND	
Sodium	135J	119J	97.6J	159J (168J)	90.5J	NA	NA	1117	102J (187J)	101J	1463	1203	
Vanadium	6.6	10	8.9*	13.9 (15.8)	10.5	NA	NA	11.5	7.7 (11.1)	14	20.3	14.1	
Zinc	43.5EN*	52.4E	38.8*	342E (118E)	135E	NA	NA	107E	51.4E (79.8E)	67.3E	126	164	
Sullide	ND	ND	ND	ND (ND)	ND	NA	NA	92.4	25.4 (34.1)	ND	ND	65	
Cyanide	ND	ND	ND	ND (ND)	ND	NA	NA	ND	ND (ND)	ND	1.3	120	
TOC	NA	NA	NA	NA	NA	14,000	13,000	NA	NA	NA	NA	NA	

TABLE 4-9 (CONT'D)

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE I AND INTERIM PHASE II REPORT FOR FORMER HOUSATONIC RIVER OXBOW AREAS A,B,C,J AND K

BUMMARY OF METALS, BULFIDE, CYANIDE, AND TOC DETECTED IN SOIL SAMPLES HOUSATONIC RIVER OXBOW AREAS A, B, C, J, AND K

				Oxbow K						
Location	J-35	J-45	OX-J-551	OX-J-652	OX+J-SS8	OX-J-554	OX-J-555	OX-J-886	Boiling K-1	Boring K-2
Depth	0-4*	0-4	0-4"	0-4"	0-4	0-4'	0-4*	0-4*	14-16'	B-10'
Parameter Sample Date	12/01	12/91	9/94	9/94	9/94	9/94	9/94	0/94	2/01	2/91
Aluminum	5,500	10,100*	NA	NA	NA NA	NA NA	NA NA	NA NA	4,200	2,900
Antimony	ND	11.1JN	NA	NA	NA NA	NA	NA	NA NA	NO	ND
Arsenic	5.5A	9.5	NA.	NA	NA	NA NA	NA NA	NA NA	2.0	ND
Barlum	28.0J	66.8	NA	NA	NA	NA	NA	NA NA	ND	ND
Beryllium	ND	0.30J	NA	NA	NA NA	NA NA	NA	NA	ND	ND
Cadmium	ND	ND	NA	NA	NA NA	NA	NA NA	NA NA	ND	ND
Calcium	8,240E	18,100E	NA	NĀ	NA NA	NA NA	NA ·	NA	17,000	ND
Chromium	7.7	17.8	NA	, NA	NA	NA	NA	NA	3.2	4.2
Coball	5.6J	14.83	NA	NÁ	NA	NA	NA	NA NA	ND	ND
Coppei	12.0N	58.8N	NA	NA	NA NA	NA NA	NA NA	NA	11	ПD
Iron	14,400*	44,200*	NA	NA	NA NA	NA	NA	NA	12,000	7,400
Lead	13.5*	105*	NA	NA	NA NA	NA	NA	NA	ND	ND
Magneslum	4,590	11,500	NA	NA	NA NA	NA NA	NA	NA	9,800	1,300
Manganese	214N*	987N*	NA	NA	NA	NA NA	NA	NA	300	56
Mercury	ND	0.21	NA	NA	NA	NA	NA NA	NA	NO	ND
Nickel	0.0	27.0	NA.	NA	NA NA	NA	NA	NA	9.3	ND
Potassium	969J	1,120J	NA	NA	NA	NA	NA NA	NA	ND	ND
Selenium	ND	ND	NA	NA	NA	NA	NA NA	NA	NÖ	ND
Silver	ND	ND	NA	NA	NA	NA	NA NA	NA	ND	ND
Sodium	166J	174J	NA	NA	NA	NA	NA NA	NA	ND	ND
Vanadlum	11.6	27.3	NA NA	NÁ	NA	NA	NA	NA	5.0	ND
Zinc	33	266	NA	NA	NA	NA	NA NA	NA	38	19
Sullide	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
TOC	NA NA	NA	30,900	12,900	22,200	32,300	11,600 (133,300)	21,500	NA	NA

TABLE 4-9 (CONT'D)

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE I AND INTERIM PHASE II REPORT FOR FORMER HOUSATONIC RIVER OXBOW AREAS A,B,C,J AND K

BUMMARY OF METALS, SULFIDE, CYANIDE, AND TOC DETECTED IN SOIL SAMPLES HOUSATONIC RIVER OXBOW AREAS A, B, C, J, AND K

Notes:

- 1. Concentrations reported in parts per million-dry weight (ppm). Only detected analytes are shown.
- 2. A Indicates spike recoveries are outside the range of 85% to 115%. Reported results is produced from a single-point method-of-standard-addition calculation.
- 3. J indicates the reported value is less than the contract required detection limit (CRDL), but greater than the instrument detection limit (IDL).
- 4. E Indicates the reported value is estimated because of the presence of interference.
- 5. N Indicates the sample matrix spike analysis was outside control limits.
- 6. Q Indicates a severe physical or chemical interference in the sample. Result should be regarded as an estimate only.
- 7. W Indicates a slight matrix-related interference for the analyte.
- 8. * Indictes a non-homogeneous sample matrix in regard to the flagged analyte.
- ND Not detected.
- 10. NA Parameter not analyzed.
- 11. A, B, C, J, and K series and OX-series cyanide samples analyzed by CompuChem Laboratories, Inc., Research Triangle Park, NC.
- 12. OX series TOC samples analyzed by Quanterra Environmental Services, Knoxville, TN.

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 PESTICIDES/HERBICIDES DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

Location ID:	E-3	E-4	E-5	E-6	E-7	E-8	LS-7	LS-8	LS-9
Depth (ft):	(0-2)	(0-2)	(6-8)	(0-2)	(4-6)	(18-20)	(14-16)	(16-18)	(14-16)
Date:	08/09/95	08/09/95	08/10/95	08/16/95	08/07/95	08/09/95	09-10/90	09-10/90	09-10/90
Aldrin	ND(0.096)	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	0.017D	150DJ	ND(0.011)
Alpha-BHC	ND(0.096)	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	ND(0.011)	ND(19)	ND(0.011)
Beta-BHC	ND(0.096)	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	ND(0.011)	ND(19)	0.021
Delta-BHC	ND(0.096)	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	ND(0.011)	ND(19)	ND(0.011)
Lindane	ND(0.096)	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	ND(0.011)	ND(19)	ND(0.011)
Chlordane	ND(0.96)	ND(0.2)	ND(0.018)	ND(0.2)	ND(0.02)	ND(0.026)	ND(0.11)	ND(190)	ND(0.11)
4,4'-DDD	ND(0.096)	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	ND(0.021)	ND(37)	ND(0.022)
4,4'-DDE	ND(0.096)	0.014 J	ND(0.0018)	0.019 J	ND(0.002)	ND(0.0026)	ND(0.021)	ND(370)	ND(0.022)
4,4'-DDT	0.62	0.082	ND(0.0018)	0.03	ND(0.002)	ND(0.0026)	ND(0.021)	ND(37)	ND(0.022)
Dieldrin	ND(0.096)	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	ND(0.021)	ND(37)	ND(0.022)
Endosulfan I	0.065 J	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	ND(0.011)	ND(190)	0.059D
Endosulfan II	ND(0.096)	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	ND(0.021)	ND(37)	ND(0.022)
Endosulfan Sulfate	ND(0.096)	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	ND(0.021)	ND(37)	ND(0.022)
Endrin	ND(0.096)	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	ND(0.021)	ND(37)	ND(0.022)
Endrin Aldehyde	ND(0.096)	0.019 J	ND(0.0018)	0.016 J	ND(0.002)	ND(0.0026)	ND(0.021)	ND(37)	ND(0.022)
Heptachlor	ND(0.096)	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	ND(0.011)	ND(19)	ND(0.011)
Heptachlor Epoxide	0.15	ND(0.02)	ND(0.0018)	ND(0.02)	ND(0.002)	ND(0.0026)	ND(0.011)	ND(19)	ND(0.011)
Kepone	ND(1.8)	ND(0.37)	ND(0.035)	ND(0.37)	ND(0.038)	ND(0.049)	ND(0.021)	ND(37)	ND(0.022)
Methoxychlor	ND(0.19)	ND(0.039)	ND(0.0037)	ND(0.039)	ND(0.004)	ND(0.0052)	ND(0.11)	ND(190)	ND(0.11)
Toxaphene	ND(3.8)	ND(0.78)	ND(0.073)	ND(0.78)	ND(0.079)	ND(0.1)	ND(0.21)	ND(370)	ND(0.22)
Dinoseb	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	ND(4.4)	ND(3.9)	ND(4.7)

TABLE 4-2 (Cont'd)

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 PESTICIDES/HERBICIDES DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

Location ID:	LS-10	LS-11	LS-26	LS-27	LS-28	LS-29	LS-30	LS-31	LS-32*
Depth (ft):	(10-12)	(10-12)	(10-12)	(2-4)	(10-12)	(10-12)	(14-16)	(18-20)	(2-4)
Date:	09-10/90	09-10/90	08/10/95	08/11/95	08/14/95	08/08/95	08/14/95	08/15/95	10/12/94
Aldrin	ND(0.0088)	170DJ	ND(0.0021)	ND(0.019)	ND(0.0017)	ND(0.0019)	ND(3.4)	ND(0.52)	
Alpha-BHC	ND(0.0088)	ND(24)	ND(0.0021)	ND(0.019)	ND(0.0017)	ND(0.0019)	ND(3.4)	ND(0.52)	ND
Beta-BHC	ND(0.0088)	ND(24)	ND(0.0021)	ND(0.019)	0.0017	0.001J	ND(3.4)	ND(0.52)	
Delta-BHC	ND(0.0088)	ND(24)	ND(0.0021)	ND(0.019)	ND(0.0017)	ND(0.0019)	ND(3.4)	ND(0.52)	ND
Lindane	ND(0.0088)	ND(24)	ND(0.0021)	ND(0.019)	ND(0.0017)	ND(0.0019)	ND(3.4)	0.48 J	ND
Chlordane	ND(0.088)	ND(240)	ND(0.021)	ND(0.19)	ND(0.017)	ND(0.019)	ND(34)	ND(5.2)	
4,4'-DDD	ND(0.018)	ND(48)	ND(0.0021)	ND(0.019)	0.00094	ND(0.0019)	ND(3.4)	0.44 J	ND
4,4'-DDE	ND(0.018)	ND(48)	ND(0.0021)	ND(0.019)	0.0041	0.0012 J	26	4.1	
4,4'-DDT	ND(0.018)	ND(48)	ND(0.0021)	0.06	0.003	ND(0.0019)	12	2.8	
Dieldrin	ND(0.018)	ND(48)	ND(0.0021)	0.056	ND(0.0017)	ND(0.0019)	ND(3.4)	ND(0.52)	
Endosulfan I	ND(0.0088)	ND(24)	ND(0.0021)	0.024	ND(0.0017)	ND(0.0019)	ND(3.4)	ND(0.52)	· · · · · · · · · · · · · · · · · · ·
Endosulfan II	ND(0.018)	ND(48)	ND(0.0021)	0.029	ND(0.0017)	ND(0.0019)	ND(3.4)	ND(0.52)	***************************************
Endosulfan Sulfate	ND(0.018)	ND(48)	ND(0.0021)	ND(0.019)	ND(0.0017)	ND(0.0019)	ND(3.4)	ND(0.52)	
Endrin	ND(0.018)	ND(48)	ND(0.0021)	ND(0.019)	ND(0.0017)	ND(0.0019)	3.4	0.72	***************************************
Endrin Aldehyde	ND(0.018)	ND(48)	ND(0.0021)	ND(0.019)	0.012	ND(0.0019)	ii	1.9	
Heptachlor	ND(0.0088)	ND(24)	ND(0.0021)	ND(0.019)	ND(0.0017)	ND(0.0019)	ND(3.4)	0.91	ND
Heptachlor Epoxide	ND(0.0088)	ND(24)	ND(0.0021)	0.015 J	0.0012	ND(0.0019)	10.9	2.2	
Kepone	ND(0.018)	ND(48)	ND(0.040)	ND(0.35)	ND(0.032)	ND(0.035)	ND(64)	ND(9.7)	
Methoxychlor	ND(0.088)	ND(240)	ND(0.0043)	ND(0.038)	ND(0.0034)	ND(0.0037)	ND(6.8)	ND(1.0)	
Toxaphene	ND(0.18)	ND(480)	ND(0.084)	ND(0.74)	ND(0.067)	ND(0.074)	ND(134)	ND(20)	
Dinoseb	ND(2.2)	ND(10)	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)	0.055JP

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 PESTICIDES/HERBICIDES DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

Location ID:	LS-33*	LS-34	LS-35	LS-36	LS-37	LS-38	LS-39	LS-40	LS-42
Depth (ft):	(16-18)	(22-24)	(12-14)	(16-18)	(6-8)	(16-18)	(10-12)	(10-12)	(20-22)
Date:	10/12/94	12/14/95	08/15/95	08/07/95	08/08/95	08/14/95	08/10/95	08/10/95	04/23/96
Aldrin		ND(10)	ND(4.1)	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0018)
Alpha-BHC	0.0021	ND(10)	ND(4.1)	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0018)
Beta-BHC		ND(10)	ND(4.1)	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0018)
Delta-BHC	0.00059JP	ND(10)	ND(4.1)	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0018)
Lindane	0.0041P	ND(10)	ND(4.1)	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0018)
Chlordane		ND(100)	ND(41)	ND(0.022)	ND(0.018)	ND(0.017)	ND(0.021)	ND(0.0021)	ND(0.0018)
4,4'-DDD	0.015P	ND(10)	ND(4.1)	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0036)
4,4'-DDE		46	ND(4.1)	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0036)
4,4'-DDT		22	7.6	0.0014 J	0.0012 J	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0036)
Dieldrin		ND(10)	ND(4.1)	0.0016 J	0.002	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0036)
Endosulfan I		ND(10)	ND(4.1)	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0036)
Endosulfan II		ND(10)	ND(4.1)	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0036)
Endosulfan Sulfate		ND(10)	ND(4.1)	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0036)
Endrin		ND(10)	ND(4.1)	0.0026	0.0036	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0036)
Endrin Aldehyde		15	ND(4.1)	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0036)
Heptachlor	0.0066P	ND(10)	ND(4.1)	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0030)
Heptachlor Epoxide		ND(10)	15	ND(0.0022)	ND(0.0018)	ND(0.0017)	ND(0.0021)	ND(0.0021)	ND(0.0018)
Kepone		ND(190)	ND(77)	ND(0.042)	ND(0.035)	ND(0.032)	ND(0.039)	ND(0.0021)	ND(0.036)
Methoxychlor		ND(19)	ND(8.2)	ND(0.0044)	ND(0.0037)	ND(0.0034)	ND(0.0041)	ND(0.0041)	ND(0.030)
Toxaphene		ND(400)	ND(160)	ND(0.087)	ND(0.073)	ND(0.067)	ND(0.081)	ND(0.0041)	ND(0.036)
Dinoseb		ND(29)	ND(2.0)	ND(0.39)	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.41)	ND(0.030)

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 PESTICIDES/HERBICIDES DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

Location ID:	LS-43	LS-44	LS-45	LS-SOIL	LS-C-11	LS-C-12	LS-C-13	LS-C-18	LS-GWP-33
Depth (ft):	(22-24)	(22-24)	(10-12)	(SURFACE)	(0-0.5)	(0-0.5)	(0-0.5)	(0-0.5)	(0-0.5)
Date:	04/24/96	04/24/96	04/25/96	09-10/90	08/30/95	08/30/95	08/30/95	08/30/95	08/30/95
Aldrin	ND(0.038)	ND(0.002)	ND(0.0022)	ND(3.0)	ND(0.086)	ND(0.017)	ND(0.37)	ND(0.0017)	ND(0.35)
Alpha-BHC	ND(0.038)	ND(0.002)	ND(0.0022)	ND(0.4)	ND(0.086)	ND(0.017)	ND(0.37)	ND(0.0017)	ND(0.35)
Beta-BHC	ND(0.038)	ND(0.002)	ND(0.0022)	3.0**	ND(0.086)	0.011 J	0.31 J	ND(0.0017)	ND(0.35)
Delta-BHC	ND(0.038)	ND(0.002)	ND(0.0022)	ND(0.4)	ND(0.086)	ND(0.017)	ND(0.37)	ND(0.0017)	ND(0.35)
Lindane	ND(0.038)	ND(0.002)	ND(0.0022)	ND(0.4)	ND(0.086)	ND(0.017)	ND(0.37)	ND(0.0017)	ND(0.35)
Chlordane	ND(0.038)	ND(0.002)	ND(0.0022)	ND(0.8)	ND(0.86)	ND(0.17)	ND(3.7)	ND(0.017)	ND(3.5)
4,4'-DDD	0.15	ND(0.0041)	ND(0.0043)	ND(1.0)**	ND(0.086)	ND(0.017)	ND(0.37)	ND(0.0017)	ND(0.35)
4,4'-DDE	0.35	ND(0.0041)	ND(0.0043)	ND(0.4)	ND(0.086)	0.018	0.75	ND(0.0017)	0.18 J
4,4'-DDT	ND(0.075)	ND(0.0041)	ND(0.0043)	ND(2.0)**	ND(0.086)	ND(0.017)	0.63	ND(0.0017)	ND(0.35)
Dieldrin	0.096	ND(0.0041)	ND(0.0043)	ND(0.4)	0.095	ND(0.017)	ND(0.37)	ND(0.0017)	ND(0.35)
Endosulfan I	ND(0.038)	ND(0.002)	ND(0.0022)	ND(0.4)	ND(0.086)	ND(0.017)	ND(0.37)	ND(0.0017)	ND(0.35)
Endosulfan II	ND(0.075)	ND(0.0041)	ND(0.0043)	ND(0.9)	0.099	0.013 J	ND(0.37)	ND(0.0017)	ND(0.35)
Endosulfan Sulfate	ND(0.075)	ND(0.0041)	ND(0.0043)	ND(0.5)	ND(0.086)	ND(0.017)	ND(0.37)	ND(0.0017)	ND(0.35)
Endrin	ND(0.075)	ND(0.0041)	ND(0.0043)	ND(2.0)**	ND(0.086)	ND(0.017)	ND(0.37)	ND(0.0017)	ND(0.35)
Endrin Aldehyde	ND(0.075)	ND(0.0041)	ND(0.0043)	ND(0.8)	ND(0.086)	ND(0.017)	ND(0.37)	0.0032	ND(0.35)
Heptachlor	ND(0.038)	ND(0.002)	ND(0.0022)	ND(2.0)**	ND(0.086)	ND(0.017)	ND(0.37)	ND(0.0017)	ND(0.35)
Heptachlor Epoxide	ND(0.038)	ND(0.002)	ND(0.0022)	ND(0.4)	ND(0.086)	0.012 J	ND(0.37)	ND(0.0017)	ND(0.35)
Kepone	ND(0.75)	ND(0.041)	ND(0.043)	ND(3.0)**	ND(1.6)	ND(0.32)	ND(6.9)	ND(0.032)	ND(6.6)
Methoxychlor	ND(0.38)	ND(0.002)	ND(0.022)	ND(2.0)**	ND(0.17)	ND(0.034)	ND(0.73)	ND(0.0034)	ND(0.7)
Toxaphene	ND(0.75)	ND(0.041)	ND(0.043)	ND(0.8)	ND(3.4)	ND(0.68)	ND(14)	ND(0.068)	ND(14)
Dinoseb	ND(0.39)	ND(0.42)	ND(0.89)	ND(2.4)	ND(1.7)	ND(1.7)	ND(1.4)	ND(0.33)	ND(0.34)

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 PESTICIDES/HERBICIDES DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

Location ID:	Marc 6	 				delication to the term of the
	LS-GWP-34		e e energia			
Depth (ft):	(0-0.5)					
Date:	08/30/95					
Aldrin	ND(0.018) [ND(0.018)]				**************************************	
Alpha-BHC	ND(0.018) [ND(0.018)]					kiramana karinya da arind Makira da santa da
Beta-BHC	ND(0.018) [ND(0.018)]					
Delta-BHC	ND(0.018) [ND(0.018)]					
Lindane	ND(0.018) [ND(0.018)]				Annual Control of the	
Chlordane	ND(0.18) [ND(0.18)]					
4,4'-DDD	ND(0.018) [ND(0.018)]					
4,4'-DDE	0.014 J [0.01 J]					
4,4'-DDT	0.031 [ND(0.018)]					The state of the s
Dieldrin	0.036 [ND(0.018)]					
Endosulfan I	ND(0.018) [ND(0.018)]					
Endosulfan II	0.017 J [ND(0.018)]					
Endosulfan Sulfate	ND(0.018) [ND(0.018)]					
Endrin	0.073 [ND(0.018)]					
Endrin Aldehyde	ND(0.018) [0.027]					
Heptachlor	ND(0.018) [ND(0.018)]					
Heptachlor Epoxide	ND(0.018) [ND(0.018)]					
Kepone	ND(0.33) [ND(0.33)]					
Methoxychlor	ND(0.035) [ND(0.035)]					
Toxaphene	ND(0.7) [ND(0.7)]					
Dinoseb	ND(0.34) [ND(0.34)]					

NOTES:

- Samples collected during 9/90 10/90 were collected by Geraghty & Miller, Inc., and submitted to IT Analytical Services for pesticide/herbicide analysis.
- Samples collected during 10/94 were collected by RUST Environment & Infrastructure, Inc., and submitted to CompuChem Environmental Corporation for pesticide/herbicide analysis.
- Samples collected during 8/95 12/95 and 4/96 were collected by Blasland, Bouck & Lee, Inc., and submitted to Quanterra Environmental Services for pesticide/herbicide analysis.
- 4. NA Not analyzed.
- ND(0.32) Compound was analyzed for, but not detected. The number in parenthesis is the detection limit.
- 6. [] Field duplicate analysis.
- 7. ** Higher detection limit due to interference.
- 8. D Analysis was performed at a secondary dilution factor.
- 9. J Indicates an estimated value less than the CLP required quantitation limit.
- P Pesticide analyte is greater than 25 percent difference for the detected concentration between the two GC columns. The lower of the two values is reported.
- 11. * Sample analytical results presented in November 29, 1994 letter report from RUST Environment & Infrastructure to Mr. John D. Ciampa presents compounds with concentrations above laboratory detection limits only. Data is not currently available for remaining compounds.

