## REPORT

01-0606 5Dm3 44948

# Pre-Design Investigation Report for the Former Oxbow Areas J and K Removal Action

Volume I of III

**General Electric Company Pittsfield, Massachusetts** 

**July 2003** 



# Pre-Design Investigation Report for the Former Oxbow Areas J and K Removal Action

Volume I of III

**General Electric Company Pittsfield, Massachusetts** 

**July 2003** 





Corporate Environmental Programs General Electric Company 100 Woodlawn Avenue, Pittsfield, MA 01201

### Transmitted via Overnight Delivery

July 11, 2003

Bryan Olson **EPA Project Coordinator** U.S. Environmental Protection Agency EPA New England One Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

Re:

GE-Pittsfield/Housatonic River Site Former Oxbow Areas J and K (GECD420) **Pre-Design Investigation Report** 

Dear Mr. Olson:

In accordance with the GE's approved Pre-Design Investigation Work Plan for the Former Oxbow Areas J and K (June 2002) and January 2003 Addendum to the Pre-Design Investigation Work Plan, enclosed is GE's Pre-Design Investigation Report for the Former Oxbow Areas J and K.

Please call John Novotny or me if you have any questions about this report.

Very truly yours,

adiede T Afre mer Andrew T. Silfer, P.E. GE Project Coordinator

cc: Tim Conway, EPA

Enclosure

V:\GE\_Pittsfield\_CD\_Former\_Oxbow\_Areas\_J\_and\_K\Reports and Presentations\PDI Report\49432196CvrLtr.doc

Holly Inglis, EPA Rose Howell, EPA Michael Nalipinski, EPA K.C. Mitkevicius, USACE Dawn Jamros, Weston Susan Steenstrup, MDEP Alan Weinberg, MDEP\* Robert Bell, MDEP\* Thomas Angus, MDEP\* Nancy E. Harper, MA AG\*

Dale Young, MA EOEA\*

Mayor Sara Hathaway, City of Pittsfield Richard Scapin, Chair, Pittsfield City Council

Pittsfield Department of Health

Michael Carroll, GE\*

Rod McLaren, GE

Richard Gates, GE

James Nuss, BBL

James Bieke, Shea & Gardner

Property Owner - Parcel K10-10-3

Property Owner - Parcel K10-10-4

Property Owner - Parcel K10-10-5/6

Property Owner – Parcel K10-10-33

Property Owner - Parcel K10-11-1

Property Owner - Parcel K10-11-2

Property Owner – Parcel K10-11-3

Property Owner - Parcel K10-11-5

Property Owner - Parcel K10-12-1

Property Owner - Parcel K10-13-1

Public Information Repositories

GE Internal Repository

<sup>\*</sup>cover letter only

## **Table of Contents**

| VOL | UN | 1E | 1 - R | EP | O | RT |
|-----|----|----|-------|----|---|----|
|     |    |    |       |    |   |    |

| Section | 1. | Intro | oduction                                                     | 1-1 |
|---------|----|-------|--------------------------------------------------------------|-----|
|         |    | 1.1   | General                                                      | 1-1 |
|         |    | 1.2   | Format of Document                                           | 1-2 |
|         |    | 1.3   | Description of Former Oxbow Areas J and K                    |     |
|         |    |       | 1.3.1 Former Oxbow Area J                                    |     |
|         |    |       | 1.3.2 Former Oxbow Area K                                    |     |
| Section | 2. | Sun   | nmary of Pre-Design Investigations                           | 2-1 |
|         |    | 2.1   | General                                                      | 2-1 |
|         |    | 2.2   | Summary of Pre-Design Sampling and Analysis Activities       |     |
|         |    | 2.3   | Modifications to Pre-Design Sampling and Analysis Activities | 2-2 |
|         |    | 2.4   | Summary of Available Soil Data                               | 2-4 |
|         |    | 2.5   | Data Quality Assessment                                      |     |
|         |    | 2.6   | Assessment of Pre-Design Data Needs                          | 2-5 |
| Section | 3. | Futi  | ure Activities and Schedule                                  | 3-1 |
|         |    | 3.1   | General                                                      | 3-1 |
|         |    | 3.2   | Remaining Pre-Design Activities                              |     |
|         |    | 3.3   | Schedule for Future Activities                               |     |

#### **Tables**

- 1 Pre-Design Investigation Soil Sampling Data for PCBs
- 2 Pre-Design Investigation Soil Sampling Data for Appendix IX+3 Constituents
- 3 Historical Soil Sampling Data for PCBs
- 4 Historical Soil Sampling Data for Appendix IX+3 Constituents
- 5 EPA Soil Sampling Data for PCBs
- 6 EPA Soil Sampling Data for Appendix IX+3 Constituents

#### **Figures**

- 1 Site Location
- 2 Site Plan
- 3 Existing PCB Soil Sample Locations
- 4 Existing Appendix IX+3 Soil Sample Locations (0- to 1-foot depth interval)
- 5 Existing Appendix IX+3 Soil Sample Locations (1- to 3-foot depth interval)
- 6 Existing Appendix IX+3 Soil Sample Locations (3- to 6-foot depth interval)
- 7 Existing Appendix IX+3 Soil Sample Locations (6- to 10-foot depth interval)
- 8 Existing Appendix IX+3 Soil Sample Locations (10- to 15-foot depth interval)

### **VOLUME II – APPENDICES (Bound Separately)**

### **Appendices**

- A Soil Boring Logs
- B Soil Analytical Results

### **VOLUME III – APPENDICES (Bound Separately)**

### **Appendices**

- B Soil Analytical Results Continued
- C Soil Sampling Data Validation Report

## 1. Introduction

#### 1.1 General

On October 27, 2000, a Consent Decree (CD) executed in 1999 by the General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and several other government agencies was entered by the United States District Court for the District of Massachusetts. The CD requires (among other things) the performance of Removal Actions to address polychlorinated biphenyls (PCBs) and other hazardous constituents present in soils, sediment, and groundwater in several Removal Action Areas (RAAs) located in or near Pittsfield, Massachusetts. These RAAs are part of the GE-Pittsfield/Housatonic River Site (the Site). For each Removal Action, the CD and accompanying Statement of Work for Removal Actions Outside the River (SOW) (Appendix E to the CD) establish Performance Standards that must be achieved, as well as specific work plans and other documents that must be prepared to support the response actions for each RAA. These work plans/documents include a Pre-Design Investigation Work Plan, a Pre-Design Investigation Report, a Conceptual Removal Design/Removal Action (RD/RA) Work Plan (for some Removal Actions), and a Final RD/RA Work Plan.

This *Pre-Design Investigation Report for the Former Oxbow Areas J and K Removal Action* (Pre-Design Report) summarizes the pre-design soil investigations performed by GE within the areas designated as Former Oxbow Areas J and K, as well as related activities conducted by EPA. This report also evaluates the sufficiency of the data obtained from those investigations, in combination with data available from prior soil investigations, to support the development of a Conceptual RD/RA Work Plan for this Removal Action.

The pre-design investigation activities for Former Oxbow Areas J and K were performed in accordance with a document entitled *Pre-Design Investigation Work Plan for the Former Oxbow Areas J and K Removal Action* (PDI Work Plan) dated June 2002 and a January 2003 Addendum to the PDI Work Plan. These documents (collectively, the PDI Work Plans) were conditionally approved by EPA in letters dated November 19, 2002 and January 13, 2003, respectively. The field activities described in the PDI Work Plans were completed by GE between February 10 and March 10, 2003, and resulted in the collection of the majority of the pre-design soil data that will be used for future RD/RA evaluations for these areas. In addition, during the performance of the pre-design investigation sampling, split samples were collected and analyzed by EPA at select locations.

During preparation of the PDI Work Plans, an assessment of the existing soil data was performed. From that assessment, it was determined that certain existing data could be used to satisfy pre-design investigation requirements for these areas and/or to support future RD/RA evaluations. These usable historical data have been compiled and included in this Pre-Design Report.

In total, the soil data available to support RD/RA evaluations include results from approximately 970 analyses of soil samples collected from approximately 246 locations. Depending on the specific sample location and depth, these sampling data include results for PCBs and/or other constituents listed in Appendix IX of 40 CFR Part 264, plus three additional constituents -- benzidine, 2-chloroethylvinyl ether, and 1,2-diphenylhydrazine (Appendix IX+3).

#### 1.2 Format of Document

This report summarizes the pre-design investigation activities performed by GE and provides an assessment regarding: (1) the sufficiency of the available soil data to support the design and evaluation of response actions to achieve the soil-related Performance Standards for Former Oxbow Areas J and K; and (2) whether additional information is needed prior to the preparation of the Conceptual RD/RA Work Plan. For the most part, the results of the recent pre-design activities, including the information obtained from other investigations at this RAA, are sufficient to characterize the soils within Former Oxbow Areas J and K and thus support future RD/RA activities. However, some remaining pre-design activities are needed to support future RD/RA evaluations and preparation of the Conceptual RD/RA Work Plan. A description of these remaining activities and a proposed schedule for future activities related to the RD/RA are also included in this report.

The remainder of this section provides a brief description of the Former Oxbow Areas J and K RAA. Section 2 describes the pre-design investigations conducted by GE (and EPA to a lesser extent), provides an overview of the available soil data from this area, and presents an assessment of the completeness of the pre-design investigations (relative to the PDI Work Plans and CD/SOW requirements). Section 3 summarizes and presents a proposed schedule for the completion of future activities related to RD/RA evaluations for this RAA.

Note that the pre-design activities summarized in this report pertain to soils only. Activities concerning groundwater at the Former Oxbow Areas J and K RAA are currently being addressed as part of the Groundwater Management Area 2 (GMA 2) monitoring program.

### 1.3 Description of Former Oxbow Areas J and K

Former Oxbow Areas J and K are located adjacent to the Housatonic River approximately 2,500 feet upstream of the Newell Street Bridge (Figure 1). Certain portions of this RAA originally consisted of land associated with oxbows or low-lying areas associated with the Housatonic River. Rechannelization and straightening of the Housatonic River in the early 1940s by the City of Pittsfield and United States Army Corps of Engineers separated these oxbows and low-lying areas from the active course of the river. The former oxbows and low-lying areas were subsequently filled with various materials from a variety of sources, resulting in its current surface elevations and topography. Former Oxbow Area J encompasses an area of approximately 6 acres generally located north of the Housatonic River, south of East Street, and between Fasce Street and Commercial Street. This area is somewhat larger than the area originally designated as Former Oxbow Area J in the SOW, due to a modification of the CD and SOW in February 2002 which expanded the RAA to include an adjacent property located to the east. Former Oxbow Area K encompasses an area of approximately 2.5 acres south of the Housatonic River across from the eastern portion of Former Oxbow Area J and generally to the northeast of Ventura Avenue. Figure 2 presents a larger site plan of Former Oxbow Areas J and K.

Additional information regarding each oxbow area is provided below.

#### 1.3.1 Former Oxbow Area J

As noted above, the boundaries of Former Oxbow Area J depicted originally in the CD and SOW were expanded in February 2002 through a modification of the CD and SOW. That modification resulted in the inclusion of an additional property in this RAA (Parcel K10-11-5), based on the detection of PCBs and fill material in soil at that property as part of an investigation performed by others and unrelated to the CD and SOW (Scalise Associates, 2001). The current boundaries and configuration of Former Oxbow Area J are shown on Figure 2. This former oxbow area includes six commercial/industrial properties, as well as several utility-related easements and City-owned easements/rights-of-way. As shown on Figure 2, there are six properties that fall within Former Oxbow Area J, all of which are owned by parties other than GE:

- Parcel K10-11-1;
- Parcel K10-11-2;
- Parcel K10-11-3;
- Parcel K10-11-5;
- Parcel K10-12-1; and

Parcel K10-13-1.

Several of these properties abut the Housatonic River (i.e., Parcels K10-11-2, K10-11-3, K10-11-5, and K10-12-1). Pursuant to the CD and SOW, both the riverbank and non-riverbank portions of these properties are part of this RAA.

Although primarily industrial/commercial in nature, certain small and discontinuous areas within Former Oxbow Area J are designated in the CD and SOW as recreational areas, and therefore are subject to different Performance Standards. In this Pre-Design Report, these recreational areas are shown as individual areas as depicted in the CD and SOW. However, as indicated in PDI Work Plan, GE anticipates that these areas will need to be discussed further with EPA, especially with respect to the selection of appropriate averaging area(s) for future RD/RA evaluations.

As shown on Figure 2, an undeveloped section of Longview Terrace and a right-of-way (ROW) for Zeno Street are located in the western portion of the Former Oxbow Area J. As required by EPA's November 19, 2002 conditional approval letter for the PDI Work Plan, pre-design sample locations in this area were configured so that the undeveloped section of Longview Terrace can be evaluated as a separate area during future RD/RA evaluations. Also, as required in that conditional approval letter, the Zeno Street ROW was divided (along its centerline) and will be combined with adjacent Parcels K10-11-1, K10-12-1, and K10-13-1 for future RD/RA evaluations.

#### 1.3.2 Former Oxbow Area K

Former Oxbow Area K is comprised of approximately 2 acres of recreational properties/areas and approximately 0.5 acres of residential properties. Portions or all of the following five parcels, all of which are owned by parties other than GE, fall within Former Oxbow Area K:

- Parcel K10-10-3;
- Parcel K10-10-4;
- Parcel K10-10-5;
- Parcel K10-10-6; and
- Parcel K10-10-33.

In accordance with the CD and SOW, Parcels K10-10-3, K10-10-4, and K10-10-33 are considered recreational properties and Parcels K-10-10-5 and K-10-10-6 are considered residential properties. Each of these properties is privately owned by parties other than GE. The two residential parcels (Parcels K10-10-6 and K10-10-5) are under common ownership and are treated by the owner as a single residential property. The three non-residential properties within Former Oxbow Area K are adjacent to the Housatonic River (Parcels K10-10-3, K10-10-4, and K10-10-33). For these properties, both riverbank and non-riverbank portions are included in this RAA.

A ROW for Parkside Avenue is located north of Parcels K10-10-5 and K10-10-33 and south of Parcels K10-10-3 and K10-10-4 (Figure 2). As required by EPA's November 19, 2002 conditional approval letter for the PDI Work Plan, this ROW will be divided (along its centerline) and will be combined with the adjacent parcels for the purpose of performing subsequent RD/RA evaluations. As also required by that conditional approval letter, the 50-foot residential PCB grid spacing used for Parcel K10-10-5 was extended north into the adjacent half of the Parkside Avenue ROW.

## 2. Summary of Pre-Design Investigations

#### 2.1 General

As discussed in Section 1, the data available to support future RD/RA soil evaluations within Former Oxbow Areas J and K will be derived from a number of different sources and sampling activities, including historical data, recent pre-design activities performed by GE, and EPA split sampling results. The majority of the data were obtained by GE as part of the pre-design investigations conducted between February 10 and March 10, 2003 in accordance with the PDI Work Plans. These investigations were performed on behalf of GE by Blasland, Bouck & Lee (BBL), while analytical services were provided by Severn Trent Laboratories, Inc.

During the performance of these activities, Weston Solutions, Inc. (Weston) performed oversight activities on behalf of EPA, including collection and analysis of split samples at certain locations identified by EPA. In total, the pre-design soil sampling effort (including the combined efforts of GE and EPA) involved the collection and analysis of approximately 440 soil samples from approximately 220 locations. The locations of the samples collected by GE and EPA during the pre-design investigation, as well as the locations of the usable historical samples, are identified on Figure 3 (for PCBs) and Figures 4 through 8 (for samples analyzed for other Appendix IX+3 constituents).

#### Summary of Pre-Design Sampling and Analysis Activities

With certain limited exceptions (discussed in Section 2.3), the pre-design sample locations, frequencies, depths, and analytes were consistent with the activities proposed in the PDI Work Plans. All field and analytical activities conducted by GE were performed in accordance with GE's approved Field Sampling Plan/Ouality Assurance Project Plan (FSP/QAPP). Soil boring logs are presented in Appendix A to this report.

Soil samples collected by GE for PCB analysis during the pre-design investigations were analyzed for Aroclorspecific PCBs by EPA Method 8082. The PCB results were reported on a dry-weight basis with a detection limit of approximately 0.05 ppm for all Aroclors. Select GE soil samples were also analyzed for Appendix IX+3 constituents (excluding pesticides and herbicides), utilizing methods and reporting limits consistent with those presented in the FSP/QAPP and the PDI Work Plans. In addition, split samples were provided upon request to representatives from Weston.

2-1

At residential Parcels K10-10-5 and K10-10-6, an iterative approach was used to analyze PCBs in soil, as specified in the approved PDI Work Plans. As provided in those PDI Work Plans, samples were analyzed in successively deeper increments until PCBs (total PCBs in ppm) were non-detect, at very low levels, or until a maximum sampling depth of 15 feet. The following table summarizes the existing PCB samples analyzed at the residential parcels:

|                 | Sample Depth (feet, bgs) |     |     |     |     |      |       |         |  |  |  |
|-----------------|--------------------------|-----|-----|-----|-----|------|-------|---------|--|--|--|
| Boring Location | 0-1                      | 1-3 | 3-5 | 5-7 | 7-9 | 9-11 | 11-13 | 13-15   |  |  |  |
| RAA15-H11       | X                        | X   | X   |     |     |      |       |         |  |  |  |
| RAA15-H13       | X                        | X   | X   |     |     |      |       |         |  |  |  |
| RAA15-J9        | X                        | X   | X   |     |     | -    |       |         |  |  |  |
| RAA15-J11       | X                        | X   | X   | X   |     |      |       |         |  |  |  |
| RAA15-J15       | X                        | X   | X   | X   | X   |      |       |         |  |  |  |
| RAA15-L9        | X                        | X   | X   |     |     |      |       |         |  |  |  |
| RAA15-L11       | X                        | Х   | X   |     |     |      |       |         |  |  |  |
| RAA15-L13       | X                        | X   | X   | X   | X   | X    | X     | X       |  |  |  |
| RAA15-L15       | X                        | X   | X   | X   | X   | X    | X     | X       |  |  |  |
| RAA15-N11       | X                        | X   | X   |     |     |      |       |         |  |  |  |
| RAA15-N13       | X                        | X   | X   |     |     |      |       | ****    |  |  |  |
| RAA15-N15       | X                        | X   | X   | X   | X   |      |       |         |  |  |  |
| RAA15-N17       | X                        | Х   | X   | X   | X   |      |       |         |  |  |  |
| RAA15-P13       | X                        | X   | X   | X   |     |      |       |         |  |  |  |
| RAA15-P15       | X                        | X   | X   |     |     |      |       | 20 year |  |  |  |

### 2.3 Modifications to Pre-Design Sampling and Analysis Activities

During the performance of the pre-design investigations, the sampling and analysis program outlined in the PDI Work Plans as conditionally approved by EPA, were implemented based on field conditions and observations, sampling results, and/or communications with EPA. A summary of changes from the PDI Work Plans as conditionally approved by EPA is presented below. Each of these modifications was made with concurrence of EPA field representatives:

 30 soil boring locations were relocated slightly (i.e., distances ranging from 3 to 12 feet) from the locations shown in the PDI Work Plans due to access restrictions at the proposed location (e.g., presence of subsurface utilities or steep slopes at the river banks) (Figure 3). The possible movement of sample locations from their proposed locations was anticipated in the PDI Work Plans, and none of the adjustments significantly affect the overall characterization of soils within the RAA.

- At proposed soil borings RAA15-A24, RAA15-C20, and RAA15-E11, several attempts were made to advance the soil boring beyond subsurface obstructions encountered at depths of 1 foot (RAA15-A24), 3 feet (RAA15-E11), and 8 feet (RAA15-C20). To complete these borings to 15 feet bgs, the drilling locations were then offset as follows: RAA15-A24 was moved 15 feet northwest, RAA15-C20 was moved 3 feet north, and RAA15-E11 was moved 20 feet south of the locations proposed in the PDI Work Plans.
- Attempts to drill beyond subsurface obstructions (e.g., concrete/fill or cobbles) encountered at soil borings RAA15-A11, RAA15-C6, and RAA15-C11 were consistently met with drilling refusal, even when attempts were made to drill at different nearby locations. Because of the continued refusal that was encountered in these areas, these borings were terminated at depths of 3, 10, and 10.2 feet bgs, respectively.

None of the modifications identified above significantly affects the overall characterization of the soils within Former Oxbow Areas J and K. The offset described above for the RAA15-E11 boring resulted in its being located less than 10 feet outside the utility band for the sewer line at the southern part of Former Oxbow Area J. Thus, this boring is in close enough proximity to provide data for this section of the utility band. Although refusal was met at 3 feet bgs for the RAA15-A11 boring located in the utility band for the water line along the north side of the Former Oxbow J, there is an abundance of deeper subsurface sample data along the length of this utility within the site. In addition, while the RAA15-C11 boring met with refusal at 10.2 feet bgs, this depth is expected to be below the depth of the natural gas line in this area.

Further, the number of samples that were not collected due to drilling refusal at the Former Oxbow Areas J and K RAA is minimal, and additional sample locations were added such that the amount of soil data available to characterize existing soils does not vary to any great extent. In addition, split sample data collected by EPA, further expands the available data set from which RD/RA evaluations will be conducted.

#### 2.4 Summary of Available Soil Data

For Former Oxbow Areas J and K, the soil data available to support future RD/RA evaluations and the preparation of a Conceptual RD/RA Work Plan include the results of GE's recent pre-design investigations, as well as data available from prior GE investigations and data collected by EPA. The following table summarizes the available data:

| Analytical<br>Parameter | GE<br>Pre-Design Soil<br>Analyses | EPA<br>Split Soil<br>Analyses | Historical<br>Soil<br>Analyses | Total<br>Soil<br>Analyses |
|-------------------------|-----------------------------------|-------------------------------|--------------------------------|---------------------------|
| PCBs                    | 428                               | 2                             | 39                             | 469                       |
| VOCs                    | 114                               | 1                             | 9                              | 124                       |
| SVOCs                   | 114                               | 2                             | 9                              | 125                       |
| Dioxins/Furans          | 115                               | 0                             | 8                              | 123                       |
| Inorganics              | 114                               | 2                             | 11                             | 127                       |

Note: Table does not include QA/QC sample analyses.

The locations from which these soil samples were collected are shown, by relevant depth increment, on Figures 3 through 8. Specifically, Figure 3 shows the locations of the samples collected for PCB analysis, while Figures 4 through 8 show the locations of the samples collected for Appendix IX+3 analyses from the 0- to 1-foot, 1- to 3-foot, 3- to 6-foot, 6- to 10-foot, and 10- to 15-foot depth increments, respectively.

The analytical results for the pre-design soil samples collected by GE are provided in Tables 1 and 2 for PCBs and other Appendix IX+3 constituents, respectively. Historical soil data are summarized in Tables 3 and 4 for PCBs and other Appendix IX+3 constituents, respectively. Tables 5 and 6 provide the results for PCBs and other Appendix IX constituents, respectively, for the samples analyzed by EPA. These results include the data from samples that were split with GE from pre-design investigation borings within this RAA. Note that the data tables that present Appendix IX+3 data only summarize the results for constituents that were detected in one or more samples during the respective investigations. Complete listings of the Appendix IX+3 laboratory results for GE's pre-design samples, historical samples, and EPA samples are included in Appendix B, as Tables B-1, B-2, and B-3, respectively.