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 VOLATILES DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

ocation ID:	E-1	E-1	E-2	E-2	E-2	E-2	E-3	E-4	E-5
Depth (ft):	(10-12)	(20-22)	(8-10)	(14-16)	(16-18)	(18-20)	(0-2)	(0-2)	(6-8)
Date:	4/91	4/91	4/91	4/91	4/91	4/91	08/09/95	08/09/95	08/10/95
\cetone	0.053B	0.050B	0.023B	0.019B	0.020B	0.024B	0.011 J	0.015	0.015
Acetonitrile				-	_	-	ND(0.23)	ND(0.24)	ND(0.2)
Benzen e	ND(0.006)	ND(0.013)	ND(0.008)	ND(0.008)	ND(0.005)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.005)
,2-Dichloroethene	ND(0.006)	ND(0.013)	ND(0.008)	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.005)
Carbon Disulfide	ND(0.006)	ND(0.013)	ND(0.008)	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.005)
Chlorobenzene	ND(0.006)	ND(0.013)	ND(0.008)	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.005)
Chloroform	ND(0.006)	ND(0.013)	ND(0.008)	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.005)
-Chloroethylvinylether	ND(0.013)	-	ND(0.015)	ND(0.011)	ND0.01)	ND(0.012)	ND(0.011)	ND(0.012)	ND(0.01)
Carbon Tetrachloride	ND(0.006)	ND(0.013)	ND(0.008)	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.005)
thylbenzene	ND(0.006)	ND(0.013)	ND(0.008)	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.005)
Methylene Chloride	0.061B	0.047B	0.056B	0.025B	0.026B	0.028B	ND(0.006)	ND(0.006)	ND(0.005)
Methyl Ethyl Ketone	ND0.013)	ND(0.013)	ND(0.015)	ND(0.011)	ND(0.01)	ND(0.012)	ND(0.011)	ND(0.012)	ND(0.01)
I-Methyl-2-Pentanone	ND(0.019)	ND(0.013)	ND(0.023)	ND(0.017)	ND(0.015)	ND(0.019)	ND(0.011)	ND(0.012)	ND(0.01)
Frichloroethene	ND0.006)	ND(0.013)	ND(0.008)	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.005)
Toluene	ND(0.006)	ND(0.013)	ND(0.008)	ND(0.006)	ND(0.005)	ND(0.006)	0.0030 J	ND(0.006)	0.002 J
Tetrachloroethene	ND(0.006)	ND0.013)	ND(0.008)	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.005)
,1,2,2-Tetrachloroethane	ND(0.013)	ND(0.013)	ND(0.015)	ND(0.011)	ND(0.01)	ND(0.012)	ND(0.006)	ND(0.006)	ND(0.005)
/inyl Chloride	ND0.013)	ND(0.013)	ND(0.015)	ND(0.011)	ND(0.01)	ND(0.012)	ND(0.006)	ND(0.006)	ND(0.005)
(ylene(total)	ND(0.006)	ND(0.013)	ND(0.008)	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.005)
(ylene(total)	ND(0.006)	ND(0.013)	ND(0.008)						
ocation ID:	E-6	E-7.	ND(0.008) E-8						ND(0.005)
ocation ID: Depth (ft):	E-6 (0-2)	E-7 (4-6)	E-8 (18-20)	ND(0.006) LS-2 (0-4)	ND(0.005) LS-2 (4-8)	ND(0.006) LS-2RE (4-8)	ND(0.006)	ND(0.006)	ND(0.005)
ocation ID: Depth (ft): Date:	E-6	E-7.	E-8	ND(0.006) LS-2	ND(0.005) LS-2	ND(0.006)	ND(0.006)	ND(0.006) LS-2 (18-22)	ND(0.005)
ocation ID: Depth (ft): Date: Acetone	E-6 (0-2)	E-7 (4-6) 08/07/95 0.012	E-8 (18-20)	ND(0.006) LS-2 (0-4)	ND(0.005) LS-2 (4-8)	ND(0.006) LS-2RE (4-8)	ND(0.006) LS-2 (8-12) 8/89	LS-2 (18-22) 8/89	ND(0.005) LS-4 (0-6) 8/89
ocation ID: Depth (ft): Date: Acetone Acetonitrile	E-6 (0-2) 08/16/95 0.018 B ND(0.24)	E-7 (4-6) 08/07/95	E-8 (18-20) 08/09/95	ND(0.006) LS-2 (0-4) 8/89	ND(0.005) LS-2 (4-8) 8/89	ND(0.006) LS-2RE (4-8) 8/89	ND(0.006) LS-2 (8-12)	ND(0.006) LS-2 (18-22)	ND(0.005) LS-4 (0-6)
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.008)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.000)	E-8 (18-20) 08/09/95 0.035	ND(0.006) LS-2 (0-4) 8/89	ND(0.005) LS-2 (4-8) 8/89	ND(0.006) LS-2RE (4-8) 8/89	LS-2 (8-12) 8/89	LS-2 (18-22) 8/89	ND(0.005) LS-4 (0-6) 8/89
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.000) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89	ND(0.005) LS-2 (4-8) 8/89	ND(0.006) LS-2RE (4-8) 8/89	ND(0.006) LS-2 (8-12) 8/89 0.019	LS-2 (18-22) 8/89	ND(0.005) LS-4 (0-6) 8/89
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.000) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005)	ND(0.005) LS-2 (4-8) 8/89 ND(0.005)	ND(0.006) LS-2RE (4-8) 8/89	LS-2 (8-12) 8/89 0.019	LS-2 (18-22) 8/89	LS-4 (0-6) 8/89
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.000) ND(0.006) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005)	ND(0.005) LS-2 (4-8) 8/89 ND(0.005)	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005)	LS-2 (8-12) 8/89 0.019	LS-2 (18-22) 8/89 ND(0.005)	ND(0.005) LS-4 (0-6) 8/89 ND(0.005)
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene ,2-Dichloroethene Carbon Disulfide Chlorobenzene	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.000) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008) ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005) ND(0.005)	ND(0.005) LS-2 (4-8) 8/89 ND(0.005) ND(0.005)	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005) 0.002J	LS-2 (8-12) 8/89 0.019 34D	ND(0.006) LS-2 (18-22) 8/89 ND(0.005) 0.031	ND(0.005) LS-4 (0-6) 8/89 ND(0.005) ND(0.005)
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chloroform 1-Chloroethylvinylether	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.012)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.000) ND(0.006) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005) ND(0.005) ND(0.005)	ND(0.005) LS-2 (4-8) 8/89 ND(0.005) ND(0.005) ND(0.005)	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005) 0.002J ND(0.005)	LS-2 (8-12) 8/89 0.019 34D 0.026	ND(0.006) LS-2 (18-22) 8/89 ND(0.005) 0.031 ND(0.005)	ND(0.005) LS-4 (0-6) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005)
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroethylvinylether Carbon Tetrachloride	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.000) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005)	ND(0.005) LS-2 (4-8) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005) 0.002J ND(0.005) ND(0.01)	LS-2 (8-12) 8/89 0.019 34D 0.026 ND(0.01)	ND(0.006) LS-2 (18-22) 8/89 ND(0.005) 0.031 ND(0.005) ND(0.005)	ND(0.005) LS-4 (0-6) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.001)
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene ,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform -Chloroethylvinylether Carbon Tetrachloride	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.012) ND(0.006) ND(0.006)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.000) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	ND(0.005) LS-2 (4-8) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005) 0.002J ND(0.005) ND(0.01) ND(0.005)	ND(0.006) LS-2 (8-12) 8/89 0.019 34D 0.026 ND(0.01) 4.6D	ND(0.006) LS-2 (18-22) 8/89 ND(0.005) 0.031 ND(0.005) ND(0.01) ND(0.005)	ND(0.005) LS-4 (0-6) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene ,2-Dichloroethene Carbon Disulfide Chloroform -Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005)	ND(0.005) LS-2 (4-8) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.01) ND(0.005) ND(0.005) ND(0.005)	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005) 0.002J ND(0.005) ND(0.01) ND(0.005) ND(0.005)	ND(0.006) LS-2 (8-12) 8/89 0.019 34D 0.026 ND(0.01) 4.6D 0.23E	ND(0.006) LS-2 (18-22) 8/89 ND(0.005) 0.031 ND(0.005) ND(0.01) ND(0.005) 0.005J	ND(0.005) LS-4 (0-6) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene ,2-Dichloroethene Carbon Disulfide Chloroform -Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.000) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	ND(0.005) LS-2 (4-8) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005) 0.002J ND(0.005) ND(0.01) ND(0.005) ND(0.005) ND(0.005) O.006	ND(0.006) LS-2 (8-12) 8/89 0.019 34D 0.026 ND(0.01) 4.6D 0.23E 0.010	ND(0.006) LS-2 (18-22) 8/89 ND(0.005) 0.031 ND(0.005) ND(0.01) ND(0.005) 0.005J 0.004J	ND(0.005) LS-4 (0-6) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene ,2-Dichloroethene Carbon Disulfide Chloroform -Chloroethylvinylether Carbon Tetrachloride Ithylbenzene Methyl-2-Pentanone	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	ND(0.005) LS-2 (4-8) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.01) ND(0.005) ND(0.005) ND(0.005)	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005) 0.002J ND(0.005) ND(0.01) ND(0.005) ND(0.005)	ND(0.006) LS-2 (8-12) 8/89 0.019 34D 0.026 ND(0.01) 4.6D 0.23E 0.010	ND(0.006) LS-2 (18-22) 8/89 ND(0.005) 0.031 ND(0.005) ND(0.01) ND(0.005) 0.005J 0.004J	ND(0.005) LS-4 (0-6) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene ,2-Dichloroethene Carbon Disulfide Chloroform -Chloroethylvinylether Carbon Tetrachloride Ithylbenzene Methyl-2-Pentanone Trichloroethene	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.012) ND(0.012) ND(0.012)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	ND(0.005) LS-2 (4-8) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005) 0.002J ND(0.005) ND(0.005) ND(0.005) ND(0.005)	ND(0.006) LS-2 (8-12) 8/89 0.019 34D 0.026 ND(0.01) 4.6D 0.23E 0.010	ND(0.006) LS-2 (18-22) 8/89 ND(0.005) 0.031 ND(0.005) ND(0.01) ND(0.005) 0.005J 0.004J	ND(0.005) LS-4 (0-6) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene ,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroethylvinylether Carbon Tetrachloride Litylbenzene Methylene Chloride Methyl Ethyl Ketone -Methyl-2-Pentanone Tichloroethene Toluene	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) 0.005	ND(0.005) LS-2 (4-8) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) 0.013	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005) 0.002J ND(0.005) ND(0.005) ND(0.005) ND(0.005) 0.006 0.0014	ND(0.006) LS-2 (8-12) 8/89 0.019 34D 0.026 ND(0.01) 4.6D 0.23E 0.010 0.38E	ND(0.006) LS-2 (18-22) 8/89 ND(0.005) 0.031 ND(0.005) ND(0.01) ND(0.005) 0.005J 0.004J ND(0.005)	ND(0.005) LS-4 (0-6) 8/89 ND(0.005)
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene ,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl KetoneMethyl-2-Pentanone richloroethene Tetrachloroethene Tetrachloroethene	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) 0.009 0.005 0.004J	ND(0.005) LS-2 (4-8) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) 0.008 0.013 0.005	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005) 0.002J ND(0.005) ND(0.005) ND(0.005) ND(0.005) 0.006 0.014 0.004J	ND(0.006) LS-2 (8-12) 8/89 0.019 34D 0.026 ND(0.01) 4.6D 0.23E 0.010 0.38E 0.26E	ND(0.006) LS-2 (18-22) 8/89 ND(0.005) 0.031 ND(0.005) ND(0.01) ND(0.005) 0.005J 0.004J ND(0.005) 0.002J	ND(0.005) LS-4 (0-6) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) O.009 ND(0.005) O.001J
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene ,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroethylvinylether Carbon Tetrachloride Litylbenzene Methylene Chloride Methyl Ethyl Ketone -Methyl-2-Pentanone Tichloroethene Toluene	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.012) ND(0.012) ND(0.012) ND(0.012) ND(0.012) ND(0.012)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.011) ND(0.006) ND(0.011) ND(0.006) ND(0.011) ND(0.006) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) O.010 J ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) O.009 0.005 0.004J ND(0.005)	ND(0.005) LS-2 (4-8) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) 0.008 0.013 0.005 0.002J	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005) 0.002J ND(0.005) ND(0.005) ND(0.005) ND(0.005) 0.006 0.014 0.004J 0.002J	LS-2 (8-12) 8/89 0.019 34D 0.026 ND(0.01) 4.6D 0.23E 0.010 0.38E 0.26E 0.004J	ND(0.006) LS-2 (18-22) 8/89 ND(0.005) 0.031 ND(0.005) ND(0.01) ND(0.005) 0.005J 0.004J ND(0.005) 0.002J ND(0.005)	ND(0.005) LS-4 (0-6) 8/89 ND(0.005)
ocation ID: Depth (ft): Date: Acetone Acetonitrile Benzene ,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl KetoneMethyl-2-Pentanone richloroethene Tetrachloroethene Tetrachloroethene	E-6 (0-2) 08/16/95 0.018 B ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.012) ND(0.006) ND(0.012) ND(0.012) ND(0.006) ND(0.006) ND(0.006)	E-7 (4-6) 08/07/95 0.012 ND(0.22) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.011) ND(0.006) ND(0.011) ND(0.006)	E-8 (18-20) 08/09/95 0.035 ND(0.31) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008) ND(0.008)	ND(0.006) LS-2 (0-4) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) 0.009 0.005 0.004J	ND(0.005) LS-2 (4-8) 8/89 ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) 0.008 0.013 0.005	ND(0.006) LS-2RE (4-8) 8/89 ND(0.005) 0.002J ND(0.005) ND(0.005) ND(0.005) ND(0.005) 0.006 0.014 0.004J	ND(0.006) LS-2 (8-12) 8/89 0.019 34D 0.026 ND(0.01) 4.6D 0.23E 0.010 0.38E 0.26E	ND(0.006) LS-2 (18-22) 8/89 ND(0.005) 0.031 ND(0.005) ND(0.01) ND(0.005) 0.005J 0.004J ND(0.005) 0.002J	ND(0.005) LS-4 (0-6) 8/89 ND(0.005) O.009 ND(0.005) O.001J

MCP PHASE II/RCRA FACILITY INVESTIGATION FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 VOLATILES DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

ocation ID:	LS-4	LS-4	LS-4	LS-7	LS-8	LS-8	LS-8	LS-9	LS-9RE
Depth (ft):	(6-12)	(12-18)	(18-22)	(14-16)	(16-18)	(20-22)	(22-24)	(14-16)	(14-16)
Date:	8/89	8/89	8/89	09-10/90	09-10/90	09-10/90	09-10/90	09-10/90	09-10/90
Acetone				0.01J	ND (1.5)		to the same of the	0.79J	ND(1.8)
Acetonitrile				0.044J	ND(15)			ND(18)	ND(18)
Benzene	0.0043	ND(0.62)	ND(0.025)	ND(0.007)	ND(0.74)	ND(2.5)	ND(0.005)	ND(0.74)	ND(0.74)
1,2-Dichloroethene	**		-		***	**		-	-
Carbon Disulfide		**		ND(0.007)	ND(0.74)	***		ND(0.74)	ND(0.74)
Chlorobenzene	12D	5.3	0.011J	ND(0.007)	8.6	3.3	ND(0.005)	1.0	1.3
Chloroform	ND(0.005)	ND(0.62)	ND(0.025)	0.001J	ND(0.74)	ND(2.5)	ND(0.005)	0.26J	ND(0.74)
2-Chloroethylvinylether	ND(0.01)	ND(1.2)	ND(0.05)	ND(0.013)	1.5	ND(5.0)	ND(0.01)	1.5	1.5
Carbon Tetrachloride	ND(0.005)	1.0	0.045	ND(0.007)	ND(0.74)	ND(2.5)	ND(0.005)	ND(0.74)	ND(0.74)
Ethylbenzene	ND(0.005)	ND(0.62)	ND(0.025)	ND(0.007)	0.44J	28	0.08	2.4	3.9
Methylene Chloride	0.014	0.33J	0.034	0.001J	ND(0.74)	0.88J	0.002J	0.42BJ	0.2J
Methyl Ethyl Ketone	**		~	ND(0.013)	ND(1.5)			ND(1.8)	ND(1.8)
4-Methyl-2-Pentanone	_		-	0.032	ND(1.5)	~	-	ND(1.8)	ND(1.8)
Trichloroethene	ND(0.005)	ND(0.62)	ND(0.025)	ND(0.007)	ND(0.74)	ND(2.5)	ND(0.005)	ND(0.74)	ND(0.74)
Toluene	0.033	0.26J	0.008J	0.005J	ND(0.74)	1.1J	0.003J	ND(0.74)	ND(0.74)
Tetrachloroethene	0.002J	ND(0.62)	ND(0.025)	ND(0.007)	ND(0.74)	ND(2.5)	ND(0.005)	ND(0.74)	ND(0.74)
1,1,2,2-Tetrachloroethane	ND(0.005)	ND(0.62)	ND(0.025)	ND(0.007)	ND(0.74)	ND(2.5)	ND(0.005)	ND(0.74)	ND(0.74)
Vinyl Chloride	ND(0.01)	ND(1.2)	ND(0.05)	ND(0.013)	ND(1.5)	ND(5.0)	ND(0.01)	ND(1.8)	ND(1.8)
Xylene(total)			_	ND(0.007)	7.7			2.2	3.1
	THE TAX AS A SALE OF COMMENTS OF THE SECOND S. AND				100 100 100 100 100 100 100				
Location ID:	LS-9	LS-10	LS-11	LS-11	LS-11	LS-11	LS-11	LS-12	LS-26
Location ID: Depth (ft):	LS-9 (16-18)	LS-10 (10-12)	LS-11 (8-10)	LS-11 (10-12)	LS-11 (12-14)	LS-11 (14-18)	LS-11 (16-18)	LS-12 (20-22)	LS-26 (10-12)
Location ID: Depth (ft): Date:	LS-9	LS-10 (10-12) 09-10/90	LS-11 (8-10) 09-10/90	LS-11 (10-12) 09-10/90	LS-11	LS-11 (14-18) 09-10/90	LS-11	LS-12	LS-26 (10-12) 08/10/95
Location ID: Depth (ft): Date: Acetone	LS-9 (16-18) 09-10/90	LS-10 (10-12) 09-10/90 0.01BJ	LS-11 (8-10) 09-10/90	LS-11 (10-12) 09-10/90 ND(1.9)	LS-11 (12-14)	LS-11 (14-18)	LS-11 (16-18)	LS-12 (20-22)	LS-26 (10-12) 08/10/95 0.023
Location ID: Depth (ft): Date: Acetone Acetonitrile	LS-9 (16-18) 09-10/90	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11)	LS-11 (8-10) 09-10/90	LS-11 (10-12) 09-10/90 ND(1.9) ND(19)	LS-11 (12-14) 09-10/90	LS-11 (14-16) 09-10/90	LS-11 (16-18) 09-10/90	LS-12 (20-22) 09-10/90	LS-26 (10-12) 08/10/95 0.023 ND(0.24)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene	LS-9 (16-18) 09-10/90 0.024J	LS-10 (10-12) 09-10/90 0.01BJ	LS-11 (8-10) 09-10/90 - ND(0.63)	LS-11 (10-12) 09-10/90 ND(1.9)	LS-11 (12-14) 09-10/90 ND(0.63)	LS-11 (14-16) 09-10/90 	LS-11 (16-18) 09-10/90 ND(0.005)	LS-12 (20-22)	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene	LS-9 (16-18) 09-10/90 0.024J	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005)	LS-11 (8-10) 09-10/90 ND(0.63)	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95)	LS-11 (12-14) 09-10/90 ND(0.63)	LS-11 (14-18) 09-10/90 	LS-11 (16-18) 09-10/90 ND(0.005)	LS-12 (20-22) 09-10/90	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(.006)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide	LS-9 (16-18) 09-10/90 0.024J	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005)	LS-11 (8-10) 09-10/90 ND(0.63)	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95)	LS-11 (12-14) 09-10/90 ND(0.63)	LS-11 (14-18) 09-10/90 ND(0.63)	LS-11 (16-18) 09-10/90 ND(0.005)	LS-12 (20-22) 09-10/90 ND(0.025)	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(.006)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene	LS-9 (16-18) 09-10/90 0.024J 0.19	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005) 	LS-11 (8-10) 09-10/90 ND(0.63) 23	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95) 	LS-11 (12-14) 09-10/90 ND(0.63) 13	LS-11 (14-16) 09-10/90 ND(0.63)	LS-11 (16-18) 09-10/90 ND(0.005) 0.051	LS-12 (20-22) 09-10/90 	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(.006) ND(0.006) ND(0.006)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform	LS-9 (16-18) 09-10/90 0.024J 0.19 ND(0.025)	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005) 	LS-11 (8-10) 09-10/90 ND(0.63) 23 ND(0.63)	LS-11 (10-12) 09-10/90 ND(1.9) ND(0.95) ND(0.95) 37D ND(0.95)	LS-11 (12-14) 09-10/90 ND(0.63) 13 ND(0.63)	LS-11 (14-18) 09-10/90 	LS-11 (16-18) 09-10/90 ND(0.005) 0.051 ND(0.005)	LS-12 (20-22) 09-10/90 	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(.006) ND(0.006) ND(0.006) ND(0.006)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether	LS-9 (16-18) 09-10/90 0.024J 0.19 ND(0.025) ND(0.05)	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005) ND(0.005) ND(0.005) 0.001BJ ND(0.011)	LS-11 (8-10) 09-10/90 ND(0.63) 23 ND(0.63) ND(1.3)	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95) 	LS-11 (12-14) 09-10/90 ND(0.63) 13 ND(0.63) ND(1.3)	LS-11 (14-16) 09-10/90 	LS-11 (16-18) 09-10/90 ND(0.005) 0.051 ND(0.005) ND(0.01)	LS-12 (20-22) 09-10/90 	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether Carbon Tetrachloride	LS-9 (16-18) 09-10/90 0.024J 0.19 ND(0.025) ND(0.05) ND(0.025)	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005) ND(0.005) ND(0.005) 0.001BJ ND(0.005)	LS-11 (8-10) 09-10/90 ND(0.63) 23 ND(0.63) ND(1.3) ND(0.63)	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95) 	LS-11 (12-14) 09-10/90 ND(0.63) 13 ND(0.63) ND(1.3) ND(1.3)	LS-11 (14-16) 09-10/90 	LS-11 (16-18) 09-10/90 ND(0.005) 0.051 ND(0.005) ND(0.01) ND(0.005)	LS-12 (20-22) 09-10/90 ND(0.025) ND(0.025) 0.025BJ ND(0.05) 0.31	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene	LS-9 (16-18) 09-10/90 0.024J 0.19 ND(0.025) ND(0.05) ND(0.025) 0.63	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005) ND(0.005) ND(0.005) 0.001BJ ND(0.005) ND(0.005) ND(0.005)	LS-11 (8-10) 09-10/90 ND(0.63) 23 ND(0.63) ND(1.3) ND(0.63) ND(0.63)	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95) 	LS-11 (12-14) 09-10/90 ND(0.63) 13 ND(0.63) ND(1.3) ND(1.3) ND(0.63) 0.23J	LS-11 (14-16) 09-10/90 	LS-11 (16-18) 09-10/90 ND(0.005) 0.051 ND(0.005) ND(0.01) ND(0.005) ND(0.005)	LS-12 (20-22) 09-10/90 	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride	LS-9 (16-18) 09-10/90 0.024J 0.19 ND(0.025) ND(0.05) ND(0.025)	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005) ND(0.005) ND(0.005) 0.001BJ ND(0.005) ND(0.005) ND(0.005) ND(0.005)	LS-11 (8-10) 09-10/90 ND(0.63) 23 ND(0.63) ND(1.3) ND(0.63) ND(0.63) ND(0.63)	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95) 	LS-11 (12-14) 09-10/90 	LS-11 (14-16) 09-10/90 	LS-11 (16-18) 09-10/90 	LS-12 (20-22) 09-10/90 	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone	LS-9 (16-18) 09-10/90 0.024J 0.19 ND(0.025) ND(0.05) ND(0.025) 0.63	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005) 	LS-11 (8-10) 09-10/90 ND(0.63) 23 ND(0.63) ND(1.3) ND(0.63) ND(0.63)	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95) 	LS-11 (12-14) 09-10/90 ND(0.63) 13 ND(0.63) ND(1.3) ND(1.3) ND(0.63) 0.23J	LS-11 (14-16) 09-10/90 	LS-11 (16-18) 09-10/90 ND(0.005) 0.051 ND(0.005) ND(0.01) ND(0.005) ND(0.005)	LS-12 (20-22) 09-10/90 	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone 4-Methyl-2-Pentanone	LS-9 (16-18) 09-10/90 0.024J 0.19 ND(0.025) ND(0.025) ND(0.025) 0.63 ND(0.025)	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005) 	LS-11 (8-10) 09-10/90 	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95) 	LS-11 (12-14) 09-10/90 ND(0.63) 13 ND(0.63) ND(1.3) ND(0.63) 0.23J	LS-11 (14-16) 09-10/90 	LS-11 (16-18) 09-10/90 	LS-12 (20-22) 09-10/90 	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone 1-Methyl-2-Pentanone Trichloroethene	LS-9 (16-18) 09-10/90 0.024J 0.19 ND(0.025) ND(0.025) ND(0.025) 0.63 ND(0.025)	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005) 	LS-11 (8-10) 09-10/90 	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95) 	LS-11 (12-14) 09-10/90 ND(0.63) 13 ND(0.63) ND(1.3) ND(0.63) 0.23J 0.23J	LS-11 (14-16) 09-10/90 	LS-11 (16-18) 09-10/90 	LS-12 (20-22) 09-10/90 	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.012) ND(0.012)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone I-Methyl-2-Pentanone Irichloroethene Toluene	LS-9 (16-18) 09-10/90 0.024J 0.19 ND(0.025) ND(0.025) ND(0.025) 0.63 ND(0.025) ND(0.025) ND(0.025)	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005) 	LS-11 (8-10) 09-10/90 	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95) 	LS-11 (12-14) 09-10/90 ND(0.63) 13 ND(0.63) ND(1.3) ND(0.63) 0.23J 0.23J 0.61J ND(0.63)	LS-11 (14-16) 09-10/90 	LS-11 (16-18) 09-10/90 	LS-12 (20-22) 09-10/90 	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.012) ND(0.012) ND(0.012)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone I-Methyl-2-Pentanone Irichloroethene Ioluene Ietrachloroethene	LS-9 (16-18) 09-10/90 	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005) 	LS-11 (8-10) 09-10/90 	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95) 	LS-11 (12-14) 09-10/90 ND(0.63) 13 ND(0.63) ND(1.3) ND(0.63) 0.23J 0.23J 0.61J ND(0.63) ND(0.63)	LS-11 (14-16) 09-10/90 	LS-11 (16-18) 09-10/90 	LS-12 (20-22) 09-10/90 	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.012) ND(0.012) ND(0.012) ND(0.006) ND(0.006) ND(0.006)
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone 4-Methyl-2-Pentanone	LS-9 (16-18) 09-10/90 0.024J 0.19 ND(0.025) ND(0.025) ND(0.025) 0.63 ND(0.025) ND(0.025) ND(0.025)	LS-10 (10-12) 09-10/90 0.01BJ ND(0.11) ND(0.005) 	LS-11 (8-10) 09-10/90 	LS-11 (10-12) 09-10/90 ND(1.9) ND(19) ND(0.95) 	LS-11 (12-14) 09-10/90 ND(0.63) 13 ND(0.63) ND(1.3) ND(0.63) 0.23J 0.23J 0.61J ND(0.63)	LS-11 (14-16) 09-10/90 	LS-11 (16-18) 09-10/90 	LS-12 (20-22) 09-10/90 	LS-26 (10-12) 08/10/95 0.023 ND(0.24) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.012) ND(0.012) ND(0.012)

MCP PHASE II/RCRA FACILITY INVESTIGATION FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 VOLATILES DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

Location ID:	LS-27	LS-28	LS-29	LS-30	LS-30RE	LS-31	LS-32*	LS-32*	LS-32*
Depth (ft):	(2-4)	(10-12)	(10-12)	(14-16)	(14-16)	(18-20)	(2-4)	(6-8)	(10-12)
Date:	08/11/95	08/14/95	08/08/95	08/14/95	08/14/95	08/15/95	10/12/94	10/12/94	10/12/94
Acetone	0.011 J	0.015 B	0.031	ND(1.5)	ND(1.5)	0.053 BJ		10/12/3-4	10/12/34
Acetonitrile	ND(0.23)	ND(0.21)	ND(0.22)	ND(29)	ND(29)	ND(1.1)			
Benzene	ND(0.006)	ND(0.005)	ND(0.006)	0.49 J	0.41 J	0.028	ND	ND	0.007J
1,2-Dichloroethene	ND(0.006)	ND(0.005)	ND(0.006)	0.22 J	0.18 J	ND(0.028)	0.002J	ND ND	ND
Carbon Disulfide	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.74)	ND(0.74)	0.017 J	<u> </u>	<u> </u>	<u> </u>
Chlorobenzene	ND(0.006)	ND(0.005)	ND(0.006)	29	28	0.6	0.002J	0.071J	0.21
Chloroform	0.0050 J	ND(0.005)	ND(0.006)	ND(0.74)	ND(0.74)	0.26	0.0023	0.0713	<u> </u>
2-Chloroethylvinylether	ND(0.011)	ND(0.011)	ND(0.011)	ND(1.5)	ND(1.5)	ND(0.055)		<u> </u>	
Carbon Tetrachloride	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.74)	ND(0.74)	0.027 J	 		
Ethylbenzene	ND(0.006)	ND(0.005)	ND(0.006)	1.6	1.4	ND(0.028)	ND	0.014J	TND TO
Methylene Chloride	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.74)	ND(0.74)	ND(0.028)			
Methyl Ethyl Ketone	ND(0.011)	ND(0.011)	ND(0.011)	ND(1.5)	0.7 J	ND(0.055)			
4-Methyl-2-Pentanone	ND(0.011)	ND(0.011)	ND(0.011)	ND(1.5)	ND(1.5)	ND(0.055)			
Trichloroethene	0.18	ND(0.005)	ND(0.006)	ND(0.74)	ND(0.74)	0.014 J	9.8D	3.0D	0.11
Toluene	0.0010 J	ND(0.005)	0.0020 J	0.82	0.77	ND(0.028)			
Tetrachloroethene	ND(0.006)	ND(0.005)	ND(0.006)	ND(0.74)	ND(0.74)	ND(0.028)	0.001J	ND	ND
1,1,2,2-Tetrachloroethane	ND(0.006)	ND(0.005)	ND(0.008)	ND(0.74)	ND(0.74)	ND(0.028)			
Vinyl Chloride	ND(0.006)	ND(0.000)	ND(0.006)	ND(0.74)	ND(0.74)	ND(0.028)			1
Xylene(total)	ND(0.006)	ND(0.005)	ND(0.006)	20	17	0.54 B	ND	ND	0.002J
Location ID:	L\$-32*	T 10 000							
		LS-32*	LS-32*	L8-33*	LS-33*	LS-33*	LS-34	LS-35	LS-36
Depth (ft): Date:	(12-14) 10/12/94	(14-16) 10/12/94	(16-18)	(6-8)	(14-16)	(16-18)	(22-24)	(12-14)	(16-18)
(C. 4) (C. 4) (C. 4) (C. 4)	10/12/84	10/12/94	10/12/94	10/12/94	10/12/94	10/12/94	12/14/95	08/15/95	08/07/95
Acetone							ND(0.054)	0.37 BJ	0.027
Acetonitrile	7 2 3 8 7					•	ND(1.1)	ND(30)	ND(0.25)
Benzene	0.007J	0.008J	0.005J	ND	ND	ND	ND(0.027)	ND(0.75)	ND(0.006)
1,2-Dichloroethene Carbon Disulfide	ND	0.002J	ND	ND	ND	ND	ND(0.027)	ND(0.75)	ND(0.006)
Chlorobenzene	0.29	0.52D					ND(0.027)	ND(0.75)	ND(0.006)
Chloroform	0.29	0.520	0.11D	ND	3.5	3.5	0.010 J	16	ND(0.006)
2-Chloroethylvinylether					<u> </u>		0.12	ND(0.75)	0.0020 J
Carbon Tetrachloride							ND(0.054)	ND(1.5)	ND(0.012)
Ethylbenzene	0.002J	0.024	115				0.87	ND(0.75)	ND(0.006)
	0.0023	0.024	ND	ND	0.2J	0.17	0.030	ND(0.75)	ND(0.006)
Mathylana Chlarida									
Methylene Chloride							ND(0.027)	ND(0.75)	ND(0.006)
Methyl Ethyl Ketone							ND(0.054)	ND(1.5)	ND(0.012)
Methyl Ethyl Ketone 4-Methyl-2-Pentanone	0.0161	0.0000	0.1105				ND(0.054) ND(0.054)	ND(1.5) ND(1.5)	ND(0.012) ND(0.012)
Methyl Ethyl Ketone 4-Methyl-2-Pentanone Trichloroethene	0.016J	0.098D	0.410D	ND ND	ND ND	ND	ND(0.054) ND(0.054) 0.69	ND(1.5) ND(1.5) ND(0.75)	ND(0.012) ND(0.012) ND(0.006)
Methyl Ethyl Ketone 4-Methyl-2-Pentanone Trichloroethene Toluene	0.016J ND	0.098D 0.007J	0.410D ND	ND ND	ND ND	ND ND	ND(0.054) ND(0.054) 0.69 0.009J	ND(1.5) ND(1.5) ND(0.75) ND(0.75)	ND(0.012) ND(0.012) ND(0.006) 0.0020J
Methyl Ethyl Ketone 4-Methyl-2-Pentanone Trichloroethene Toluene Tetrachloroethene							ND(0.054) ND(0.054) 0.69 0.009J 0.027	ND(1.5) ND(1.5) ND(0.75) ND(0.75) ND(0.75)	ND(0.012) ND(0.012) ND(0.006) 0.0020J ND(0.006)
Methyl Ethyl Ketone 4-Methyl-2-Pentanone Trichloroethene Toluene Tetrachloroethene 1,1,2,2-Tetrachloroethane							ND(0.054) ND(0.054) 0.69 0.009J 0.027 ND(0.027)	ND(1.5) ND(1.5) ND(0.75) ND(0.75) ND(0.75) ND(0.75)	ND(0.012) ND(0.012) ND(0.006) 0.0020J ND(0.006) ND(0.006)
Methyl Ethyl Ketone 4-Methyl-2-Pentanone Trichloroethene Toluene Tetrachloroethene							ND(0.054) ND(0.054) 0.69 0.009J 0.027	ND(1.5) ND(1.5) ND(0.75) ND(0.75) ND(0.75)	ND(0.012) ND(0.012) ND(0.006) 0.0020J ND(0.006)

MCP PHASE II/RCRA FACILITY INVESTIGATION FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 VOLATILES DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

Location ID:	LS-37	LS-38	LS-39	LS-40	LS-42	LS-43	LS-44	LS-45	LS-SOIL
Depth (ft):	(6-8)	(16-18)	(10-12)	(10-12)	(20-22)	(22-24)	(22-24)	(10-12)	(SURFACE)
Date:	08/08/95	08/14/95	08/10/95	08/10/95	04/23/96	04/24/96	04/24/96	04/25/96	09-10/90
Acetone	0.022	0.079 B	0.010 J	0.013	0.009J	ND(1.5)	0.04	0.053	ND(0.01)
Acetonitrile	ND(0.22)	ND(1.2)	ND(0.23)	ND(0.23)	ND(0.23)	ND(29)	ND(0.26)	ND(0.27)	ND(0.1)
Benzene	ND(0.005)	0.1	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.74)	ND(0.006)	ND(0.007)	ND(0.005)
1,2-Dichloroethene	ND(0.005)	0.019 J	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.74)	ND(0.006)	ND(0.007)	ND(0.005)
Carbon Disulfide	ND(0.005)	ND(0.03)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.74)	ND(0.006)	ND(0.007)	ND(0.005)
Chlorobenzene	ND(0.005)	0.95	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.74)	ND(0.006)	ND(0.007)	0.021
Chloroform	ND(0.005)	ND(0.03)	ND(0.006)	ND(0.006)	ND(0.006)	6.6	ND(0.006)	ND(0.007)	ND(0.005)
2-Chloroethylvinylether	ND(0.011)	ND(0.06)	ND(0.012)	ND(0.011)	ND(0.011)	ND(1.5)	ND(0.013)	ND(0.014)	ND(0.01)
Carbon Tetrachloride	ND(0.005)	ND(0.03)	ND(0.006)	ND(0.006)	ND(0.006)	2.7	ND(0.006)	ND(0.007)	ND(0.005)
Ethylbenzene	ND(0.005)	0.023 J	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.74)	ND(0.006)	0.036	ND(0.005)
Methylene Chloride	ND(0.005)	ND(0.03)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.74)	ND(0.006)	ND(0.007)	0.009
Methyl Ethyl Ketone	ND(0.011)	ND(0.06)	ND(0.012)	0.0010 J	ND(0.011)	ND(1.5)	ND(0.013)	ND(0.014)	ND(0.01)
4-Methyl-2-Pentanone	ND(0.011)	ND(0.06)	ND(0.012)	ND(0.011)	ND(0.011)	ND(1.5)	ND(0.013)	ND(0.014)	ND(0.01)
Trichloroethene	ND(0.005)	ND(0.03)	ND(0.006)	ND(0.006)	ND(0.006)	2.3	ND(0.006)	ND(0.007)	ND(0.005)
Toluene	0.0040 J	ND(0.03)	0.0030 J	0.0030 J	ND(0.006)	ND(0.74)	ND(0.006)	ND(0.007)	ND(0.005)
Tetrachloroethene	ND(0.005)	ND(0.03)	ND(0.006)	ND(0.006)	ND(0.006)	0.19J	ND(0.006)	ND(0.007)	ND(0.005)
1,1,2,2-Tetrachloroethane	ND(0.005)	ND(0.03)	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.74)	ND(0.006)	ND(0.007)	0.005
Vinyl Chloride	ND(0.005)	0.011 J	ND(0.006)	ND(0.006)	ND(0.006)	ND(0.74)	ND(0.006)	ND(0.007)	ND(0.01)
Xylene(total)	ND(0.005)	0.13 B	ND(0.006)	ND(0.006)	ND(0.006)	1.7X	ND(0.006)	0.023X	ND(0.005)
						*	1 0 1000 11 10 1000 11 1100 10		
Location ID:	LS-C-11	LS-C-12	LS-C-13	LS-C-18	LS-GWP-33	LS-G\	MP-34	LS-GWP-34 RE	
Location ID: Depth (ft):	LS-C-11 (0-0.5)	(0-0.5)	LS-C-13 (0-0.5)	(0-0.5)	(0-0.5)		C M colds for the same of Shinayon, And		
Location ID:	LS-C-11		LS-C-13			(0-1	MP-34	LS-GWP-34 RE (0-0.5) 08/30/95	
Location ID: Depth (ft): Date: Acetone	LS-C-11 (0-0.5) 08/30/95 0.046 B	(0-0.5) 08/30/95 0.050 B	LS-C-13 (0-0.5) 08/30/95 0.053 B	(0-0.5) 08/30/95 0.031 B	(0-0.5) 08/30/95	(0-1 08/3	MP-34 0.5) 0/95	(0-0.5) 08/30/95	
Location ID: Depth (ft): Date:	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2)	(0-0.5) 08/30/95	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23)	(0-0.5) 08/30/95	(0-0.5)	(0- 08/3 0.033 B	MP-34 0.5) 0/95 [0.064 B]	(0-0.5) 08/30/95 0.078 B	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21)	(0- 08/3 0.033 B ND(0.2)	MP-34 0.5) 10/95 [0.064 B] [ND(0.21)]	(0-0.5) 08/30/95 0.078 B ND(0.2)	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005) ND(0.005)	(0- 08/3 0.033 B ND(0.2) ND(0.005)	MP-34 0.5) 10/95 [0.064 B] [ND(0.21)] [ND(0.005)]	(0-0.5) 08/30/95 0.078 B	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005) ND(0.005) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005) ND(0.005) ND(0.005)	(0-1 08/3 0.033 B ND(0.2) ND(0.005) ND(0.005)	MP-34 0.5) 10/95 [0.064 B] [ND(0.21)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005)	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-1 08/3 0.033 B ND(0.2) ND(0.005) ND(0.005) ND(0.005)	MP-34 0.5) 10/95 [0.064 B] [ND(0.21)] [ND(0.005)] [ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005) ND(0.005)	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005) ND(0.005) ND(0.005)	(0-1 08/3 0.033 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	MP-34 0.5) 10/95 [0.064 B] [ND(0.21)] [ND(0.005)] [ND(0.005)] [ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005) ND(0.005) ND(0.005)	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-1 08/3 0.033 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	MP-34 0.5) 10/95 [0.064 B] [ND(0.21)] [ND(0.005)] [ND(0.005)] [ND(0.005)] [ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether Carbon Tetrachloride	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-1 08/3 0.033 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	MP-34 0.5) 0/95 [0.064 B] [ND(0.21)] [ND(0.005)] [ND(0.005)] [ND(0.005)] [ND(0.005)] [ND(0.005)] [ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-1 08/3 0.033 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.001) ND(0.005)	MP-34 0.5) 10/95 [0.064 B] [ND(0.21)] [ND(0.005)] [ND(0.005)] [ND(0.005)] [ND(0.005)] [ND(0.005)] [ND(0.005)] [ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-4 08/3 0.033 B ND(0.02) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	MP-34 0.5) 10.064 B] (ND(0.21)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.001)] (ND(0.005)] (ND(0.005)] (ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.011) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-4 08/3 0.033 B ND(0.02) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	MP-34 0.5) 10/95 [0.064 B] [ND(0.21)] [ND(0.005)] [ND(0.005)] [ND(0.005)] [ND(0.005)] [ND(0.005)] [ND(0.005)] [ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.01) ND(0.005) ND(0.005)	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methyl Ethyl Ketone 4-Methyl-2-Pentanone	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.0011) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.001) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.001) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-4 08/3 0.033 B ND(0.02) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	MP-34 0.5) 10.064 B] (ND(0.21)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.001)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone 4-Methyl-2-Pentanone Trichloroethene	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.0011) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005)	(0-4 08/3 0.033 B ND(0.02) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	MP-34 0.5) 10.064 B] (ND(0.21)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)] (ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.01) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone 4-Methyl-2-Pentanone Trichloroethene Toluene	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.011) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005)	(0-4 08/3 0.033 B ND(0.02) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	MP-34 0.5) 10/95 [0.064 B] [ND(0.21)] [ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005) ND(0.01) ND(0.01) ND(0.01) ND(0.005) 0.002 J	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone 4-Methyl-2-Pentanone Trichloroethene Toluene Tetrachloroethene	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.01) ND(0.01) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.011) ND(0.006) ND(0.011) ND(0.011) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005)	(0-4 08/3 0.033 B ND(0.02) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005)	MP-34 0.5) 10/95 [0.064 B] [ND(0.21)] [ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005)	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone 4-Methyl-2-Pentanone Trichloroethene Toluene Tetrachloroethene 1,1,2,2-Tetrachloroethane	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.001) ND(0.001) ND(0.005) ND(0.005) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.011) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005)	(0-4 08/3 0.033 B ND(0.02) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.01) ND(0.01) ND(0.01) ND(0.01) ND(0.005)	MP-34 0.5) 10/95 [0.064 B] [ND(0.21)] [ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005) ND(0.01) ND(0.01) ND(0.01) ND(0.005) O.002 J	
Location ID: Depth (ft): Date: Acetone Acetonitrile Benzene 1,2-Dichloroethene Carbon Disulfide Chlorobenzene Chloroform 2-Chloroethylvinylether Carbon Tetrachloride Ethylbenzene Methylene Chloride Methyl Ethyl Ketone 4-Methyl-2-Pentanone Trichloroethene Toluene Tetrachloroethene	LS-C-11 (0-0.5) 08/30/95 0.046 B ND(0.2) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.01) ND(0.01) ND(0.005)	(0-0.5) 08/30/95 0.050 B ND(0.21) ND(0.005)	LS-C-13 (0-0.5) 08/30/95 0.053 B ND(0.23) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.006) ND(0.011) ND(0.006) ND(0.011) ND(0.011) ND(0.006)	(0-0.5) 08/30/95 0.031 B ND(0.21) ND(0.005)	(0-0.5) 08/30/95 0.028 B ND(0.21) ND(0.005)	(0-4 08/3 0.033 B ND(0.02) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.005) ND(0.01) ND(0.01) ND(0.01) ND(0.01) ND(0.01) ND(0.01) ND(0.01) ND(0.01) ND(0.005) ND(0.005)	MP-34 0.5) 10/95 [0.064 B] [ND(0.21)] [ND(0.005)]	(0-0.5) 08/30/95 0.078 B ND(0.2) ND(0.005)	

MCP PHASE II/RCRA FACILITY INVESTIGATION FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 VOLATILES DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

NOTES:

- Samples collected during 8/89, 9/90 10/90 were collected by Geraghty & Miller, Inc., and submitted to IT Analytical Services for VOC analysis.
- Samples collected during 4/91 were collected by Geraghty & Miller, Inc., and submitted to CompuChem Environmental Services for VOC analysis.
- Samples collected during 10/94 were collected by Rust Environment & Infrastructure, Inc., and submitted to CompuChem Environmental Services for VOC analysis.
- Samples collected during 8/95 12/95 and 4/96 were collected by Blastand, Bouck & Lee, Inc., and submitted to Quanterra Environmental Services for VOC analysis.
- 5. = Data not reported by laboratory.
- 6. NA Not analyzed.
- ND(0.32) Compound was analyzed for, but not detected. The number in parenthesis is the detection limit.
- 8. [] Field duplicate analysis.
- 9. J Indicates an estimated value less than the CLP required quantitation limit.
- 10. D Analysis was performed at a secondary dilution factor.
- 11. B Indicates the compound was found in the associated blank as well as in the sample.
- 12. E Compound exceeded calibration range.
- 13. X Data has been manually integrated.
- 14. RE = Reanalysis
- 15. * Sample analytical results presented in November 29, 1994 letter report from RUST Environment & Infrastructure to Mr. John D. Clampa presents compounds with concentrations above laboratory detection limits only. Data is not currently available for remaining compounds.

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOILS APPENDIX IX+3 SEMIVOLATILES DATA (Results presented in dry weight parts per million, ppm)

Location ID: Depth (ft):	E-1 (10-12)	E-1	E-2	E-3RE	E-4	E-5RE	E-6	E-7	E-8RE	LS-2	LS-2
		(20-22)	(8-10)	(0-2)	(0-2)	(6-8)	(0-2)	(4-6)	(18-20)	(0-4)	(4-8)
Date:	4/91	4/91	4/91	08/09/95	08/09/95	08/10/95	08/16/95	08/07/95	08/09/95	8/89	8/89
Acenaphthene	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)			
Acenaphthylene	ND(0.41)	ND(0.44)	ND(0.5)	11	1.2	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5) ND(0.5)	ND(7.8)	ND(2.0)
Acetophenone	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)		6.1J	0.61J
Aniline	ND(0.41)	ND(0.44)	0.12J	3.9	2.4	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)		
Anthracene	ND(0.41)	ND(0.44)	ND(0.5)	0.47	0.52	0.077J	0.062 J	ND(0.39)	ND(0.5) ND(0.5)		
Benzo(b)Fluoranthene	0.22J	ND(0.44)	0.42J	2.3	3.5	0.23J	0.002 J	ND(0.39)	ND(0.5)	5.3J	0.49J
Butyl Benzyl Phthalate	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	5.3J	0.54J
Benzo(a)Anthracene	0.082J	ND(0.44)	0.14J	2.2	3.4	0.19J	0.26 J	ND(0.39)	ND(0.5)		
Dibenzofuran	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	0.19 J	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	8.2	1.2J
Benzidin e	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5) ND(0.5)	ND/200	
Benzo(ghi)Perylene	ND(0.41)	ND(0.44)	0.17J	1.2	0.83	0.16J	0.18 J	ND(0.39)		ND(39)	ND(9.8)
Benzo(a)Pyrene	0.083J	0.49	0.21J	3.3	2.5	0.19J	0.16 J	ND(0.39)	ND(0.5) 0.96	3.2J	0.33J
Benzo(k)Fluoranthene	0.22J	ND(0.44)	0.42J	1.8	2.4	0.173	0.27 J	ND(0.39)		5.0J	0.43J
Di-n-Butyl Phthalate	ND(0.41)	ND(0.44)	ND(0.5)	0.48B	0.48 B	0.2BJ	0.12 BJ	0.12 BJ	ND(0.5)	4.4J	0.48J
Dibenz(a,h)Anthracene	ND(0.41)	ND(0.44)	ND(0.5)	0.38	0.50	ND(0.36)	ND(0.38)		0.28BJ	ND(7.8)	0.66J
Chrysen e	0.11J	ND(0.44)	0.2J	2.7	4.3	0.24J	0.37 J	ND(0.39)	ND(0.5)	1.4J	ND(2.0)
1,2,4-Trichlorobenzene	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	7.4J	0.85J
3,3-Dichlorobenzidine	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.74)	ND(0.77)	ND(0.72)	ND(0.38) ND(0.77)	ND(0.39)	ND(0.5)	ND(7.8)	0.33J
Bis(2-Ethylhexyl)Phthalate	0.18J	0.055J	0.18J	0.14J	ND(0.38)	ND(0.38)	ND(0.77)	ND(0.78)	ND(1.0)	ND(16)	ND(3.9)
Ethyl Methanesulfonate	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	ND(7.8)	0.38J
Fluoranthene	0.11J	ND(0.44)	0.27J	2.6	3.5	0.36	0.53	ND(0.39)	ND(0.5)		
Fluorene	ND(0.41)	ND(0.44)	ND(0.5)	0.13J	0.47	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	17	ND(2.0)
Hexachloroethane	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	2.5J	0.53J
Indeno(1,2,3-cd)Pyrene	ND(0.41)	ND(0.44)	0.13J	1.1	0.89	0.14J	0.15 J	ND(0.39)	ND(0.5)	ND(7.8)	ND(2.0)
1,3-Dichlorobenzene	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	2.6J	0.28J
1-Methylnaphthalene	ND(0.41)	ND(0.44)	ND(0.5)		140(0.00)	140(0.30)	ND(0.36)	ND(0.39)	ND(0.5)	ND(7.8)	ND(2.0)
2-Methylnaphthalene	ND(0.41)	ND(0.44)	ND(0.5)	0.27J	0.16 J	ND(0.36)	ND(0.38)	MD/0.20	TID (A E)	**	
Naphthalene	ND(0.41)	ND(0.44)	ND(0.5)	0.087J	0.068 J	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)		
Nitrobenzene	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	ND(7.8)	ND(2.0)
n-Nitrosodiphenylamine	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	ND(7.8)	ND(2.0)
5-Nitro-o-toluidine	ND(0.82)	ND(0.88)	ND(0.99)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	ND(7.8)	ND(2.0)
Di-n-Octyl Phthalate	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)		ND(0.38)	ND(0.39)	ND(0.5)	**	
1,2-Dichlorobenzene	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)	ND(0.36) ND(0.36)	ND(0.38)	0.18 J	ND(0.5)	ND(7.8)	ND(2.0)
1,4-Dichlorobenzene	ND(0.41)	ND(0.44)	ND(0.5)	ND(0.37)	ND(0.38)		ND(0.38)	ND(0.39)	ND(0.5)	ND(7.8)	ND(2.0)
Phenanthrene	0.058J	ND(0.44)	0.15J	1.2		ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	ND(7.8)	ND(2.0)
Phenol	ND(0.41)	ND(0.44)	0.15J	ND(0.37)	0.93	0.31J	0.31 J	ND(0.39)	ND(0.5)	21	2.8
Phenols(TOTAL)	ND(0.13)	ND(0.15)	0.0013		ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	ND(7.8)	ND(2.0)
Pyrene	0.11J	ND(0.13)	0.22J	3.6						**	
,2,4,5-Tetrachlorobenzene	ND(0.41)	ND(0.44)	ND(0.5)		4.6	0.32J	0.62	ND(0.39)	ND(0.5)	18	ND(2.0)
See Notes on Page 6 of 6)	1 110(0.71)	140(0.44)	เหม(บ.อ)	ND(0.37)	ND(0.38)	ND(0.36)	ND(0.38)	ND(0.39)	ND(0.5)	***	

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOILS APPENDIX IX+3 SEMIVOLATILES DATA (Results presented in dry weight parts per million, ppm)