#### 2.5 Data Quality Assessment

For the pre-design activities performed by GE, quality control samples (i.e., matrix spike/matrix spike duplicates, field duplicates, and field blanks) were collected in accordance with the FSP/QAPP. The FSP/QAPP

also presents the quality control criteria and corrective action procedures to be followed for each analytical and field-generated quality control sample. Overall project quality assurance was provided by following the procedures for sample collection and analysis, corrective action, and data reporting and validation specified in the FSP/QAPP.

All of the GE pre-design soil analytical data have undergone data review validation in accordance with Section 7.5 of the FSP/QAPP. The results of this assessment for the most recent pre-design samples are summarized in a data validation report presented in Appendix C. As indicated in that report, 100% of the pre-design data collected by GE are considered to be usable, which is greater than the minimum required usability of 90% specified in the FSP/QAPP. Thus, the overall pre-design soil data set meets the data quality objectives set forth in the PDI Work Plans and the FSP/QAPP.

As indicated in the PDI Work Plans, the historical soil data were previously reviewed for overall quality, based on the accompanying laboratory documentation (where available). That data review resulted in the designation of some data as usable both to satisfy pre-design investigation requirements and for future RD/RA evaluations, other data as supplemental data for use in RD/RA evaluations, and other data as rejected or eliminated. The data presented in this report consist of the data in the first two of these categories. Based on the reviews in the PDI Work Plans, these data were found to be of acceptable quality for use in satisfying RD/RA requirements for the response actions for Former Oxbow Areas J and K (except for certain "supplemental" Appendix IX+3 data that the PDI Work Plans indicated would be re-evaluated in the Conceptual RD/RA Work Plan after the PCB-related response actions have been defined).

It is GE's understanding that the analytical results for the soil samples collected and analyzed by EPA were validated by EPA prior to receipt by GE. Therefore, these data are considered acceptable for use in future RD/RA evaluations pertaining to RD/RA activities.

#### 2.6 Assessment of Pre-Design Data Needs

In accordance with Section 3.2 of the SOW, the Pre-Design Report is required to consider the sufficiency of the available data in terms of supporting subsequent RD/RA activities, and whether any additional or remaining data are needed. If additional data are needed, the Pre-Design Report is to include a proposal for further studies/investigations, as well as a schedule for such activities and the submission of any supplemental predesign reports.

Based on review of the available data, GE has not identified any data gaps in completion of the pre-design investigations, as proposed in the PDI Work Plans and approved by EPA. Although minor modifications to the scope of sampling specified in the PDI Work Plans were implemented during the field activities, none of the modifications (described in Section 2.3) affects the overall characterization of soils within this RAA that was gained from the remaining sampling data.

GE has further reviewed the available soil characterization data to determine whether they will be sufficient to support the necessary RD/RA evaluations for this RAA, including the need for, type of, and scope of remediation actions to achieve the applicable Performance Standards both for PCBs and for other Appendix IX+3 constituents. Based on this review, it appears that there may or may not be a need for the collection of supplemental sampling data to support such evaluations for certain constituents and certain properties, depending on a number of factors that cannot be determined at this time. These factors include:

- Determination of the appropriate recreational-use averaging areas within Former Oxbow Area J (as discussed in Section 1.3.1 above);
- Information from the owners of the non-residential properties within this RAA as to whether they will agree to Grants of Environmental Restrictions and Easements (EREs) on their properties if the conditions for EREs (i.e., not achieving residential standards) are met (such information will determine whether GE will present a design for an ERE remediation or a Conditional Solutions at a given property, which in turn affects the appropriate depth increments for evaluation); and
- Further evaluation of the PCB and non-PCB data using the procedures described in the SOW to assess
  the need for and scope of remediation at each property or other averaging area to achieve the applicable
  Performance Standards.

In these circumstances, GE proposes to conduct further evaluations of the need for and type of supplemental sampling that may be required to perform the RD/RA evaluations following determination of the appropriate recreational vs. commercial/industrial averaging areas in Former Oxbow Area J, receipt of information from the non-residential property owners as to whether they will agree to EREs, and the conduct of at least preliminary assessments of the need for and scope of remediation actions to achieve the Performance Standards. If these evaluations indicate the need for supplemental data to support a potential response action, GE will propose the scope of such supplemental sampling to EPA for review and approval. If the evaluations indicate that no further

sampling data are necessary to complete the RD/RA evaluations, GE will so advise EPA and proceed directly to preparation of the Conceptual RD/RA Work Plan. The proposed schedule for these activities is described in Section 3.3 below.

## 3. Future Activities and Schedule

#### 3.1 General

As discussed in Section 2.6 above, the available soil characterization data are sufficient to support the necessary evaluations for this RAA. However, presented in Section 3.2 below are remaining pre-design activities to be performed. Finally, Section 3.3 presents the proposed schedule for these future activities and summarizes the anticipated contents of the Conceptual RD/RA Work Plan.

### 3.2 Remaining Pre-Design Activities

As discussed in Section 2.6, it is possible that supplemental soil sampling may be needed in portions of this RAA to support the RD/RA evaluations to be presented in the Conceptual RD/RA Work Plan, depending on the factors listed in Section 2.6. If GE determines that such supplemental sampling is needed, GE will provide a proposal to EPA for such sampling on the schedule identified in Section 3.3.

In addition, portions of the available site mapping for Former Oxbow Areas J and K are not sufficient to support future RD/RA evaluations. The current mapping, as depicted on Figures 2 through 8 in this report, was primarily generated from aerial photogrammetry mapping conducted in 1990. Although this mapping is useful for identifying prominent features within this RAA (e.g., buildings, roadways, river banks, etc.) and the locations of the soil sampling locations, additional detailed site mapping is required to support RD/RA activities. As a result, GE will develop a detailed site map for Former Oxbow Areas J and K that will include the following information:

- Existing buildings, structures;
- Paved, gravel and unpaved areas;
- Surface elevations and topography;
- 100-year floodplain demarcation;
- Property boundaries and easements (e.g., utilities and ROWs);
- Selected utilities (e.g., manholes, telephone poles, etc.);
- Existing soil sampling locations; and
- Other prominent site features.

#### 3.3 Schedule for Future Activities

In accordance with a prior agreement between GE and EPA under Paragraph 56.b of the CD (as documented in a letter from GE to EPA dated February 15, 2002), GE is required to provide a notice to EPA and MDEP following submission of the Pre-Design Report as to whether the owners of the non-GE-owned non-residential properties within this RAA would agree to execute and record EREs on their properties if the conditions for EREs (i.e., not achieving residential standards) are met. This notice is due one month after submission of the Pre-Design Report or at such other time as is proposed by GE and approved by EPA at the time of submission of that report. GE is planning to submit this notice within one month from the date of submission of this Pre-Design Report, unless GE cannot obtain a final decision on this issue from the relevant landowners within that time, in which case GE will so advise EPA within that time and will propose a schedule for providing the missing information.

In addition, as discussed in Section 2.6, GE will conduct an evaluation of the need for supplemental soil sampling after information is received on whether the non-residential property owners will agree to EREs, after a determination is made in consultation with EPA about the appropriate recreational vs. commercial/industrial averaging areas in Former Oxbow Area J, and after GE has performed at least preliminary RD/RA evaluations to assess the need for and scope of remediation to achieve the applicable Performance Standards for PCBs and other Appendix IX+3 constituents at each relevant property or other averaging area at this RAA. GE proposes to provide the results of this evaluation to EPA within four months from the date of EPA approval of this Pre-Design Report. If GE concludes that supplemental soil sampling is needed, GE will also include in that submittal a proposal for such supplemental sampling and a proposed schedule for completing that supplemental sampling and submitting a Conceptual RD/RA Work Plan for this RAA. If GE concludes that no supplemental soil sampling is needed, GE will so advise EPA by letter and propose a schedule for submitting the Conceptual RD/RA Work Plan, likely within approximately two months of EPA's approval of that letter.

The contents of the Conceptual RD/RA Work Plan, when submitted, will be consistent with Section 3.3 of the SOW and address the following topics:

- Results of the pre-design studies/investigations;
- An evaluation of the areas and depths subject to response actions to meet the PCB-related Performance Standards set forth in the CD and the SOW;

- An assessment of topography and property boundary mapping;
- An evaluation of the need for additional response actions to address non-PCB constituents and (if needed) the type of such response actions;
- An evaluation of other issues that may affect the type and extent of response actions;
- Preliminary plans and specifications to support the response actions;
- Summary of preliminary response action quantities, including soil removal, capping areas, etc.;
- · Design assumptions and parameters; and
- Identification of Applicable or Relevant and Appropriate Requirements (ARARs) in accordance with Attachment B to the SOW.

# **Tables**



which is the second of the sec

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Depth<br>(Feet) | Date<br>Collected | Aroclor-1016          | Aroclor-1221          | Aroclor-1232          | Aroclor-1242          | Aroclor-1248          | Aroclor-1254         | Aroclor-1260    | Total PCBs        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|-----------------|-------------------|
| RAA15-A8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-1             | 2/24/2003         | ND(0.035)             | ND(0,035)             | ND(0.035)             | ND(0,035)             | ND(0.035)             | ND(0.035)            | 0.088           | 0.088             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-3             | 2/24/2003         | ND(0.034)             | ND(0.034)             | ND(0.034)             | ND(0.034)             | ND(0.034)             | ND(0.034)            | ND(0.034)       | ND(0.034)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-6             | 2/24/2003         | ND(0.034)             | ND(0.034)             | ND(0.034)             | ND(0.034)             | ND(0.034)             | ND(0.034)            | ND(0.034)       | ND(0.034)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-10            | 2/24/2003         | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | 0.28                 | 0.36            | 0.64              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-15           | 2/24/2003         | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)            | ND(0.039)       | ND(0.039)         |
| RAA15-A9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | U-1             | 2/24/2003         | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)            | 0.34            | 0.34              |
| RAA15-A11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 2/21/2003         | ND(0.17)              | ND(0.17)              | ND(0.17)              | ND(0.17)              | ND(0.17)              | ND(0.17)             | 2.8             | 2.8               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-3             | 2/21/2003         | ND(0.15)              | ND(0.15)              | ND(0.15)              | ND(0.15)              | ND(0.15)              | ND(0.15)             | 2.2             | 2.2               |
| RAA15-A13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 2/25/2003         | ND(0.38)              | ND(0.38)              | ND(0.38)              | ND(0.38)              | ND(0.38)              | ND(0.38)             | 3.9             | 3.9               |
| RAA15-A15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 2/21/2003         | ND(0.14)              | ND(0.14)              | ND(0.14)              | ND(0.14)              | ND(0.14)              | ND(0.14)             | 1.8             | 1.8               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-3             | 2/21/2003         | ND(0.37)              | ND(0.37)              | ND(0.37)              | ND(0.37)              | ND(0.37)              | 4.2                  | 3.3             | 7.5               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-6             | 2/21/2003         | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)            | 0.013 J         | 0.013 J           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-10            | 2/21/2003         | ND(0.036) [ND(0.036)] | ND(0.036) J [0.11 J] | 0.021 J [0.047] | 0.021 J [0.157 J] |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-15           | 2/21/2003         | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)            | 0.0089 J        | 0.0089 J          |
| RAA15-A17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 2/24/2003         | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)            | 0.68            | 0.68              |
| RAA15-A18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 2/24/2003         | ND(0.40)              | ND(0.40)              | ND(0.40)              | ND(0.40)              | ND(0.40)              | ND(0.40)             | 5.7             | 5.7               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-3             | 2/24/2003         | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)            | 0.058           | 0.058             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-6             | 2/24/2003         | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)            | 0.018 J         | 0.018 J           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-10            | 2/24/2003         | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)            | ND(0.039)       | ND(0.039)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-15           | 2/24/2003         | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)            | ND(0.038)       | ND(0.038)         |
| RAA15-A19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 2/24/2003         | ND(0.37)              | ND(0.37)              | ND(0.37)              | ND(0.37)              | ND(0.37)              | ND(0.37)             | 3.6             | 3.6               |
| RAA15-A20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 2/28/2003         | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)            | 0.38            | 0.38              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-3             | 2/28/2003         | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0,037)             | ND(0.037)             | 0.036 J              | 0,054           | 0.090             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-6             | 2/28/2003         | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)            | ND(0.037)       | ND(0.037)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-10            | 2/28/2003         | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)            | ND(0.036)       | ND(0.036)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-15           | 2/28/2003         | ND(0.038)             | ND(0.038)             | ND(0.038)             | 0.0082 J              | ND(0.038)             | ND(0.038)            | ND(0.038)       | 0.0082 J          |
| RAA15-A21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 3/3/2003          | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)            | 0.61            | 0.61              |
| RAA15-A22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 2/28/2003         | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | 0.015 J              | 0.027 J         | 0.042 J           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-3             | 2/28/2003         | ND(0.18)              | ND(0.18)              | ND(0.18)              | ND(0.18)              | ND(0.18)              | 1.9                  | 1.6             | 3.5               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-6             | 2/28/2003         | ND(0.038) [ND(0.038)] | 0.16 J [ND(0.038) J] | 0.24 [0.20]     | 0.40 J [0.20 J]   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-10            | 2/28/2003         | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)            | ND(0.039)       | ND(0.039)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-15           | 2/28/2003         | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)            | ND(0.038)       | ND(0.038)         |
| RAA15-A23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 3/3/2003          | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)            | 0.21            | 0.21              |
| RAA15-A24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 2/28/2003         | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)            | 0.16            | 0.16              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-3             | 2/28/2003         | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)             | 0.098                | 0.097           | 0,195             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-10            | 2/28/2003         | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)            | ND(0.035)       | ND(0.035)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-15           | 2/28/2003         | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)            | ND(0.036)       | ND(0.036)         |
| RAA15-A25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 3/3/2003          | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)            | 0.11            | 0.11              |
| RAA15-A26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 3/3/2003          | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)            | 1.1             | 1.1               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-3             | 3/3/2003          | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)            | 0.12            | 0.12              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3-6             | 3/3/2003          | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)            | 0.089           | 0.089             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6-10            | 3/3/2003          | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)            | ND(0.037)       | ND(0.037)         |
| RAA15-A27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10-15           | 3/3/2003          | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)            | 0.0087 J        | 0.0087 J          |
| RAA15-B6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-1             | 3/3/2003          | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)            | 0,55            | 0.55              |
| Printed State Company of the Company | 0-1             | 3/6/2003          | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | NĎ(0,038)             | ND(0.038)            | 1.2             | 1.2               |
| RAA15-B7<br>RAA15-B8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0-1             | 2/25/2003         | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)            | 0.060           | 0,060             |
| THE PROPERTY OF THE PARTY OF TH | 0-1             | 2/25/2003         | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | 0.24                 | 0.43            | 0.67              |
| RAA15-B9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-1             | 2/25/2003         | ND(0.19)              | ND(0.19)              | ND(0.19)              | ND(0.19)              | ND(0.19)              | ND(0.19)             | 2.3             | 2.3               |
| RAA15-B11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 2/25/2003         | ND(18)                | ND(18)                | ND(18)                | ND(18)                | ND(18)                | ND(18)               | 500 J           | 500 J             |
| RAA15-B13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 2/25/2003         | ND(3.8)               | ND(3.8)               | ND(3.8)               | ND(3.8)               | ND(3.8)               | ND(3.8)              | 99              | 99                |
| RAA15-B15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-1             | 2/25/2003         | ND(7,4) [ND(19)]      | ND(7.4) [ND(19)]     | 150 [270 J]     | 150 [270 J]       |
| RAA15-B17<br>RAA15-B18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-1<br>0-1      | 2/25/2003         | ND(3.7)               | ND(3.7)               | ND(3.7)               | ND(3.7)               | ND(3.7)               | 19                   | 46              | 65                |
| [[AA19-D10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L V-1 1         | 2/25/2003         | ND(0.85)              | ND(0.85)              | ND(0.85)              | ND(0.85)              | ND(0.85)              | ND(0.85)             | 15              | 15                |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