Location ID:	LS-2	LS-2	LS-4	LS-4	LS-4	LS-4	LS-7	LS-8	LS-9	LS-10	LS-11
Depth (ft):	(8-12)	(18-22)	(0-6)	(6-12)	(12-18)	(18-22)	(14-16)	(16-18)	(14-16)	(10-12)	(10-12)
Date:	8/89	8/89	8/89	8/89	8/89	8/89	09-10/90	09-10/90	09-10/90	09-10/90	09-10/90
Acenaphthene	5.8J	ND(0.97)	ND(4.0)	1.1J	1.3J	0.2J	ND(2.2)	3.7	47D	ND(1.1)	ND(4.9)
Acenaphthele Acenaphthylene	ND(16)	ND(0.97)	6.4	4.6	1.7J	0.25 0.36J	0.35J	0.69J	5.7	ND(1.1)	ND(4.9)
Acetophenone	HD(10)	-	- 0.4			0.303	ND(2.2)	ND(1.9)	ND(2.3)	ND(1.1)	ND(4.9)
Aniline							ND(2.2)	ND(1.9)	ND(12)	ND(5.6)	ND(25)
Anthracene	5.8J	ND(0.97)	5.2	5.3	3.4	0.69J	0.25J	ND(1.9)	33	ND(1.1)	ND(4.9)
Benzo(b)Fluoranthene	ND(16)	ND(0.97)	4.9	5.8	1.9J	0.32J	0.253 0.44J	1.1J	5.5	ND(1.1)	1.0J
Butyl Benzyl Phthalate	140(10)	ND(0.91)	4.5		1.83		ND(2.2)	ND(1.9)	ND(2.3)	ND(1.1)	ND(4.9)
Benzo(a)Anthracene	ND(16)	ND(0.97)	9.0	10	3.8	0.66J	0.52J	ND(1.9)	17	ND(1.1)	ND(4.9)
Dibenzofuran	ND(10)	ND(0.91)	9.0		3.0	0.003	ND(2.2)	0.77J	1.9J	ND(1.1)	ND(4.9)
Benzidine	ND(79)	ND(4.9)	ND(20)	ND(19)	ND(14)	ND(4.9)	ND(11)	ND(9.4)	ND(11)	ND(5.2)	ND(24)
	ND(16)	ND(0.97)	4.3	2.9J	1.2J	0.26J		ND(1.9)	4.7	ND(3.2)	ND(4.9)
Benzo(ghi)Perylene	ND(16)	ND(0.97)	5.0	4.0	2.4J	0.263 0.59J	ND(2.2) 0.42J	1.3J	13	ND(1.1)	ND(4.9)
Benzo(a)Pyrene Benzo(k)Fluoranthene	ND(16)	ND(0.97)	5.6	4.3	1.6J	0.36J	0.423 0.53J	1.1J	10	ND(1.1)	0.62J
			ND(4.0)	ND(3.9)	ND(2.9)			ND(1.9)	ND(2.3)	0.13J	ND(4.9)
Di-n-Butyl Phthalate	ND(16)	ND(0.97)	ND(4.0)	ND(3.9)	ND(2.9)	ND(0.98)	ND(2.2) ND(2.2)	ND(1.9)	ND(2.3)	ND(1.1)	ND(4.9)
Dibenz(a,h)Anthracene	ND(16)	ND(0.97)	ND(4.0)	ND(3.9)	ND(2.9)	ND(0.98)	0.60J			ND(1.1)	ND(4.9)
Chrysene	4.6J	ND(0.97)	7.3	6.8 ND(3.9)	3.0 1.7J	ND(0.98)		2.4 0.43J	15 ND(2.3)	ND(1.1)	89E
1,2,4-Trichlorobenzene	300D	ND(0.97)	ND(4.0) ND(8.0)	ND(3.9)	ND(5.8)	0.92J ND(2.0)	ND(2.2) ND(4.4)	ND(3.9)	ND(4.6)	ND(1.1) ND(2.2)	ND(9.9)
3,3-Dichlorobenzidine	ND(32)	ND(1.9)		0.85J		0.12J	0.76J		1.0J	0.42J	ND(9.9) ND(4.9)
Bis(2-Ethylhexyl)Phthalate	ND(16)	0.31J	ND(4.0)	U.00J	0.43J			1.8 ND(1.9)	ND(2.3)	ND(1.1)	ND(4.9)
Ethyl Methanesulfonate Fluoranthene	ND(18)	ND(0.97)	20	18	5.7	1.1	ND(2.2) 0.93J		31	ND(1.1)	ND(4.9)
	3.8J	ND(0.97)	2.5J	3.1J	3.2	0.84J		ND(1.9)	24	ND(1.1)	ND(4.9) ND(4.9)
Fluorene			ND(4.0)		ND(2.9)		ND(2.2)	2.5	ND(2.3)		
Hexachloroethane	ND(16)	ND(0.97)		ND(3.9)		ND(0.98)	ND(2.2)	ND(1.9)	3.9	ND(1.1)	ND(4.9) ND(4.9)
Indeno(1,2,3-cd)Pyrene	ND(16)	ND(0.97)	3.3J	2.3J	0.96J	0.19J	0.26J	0.46J		ND(1.1)	
1,3-Dichlorobenzene	32	ND(0.97)	ND(4.0)	0.76J	ND(2.9)	ND(0.98)	ND(2.2)	2.8	0.29J	ND(1.1)	ND(4.9)
1-Methylnaphthalene	-						ND/O O	8.6	32	ND/4 4	1.0J
2-Methylnaphthalene	-		11577.65				ND(2.2)			ND(1.1)	
Naphthalene	21	ND(0.97)	ND(4.0)	0.66J	26	5.9	ND(2.2)	3.8	91D	ND(1.1)	0.93J
Nitrobenzene	2.1J	ND(0.97)	ND(4.0)	ND(3.9)	ND(2.9)	ND(0.98)	ND(2.2)	ND(1.9)	ND(2.3)	ND(1.1)	ND(4.9) ND(4.9)
n-Nitrosodiphenylamine	ND(16)	ND(0.97)	ND(4.0)	ND(3.9)	ND(2.9)	ND(0.98)	ND(2.2)	ND(1.9)	1.9J	ND(1.1)	
5-Nitro-o-toluidine						-	ND(4.4)	ND(3.9)	ND(4.7)	ND(2.2)	ND(10)
Di-n-Octyl Phthalate	ND(16)	ND(0.97)	ND(4.0)	ND(3.9)	ND(2.9)	ND(0.98)	ND(2.2)	ND(1.9)	ND(2.3)	ND(1.1)	ND(4.9)
1,2-Dichlorobenzene	3.7J	ND(0.97)	ND(4.0)	ND(3.9)	ND(2.9)	ND(0.98)	ND(2.2)	ND(1.9)	ND(2.3)	ND(1.1)	1.4J
1,4-Dichlorobenzene	220	ND(0.97)	ND(4.0)	4.0	1.4J	ND(0.98)	ND(2.2)	2.2	ND(2.3)	ND(1.1)	1.3J
Phenanthrene	20	ND(0.97)	23	24	13	3.5	0.94J	15	110D	ND(1.1)	ND(4.9)
Phenol	ND(16)	ND(0.97)					ND(2.2)	ND(1.9)	ND(2.3)	ND(1.1)	ND(4.9)
Phenols(TOTAL)	_						-				
Pyrene	23	ND(0.97)	18	15	7.6	1.9	1.4J	ND(1.9)	80D	ND(1.1)	ND(4.9)
1,2,4,5-Tetrachlorobenzene	-						ND(2.2)	ND(1.9)	ND(2.3)	ND(1.1)	1.7J

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOILS APPENDIX IX+3 SEMIVOLATILES DATA

(Results presented in dry weight parts per million, ppm)

Location ID:	LS-26	LS-27	LS-28	LS-29	LS-30	LS-31	LS-32*	LS-33*	LS-34	LS-35	LS-36
Depth (ft):	(10-12)	(2-4)	(10-12)	(10-12)	(14-16)	(18-20)	(2-4)	(16-18)	(22-24)	(12-14)	(16-18)
Date:	08/10/95	08/11/95	08/14/95	08/08/95	08/14/95	08/15/95	10/12/94	10/12/94	12/14/95	08/15/95	08/07/95
Acenaphthene	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	7.4 J	ND	0.510J	ND(29)	ND(2.0)	ND(0.39)
Acenaphthylene	ND(0.41)	1.9 J	0.065 J	ND(0.36)	ND(0.39)	ND(8.0)			ND(29)	ND(2.0)	ND(0.39)
Acetophenone	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)	ND	0.090J	ND(29)	ND(2.0)	ND(0.39)
Aniline	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)	0.750J	ND	ND(29)	ND(2.0)	ND(0.39)
Anthracene	0.16 J	3.0	0.073 J	0.15 J	ND(0.39)	15	0.430J	0.310J	29	ND(2.0)	ND(0.39)
Benzo(b)Fluoranthene	0.082 J	5.7	0.13 J	0.87	ND(0.39)	7.9 J			ND(29)	ND(2.0)	0.11 J
Butyl Benzyl Phthalate	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)			ND(29)	ND(2.0)	ND(0.39)
Benzo(a)Anthracene	0.12 J	8.8	0.14 J	0.76	ND(0.39)	14	2.50J	0.140J	ND(29)	ND(2.0)	0.14 J
Dibenzofuran	ND(0.41)	0.64 J	ND(0.37)	ND(0.36)	ND(0.39)	9.0	ND	0.083J	ND(29)	ND(2.0)	ND(0.39)
Benzidine	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)	· · · ·		ND(29)	ND(2.0)	ND(0.39)
Benzo(ghi)Perylene	ND(0.41)	4.0	ND(0.37)	0.32 J	ND(0.39)	5.2 J	1.50J	ND	ND(29)	ND(2.0)	ND(0.39)
Benzo(a)Pyrene	ND(0.41)	5.5	ND(0.37)	0.74	ND(0.39)	8.4	2.10J	0.056J	ND(29)	ND(2.0)	0.14 J
Benzo(k)Fluoranthene	0.086 J	4.2	0.12 J	0.60	ND(0.39)	7.3 J	5.80J	0.240J	ND(29)	ND(2.0)	0.14 J
Di-n-Butyl Phthalate	0.18 BJ	ND(2.2)	0.11 BJ	0.22 BJ	ND(0.39)	ND(8.0)		0.2100	ND(29)	ND(2.0)	0.088 BJ
Dibenz(a,h)Anthracene	ND(0.41)	1.6 J	ND(0.37)	0.18 J	ND(0.39)	2.8 J	0.39J	ND	ND(29)	ND(2.0)	ND(0.39)
Chrysene	0.16 J	9.8	0.17 J	1.0	ND(0.39)	14	2.20J	0.120J	ND(29)	ND(2.0)	0.26 J
1,2,4-Trichlorobenzene	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	4.7	7.0 J	3.10J	ND ND	140	ND(2.0)	ND(0.39)
3,3-Dichlorobenzidine	ND(0.82)	ND(4.4)	ND(0.75)	ND(0.73)	ND(0.78)	ND(16)	0.100		ND(58)	ND(4.0)	ND(0.39)
Bis(2-Ethylhexyl)Phthalate	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)	1.20J	0.140J	ND(29)	ND(2.0)	ND(0.78)
Ethyl Methanesulfonate	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)	1.2.00	0.1403	ND(29)	ND(2.0)	ND(0.39)
Fluoranthene	0.19 J	21	0.20 J	1.4	ND(0.39)	43	3.30J	0.360J	ND(29)	ND(2.0)	0.30 J
Fluorene	ND(0.41)	1.8 J	ND(0.37)	ND(0.36)	0.87	12	ND	0.48J	ND(29)	ND(2.0)	ND(0.39)
Hexachloroethane	ND(0.41)	2.2	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)	110	0.703	29	ND(2.0)	ND(0.39)
Indeno(1,2,3-cd)Pyrene	ND(0.41)	3.4	ND(0.37)	0.32 J	ND(0.39)	5.0 J	1.20J	ND	ND(29)	ND(2.0)	ND(0.39)
1,3-Dichlorobenzene	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	2.9	ND(8.0)	ND ND	0.170J	ND(29)	1.7 J	
1-Methylnaphthalene						110(0.0)	ND	0.1703 0.94J	ND(29)		ND(0.39)
2-Methylnaphthalene	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	4.9	7.2 J	ND	0.590J	ND(29)	ND(2.0)	NO/0.20\
Naphthalene	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	12 D	14	ND	0.590J 0.610J	ND(29)		ND(0.39)
Nitrobenzene	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)	ND	0.0103	ND(29)	ND(2.0)	ND(0.39)
n-Nitrosodiphenylamine	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)			ND(29)	ND(2.0)	ND(0.39)
5-Nitro-o-toluidine	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)	ND	A JEAT	ND(29)	ND(2.0)	ND(0.39)
Di-n-Octyl Phthalate	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)	טא	0.150J	ND(29)	ND(2.0)	ND(0.39)
1,2-Dichlorobenzene	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	0.50	ND(8.0)	NO.	0.0431	ND(29)	ND(2.0)	ND(0.39)
1,4-Dichlorobenzene	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	13 D		ND	0.047J	ND(29)	ND(2.0)	ND(0.39)
Phenanthrene	0.15 J	27	0.17 J	0.56		ND(8.0)	ND 2.701	0.360J	3.1 J	8.3	ND(0.39)
Phenol	ND(0.41)	ND(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	66	2.70J	ND	ND(29)	ND(2.0)	0.31 J
Phenois(TOTAL)	1,10,0,417	ND(2.2)	1410(0.37)	14D(0.30)	0.59	ND(8.0)	0.000		ND(29)	ND(2.0)	ND(0.39)
Pyrene	0.20 J	23	0.25 J	1.3	ND/0.20\		0.682	0.562		-	
1,2,4,5-Tetrachlorobenzene	ND(0.41)	ND(2.2)	0.25 J ND(0.37)		ND(0.39)	28	2.60J	0.390J	ND(29)	ND(2.0)	0.52
See Notes on Page 6 of 6)	1 (0.41)	MD(2.2)	ND(0.37)	ND(0.36)	ND(0.39)	ND(8.0)			4.4 J	ND(2.0)	ND(0.39)

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOILS APPENDIX IX+3 SEMIVOLATILES DATA (Results presented in dry weight parts per million, ppm)

Location ID:	LS-37	LS-38	LS-39	LS-40	LS-42	LS-43	LS-44	LS-45	LS-Soil	LS-C-11	LS-C-12
Depth (ft):	(6-8)	(16-18)	(10-12)	(10-12)	(20-22)	(22-24)	(22-24)	(10-12)	(surface)	(0-0.5)	(0-0.5)
Date:	08/08/95	08/14/95	08/10/95	08/10/95	04/23/96	04/24/96	04/24/98	04/25/96	09-10/90	08/30/95	08/30/95
Acenaphthene	ND(0.36)	0.22 J	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	0.58J	0.38J	0.42 J	0.20 J
Acenaphthylene	0.16 J	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	0.049J	ND(0.42)	0.11J	0.26J	7.7	3.7
Acetophenone	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)
Aniline	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(6.2)	0.56 J	0.43 J
Anthracene	0.22 J	0.12 J	ND(0.4)	ND(0.4)	ND(0.37)	0.12J	ND(0.42)	ND(0.89)	0.31J	4.3	2.1
Benzo(b)Fluoranthene	0.56	ND(0.48)	ND(0.4)	ND(0.4)	0.045J	0.14JX	ND(0.42)	0.11JX	0.51J	26	12
Butyl Benzyl Phthalate	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)
Benzo(a)Anthracene	0.58	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	0.3J	ND(0.42)	0.14JX	0.43J	18	8.0
Dibenzofuran	0.091 J	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	0.053J	ND(0.42)	ND(0.89)	ND(1.2)	0.97 J	0.63 J
Benzidine	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(9.6)	ND(1.7)	ND(1.7)
Benzo(ghi)Perylene	0.33 J	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	0.11J	ND(0.42)	0.19J	ND(1.2)	5.1	2.5
Benzo(a)Pyrene	0.49	0.18 J	ND(0.4)	ND(0.4)	ND(0.37)	0.27J	ND(0.42)	0.24J	0.41J	18	8.7
Benzo(k)Fluoranthene	0.50	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	0.26JX	ND(0.42)	0.24JX	0.63J	12	6.9
Di-n-Butyl Phthalate	0.11 BJ	0.15 BJ	0.049 BJ	0.12 BJ	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)
Dibenz(a,h)Anthracene	0.13 J	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(1.2)	0.39 J	0.18 J
Chrysene	0.73	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	0.27J	ND(0.42)	0.17J	0.58J	21	11
1,2,4-Trichlorobenzene	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	1.1	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)
3,3-Dichlorobenzidine	ND(0.72)	ND(0.96)	ND(0.4)	ND(0.4)	ND(0.75)	ND(0.78)	ND(0.85)	ND(1.8)	ND(2.4)	ND(3.3)	ND(3.3)
Bis(2-Ethylhexyl)Phthalate	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	0.2J	0.17J	0.1J	0.4J	1.8	0.28 J	ND(1.7)
Ethyl Methanesulfonate	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)
Fluoranthene	1.3	ND(0.48)	ND(0.4)	ND(0.4)	0.06J	0.5	ND(0.42)	0.1J	0.993	42 D	22
Fluorene	0.17 J	0.15 J	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	0.17J	0.38J	2.2	1.7
Hexachloroethane	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)
Indeno(1,2,3-cd)Pyrene	0.29 J	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	0.097J	ND(0.42)	0.12J	ND(1.2)	5.7	2.7
1,3-Dichlorobenzene	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)
1-Methylnaphthalene	***		-	_	-		-		-	-	
2-Methylnaphthalene	0.085 J	0.23 J	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	0.97	ND(1.2)	0.55 J	0.26 J
Naphthalene	ND(0.36)	0.11 J	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	4.7	ND(1.2)	0.39 J	0.19 J
Nitrobenzene	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)
n-Nitrosodiphenylamine	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)
5-Nitro-o-toluidine	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(2.4)	ND(1.7)	ND(1.7)
Di-n-Octyl Phthalate	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)
1,2-Dichlorobenzene	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)
1,4-Dichlorobenzene	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	0.27J	ND(1.7)	ND(1.7)
Phenanthrene	1.8	0.73	ND(0.4)	ND(0.4)	ND(0.37)	0.5	ND(0.42)	0.11J	0.85J	27	19
Phenol	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	ND(0.39)	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)
Phenols(TOTAL)				1					11011	1	
Pyrene	1.4	0.12 J	ND(0.4)	ND(0.4)	0.06J	0.52	ND(0.42)	0.24J	1.6	33 D	18
1,2,4,5-Tetrachlorobenzene	ND(0.36)	ND(0.48)	ND(0.4)	ND(0.4)	ND(0.37)	0.04J	ND(0.42)	ND(0.89)	ND(1.2)	ND(1.7)	ND(1.7)

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOILS APPENDIX IX+3 SEMIVOLATILES DATA (Results presented in dry weight parts per million, ppm)

Location ID: Depth (ft):	LS-C-13	LS-C-18	LS-GWP-33 (0-0.5)	LS-GWP-34 (0-0.5)				
	(0-0.5)	(0-0.5)					 	
Date:	. 08/30/95	08/30/95	08/30/95	08/30/95				
Acenaphthene	ND(1.4)	ND(0.33)	0.066 J	ND(0.34) [ND(0.34)]				
Acenaphthylene	2.7	ND(0.33)	0.096 J	0.099 J [0.095 J]				
Acetophenone	ND(1.4)	ND(0.33)	ND(0.34)	ND(0.34) [ND(0.34)]				
Aniline	6.0	ND(0.33)	1.9	0.67 [0.51]				
Anthracene	1.2 J	ND(0.33)	0.14 J	0.08 J [0.11J]				
Benzo(b)Fluoranthene	8.0	0.037 J	0.87	0.73 [0.76]				
Butyl Benzyl Phthalate	ND(1.4)	ND(0.33)	ND(0.34)	0.05 J [0.056 J]				
Benzo(a)Anthracene	5.0	0.036 J	0.56	0.41 (0.58)				
Dibenzofuran	0.33 J	ND(0.33)	0.037 J	ND(0.34) [ND(0.34)]				
Benzidine	ND(1.4)	ND(0.33)	0.097 J	ND(0.34) ND(0.34)				
Benzo(ghi)Perylene	1.8	ND(0.33)	0.21 J	0.18 J (0.19 J)				
Benzo(a)Pyrene	6.0	0.038 J	0.86	0.58 (0.68)				
Benzo(k)Fluoranthene	4.7	0.039 J	1.0	0.59 (0.82)				
Di-n-Butyl Phthalate	ND(1.4)	ND(0.33)	0.21 J	0.19 J (0.18 J)				
Dibenz(a,h)Anthracene	ND(1.4)	ND(0.33)	0.1 J	0.057 J [0.088 J]				
Chrysene	7.6	0.047 J	0.83	0.78 (1.2)				
1,2,4-Trichlorobenzene	ND(1.4)	ND(0.33)	ND(0.34)	ND(0.34) [ND(0.34)]				
3,3-Dichlorobenzidine	ND(2.8)	ND(0.67)	0.075 J	ND(0.69) [ND(0.69)]				
Bis(2-Ethylhexyl)Phthalate	ND(1.4)	ND(0.33)	0.059 J	0.052 J [0.077 J]				
Ethyl Methanesulfonate	ND(1.4)	ND(0.33)	ND(0.34)	ND(0.34) [ND(0.34)]				
Fluoranthene	14	0.079 J	1.3	1.1 (1.3)				
Fluorene	0.85 J	ND(0.33)	0.076 J	ND(0.34) [0.038 J]				
Hexachloroethane	ND(1.4)	ND(0.33)	ND(0.34)	ND(0.34) [ND(0.34)]				
Indeno(1,2,3-cd)Pyrene	2.1	ND(0.33)	0.27 J	0.19 J [0.24 J]			1	
1,3-Dichlorobenzene	ND(1.4)	ND(0.33)	ND(0.34)	ND(0.34) [ND(0.34)]				
1-Methylnaphthalene				***				
2-Methylnaphthalene	0.2 J	ND(0.33)	0.036 J	ND(0.34) [ND(0.34)]				
Naphthalene	0.18 J	ND(0.33)	0.044 J	ND(0.34) [ND(0.34)]				
Nitrobenzene	ND(1.4)	ND(0.33)	ND(0.34)	ND(0.34) [ND(0.34)]				
n-Nitrosodiphenylamine	ND(1.4)	ND(0.33)	0.076 J	ND(0.34) [ND(0.34)]				
5-Nitro-o-toluidine	ND(1.4)	ND(0.33)	ND(0.34)	ND(0.34) [ND(0.34)]				
Di-n-Octyl Phthalate	ND(1.4)	ND(0.33)	ND(0.34)	ND(0.34) [ND(0.34)]				
1,2-Dichlorobenzene	ND(1.4)	ND(0.33)	ND(0.34)	ND(0.34) [ND(0.34)]				
1,4-Dichlorobenzene	ND(1.4)	ND(0.33)	ND(0.34)	ND(0.34) [ND(0.34)]				
Phenanthrene	11	0.053 J	0.8	0.56 [0.63]				
Phenol	ND(1.4)	ND(0.33)	ND(0.34)	ND(0.34) [ND(0.34)]				
Phenols(TOTAL)	-							
Pyrene	11	0.067 J	0.93	0.9 [1.1]	1	I .		
1,2,4,5-Tetrachlorobenzene	ND(1.4)	ND(0.33)	ND(0.34)	ND(0.34) [ND(0.34)]			1	

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOILS APPENDIX IX+3 SEMIVOLATILES DATA (Results presented in dry weight parts per million, ppm)

NOTES:

- Samples collected during 8/89, 9/90 10/90 were collected by Geraghty & Miller, Inc., and submitted to IT Analytical Services for SVOC analysis.
- Samples collected during 4/91 were collected by Geraghty & Miller, Inc., and submitted to CompuChem Environmental Services for SVOC analysis.
- Samples collected during 10/94 were collected by Rust Environment & Infrastructure, Inc., and submitted to CompuChem Environmental Services for SVOC analysis.
- Samples collected during 8/95 12/95 and 4/96 were collected by Blasland, Bouck & Lee, Inc., and submitted to Quanterra Environmental Services for SVOC analysis.
- 5. = Data not reported by laboratory.
- 6. NA Not analyzed.
- ND(0.32) Compound was analyzed for, but not detected. The number in parenthesis is the detection limit.
- 8. [] Field duplicate analysis.
- 9. J Indicates an estimated value less than the CLP required quantitation limit.
- 10. D Analysis was performed at a secondary dilution factor.
- 11. B Indicates the compound was found in the associated blank as well as in the sample.
- 12. RE = Reanalysis
- 13. X Data has been manually integrated.
- 14. * Sample analytical results presented in November 29, 1994 letter report from RUST Environment & Infrastructure to Mr. John D. Clampa presents compounds with concentrations above laboratory detection limits only. Data is not available for remaining compounds.

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 PCDD/PCDF DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

Location ID: Depth (ft):	E-3 (0-2)	E-4 (0-2)	E-5	E-6		₩ E-8	LS-7	- : LS-8
Virginia (1) zetikovelstvi slevi	The State of the S	** * *********************************	(6-8)	(0-2)	(4-6)	(18-20)	(14-16)	(16-18)
Date:	08/09/95	08/09/95	08/10/95	08/16/95	08/07/95	(1) 08/09/95	09-10/90	09-10/90
TCDFs	0.0012	0.00073	0.000074	0.00044	0.000036	ND(0.00000024)	ND(0.000034)	0.321
2,3,7,8-TCDF	0.00015	0.000074	0.0000029J**	0.00005	0.0000038J**	ND(0.00000024)	NA NA	NA NA
PeCDFs	0.0017	0.00065	0.000031	0.00021	0.0000084	ND(0.00000046)	ND(0.00005)	0.176
1,2,3,7,8-PeCDF	ND(0.000065)	ND(0.000036)	ND(0.0000028)	0.000017	ND(0.0000017)	ND(0.00000028)	NA	NA NA
2,3,4,7,8-PeCDF	0.000076	0.000036	ND(0.0000054)	0.000015	ND(0.0000016)	ND(0.00000024)	NA NA	NA NA
HxCDFs	0.0013	0.00041	0.000035	0.00012	0.0000069	ND(0.00000057)	ND(0.00011)	ND(0.0568)
1,2,3,4,7,8-HxCDF	ND(0.00015)	ND(0.000065)	0.000014	0.000023	ND(0.0000021)	ND(0.00000014)	NA NA	NA NA
1,2,3,6,7,8-HxCDF	0.000091	0.000036	ND(0.0000045)	0.000011J**	ND(0.0000009)	ND(0.00000012)	NA NA	NA NA
1,2,3,7,8,9-HxCDF	ND(0.000036)	0.0000059J**	ND(0.0000012)	ND(0.0000013)	ND(0.00000017)	ND(0.00000048)	NA NA	NA NA
2,3,4,6,7,8-HxCDF	0.00018	0.000056	0.0000083J**	0.000012J**	ND(0.0000016)	ND(0.00000017)	NA NA	NA NA
HpCDFs	0.00063	0.00024	0.000022	0.00006	0.000012	ND(0.00000038)	NA NA	NA NA
1,2,3,4,6,7,8-HpCDF	0.00024	0.00012	0.000022	0.000035	0.0000059J**	ND(0.00000024)	NA NA	NA NA
1,2,3,4,7,8,9-HpCDF	0.000051	0.000014	ND(0.0000012)	ND(0.0000055)	ND(0.00000051)	ND(0.00000038)	NA NA	NA NA
OCDF	0.00025	0.00012	ND(0.0000064)	0.00004	0.000012J**	ND(0.00000038)	NA NA	NA NA
TCDDs	0.00024	0.0018	0.0000032	0.000012	ND(0.00000094)	ND(0.00000027)	ND(0.000061)	NR NR
2,3,7,8-TCDD	0.00006	0.0000093	ND(0.00000035)	ND(0.00000077)	ND(0.00000032)	ND(0.00000027)	ND(0.000038)	NR
PeCDDs	0.000079	0.0011	ND(0.0000028)	ND(0.0000045)	ND(0.0000011)	ND(0.00000031)	ND(0.00012)	ND(0.24)
1,2,3,7,8-PeCDD	0.0000077J**	0.000027	ND(0.00000092)	ND(0.000001)	ND(0.00000022)	ND(0.00000031)	l NA	ŇA T
HxCDDs	0.0003	0.0018	0.000016	0.0000076	ND(0.0000018)	ND(0.00000098)	ND(0.00014)	ND(0.0351)
1,2,3,4,7,8-HxCDD	0.0000065J**	0.000032	ND(0.0000012)	ND(0.00000079)	ND(0.0000003)	ND(0.00000094)	NA NA	NA NA
1,2,3,6,7,8-HxCDD	0.000018	0.000095	ND(0.0000016)	ND(0.0000022)	ND(0.00000053)	ND(0.00000098)	NA NA	NA NA
1,2,3,7,8,9-HxCDD	0.000017	0.000088	ND(0.0000047)	ND(0.0000025)	ND(0.00000079)	ND(0.00000097)	NA NA	NA NA
HpCDDs	0.00024	0.00092	0.000055	0.000042	0.000013	ND(0.00000043)	NA NA	NA NA
1,2,3,4,6,7,8-HpCDD	0.00012	0.00035	0.000022	0.000021	0.0000071J**	ND(0.00000043)	l NA	NA NA
OCDD	0.0008	0.00085	0.00086	0.00016	0.00004	ND(0.0000036)	NA NA	NA NA

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 PCDD/PCDF DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

ocation ID:	LS-9	LS-10	LS-11	1 5 LS-26	LS-27	LS-28	LS-29	LS-30
Depth (ft):	(14-16)	(10-12)	(10-12)	(10-12)	(2-4)	(10-12)	· 周科·蒙特·西·阿科·斯·尼科·加尔·	
Date:	09-10/90	09-10/90 🧺	09-10/90	08/10/95	08/11/95	08/14/95	(10-12) 08/08/95	(14-16) 08/14/95
CDFs	ND(0.0004)	ND(0.00039)	0.0087	0.000019	0.00015	0.0000056	0.000018	0.026
,3,7,8-TCDF	NA NA	NA /	NA NA	ND(0.00000086)	0.000017J**	0.0000033 0.0000014J**	0.000078	0.026 0.0026 E
eCDFs	ND(0.00028)	ND(0.00024)	0.0062	0.000013	0.00013	ND(0.0000056)	ND(0.0000022)	0.0028 E
,2,3,7,8-PeCDF	NA /	NA /	NA NA	ND(0.0000016)	ND(0.000013)	ND(0.00000030)	ND(0.0000022)	0.0017
2,3,4,7,8-PeCDF	NA NA	NA	NA NA	ND(0.0000019)	0.0000063J**	ND(0.00000054)	ND(0.00000091)	0.0017
lxCDFs	ND(0.0004)	ND(0.00015)	0.0064	0.000018	0.00014	ND(0.0000047)	ND(0.0000012)	0.0010
,2,3,4,7,8-HxCDF	NA NA	NA	NA NA	0.0000076J**	0.000012	ND(0.00000083)	ND(0.0000006)	ND(0.01)
,2,3,6,7,8-HxCDF	NA NA	NA	NA NA	ND(0.0000034)	0.0000076J**	ND(0.00000068)	ND(0.0000000)	0.0046 E
,2,3,7,8,9-HxCDF	NA NA	NA	NA NA	ND(0.0000018)	ND(0.0000049)	ND(0.00000015)	ND(0.00000033)	0.0021
2,3,4,6,7,8-HxCDF	NA NA	NA	NA NA	ND(0.0000042)	0.000017	ND(0.00000082)	ND(0.00000035)	0.0021
ipCDFs	NA NA	NA	NA NA	0.000033	0.000077	ND(0.0000022)	ND(0.00000062)	0.002
,2,3,4,6,7,8-HpCDF	NA NA	NA	NA NA	0.000026	0.000029	ND(0.0000011)	ND(0.00000062)	0.0067 E
,2,3,4,7,8,9-HpCDF	NA	NA '	NA NA	ND(0.0000032)	ND(0.0000054)	ND(0.00000033)	ND(0.00000018)	0.0037 E
DCDF	NA NA	NA	NA	0.00003	0.000029	ND(0.00000092)	ND(0.00000057)	0.0097 E
CDDs	ND(0.00047)	ND(0.00034)	ND(0.0012)	0.0000016	0.0000051	ND(0.00000044)	ND(0.00000046)	0.00073
2,3,7,8-TCDD	ND(0.0026)	ND(0.0024)	ND(0.0021)	ND(0.00000051)	ND(0.00000049)	ND(0.0000034)	ND(0.00000043)	0.000013
PeCDDs	ND(0.0009)	ND(0.00077)	ND(0.0016)	ND(0.0000017)	ND(0.0000023)	ND(0.00000013)	ND(0.00000025)	0.00044
,2,3,7,8-PeCDD	NA NA	NA	NA	ND(0.0000064)	ND(0.0000014)	ND(0.00000013)	ND(0.00000018)	0.00057
IxCDDs	ND(0.0044)	ND(0.0011)	ND(0.0025)	ND(0.000005)	0.000038	ND(0.0000002)	ND(0.00000077)	0.0015
,2,3,4,7,8-HxCDD	NA NA	NA	NA	ND(0.00000086)	ND(0.0000015)	ND(0.00000018)	ND(0.000000092)	0.000053
,2,3,6,7,8-HxCDD	NA NA	NA	NA	ND(0.0000015)	ND(0.0000052)	ND(0.0000002)	ND(0.00000021)	0.00013
,2,3,7,8,9-HxCDD	NA NA	NA	NA	ND(0.000034)	ND(0.0000037)	ND(0.0000002)	ND(0.00000035)	0.00013
lpCDDs	NA NA	NA NA	NA	0.000039	0.0003	ND(0.00000042)	ND(0.0000022)	0.0014
,2,3,4,6,7,8-HpCDD	NA NA	NA	NA NA	0.000018	0.00016	ND(0.00000042)	ND(0.0000016)	0.00067
OCDD	NA NA	NA	NA	0.00059	0.0012	ND(0.000003)	0.00068	0.003

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 PCDD/PCDF DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

Location ID:	LS-31	LS-32*	(i) LS-33*	LS-34	LS-35	1 4 4 4 1 0 90	Paragraphic A Annual Control	
Depth (ft):	(18-20)	(2-4)	(16-18)	(22-24)		LS-36	LS-37	LS-38
Date:	08/15/95	10/12/94			(12-14)	(16-18)	(6-8)	(16-18)
TCDFs				12/14/95	08/15/95	14 08/07/95	08/08/95	08/14/95
2,3,7,8-TCDF	0.0021 0.000099	0.0628	0.000227	0.00082	0.003	ND(0.00000072)	0.000027	ND(0.00000045)
eCDFs				0.000043	0.00015	ND(0.00000067)	0.000002J**	ND(0.00000045)
,2,3,7,8-PeCDF	0.0037	0.131	0.0011	0.0028	0.0065	ND(0.0000022)	0.0000055	ND(0.00000079)
.3.4.7.8-PeCDF	ND(0.00066)			0.00011	0.00011	ND(0.00000033)	ND(0.0000013)	ND(0.00000079)
IXCDFs	0.00028			0.0003	0.00052	ND(0.00000018)	ND(0.0000014)	ND(0.00000049)
,2,3,4,7,8-HxCDF	0.0078	0.145	0.000947	0.0047	0.0049	ND(0.000003)	ND(0.0000037)	ND(0.00000072)
	0.0012			0.0016 E	ND(0.0027)	ND(0.00000035)	ND(0.0000021)	ND(0.00000072)
,2,3,6,7,8-HxCDF	0.00043			0.0008	0.0012	ND(0.00000021)	ND(0.00000088)	ND(0.00000034)
2,3,7,8,9-HxCDF	ND(0.00022)		•	0.000032	ND(0.000026)	ND(0.00000033)	ND(0.00000017)	ND(0.00000057)
,3,4,6,7,8-HxCDF	0.00057			0.00033	0.00056	ND(0.00000034)	ND(0.0000013)	ND(0.00000039)
pCDFs	0.0074	0.0399	0.00044	0.0025	0.0038	ND(0.00000091)	ND(0.000004)	ND(0.00000039)
,2,3,4,6,7,8-HpCDF	0.0022			0.0011 E	0.0012	ND(0.00000033)	ND(0.0000035)	
2,3,4,7,8,9-HpCDF	0.0014			0.0012 E	0.0012	ND(0.000000071)	ND(0.0000055)	ND(0.00000054)
CDF	0.0055			0.0031 E	0.0012	ND(0.00000049)	ND(0.0000047)	ND(0.00000018)
CDDs	0.00025	ND	ND	0.000067	0.00054	0.0000027	0.0000029	ND(0.00000099)
,3,7,8-TCDD	0.0000098			0.0000015J**	0.0000039J**	ND(0.0000019)	ND(0.0000035)	ND(0.00000042)
eCDDs	0.00009	ND	ND	0.000057	0.00023	ND(0.00000048)		ND(0.00000028)
,2,3,7,8-PeCDD	0.00002			0.000012	ND(0.000018)	ND(0.00000048)	ND(0.0000019)	ND(0.00000025)
lxCDDs	0.0011	0.00251	ND	0.00029	0.00077	ND(0.00000021)	ND(0.00000048)	ND(0.00000025)
,2,3,4,7,8-HxCDD	0.000088			0.000036	0.000017	ND(0.0000019)	ND(0.000005)	ND(0.00000028)
,2,3,6,7,8-HxCDD	0.000052			0.000022	0.000017	ND(0.00000013)	ND(0.00000044)	ND(0.00000025)
2,3,7,8,9-HxCDD	0.000086			0.000026	0.000033	ND(0.00000023)	ND(0.00000086)	ND(0.00000027)
pCDDs	0.0042	0.00984	ND	0.0013	0.00049	0.000011	ND(0.000002)	ND(0.00000028)
,2,3,4,6,7,8-HpCDD	0.0024			0.00081	0.00049		0.000031	ND(0.00000039)
OCDD	0.038 E					ND(0.0000043)	0.000013	ND(0.00000039)
See Notes on Page 6 of 6				0.0076 D	0.00089	0.000048	0.00074	ND(0.000

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 PCDD/PCDF DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

Location ID:	LS-39	LS-40	1 LS-42	LS-48	LS-44	LS-45	LS-SOIL	LS-C-11
Depth (ft):	(10-12)	(10-12)	(20-22)	(22-24)	(22-24)	(10-12)	(SURFACE)	(0-0.5)
Date:	08/10/95	08/10/95	04/23/96	04/24/96	04/24/96	04/25/96	09-10/90	08/30/95
TCDFs	ND(0.00000021)	ND(0.00000015)	ND(0.00000083)	0.00019	0.0000098	ND(0.00000045)	0.001(I)	0.000079
2,3,7,8-TCDF	ND(0.00000015)	ND(0.00000015)	ND(0.00000083)	0.000063	ND(0.0000014)	ND(0.00000045)	NA NA	0.000015J**
PeCDFs	ND(0.00000014)	ND(0.0000002)	ND(0.00000094)	0.0005	0.000011	ND(0.00000043)	0.00083(I)	0.00012
1,2,3,7,8-PeCDF	ND(0.00000014)	ND(0.0000002)	ND(0.00000033)	0.000015	ND(0.0000011)	ND(0.00000031)	NA Y	ND(0.0000081)
2,3,4,7,8-PeCDF	ND(0.00000012)	ND(0.00000017)	ND(0.00000023)	0.000063	ND(0.0000011)	ND(0.00000028)	NA	ND(0.00001)
HxCDFs	ND(0.00000024)	ND(0.00000017)	ND(0.0000016)	0.0011	ND(0.0000026)	ND(0.00000047)	0.0006(I)	0.00018
1,2,3,4,7,8-HxCDF	ND(0.000000095)	ND(0.000000045)	ND(0.00000038)	0.00039	ND(0.0000025)	ND(0.00000047)	NA)	ND(0.000011)
1,2,3,6,7,8-HxCDF	ND(0.00000012)	ND(0.000000055)	ND(0.00000022)	0.00016	ND(0.0000011)	ND(0.00000019)	NA	ND(0.0000088)
1,2,3,7,8,9-HxCDF	ND(0.00000016)	ND(0.00000012)	ND(0.00000039)	0.0001	ND(0.00000076)	ND(0.00000031)	NA	ND(0.0000012)
2,3,4,6,7,8-HxCDF	ND(0.00000013)	ND(0.00000006)	ND(0.00000045)	0.0001	ND(0.0000013)	ND(0.0000002)	NA	ND(0.000019)
HpCDFs	ND(0.00000032)	ND(0.00000033)	ND(0.00000082)	0.0012	ND(0.0000028)	ND(0.00000084)	NA	ND(0.00004)
1,2,3,4,6,7,8-HpCDF	ND(0.00000024)	ND(0.00000024)	ND(0.00000067)	0.00035	ND(0.0000028)	ND(0.00000061)	NA NA	ND(0.00003)
1,2,3,4,7,8,9-HpCDF	ND(0.00000032)	ND(0.00000033)	ND(0.00000034)	0.00033	ND(0.000001)	ND(0.00000084)	NA	ND(0.000004)
OCDF	ND(0.0000002)	ND(0.00000023)	ND(0.0000011)	0.0014	ND(0.000005)	ND(0.0000014)	NA	ND(0.000043)
TCDDs	ND(0.00000047)	ND(0.00000031)	ND(0.00000034)	0.000046	ND(0.00000052)	ND(0.00000036)	ND(0.00014)	ND(0.0000014)
2,3,7,8-TCDD	ND(0.00000019)	ND(0.00000012)	ND(0.00000034)	ND(0.00000073)	ND(0.0000003)	ND(0.00000036)	ND(0.000037)	ND(0.0000013)
PeCDDs	ND(0.00000065)	ND(0.00000011)	ND(0.0000018)	0.000016	ND(0.00000059)	ND(0.0000002)	ND(0.0014)	ND(0.000002)
1,2,3,7,8-PeCDD	ND(0.00000022)	ND(0.00000011)	ND(0.00000018)	0.0000067J**	ND(0.00000032)	ND(0.0000002)	NA	ND(0.0000013)
HxCDDs	ND(0.0000003)	ND(0.00000021)	ND(0.00000047)	0.00017	ND(0.0000013)	ND(0.00000047)	ND(0.00065)	ND(0.00001)
1,2,3,4,7,8-HxCDD	ND(0.00000028)	ND(0.0000002)	ND(0.0000045)	0.000021	ND(0.00000062)	ND(0.00000045)	NA	ND(0.0000015)
1,2,3,6,7,8-HxCDD	ND(0.0000003)	ND(0.00000021)	ND(0.00000042)	0.000013	ND(0.00000061)	ND(0.00000043)	NA NA	ND(0.0000032)
1,2,3,7,8,9-HxCDD	ND(0.0000003)	ND(0.00000021)	ND(0.00000047)	0.000016	ND(0.00000065)	ND(0.00000047)	NA	ND(0.0000032)
HpCDDs	ND(0.00000058)	ND(0.00000025)	ND(0.0000005)	0.00062	ND(0.0000015)	ND(0.00000048)	NA	0.0001
1,2,3,4,6,7,8-HpCDD	ND(0.00000035)	ND(0.00000025)	ND(0.0000005)	0.00038	ND(0.0000015)	ND(0.00000048)	NA	ND(0.000043)
OCDD	ND(0.0000056)	ND(0.0000019)	ND(0.0000043)	0.0035	ND(0.000012)	ND(0.0000049)	NA	0.00045

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 PCDD/PCDF DATA (Results Presented In Dry-Weight Parts Per Million, ppm)

					• • • •		
Location ID; Depth (ft):	LS-C-12 (0-0.5)	LS-C-13 (0-0.5)	LS-C-18 (0-0.5)	LS-GWP-33	US-GWP-94		
Date:	08/30/95	08/30/95	08/30/95	(0-0.5) 08/30/95	(0-0.5) 08/30/95	Editor :	
TCDFs	0.00006	The state of the s		The first design the second section (second section second section second section second section secti	08/30/95		
2,3,7,8-TCDF	0.00008	0.0025	ND(0.00000051)	0.00067	0.00086 [0.00088]		
		0.00048	ND(0.00000051)	0.000084	0.00014 [0.00015]		
PeCDFs	ND(0.000018)	0.0029	ND(0.00000089)	0.0014	0.00049 [0.00054]		
1,2,3,7,8-PeCDF	ND(0.0000098)	0.00025	ND(0.00000018)	0.000028	0.000051 [0.000052]		
2,3,4,7,8-PeCDF	ND(0.0000093)	0.00029	ND(0.00000018)	0.000058J**	0.000043 0.000048	1	·
HxCDFs	ND(0.0000043)	0.0043	ND(0.0000015)	0.0014	0.00039 (0.00039)		
1,2,3,4,7,8-HxCDF	ND(0.000019)	0.0007	ND(0.00000029)	0.000063	0.000065 (0.000064)		
1,2,3,6,7,8-HxCDF	ND(0.000011)	0.00041	ND(0.0000002)	0.000061	0.000036 (0.00004)		
1,2,3,7,8,9-HxCDF	ND(0.00000078)	ND(0.000017)	ND(0.00000011)	0.0000098J**	ND(0.0000014) [ND(0.0000017)]		
2,3,4,6,7,8-HxCDF	ND(0.000016)	0.00035	ND(0.00000027)	0.00018	0.000042 [0.000043]		
HpCDFs	ND(0.000039)	0.0018	ND(0.0000018)	0.00057			
1,2,3,4,6,7,8-HpCDF	ND(0.000031)	0.00084	ND(0.0000015)	0.00037			
1,2,3,4,7,8,9-HpCDF	ND(0.0000055)	0.00019	ND(0.00000027)	0.00023			
OCDF	ND(0.000045)	0.0013	ND(0.0000036)	0.000021	0.000016 [0.000016]		
TCDDs	ND(0.0000034)	ND(0.0000099)	ND(0.0000004)	0.000052	0.00046 (0.00049)		
2,3,7,8-TCDD	ND(0.000034)	ND(0.0000031)	ND(0.00000022)	0.0000032 0.0000013J**	0.000015 (0.000027)		
PeCDDs	ND(0.0000009)	ND(0.000022)	ND(0.00000022)		0.0000082 (0.0000088)		
1,2,3,7,8-PeCDD	ND(0.0000009)	ND(0.000009)	ND(0.0000002)	ND(0.0000048)	0.0000053 [ND(0.00001)]		
HxCDDs	ND(0.000007)	0.000097		ND(0.0000021)	ND(0.0000041) (ND(0.000004))		
1,2,3,4,7,8-HxCDD	ND(0.0000074)	ND(0.0000072)	ND(0.00000077)	0.000045	0.00012 [0.00012]		
1,2,3,6,7,8-HxCDD	ND(0.0000025)	ND(0.0000072)	ND(0.00000012)	ND(0.0000023)	0.0000054J** [ND(0.0000051)]		
1,2,3,7,8,9-HxCDD	ND(0.0000029)		ND(0.00000036)	ND(0.000005)	0.000014 [0.000015]		
HpCDDs	ND(0.000052)	ND(0.000024) 0.00023	ND(0.00000032)	ND(0.0000049)	0.000013 [0.000013]		
1,2,3,4,6,7,8-HpCDD	ND(0.000032)		ND(0.0000043)	0.00019	0.00042 [0.00043]		
OCDD	0.00033	0.00011	ND(0.0000043)	0.000071	0.00023 [0.00024]		
(See Notes on Page 6 of 6)		0.00046	0.000033	0.00057	0.0012 [0.0013]		

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 PCDD/PCDF DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

NOTES:

- Samples collected during 9/90 10/90 were collected by Geraghty & Miller, Inc., and submitted to IT Analytical Services for PCDD/PCDF analysis.
- Samples collected during 10/94 were collected by Rust Environment & Infrastructure, Inc., and submitted to CompuChem Environmental Services for PCDD/PCDF analysis.
- Samples collected during 8/95 12/95 and 4/96 were collected by Blasland, Bouck & Lee, Inc., and submitted to Quanterra Environmental Services for PCDD/PCDF analysis.
- 4. = Data not reported by laboratory.
- 5. NA Not analyzed.
- ND(0.32) Compound was analyzed for, but not detected. The number in parenthesis is the detection limit.
- 7. [] Field duplicate analysis.
- 8. J** Estimated value below the lower calibration limit but above the target detection limit.
- 9. B Indicates the compound was found in the associated blank as well as in the sample.
- 10. D Analysis was performed at a secondary dilution factor.
- 11. E The compound exceeded the calibration range of the GC/MS instrument for that specific analysis.
- 12. NR Not reportable due to internal standards interference.
- 13. (I) Possible interference from polychlorinated diphenyl ethers.
- 14. *- Sample analytical results presented in November 29, 1994 letter report from RUST Environment & Infrastructure to Mr. John D. Clampa presents compounds with concentrations above laboratory detection limits only. Data is not available for remaining compounds.