| Sample ID   | Depth<br>(Feet) | Date<br>Collected | Aroclor-1016          | Aroclor-1221                       | Aroclor-1232           | Aroclor-1242          | Aroclor-1248          | Aroclor-1254          | Aroclor-1260      | Total PCBs        |
|-------------|-----------------|-------------------|-----------------------|------------------------------------|------------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|
| RAA15-B19   | 0-1             | 2/25/2003         | ND(4.9)               | ND(4.9)                            | ND(4.9)                | ND(4.9)               | ND(4.9)               | ND(4.9)               | 67                | 67                |
| RAA15-B20   | 0-1             | 3/4/2003          | ND(20)                | ND(20)                             | ND(20)                 | ND(20)                | ND(20)                | ND(20)                | 280               | 280               |
| RAA15-B21   | 0-1             | 3/3/2003          | ND(0.037)             | ND(0.037)                          | ND(0.037)              | ND(0.037)             | ND(0.037)             | ND(0.037)             | 0.085             | 0.085             |
| RAA15-B22   | 0-1             | 2/28/2003         | ND(0.044)             | ND(0.044)                          | ND(0.044)              | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)         | ND(0.044)         |
| RAA15-B23   | 0-1             | 3/3/2003          | ND(0.040)             | ND(0.040)                          | ND(0,040)              | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)         | ND(0.040)         |
| RAA15-B24   | Q-1             | 3/3/2003          | ND(0.045) [ND(0.048)] | ND(0.045) [ND(0.048)]              | ND(0.045) [ND(0.048)]  | ND(0.045) [ND(0.048)] | ND(0.045) [ND(0.048)] | ND(0.045) [ND(0.048)] | 0.36 [0.30]       | 0.36 [0.30]       |
| RAA15-C4    | 0-1             | 3/7/2003          | ND(0.040)             | ND(0.040)                          | ND(0.040)              | ND(0.040)             | ND(0.040)             | 0.057                 | 0.12              | 0.177             |
|             | i-3             | 3/7/2003          | ND(0.038)             | ND(0.038)                          | ND(0.038)              | ND(0.038)             | ND(0.038)             | 0.052                 | 0.080             | 0.132             |
|             | 3-6             | 3/7/2003          | ND(0.037) [ND(0.037)] | ND(0.037) [ND(0.037)]              | ND(0.037) [ND(0.037)]  | ND(0.037) [ND(0.037)] | ND(0.037) [ND(0.037)] | 0.056 [ND(0.037)]     | 0.092 [0.13]      | 0.148 [0.13]      |
|             | 6-10            | 3/7/2003          | ND(0.035)             | ND(0.035)                          | ND(0,035)              | ND(0.035)             | ND(0.035)             | ND(0.035)             | 0.027 J           | 0.027 J           |
|             | 10-15           | 3/7/2003          | ND(0.035)             | ND(0,035)                          | ND(0.035)              | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)         | ND(0.035)         |
| RAA15-C5    | 0-1             | 3/10/2003         | ND(0.041)             | ND(0,041)                          | NĎ(0.041)              | ND(0.041)             | ND(0.041)             | 0.29                  | ND(0.041)         | 0.29              |
| RAA15-C6    | 0-1             | 3/6/2003          | ND(0.23)              | ND(0.23)                           | ND(0.23)               | ND(0.23)              | ND(0.23)              | 3.0                   | 2.7               | 5.7               |
|             | 1-3             | 3/6/2003          | ND(0.20)              | ND(0.20)                           | ND(0.20)               | ND(0.20)              | ND(0.20)              | 1.7                   | 1.6               | 3.3               |
|             | 3-6             | 3/6/2003          | ND(0.20)              | ND(0.20)                           | ND(0.20)               | ND(0.20)              | ND(0.20)              | 2.2                   | 2.3               | 4.5               |
|             | 6-10            | 3/6/2003          | ND(0.041)             | ND(0.041)                          | ND(0.041)              | ND(0.041)             | ND(0.041)             | 0.85                  | 1.1               | 1.95              |
| RAA15-C7    | 0-1             | 2/25/2003         | ND(0.041)             | ND(0,041)                          | ND(0.041)              | ND(0.041)             | ND(0.041)             | ND(0.041)             | 1.3               | 1.3               |
| RAA15-C8    | 0-1             | 2/26/2003         | ND(0.037)             | ND(0.037)                          | ND(0.037)              | ND(0.037)             | ND(0.037)             | ND(0.037)             | 0.39              | 0.39              |
|             | 1-3             | 2/26/2003         | ND(0.36)              | ND(0.36)                           | ND(0.36)               | ND(0.36)              | ND(0.037)             | 3.9                   | 3.5               |                   |
|             | 3-6             | 2/26/2003         | ND(0.036)             | ND(0.036)                          | ND(0.036)              | ND(0.036)             | , ,                   |                       |                   | 7.4               |
|             | 6-10            | 2/26/2003         | ND(0.71)              | ND(0.71)                           | ND(0.036)<br>ND(0.71)  | ,                     | ND(0.036)             | 0.020 J               | 0.028 J           | 0.048 J           |
|             | 10-15           | 2/26/2003         | ND(0.041)             | ND(0.041)                          | ND(0.71)<br>ND(0.041)  | ND(0.71)              | ND(0.71)              | 6.4                   | 7.3               | 13.7              |
| RAA15-C9    | 0-1             | 2/25/2003         | ND(0.037)             | ND(0.041)                          | ND(0.041)<br>ND(0.037) | ND(0.041)             | ND(0.041)             | ND(0.041)             | ND(0.041)         | ND(0.041)         |
| RAA15-C11   | 0-1             | 2/21/2003         | ND(3.8)               | ND(3.8)                            |                        | ND(0.037)             | ND(0.037)             | ND(0.037)             | 0.37              | 0.37              |
| 100110-011  | 1-3             | 2/21/2003         | ND(3.8)               | ND(3.6)<br>ND(1.9)                 | ND(3.8)<br>ND(1.9)     | ND(3.8)               | ND(3.8)               | ND(3.8)               | 69                | 69                |
|             | 3-6             | 2/21/2003         | ND(0.035) [ND(0.036)] |                                    |                        | ND(1.9)               | ND(1.9)               | ND(1.9)               | 25                | 25                |
|             | 6-10            | 2/21/2003         | ND(0.036)             | ND(0.035) [ND(0.036)]<br>ND(0.036) | ND(0.035) [ND(0.036)]  | ND(0.035) [ND(0.036)] | ND(0.035) [ND(0.036)] | 0.65 [0.61]           | 1.1 [0.95]        | 1.75 [1.56]       |
| RAA15-C13   | 0-1             | 2/25/2003         | ND(0.036)<br>ND(0.37) |                                    | ND(0.036)              | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)         | ND(0.036)         |
| RAA15-C15   | 0-1             | 2/21/2003         | ND(0.035)             | ND(0.37)                           | ND(0.37)               | ND(0.37)              | ND(0.37)              | ND(0.37)              | 3.5               | 3.5               |
| 10000       | 1-3             | 2/21/2003         |                       | ND(0.035)                          | ND(0.035)              | ND(0.035)             | ND(0.035)             | ND(0.035)             | 1.0               | 1.0               |
|             | 3-6             | 2/21/2003         | ND(0.74)              | ND(0.74)                           | ND(0.74)               | ND(0.74)              | ND(0.74)              | ND(0.74)              | 12                | 12                |
|             | 6-10            | 2/21/2003         | ND(0.036)             | ND(0.036)                          | ND(0.036)              | ND(0.036)             | ND(0.036)             | 0.11                  | 0.16              | 0.27              |
|             | 10-15           |                   | ND(1.8)               | ND(1.8)                            | ND(1.8)                | ND(1.8)               | ND(1.8)               | 25                    | 43                | 68                |
| RAA15-C17   | 0-1             | 2/21/2003         | ND(0.17)              | ND(0.17)                           | ND(0.17)               | ND(0.17)              | ND(0.17)              | 1.8                   | 2.8               | 4.6               |
| RAA15-C18   | 0-1             | 2/25/2003         | ND(2.0)               | ND(2.0)                            | ND(2.0)                | ND(2.0)               | ND(2.0)               | ND(2.0)               | 23                | 23                |
| NAM 13-C 10 | 1 - 1           | 2/26/2003         | ND(4.0)               | ND(4.0)                            | ND(4.0)                | ND(4.0)               | ND(4.0)               | 62                    | 48                | 110               |
|             | 1-3             | 2/26/2003         | ND(0.20)              | ND(0.20)                           | ND(0.20)               | ND(0.20)              | ND(0.20)              | 2.3                   | 1.7               | 4.0               |
|             | 3-6             | 2/26/2003         | ND(0.044)             | ND(0.044)                          | ND(0.044)              | ND(0.044)             | ND(0.044)             | 0.065                 | 0.082             | 0.147             |
|             | 6-10            | 2/26/2003         | ND(0.046)             | ND(0.046)                          | ND(0.046)              | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)         | ND(0.046)         |
| 5.15.616    | 10-15           | 2/26/2003         | ND(0.044)             | ND(0.044)                          | ND(0.044)              | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)         | ND(0.044)         |
| RAA15-C19   | 0-1             | 2/27/2003         | ND(0.047)             | ND(0.047)                          | ND(0.047)              | ND(0.047)             | ND(0.047)             | ND(0.047)             | 0.32              | 0.32              |
| RAA15-C20   | 0-1             | 3/4/2003          | ND(0.042)             | ND(0.042)                          | ND(0.042)              | ND(0.042)             | ND(0.042)             | ND(0.042)             | 0.28              | 0.28              |
| 1           | 1-3             | 3/4/2003          | ND(0.042) [ND(0.042)] | ND(0.042) [ND(0.042)]              | ND(0.042) [ND(0.042)]  | ND(0.042) [ND(0.042)] | ND(0.042) [ND(0.042)] | ND(0.042) [ND(0.042)] | 0.029 J [0.036 J] | 0.029 J [0.036 J] |
|             | 3-6             | 3/4/2003          | ND(0.049)             | ND(0.049)                          | ND(0.049)              | ND(0.049)             | ND(0.049)             | ND(0.049)             | ND(0.049)         | ND(0,049)         |
|             | 6-10            | 3/4/2003          | ND(0.050)             | ND(0.050)                          | ND(0.050)              | ND(0.050)             | ND(0.050)             | ND(0.050)             | ND(0.050)         | ND(0.050)         |
|             | 10-15           | 3/4/2003          | ND(0.040)             | ND(0.040)                          | ND(0.040)              | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)         | ND(0.040)         |
| RAA15-C21   | 0-1             | 3/3/2003          | ND(0.041)             | ND(0.041)                          | ND(0.041)              | ND(0.041)             | ND(0.041)             | ND(0.041)             | 0.016 J           | 0.016 J           |
| RAA15-C22   | 0-1             | 2/28/2003         | ND(0.039)             | ND(0.039)                          | ND(0.039)              | ND(0.039)             | ND(0.039)             | ND(0.039)             | 0.016 J           | 0.016 J           |
|             | 1-3             | 2/28/2003         | ND(0.036)             | ND(0.036)                          | ND(0.036)              | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)         | ND(0.036)         |
|             | 3-6             | 2/28/2003         | ND(0.035)             | ND(0.035)                          | ND(0.035)              | ND(0.035)             | ND(0.035)             | 0.15                  | 0.17              | 0.32              |
|             | 6-10            | 2/28/2003         | ND(0.24)              | ND(0.24)                           | ND(0.24)               | ND(0.24)              | ND(0.033)             | 2.7                   | 2.8               | 5.5               |
|             | 10-15           | 2/28/2003         | ND(0.038)             | ND(0.038)                          | ND(0.038)              | ND(0.038)             | ND(0.038)             | 0.098                 | 0.12              | 0.218             |
| RAA15-C23   | 0-1             | 3/3/2003          | ND(0.038)             | ND(0.038)                          | ND(0.038)              | ND(0.038)             | ND(0.038)             | ND(0.038)             | 0.0089 J          | 0.0089 J          |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID | Depth<br>(Feet) | Date<br>Collected | Aroclor-1016           | Aroclor-1221          | Aroclor-1232           | Aroclor-1242           | Aroclor-1248           | Aroclor-1254           | Aroclor-1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total PCBs          |
|-----------|-----------------|-------------------|------------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| RAA15-C24 | 0-1             | 3/3/2003          | ND(0.040)              | ND(0.040)             | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0,040)              | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.041               |
|           | 1-3             | 3/3/2003          | ND(0.036)              | ND(0.036)             | ND(0.036)              | ND(0.036)              | ND(0.036)              | ND(0.036)              | 0.058                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.058               |
|           | 3-6             | 3/3/2003          | ND(0.035)              | ND(0.035)             | ND(0.035)              | ND(0.035)              | ND(0.035)              | ND(0.035)              | 0.019 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.019 J             |
|           | 6-10            | 3/3/2003          | ND(0.038)              | ND(0.038)             | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.33                |
|           | 10-15           | 3/3/2003          | ND(0.039)              | ND(0.039)             | ND(0.039)              | ND(0.039)              | ND(0.039)              | 0.046                  | 0.042                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.088               |
| RAA15-C25 | 0-1             | 3/4/2003          | ND(0.038)              | ND(0.038)             | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.17                |
| RAA15-D2  | 0-1             | 3/10/2003         | ND(0.040)              | ND(0.040)             | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.040)              | 0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.66                |
|           | 1-3             | 3/10/2003         | ND(0.036)              | ND(0.036)             | ND(0.036)              | ND(0.036)              | ND(0.036)              | ND(0.036)              | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.18                |
|           | 3-6             | 3/10/2003         | ND(0.039)              | ND(0.039)             | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0.039)           |
|           | 6-10            | 3/10/2003         | ND(0.037) [ND(0.038)]  | ND(0.037) [ND(0.038)] | ND(0.037) [ND(0.038)]  | ND(0.037) [ND(0.038)]  | ND(0.037) [ND(0.038)]  |                        | ND(0.037) [ND(0.038)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND(0.037) IND(0.038 |
|           | 10-15           | 3/10/2003         | ND(0.039)              | ND(0.039)             | ND(0.039)              | ND(0.039)              | ND(0.039)              | 0.039                  | 0.057                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.096               |
| RAA15-D3  | 0-1             | 3/10/2003         | ND(0.035)              | ND(0.035)             | ND(0.035)              | ND(0.035)              | ND(0.035)              | 0.16                   | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.40                |
| RAA15-D4  | 0-1             | 3/10/2003         | ND(0.036)              | ND(0.036)             | ND(0.036)              | ND(0.036)              | ND(0.036)              | ND(0.036)              | ND(0.036)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0,036)           |
| RAA15-D5  | 0-1             | 3/10/2003         | ND(0.038)              | ND(0.038)             | ND(0.038)              | ND(0.038)              | ND(0.038)              | 0.69                   | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,29                |
| RAA15-D6  | 0-1             | 3/6/2003          | ND(0.051)              | ND(0.051)             | ND(0.051)              | ND(0.051)              | ND(0.051)              | 0.64                   | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.54                |
| RAA15-D7  | 0-1             | 2/27/2003         | ND(0.47)               | ND(0.47)              | ND(0.47)               | ND(0.47)               | ND(0.47)               | ND(0.47)               | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.1                 |
| RAA15-D8  | 0-1             | 2/27/2003         | ND(0.21)               | ND(0.21)              | ND(0.21)               | ND(0.21)               | ND(0.21)               | 1.2                    | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.1                 |
| RAA15-D9  | 0-1             | 2/25/2003         | ND(3.6)                | ND(3.6)               | ND(3.6)                | ND(3.6)                | ND(3.6)                | ND(3.6)                | 38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38                  |
| RAA15-D11 | 0-1             | 2/25/2003         | ND(0.038)              | ND(0.038)             | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | 0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.93                |
| RAA15-D13 | 0-1             | 2/25/2003         | ND(0.38)               | ND(0.38)              | ND(0.38)               | ND(0.38)               | ND(0.38)               | ND(0.038)              | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| RAA15-D15 | 0-1             | 2/25/2003         | ND(0.037)              | ND(0.037)             | ND(0.037)              | ND(0.037)              | ND(0.037)              | ND(0.037)              | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1<br>0.73         |
| RAA15-D17 | 0-1             | 2/25/2003         | ND(0.85)               | ND(0.85)              | ND(0.85)               | ND(0.85)               | ND(0.85)               | ND(0.037)              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| RAA15-D20 | 0-1             | 3/4/2003          | ND(0.052)              | ND(0.052)             | ND(0.052)              | ND(0.052)              | ND(0.052)              | ND(0.052)              | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 14                  |
| RAA15-D21 | 0-1             | 3/4/2003          | ND(0.052)              | ND(0.052)             | ND(0.052)              | ND(0.052)              | ND(0.052)              | ND(0.052)              | 0.083                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.19                |
| RAA15-D22 | 0-1             | 3/4/2003          | ND(0.046)              | ND(0.046)             | ND(0.046)              | ND(0.046)              | ND(0.046)              | ND(0.032)<br>ND(0.046) | 0.083<br>0.029 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.083               |
| RAA15-D23 | 0-1             | 3/4/2003          | ND(0.051)              | ND(0.051)             | ND(0.051)              | ND(0.051)              | ND(0.051)              | ND(0.046)              | 0.029 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.029 J             |
| RAA15-D24 | 0-1             | 3/4/2003          | ND(0.038)              | ND(0.038)             | ND(0.038)              | ND(0.031)              | ND(0.031)              |                        | THE RESIDENCE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN | 0.095               |
| RAA15-D25 | 0-1             | 3/4/2003          | ND(0.042)              | ND(0.042)             | ND(0.042)              | ND(0.038)              | ND(0.038)              | ND(0.038)<br>0.082     | 0.017 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.017 J             |
| RAA15-D26 | 0-1             | 3/4/2003          | ND(0.037)              | ND(0.037)             | ND(0.042)              | ND(0.042)              | ND(0.042)<br>ND(0.037) |                        | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.272               |
| RAA15-D27 | 0-1             | 3/4/2003          | ND(0.038)              | ND(0.038)             | ND(0.037)              | ND(0.037)              | ND(0.037)              | ND(0.037)              | 0,73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.73                |
| RAA15-E1  | 0-1             | 3/10/2003         | ND(0.037)              | ND(0.037)             | ND(0.038)              | ND(0.038)              |                        | ND(0.038)              | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.43                |
|           | 1-3             | 3/10/2003         | ND(0.038)              | ND(0.038)             | ND(0.037)<br>ND(0.038) | ND(0.037)<br>ND(0.038) | ND(0.037)              | ND(0.037)              | 0.081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.081               |
|           | 3-6             | 3/10/2003         | ND(0.040)              | ND(0.040)             | ND(0.038)<br>ND(0.040) | ND(0.038)<br>ND(0.040) | ND(0.038)              | ND(0.038)              | ND(0.038)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0.038)           |
|           | 6-10            | 3/10/2003         | ND(0.038)              | ND(0.038)             | ND(0.040)              | ND(0.040)<br>ND(0.038) | ND(0.040)              | ND(0.040)              | ND(0.040)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0.040)           |
|           | 10-15           | 3/10/2003         | ND(0.040)              | ND(0.040)             | ND(0.038)<br>ND(0.040) | ND(0.038)<br>ND(0.040) | ND(0.038)              | ND(0.038)              | 0.012 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.012 J             |
| RAA15-E2  | 0-1             | 3/10/2003         | ND(0.037)              | ND(0.037)             | ND(0.040)              | ND(0.040)<br>ND(0.037) | ND(0.040)              | ND(0.040)              | ND(0.040)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0.040)           |
|           | 1-3             | 3/10/2003         | ND(0.20)               | ND(0.20)              | ND(0.037)<br>ND(0.20)  |                        | ND(0.037)              | 0.070                  | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.19                |
|           | 3-6             | 3/10/2003         | ND(0.037)              | ND(0.037)             | ND(0.20)<br>ND(0.037)  | ND(0.20)               | ND(0.20)               | 2.0                    | ND(0.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.0                 |
|           | 6-10            | 3/10/2003         | ND(0.036)              | ND(0.037)             | ND(0.037)<br>ND(0.036) | ND(0.037)              | ND(0.037)              | ND(0.037)              | ND(0.037)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0.037)           |
|           | 10-15           | 3/10/2003         | ND(0.038)              | ND(0.038)             |                        | ND(0.036)              | ND(0.036)              | ND(0.036)              | ND(0.036)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0.036)           |
| RAA15-E3  | 0-1             | 3/10/2003         | ND(0.036)              | ND(0.036)             | ND(0.038)<br>ND(0.036) | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0.038)           |
| RAA15-E4  | 0-1             | 3/7/2003          | ND(0.038)              | ND(0.036)             |                        | ND(0.036)              | ND(0.036)              | ND(0.036)              | 0.094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.094               |
|           | 1-3             | 3/7/2003          | ND(0.74)               | ND(0.038)<br>ND(0.74) | ND(0.038)              | ND(0.038)              | ND(0.038)              | 0.24                   | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.46                |
|           | 3-6             | 3/7/2003          | ND(0.74)<br>ND(0.36)   | ND(0.74)<br>ND(0.36)  | ND(0.74)               | ND(0.74)               | ND(0.74)               | 8.4                    | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.9                |
|           | 6-10            | 3/7/2003          | ND(0.35)               |                       | ND(0.36)               | ND(0.36)               | ND(0.36)               | 2.6                    | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.4                 |
|           | 10-15           | 3/7/2003          | ND(0.035)<br>ND(0.036) | ND(0.035)             | ND(0.035)              | ND(0.035)              | ND(0.035)              | 0.10                   | 0.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.178               |
| RAA15-E5  | 0-1             | 3/10/2003         | ND(0.036)<br>ND(0.039) | ND(0.036)             | ND(0.036)              | ND(0.036)              | ND(0.036)              | 0.14                   | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.25                |
|           |                 | 0.10/2003         | ND(0.039)              | ND(0.039)             | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.38                |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID | Depth<br>(Feet) | Date<br>Collected | Aroclor-1016          | Aroclor-1221          | Aroclor-1232          | Aroclor-1242           | Aroclor-1248           | Aroclor-1254                      | Aroclor-1260      | Total PCBs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------|-----------------|-------------------|-----------------------|-----------------------|-----------------------|------------------------|------------------------|-----------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RAA15-E6  | 0-1             | 3/6/2003          | ND(0.053)             | ND(0.053)             | ND(0.053)             | ND(0.053)              | ND(0.053)              | 0.24                              | 0.73              | 0.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 1-3             | 3/6/2003          | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)              | ND(0.040)              | ND(0.040)                         | 0.21              | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 3-6             | 3/6/2003          | ND(0.040) [ND(0.040)] | ND(0.040) [ND(0.040)] | ND(0.040) [ND(0.040)] | ND(0.040) [ND(0.040)]  | ND(0.040) [ND(0.040)]  | 0.46 J [ND(0.040) J]              | 0.48 J [0.28 J]   | 0.94 J [0.28 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           | 6-10            | 3/6/2003          | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)              | ND(0.044)              | 0.036 J                           | 0.046             | 0.082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | 10-15           | 3/6/2003          | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)              | ND(0.042)              | ND(0.042)                         | ND(0.042)         | ND(0.042)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RAA15-E7  | 0-1             | 2/27/2003         | ND(0.45)              | ND(0.45)              | ND(0.45)              | ND(0.45)               | ND(0.45)               | 2.5                               | 5.0               | 7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RAA15-E8  | 0-1             | 2/26/2003         | ND(0.39)              | ND(0.39)              | ND(0.39)              | ND(0.39)               | ND(0.39)               | ND(0.39)                          | 6.1               | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | 1-3             | 2/26/2003         | ND(1.8)               | ND(1.8)               | ND(1.8)               | ND(1.8)                | ND(1.8)                | ND(1.8)                           | 24                | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 3-6             | 2/26/2003         | ND(0.75)              | ND(0.75)              | ND(0.75)              | ND(0.75)               | ND(0.75)               | ND(0.75)                          | 12                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 6-10            | 2/26/2003         | ND(0.041)             | ND(0.041)             | ND(0.041)             | ND(0.041)              | ND(0.041)              | ND(0.041)                         | 0.11              | 0,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 10-15           | 2/26/2003         | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)              | ND(0.044)              | ND(0.044)                         | ND(0.044)         | ND(0.044)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| RAA15-E9  | 0-1             | 2/27/2003         | ND(0.74)              | ND(0.74)              | ND(0.74)              | ND(0.74)               | ND(0.74)               | 4.0                               | 9.2               | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAA15-E11 | 0-1             | 2/21/2003         | ND(0.37)              | ND(0.37)              | ND(0.37)              | ND(0.37)               | ND(0.37)               | ND(0.37)                          | 4.2               | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | 1-3             | 2/21/2003         | ND(1.9)               | ND(1.9)               | ND(1.9)               | ND(1.9)                | ND(1.9)                | 25                                | 36                | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|           | 3-6             | 2/27/2003         | ND(0.37)              | ND(0.37)              | ND(0.37)              | ND(0.37)               | ND(0.37)               | 1.9                               | 3.0               | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | 6-10            | 2/27/2003         | ND(0.74)              | ND(0.74)              | ND(0.74)              | ND(0.74)               | ND(0.74)               | 4.0                               | 6,7               | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 10-15           | 2/27/2003         | ND(0.048) [ND(0.045)] | ND(0.048) [ND(0.045)] | ND(0.048) [ND(0.045)] | ND(0.048) [ND(0.045)]  | ND(0.048) IND(0.045)]  | 0.057 [0.052]                     | 0.099 [0.087]     | 0.156 [0.139]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| RAA15-E13 | 0-1             | 2/27/2003         | ND(0.16)              | ND(0.16)              | ND(0.16)              | ND(0.16)               | ND(0.16)               | 0.51                              | 1.5               | 2.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAA15-E15 | 0-1             | 2/26/2003         | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)              | ND(0.038)              | ND(0,038)                         | 0.37              | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 1-3             | 2/26/2003         | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)              | ND(0.038)              | ND(0.038)                         | 0.27              | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 3-6             | 2/26/2003         | ND(0.21)              | ND(0.21)              | ND(0.21)              | ND(0.21)               | ND(0.21)               | 1.3                               | 2.1               | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|           | 6-10            | 2/26/2003         | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)              | ND(0.038)              | 0.057                             | 0.070             | 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | 10-15           | 2/26/2003         | ND(0.041) [ND(0.040)] | ND(0.041) [ND(0.040)] | ND(0.041) [ND(0.040)] | ND(0.041) [ND(0.040)]  | ND(0.041) IND(0.040)]  | ND(0.041) [0.010 J]               | 0.019 J [0.020 J] | 0.019 J [0.030 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| RAA15-E18 | 0-1             | 2/20/2003         | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)              | ND(0.039)              | ND(0,039)                         | 0.21              | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 1-3             | 2/20/2003         | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)              | ND(0.038)              | 0.050                             | 0.11              | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 3-6             | 2/20/2003         | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)              | ND(0.042)              | ND(0.042)                         | 0.15              | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 6-10            | 2/20/2003         | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)              | ND(0.043)              | ND(0.043)                         | 0.053             | 0.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | 10-15           | 2/20/2003         | ND(0.039) [ND(0.041)] | ND(0.039) [ND(0.041)] | ND(0.039) [ND(0.041)] | ND(0.039) [ND(0.041)]  | ND(0.039) [ND(0.041)]  |                                   |                   | ND(0.039) [ND(0.041)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RAA15-E19 | 0-1             | 2/18/2003         | ND(0.041)             | ND(0.041)             | ND(0.041)             | ND(0.041)              | ND(0.041)              | ND(0.041)                         | 0.13              | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAA15-E20 | 1-3             | 2/19/2003         | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)              | ND(0.040)              | ND(0.040)                         | 0.18              | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 3-6             | 2/19/2003         | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)              | ND(0.043)              | 0.040 J                           | 0.053             | 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|           | 6-10            | 2/19/2003         | ND(0.061)             | ND(0.061)             | ND(0.061)             | 0.12                   | ND(0.061)              | ND(0,061)                         | 0.11              | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 10-15           | 2/19/2003         | ND(0.13)              | ND(0.13)              | ND(0.13)              | ND(0,13)               | ND(0.13)               | ND(0.13)                          | ND(0.13)          | ND(0.13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RAA15-E21 | 0-1             | 2/19/2003         | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)              | ND(0.042)              | ND(0.042)                         | 0.13              | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAA15-E22 | 0-1             | 2/19/2003         | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)              | ND(0.039)              | ND(0.039)                         | 0.10              | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 1-3             | 2/19/2003         | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)              | ND(0.040)              | ND(0.040)                         | 0.26              | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 3-6             | 2/19/2003         | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)              | ND(0.046)              | ND(0.046)                         | 0.25              | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | 6-10            | 2/19/2003         | ND(0.069)             | ND(0.069)             | ND(0.069)             | ND(0.069)              | ND(0.069)              | ND(0.069)                         | ND(0,069)         | ND(0.069)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|           | 10-15           | 2/19/2003         | ND(0.10)              | ND(0.10)              | ND(0.10)              | ND(0.10)               | ND(0.10)               | ND(0.10)                          | ND(0.10)          | ND(0.10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| RAA15-E23 | 0-1             | 2/18/2003         | ND(0.047)             | ND(0.047)             | ND(0.047)             | ND(0.047)              | ND(0.047)              | ND(0.047)                         | 0.15              | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAA15-F1  | 0-1             | 3/6/2003          | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)              | ND(0.040)              | ND(0.040)                         | 0.22              | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAA15-F2  | 0-1             | 3/10/2003         | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)              | ND(0.039)              | ND(0.039)                         | 0.43              | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAA15-F3  | 0-1             | 3/6/2003          | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)              | ND(0.036)              | 0.058                             | 0.12              | 0.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RAA15-F4  | 0-1             | 3/6/2003          | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)              | ND(0.039)              | 0.053                             | 0.080             | 0.178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| RAA15-F5  | 0-1             | 3/6/2003          | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)              | ND(0.033)              | 0.033                             | 0.28              | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAA15-F6  | 0-1             | 3/6/2003          | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)              | ND(0.040)              | 0.21                              | 0.23              | 0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAA15-F7  | 0-1             | 3/5/2003          | ND(0.051)             | ND(0.051)             | ND(0.051)             | ND(0.051)              | ND(0.051)              | 0.13                              | 0.23              | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAA15-F8  | 0-1             | 2/27/2003         | ND(0.21)              | ND(0.21)              | ND(0.21)              | ND(0.21)               | ND(0.031)<br>ND(0.21)  | ND(0.21)                          | 1.8               | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RAA15-F9  | 0-1             | 2/27/2003         | ND(0.041) [ND(0.042)] | ND(0.041) [ND(0.042)] | ND(0.041) [ND(0.042)] | ND(0.041) [ND(0.042)]  |                        | ND(0.21)<br>ND(0.041) [ND(0.042)] | 0.46 [0.49]       | Commission and Commis |
| RAA15-F11 | 0-1             | 2/27/2003         | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)              | ND(0.043)              | ND(0.041) [ND(0.042)]             | 0.48 [0.49]       | 0.46 [0.49]<br>0.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RAA15-F13 | 0-1             | 2/27/2003         | ND(0.038)             | ND(0.038)             | ND(0.043)             | ND(0.043)<br>ND(0.038) | ND(0.038)              | ND(0.043)<br>ND(0.038)            | 0.29              | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAA15-F17 | 0-1             | 2/17/2003         | ND(0.045)             | ND(0.045)             | ND(0.045)             | ND(0.045)              | ND(0.036)<br>ND(0.045) | ND(0.038)<br>ND(0.045)            | 0.29              | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RAA15-F18 | 0-1             | 2/18/2003         | ND(0.047)             | ND(0.045)             | ND(0.043)             | ND(0.043)              | ND(0.045)<br>ND(0.047) |                                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| L         | 4               |                   | 14010.041             | 140(0,041)            | 140(0.047)            | [ ND(0.047)            | ND(0.047)              | ND(0.047)                         | 0.18              | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