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 METALS DATA (Results Presented In Dry-Weight Parts Per Million, ppm)

Location ID:	E-1	E-2	E-3	E-4	E-5	E-6	T E-7	E-8
Depth (ft):	(10-12)	(8-10)	(0-2)	(0-2)	(6-8)	(0-2)	(4-6)	
Date:	4/91	4/91	08/09/95	08/09/95	08/10/95	08/16/95	08/07/95	(18-20) 08/09/95
Aluminum	11,700	8,770	NA	NA	NA NA			
Antimony	ND(5.6)	ND(6.7)	ND(1.7)	ND(1.7)	ND(1.6)	NA [NA]	NA NA	NA NA
Arsenic	5.6N	2.6J*N	6.0	10.6	8.1	ND(1.7) [ND(1.71)]	ND(1.7)	ND(2.2)
Barium	45.8J*	38.9J*	39.5	60.5	57.6	5.0 [5.06] 61 [73.5]	3.5	2.5
Beryllium	0.36J*	ND(0.3)	0.25 J*	0.37 J*	0.46 J*		29.4	39.3
Cadmium	ND(1.0)	ND(1.2)	0.38 J*	ND(0.2)	0.48 3	0.19 J* (0.19 J*)	0.2 J*	0.37 J*
Calcium	16,400	7,260	NA	NA NA	NA NA	0.23 J* [0.25 J*]	0.21 J*	ND(0.26)
Chromium	19.6	23.1	21.1	22.5	13.2	NA [NA]	NA NA	NA
Cobalt	4.8J*	8.5J*	6.4	9.8	5.1 J*	8.3 (7.52)	7.6	10.1
Copper	74.7est.	354est.	163	189	237	7.4 [7.4]	7.4	8.7
ron	31,600	62,400	NA NA	NĂ NĂ	NA NA	46.3 [46.4]	20.4	12.3
ead	153	114	102 est.NM	87.1 est.NM	133 est.NM	NA [NA]	NA NA	NA
Magnesium	6,210	5,630	NA	NA NA	NA NA	150 est.NM [115]	70.1 est.NM	5.1 est.NM
Manganese	743	612	NA NA	NA NA	NA NA	NA [NA]	NA NA	NA NA
Mercury	ND(0.13)	0.14	0.87 NM	0.65 NM	ND(0.11)	NA [NA]	NA NA	NA
Vickel	11 11	63.1	15.2	29.3	21.7	ND(0.12) [0.13]	ND(0.12)	ND(0.15)
² otassium	1,310	831J*	NA NA	NA NA	NA NA	13 [12]	12.6	13
Selenium	ND(0.76)	ND(0.91)	1.3	2.4	1.4	NA [NA]	NA	NA
Silver	ND(1.3)	ND(1.5)	ND(0.3)	ND(0.31)		1.0 [1.11]	0.95	1.5
iodium	276J*	186J*	NA NA	NA NA	ND(0.29) NA	ND(0.31) [ND(0.31)]	ND(0.32)	ND(0.41)
hallium	ND(0.76)	ND(0.91)	ND(0.46)	ND(0.47)		NA][NA]	NA NA	NA
in	NA	NA NA	3.9 J*	ND(1.3)	ND(0.45)	ND(0.48) [ND(0.48)]	ND(0.48)	ND(0.62)
anadium	27.5	45.1	13.7	22.2	8.6 J* 19.7	ND(1.3) [ND(1.34)]	ND(1.4)	ND(1.8)
inc	119	193	191 est.	127 est.		11.6 [11.1]	8.0	11.4
yanide, Total	0.67	ND(0.76)	ND(2.8)	ND(2.9)	256 est.	144 est. [123]	64.8 est.	54.3 est.
iulfide	ND(12.6)	ND(15.2)	ND(225)	ND(231)	ND(2.7)	ND(2.9) [ND(2.9)]	ND(2.9)	ND(3.8)
See notes on Page 6	of 6)		1417(220)	NU(ZJI)	ND(217)	329 [237]	ND(235)	483

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 METALS DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

ocation ID: Depth (ft):	LS-7 (14-16)	LS-8 (16-18)	LS-9 (14-16)	LS-10 (10-12)	LS-11 (10-12)	LS-26 (10-12)	LS-27 (2-4)	LS-28 (10-12)	LS-29 (10-12)
Date:	09-10-90	09-10-90	09-10-90	09-10-90	09-10-90	08/10/95	08/11/95	08/14/95	08/08/95
Aluminum	NA	NA	NA	NA	NA	NA.	NA	NA	NA NA
Antimony	ND(3.0)	ND(3.0)	ND(3.0)	ND(3.0)	ND(3.0)	ND(1.9)	3.3 J*N	ND(1.7)	ND(1.6)
Arsenic	ND(3.0)	ND(3.0)	ND(3.0)	ND(3.0)	ND(3.0)	5.8	9.8	5.9	3.5
3arium	42.4	18	8.8	6.0	232	30.9	42.7	15.5 J*	200
3eryllium	0.1	ND(0.1)	0.1	ND (0.1)	0.2	0.23 J*	0.35 J*	0.11 J*	1.0
Cadmium	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	1.7	0.8	0.65	ND(0.19)	ND(0.19)
Calcium	NA NA	NA '	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Chromium	8.0	3.0	12	2.0	56	12.2	15.4	9.8	27.6
Cobalt	6.0	4.0	3.0	5.0	9.0	5.4 J*	7.4	11.7	4.9 J*
Copper	20	82	17	19	1,050	93.1	3,610	27.5	24.5
ron	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
_ead	16	11	14	9.0	803	165 est.NM	261 est.NM	8.6 est.NM	119 est.NM
Magnesium	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Manganese	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Mercury	ND(0.1)	0.1	0.1	ND(0.1)	0.3	ND(0.13)	0.12 NM	ND(0.11)	ND(0.11)
Vickel	8.0	6.0	2.0	7.0	62	26.9	32.1	20	6.8
otassium	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Selenium	ND(6.0)	ND(6.0)	ND(6.0)	ND(7.0)	ND(6.0)	1.6	1.6	1.5	2.0
Silver	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)	1.8	ND(0.34)	0.49 J*	ND(0.31)	ND(0.3)
Sodium	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA
Thallium	22	10	ND(3.0)	ND(3.0)	ND(3.0)	ND(0.52)	ND(0.45)	ND(0.46)	ND(2.3)
Tin	ND(2.0)	6.0	5.0	3.0	50	ND(1.5)	117	ND(1.3)	ND(1.3)
/anadium	7.0	2.0	2.0	1.0	9.0	16.1	19.2	8.3	49.5
Zinc	47.8	33.4	34.5	23.5	768	247 est.	578 est.	55.8 est.	28.8 est.
Cyanide, Total	ND(0.5)	ND(1.0)	ND(1.0)	ND(1.0)	ND(0.5)	ND(3.1)	ND(2.8)	ND(2.8)	ND(2.7)
Sulfide	130	ND(18)	140	ND(20)	130	ND(252)	263	ND(226)	ND(220)

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 METALS DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

ocation ID:	LS-30	LS-31	LS-32*	LS-33*	LS-34	LS-35	LS-36	LS-37	LS-38
Depth (ft):	(14-16)	(18-20)	(2-4)	(16-18)	(22-24)	(12-14)	(16-18)	(6-8)	(16-18)
Date:	08/14/95	08/15/95	10/12/94	10/12/94	12/14/95	08/15/95	08/07/95	08/08/95	08/14/95
Aluminum	NA	NA	12,400	11,300	NA NA	NA	NA	NA	NA
Antimony	4.4 J*N	ND(1.8)	29.6	ND	2.6 J*	ND(1.8)	ND(1.9)	3.8 J*N	ND(2.2)
Arsenic	7.3	5.7	9.0	3.7	11.1	2.6	2.2	11	2.3
Barium	149	49.1	661J*	32.1	16.2	36.3	20.4 J*	32.8	48.9
Beryllium	0.13 J*	ND(0.02)	0.29	0.28J*	0.16 J*	0.26 J*	0.22 J*	0.32 J*	0.14 J*
Cadmium	2.4	ND(0.21)	5.4	ND	ND(0.24)	ND(0.2)	0.26 J*	0.95	ND(0.25)
Calcium	NA NA	NA NA	11,300	669	NA	NA	NA	NA NA	NA NA
Chromium	29.3	8.9	204	15.5	7.9	8.9	8.0	25.6	7.6
Cobalt	8.2	8.0	11.7	4.6J*	10.7	8.5	7.1	10.8	7.1 J*
Copper	1,390	1,470	4,650	7.9	19.5	15.9	7.0	461	7.9
Iron	NA	NA	41,500	15,900	NA	NA	NA	NA	NA
Lead	787 est.NM	84.5 est.NM	14,400	11	6.4	8.1 est.NM	3.0 est.NM	190 est.NM	3.4 est.NM
Magnesium	NA	NA NA	5,600	1,360	NA NA	NA	NA	NA	NA
Manganese	NA	NA	791	113	NA NA	NA	NA	NA	NA
Mercury	0.59 NM	0.42 NM	NR	ND	ND(0.12)	ND(0.12)	ND(0.13)	ND(0.11)	ND(0.15)
Nickel	24	16	82	8	15.6	11.4	10.8	32.9	10.7
Potassium	NA	NA NA	770J*	798	NA	NA	NA	NA NA	NA
Selenium	1.5	1.2	ND(0.77)	0.6J*	0.46 J*	1.1	1.3	2.7	0.9
Silver	1.5	0.38 J*	5.8	ND	ND(0.3)	ND(0.32)	ND(0.35)	ND(0.29)	ND(0.39)
Sodium	NA	NA NA	547J*	ND	NA	NA	NA	NA	NA
Thallium	ND(0.48)	ND(0.49)			ND(1.1)	ND(0.49)	ND(0.53)	ND(0.45)	ND(0.6)
Tin	242	12.1 J*	482	1.5J*	1.98	ND(1.4)	ND(1.5)	23	ND(1.7)
Vanadium	7.5	6.7	13.7	26.9	5.98	8.5	7.4	29.4	7.8
Zinc	834 est.	125 est.	3610	25.3	47.8	49.5 est.	43.1 est.	296 est.	41.9 est.
Cyanide, Total	ND(2.9)	ND(3.0)	ND	ND	ND(3.0)	ND(3.0)	ND(3.2)	ND(2.7)	ND(3.6)
Sulfide	429	346			NA NA	ND(241)	ND(260)	ND(217)	298

(See notes on Page 6 of 6)

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 METALS DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

Location ID: Depth (ft):	LS-39 (10-12)	LS-40	LS-42	LS-43	LS-44	LS-45	LS-SOIL	LS-C-11	LS-C-12
Date:	08/10/95	(10-12)	(20-22)	(22-24)	(22-24)	(10-12)	(surface)	(0-0.5)	(0-0.5)
	00/10/95	08/10/95	04/23/96	04/24/96	04/24/96	04/24/96	09-10-90	08/30/95	08/30/95
Aluminum	NA	NA	NA	NA	NA	NA	THE RESERVE ASSESSMENT OF THE RESERVE	THE CHARLES IN CO.	The state of the s
Antimony	ND(1.8)	ND(1.8)	ND(2.7)	ND(2.8)	ND(3.0)		NA ND(2.0)	NA NA	NA NA
Arsenic	3.5	3.6	5.5	4.2	4.1	ND(3.2)	ND(3.0)	ND(1.5)	1.7 J*N
Barium	10.9 J*	12.3 J*	8.8J*	14.9J*	15,1*	20.8J*	ND(3.0)	5.3 est.M	6.2 est.M
Beryllium	0.16 J*	0.13 J*	0.17J*	0.18J*	0.23J*		19.3	19.3 J*	15 J*
Cadmium	ND(0.21)	ND(0.21)	ND(0.27)	ND(0.28)		0.25J*	0.2	0.27 J*	0.19 J*
Calcium	NA	NA	NA NA	NA NA	ND(0.31)	ND(0.32)	ND(0.5)	0.3 J*	0.19 J*
Chromium	10.1	8.2	11.9	7.8	NA .	NA	NA NA	NA NA	NA
Cobalt	13.2	10.9	12.8	8.7	6.8	7.3	7.0	6.9	7.5
opper	25.7	23.5	25.9		9.2	6.3J*	4.0	6.8	7.3
on	NA NA	NA NA	NA NA	23	13.5	10.5	17	18.9 M	17.5 M
ead	8.9 est.NM	6.7 est.NM	15.7	NA NA	NA NA	NA	NA	NA	NA
Magnesium	NA NA	NA NA		33.7	8.1	5.9	19	84.5	53
Manganese	NA NA	NA NA	NA NA	NA NA	NA	NA	NA	NA	NA
Mercury	ND(0.12)		NA NO (0.44)	NA	NA	NA	NA	NA	NA
lickel	20.7	ND(0.12)	ND(0.11)	ND(0.12)	ND(0.13)	ND(0.13)	ND(0.1)	ND(0.1)	ND(0.1)
otassium	NA NA	17.4	20.5	14.5	11.4	8.7	7.0	14.8	14.1
elenium	1.4	NA 1.0	NA	NA NA	NA	NA	NA	NA NA	NA
ilver		1.2	ND(0.32)	ND(0.33)	ND(0.36)	ND(0.38)	ND(6.0)	0.8	0.86
odium	ND(0.33) NA	ND(0.33)	ND(0.32)	ND(0.33)	ND(0.36)	ND(0.38)	ND(0.5)	ND(0.27)	ND(0.27)
hallium		NA NA	NA	NA	NA	NA	NA	NA NA	NA NA
in	ND(0.49)	ND(0.5)	ND(0.54)	ND(0.56)	ND(0.61)	ND(0.65)	ND(3.0)	ND(0.42)	ND(0.41)
anadium	ND(1.4)	ND(1.4)	4.0J*	11J*	9.3J*	ND(2.2)	ND(2.0)	ND(1.2)	ND(1.2)
inc	8.0	6.0 J*	8.2	5.8J*	6.0J*	6.9	6.0	15.7	13.1
	58.4 est.	49.8 est.	60.5 est.	54 est.	41.9 est.	35.6 est.	41	82 est.	166 est.
yanide, Total ulfide	ND(3.0)	ND(3.0)	ND(2.8)	ND(2.9)	ND(3.2)	ND(3.4)	ND(0.5)	ND(2.5)	
See notes on Page 6 o	ND(241)	ND(242)	ND(226)	ND(235)	ND(255)	ND(269)	180	ND(2.3)	ND(2.5) ND(202)

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 METALS DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

Location ID: Depth (ft):	LS-C-13 (0-0.5)	LS-C-18 (0-0.5)	LS-GWP-33 (0-0.5)	LS-GWP-34 (0-0.5)			
Date:	08/30/95	08/30/95	08/30/95	08/30/95	CONTRACTOR OF CO		
Aluminum	NA	NA	NA	NA [NA]			
Antimony	ND(1.6)	ND(1.5)	ND(1.5)	ND(1.5) [3.2 J*N]			
Arsenic	7.5 est.M	5.7 est.M	9.7 est.M	5.1 est.M [5.4 est.M]			
Barium	40.3	21.9	33.5	49.2 [47.8]			
Beryllium	0.2 J*	0.21 J*	0.27 J*	0.29 J* (0.28 J*)			
Cadmium	0.47 J*	ND(0.17)	ND(0.17)	0.51 J* (0.47 J*)			
Calcium	NA	NA NA	NA NA	NA (NA)			
Chromium	10.6	9.8	12.5	8.8 [8.8]			
Cobalt	8.8	11.4	7.8	7.6 [7.5]			
Copper	85.2 M	24 M	76.2 M	44.1 M [43.2 M]			1
Iron	NA	NA	NA	NA [NA]			
Lead	117	12.6	72.2	108 [106]			
Magnesium	NA NA	NA NA	NA	NA (NA)			
Manganese	NA	NA	NA	NA (NA)			
Mercury	0.33 N	ND(0.1)	0.62 N	0.18 N [0.17 N]			
Nickel	19.1	17.5	15.1	15.1 [15.2]			
Potassium	NA	NA	NA	NA (NA)			
Selenium	1.2	0.96	1.0	1.2 (0.9)			
Silver	ND(0.29)	0.28 J*	ND(0.28)	ND(0.28) [ND(0.28)]			
Sodium	NA NA	NA NA	NA NA	NA (NA)			
Thallium	ND(0.44)	ND(0.41)	ND(0.42)	ND(0.43) [ND(0.43)]			
Tin	2.9 J*	ND(1.2)	ND(1.2)	ND(1.2) [ND(1.2)]			
Vanadium	19.1	8.3	16.1	18.8 [18.8]			
Zinc	177 est.	52 est.	109 est.	299 est. [300 est.]			
Cyanide, Total	ND(2.7)	ND(2.5)	ND(2.6)	ND(2.6) [ND(2.6)]			
Sulfide	264	ND(202)	ND(205)	296 [296]			

(See notes on Page 6 of 6)

MCP PHASE II/RCRA FACILITY INVESTIGATION REPORT FOR LYMAN STREET PARKING LOT/USEPA AREA 5A

SUMMARY OF SOIL APPENDIX IX+3 METALS DATA (Results Presented in Dry-Weight Parts Per Million, ppm)

NOTES:

- Samples collected during 9/90 10/90 were collected by Geraghty & Miller, Inc., and submitted to IT Analytical Services for metals analysis.
- Samples collected during 4/91 were collected by Geraghty & Miller, Inc., and submitted to CompuChem Environmental Services for metals analysis.
- Samples collected during 10/94 were collected by Rust Environment & Infrastructure, Inc., and submitted to CompuChem Environmental Services for metals analysis.
- Samples collected during 8/95 12/95 and 4/96 were collected by Blasfand, Bouck & Lee, Inc., and submitted to Quanterra Environmental Services for metals analysis.
- 5. NA Not analyzed.
- ND(0.32) Compound was analyzed for, but not detected. The number in parenthesis is the detection limit.
- 7. [] Field duplicate analysis.
- 8. J* Indicates value less than contract required detection limit but greater than instrument detection limit.
- 9. N Spiked sample recovery not within control limits.
- 10. M Duplicate analysis not within control limits.
- 11. est. = Estimated value due to interference.
- * Sample analytical results presented in November 29, 1994 letter report from RUST Environment & Infrastructure
 to Mr. John D. Ciampa presents compounds with concentrations above laboratory detection limits only.
 Data is not available for remaining compounds.

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier	Units
LSSC-03						
	SS06	8-10				
			Acetone	0.0062	J	mg/kg
			Chlorobenzene	0.0018	1	mg/kg
LSSC-04						
	CS0610	6-10				
			Acetone	0.051		mg/kg
			Toluene	0.0013	J	mg/kg
LSSC-06						
	SS09	14-15	1.10.00:11			_
1550 07			1,1,2-Trichloroethane	53		mg/k
LSSC-07	SS08	12-14				
	3306	12-14	Acetone	0.15		mg/kį
	SS15	24-26	1 ICCIOLIC	0.15		ing/k
	2013	24-20	Carbon tetrachloride	190		ma/le
LSSC-08			Carbon led acmorace	190		mg/kg
2000	SS09	14-15				
			Acetone	1.2		mg/kg
LSSC-09						
	SS08	12-14				
			Acetone	0.063		mg/kg
			Chlorobenzene	0.15		mg/kį
LSSC-10						
	SS09	14-15				
			Acetone	0.044		mg/k
LSSC-11						
	SS08	12-14			_	•
			Methylene chloride	0.0014	J	mg/k

J Result is between MDL and RL.

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier	Units
LSSC-01		(Jees)				
2550-07	CS0610	6-10				
	000010	0.0	Aniline	1.9		mg/kg
			Benzo(a)anthracene	0.51		mg/kg
			Benzo(a)pyrene	1.6		mg/kg
			Benzo(b)fluoranthene	1.1		mg/kg
			Benzo(ghi)perylene	0.79		mg/kg
			Benzo(k)fluoranthene	0.44		mg/kg
			Chrysene	0.7		mg/kg
			Dibenz(a,h)anthracene	0.042	J	mg/kg
			Fluoranthene	0.5		mg/kg
			Indeno(1,2,3-cd)pyrene	0.66	4.5	mg/kg
			Phenanthrene	0.28	J	mg/kg
			Phenol	0.38	J	mg/kg
			Pyrene	0.86		mg/kg
LSSC-02						
	CS1015	10-15				
		÷	bis(2-Ethylhexyl) phthalate	0.46		mg/kg
LSSC-04						
	CS0610	6-10				
			bis(2-Ethylhexyl) phthalate	0.19	J	mg/kg
LSSC-06						
	CS1015	10-15				
			1,2,4-Trichlorobenzene	150		mg/kg
	CS1015D	10-15				
			1,2,4-Trichlorobenzene	130		mg/kg
LSSC-07						
	CS1015	10-15				
			Benzo(a)pyrene	0.64		mg/kg
			Benzo(ghi)perylene	0.045	J	mg/kg
			bis(2-Ethylhexyl) phthalate	0.39	J	mg/kg
	CS2426	24-26				•
	The major district. It deads have	1 May 14	1,2,4,5-Tetrachlorobenzene	9		mg/kg
			1,2,4-Trichlorobenzene	290		mg/kg
			1,2-Dichlorobenzene	2.8	J	mg/kg
			1,4-Dichlorobenzene	3.7	J	mg/kg
LSSC-08			•			<i>υ</i> υ

4-14

P:Projects/GE/Pittsfleid/Database/N869DB.RPT_SVOC_RESULTs_Lyman

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier	Units
	CS1015	10-15				
			1,2,4-Trichlorobenzene	0.41	1	mg/kg
			Benzo(ghi)perylene	0.053	J	mg/kg
			bis(2-Ethylhexyl) phthalate	0.34	J	mg/kg
			bis(2-Ethylhexyl) phthalate	0.29	J	mg/k
			Indeno(1,2,3-cd)pyrene	0.039		mg/k
	CS1015D	10-15	•			
	0010102	10 10	bis(2-Ethylhexyl) phthalate	0.32	J	mg/k
	CS2123	21-23	onta man manny ny pramamato	5.2 <i>m</i>	•	****
	C52123	21-23	1,2,4,5-Tetrachlorobenzene	1.2		mag/le
			2-Methylnaphthalene	0.29	Ţ	mg/k
			bis(2-Ethylhexyl) phthalate	0.29	J	mg/k
			Phenanthrene	0.13	J	mg/k
LSSC-09			rhenammene	0.39	J	mg/k
LUSC-09	CS1015	10-15				
	C51015	10-15	1,2,4-Trichlorobenzene	0.36	J	mg/l
			bis(2-Ethylhexyl) phthalate	0.18	j	mg/l
LSSC-11			ois(2 Daymony), padmine	0.10	,	1115/
2000 11	CS1015	10-15				
	001010		Benzo(a)anthracene	0.51		mg/l
			Benzo(a)pyrene	0.44		mg/l
			Benzo(b)fluoranthene	0.46		mg/l
			Benzo(ghi)perylene	0.18	J	mg/l
			Benzo(k)fluoranthene	0.25	J	mg/l
			bis(2-Ethylhexyl) phthalate	0.23	J	mg/l
			Chrysene	0.54		mg/l
			Fluoranthene	0.93		mg/l
			Indeno(1,2,3-cd)pyrene	0.17	J	mg/l
			Phenanthrene	0.28	J	mg/l
			Рутепе	1		mg/l
	CS1517	15-17	•			
	001017	** * * *	1,2,4-Trichlorobenzene	1.3		mg/l
	-		1,4-Dichlorobenzene	0.18	J	mg/l
			2-Methylnaphthalene	0.35	J	mg/l
			Acenaphthene	0.32	J	mg/l
			Anthracene	0.23	J	mg/l
			Benzo(a)anthracene	0.47	-	mg/

P:Projects/GE/Pittsfield/Database/N869DB.RPT_SVOC_RESULTs_Lyman

Table 4-4	Detected SVOC	Soil Concentrations.	Lyman Street S	Site (continued).
LAUIC 7-7	Delice Con Dr De	DOM CORCORD actions	ANY IMPARTS WELL COLL	Jite (continued).

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier	Units
			Benzo(a)pyrene	0.36	J	mg/kg
			Benzo(b)fluoranthene	0.48		mg/kg
			Benzo(k)fluoranthene	0.19	J	mg/kg
			bis(2-Ethylhexyl) phthalate	0.32	J	mg/kg
			Chrysene	0.58		mg/kg
			Fluoranthene	1.1		mg/kg
			Fluorene	0.28		mg/kg
			Indeno(1,2,3-cd)pyrene	0.036		mg/kg
			Phenanthrene	1.3		mg/kg
			Pyrene	1.2		mg/kg

J Result is between MDL and RL.

Location	Sample Name	Sample Denth	Compound	Result	Qualifier	Units
Location	Sumple Nume	(feet)	Compound	ALCJ##	Quantition	· · · · · · · · · · · · · · · · · · ·
LSSC-01						
	CS0610	6-10				
			Antimony	1.6		mg/kg
			Arsenic	7.7		mg/kg
			Barium	116		mg/kg
			Beryllium	0.69		mg/kg
			Cadmium	0.45	В	mg/kg
			Chromium	28.4		mg/kg
			Cobalt	10.1		mg/kg
			Copper	85.4		mg/kg
			Lead	38.8		mg/kg
			Mercury	0.11	В	mg/kg
			Nickel	14.5		mg/kg
	•		Selenium	0.55	В	mg/kg
			Tin	5.9	В	mg/kg
			Vanadium	30.2		mg/kg
			Zinc	86.9		mg/kg
	CS0610 DUP	6-10				
			Antimony	1.4		mg/kg
			Arsenic	8.6		mg/kg
			Barium	49.9		mg/kg
			Beryllium	0.45		mg/kg
			Cadmium	0.48		mg/kg
			Chromium	24.3		mg/kg
			Cobalt	12.1		mg/kg
			Copper	101		mg/kg
	÷4*		Lead	40.9		mg/kg
			Nickel	17.2		mg/kg
			Tin	5.2		mg/kg
			Vanadium	21.4		mg/kg
			Zinc	89.7		mg/kg
LSSC-02						
	CS1015	10-15				
			Antimony	0.89		mg/kg
			Antimony	0.77	В	mg/kg
			Arsenic	7.2		mg/kg
			Arsenic	8.1		mg/kg

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier	Units
			Barium	102		mg/kg
			Barium	88.5		mg/kg
			Beryllium	0.43		mg/kg
			Beryllium	0.37	В	mg/kį
			Cadmium	0.18	В	mg/k
			Cadmium	0.21		mg/k
			Chromium	13.1		mg/k
			Chromium	10.8		mg/k
			Cobalt	8.8		mg/k
			Cobalt	8.7		mg/k
			Copper	28.9		mg/k
			Copper	32.5		mg/k
			Lead	12.7		mg/k
			Lead	15.9		mg/k
			Nickel	14.1		mg/k
			Nickel	14.5		mg/k
			Vanadium	13.6		mg/k
			Vanadium	16.9		mg/k
			Zinc	34.4		mg/k
			Zinc	28.7		mg/k
LSSC-04						
	CS0610	6-10				
			Antimony	1.5		mg/k
			Arsenic	10.1		mg/k
			Barium	56.3		mg/k
		**	Beryllium	0.52	В	mg/l
			Cadmium	0.66		mg/k
			Chromium	20		mg/k
			Cobalt	9		mg/l
			Copper	- 64.4		mg/k
			Lead	48.8		mg/l
			Mercury	0.038	В	mg/l
			Nickel	17.3		mg/l
			Thallium	0.62	В	mg/l
			Vanadium	24.3		mg/l
			Zinc	43.2		mg/l
LSSC-06						

CS1015

10-15

Tuesday, February 09, 1999

4-18

P:Projects/GE/Pittsfield/Database/N869DB.RPT_Metals_RESULTs_Lyman

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier	Units
			Arsenic	2.3		mg/kg
			Barium	40		mg/kg
			Beryllium	0.28	В	mg/kį
			Cadmium	0.085	В	mg/kg
			Chromium	8.4		mg/kg
			Cobalt	6.9		mg/k
			Copper	30.9		mg/k
			Lead	12.3		mg/k
			Nickel	11.7		mg/k
			Selenium	0.39	. В	mg/k
			Tin	3.2	В	mg/k
			Vanadium	8.1		mg/k
			Zinc	50.1		mg/k
	CS1015 DUP	10-15				
			Mercury	0.015		mg/k
	CS1015D	10-15	· · · · · · · · · · · · · · · · · · ·			
	CSTOTSD	10-15	Antimony	0.2	В	mg/k
			Arsenic	2.6	Б	mg/k
			Barium	32		mg/k
			Beryllium	0.25	В	mg/k
			Cadmium	0.092	В	mg/k
			Chromium	8.3	Ь	mg/k
			Cobalt	6.9		mg/k
			Copper	31.3		mg/k
			Lead	11.7		mg/k
			Mercury	0.041	В	mg/k
			Nickel	12.1	Ь	mg/k
			Selenium	0.35	В	mg/k
	,		Vanadium	7	Ь	mg/k
			Zinc	47.6		mg/k
LSSC-07		– .*		77.0		*****
	CS1015	10-15				
			Antimony	0.42	В	mg/k
			Arsenic	2.1	~	mg/k
			Barium	29.4		mg/k
			Beryllium	0.26	В	mg/k
			Cadmium	0.13	В	mg/k

ocation	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier	Units
			Chromium	8.1		mg/k
			Cobalt	7.6		mg/k
			Copper	9.8		mg/k
			Lead	6.7		mg/k
			Nickel	11.7		mg/k
			Vanadium	8.4		mg/k
			Zinc	43.2		mg/l
	CS2426	24-26				
			Antimony	0.24	В	mg/l
			Arsenic	8.3		mg/
			Barium	12.8	В	mg/
			Beryllium	0.11	В	mg/l
			Cadmium	0.38	В	mg/
			Chromium	9		mg/
			Cobalt	12.9		mg/
			Copper	35.4		mg/
			Lead	11.6		mg/
			Mercury	0.026	В	mg/
			Nickel	16.9		mg/
			Vanadium	6		mg/
			Zinc	49		mg/
.SSC-08	~~~~	40.45				
	CS1015	10-15	Antimony	0.28	- B	mg/
			Arsenic	8.6	D	mg/
			Arsenic	2.1		mg/
			Barium	85.3		mg/
			Barium	25.9	В	mg/
			Beryllium	0.61	В	mg/
			Beryllium	0.26	В	mg/
			Cadmium	0.34	В	mg/
			Cadmium	0.1	В	mg/
	*		Chromium	13.8	D	mg/
			Chromium	7.9		mg/
			Cobalt	8.6		mg/
			Cobalt	5.6	В	mg/
			Copper	9.8	ъ	mg/

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier	Units
			Copper	18.3		mg/kg
			Lead	13.6		mg/kg
			Lead	7.1		mg/kg
			Nickel	19.6		mg/kg
			Nickel	11.7		mg/kg
			Selenium	0.43	В	mg/kg
			Thallium	0.71	В	mg/kg
			Vanadium	7.7		mg/kg
			Vanadium	23.3		mg/kg
			Zinc	40.4		mg/kg
			Zinc	47.9		mg/kg
	CS1015D	10-15				-
			Antimony	0.17	В	mg/kg
			Arsenic	2.2		mg/kg
			Barium	32.4		mg/kg
			Beryllium	0.32	В	mg/kį
			Cadmium	0.19	В	mg/kg
			Chromium	9.8		mg/kg
			Cobalt	8.7		mg/kg
			Copper	11.7		mg/kg
			Lead	8.8		mg/kg
			Mercury	0.016	В	mg/kg
			Nickel	14.4		mg/kg
			Selenium	0.43	В	mg/kį
			Thallium	0.79	В	mg/k
			Tin	3.6	В	mg/kį
			Vanadium	9.9		mg/kg
			Zinc	51.4		mg/kg
	CS2123	21-23				
			Antimony	- 0.27	В	mg/kg
			Arsenic	6.1	•	mg/kg
			Barium	23.6	В	mg/kg
			Beryllium	0.24	В	mg/kg
			Cadmium	0.23	В	mg/kg
			Chromium	17.4		mg/kg
			Cobalt	12.2		mg/kg
			Copper	25.6		mg/kg

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier	Units
			Lead	9.7		mg/kg
			Nickel	21.9		mg/kg
			Vanadium	8.1		mg/kg
			Zinc	62.5		mg/kg
LSSC-09	CS1015	10-15				
	CSIVIS	10-13	Antimony	0.23	В	mg/kg
			Arsenic	2.1	В	mg/kg
			Barium	40.5		mg/kg
			Beryllium	0.34	В	mg/kg
			Cadmium	0.17	В	mg/kg
			Chromium	9.6	Б	mg/kg
			Cobalt	8.8		mg/kg
			Copper	28.4		mg/k
			Lead	10.6		mg/k
			Mercury	0.017	В	mg/k
			Nickel	13.2	В	mg/k
			Selenium	0.4	В	mg/k
			Vanadium	10.3	Б	mg/k
			Zinc	59.9		mg/k
LSSC-10		-				
	CS1015	10-15				
			Antimony	0.22	В	mg/k
			Arsenic	6.7		mg/k
			Barium	12	В	mg/k
			Beryllium	0.15	В	mg/k
		Ť	Cadmium	0.29	В	mg/k
			Chromium	12.3		mg/k
			Cobalt	19.7		mg/k
			Copper	36.6		mg/k
			Lead	11.9		mg/k
			Nickel	28.7		mg/k
			Vanadium	8.7		mg/k
			Zinc	81.6		mg/k
LSSC-11						
	CS1015	10-15				
			Antimony	0.29	В	mg/k
			Arsenic	2.4		mg/k

P:Projects/GE/Pittsfield/Database/N869DB.RPT_Metals_RESULTs_Lyman

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier	Units
			Barium	34.6		mg/kg
			Beryllium	0.3	В	mg/kg
			Cadmium	0.23	В	mg/kg
			Chromium	10.9		mg/kg
			Cobalt	8.4		mg/kg
			Copper	12.3		mg/kg
			Lead	12.6	•	mg/kg
			Mercury	0.077	В	mg/kg
			Nickel	11.6		mg/kg
			Vanadium	10.2		mg/kg
			Zinc	52.1		mg/kg
	CS1517	15-17				
			Arsenic	0.94	В	mg/kg
			Barium	9.6	В	mg/kg
			Beryllium	0.084	В	mg/kg
			Cadmium	0.048	В	mg/kg
			Chromium	6.1		mg/kg
			Cobalt	3.9	В	mg/kg
			Copper	3.9		mg/kg
			Lead	2.8		mg/kg
			Nickel	6		mg/kg
			Vanadium	3.5	В	mg/kg
			Zinc	22.6		mg/kg

B Result is between MDL and RL

Location	Sample Name	Sample Depth	Compound	Result	Qualifier	Units
LSSC-01	CS0610	6-10				
			1,2,3,4,6,7,8-HpCDF	0.00001		ug/kg
			1,2,3,4,7,8-HxCDF	0.0000096		ug/kg
			1,2,3,6,7,8-HxCDF	0.0000046	j ,	ug/kg
			1,2,3,7,8-PeCDF	0.0000032	j	ug/kg
			2,3,4,7,8-PeCDF	0.0000034	j	ug/kg
			2,3,7,8-TCDF	0.0000083	g	ug/kg
			HpCDDs (total)	0.0000061		ug/kg
			HpCDFs (total)	0.000019		ug/kg
			HxCDFs (total)	0.000048		ug/kg
			OCDD	0.000042		ug/kį
			OCDF	0.0000076	j	ug/kį
			PeCDFs (total)	0.00004		ug/k
			TCDFs (total)	0.000055		ug/k
LSSC-02	CS1015	10-15				
			TCDDs (total)	0.000005		ug/k
LSSC-04	CS0610	6-10				_
			1,2,3,4,6,7,8-HpCDD	0.0000048	j	ug/k
			1,2,3,4,6,7,8-HpCDF	0.00002		ug/k
			1,2,3,4,7,8,9-HpCDF	0.0000042	j	ug/k
			1,2,3,4,7,8-HxCDF	0.000015		ug/k
			1,2,3,6,7,8-HxCDF	0.000015		ug/k
			1,2,3,7,8-PeCDF	0.000015		ug/k
			2,3,4,6,7,8-HxCDF	0.0000071		ug/k
	•		2,3,4,7,8-PeCDF	0.0000085		ug/k
			2,3,7,8-TCDF	0.000023	g	ug/k
			HpCDDs (total)	0.000011		ug/k
			HpCDFs (total)	0.000055		ug/k
			HxCDDs (total)	0.000014		ug/k
			HxCDFs (total)	0.00014		ug/k
			OCDD	0.000051		ug/k
			OCDF	0.000014		ug/k
			PeCDFs (total)	0.00016		ug/l
			TCDDs (total)	0.000014		ug/l
			TCDFs (total)	0.00016		ug/l
LSSC-06	CS1015	10-15	,			-
	~ ~ ~ * * *		1,2,3,4,6,7,8-HpCDD	0.00038		ug/l
			1,2,3,4,6,7,8-HpCDF	0.0024		ug/l
			1,2,3,4,7,8,9-HpCDF	0.0027		ug/l
	bruary 09, 1999					

P:Projects/GE/Pittsfield/Database/N869DB.RPT_Dioxin_RESULTs_Lyman

ocation	Sample Name	Sample Depth	Compound	Result	Qualifier	Units
			1,2,3,4,7,8-HxCDD	0.000041		ug/kį
			1,2,3,4,7,8-HxCDF	0.0065	Е	ug/k
			1,2,3,6,7,8-HxCDD	0.000076		ug/k
			1,2,3,6,7,8-HxCDF	0.0029	E	ug/k
			1,2,3,7,8,9-HxCDD	0.000043		ug/k
			1,2,3,7,8,9-HxCDF	0.000096		ug/k
			1,2,3,7,8-PeCDD	0.000035		ug/k
			1,2,3,7,8-PeCDF	0.00036		ug/l
			2,3,4,6,7,8-HxCDF	0.00033		ug/l
			2,3,4,7,8-PeCDF	0.0016		ug/
			2,3,7,8-TCDF	0.00016	g	ug/
			HpCDDs (total)	0.00089		ug/
			HpCDFs (total)	0.0078		ug/
			HxCDDs (total)	0.0013		ug/
			HxCDFs (total)	0.017		ug/
			OCDD	0.0021		ug/
			OCDF	0.0027		ug/
			PeCDDs (total)	0.00048		ug
			PeCDFs (total)	0.012		ug
			TCDDs (total)	0.00053		ug
			TCDFs (total)	0.004		ug
SSC-07	CS1015	10-15				
			1,2,3,4,6,7,8-HpCDF	0.0000058	j	ug
			1,2,3,4,7,8-HxCDF	0.0000039	j	ug
			2,3,7,8-TCDF	0.0000014	g	ug
			HpCDFs (total)	0.000015		ug
			HxCDFs (total)	0.000033		ug
			OCDD	0.000011	j	ug
			PeCDFs (total)	0.000015		ug
			TCDFs (total)	0.000022		ug
			1,2,3,4,6,7,8-HpCDD	0.0053	E	ug
	•		1,2,3,4,6,7,8-HpCDF	0.007	E	ug
			1,2,3,4,7,8,9-HpCDF	0.0065	E	ug
			1,2,3,4,7,8-HxCDD	0.00039		ug
			1,2,3,4,7,8-HxCDF	0.012	E	ug
			1,2,3,6,7,8-HxCDD	0.00021		ug
			1,2,3,6,7,8-HxCDF	0.0047	E	ug
			1,2,3,7,8,9-HxCDD	0.00024		ug
			1,2,3,7,8,9-HxCDF	0.00016		ug

			centrations, Lyman Street			
Location	Sample Name	Sample Depth	Compound	Result	Qualifier	Units
			1,2,3,7,8-PeCDD	0.00013		ug/kg
			1,2,3,7,8-PeCDF	0.00059		ug/kg
			2,3,4,6,7,8-HxCDF	0.0008		ug/kį
			2,3,4,7,8-PeCDF	0.0021		ug/k
			2,3,7,8-TCDD	0.000026		ug/k
			2,3,7,8-TCDF	0.00017	gF	ug/k
			HpCDDs (total)	0.0086		ug/k
			HpCDFs (total)	0.024		ug/k
			HxCDDs (total)	0.0025		ug/k
			HxCDFs (total)	0.034		ug/k
			OCDD	0.04	E	ug/k
			OCDF	0.017	E	ug/k
			PeCDDs (total)	0.00022		ug/k
			PeCDFs (total)	0.018		ug/k
			TCDDs (total)	0.0013		ug/k
			TCDFs (total)	0.0062		ug/k
LSSC-08	CS1015	10-15				
			2,3,7,8-TCDF	9.4E-07	gj	ug/l
			OCDD	0.000011	j	ug/l
			TCDFs (total)	0.0000086		ug/l
			1,2,3,4,6,7,8-HpCDD	0.00023		ug/l
			1,2,3,4,6,7,8-HpCDF	0.00044		ug/l
			1,2,3,4,7,8,9-HpCDF	0.00043		ug/l
			1,2,3,4,7,8-HxCDD	0.000016		ug/l
			1,2,3,4,7,8-HxCDF	0.0011		ug/l
•			1,2,3,6,7,8-HxCDD	0.000019		ug/l
			1,2,3,6,7,8-HxCDF	0.0005		ug/l
			1,2,3,7,8,9-HxCDD	0.000016		ug/l
			1,2,3,7,8,9-HxCDF	0.000013		ug/l
			1,2,3,7,8-PeCDF	0.000058		ug/l
			2,3,4,6,7,8-HxCDF	0.000079		ug/l
			2,3,4,7,8-PeCDF	0.00022		ug/I
			2,3,7,8-TCDF	0.000025	g	ug/I
			HpCDDs (total)	0.00039		ug/I
			HpCDFs (total)	0.0015		ug/l
			HxCDDs (total)	0.0002		ug/l
			HxCDFs (total)	0.003		ug/
			OCDD	0.0018		ug/l
			OCDF	0.001		ug/l
<i>-</i> , -	bruary 09, 1999		4-26	W.WV1		ء ہے۔

P: Projects/GE/Pittsfield/Database/N869DB.RPT_Dioxin_RESULTs_Lyman

Location	Sample Name	Sample Depth	Compound	Result	Qualifier	Units
			PeCDFs (total)	0.0017		ug/kg
			TCDDs (total)	0.00015		ug/kg
			TCDFs (total)	0.0009		ug/kg
LSSC-09	CS1015	10-15				
			1,2,3,4,6,7,8-HpCDD	0.000012		ug/kg
			1,2,3,4,6,7,8-HpCDF	0.000045		ug/kg
			1,2,3,4,7,8,9-HpCDF	0.00035		ug/kg
		•	1,2,3,4,7,8-HxCDF	0.0012		ug/kg
			1,2,3,6,7,8-HxCDF	0.00066		ug/kį
			1,2,3,7,8,9-HxCDD	0.0000039	j	ug/k
			1,2,3,7,8,9-HxCDF	0.000014		ug/k
			1,2,3,7,8-PeCDF	0.00012		ug/kį
			2,3,4,6,7,8-HxCDF	0.00013		ug/k
			2,3,4,7,8-PeCDF	0.0003		ug/k
			2,3,7,8-TCDF	0.000064	g	ug/k
			HpCDDs (total)	0.00002		ug/k
			HpCDFs (total)	0.0012		ug/k
			HxCDDs (total)	0.000023		ug/k
			HxCDFs (total)	0.0038		ug/k
			OCDD	0.000023		ug/k
			OCDF	0.00054		ug/k
			PeCDFs (total)	0.0026		ug/k
			TCDDs (total)	0.0000039		ug/k
			TCDFs (total)	0.00091		ug/k
			1,2,3,4,6,7,8-HpCDD	0.0000068	j	ug/k
			1,2,3,4,6,7,8-HpCDF	0.00018		ug/k
			1,2,3,4,7,8,9-HpCDF	0.00012		ug/k
			1,2,3,4,7,8-HxCDF	0.00043		ug/k
			1,2,3,6,7,8-HxCDF	0.00028		ug/k
			1,2,3,7,8,9-HxCDF	0.0000052	j	ug/k
			1,2,3,7,8-PeCDF	0.00005	•	ug/k
			2,3,4,6,7,8-HxCDF	0.000056		ug/k
			2,3,4,7,8-PeCDF	0.0001		ug/k
			2,3,7,8-TCDF	0.000033	g	ug/k
			HpCDDs (total)	0.000015	•	ug/k
			HpCDFs (total)	0.00048		ug/k
			HxCDDs (total)	0.000011		ug/k
			HxCDFs (total)	0.0014		ug/k
			inopis (tour)	0,0017		

0.000019

ug/kg

OCDD

Table 4-6 Detected Dioxin and Furan Soil Concentrations, Lyman Street Site (continued).

Location	Sample Name	Sample Depth	Compound	Result	Qualifier	Units
			OCDF	0.00024		ug/kg
			PeCDFs (total)	0.00099		ug/kg
			TCDDs (total)	0.00001		ug/kg
			TCDFs (total)	0.00046		ug/kg
LSSC-11	CS1015	10-15				
			2,3,7,8-TCDF	0.0000016	g	ug/kg
			HxCDFs (total)	0.00001		ug/kg
			OCDD	0.0000085		ug/kg
			PeCDFs (total)	0.0000093		ug/kg
			TCDFs (total)	0.000013		ug/kg
			1,2,3,4,6,7,8-HpCDD	0.000015		ug/kg
			1,2,3,4,6,7,8-HpCDF	0.00018		ug/kg
			1,2,3,4,7,8,9-HpCDF	0.00016		ug/kg
	•		1,2,3,4,7,8-HxCDF	0.00036		ug/kg
			1,2,3,6,7,8-HxCDD	0.0000039		ug/kg
			1,2,3,6,7,8-HxCDF	0.00017		ug/kg
			1,2,3,7,8,9-HxCDD	0.000038		ug/kg
			1,2,3,7,8,9-HxCDF	0.0000057		ug/kg
			1,2,3,7,8-PeCDF	0.000037		ug/kg
			2,3,4,6,7,8-HxCDF	0.00003		ug/kg
			2,3,4,7,8-PeCDF	80000.0		ug/kg
			2,3,7,8-TCDF	0.000023	g	ug/kg
			HpCDDs (total)	0.000034		ug/kg
			HpCDFs (total)	0.00058		ug/kg
			HxCDDs (total)	0.000039		ug/kg
			HxCDFs (total)	0.0011		ug/kg
			OCDD	0.000071		ug/kg
	- A		OCDF	0.00048		ug/kg
			PeCDFs (total)	0.00091		ug/kg
			TCDDs (total)	0.000035		ug/kg
			TCDFs (total)	0.00043		ug/kg

- j Result is an estimated value that is below the lower calibration limit but above the target detection level.
- g 2, 3, 7, 8, -TCDF results have been confirmed on a DB-225 column.
- E Result exceeds calibration range.
- F Reported value estimated due to an interference.

Table 5-3. Detected Soil VOC Concentrations, Lyman Street Site

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
LSSC-16						
LSSC-10	CS1015	10-15				
			Acetone	0.0075	J	mg/kg
	CS2527	25-27				
			Carbon tetrachloride	0.057		mg/kg
			Ethylbenzene	0.0021	J	mg/kg
			Tetrachloroethene	0.0042	J	mg/kg
			Trichloroethene	0.006		mg/kg
			Xylenes (total)	0.077		mg/kg
LSSC-19						
	SS07	10-12				
			Tetrachloroethene	0.013		mg/kg
			Trichloroethene	0.19		mg/kg

J Result is between MDL and RL.

E Result exceeds calibration range.

Table 5-4. Detected Soil SVOC Concentrations, Lyman Street Site

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
LSSC-16	CS2527	25-27				
LSSC-17			1,2,4-Trichlorobenzene	150		mg/kg
LosC-1/	CS1015	10-15				
			Benzo(a)pyrene	0.39	J	mg/kg
	CS1015 DUP	10-15				
			Benzo(a)pyrene	0.44	J	mg/kg
	CS2325	23-25	1,2,4-Trichlorobenzene	8.6		mg/kg

J Result is between MDL and RL.

E Result exceeds calibration range.