| Sample ID  | Depth<br>(Feet) | Date<br>Collected | Aroclor-1016        | Aructor-1221        | Aroclor-1232        | Aroclor-1242        | Aroclor-1248        | Aroclor-1254        | Aroclor-1260        | Total PCBs          |
|------------|-----------------|-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| RAA15-F19  | 0-1             | 2/18/2003         | ND(0.22)            | ND(0.22)            | ND(0,22)            | ND(0.22)            | ND(0.22)            | ND(0.22)            | 2.5                 | 2.5                 |
| RAA15-F21  | 0-1             | 2/18/2003         | ND(0.047)           | ND(0.047)           | ND(0.047)           | ND(0.047)           | ND(0.047)           | ND(0.047)           | 0.041 J             | 0.041 J             |
| RAA15-F22  | 0-1             | 2/18/2003         | ND(0.048)           | ND(0.048)           | ND(0.048)           | ND(0.048)           | ND(0.048)           | ND(0.048)           | 0.057               | 0.057               |
| RAA15-F23  | 0-1             | 2/18/2003         | ND(0.052)           | ND(0.052)           | ND(0.052)           | ND(0.052)           | ND(0.052)           | ND(0.052)           | 0.084               | 0.084               |
| RAA15-F24  | 0-1             | 2/18/2003         | ND(0.045)           | ND(0.045)           | ND(0.045)           | ND(0.045)           | ND(0.045)           | ND(0.045)           | 0.070               | 0.070               |
| RAA15-G1   | 0-1             | 3/6/2003          | ND(0.045)           | ND(0.045)           | ND(0.045)           | ND(0.045)           | ND(0.045)           | ND(0.045)           | 0.84                | 0.84                |
| RAA15-G2   | 0-1             | 3/7/2003          | ND(0.19)            | ND(0.19)            | ND(0.19)            | ND(0.19)            | ND(0.19)            | 1.8                 | 1.5                 | 3.3                 |
|            | 1-3             | 3/7/2003          | ND(0.19)            | ND(0.19)            | ND(0.19)            | ND(0.19)            | ND(0.19)            | 2.9                 | 2.3                 | 5.2                 |
|            | 3-6             | 3/7/2003          | ND(0.38)            | ND(0.38)            | ND(0.38)            | ND(0.38)            | ND(0.38)            | 3.7                 | 3.2                 | 6.9                 |
|            | 6-10            | 3/7/2003          | ND(0.19)            | ND(0.19)            | ND(0.19)            | ND(0.19)            | ND(0.19)            | 1.8                 | 1.6                 | 3,4                 |
|            | 10-15           | 3/7/2003          | ND(0.047)           |
| RAA15-G3   | 0-1             | 3/6/2003          | ND(0.036)           | ND(0.036)           | ND(0.036)           | ND(0.036)           | ND(0.036)           | 0.16                | 0.14                | 0.30                |
| RAA15-G4   | 0-1             | 3/4/2003          | ND(0.036)           | ND(0.036)           | ND(0.036)           | ND(0.036)           | ND(0.036)           | ND(0.036)           | 0.066               | 0.066               |
|            | 1-3             | 3/4/2003          | ND(0.037)           | ND(0.037)           | ND(0.037)           | ND(0.037)           | ND(0.037)           | 0.056               | 0.059               | 0.115               |
|            | 3-6             | 3/4/2003          | ND(0.037)           | ND(0.037)           | ND(0.037)           | ND(0.037)           | ND(0.037)           | 0.021 J             | 0.024 J             | 0.045 J             |
|            | 6-10            | 3/4/2003          | ND(0.037)           | ND(0.037)           | ND(0.037)           | ND(0.037)           | ND(0.037)           | ND(0.037)           | 0.066               | 0.066               |
|            | 10-15           | 3/4/2003          | ND(0.049)           | ND(0.049)           | ND(0.049)           | ND(0.049)           | ND(0.049)           | 0.092               | 0.11                | 0.202               |
| RAA15-G5   | 0-1             | 3/6/2003          | ND(0.040)           | ND(0.040)           | ND(0.040)           | ND(0.040)           | ND(0.040)           | 0.58                | 1.6                 | 2.18                |
| RAA15-G6   | 0-1             | 3/5/2003          | ND(0.048)           | ND(0.048)           | ND(0.048)           | ND(0.048)           | ND(0.048)           | ND(0.048)           | 0.038 J             | 0.038 J             |
| (          | 1-3             | 3/5/2003          | ND(0.037)           | ND(0.037)           | ND(0.037)           | ND(0.037)           | ND(0.037)           | ND(0.037)           | 0.028 J             | 0.028 J             |
|            | 3-6             | 3/5/2003          | ND(0.039)           | ND(0.039)           | ND(0.039)           | ND(0.039)           | ND(0.039)           | ND(0.039)           | 0.015 J             | 0.015 J             |
|            | 6-10            | 3/5/2003          | ND(0.040)           |
|            | 10-15           | 3/5/2003          | ND(0.047)           |
| RAA15-G7   | 0-1             | 3/6/2003          | ND(0.044)           | ND(0.044)           | ND(0.044)           | 0.037 J             | ND(0.044)           | ND(0.044)           | 0.40                | 0.437               |
| RAA15-G9   | 0-1             | 2/13/2003         | ND(0.041)           | ND(0.041)           | ND(0.041)           | ND(0.041)           | ND(0.041)           | ND(0.041)           | 0.26                | 0.26                |
| RAA15-G11  | 0-1             | 2/13/2003         | ND(0.041)           | ND(0.041)           | ND(0.041)           | ND(0.041)           | ND(0.041)           | ND(0.041)           | 0.042               | 0.042               |
|            | 1-3             | 2/13/2003         | ND(0.038)           |
|            | ે-6             | 2/13/2003         | ND(0.043)           |
|            | 6-10            | 2/13/2003         | ND(0.045)           |
|            | 10-15           | 2/13/2003         | ND(0.042)           |
| RAA15-G13  | 0-1             | 2/13/2003         | ND(0.042)           | ND(0.042)           | ND(0.042)           | ND(0.042)           | ND(0.042)           | ND(0.042)           | 0.11                | 0.11                |
| RAA15-G15  | 0-1             | 2/13/2003         | ND(0.040)           | ND(0.040)           | ND(0.040)           | ND(0.040)           | ND(0.040)           | ND(0.040)           | 0.057               | 0.057               |
|            | 1-3             | 2/13/2003         | ND(0.040)           | ND(0.040)           | ND(0.040)           | ND(0.040)           | ND(0.040)           | ND(0.040)           | 0.016 J             | 0.016 J             |
|            | 3-6             | 2/13/2003         | ND(0.044)           |
|            | 6-10            | 2/13/2003         | ND(0.044)           |
|            | 10-15           | 2/13/2003         | ND(0.044)           | ND(0.044)           | ND(0.044)           | ND(0.044)           | ND(0.044)           | ND(0.044)           | 0.017 J             | 0.017 J             |
| RAA15-G17  | 0-1             | 2/17/2003         | ND(0.047)           | ND(0.047)           | ND(0.047)           | ND(0.047)           | ND(0.047)           | ND(0.047)           | 0.089               | 0.089               |
| RAA15-G18  | 10-15           | 2/14/2003         | ND(0.042)           | ND(0.042)           | ND(0.042)           | 0.014 J             | ND(0.042)           | ND(0.042)           | 0.014 J             | 0.028 J             |
| RAA15-G19  | 0-1             | 2/18/2003         | ND(0.045)           | ND(0.045)           | ND(0.045)           | ND(0.045)           | ND(0.045)           | ND(0.045)           | 0.053               | 0.053               |
| RAA15-G20  | 0-1             | 2/14/2003         | ND(0.047)           | ND(0.047)           | ND(0.047)           | ND(0.047)           | ND(0.047)           | ND(0.047)           | 0.074               | 0.074               |
|            | 1-3             | 2/14/2003         | ND(0.039)           |
|            | 3-6             | 2/14/2003         | ND(0.045)           |
|            | 6-10            | 2/14/2003         | ND(0.066)           |
|            | 10-15           | 2/14/2003         | ND(0.11) [ND(0.12)] |
| RAA15-G21  | 0-1             | 2/18/2003         | ND(0.045)           | ND(0.045)           | ND(0.045)           | ND(0.045)           | ND(0.045)           | ND(0.045)           | 0.24                | 0.24                |
| RAA15-G22  | 1-3             | 2/19/2003         | ND(0.047)           | ND(0.047)           | ND(0.047)           | ND(0.047)           | ND(0.047)           | ND(0.047)           | 0.081               | 0.081               |
|            | 3-6             | 2/19/2003         | ND(0.043)           | ND(0.043)           | ND(0.043)           | ND(0.043)           | ND(0.043)           | ND(0.043)           | 0.021 J             | 0.021 J             |
|            | 6-10            | 2/19/2003         | ND(0.040)           |
|            | 10-15           | 2/19/2003         | ND(0.056)           |
| RAA15-G23  | 0-1             | 2/18/2003         | ND(0.053)           | ND(0.053)           | ND(0.053)           | ND(0.053)           | ND(0.053)           | ND(0.053)           | 0.094               | 0.094               |
| RAA15-GH12 | 0-1             | 2/12/2003         | ND(0.042)           | ND(0.042)           | ND(0.042)           | ND(0.042)           | ND(0.042)           | ND(0.042)           | 0.10                | 0.10                |
| RAA15-GH13 | 0-1             | 2/12/2003         | ND(0.041)           | ND(0.041)           | ND(0.041)           | ND(0.041)           | ND(0.042)           | ND(0.041)           | 0.16                | 0.16                |
| RAA15-H2   | 0-1             | 3/5/2003          | ND(0.040)           | ND(0.040)           | ND(0.040)           | ND(0.040)           | ND(0.040)           | 0.53                | 0.10                | 1.07                |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

| Sample ID  | Depth<br>(Feet) | Date<br>Collected | Aroclor-1016           | Aroclor-1221           | Aroclor-1232           | Aroclor-1242           | Aroclor-1248           | Aroclor-1254                       | Aroclor-1260       | Total PCBs           |
|------------|-----------------|-------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------------------|--------------------|----------------------|
| RAA15-H3   | 0-1             | 3/5/2003          | ND(0.042)              | ND(0.042)              | ND(0.042)              | ND(0.042)              | ND(0.042)              | 0.82                               | 0.72               | 1.54                 |
| RAA15-H4   | 0-1             | 3/5/2003          | ND(0.81)               | :ID(0.81)              | ND(0.81)               | ND(0.81)               | ND(0.81)               | ND(0.81)                           | 7.2                | 7.2                  |
| RAA15-H5   | 0-1             | 3/5/2003          | ND(0.045)              | ND(0.045)              | ND(0.045)              | ND(0.045)              | ND(0.045)              | ND(0.045)                          | 0.037 J            | 0.037 J              |
| RAA15-H7   | 0-1             | 2/13/2003         | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)                          | 0,14               | 0,14                 |
| RAA15-H8   | 0-1             | 2/13/2003         | ND(0.041)              | ND(0.041)              | ND(0.041)              | ND(0.041)              | ND(0.041)              | ND(0.041)                          | 0.063              | 0.063                |
| RAA15-H9   | 0-1             | 2/13/2003         | ND(0.042) [ND(0.045)]  | ND(0.042) [ND(0.045)]  | ND(0.042) [ND(0.045)]  | ND(0.042) [ND(0.045)]  | ND(0.042) IND(0.045)]  | ND(0.042) [ND(0.045)]              | 0.24 [0.23]        | 0.24 [0.23]          |
| RAA15-H11  | 0-1             | 2/12/2003         | ND(0.042)              | ND(0.042)              | ND(0.042)              | ND(0.042)              | ND(0.042)              | ND(0.042)                          | 0.066              | 0.066                |
|            | 1-3             | 2/12/2003         | ND(0.042)              | ND(0.042)              | ND(0.042)              | ND(0.042)              | ND(0.042)              | ND(0.042)                          | 0.011 J            | 0.011 J              |
|            | 3-5             | 2/12/2003         | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)                          | ND(0.039)          | ND(0.039)            |
| RAA15-H12  | 0-1             | 2/12/2003         | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)                          | 0.088              | 0.088                |
| RAA15-H13  | 0-1             | 2/12/2003         | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)                          | 0.050              | 0.050                |
|            | 1-3             | 2/12/2003         | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)                          | ND(0.039)          | ND(0.039)            |
|            | 3-5             | 2/12/2003         | ND(0.037)              | ND(0.037)              | ND(0.037)              | ND(0.037)              | ND(0.037)              | ND(0.037)                          | ND(0.037)          | ND(0,037)            |
| RAA15-H14  | 0-1             | 2/12/2003         | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)                          | 0.053              | 0.053                |
| RAA15-H15  | 0-1             | 2/17/2003         | ND(0.044)              | ND(0.044)              | ND(0.044)              | ND(0.044)              | ND(0.044)              | ND(0.044)                          | 0.10               | 0,10                 |
| RAA15-H17  | 0-1             | 2/17/2003         | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.040)                          | 0.084              | 0.084                |
| RAA15-H18  | 0-1             | 2/18/2003         | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.040)                          | 0.061              | 0.061                |
| RAA15-H19  | 0-1             | 2/18/2003         | ND(0.043)              | ND(0.043)              | ND(0.043)              | ND(0.043)              | ND(0.043)              | ND(0.043)                          | 0.067              | 0.067                |
| RAA15-H20  | 0-1             | 2/18/2003         | ND(0.043)              | ND(0.043)              | ND(0.043)              | ND(0.043)              | ND(0.043)              | ND(0.043)                          | 0.080              | 0.080                |
| RAA15-H21  | 0-1             | 2/18/2003         | ND(0.052)              | ND(0.052)              | ND(0.052)              | ND(0.052)              | ND(0.052)              | ND(0.052)                          | 0.18               | 0.18                 |
| RAA15-I10  | 0-1             | 2/12/2003         | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.032)              | 0.095                              | 0.15               | 0.245                |
| RAA15-I11  | 0-1             | 2/12/2003         | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | 0.61                               | 0.55               | 1.16                 |
| RAA15-I12  | 0-1             | 2/12/2003         | ND(0.041)              | ND(0.041)              | ND(0.041)              | ND(0.041)              | ND(0.041)              | 0.11                               | 0.16               | 0.27                 |
| RAA15-I13  | 0-1             | 2/12/2003         | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.041)              | ND(0.041)              | ND(0.040)                          | 0.054              | 0.054                |
| RAA15-I14  | 0-1             | 2/12/2003         | ND(0.044)              | ND(0.044)              | ND(0.044)              | ND(0.044)              | ND(0.044)              | ND(0.044)                          | 0.076              | 0.076                |
| RAA15-I15  | 0-1             | 2/12/2003         | ND(0.042)              | ND(0.042)              | ND(0.042)              | ND(0.044)              | ND(0.044)              | ND(0.042)                          | 0.099              | 0.099                |
| RAA15-J2   | 0-1             | 3/5/2003          | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)                          | 0.033              | 0.099                |
|            | 1-3             | 3/5/2003          | ND(0.035)              | ND(0.035)              | ND(0.035)              | ND(0.035)              | ND(0.035)              | 0.096                              | 0.37               | 0.276                |
|            | 3-6             | 3/5/2003          | ND(0.037)              | ND(0.037)              | ND(0.037)              | ND(0.037)              | ND(0.037)              | ND(0.037)                          | 0.016 J            | 0.276<br>0.016 J     |
|            | 6-10            | 3/5/2003          | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.037)              | ND(0.037)                          | 0.016 J            | 0.016 J              |
|            | 10-15           | 3/5/2003          | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)                          | ND(0.039)          | ND(0,039)            |
| RAA15-J3   | 0-1             | 3/5/2003          | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.039)              | ND(0.039)<br>ND(0.040)             | 0.094              | 0.094                |
| RAA15-J4   | 0-1             | 3/5/2003          | ND(0.043)              | ND(0.043)              | ND(0.043)              | 0.029 J                | ND(0.043)              | ND(0.043)                          | 0.094              | 0.179                |
|            | 1-3             | 3/5/2003          | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.040)                          | 0.048              | 0.048                |
|            | 3-6             | 3/5/2003          | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)              | ND(0.039)                          | 0.046<br>ND(0.039) | ND(0.039)            |
|            | 6-10            | 3/5/2003          | ND(0.038) [ND(0.038)]  |                                    |                    |                      |
|            | 10-15           | 3/5/2003          | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038)              | ND(0.038) [ND(0.038)]<br>ND(0.038) |                    | ND(0.038) [0.0070 J] |
| RAA15-J6   | 0-1             | 2/13/2003         | ND(0.040)              | ND(0.040)              | ND(0.040)              | ND(0.038)<br>ND(0.040) | ND(0.036)<br>ND(0.040) | ND(0.038)<br>ND(0.040)             | ND(0.038)<br>0.28  | ND(0.038)            |
|            | 1-3             | 2/13/2003         | ND(0.042)              | ND(0.042)              | ND(0.040)<br>ND(0.042) | ND(0.040)              |                        |                                    |                    | 0.28                 |
|            | 3-6             | 2/13/2003         | ND(0.039)              | ND(0.032)              | ND(0.039)              | ND(0.042)<br>ND(0.039) | ND(0.042)<br>ND(0.039) | ND(0.042)                          | 0.19<br>0.054      | 0.19                 |
|            | 6-10            | 2/13/2003         | ND(0.041)              | ND(0.033)<br>ND(0.041) | ND(0.033)<br>ND(0.041) | ND(0.039)<br>ND(0.041) |                        | ND(0.039)                          |                    | 0.054                |
|            | 10-15           | 2/13/2003         | ND(0.041)              | ND(0.041)              | ND(0.041)              | ND(0.041)<br>ND(0.041) | ND(0.041)              | ND(0.041)                          | 0.039 J            | 0.039 J              |
| RAA15-J7   | 0-1             | 2/13/2003         | ND(0.039)              | ND(0.039)              | ND(0.041)<br>ND(0.039) | ND(0.041)<br>ND(0.039) | ND(0.041)              | ND(0.041)                          | 0.040 J            | 0.040 J              |
| RAA15-J8   | 0-1             | 2/13/2003         | ND(0.042)              | ND(0.039)              | ND(0.039)<br>ND(0.042) |                        | ND(0.039)              | ND(0.039)                          | 0.020 J            | 0.020 J              |
|            | 1-3             | 2/13/2003         | ND(0.037)              | ND(0.037)              | , ,                    | ND(0.042)              | ND(0.042)              | ND(0.042)                          | 0.034 J            | 0.034 J              |
|            | 3-6             | 2/13/2003         | ND(0.037)<br>ND(0.038) | ND(0.037)<br>ND(0.038) | ND(0.037)<br>ND(0.038) | ND(0.037)              | ND(0.037)              | ND(0.037)                          | ND(0.037)          | ND(0.037)            |
|            | 6-10            | 2/13/2003         | ND(0.039)              | ND(0.038)<br>ND(0.039) | ND(0.038)<br>ND(0.039) | ND(0.038)              | ND(0.038)              | ND(0.038)                          | ND(0.038)          | ND(0.038)            |
|            | 10-15           | 2/13/2003         | ND(0.039)              | ND(0.039)<br>ND(0.040) | ND(0.039)<br>ND(0.040) | ND(0.039)              | ND(0.039)              | ND(0.039)                          | ND(0.039)          | ND(0.039)            |
| RAA15-J8.5 | 0-1             | 2/12/2003         | ND(0.040)              | ND(0.040)<br>ND(0.040) | ND(0.040)<br>ND(0.040) | ND(0.040)              | ND(0.040)              | ND(0.040)                          | ND(0.040)          | ND(0.040)            |
| L          | L               |                   | 11010.010/             | 140(0.040)             | 140(0.040)             | ND(0.040)              | ND(0.040)              | ND(0.040)                          | 0.11               | 0.11                 |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID             | Depth<br>(Feet) | Date<br>Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Aroclor-1016           | Aroclor-1221          | Aroclor-1232          | Aroclor-1242          | Aroclor-1248          | Aroclor-1254          | Aroclor-1260  | Total PCBs    |
|-----------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|---------------|---------------|
| RAA15-J9              | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0,040)              | ND(0.040)             | ND(0,040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | 0.13          | 0.13          |
|                       | 1-3             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.037)              | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)     | ND(0,037)     |
|                       | 3-5             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.035)              | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)     | ND(0.035)     |
| RAA15-J10             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.043) [ND(0.043)]  | ND(0.043) [ND(0.043)] | ND(0.043) [ND(0.043)] | ND(0.043) [ND(0.043)] | ND(0.043) [ND(0.043)] |                       | 0.19 [0.19]   | 0.19 (0.19)   |
| RAA15-J11             | 0-1             | 2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.037)              | ND(0.037)             | ND(0.037)             | ND(0,037)             | ND(0.037)             | 0.45                  | 0.38          | 0.83          |
|                       | 1-3             | 2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.036)              | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | 0.018 J       | 0.018 J       |
|                       | 3-5             | 2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.046)              | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)             | 0.016 J       | 0.016 J       |
| 1                     | 5-7             | 2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.045)              | ND(0.045)             | ND(0.045)             | ND(0,045)             | ND(0.045)             | ND(0.045)             | ND(0.045)     | ND(0.045)     |
| RAA15-J12             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.040)              | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | 0.063         | 0.063         |
| RAA15-J13             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.042)              | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)             | 0.10          | 0.10          |
| RAA15-J14             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.040)              | ND(0.040)             | ND(0,040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | 0.051         | 0.051         |
| RAA15-J15             | 0-1             | 2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.043)              | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | 0.15          | 0.15          |
|                       | 1-3             | 2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.037)              | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | 0.053                 | 0.051         | 0.104         |
| ,                     | 3-5             | 2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.041)              | ND(0.041)             | ND(0.041)             | 0.012 J               | ND(0.041)             | ND(0.041)             | 0.039 J       | 0.051 J       |
|                       | 5-7             | 2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.039)              | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | 0.040                 | ND(0.039)     | 0.040         |
|                       | 7-9             | 2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.040)              | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)     | ND(0.040)     |
| RAA15-J17             | 0-1             | 2/17/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.041) [ND(0.040)]  | ND(0.041) [ND(0.040)] | ND(0.041) [ND(0.040)] | ND(0.041) [ND(0.040)] | ND(0.041) [ND(0.040)] | ND(0.041) [ND(0.040)] | 0.061 [0.052] | 0.061 [0.052] |
| RAA15-J18             | 0-1             | 2/14/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.044)              | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             | 0.069         | 0.069         |
|                       | 1-3             | 2/14/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.037)              | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)             | ND(0.037)     | ND(0.037)     |
|                       | 3-6             | 2/14/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.040)              | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)     | ND(0.040)     |
| 1                     | 6-10            | 2/14/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.046)              | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)     | ND(0.046)     |
|                       | 10-15           | 2/14/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.043)              | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)     | ND(0.043)     |
| RAA15-J19             | 0-1             | 2/18/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.047)              | ND(0.047)             | ND(0.047)             | ND(0.047)             | ND(0.047)             | ND(0.047)             | 0.11          | 0.11          |
| RAA15-J20             | 0-1             | 2/20/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.052)              | ND(0.052)             | ND(0.052)             | ND(0.052)             | ND(0.052)             | ND(0.052)             | 0.060         | 0.060         |
|                       | 1-3             | 2/20/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.045)              | ND(0.045)             | ND(0.045)             | ND(0.045)             | ND(0.045)             | ND(0.045)             | ND(0.045)     | ND(0.045)     |
|                       | 3-6             | 2/20/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.050)              | ND(0.050)             | ND(0.050)             | ND(0.050)             | ND(0.050)             | ND(0.050)             | ND(0.050)     | ND(0.050)     |
|                       | 6-10            | 2/20/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.084)              | ND(0.084)             | ND(0.084)             | ND(0.084)             | ND(0.084)             | ND(0.084)             | ND(0.084)     | ND(0.084)     |
|                       | 10-15           | 2/20/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.075)              | ND(0.075)             | ND(0.075)             | ND(0.075)             | ND(0.075)             | ND(0.075)             | ND(0.075)     | ND(0.075)     |
| RAA15-K8.5            | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.040)              | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | 0.072                 | 0.15          | 0.222         |
| RAA15-K9              | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.044)              | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             | 0.14          | 0.14          |
| RAA15-K10             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.047)              | ND(0.047)             | ND(0.047)             | ND(0.047)             | ND(0.047)             | 0.031 J               | 0.070         | 0.101         |
| RAA15-K11             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.046)              | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)             | 0.35                  | 0.56          | 0.91          |
| RAA15-K12             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.041)              | NĎ(0.041)             | ND(0.041)             | ND(0.041)             | ND(0.041)             | ND(0.041)             | 0.15          | 0.15          |
| RAA15-K13             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.039)              | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | 0.14                  | 0.14          | 0.28          |
| RAA15-K14             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.040) [ND(0.20)]   | ND(0.040) [ND(0.20)]  | ND(0.040) [ND(0.20)]  | ND(0.040) [ND(0.20)]  | ND(0.040) [ND(0.20)]  | 0.74 [2.9]            | 0.41 [1.7]    | 1.15 [4.6]    |
| RAA15-K15             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.043)              | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | 0.041 J               | 0.058         | 0.099         |
| RAA15-K16<br>RAA15-L2 | 0-1<br>0-1      | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.042)              | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)             | 0.20          | 0.20          |
| RAA15-L3              | 0-1             | 3/5/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND(0.20)               | ND(0.20)              | ND(0.20)              | ND(0.20)              | ND(0.20)              | 1.8                   | ND(0.20)      | 1.8           |
| RAA15-L5              |                 | 3/5/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND(0.044)              | ND(0.044)             | ND(0.044)             | ND(0.044)             | NĎ(0.044)             | ND(0.044)             | 0.14          | 0.14          |
| RAA15-L6              | 0-1             | 2/13/2003<br>2/13/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND(0.049)              | ND(0.049)             | ND(0.049)             | ND(0.049)             | ND(0.049)             | ND(0.049)             | 0.26          | 0.26          |
| RAA15-L6              |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND(0.043)              | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | 0.15          | 0.15          |
| RAA15-L7              | 0-1<br>0-1      | 2/13/2003<br>2/13/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND(0.043)              | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | 0.054         | 0.054         |
| RAA15-L8.5            | 0-1             | 2/13/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.040)              | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | 0.26          | 0.26          |
| RAA15-L8.5            | 0-1             | PRINCIPLE OF THE PRINCI | ND(0.039)              | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | 0.13          | 0.13          |
| I AM 19-FA            | 1-3             | 2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.043)              | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | 0.34          | 0.34          |
|                       | 1-3<br>3-5      | 2/11/2003<br>2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND(0.038)              | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | 0.0071 J      | 0.0071 J      |
| RAA15-L10             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.035)              | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035)     | ND(0.035)     |
| RAA15-L11             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.043)              | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | 0.15          | 0.15          |
| INVIOLIT              | 1-3             | 2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.044)              | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             | 0.32                  | 0.30          | 0.62          |
|                       | 3-5             | 2/11/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.036)              | ND(0.036)             | ND(0.036)             | ND(0.036)             | ND(0.036)             | 0.029 J               | 0.033 J       | 0.062 J       |
| RAA15-L12             | 0-1             | 2/12/2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.035)<br>ND(0.038) | ND(0.035)             | ND(0.035)             | ND(0.035)             | ND(0.035) -           | ND(0.035)             | ND(0.035)     | ND(0.035)     |
| CONTINUE IN           | L               | e. 16/2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 140/0.030)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | ND(0.038)             | 0.73          | 0.73          |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

| Sample ID     | Depth<br>(Feet) | Date<br>Collected | Aroclor-1016           | Aroclor-1221           | Aroclor-1232              | Aroclor-1242            | Aroclor-1248            | Aroclor-1254  | Aroclor-1260        | Total PCBs     |
|---------------|-----------------|-------------------|------------------------|------------------------|---------------------------|-------------------------|-------------------------|---------------|---------------------|----------------|
| RAA15-L13     | 0-1             | 2/11/2003         | ND(0.042)              | ND(0.042)              | ND(0.042)                 | ND(0.042)               | ND(0.042)               | 0.63          | 0.42                | 1.05           |
|               | 1-3             | 2/11/2003         | ND(0.19)               | ND(0.19)               | ND(0.19)                  | ND(0.19)                | ND(0.19)                | ND(0.19)      | 2.4                 | 2.4            |
|               | 3-5             | 2/11/2003         | ND(0.038)              | ND(0.038)              | ND(0.038)                 | 0.13                    | ND(0.038)               | 0.17          | 0.11                | 0.41           |
|               | 5-7             | 2/11/2003         | ND(3.9)                | ND(3.9)                | ND(3.9)                   | ND(3.9)                 | ND(3.9)                 | 25            | ND(3.9)             | 25             |
|               | 7-9             | 2/11/2003         | ND(3.8)                | ND(3.8)                | ND(3.8)                   | ND(3.8)                 | ND(3.8)                 | 35            | ND(3.8)             | 35             |
|               | 9-11            | 2/11/2003         | ND(0.39)               | ND(0.39)               | ND(0.39)                  | ND(0.39)                | ND(0.39)                | 3.0           | ND(0.39)            | 3.0            |
|               | 11-13           | 2/11/2003         | ND(0.050)              | ND(0.050)              | ND(0.050)                 | ND(0.050)               | ND(0.050)               | 0.40 J        | ND(0.050)           | 0.40 J         |
|               | 13-15           | 2/11/2003         | ND(0.047)              | ND(0.047)              | ND(0.047)                 | ND(0.047)               | ND(0.047)               | 0.014 J       | ND(0.047)           | 0.014 J        |
| RAA15-L14     | 0-1             | 2/12/2003         | ND(0.041)              | ND(0.041)              | ND(0.041)                 | ND(0.041)               | ND(0.041)               | 0.22          | 0.19                | 0.41           |
| RAA15-L15     | 0-1             | 2/11/2003         | ND(0.044)              | ND(0.044)              | ND(0.044)                 | ND(0.044)               | ND(0.044)               | ND(0.044)     | 0,15                | 0.15           |
|               | 1-3             | 2/11/2003         | ND(0.037)              | ND(0.037)              | ND(0.037)                 | ND(0.037)               | ND(0.037)               | 0.016 J       | 0.024 J             | 0.040 J        |
|               | 3-5             | 2/11/2003         | ND(0.19)               | ND(0.19)               | ND(0.19)                  | ND(0.19)                | ND(0.19)                | 2.7           | ND(0.19)            | 2.7            |
|               | 5-7             | 2/11/2003         | ND(7.8)                | ND(7.8)                | ND(7.8)                   | ND(7.8)                 | ND(7.8)                 | 63            | ND(7.8)             | 63             |
|               | 7-9             | 2/11/2003         | ND(0.038)              | ND(0.038)              | ND(0.038)                 | ND(0.038)               | ND(0.038)               | 0.29          | ND(0.038)           | 0.29           |
|               | 9-11            | 2/11/2003         | ND(0.039)              | ND(0.039)              | ND(0.039)                 | ND(0.039)               | ND(0.039)               | 0.37          | ND(0.039)           | 0.37           |
|               | 11-13           | 2/11/2003         | ND(0.039)              | ND(0.039)              | ND(0.039)                 | ND(0.039)               | ND(0.039)               | 0.78          | ND(0.039)           | 0.78           |
|               | 13-15           | 2/11/2003         |                        |                        | NID(0.003) (NID(0.042) II | ND(0.033) (ND(0.043) II | ND(0.043) [ND(0.042) J] | 0.50 [0.21 J] | ND(0.043) [0.093 J] | 0.50 [0.303 J] |
| RAA15-L16     | 0-1             | 2/12/2003         | ND(0.044)              | ND(0.044)              | ND(0.044)                 | ND(0.044)               | ND(0.044)               | ND(0.044)     | 0.099               | 0.099          |
| RAA15-L17     | 0-1             | 2/17/2003         | ND(0.041)              | ND(0.041)              | ND(0.041)                 | ND(0.044)               | ND(0.044)               | ND(0.044)     | 0.099               | 0.066          |
| RAA15-L18     | 0-1             | 2/17/2003         | ND(0.043)              | ND(0.043)              | ND(0.043)                 | ND(0.041)               | ND(0.041)               | ND(0.041)     | 0.12                | 0.000          |
| RAA15-L19     | 0-1             | 2/17/2003         | ND(0.051)              | ND(0.051)              | ND(0.051)                 | ND(0.051)               | ND(0.043)               | ND(0.043)     | 0.12                | 0.051          |
| RAA15-M10     | 0-1             | 2/12/2003         | ND(0.039)              | ND(0.039)              | ND(0.039)                 |                         |                         |               |                     |                |
| RAA15-M11     | 0-1             | 2/12/2003         | ND(0.041)              | ND(0.041)              | ND(0.039)<br>ND(0.041)    | ND(0.039)               | ND(C.039)               | 0.013 J       | 0.016 J             | 0.029 J        |
| RAA15-M12     | 0-1             | 2/11/2003         | ND(0.041)              | ND(0.041)              | ND(0.041)<br>ND(0.040)    | ND(0.041)               | ND(0.041)               | ND(0.041)     | 0.033 J             | 0.033 J        |
| RAA15-M13     | 0-1             | 2/11/2003         | ND(0.040)              | ND(0.041)              | ND(0.040)<br>ND(0.041)    | ND(0.040)               | ND(0.040)               | 0.20          | 0.35                | 0.55           |
| RAA15-M14     | 0-1             | 2/11/2003         | ND(0.041)              | ND(0.041)              |                           | ND(0.041)               | ND(0.041)               | 0.89          | 1.3                 | 2.19           |
| RAA15-M15     | 0-1             | 2/11/2003         | ND(0.047)              | ND(0.041)<br>ND(0.047) | ND(0.041)                 | ND(0.041)               | ND(0.041)               | ND(0.041)     | 0.12                | 0.12           |
| RAA15-M16     | 0-1             | 2/11/2003         | ND(0.041)              | ND(0.047)<br>ND(0.044) | ND(0.047)                 | ND(0.047)               | ND(0.047)               | ND(0.047)     | 0.24                | 0.24           |
| RAA15-M17     | 0-1             | 2/11/2003         | ND(0.044)<br>ND(0.041) | ND(0.044)              | ND(0.044)                 | ND(0.044)               | ND(0.044)               | ND(0.044)     | 0,16                | 0.16           |
| RAA15-N6      | 0-1             | 2/13/2003         | ND(0.041)              |                        | ND(0.041)                 | ND(0.041)               | ND(0.041)               | 0.17          | 0.27                | 0.44           |
| 10010-140     | 1-3             | 2/13/2003         | ND(0.040)<br>ND(0.038) | ND(0.040)              | ND(0.040)                 | ND(0.040)               | ND(0.040)               | ND(0.040)     | 0.084               | 0.084          |
|               | 3-6             | 2/13/2003         |                        | ND(0.038)              | ND(0.038)                 | ND(0.038)               | ND(0.038)               | ND(0.038)     | 0.021 J             | 0.021 J        |
|               | 6-10            | 2/13/2003         | ND(0.038)              | ND(0.038)              | ND(0.038)                 | ND(0.038)               | ND(0.038)               | ND(0.038)     | ND(0.038)           | ND(0.038)      |
|               | 10-15           | 2/13/2003         | ND(0.035)              | ND(0.035)              | ND(0.035)                 | ND(0.035)               | ND(0.035)               | ND(0.035)     | ND(0.035)           | ND(0.035)      |
| RAA15-N7      | 0-1             | 2/13/2003         | ND(0.039)<br>ND(0.038) | ND(0.039)              | ND(0.039)                 | ND(0.039)               | ND(0.039)               | ND(0.039)     | ND(0.039)           | ND(0.039)      |
| RAA15-N11     | 0-1             | 2/10/2003         |                        | ND(0.038)              | ND(0.038)                 | ND(0.038)               | ND(0.038)               | ND(0.038)     | 0.083               | 0.083          |
| 1 AAA 12-1411 | 1-3             | 2/10/2003         | ND(0.048)              | ND(0.048)              | ND(0.048)                 | ND(0.048)               | ND(0.048)               | ND(0.048)     | 0.16                | 0.16           |
|               | 3-5             | 2/10/2003         | ND(0.042)              | ND(0.042)              | ND(0.042)                 | ND(0.042)               | ND(0.042)               | ND(0.042)     | 0.029 J             | 0.029 J        |
| RAA15-N12     | 0-1             |                   | ND(0.035)              | ND(0.035)              | ND(0.035)                 | ND(0.035)               | ND(0.035)               | ND(0.035)     | ND(0.035)           | ND(0.035)      |
| RAA15-N12     | 0-1             | 2/11/2003         | ND(0.042)              | ND(0.042)              | ND(0.042)                 | ND(0.042)               | ND(0.042)               | 0.10          | 0.13                | 0.23           |
| INVA13-N13    |                 | 2/10/2003         | ND(0.046)              | ND(0.046)              | ND(0.046)                 | ND(0.046)               | ND(0.046)               | ND(0.046)     | 1.6                 | 1.6            |
|               | 1-3             | 2/10/2003         | ND(0.042)              | ND(0.042)              | ND(0.042)                 | ND(0.042)               | ND(0.042)               | ND(0.042)     | 0.18                | 0.18           |
| DANTENIA      | 3-5             | 2/10/2003         | ND(0.035)              | ND(0.035)              | ND(0.035)                 | ND(0.035)               | ND(0.035)               | ND(0.035)     | ND(0.035)           | ND(0.035)      |
| RAA15-N14     | 0-1             | 2/11/2003         | ND(0.045)              | ND(0.045)              | ND(0.045)                 | ND(0.045)               | ND(0.045)               | ND(0.045)     | 0.88                | 0.88           |
| RAA15-N15     | 0-1             | 2/10/2003         | ND(0.20)               | ND(0.20)               | ND(0.20)                  | ND(0.20)                | ND(0.20)                | ND(0.20)      | 2.1                 | 2.1            |
|               | 1-3             | 2/10/2003         | ND(0.36) [ND(0.74)]    | ND(0.36) [ND(0.74)]    | ND(0.36) [ND(0.74)]       | ND(0.36) [ND(0.74)]     | ND(0.36) [ND(0.74)]     | 8.1 [11]      | 4.2 [5.4]           | 12.3 [16.4]    |
|               | 3-5             | 2/10/2003         | ND(0.041)              | ND(0.041)              | ND(0.041)                 | ND(0.041)               | ND(0.041)               | 0.22          | 0.30                | 0.52           |
|               | 5-7             | 2/10/2003         | ND(0.036)              | ND(0.036)              | ND(0.036)                 | ND(0.036)               | ND(0.036)               | 0.046         | ND(0.036)           | 0.046          |
| L             | 7-9             | 2/10/2003         | ND(0.035)              | ND(0.035)              | ND(0.035)                 | ND(0.035)               | ND(0.035)               | ND(0.035)     | ND(0.035)           | ND(0.035)      |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

| Sample ID | Depth<br>(Feet) | Date<br>Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Arocior-1254 | Aroclor-1260 | Total PCBs |
|-----------|-----------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|
| RAA15-N16 | 0-1             | 2/11/2003         | ND(0.041)    | ND(0.041)    | ND(0.041)    | ND(0.041)    | ND(0.041)    | 0.18         | 0.30         | 0.48       |
| RAA15-N17 | 0-1             | 2/10/2003         | ND(0.044)    | ND(0.044)    | ND(0.044)    | ND(0.044)    | ND(0.044)    | ND(0.044)    | 0.38         | 0.38       |
|           | 1-3             | 2/10/2003         | ND(0.041)    | ND(0.041)    | ND(0.041)    | ND(0.041)    | ND(0.041)    | ND(0.041)    | 0.13         | 0.13       |
|           | 3-5             | 2/10/2003         | ND(0.036)    | ND(0.036)    | ND(0.036)    | ND(0.036)    | ND(0.036)    | ND(0.036)    | 0.038        | 0.038      |
|           | 5-7             | 2/10/2003         | ND(0.035)    | ND(0.035)    | ND(0.035)    | ND(0.035)    | 0.017 J      | 0.039        | 0.10         | 0.156      |
|           | 7-9             | 2/10/2003         | ND(0.037)    | ND(0.037)  |
| RAA15-011 | 0-1             | 2/12/2003         | ND(0.038)    | ND(0.038)    | ND(0.038)    | ND(0.038)    | ND(0.038)    | ND(0.038)    | 0.091        | 0.091      |
| RAA15-013 | 0-1             | 2/11/2003         | ND(0.038)    | ND(0.038)    | ND(0.038)    | ND(0.038)    | ND(0.038)    | ND(0.038)    | 0.062        | 0.062      |
| RAA15-014 | 0-1             | 2/11/2003         | ND(0.040)    | ND(0.040)    | ND(0.040)    | ND(0.040)    | ND(0.040)    | 0.090        | 0.087        | 0.177      |
| RAA15-015 | 0-1             | 2/11/2003         | ND(0.038)    | ND(0.038)    | ND(0.038)    | ND(0.038)    | ND(0.038)    | ND(0.038)    | 1.4          | 1.4        |
| RAA15-016 | 0-1             | 2/11/2003         | ND(0.041)    | ND(0.041)    | ND(0.041)    | ND(0.041)    | ND(0.041)    | 1.6          | 0.76         | 2.36       |
| RAA15-P12 | 0-1             | 2/11/2003         | ND(0.042)    | ND(0.042)    | ND(0.042)    | ND(0.042)    | ND(0.042)    | ND(0.042)    | 0.020 J      | 0.020 J    |
| RAA15-P13 | 0-1             | 2/10/2003         | ND(0.052)    | ND(0.052)    | ND(0.052)    | ND(0.052)    | ND(0.052)    | ND(0.052)    | 0.13         | 0.13       |
|           | 1-3             | 2/10/2003         | ND(0.039)    | ND(0.039)    | ND(0.039)    | ND(0.039)    | ND(0.039)    | ND(0.039)    | 0.051        | 0.051      |
|           | 3-5             | 2/10/2003         | ND(0.035)    | ND(0.035)    | ND(0.035)    | ND(0.035)    | ND(0.035)    | ND(0.035)    | 0.0096 J     | 0.0096 J   |
|           | 5-7             | 2/10/2003         | ND(0.035)    | ND(0.035)  |
| RAA15-P14 | 0-1             | 2/11/2003         | ND(0.047)    | ND(0.047)    | ND(0.047)    | ND(0.047)    | ND(0.047)    | 0.057        | 0.061        | 0.118      |
| RAA15-P15 | 0-1             | 2/10/2003         | ND(0.051)    | ND(0.051)    | ND(0.051)    | ND(0.051)    | ND(0.051)    | ND(0.051)    | 0.15         | 0.15       |
|           | 1-3             | 2/10/2003         | ND(0.041)    | ND(0.041)    | ND(0.041)    | ND(0.041)    | ND(0.041)    | ND(0.041)    | 0.026 J      | 0.026 J    |
|           | 3-5             | 2/10/2003         | ND(0.036)    | ND(0.036)  |
| RAA15-Q13 | 0-1             | 2/11/2003         | ND(0.043)    | ND(0.043)    | ND(0.043)    | ND(0.043)    | ND(0.043)    | 0.082        | 0.13         | 0.212      |

#### Notes:

- 1. Samples were collected by Blasland Bouck & Lee, Inc., and were submitted to Severn Trent Laboratories, Inc. for analysis of PCBs.
- Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland Bouck & Lee, Inc. (approved November 4, 2002 and resubmitted December 10, 2002).
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. Field duplicate sample results are presented in brackets.

#### Data Qualifiers:

J - Indicates that the associated numerical value is an estimated concentration.

### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:                                             | RAA15-A9     | RAA15-A15 | RAA15-A15  | RAA15-A19      | RAA15-A19    |  |
|--------------------------------------------------------|--------------|-----------|------------|----------------|--------------|--|
| Sample Depth(Feet):                                    | 0-1          | 3-6       | 4-6        | 0-1            | 1-3          |  |
| Parameter Date Collected:                              | 02/24/03     | 02/21/03  | 02/21/03   | 02/24/03       | 02/24/03     |  |
| Volatile Organics                                      | 110/0 00/00  |           |            |                |              |  |
| 2-Butanone                                             | ND(0.0052) J | NA NA     | ND(0.0050) | ND(0.0068) J   | ND(0.0046) J |  |
| Acetone                                                | ND(0.021) J  | NA        | ND(0.020)  | ND(0.027) J    | ND(0.018) J  |  |
| Benzene                                                | ND(0.0052)   | NA        | 0.00050 J  | ND(0.0068)     | ND(0.0046)   |  |
| Carbon Disulfide                                       | ND(0.0052)   | NA        | ND(0.0050) | ND(0.0068)     | ND(0.0046)   |  |
| Chloroform                                             | ND(0.0052)   | NA        | ND(0.0050) | ND(0.0068)     | ND(0.0046)   |  |
| Ethylbenzene                                           | ND(0.0052)   | NA        | ND(0.0050) | ND(0.0068)     | ND(0.0046)   |  |
| Methylene Chloride                                     | 0.00083 J    | NA        | ND(0.0050) | ND(0.0068)     | ND(0.0046)   |  |
| Toluene                                                | 0.00057 J    | NA        | ND(0.0050) | ND(0.0068)     | 0.00077 J    |  |
| trans-1,2-Dichloroethene                               | ND(0.0052)   | NA        | ND(0.0050) | ND(0.0068)     | ND(0.0046)   |  |
| Trichloroethene                                        | ND(0.0052)   | NA        | ND(0.0050) | ND(0.0068)     | ND(0.0046)   |  |
| Vinyl Chloride                                         | ND(0.010)    | NA        | ND(0.0099) | ND(0.014)      | ND(0.0092)   |  |
| Xylenes (total)                                        | ND(0.0052)   | NA        | ND(0.0050) | ND(0.0068)     | ND(0.0046)   |  |
| Semivolatile Organics                                  |              |           |            |                |              |  |
| 1,2,4,5-Tetrachlorobenzene                             | ND(0.37)     | ND(1.5)   | NA I       | ND(3.8)        | ND(18)       |  |
| 1,2,4-Trichlorobenzene                                 | ND(0.37)     | ND(1.5)   | NA NA      | ND(3.8)        | ND(18)       |  |
| 1,4-Dichlorobenzene                                    | ND(0.37)     | ND(1.5)   | NA I       | ND(3.8)        | ND(18)       |  |
| 1,4-Naphthoquinone                                     | ND(1.8)      | ND(7.1)   | NA         | ND(18)         | ND(86)       |  |
| 2-Methylnaphthalene                                    | ND(0.37)     | 1.6       | NA         | ND(3.8)        | 9.5 J        |  |
| 3&4-Methylphenol                                       | ND(0.74)     | ND(2.9)   | NA NA      | ND(7.6)        | ND(36)       |  |
| 3,3'-Dichlorobenzidine                                 | ND(1.8)      | ND(7.1)   | NA NA      | ND(18)         | ND(86)       |  |
| 3-Methylcholanthrene                                   | ND(1.8)      | ND(7.1)   | NA I       | ND(18)         | ND(86)       |  |
| Acenaphthene                                           | ND(0.37)     | ND(1.5)   | NA NA      | ND(3.8)        | ND(18)       |  |
| Acenaphthylene                                         | ND(0.37)     | 2.6       | NA NA      | 2.4 J          | 44           |  |
| Aniline                                                | ND(0.37)     | ND(1.5)   | NA I       | 1.0 J          | ND(18)       |  |
| Anthracene                                             | ND(0.37)     | 0.97 J    | NA I       | 1.2 J          | 19           |  |
| Benzo(a)anthracene                                     | 0.053 J      | 1.8       | NA I       | 6.6            | 99           |  |
| Benzo(a)pyrene                                         | 0.054 J      | 2.9       | NA I       | 8.5            | <u> </u>     |  |
| Benzo(b)fluoranthene                                   | 0.055 J      | 2.0       | T NA       | 8.0            | 110<br>110   |  |
| Benzo(g,h,i)perylene                                   | ND(0.37)     | 1.8       | T NA T     | 2.7 J          | 35           |  |
| Benzo(k)fluoranthene                                   | ND(0.37)     | 1.9       | T NA       | 8.5            | 75           |  |
| bis(2-Ethylhexyl)phthalate                             | ND(0.37)     | ND(1.5)   | T NA T     |                |              |  |
| Chrysene                                               | 0.061 J      | 2.2       | NA NA      | ND(3.8)<br>7.1 | ND(18)       |  |
| Dibenzo(a,h)anthracene                                 | ND(0.37)     | 0.49 J    | NA NA      | 0.83 J         | 100          |  |
| Dibenzofuran                                           | ND(0.37)     | 0.49 J    | T NA       |                | 12 J         |  |
| Diethylphthalate                                       | ND(0.37)     | ND(1.5)   | NA NA      | ND(3.8)        | 1.8 J        |  |
| Di-n-Butylphthalate                                    | ND(0.37)     | ND(1.5)   |            | ND(3.8)        | ND(18)       |  |
| Fluoranthene                                           | 0.13 J       | 2.4       | NA NA      | ND(3.8)        | ND(18)       |  |
| Fluorene                                               | ND(0.37)     | 0.33 J    | NA NA      | 14             | 160          |  |
| Hexachlorobenzene                                      |              |           | NA NA      | ND(3.8)        | 5.0 J        |  |
|                                                        | ND(0.37)     | ND(1.5)   | NA NA      | ND(3.8)        | ND(18)       |  |
| Indeno(1,2,3-cd)pyrene                                 | ND(0.37)     | 1.7       | NA NA      | 3.4 J          | 40           |  |
| Isophorone                                             | ND(0.37)     | ND(1.5)   | NA NA      | ND(3.8)        | ND(18)       |  |
| Naphthalene                                            | ND(0.37)     | 1.9       | NA NA      | 0.33 J         | 17 J         |  |
| Pentachlorobenzene                                     | ND(0.37)     | ND(1.5)   | NA         | ND(3.8)        | ND(18)       |  |
| Pentachlorophenol Phase and a second pentachlorophenol | ND(1.8)      | ND(7.1)   | NA NA      | ND(18)         | ND(86)       |  |
| Phenanthrene                                           | 0.075 J      | 2.3       | NA NA      | 3.8            | 53           |  |
| Phenol                                                 | ND(0.37)     | ND(1.5)   | NA         | ND(3.8)        | ND(18)       |  |
| Pyrene                                                 | 0.086 J      | 3.4       | NA NA      | 12             | 220          |  |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-A9<br>0-1  | RAA15-A15<br>3-6 | RAA15-A15<br>4-6 | RAA15-A19<br>0-1 | RAA15-A19<br>1-3 |
|-----------------------------------|------------------|------------------|------------------|------------------|------------------|
| Parameter Date Collected:         | 02/24/03         | 02/21/03         | 02/21/03         | 02/24/03         | 02/24/03         |
| Furans                            |                  |                  |                  |                  |                  |
| 2,3,7,8-TCDF                      | ND(0.0000014) X  | ND(0.0000028) X  | NA               | ND(0.000033)     | 0.000012 J       |
| TCDFs (total)                     | ND(0.000020) X   | ND(0.000016) X   | NA               | ND(0.00050) X    | ND(0.00011) X    |
| 1,2,3,7,8-PeCDF                   | ND(0.00000066) X | 0.00000075 J     | NA               | 0.000011         | 0.0000036 J      |
| 2,3,4,7,8-PeCDF                   | 0.0000014 J      | 0.00000077 J     | NA               | 0.000018         | 0.0000050 J      |
| PeCDFs (total)                    | ND(0.000050) X   | ND(0.0000096) X  | NA               | ND(0.0011) X     | ND(0.00020) X    |
| 1,2,3,4,7,8-HxCDF                 | 0.0000029 J      | 0.00000097 J     | NA               | 0.000024         | ND(0.000030) X   |
| 1,2,3,6,7,8-HxCDF                 | ND(0.0000046) X  | ND(0.00000055) X | NA               | ND(0.00016) X    | ND(0.0000039) X  |
| 1,2,3,7,8,9-HxCDF                 | ND(0.00000014)   | ND(0.00000015)   | NA               | 0.00000067 J     | ND(0.0000016) X  |
| 2,3,4,6,7,8-HxCDF                 | 0.00000078 J     | 0.00000023 J     | NA               | 0.000014         | 0.0000036 J      |
| HxCDFs (total)                    | ND(0.000044) X   | ND(0.0000038) X  | NA               | ND(0.00090) X    | ND(0.00017) X    |
| 1,2,3,4,6,7,8-HpCDF               | 0.0000062        | ND(0.06000094) X | NA               | 0.000054         | 0.000014 J       |
| 1,2,3,4,7,8,9-HpCDF               | 0.0000012 J      | ND(0.00000022)   | NA               | 0.0000072        | 0.0000071 J      |
| HpCDFs (total)                    | 0.000016         | ND(0.0000017) X  | NA               | 0.00015          | 0.000040 J       |
| OCDF                              | 0.0000075 J      | 0.0000013 J      | NA               | 0.000053 J       | 0.000013 J       |
| Dioxins                           |                  |                  |                  |                  |                  |
| 2,3,7,8-TCDD                      | ND(0.00000029)   | ND(0.00000037)   | NA               | ND(0.0000022)    | ND(0.0000026)    |
| TCDDs (total)                     | ND(0.00000029)   | ND(0.0000029) X  | NA               | ND(0.0000022)    | ND(0.0000026)    |
| 1,2,3,7,8-PeCDD                   | ND(0.00000020)   | ND(0.00000022)   | NA               | ND(0.0000018) X  | ND(0.0000014) X  |
| PeCDDs (total)                    | ND(0.00000022) X | ND(0.0000031) X  | NA               | ND(0.000012) X   | ND(0.0000035) X  |
| 1,2,3,4,7,8-HxCDD                 | ND(0.00000019)   | ND(0.00000024)   | NA               | ND(0.0000016) X  | ND(0.0000030) X  |
| 1,2,3,6,7,8-HxCDD                 | ND(0.00000045) X | ND(0.00000023)   | NA               | ND(0.0000043) X  | ND(0.0000023) X  |
| 1,2,3,7,8,9-HxCDD                 | ND(0.00000028) X | ND(0.00000037) X | NA               | 0.0000043 J      | ND(0.0000018)    |
| HxCDDs (total)                    | ND(0.0000023) X  | ND(0.0000027) X  | NA               | ND(0.000046) X   | ND(0.000016) X   |
| 1,2,3,4,6,7,8-HpCDD               | 0.000010         | 0.0000011 J      | NA               | 0.000050         | 0.0000084 J      |
| HpCDDs (total)                    | 0.000018         | 0.0000019 J      | NA               | 0.000096         | ND(0.000016) X   |
| OCDD                              | 0.00011          | ND(0.0000049)    | NA               | 0.00035 J        | 0.000041 J       |
| Total TEQs (WHO TEFs)             | 0.0000019        | 0.000011         | NA               | 0.000027         | 0.0000087        |
| Inorganics                        |                  |                  |                  |                  |                  |
| Antimony                          | ND(6.70)         | ND(6.70)         | NA               | ND(6.90)         | 0.450 B          |
| Arsenic                           | 3.00             | 5.40             | NA               | 4.50             | 5.00             |
| Barium                            | 15.7 B           | 29.0             | NA               | 34.5             | 19.8 B           |
| Beryllium                         | 0.180 B          | 0.150 B          | NA               | 0.280 B          | 0.260 B          |
| Cadmium                           | 0.450 B          | 0.170 B          | NA               | 1.00             | 0.580            |
| Chromium                          | 4.40 J           | 6.70             | NA               | 9.90 J           | 6.80 J           |
| Cobalt                            | 4.30 B           | 6.40             | NA               | 6.10             | 6.20             |
| Copper                            | 10.6 J           | 26.6             | NA               | 33.3 J           | 32.5 J           |
| Cyanide                           | ND(0.560)        | 0.210 B          | NA               | 1.20             | 0.390 B          |
| Lead                              | 12.1 J           | 20.0             | NA               | 173 J            | 18.8 J           |
| Mercury                           | 0.0180 B         | 0.0730           | NA               | 0.120            | 0.140            |
| Nickel                            | 8.30 J           | 12.8             | NA               | 13.2 J           | 12.4 J           |
| Selenium                          | ND(0.560)        | ND(0.560)        | NA               | ND(0.580)        | ND(0.540)        |
| Silver                            | ND(1.10)         | ND(1.10)         | NA               | ND(1.20)         | ND(1.10)         |
| Thallium                          | ND(1.10) J       | ND(1.10) J       | NA               | ND(1.20) J       | ND(1.10) J       |
| Tin                               | ND(2.70)         | ND(6.30)         | NA               | ND(4.70)         | ND(3.90)         |
| Vanadium                          | 6.50 J           | 8.20             | NA               | 13.8 J           | 9.60 J           |
| Zinc                              | 29.1 J           | 44.6             | NA               | 132 J            | 43.0 J           |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-A19<br>3-6 | RAA15-A19<br>4-6 | RAA15-A19<br>10-12 | RAA15-A19<br>10-15 | RAA15-A26<br>0-1 | RAA15-A26<br>3-6 |
|-----------------------------------|------------------|------------------|--------------------|--------------------|------------------|------------------|
| Parameter Date Collected:         | 02/24/03         | 02/24/03         | 02/24/03           | 02/24/03           | 03/03/03         | 03/03/03         |
| Volatile Organics                 | NIA .            | T ND(0 0000) I   | 1 110/0 00043 11   |                    |                  | 1                |
| 2-Butanone                        | NA<br>NA         | ND(0.0060) J     | ND(0.0061) J       | NA NA              | ND(0.0052) J     | NA               |
| Acetone                           | NA NA            | ND(0.024) J      | ND(0.024) J        | NA                 | ND(0.021)        | NA               |
| Benzene<br>Carbon Disulfide       | NA               | 0.016            | ND(0.0061)         | NA                 | ND(0.0052)       | NA               |
| Chloroform                        | NA               | ND(0.0060)       | ND(0.0061)         | NA                 | ND(0.0052)       | NA               |
| Ethylbenzene                      | NA               | ND(0.0060)       | ND(0.0061)         | NA NA              | ND(0.0052)       | NA               |
| Methylene Chloride                | NA<br>NA         | 0.00082 J        | ND(0.0061)         | NA NA              | ND(0.0052)       | NA               |
| Toluene                           | NA               | ND(0.0060)       | ND(0.0061)         | NA NA              | 0.0024 J         | NA               |
|                                   | NA               | 0.0059 J         | 0.0015 J           | NA NA              | ND(0.0052)       | NA               |
| trans-1,2-Dichloroethene          | NA NA            | ND(0.0060)       | ND(0.0061)         | NA                 | ND(0.0052)       | NA               |
| Trichloroethene                   | NA NA            | ND(0.0060)       | ND(0.0061)         | NA NA              | ND(0.0052)       | NA               |
| Vinyl Chloride                    | NA NA            | ND(0.012)        | ND(0.012)          | NA                 | ND(0.010)        | NA               |
| Xylenes (total)                   | NA               | ND(0.0060)       | ND(0.0061)         | NA                 | ND(0.0052)       | NA               |
| Semivolatile Organics             | ND/453           | T                |                    |                    |                  |                  |
| 1,2,4,5-Tetrachlorobenzene        | ND(15)           | NA               | NA NA              | ND(0.42)           | ND(7.4)          | ND(0.36)         |
| 1,2,4-Trichlorobenzene            | ND(15)           | NA               | NA                 | ND(0.42)           | ND(7.4)          | ND(0.36)         |
| 1,4-Dichlorobenzene               | ND(15)           | NA               | NA                 | ND(0.42)           | ND(7.4)          | ND(0.36)         |
| 1,4-Naphthoquinone                | ND(72)           | NA               | NA                 | ND(2.0)            | ND(36)           | ND(1.8)          |
| 2-Methylnaphthalene               | 13 J             | NA               | NA                 | ND(0.42)           | ND(7.4)          | ND(0.36)         |
| 3&4-Methylphenol                  | ND(30)           | NA               | NA                 | ND(0.84)           | ND(15)           | ND(0.73)         |
| 3,3'-Dichlorobenzidine            | ND(72)           | NA               | NA                 | ND(2.0)            | ND(36)           | ND(1.8)          |
| 3-Methylcholanthrene              | ND(72)           | NA               | NA                 | ND(2.0)            | ND(36)           | ND(1.8)          |
| Acenaphthene                      | 1.6 J            | NA               | NA                 | ND(0.42)           | 1.2 J            | 0.048 J          |
| Acenaphthylene                    | 31               | NA               | NA                 | ND(0.42)           | ND(7.4)          | 0.026 J          |
| Aniline                           | ND(15)           | NA               | NA                 | ND(0.42)           | ND(7.4)          | ND(0.36)         |
| Anthracene                        | 16               | NA               | NA                 | ND(0.42)           | 2.9 J            | 0.18 J           |
| 3enzo(a)anthracene                | 52               | NA               | NA                 | ND(0.42)           | 6.5 J            | 0.40             |
| Benzo(a)pyrene                    | 49               | NA               | NA                 | ND(0.42)           | 5.8 J            | 0.37             |
| Benzo(b)fluoranthene              | 40               | NA               | NA                 | ND(0.42)           | 4.9 J            | 0.34 J           |
| Benzo(g,h,i)perylene              | 16               | NA               | NA                 | ND(0.42)           | 1.9 J            | 0.14 J           |
| 3enzo(k)fluoranthene              | 41               | NA               | NA                 | ND(0.42)           | 5.7 J            | 0.31 J           |
| ois(2-Ethylhexyl)phthalate        | ND(15)           | NA               | NA                 | ND(0.42)           | ND(7.4)          | ND(0.36)         |
| Chrysene                          | 56               | NA               | NA                 | ND(0.42)           | 6.7 J            | 0.42             |
| Dibenzo(a,h)anthracene            | 5.3 J            | NA               | NA                 | ND(0.42)           | ND(7.4)          | 0.050 J          |
| Dibenzofuran                      | 2.3 J            | NA               | NA                 | ND(0.42)           | 0.74 J           | 0.040 J          |
| Diethylphthalate                  | ND(15)           | NA               | NA                 | ND(0.42)           | ND(7.4)          | ND(0.36)         |
| Di-n-Butylphthalate               | ND(15)           | NA               | NA                 | ND(0.42)           | ND(7.4)          | ND(0.36)         |
| luoranthene                       | 88               | NA               | NA                 | ND(0.42)           | 15               | 0.86             |
| fluorene                          | 9.3 J            | NA               | NA                 | ND(0.42)           | 1.4 J            | 0.057 J          |
| Hexachlorobenzene                 | ND(15)           | NA               | NA                 | ND(0.42)           | ND(7.4)          | ND(0.36)         |
| ndeno(1,2,3-cd)pyrene             | 17               | NA               | NA                 | ND(0.42)           | 2.3 J            | 0.18 J           |
| sophorone                         | ND(15)           | NA NA            | NA                 | ND(0.42)           | ND(7.4)          | ND(0.36)         |
| Vaphthalene                       | 19               | NA               | NA                 | ND(0.42)           | ND(7.4)          | 0.024 J          |
| Pentachlorobenzene                | ND(15)           | NA               | NA                 | ND(0.42)           | ND(7.4)          | ND(0.36)         |
| Pentachlorophenol                 | ND(72)           | NA               | NA                 | ND(2.0)            | ND(36)           | ND(1.8)          |
| 'henanthrene                      | 85               | NA               | NA                 | ND(0.42)           | 12               | 0.67             |
| henol                             | ND(15)           | NA               | NA                 | ND(0.42)           | ND(7.4)          | ND(0.36)         |
| Pyrene                            | 99               | NA NA            | NA                 | ND(0.42)           | 10               | 0.62             |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | 3-6             | RAA15-A19<br>4-6 | RAA15-A19<br>10-12 | RAA15-A19<br>10-15                    | RAA15-A26<br>0-1  | RAA15-A26<br>3-6       |  |
|-----------------------------------|-----------------|------------------|--------------------|---------------------------------------|-------------------|------------------------|--|
| Parameter Date Collected:         | 02/24/03        | 02/24/03         | 02/24/03           | 02/24/03                              | 03/03/03          | 03/03/03               |  |
| Furans                            |                 |                  |                    |                                       |                   | ,                      |  |