Table 5-5. Detected Soil Metals Concentrations, Lyman Street Site

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
LSSC-16						
	CS1015	10-15				
			Arsenic	2		mg/kg
			Barium	11.1	В	mg/kg
			Beryllium	0.14	В	mg/kg
			Cadmium	0.077	В	mg/kg
			Chromium	7.4		mg/kg
			Cobalt	6.1		mg/kg
			Copper	6.9		mg/kg
			Lead	4.5		mg/kg
			Nickel	9.8		mg/kg
		•	Selenium	0.41	В	mg/kg
			Thallium	0.84	В	mg/kg
			Tin	3.4	В	mg/kg
			Vanadium	5.9	В	mg/kg
			Zinc	34.6		mg/kg
	CS1015 DUP	10-15				
			Antimony	0.19		mg/kg
			Arsenic	2.9		mg/kg
			Barium	11.1		mg/kg
			Beryllium	0.2		mg/kg
			Cadmium	0.043		mg/kg
			Chromium	8		mg/kg
			Cobalt	8.3		mg/kg
		+ 4*	Copper	17.5		mg/kg
			Lead	6.7		mg/kg
			Nickel	21.1	-	mg/kg
			Selenium	0.43		mg/kg
			Vanadium	8		mg/kg
			Zinc	51.6		mg/kg
	CS2527	25-27				
			Arsenic	8.1		mg/kg
			Barium	17.7	В	mg/kg
			Beryllium	0.13	В	mg/kg
			Cadmium	0.48	В	mg/kg
			Chromium	12.2		mg/kg

Table 5-5. (continued)

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
			Cobalt	15.3		mg/kg
			Copper	34		mg/kg
			Lead	14.2		mg/kg
			Mercury	0.031	В	mg/kg
			Nickel	22.6		mg/kg
			Thallium	0.58	В	mg/kg
			Vanadium	9.4		mg/k
			Zinc	69.5		mg/k
LSSC-17						
	CS1015	10-15				
			Arsenic	2.2		mg/kg
			Barium	28.9		mg/k
			Beryllium	0.25	В	mg/k
			Cadmium	0.17	В	mg/k
			Chromium	9.3		mg/k
			Cobalt	7.3		mg/k
			Copper	10.1		mg/k
			Lead	7.7		mg/k
			Mercury	0.016	В	mg/k
			Nickel	12.3		mg/k
			Selenium	0.33	В	mg/k
			Thallium	0.74	В	mg/k
			Vanadium	8.1		mg/k
			Zinc	47.7		mg/k
	CS1015 DUP	10-15				
			Antimony	0.18		mg/k
			Arsenic	1.9		mg/k
			Arsenic	2.3		mg/k
			Barium	31.5		mg/k
		•	Barium	25.5		mg/k
			Beryllium	0.24		mg/k
			Beryllium	0.27	В	mg/k
			Cadmium	0.18	В	mg/k
			Cadmium	0.13		mg/k
			Chromium	8.2		mg/k
			Chromium	8.2		mg/k
			Cobalt	7.8		mg/k
			Cobalt	7		mg/k

Table 5-5. (continued)

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
	A		Copper	10.6		mg/k
			Copper	9		mg/k
			Lead	4.8		mg/k
			Lead	4.5		mg/k
			Mercury	0.015	В	mg/k
			Nickel	11.3		mg/k
			Nickel	13.7		mg/k
			Thallium	0.87	В	mg/l
			Tin	5.9		mg/l
			Vanadium	8.2		mg/l
			Vanadium	8.2		mg/l
			Zinc	44.2		mg/
			Zinc	47.2		mg/l
	CS2325	23-25				
			Arsenic	7.1		mg/
			Barium	13	В	mg/
			Beryllium	0.11	В	mg/
			Cadmium	0.41	В	mg/
			Chromium	10.3		mg/
			Cobalt	11.6		mg/
			Copper	23.6		mg/
			Lead	8.5		mg/
			Nickel	19.1		mg/
			Silver	0.084	В	mg/
			Vanadium	6.9		mg/
			Zinc	50.9		mg/
SSC-18	CS1015	10-15				
	CSTOTS	10-13	Aluminum	6600	_	mg/
			Arsenic	25.4		mg/
			Barium	88.3		
			Calcium, Total	5940		mg/
			Chromium	18.6		mg/
				72.5		mg/
			Copper Iron			mg/
				25600		mg/
			Magnesium	3590		mg/
			Manganese	245		mg/
			Mercury	0.17	į	mg/

Table 5-5. (continued)

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
			Nickel	17.3		mg/kg
			Potassium, Total	841	!	mg/kg
			Sulfide	298		mg/kg
			Vanadium	20		mg/kg
			Zinc	42.1		mg/kg
LSSC-19	CS1015	10-15				
			Aluminum	8750		mg/kg
			Arsenic	3.4		mg/kg
			Barium	4.3		mg/kg
			Calcium, Total	1510		mg/kg
			Chromium	9.9		mg/kg
			Copper	28.2		mg/kg
			Iron	21000		mg/kg
			Magnesium	4260		mg/kg
			Manganese	540		mg/kg
			Nickel	18.5		mg/kg
			Potassium, Total	136	!	mg/kg
			Sulfide	144		mg/kg
			Zinc	74.3		mg/kg

B Result is between MDL and RL

[!] Result is between MDL and LOQ

Table 5-6. Detected Soil Dioxin and Dibenzofuran Concentrations, Lyman Street Site

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
LSSC-16						
LOUC-10	CS1015	10-15				
			1,2,3,4,6,7,8-HpCDD	0.01841	J	μg/kg
			1,2,3,4,6,7,8-HpCDF	0.01017	J	μg/kg
			OCDD	0.12572		μg/k
			OCDF	0.01525	J	μg/k
			TOTAL HpCDD	0.03083		μg/k
			TOTAL HpCDF	0.01585	J	μg/k
	CS2527	25-27	-			
			1,2,3,4,6,7,8-HpCDD	2.13501	E	μg/k
			1,2,3,4,6,7,8-HpCDF	2.56241	E	μg/k
			1,2,3,4,7,8,9-HpCDF	1.57278		μg/k
			1,2,3,4,7,8-HxCDD	0.10386		μg/k
			1,2,3,4,7,8-HxCDF	4.26784	Е	μg/k
			1,2,3,6,7,8-HxCDD	0.08888		μg/I
			1,2,3,6,7,8-HxCDF	1.72669		μg/l
			1,2,3,7,8,9-HxCDD	0.08315		μg/l
			1,2,3,7,8-PeCDD	0.04061		μg/l
			1,2,3,7,8-PeCDF	0.1878		μg/I
			2,3,4,6,7,8-HxCDF	0.17033		μ <u>g</u> /\
			2,3,4,7,8-PeCDF	0.68308		μg/
			2,3,7,8-TCDF	0.44785	E	. υ μg/
			OCDD	16.496	E	μg/
			OCDF	7.07344		μg/
			TOTAL HpCDD	3.667	E	μg/
			TOTAL HpCDF	7.62763	E	μg/
			TOTAL HxCDD	2.13289	E	μg/
	•		TOTAL HxCDF	13.2839	-	μg/
			TOTAL PeCDD	0.32742		μg/
			TOTAL PeCDF	6.76195		μg/
			TOTAL TCDD	0.39254		μg/
			TOTAL TCDF	2.65886		μg/
LSSC-17						,
,	CS1015	10-15				
			OCDD	0.00598	J	μg/
	CS1015 DUP	10-15				
			1,2,3,4,6,7,8-HpCDD	0.00294	J	μg/l

For General Electric Company
P:\PROJECT\GEPITTSFLD\DATABASE\n869db.mdb - RPT_detects_Area

Table 5-6. (continued)

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
· · · · · · · · · · · · · · · · · · ·			OCDD	0.01599	J	μg/kg
			OCDF	0.00384	J	μg/kg
			TOTAL HpCDD	0.00678	J	μg/kg
	CS2325	23-25				
			1,2,3,4,6,7,8-HpCDD	0.38188		μg/kg
			1,2,3,4,6,7,8-HpCDF	0.36497		μg/kg
			1,2,3,4,7,8,9-HpCDF	0.25533		μg/kg
			1,2,3,4,7,8-HxCDD	0.01747		μg/kg
			1,2,3,4,7,8-HxCDF	0.50795		μg/kg
			1,2,3,6,7,8-HxCDD	0.01527		μg/kg
			1,2,3,6,7,8-HxCDF	0.18806		μg/kg
			1,2,3,7,8,9-HxCDD	0.01590		μg/kg
•			1,2,3,7,8,9-HxCDF	0.01459		μg/kg
			1,2,3,7,8-PeCDD	0.00808		μg/kg
			1,2,3,7,8-PeCDF	0.01700		μg/kg
			2,3,4,6,7,8-HxCDF	0.02659		μg/k
			2,3,4,7,8-PeCDF	0.08416		μg/k
			2,3,7,8-TCDF	0.04121		μg/k
			OCDD	2.88819		μg/k
			OCDF	1.17960		μg/k
			TOTAL HpCDD	0.63770		μg/k
			TOTAL HpCDF	1.14921		μg/k
			TOTAL HxCDD	0.24762		μg/k
			TOTAL HxCDF	1.40507		μg/k
			TOTAL PeCDD	0.04813		μg/k
			TOTAL PeCDF	0.68267		μg/k
			TOTAL TCDD	0.07216		μg/k
			TOTAL TCDF	0.17943		μg/k
LSSC-18					-	
	CS1015	10-15	0.2.7.0.7707	0.00404		/1.
			2,3,7,8-TCDF	0.00434		μg/k
			TOTAL TCDF	0.00715		μg/k
LSSC-19	CS1015	10-15				
			1,2,3,4,6,7,8-HpCDD	0.04162		μg/k
			1,2,3,4,6,7,8-HpCDF	0.54708		μg/k
			1,2,3,4,7,8,9-HpCDF	0.43004		μg/k
			1,2,3,4,7,8-HxCDD	0.00706		μg/k

Table 5-6. (continued)

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
			1,2,3,4,7,8-HxCDF	1.35815		μg/kg
			1,2,3,6,7,8-HxCDD	0.01327		μg/kg
			1,2,3,6,7,8-HxCDF	0.50428		μg/kg
			1,2,3,7,8,9-HxCDD	0.01095		μg/kg
			1,2,3,7,8-PeCDF	0.05479		μg/kg
			2,3,4,6,7,8-HxCDF	0.32648		μg/kg
			2,3,4,7,8-PeCDF	0.20862		μg/kg
			2,3,7,8-TCDF	0.06378		μg/kg
			OCDD	0.10117		μg/kg
			OCDF	0.67235		μg/kg
			TOTAL HpCDD	0.11309		μg/kg
			TOTAL HpCDF	1.5546		μg/kg
			TOTAL HxCDD	0.13931		μg/kg
			TOTAL HxCDF	4.07838	Е	μg/kg
			TOTAL PeCDD	0.06057		μg/kg
			TOTAL PeCDF	2.43457		μg/kg
			TOTAL TCDD	0.09649		μg/kg
			TOTAL TCDF	0.66038		μg/kg

- J Result is an estimated value that is below the lower calibration limit but above the target detection level.
- g 2, 3, 7, 8, -TCDF results have been confirmed on a DB-225 column.
- E Result exceeds calibration range.
- F Reported value estimated due to an interference.
- a See narrative.
- s Result detected is below the lowest standard and above zero.
- D Compound quantified using a secondary dilution.

Table 3-2. Detected Soil VOC Concentration Data

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
LSSC-31	SS04	5-6				
LSSC-34I			Acetone	0.045		mg/kg
L35C-341	SS13	24-26				
			Acetone	0.0053	J	mg/kg
			Methylene chloride	0.0028	J	mg/kg

- J Result is between MDL and RL.
- E Result exceeds calibration range.

Table 3-3. Detected Soil SVOC Concentration Data

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
LSSC-31	CS0610	6-10				
			Acenaphthylene	2.5		mg/kg
			Anthracene	1.1	J	mg/kg
			Benzo(a)anthracene	6.2		mg/kg
			Benzo(a)pyrene	10		mg/kg
			Benzo(b)fluoranthene	5.1		mg/kg
			Benzo(ghi)perylene	4.8		mg/kg
			Benzo(k)fluoranthene	5.1		mg/kg
			Chrysene	7.2		mg/kg
			Dibenz(a,h)anthracene	1.4	J	mg/kg
			Fluoranthene	8.5		mg/kg
			Indeno(1,2,3-cd)pyrene	4.3		mg/kg
			Phenanthrene	4.8		mg/kg
			Pyrene	14		mg/kg
LSSC-34I	CS2428	24-28				
	C32420	24-20	bis(2-Ethylhexyl) phthalate	0.3	J	mg/kg

Result is between MDL and RL.

E Result exceeds calibration range.

Table 3-4. Detected Soil Dioxin and Dibenzofuran Concentrations Data

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
LSSC-31						
L00C-J1	CS0610	6-10				
	22000	0.10	1,2,3,4,6,7,8-HpCDD	0.0064	j	ua/ka
			1,2,3,4,6,7,8-HpCDF	0.037	J	μg/kg μg/kg
			1,2,3,4,7,8,9-HpCDF	0.0079		μg/kg μg/kg
			1,2,3,4,7,8-HxCDF	0.025		μg/kg
			1,2,3,6,7,8-HxCDF	0.017		μg/kg μg/kg
			1,2,3,7,8-PeCDF	0.017		μg/kg μg/kg
			2,3,4,6,7,8-HxCDF	0.0067	J	
			2,3,4,7,8-PeCDF	0.016	J	μg/kg μg/kg
			2,3,7,8-TCDF	0.015	α	
			OCDD	0.02	g	μg/kg
			OCDF	0.02		μg/kg
			TOTAL HpCDD	0.012		μg/kg
			TOTAL HpCDF	0.059		μg/kg
			TOTAL HxCDF	0.039		μg/kg
			TOTAL PeCDF	0.11		μg/kg
			TOTAL TCDD	0.0094		μg/kg
			TOTAL TCDF	0.0054		μg/kg
LSSC-341			TOTAL TODA	0.5		μg/kg
	CS2428	24-28				
			1,2,3,4,6,7,8-HpCDF	0.0079		μg/kg
			1,2,3,4,7,8,9-HpCDF	0.0071		μg/kg
			1,2,3,4,7,8-HxCDF	0.021		μg/kg
			1,2,3,6,7,8-HxCDF	0.0089		μg/kg
			2,3,4,7,8-PeCDF	0.0038	J	μg/kg
			OCDD	0.016		μg/kg
			OCDF	0.01	J	μg/kg
			TOTAL HpCDF	0.022		μg/kg
			TOTAL HxCDF	0.054		μg/kg
			TOTAL PeCDF	0.034		μg/kg
			TOTAL TCDD	0.0013		μg/kg
			TOTAL TCDF	0.081		μg/kg
			TOTAL TCDF	0.081		μg/k

Table 3-4. (continued)

Location	Commis Nome	Cample Danth	Compound	Dacult	Qualifier	Modifier	Inite
Location	Sample Name	Sample Depm	Compound	Nesun	Quannici	MOUNTE	UIIIG
		• . •	•				
		(feet)					
		(LCCL)					

- J Result is an estimated value that is below the lower calibration limit but above the target detection level.
- g 2,3,7,8-TCDF results have been confirmed on a DB-225 column.
- E Result exceeds calibration range.
- F Reported value estimated due to an interference.
- a See narrative.
- s Result detected is below the lowest standard and above zero.
- D Compound quantified using a secondary dilution.

Table 3-5. Detected Soil Metals Concentration Data

Location	Sample Name	Sample Depth (feet)	Compound	Result	Qualifier Modifier	Units
1000 31						
LSSC-31	CS0610	6-10				
			Antimony	0.78	В	mg/kg
			Arsenic	5.9	-	mg/kg
			Barium	64.7		mg/kg
			Beryllium	0.41	В	mg/kg
			Cadmium	0.73	В	mg/kg
			Chromium	45.1		mg/kg
			Cobalt	11		mg/kg
			Copper	98.8		mg/kg
			Lead	137		mg/kg
			Mercury	0.53		mg/kg
			Nickel	19.1		mg/kg
			Selenium	1.1		mg/kg
			Silver	0.27	В	mg/kg
			Thallium	0.56	В	mg/kg
			Tin	13.3	В	mg/kg
			Vanadium	13.4		mg/kg
			Zinc	239		mg/kg
LSSC-34I						
	CS2428	24-28				
			Arsenic	4.9		mg/kg
			Barium	19	В	mg/kg
			Beryllium	0.27	В	mg/kg
		vi	Cadmium	0.69		mg/kg
			Chromium	7.7		mg/kg
			Cobalt	8.8		mg/kg
			Copper	14.2		mg/kg
			Lead	6.8		mg/kg
			Mercury	0.017	В	mg/kg
			Nickel	16.5		mg/kg
			Silver	0.097	В	mg/kg
			Vanadium	7.2		mg/kg
			Zinc	90.4		mg/kg

Table 3-5. (continued)

Location Sample Name Sample Depth Compound Result Qualifier Modifier Units (feet)							
(feet)	Location	Sample Name	Sample Depth	Compound	Result	Qualifier Modifier U	Inits
·			(feet)				

- B Result is between MDL and RL
- ! Result is between MDL and LOQ

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

LYMAN STREET AREA PRE-DESIGN INVESTIGATION EPA SOIL SAMPLING RESULTS FOR APPENDIX IX + 3 CONSTITUENTS

(Results in ppm dry weight)

Sample ID:	081898CT37	082498MS29	H2-RB010661-0-0020	H2-RB010761-0-0000	H2-RB010841-0-0010
Sample Depth(Feet):	0-0.5	1-1.5	2-2.5	0-0.5	1-1.5
Parameter Date Collected:	08/18/98	08/24/98	11/24/98	11/23/98	11/20/98
Volatile Organics					
1,4-Dichlorobenzene Semivolatile Organics	ND(0,37)	ND(0.35)	ND(0.39)	ND(0.40)	0.085 J
1.2.4-Trichlorobenzene	ND(0,37)	ND(0.35)	ND(0.39)	0.022 J	ND(0.62)
2,4-Dimethylphenol	0.056 J	ND(0.35) J	ND(0.39) J	ND(0.40) J	ND(0.42) J
2-Methylnaphthalene	0.17 J	0.045 J	0.12 J	0.067 J	0.044 J
2-Methylphenol	0.070 J	ND(0.35) J	ND(0.39)	ND(0.40)	ND(0.42)
3,3'-Dimethylbenzidine	ND(0.37) J	0.35 R	ND(0.39) J	ND(0,40) J	ND(0.42)
4-Chloroaniline 4-Methylphenol	ND(0,37) ND(0,37)	0.35 R 0.038 J	ND(0.39) 0.022 J	ND(0.40) ND(0.40)	ND(0.42)
4-Nitroquinoline-1-oxide	ND(0.37)	0.35 R	ND(0.64)	0.40 R	ND(0.42) ND(0.42)
Acenaphthene	0.17 J	ND(0.35) J	0.15 J	0.042 J	0.094 J
Acenaphthylene	0.19 J	0.041 J	0.10 J	0.089 J	0.064 J
Acetophenone	0.042 J	0.040 J	0.032 J	ND(0.40)	ND(0.42)
Aniline Anthracene	ND(0.93) 0.72	0.89 R 0.035 J	ND(0.98)	ND(1.0)	ND(1.0)
Benzo(a)anthracene	2.4 J	0.035 J 0.13 J	0.42 J 1,6	0.13 J 0.86	0.23 J 0.97
Benzo(a)pyrene	2.7 J	0.13 J	1.0 1.9 J	0.80 0.92 J	1.2 J
Benzo(b)fluoranthene	2.3 J	0,18 J	1.3 J	0.81	0,87
Benzo(g,h,i)perylene	2,3 J	0.042 J	1.9 J	0.87 J	1.2 J
Benzo(k)fluoranthene	2.2 J	0.22 J	1,6 J	0.83	1.0 J
Benzyl Alcohol bis(2-Ethylhexyl)phthalate	0,10 J ND(0,37) J	0.052 J 0.050 J	ND(0.39) J ND(0.39)	ND(0.40) J ND(0.40)	ND(0.42) ND(0.42)
Butylbenzylphthalate	ND(0.37) J	ND(0,35)	0.029 J	0.055 J	0.057 J
Chrysene	2.6 J	0.23 J	1.9	1.2	1.1
Dibenzo(a,h)anthracene	0.61 J	ND(0.35)	0.56 J	0.24 J	0,31 J
Dibenzofuran	0.22 J	0.032 J	0.11 J	0.070 J	0.049 J
Di-n-Butylphthalate Fluoranthene	0,23 J 4,1 J	0.037 J 0.40 J	ND(0.39) 3.7	ND(0.40) 2.0	ND(0.42)
Fluorene	0.20 J	ND(0.35)	0.18 J	0.14 J	2.1 0.096 J
Hexachlorobenzene	ND(0.37)	ND(0.35)	ND(0.39)	ND(0.40)	ND(0.42)
Hexachlorobutadiene	ND(0.37)	0.35 R	ND(0.39)	ND(0.40)	ND(0.42)
Indeno(1,2,3-cd)pyrene	2.3 J	0.063 J	1,7 J	0.79 J	1.0 J
Isophorone Naphthalene	0.12 J 0.30 J	0.15 J 0.079 J	ND(0.39)	ND(0.40)	ND(0.42)
Pentachlorobenzene	ND(0.37)	ND(0.35)	0,20 J ND(0,39)	0,10 J ND(0,40)	0.11 J ND(0.42)
Phenanthrene	3.8	0.25 J	2.2	1.8	0.96
Phenol	0.52	0.080 J	ND(0.39)	ND(0.40)	0.064 J
Pyrene	6.4	0.29 J	3.7	1.9	2.3
Organochlorine Pesticides	ND(0.76)	MD(0.10)	NB(0.00)	3470.00	277/2.26
4,4'-DDE 4,4'-DDT	ND(0.76) ND(0.76)	ND(0.18) ND(0.18) J	ND(0.80) ND(0.80)	ND(0.20) ND(0.20)	ND(0.86) ND(0.86)
Dieldrin	ND(0.76)	ND(0.18)	ND(0.80)	ND(0.20)	1.3 R
Heptachlor Epoxide	ND(0.38)	ND(0.091)	ND(0.40)	ND(0.10)	ND(0.43)
Kepone	2.7 R	0.70 R	0.72 R	0.87 R	5,6 R
Organophosphate Pesticides				· · · · · · · · · · · · · · · · · · ·	
None Detected Herbicides			**		
2.4.5-T	NA	ND(0.0052) J	NA I	NA I	NA
2,4,5-TP	NA NA	ND(0.0052) 3	NA NA	NA NA	NA NA
2,4-D	NA	ND(0.050)	NA NA	NA	NA
Furans					
2,3,7,8-TCDF	0.00010	0.000070	0.000038	0.000039	0.000039
TCDFs (total) 1,2,3,7,8-PeCDF	0.0013 J 0.000059	0.00058 J 0.000025	0.00048 J 0.000030	0,00086 J 0,000021	0.0016 J
2,3,4,7,8-PeCDF	0.000039	0.000025	0.000030	0,000021	0.000011 0.000083
PeCDFs (total)	0.0012 J	0.00061 J	0.00057 J	0.0012 J	0.0024 J
1,2,3,4,7,8-HxCDF	0,00011	0.000033	0.000074	0.000070	0,000072
1,2,3,6,7,8-HxCDF	0.000067 J	0.000025	0.000046	0.000027	0.00030 J
1,2,3,7,8,9-HxCDF	0.000010	0.0000045	0.000012	0.000013	0.000013
2,3,4,6,7,8-HxCDF HxCDFs (total)	0.000073 0.0012 J	0.000031 0.00048 J	0.000027 0.00073 J	0.000032 0.00092 J	0.00065 0.0017 J
1,2,3,4,6,7,8-HpCDF	0.00039 J	0.000083	0.000733 0.00025 J	0.000323 0.00016 J	0.00078 J
1,2,3,4,7,8,9-HpCDF	0.000019	0.0000078	0.000024	0.000027	0.000037
HpCDFs (total)	0.00088 J	0.00020	0.00064 J	0.00035 J	0.0017 J
OCDF Total France	0.00084	0.00012	0.00025	0.00015	0.00066 J
Total Furans	0.0054	0.0020	0.0027	0.0035	0.0081

GENERAL ELECTRIC COMPANY PITTSFIELD, MASSACHUSETTS

LYMAN STREET AREA PRE-DESIGN INVESTIGATION EPA SOIL SAMPLING RESULTS FOR APPENDIX IX + 3 CONSTITUENTS

(Results in ppm dry weight)

Sample ID:	081898CT37	082498MS29	H2-RB010661-0-0020	H2-RB010761-0-0000	H2-RB010841-0-0010
Sample Depth(Feet):	0-0.5	1-1.5	2-2.5	0-0.5	1-1.5
Parameter Date Collected:	08/18/98	08/24/98	11/24/98	11/23/98	11/20/98
Dioxins					
2,3,7,8-TCDD	0.00011	0.0000032	0.00000073	0.0000012	0.0000023
TCDDs (total)	0.00048	0.000053	0.000017	0.000018	0.000031
1,2,3,7,8-PeCDD	0.000011	0.0000014 J	0.0000031	0.0000024 J	0.0000078 J
PeCDDs (total)	0.00047	0.000050 J	0.000032	0.000030	0.000060 J
1,2,3,4,7,8-HxCDD	0.000012	0.0000025	0.0000078	0.0000034	0.000018
1,2,3,6,7,8-HxCDD	0.000018	0,0000040	0.000023	0.0000076	0.000052
1,2,3,7,8,9-HxCDD	0.000011	0.0000031	0.000014	0.0000048	0.000024
HxCDDs (total)	0.00053	0.000059	0.00015	0.000082	0.00047
1,2,3,4,6,7,8-HpCDD	0,00028	0.000059	0.00049	0.000086	0.0013
HpCDDs (total)	0.00054	0.00011	0,00081	0.00016	0.0025
OCDD	0.0032	0.00034	0.0041	0.00043	0.0091
Total Dioxins	0.0052	0.00061	0.0051	0.00072	0.012
WHO TEF	0.00021	0.000044	0.000061	0.000051	NA
Inorganics					
Antimony	1.50 J	4.20 J	1.30 J	1.30 J	ND(0.660) J
Arsenic	9.80	25.6	9.00	4.80	3.30
Barium	50.6	110	294	59.8	45.7
Beryllium	0.250 J	0.430 J	ND(0.0100)	0.130 J	0.280
Cadmium	ND(0.0900)	ND(0,0400)	0.560	0.550	ND(0.190)
Chromium	17.9	20.9 J	14.3	13.3	17.9 J
Cobalt	4.80 J	11.1	14.3	8.10	8.70
Copper	260	107 J	124	53.5	96.2
Cyanide	ND(0.580)	ND(0.540)	ND(0.670) J	ND(0.680) J	ND(0.730)
Lead	99.3	126	352	223	69.5
Mercury	0.490	0.100 J	0.870	0.920	0.230 J
Nickel	20.0	33.2	17.6	15.2	13.9
Selenium	0.620	3.40 J	ND(1.10) J	ND(0.590) J	ND(0.250) J
Silver	0.160 J	ND(0.140)	ND(0.300) J	ND(0.110) J	ND(0,240)
Sulfide	ND(5.50)	ND(5,30) J	ND(5.80)	ND(5.80)	ND(6.20) J
Thallium	0.0700 R	2.00	ND(0,650)	ND(0.500)	0.560
Tin	20.4	28.0	34.0	19.2	ND(4.90)
Vanadium	21.9	28.6	16.6	12.0	14.1
Zinc	243	72.5	294	160	108

Notes:

- Sample collection and analysis performed by United States Environmental Protection Agency (EPA) Subcontractors.
 Results provided to GE under the Supplement to the Data Exchange Agreement letter, dated November 2, 1999.
- 2. NA Not Analyzed Results were not reported for this analyte.
- 3. ND Analyte was not detected. The value in parentheses is the associated detection limit.
- Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. In Environmental Health Perspectives 106(2), December 1998.
- Definitions of data qualifiers not provided as part of data exchange. Result qualifiers as provided in prior EPA deliverables follow:
 - J Estimated Value.
 - R Rejected.