| 2,3,7,8-TCDF                      | ND(0.0000072) X | NA               | NA                 | ND(0.00000023)                        | 0.0000073 J       | ND(0.0000028)          |  |
| TCDFs (total)                     | ND(0.000020) X  | NA               | NA                 | ND(0.00000023)                        | ND(0.000080) X    | ND(0.000023)           |  |
| 1,2,3,7,8-PeCDF                   | ND(0.00000092)  | NA               | NA                 | ND(0.00000016)                        | 0.0000028 J       | ND(0.00000047          |  |
| 2,3,4,7,8-PeCDF                   | 0.0000021 J     | NA               | NA                 | ND(0.00000015)                        | 0.0000047 J       | ND(0.00000077)         |  |
| PeCDFs (total)                    | ND(0.0000082) X | NA               | NA                 | ND(0.00000016)                        | ND(0.00023) X     | ND(0.000038)           |  |
| 1,2,3,4,7,8-HxCDF                 | ND(0.00000090)  | NA               | NA                 | ND(0.00000013)                        | ND(0.000039) X    | ND(0.0000011)          |  |
| 1,2,3,6,7,8-HxCDF                 | ND(0.00000083)  | NA               | NA                 | ND(0.00000012)                        | 0.0000054 J       | ND(0.0000046)          |  |
| 1,2,3,7,8,9-HxCDF                 | ND(0.0000011)   | NA               | NA                 | ND(0.00000016)                        | ND(0.00000089)    | ND(0.0000004           |  |
| 2,3,4,6,7,8-HxCDF                 | ND(0.00000095)  | NA               | NA                 | ND(0.00000014)                        | 0.0000041 J       | ND(0.00000049          |  |
| HxCDFs (total)                    | ND(0.0000015) X | NA               | NA                 | ND(0.00000018) X                      | ND(0.00022) X     | ND(0.000028)           |  |
| 1,2,3,4,6,7,8-HpCDF               | 0.0000031 J     | NA               | NA                 | ND(0.00000022)                        | 0.000030 J        | 0.0000022 J            |  |
| 1,2,3,4,7,8,9-HpCDF               | ND(0.0000018) J | NA               | NA                 | ND(0.00000027)                        | 0.000019 J        | ND(0.00000062          |  |
| HpCDFs (total)                    | 0.0000031 J     | NA               | NA                 | ND(0.00000024)                        | 0.00011           | ND(0.0000049)          |  |
| OCDF                              | ND(0.0000021) J | NA               | NA                 | ND(0.00000052) J                      | 0.00011 J         | ND(0.0000027           |  |
| Dioxins                           |                 |                  |                    | · · · · · · · · · · · · · · · · · · · |                   | ,                      |  |
| 2,3,7,8-TCDD                      | ND(0.0000019)   | NA               | NA                 | ND(0.00000033)                        | ND(0.0000018)     | ND(0.00000088          |  |
| TCDDs (total)                     | ND(0.0000019)   | NA               | NA                 | ND(0.00000033)                        | ND(0.0000018)     | ND(0.0000008           |  |
| 1,2,3,7,8-PeĆDD                   | ND(0.0000011)   | NA               | NA                 | ND(0.00000021)                        | ND(0.0000012)     | ND(0.0000004           |  |
| PeCDDs (total)                    | ND(0.0000011)   | NA               | NA                 | ND(0.00000021)                        | ND(0.000012)      | ND(0.0000004           |  |
| 1,2,3,4,7,8-HxCDD                 | ND(0.0000015)   | NA               | NA                 | ND(0.00000025)                        | ND(0.0000014)     | ND(0.00000065          |  |
| 1,2,3,6,7,8-HxCDD                 | ND(0.0000014)   | NA               | NA                 | ND(0.00000024)                        | ND(0.0000014)     | ND(0.0000006           |  |
| 1,2,3,7,8,9-HxCDD                 | ND(0.0000014)   | NA               | NA                 | ND(0.00000025)                        | ND(0.0000014)     | ND(0.00000063          |  |
| +xCDDs (total)                    | ND(0.000014)    | NA               | NA                 | ND(0.00000025)                        | ND(0.000038) X    | ND(0.00000021)         |  |
| 1,2,3,4,6,7,8-HpCDD               | ND(0.0000018)   | NA               | NA                 | ND(0.00000035)                        | ND(0.000038) X    | 0.0000024 J            |  |
| HpCDDs (total)                    | ND(0.0000018)   | NA               | NA                 | ND(0.00000035)                        | ND(0.000034) X    | 0.0000024 J            |  |
| OCDD                              | 0.000010 J      | NA NA            | NA                 | 0.0000013 J                           | 0.00025 J         | 0.000022 J             |  |
| otal TEQs (WHO TEFs)              | 0.0000034       | NA               | NA                 | 0.00000039                            | 0.000085          | 0.0000223              |  |
| norganics                         |                 |                  | 107                | 0.0000000                             | 0.000000          | 0.0000013              |  |
| Intimony                          | ND(6.80)        | NA               | NA                 | ND(7.70)                              | ND(6.70) J        | ND/C COV I             |  |
| vrsenic                           | 4.50            | NA NA            | NA NA              | 2.20                                  | 5.60              | ND(6.60) J             |  |
| Barium                            | 36.4            | NA NA            | NA NA              | 32.3                                  | 32.9              | 5.00                   |  |
| Beryllium                         | 0.360 B         | NA NA            | NA NA              | 0.380 B                               | ND(0.380)         | 25.0                   |  |
| Cadmium                           | 0.470 B         | NA NA            | NA NA              | 0.810                                 | ND(0.560)         | ND(0.430)<br>ND(0.550) |  |
| hromium                           | 12.1 J          | NA NA            | NA .               | 9.90 J                                | 9.50              |                        |  |
| Cobalt                            | 4.90 B          | NA NA            | NA NA              | 9.40                                  | 8.20              | 8.60                   |  |
| Copper                            | 28.1 J          | NA NA            | NA NA              | 17.2 J                                | 44.6              | 6.60                   |  |
| yanide                            | 0.460 B         | NA I             | NA NA              | ND(0.640)                             | ND(0.560)         | 16.6                   |  |
| ead                               | 22.3 J          | NA NA            | NA NA              | 8.20 J                                | 35.8 J            | ND(0.550)              |  |
| Mercury                           | 0.150           | NA NA            | NA NA              | ND(0.0430)                            | 0.0790            | 14.4 J                 |  |
| Vickel                            | 11.0 J          | NA NA            | NA NA              | 17.1 J                                |                   | 0.0810                 |  |
| elenium                           | 0.440 B         | NA NA            | NA NA              | ND(0.640)                             | 15.1<br>ND(0.560) | 12.9                   |  |
| Silver                            | ND(1.10)        | NA NA            | NA NA              | ND(1.30)                              | ND(0.560)         | ND(0.550)              |  |
| Thallium                          | ND(1.10) J      | NA NA            | NA NA              | 0.920 J                               | ND(1.10)          | ND(1.10)               |  |
| in                                | ND(3.80)        | NA<br>NA         |                    |                                       | ND(1.10) J        | ND(1.10) J             |  |
| anadium                           | 11.0 J          | NA NA            | NA<br>NA           | ND(3.90)                              | ND(4.90)          | ND(4.10)               |  |
| inc                               | 44.8 J          | NA NA            | NA<br>NA           | 11.8 J                                | 12.7              | 10.2                   |  |
| -1110                             | 44.0 J          | IVA              | NA                 | 58.7 J                                | 69.2              | 56.2                   |  |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample Depth(Feet):        |            | RAA15-B7<br>0-1 | RAA15-B11<br>0-1 | RAA15-B15<br>0-1                       |  |
|----------------------------|------------|-----------------|------------------|----------------------------------------|--|
| Parameter Date Collected:  | 03/03/03   | 02/25/03        | 02/25/03         | 02/25/03                               |  |
| Volatile Organics          |            |                 |                  |                                        |  |
| 2-Butanone                 | 0.0030 J   | ND(0.0048) J    | ND(0.0043) J     | ND(0.0049) J [ND(0.0050) J]            |  |
| Acetone                    | 0.013 J    | ND(0.019) J     | ND(0.017) J      | ND(0.020) J [ND(0.020) J]              |  |
| Benzene                    | ND(0.0046) | ND(0.0048)      | ND(0.0043)       | ND(0.0049) [ND(0.0050)]                |  |
| Carbon Disulfide           | ND(0.0046) | ND(0.0048)      | ND(0.0043)       | ND(0.0049) [ND(0.0050)]                |  |
| Chloroform                 | 0.0018 J   | ND(0.0048)      | ND(0.0043)       | ND(0.0049) [ND(0.0050)]                |  |
| Ethylbenzene               | ND(0.0046) | ND(0.0048)      | ND(0.0043)       | ND(0.0049) [ND(0.0050)]                |  |
| Methylene Chloride         | 0.0012 J   | ND(0.0048)      | 0.0024 J         | ND(0.0049) [ND(0.0050)]                |  |
| Toluene                    | ND(0.0046) | ND(0.0048)      | 0.0015 J         | ND(0.0049) [ND(0.0050)]                |  |
| trans-1,2-Dichloroethene   | ND(0.0046) | ND(0.0048)      | ND(0.0043)       | ND(0.0049) [ND(0.0050)]                |  |
| Trichloroethene            | ND(0.0046) | ND(0.0048)      | ND(0.0043)       | ND(0.0049) [ND(0.0050)]                |  |
| Vinyl Chloride             | ND(0.0093) | ND(0.0096)      | ND(0.0086)       | ND(0.0098) [ND(0.010)]                 |  |
| Xylenes (total)            | ND(0.0046) | ND(0.0048)      | ND(0.0043)       | ND(0.0049) [ND(0.0050)]                |  |
| Semivolatile Organics      |            |                 |                  |                                        |  |
| 1,2,4,5-Tetrachlorobenzene | NA         | ND(0.71)        | ND(1.4)          | ND(2.9) [ND(2.9)]                      |  |
| 1,2,4-Trichlorobenzene     | NA         | ND(0.71)        | 1.8              | 0.29 J [0.27 J]                        |  |
| 1,4-Dichlorobenzene        | NA         | ND(0.71)        | ND(1.4)          | ND(2.9) [ND(2.9)]                      |  |
| 1,4-Naphthoquinone         | NA         | ND(3.5)         | ND(7.0)          | ND(14) [ND(14)]                        |  |
| 2-Methylnaphthalene        | NA         | ND(0.71)        | 0.15 J           | ND(2.9) [ND(2.9)]                      |  |
| 3&4-Methylphenol           | NA         | ND(1.4)         | ND(2.9)          | ND(5.7) [ND(5.9)]                      |  |
| 3,3'-Dichlorobenzidine     | NA         | ND(3.5)         | 0.95 J           | ND(14) [ND(14)]                        |  |
| 3-Methylcholanthrene       | NA         | ND(3.5)         | 0.29 J           | ND(14) [ND(14)]                        |  |
| Acenaphthene               | NA         | ND(0.71)        | 1.3 J            | ND(2.9) [ND(2.9)]                      |  |
| Acenaphthylene             | NA         | ND(0.71)        | 0.13 J           | ND(2.9) [ND(2.9)]                      |  |
| Aniline                    | NA         | ND(0.71)        | 0.18 J           | ND(2.9) [ND(2.9)]                      |  |
| Anthracene                 | NA         | ND(0.71)        | 4.1              | ND(2.9) [ND(2.9)]                      |  |
| Benzo(a)anthracene         | NA         | ND(0.71)        | 9.7              | ND(2.9) [ND(2.9)]                      |  |
| Benzo(a)pyrene             | NA         | ND(0.71)        | 9.6              | ND(2.9) [ND(2.9)]                      |  |
| Benzo(b)fluoranthene       | NA         | ND(0.71)        | 11               | ND(2.9) [ND(2.9)]                      |  |
| Benzo(g,h,i)perylene       | NA NA      | ND(0.71)        | 3.5              | ND(2.9) [ND(2.9)]                      |  |
| Benzo(k)fluoranthene       | NA         | ND(0.71)        | 5.2              | ND(2.9) [ND(2.9)]                      |  |
| bis(2-Ethylhexyl)phthalate | NA NA      | ND(0.71)        | ND(1.4)          | ND(2.9) [ND(2.9)]                      |  |
| Chrysene                   | NA NA      | ND(0.71)        | 10               | ND(2.9) [ND(2.9)]                      |  |
| Dibenzo(a,h)anthracene     | NA         | ND(0.71)        | 1.6              | ND(2.9) [ND(2.9)]                      |  |
| Dibenzofuran               | NA         | ND(0.71)        | 0.70 J           | ND(2.9) [ND(2.9)]                      |  |
| Diethylphthalate           | NA         | ND(0.71)        | ND(1.4)          | ND(2.9) [ND(2.9)]                      |  |
| Di-n-Butylphthalate        | NA NA      | ND(0.71)        | ND(1.4)          | ND(2.9) [ND(2.9)]                      |  |
| Fluoranthene               | NA         | ND(0.71)        | 19               | ND(2.9) [ND(2.9)]                      |  |
| Fluorene                   | NA I       | ND(0.71)        | 1.4              | ND(2.9) [ND(2.9)]                      |  |
| Hexachlorobenzene          | NA NA      | ND(0.71)        | ND(1.4)          | ND(2.9) [ND(2.9)]                      |  |
| Indeno(1,2,3-cd)pyrene     | NA NA      | ND(0.71)        | 4.2              | ND(2.9) [ND(2.9)]                      |  |
| Isophorone                 | NA NA      | ND(0.71)        | ND(1.4)          | ND(2.9) [ND(2.9)]<br>ND(2.9) [ND(2.9)] |  |
| Naphthalene                | NA NA      | ND(0.71)        | 0.27 J           |                                        |  |
| Pentachlorobenzene         | NA NA      | -               |                  | ND(2.9) [ND(2.9)]                      |  |
| Pentachlorophenol          | NA NA      | ND(0.71)        | ND(1.4)          | ND(2.9) [ND(2.9)]                      |  |
| Phenanthrene               | NA<br>NA   | ND(3.5)         | ND(7.0)          | ND(14) [ND(14)]                        |  |
| Phenol                     |            | ND(0.71)        | 13               | ND(2.9) [ND(2.9)]                      |  |
|                            | NA NA      | ND(0.71)        | ND(1.4)          | ND(2.9) [ND(2.9)]                      |  |
| Pyrene                     | NA         | ND(0.71)        | 16               | ND(2.9) [ND(2.9)]                      |  |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample Depth(Feet):       | RAA15-A26<br>4-6 | RAA15-B7<br>0-1                       | RAA15-B11<br>0-1 | RAA15-B15<br>0-1<br>02/25/03      |  |
|---------------------------|------------------|---------------------------------------|------------------|-----------------------------------|--|
| Parameter Date Collected: | 03/03/03         | 02/25/03                              | 02/25/03         |                                   |  |
| Furans                    |                  | · · · · · · · · · · · · · · · · · · · |                  |                                   |  |
| 2,3,7,8-TCDF              | NA               | ND(0.00000045) X                      | ND(0.00014) XJ   | ND(0.000088) X [ND(0.000090) X]   |  |
| TCDFs (total)             | NA               | ND(0.000047) X                        | ND(0.0011) X     | ND(0.00071) X [ND(0.00081) X]     |  |
| 1,2,3,7,8-PeCDF           | NA               | 0.0000017 J                           | 0.00014 J        | 0.000096 [0.000086]               |  |
| 2,3,4,7,8-PeCDF           | NA               | ND(0.000035) X                        | 0.00018          | 0.00012 [0.00011]                 |  |
| PeCDFs (total)            | NA               | ND(0.00022) X                         | ND(0.0031) XQJ   | ND(0.0018) X [ND(0.0016) X]       |  |
| 1,2,3,4,7,8-HxCDF         | NA               | 0.0000096                             | 0.00075          | ND(0.00057) X [ND(0.00049) X]     |  |
| 1,2,3,6,7,8-HxCDF         | NA               | ND(0.0000012) X                       | ND(0.00044) XJ   | 0.000096 [0.000093]               |  |
| 1,2,3,7,8,9-HxCDF         | NA               | ND(0.00000036)                        | 0.000045 J       | 0.000020 J [0.000016 J]           |  |
| 2,3,4,6,7,8-HxCDF         | NA               | ND(0.00000021) X                      | 0.000069         | 0.000038 J [0.000035]             |  |
| HxCDFs (total)            | NA               | ND(0.00026) X                         | ND(0.0029) X     | ND(0.0016) X [ND(0.0015) X]       |  |
| 1,2,3,4,6,7,8-HpCDF       | NA               | 0.000079                              | 0.00065          | 0.00042 [0.00032]                 |  |
| 1,2,3,4,7,8,9-HpCDF       | NA               | ND(0.0000013) X                       | 0.00044          | 0.00022 [0.00016]                 |  |
| HpCDFs (total)            | NA               | ND(0.000084) X                        | 0.0017           | 0.00095 [ND(0.00072) X]           |  |
| OCDF                      | NA               | 0.0000081 J                           | 0.0015           | 0.00084 [0.00052]                 |  |
| Dioxins                   |                  |                                       |                  |                                   |  |
| 2,3,7,8-TCDD              | NA               | ND(0.00000036)                        | ND(0.0000016) X  | ND(0.0000014) [ND(0.0000015)]     |  |
| TCDDs (total)             | NA               | ND(0.00000036)                        | ND(0.0000053) X  | 0.0000020 J [ND(0.0000020) X]     |  |
| 1,2,3,7,8-PeCDD           | NA               | ND(0.00000054)                        | ND(0.0000053) X  | ND(0.0000026) X [ND(0.0000027) X] |  |
| PeCDDs (total)            | NA               | ND(0.0000028) X                       | ND(0.000052) X   | ND(0.000020) X [ND(0.000040) X]   |  |
| 1,2,3,4,7,8-HxCDD         | NA               | ND(0.00000034)                        | ND(0.0000026) X  | ND(0.0000033) X [ND(0.0000039) X] |  |
| 1,2,3,6,7,8-HxCDD         | NA               | ND(0.00000032)                        | ND(0.0000072)    | ND(0.0000049) X [ND(0.0000043)]   |  |
| 1,2,3,7,8,9-HxCDD         | NA               | ND(0.00000033)                        | ND(0.0000074)    | ND(0.0000055) [ND(0.0000050) X]   |  |
| HxCDDs (total)            | NA               | ND(0.0000081) X                       | ND(0.000078) X   | ND(0.000053) X [ND(0.000052) X]   |  |
| 1,2,3,4,6,7,8-HpCDD       | NA               | 0.0000018 J                           | 0.000040 J       | 0.000024 J [0.000020 J]           |  |
| HpCDDs (total)            | NA               | ND(0.0000035) X                       | 0.000083 J       | 0.000050 J [0.000044 J]           |  |
| OCDD                      | NA               | 0.000015 J                            | 0.00026 J        | 0.00013 J [0.000083 J]            |  |
| Total TEQs (WHO TEFs)     | NA               | 0.000011                              | 0.00023          | 0.00012 [0.00011]                 |  |
| Inorganics                |                  |                                       |                  |                                   |  |
| Antimony                  | NA               | ND(6.50)                              | ND(6.50)         | ND(6.50) [ND(6.70)]               |  |
| Arsenic                   | NA               | 6.70                                  | 3.40             | 2.30 [2.90]                       |  |
| Barium                    | NA               | 15.3 J                                | 27.2 J           | 17.5 J [25.9 J]                   |  |
| Beryllium                 | NA               | 0.300 B                               | 0.300 B          | 0.310 B [0.260 B]                 |  |
| Cadmium                   | NA               | ND(0.540)                             | 0.110 B          | ND(0.540) [ND(0.550)]             |  |
| Chromium                  | NA               | 11.7 J                                | 7.30 J           | 4.70 J [7.90 J]                   |  |
| Cobalt                    | NA               | 12.0                                  | 4.50 B           | 4.60 B [5.10 B]                   |  |
| Copper                    | NA               | 25.2 J                                | 31.5 J           | 20.9 J [25.6 J]                   |  |
| Cyanide                   | NA               | ND(0.540)                             | ND(0.540)        | ND(0.540) [ND(0.200)]             |  |
| Lead                      | NA               | 11.5 J                                | 34.4 J           | 15.5 J [27.8 J]                   |  |
| Mercury                   | NA               | 0.0200 B                              | 0.130            | 0.0400 [0.0550]                   |  |
| Nickel                    | NA               | 20.5                                  | 9.90             | 8.60 [10.3]                       |  |
| Selenium                  | NA               | ND(0.540)                             | ND(0.540)        | ND(0.540) [ND(0.550)]             |  |
| Silver                    | NA               | ND(1.10)                              | ND(1.10)         | ND(1.10) [ND(1.10)]               |  |
| Thallium                  | NA               | 0.950 B                               | ND(1.10)         | ND(1.10) [ND(1.10)]               |  |
| Tin                       | NA               | ND(3.40)                              | ND(4.50)         | ND(4.20) [ND(5.60)]               |  |
| Vanadium                  | NA               | 11.9                                  | 7.50             | 26.2 [22.1]                       |  |
| Zinc                      | NA               | 61.1                                  | 51.7             | 31.5 [48.5]                       |  |

#### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:                                       | RAA15-B18    | RAA15-B21    | RAA15-B22    | RAA15-B24                   |
|--------------------------------------------------|--------------|--------------|--------------|-----------------------------|
| Sample Depth(Feet):                              | 0-1          | 0-1          | 1-3          | 0-1                         |
| Parameter Date Collected:                        | 02/25/03     | 03/03/03     | 02/28/03     | 03/03/03                    |
| Volatile Organics                                |              |              |              |                             |
| 2-Butanone                                       | ND(0.0059) J | ND(0.0051) J | ND(0.0055) J | ND(0.0086) J [ND(0.0081) J] |
| Acetone                                          | ND(0.024) J  | ND(0.020)    | ND(0.022) J  | ND(0.034) [ND(0.033)]       |
| Benzene                                          | ND(0.0059)   | ND(0.0051)   | ND(0.0055)   | ND(0.0086) [ND(0.0081)]     |
| Carbon Disulfide                                 | ND(0.0059)   | ND(0.0051)   | ND(0.0055)   | ND(0.0086) [ND(0.0081)]     |
| Chloroform                                       | ND(0.0059)   | ND(0.0051)   | ND(0.0055)   | ND(0.0086) [ND(0.0081)]     |
| Ethylbenzene                                     | ND(0.0059)   | ND(0.0051)   | ND(0.0055)   | ND(0.0086) [ND(0.0081)]     |
| Methylene Chloride                               | ND(0.0059)   | 0.0018 J     | ND(0.0055)   | 0.0034 J [0.0037 J]         |
| Toluene                                          | ND(0.0059)   | ND(0.0051)   | ND(0.0055)   | ND(0.0086) [ND(0.0081)]     |
| trans-1,2-Dichloroethene                         | ND(0.0059)   | ND(0.0051)   | ND(0.0055)   | ND(0.0086) [ND(0.0081)]     |
| Trichloroethene                                  | ND(0.0059)   | ND(0.0051)   | ND(0.0055)   | ND(0.0086) [ND(0.0081)]     |
| Vinyl Chloride                                   | ND(0.012)    | ND(0.010)    | ND(0.011)    | ND(0.017) [ND(0.016)]       |
| Xylenes (total)                                  | ND(0.0059)   | ND(0.0051)   | ND(0.0055)   | ND(0.0086) [ND(0.0081)]     |
| Semivolatile Organics                            |              |              |              |                             |
| 1,2,4,5-Tetrachlorobenzene                       | ND(1.7)      | ND(1.5)      | ND(0.39)     | ND(0.45) [ND(0.44)]         |
| 1,2,4-Trichlorobenzene                           | ND(1.7)      | ND(1.5)      | ND(0.39)     | ND(0.45) [ND(0.44)]         |
| 1,4-Dichlorobenzene                              | ND(1.7)      | ND(1.5)      | ND(0.39)     | ND(0.45) [ND(0.44)]         |
| 1,4-Naphthoquinone                               | ND(8.2)      | ND(7.1)      | ND(1.9)      | ND(2.2) [ND(2.1)]           |
| 2-Methylnaphthalene                              | 0.23 J       | ND(1.5)      | ND(0.39)     | 0.12 J [0.053 J]            |
| 3&4-Methylphenol                                 | ND(3.4)      | ND(2.9)      | ND(0.77)     | ND(0.91) [ND(0.88)]         |
| 3,3'-Dichlorobenzidine                           | ND(8.2)      | ND(7.1)      | ND(1.9)      | ND(2.2) [ND(2.1)]           |
| 3-Methylcholanthrene                             | ND(8.2)      | ND(7.1)      | ND(1.9)      | ND(2.2) [ND(2.1)]           |
| Acenaphthene                                     | 0.27 J       | 0.24 J       | ND(0.39)     | 0.052 J [0.038 J]           |
| Acenaphthylene                                   | 0.94 J       | 0.47 J       | ND(0.39)     | 0.095 J [0.099 J]           |
| Aniline                                          | 1.4 J        | ND(1.5)      | ND(0.39)     | ND(0.45) [ND(0.44)]         |
| Anthracene                                       | 0.96 J       | 0.76 J       | ND(0.39)     | 0.13 J [0.13 J]             |
| Benzo(a)anthracene                               | 2.6          | 1.8          | ND(0.39)     | 0.38 J [0.39 J]             |
| Benzo(a)pyrene                                   | 2.9          | 1.9          | ND(0.39)     | 0.46 [0.46]                 |
| Benzo(b)fluoranthene                             | 3.0          | 1.7          | ND(0.39)     | 0.49 [0.55]                 |
| Benzo(g,h,i)perylene                             | 1.1 J        | 0.64 J       | ND(0.39)     | 0.17 J [0.11 J]             |
| Benzo(k)fluoranthene                             | 3.2          | 2.0          | ND(0.39)     | 0.46 [0.54]                 |
| bis(2-Ethylhexyl)phthalate                       | ND(1.7)      | ND(1.5)      | ND(0.39)     | 0.068 J [0.25 J]            |
| Chrysene                                         | 3.1          | 2.1          | ND(0.39)     | 0.50 [0.55]                 |
| Dibenzo(a,h)anthracene                           | 0.32 J       | 0.23 J       | ND(0.39)     | ND(0.45) [ND(0.44)]         |
| Dibenzofuran                                     | 0.20 J       | 0.16 J       | ND(0.39)     | ND(0.45) [ND(0.44)]         |
| Diethylphthalate                                 | ND(1.7)      | ND(1.5)      | ND(0.39)     | ND(0.45) [ND(0.44)]         |
| Di-n-Butylphthalate                              | ND(1.7)      | ND(1.5)      | ND(0.39)     | ND(0.45) [ND(0.44)]         |
| Fluoranthene                                     | 6.6          | 4.6          | ND(0.39)     | 0.94 [1.2]                  |
| Fluorene                                         | 0.38 J       | 0.38 J       | ND(0.39)     | 0.057 J [0.058 J]           |
| Hexachlorobenzene                                | ND(1.7)      | ND(1.5)      | ND(0.39)     | ND(0.45) [ND(0.44)]         |
| Indeno(1,2,3-cd)pyrene                           | 1.2 J        | 0.76 J       | ND(0.39)     | 0.19 J [0.14 J]             |
| Isophorone                                       | ND(1.7)      | ND(1.5)      | ND(0.39)     | ND(0.45) [ND(0.44)]         |
| Naphthalene                                      | 0.38 J       | 0.13 J       | ND(0.39)     | 0.065 J [0.041 J]           |
| Pentachlorobenzene                               | ND(1.7)      | ND(1.5)      | ND(0.39)     | ND(0.45) [ND(0.44)]         |
| Pentachlorophenol                                | ND(8.2)      | ND(7.1)      | ND(1.9)      | ND(2.2) [ND(2.1)]           |
| Phenanthrene Discourse Phenanthrene Phenanthrene | 3.5          | 3.1          | ND(0.39)     | 0.61 [0.69]                 |
| Phenol                                           | 0.33 J       | ND(1.5)      | ND(0.39)     | ND(0.45) [ND(0.44)]         |
| Pyrene                                           | 4.7          | 2.9          | ND(0.39)     | 0.65 [0.65]                 |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | 0-1             | RAA15-B21<br>0-1  | RAA15-B22<br>1-3 | RAA15-B24<br>0-1                  |
|-----------------------------------|-----------------|-------------------|------------------|-----------------------------------|
| Parameter Date Collected:         | 02/25/03        | 03/03/03          | 02/28/03         | 03/03/03                          |
| Furans                            |                 |                   |                  |                                   |
| 2,3,7,8-TCDF                      | ND(0.000027) X  | ND(0.00000054) X  | ND(0.00000018)   | 0.0000054 J [ND(0.0000070) X]     |
| TCDFs (total)                     | ND(0.00026) X   | ND(0.0000031) X   | ND(0.00000018)   | ND(0.000032) X [ND(0.000042) X]   |
| 1,2,3,7,8-PeCDF                   | 0.000012 J      | ND(0.00000011)    | ND(0.00000010)   | 0.0000016 J [0.0000021 J]         |
| 2,3,4,7,8-PeCDF                   | 0.000023 J      | 0.00000026 J      | ND(0.000000096)  | ND(0.0000017) X [0.0000022 J]     |
| PeCDFs (total)                    | ND(0.00060) X   | ND(0.0000091) X   | ND(0.000000099)  | ND(0.000033) X [ND(0.000048) X]   |
| 1,2,3,4,7,8-HxCDF                 | 0.000041 J      | 0.00000028 J      | 0.00000011 J     | 0.00000028 J [0.0000025 J]        |
| 1,2,3,6,7,8-HxCDF                 | ND(0.000054) X  | ND(0.00000080) X  | ND(0.00000013) X | ND(0.0000036) X [ND(0.0000053) X] |
| 1,2,3,7,8,9-HxCDF                 | ND(0.0000014) X | ND(0.000000081)   | ND(0.000000081)  | ND(0.00000040) [ND(0.000000066)]  |
| 2,3,4,6,7,8-HxCDF                 | 0.000015 J      | 0.00000024 J      | ND(0.000000073)  | 0.0000010 J [0.0000011 J]         |
| HxCDFs (total)                    | ND(0.00051) X   | ND(0.0000071) XQJ | ND(0.00000024) X | ND(0.000026) X [ND(0.000042) X]   |
| 1,2,3,4,6,7,8-HpCDF               | 0.000065        | 0.00000099 J      | ND(0.000000092)  | 0.000011 J [0.000020]             |
| 1,2,3,4,7,8,9-HpCDF               | 0.000018 J      | ND(0.00000012)    | ND(0.00000011)   | ND(0.00000046) [ND(0.00000068) X] |
| HpCDFs (total)                    | ND(0.00020) X   | ND(0.0000027) X   | ND(0.00000010)   | 0.000021 J [ND(0.000038) X]       |
| OCDF                              | 0.00012 J       | ND(0.0000017)     | 0.00000033 J     | ND(0.000010) [0.000020]           |
| Dioxins                           |                 |                   |                  |                                   |
| 2,3,7,8-TCDD                      | ND(0.0000014)   | ND(0.00000024)    | ND(0.00000024)   | ND(0.0000011) [ND(0.00000074) X]  |
| TCDDs (total)                     | ND(0.0000022) X | ND(0.00000024)    | ND(0.00000024)   | ND(0.0000011) [ND(0.0000018) X]   |
| 1,2,3,7,8-PeCDD                   | ND(0.0000023) X | ND(0.00000011)    | ND(0.00000012)   | ND(0.00000059) [ND(0.00000026) X] |
| PeCDDs (total)                    | ND(0.0000083) X | ND(0.00000011)    | ND(0.00000012)   | ND(0.00000059) [ND(0.0000024) X]  |
| 1,2,3,4,7,8-HxCDD                 | ND(0.0000024) X | 0.00000013 J      | ND(0.00000016)   | 0.00000013 J [ND(0.00000026) X]   |
| 1,2,3,6,7,8-HxCDD                 | ND(0.0000052) X | ND(0.00000022) X  | ND(0.00000015)   | ND(0.00000049) [0.00000088 J]     |
| 1,2,3,7,8,9-HxCDD                 | ND(0.0000044) X | 0.00000031 J      | ND(0.00000015)   | ND(0.00000051) [0.00000067 J]     |
| HxCDDs (total)                    | ND(0.000061) X  | ND(0.0000014) X   | ND(0.00000015)   | ND(0.0000032) X [ND(0.0000077) X] |
| 1,2,3,4,6,7,8-HpCDD               | 0.00014         | 0.0000026 J       | ND(0.00000014)   | 0.0000094 J [0.000017]            |
| HpCDDs (total)                    | 0.00053         | 0.0000053 J       | ND(0.00000018) X | 0.000019 J [ND(0.000034) X]       |
| OCDD                              | 0.0011 J        | ND(0.000017)      | ND(0.0000012) X  | 0.000079 J [0.00017 QJ]           |
| Total TEQs (WHO TEFs)             | 0.000027        | 0.00000052        | 0.00000027       | 0.0000025 [0.0000032]             |
| Inorganics                        |                 |                   |                  |                                   |
| Antimony                          | 0.580 B         | ND(6.70) J        | ND(7.00) J       | ND(8.20) J [ND(8.00) J]           |
| Arsenic                           | 4.50            | 2.40              | 2.80             | 5.00 [4.90]                       |
| Barium                            | 38.1 J          | 20.6 B            | 24.7             | 56.0 [54.1]                       |
| Beryllium                         | 0.550 B         | ND(0.400)         | 0.400 B          | ND(0.620) [ND(0.650)]             |
| Cadmium                           | 0.290 B         | ND(0.560)         | ND(0.590)        | 0.280 B [0.170 B]                 |
| Chromium                          | 12.6 J          | 6.30              | 7.60             | 38.5 [34.6]                       |
| Cobalt                            | 7.70            | 6.00              | 6.80             | 8.10 [8.80]                       |
| Copper                            | 33.2 J          | 13.1              | 12.2             | 66.2 [64.4]                       |
| Cyanide                           | ND(0.310)       | ND(0.560)         | ND(0.590)        | 0.250 B [ND(0.670)]               |
| Lead                              | 181 J           | 17.8 J            | 5.20             | 96.4 J [86.2 J]                   |
| Mercury                           | 0.110           | 0.0290 B          | ND(0.0390)       | 0.250 [0.250]                     |
| Nickel                            | 14.2            | 10.1              | 12.2             | 26.7 [27.2]                       |
| Selenium                          | ND(0.640)       | ND(0.560)         | 0.650            | 0.720 [ND(0.670)]                 |
| Silver                            | ND(1.30)        | ND(1.10)          | ND(1.20)         | 0.300 B [0.150 B]                 |
| Thallium                          | ND(1.30)        | ND(1.10) J        | ND(1.20) J       | ND(1.40) J [ND(1.30) J]           |
| Tin                               | ND(7.00)        | ND(3.80)          | ND(11.7)         | ND(7.60) [ND(7.10)]               |
| Vanadium                          | 20.7            | 8.10              | 9.20             | 17.8 [15.6]                       |
| Zinc                              | 127             | 43.0              | 41.3 J           | 126 [109]                         |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:                 | RAA15-C4     | RAA15-C4            | RAA15-C4                    |
|----------------------------|--------------|---------------------|-----------------------------|
| Sample Depth(Feet):        | 0-1          | <b>3-6</b>          | 4-6                         |
| Parameter Date Collected:  | 03/07/03     | <u> </u>            | 03/07/03                    |
| Volatile Organics          |              |                     |                             |
| 2-Butanone                 | ND(0.0050) J | NA                  | ND(0.0058) J [ND(0.0057) J] |
| Acetone                    | ND(0.020) J  | NA NA               | ND(0.023) J [ND(0.023) J]   |
| Benzene                    | ND(0.0050)   | NA NA               | ND(0.0058) [ND(0.0057)]     |
| Carbon Disulfide           | ND(0.0050)   | NA NA               | ND(0.0058) [ND(0.0057)]     |
| Chloroform                 | ND(0.0050)   | NA NA               | ND(0.0058) [ND(0.0057)]     |
| Ethylbenzene               | ND(0.0050)   | NA NA               | ND(0.0058) [ND(0.0057)]     |
| Methylene Chloride         | ND(0.0050)   | NA NA               | ND(0.0058) [ND(0.0057)]     |
| Toluene                    | ND(0.0050)   | NA NA               | ND(0.0058) [ND(0.0057)]     |
| trans-1,2-Dichloroethene   | ND(0.0050)   | NA NA               | ND(0.0058) [ND(0.0057)]     |
| Trichloroethene            | ND(0.0050)   | NA NA               | 0.0015 J [0.0046 J]         |
| Vinyl Chloride             | ND(0.010)    | NA NA               | ND(0.012) [ND(0.011)]       |
| Xylenes (total)            | ND(0.0050)   | NA NA               | ND(0.0058) [ND(0.0057)]     |
| Semivolatile Organics      |              |                     |                             |
| 1,2,4,5-Tetrachlorobenzene | ND(0.39)     | ND(0.38) [ND(0.37)] | NA                          |
| 1,2,4-Trichlorobenzene     | ND(0.39)     | ND(0.38) [ND(0.37)] | NA                          |
| 1,4-Dichlorobenzene        | ND(0.39)     | ND(0.38) [ND(0.37)] | NA                          |
| 1,4-Naphthoquinone         | ND(1.9)      | ND(1.8) [ND(1.8)]   | NA                          |
| 2-Methylnaphthalene        | 0.046 J      | 0.031 J [0.024 J]   | NA                          |
| 3&4-Methylphenol           | ND(0.77)     | ND(0.76) [ND(0.75)] | NA                          |
| 3,3'-Dichlorobenzidine     | ND(1.9)      | ND(1.8) [ND(1.8)]   | NA                          |
| 3-Methylcholanthrene       | ND(1.9)      | ND(1.8) [ND(1.8)]   | NA                          |
| Acenaphthene               | ND(0.39)     | ND(0.38) [0.048 J]  | NA                          |
| Acenaphthylene             | 0.31 J       | 0.11 J [0.075 J]    | NA                          |
| Aniline                    | ND(0.39)     | ND(0.38) [ND(0.37)] | NA                          |
| Anthracene                 | 0.19 J       | 0.082 J [0.14 J]    | NA                          |
| Benzo(a)anthracene         | 1.2          | 0.44 [0.41]         | NA                          |
| Benzo(a)pyrene             | 1.3          | 0.50 [0.41]         | . NA                        |
| Benzo(b)fluoranthene       | 1.2          | 0.36 J [0.31 J]     | NA                          |
| Benzo(g,h,i)perylene       | 0.94         | 0.33 J [0.24 J]     | NA                          |
| Benzo(k)fluoranthene       | 1.0          | 0.43 [0.35 J]       | NA                          |
| bis(2-Ethylhexyl)phthalate | ND(0.39)     | ND(0.38) [ND(0.37)] | NA                          |
| Chrysene                   | 1.4          | 0.51 [0.46]         | NA                          |
| Dibenzo(a,h)anthracene     | 0.33 J       | 0.11 J [0.069 J]    | NA                          |
| Dibenzofuran               | ND(0.39)     | ND(0.38) [ND(0.37)] | NA                          |
| Diethylphthalate           | ND(0.39)     | ND(0.38) [ND(0.37)] | NA                          |
| Di-n-Butylphthalate        | ND(0.39)     | ND(0.38) [ND(0.37)] | NA                          |
| Fluoranthene               | 1.7          | 0.71 [0.75]         | NA                          |
| Fluorene                   | ND(0.39)     | ND(0.38) [0.044 J]  | NA                          |
| Hexachlorobenzene          | ND(0.39)     | ND(0.38) [ND(0.37)] | NA                          |
| Indeno(1,2,3-cd)pyrene     | 1.0          | 0.35 J [0.26 J]     | NA                          |
| Isophorone                 | ND(0.39)     | ND(0.38) [ND(0.37)] | NA                          |
| Naphthalene                | 0.062 J      | 0.050 J [0.032 J]   | NA                          |
| Pentachlorobenzene         | ND(0.39)     | ND(0.38) [ND(0.37)] | NA                          |
| Pentachlorophenol          | ND(1.9)      | ND(1.8) [ND(1.8)]   | NA                          |
| Phenanthrene               | 0.95         | 0.34 J [0.51]       | NA                          |
| Phenol                     | ND(0.39)     | ND(0.38) [ND(0.37)] | NA                          |
| Pyrene                     | 1.8          | 0.82 [0.71]         | NA                          |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): |                  | RAA15-C4<br>3-6                        | RAA15-C4<br>4-6 |
|-----------------------------------|------------------|----------------------------------------|-----------------|
| Parameter Date Collected:         | 03/07/03         | 03/07/03                               | 03/07/03        |
| Furans                            |                  |                                        | 00,07,00        |
| 2,3,7,8-TCDF                      | ND(0.0000022) X  | ND(0.0000074) X [ND(0.0000079) X]      | NA NA           |
| TCDFs (total)                     | ND(0.000041) X   | ND(0.000087) X [ND(0.000089) X]        | NA NA           |
| 1,2,3,7,8-PeCDF                   | 0.0000013 J      | 0.0000022 J [ND(0.000038) X]           | NA NA           |
| 2,3,4,7,8-PeCDF                   | 0.0000015 J      | 0.0000026 J [ND(0.0000026) X]          | NA NA           |
| PeCDFs (total)                    | ND(0.00010) X    | ND(0.000097) XQJ [ND(0.00014) X]       | NA NA           |
| 1,2,3,4,7,8-HxCDF                 | 0.0000027 J      | 0.0000041 J [0.0000032 J]              | NA NA           |
| 1,2,3,6,7,8-HxCDF                 | ND(0.000015) X   | ND(0.000011) X [0.0000019 J]           | NA NA           |
| 1,2,3,7,8,9-HxCDF                 | ND(0.00000015)   | 0.00000014 J [0.00000018 J]            | NA NA           |
| 2,3,4,6,7,8-HxCDF                 | 0.0000010 J      | ND(0.0000014) X [ND(0.0000020) X]      | NA NA           |
| HxCDFs (total)                    | ND(0.000069) XQJ | ND(0.000059) XQJ [ND(0.000079) XQJ]    | NA NA           |
| 1,2,3,4,6,7,8-HpCDF               | 0.0000037 J      | 0.0000054 J [0.0000079]                | NA NA           |
| 1,2,3,4,7,8,9-HpCDF               | ND(0.00000088) X | 0.0000011 J [0.0000013 J]              | NA NA           |
| HpCDFs (total)                    | ND(0.0000097) X  | ND(0.000011) X [ND(0.000018) X]        | NA NA           |
| OCDF                              | ND(0.0000031)    | ND(0.0000040) [0.0000043 J]            | NA NA           |
| Dioxins                           |                  |                                        |                 |
| 2,3,7,8-TCDD                      | ND(0.0000034)    | 0.00000085 J [ND(0.00000027)]          | l NA            |
| TCDDs (total)                     | ND(0.00000074) X | ND(0.000067) X [ND(0.000016) X]        | NA NA           |
| 1,2,3,7,8-PeCDD                   | ND(0.00000023)   | 0.0000025 J [0.00000069 J]             | NA NA           |
| PeCDDs (total)                    | ND(0.0000014) X  | ND(0.000039) XQJ [ND(0.000013) X]      | NA NA           |
| 1,2,3,4,7,8-HxCDD                 | ND(0.00000025)   | 0.0000016 J [ND(0.00000038) X]         | NA NA           |
| 1,2,3,6,7,8-HxCDD                 | ND(0.00000024)   | 0.0000012 J [0.00000066 J]             | NA NA           |
| 1,2,3,7,8,9-HxCDD                 | ND(0.00000025)   | ND(0.0000012) XQJ [ND(0.00000059) XQJ] | NA NA           |
| HxCDDs (total)                    | ND(0.0000025) X  | ND(0.000020) XQJ [ND(0.000011) XQJ]    | NA NA           |
| 1,2,3,4,6,7,8-HpCDD               | 0.0000010 QJ     | 0.0000038 J [0.0000027 QJ]             | NA NA           |
| HpCDDs (total)                    | 0.0000023 QJ     | 0.0000092 J [0.0000075 QJ]             | NA NA           |
| OCDD                              | 0.0000071 J      | 0.000010 QJ [0.000012 QJ]              | NA NA           |
| Total TEQs (WHO TEFs)             | 0.0000024        | 0.0000066 [0.0000028]                  | NA NA           |
| Inorganics                        |                  |                                        |                 |
| Antimony                          | ND(7.00)         | 0.520 B [ND(6.80)]                     | NA NA           |
| Arsenic                           | 5.60             | 12.4 [8.50]                            | NA NA           |
| Barium                            | 29.5             | 65.6 [71.0]                            | NA NA           |
| Beryllium                         | ND(0.550)        | 0.670 [0.590]                          | NA              |
| Cadmium                           | ND(0.590)        | ND(0.580) [ND(0.0520)]                 | NA              |
| Chromium                          | 8.20             | 9.20 [7.00]                            | NA              |
| Cobalt                            | 8.80             | 9.20 [6.00]                            | NA              |
| Copper                            | 37.1 J           | 53.6 J [35.5 J]                        | NA              |
| Cyanide                           | 0.220 B          | ND(0.580) [ND(0.570)]                  | NA              |
| Lead                              | 64.9 J           | 28.6 J [75.0 J]                        | NA              |
| Mercury                           | 0.540            | 1.30 [1.40]                            | NA              |
| Nickel                            | 15.0 J           | 17.3 J [12.4 J]                        | NA              |
| Selenium                          | ND(0.590)        | ND(0.580) [ND(0.570)]                  | NA              |
| Silver                            | ND(1.20)         | ND(1.20) [ND(1.10)]                    | NA              |
| Thallium                          | ND(1.20)         | 0.700 B [ND(1.10)]                     | NA              |
| Tin                               | 20.6             | ND(8.00) [ND(6.80)]                    | NA              |
| Vanadium                          | 10.4             | 14.7 [10.6]                            | NA NA           |
| Zinc                              | 61.8             | 74.2 [107]                             | NA              |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-C6<br>0-1 | RAA15-C6<br>1-3 | RAA15-C6<br>3-6 | RAA15-C6<br>4-6 | RAA15-C8<br>6-8 |
|-----------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Parameter Date Collected:         | 03/06/03        | 03/06/03        | 03/06/03        | 03/06/03        | 02/26/03        |
| Volatile Organics                 |                 |                 |                 | 7 00/00/00      | 02/20/00        |
| 2-Butanone                        | ND(0.0076)      | ND(0.0059)      | NA              | ND(0.0053)      | ND(0.0053) J    |
| Acetone                           | ND(0.031) J     | ND(0.023) J     | NA              | ND(0.021) J     | ND(0.021) J     |
| Benzene                           | ND(0.0076)      | ND(0.0059)      | NA              | ND(0.0053)      | ND(0.0053)      |
| Carbon Disulfide                  | ND(0.0076)      | ND(0.0059)      | NA              | ND(0.0053)      | ND(0.0053)      |
| Chloroform                        | ND(0.0076)      | ND(0.0059)      | NA              | ND(0.0053)      | ND(0.0053)      |
| Ethylbenzene                      | ND(0.0076)      | ND(0.0059)      | NA              | ND(0.0053)      | ND(0.0053)      |
| Methylene Chloride                | ND(0.0076)      | ND(0.0059)      | NA              | ND(0.0053)      | 0.0023 J        |
| Toluene                           | ND(0.0076)      | ND(0.0059)      | NA              | ND(0.0053)      | 0.0012 J        |
| trans-1,2-Dichloroethene          | ND(0.0076)      | ND(0.0059)      | NA              | ND(0.0053)      | ND(0.0053)      |
| Trichloroethene                   | ND(0.0076)      | ND(0.0059)      | NA              | ND(0.0053)      | ND(0.0053)      |
| Vinyl Chloride                    | ND(0.015)       | ND(0.012)       | NA              | ND(0.011)       | ND(0.011)       |
| Xylenes (total)                   | ND(0.0076)      | ND(0.0059)      | NA              | ND(0.0053)      | ND(0.0053)      |
| Semivolatile Organics             | (0.000)         | 1 (3            |                 | 11.5(0.0000)    | 112(0.0000)     |
| 1,2,4,5-Tetrachlorobenzene        | ND(27)          | 0.69            | ND(1.6)         | NA              | NA              |
| 1,2,4-Trichlorobenzene            | ND(27)          | 0.040 J         | ND(1.6)         | NA NA           | NA NA           |
| 1.4-Dichlorobenzene               | ND(27)          | ND(0.40)        | ND(1.6)         | NA NA           | NA NA           |
| 1,4-Naphthoquinone                | ND(130)         | ND(2.0)         | ND(7.7)         | NA NA           | NA NA           |
| 2-Methylnaphthalene               | ND(27)          | 0.055 J         | 0.098 J         | NA NA           | NA NA           |
| 3&4-Methylphenol                  | ND(53)          | ND(0.81)        | ND(3.2)         | NA NA           | NA NA           |
| 3,3'-Dichlorobenzidine            | ND(130)         | ND(2.0)         | ND(7.7)         | NA NA           | NA NA           |
| 3-Methylcholanthrene              | ND(130)         | ND(2.0)         | ND(7.7)         | NA NA           | NA NA           |
| Acenaphthene                      | ND(27)          | 0.055 J         | ND(1.6)         | NA NA           | NA NA           |
| Acenaphthylene                    | ND(27)          | 0.13 J          | .0.88 J         | NA NA           | NA NA           |
| Aniline                           | ND(27)          | ND(0.40)        | ND(1.6)         | NA NA           | NA NA           |
| Anthracene                        | ND(27)          | 0.21 J          | 0.49 J          | NA NA           | NA NA           |
| Benzo(a)anthracene                | ND(27)          | 0.64            | 2.1             | NA NA           | NA NA           |
| Benzo(a)pyrene                    | ND(27)          | 0.65            | 2.3             | NA NA           | NA NA           |
| Benzo(b)fluoranthene              | ND(27)          | 0.60            | 2.2             | NA NA           | NA NA           |
| Benzo(g,h,i)perylene              | ND(27)          | 0.25 J          | 0.92 J          | NA NA           | NA NA           |
| Benzo(k)fluoranthene              | ND(27)          | 0.63            | 2.2             | NA NA           | NA NA           |
| bis(2-Ethylhexyl)phthalate        | ND(27)          | 0.11 J          | ND(1.6)         | NA NA           | NA NA           |
| Chrysene                          | ND(27)          | 0.73            | 2.6             | NA NA           | NA NA           |
| Dibenzo(a,h)anthracene            | ND(27)          | 0.10 J          | 0.35 J          | NA NA           | NA NA           |
| Dibenzofuran                      | ND(27)          | 0.053 J         | ND(1.6)         | NA NA           | NA NA           |
| Diethylphthalate                  | ND(27)          | ND(0.40)        | ND(1.6)         | NA NA           | NA NA           |
| Di-n-Butylphthalate               | ND(27)          | ND(0.40)        | ND(1.6)         | NA NA           | NA              |
| Fluoranthene                      | ND(27)          | 1.3             | 4.8             | NA NA           | NA              |
| Fluorene                          | ND(27)          | 0.072 J         | ND(1.6)         | NA NA           | NA              |
| Hexachlorobenzene                 | ND(27)          | ND(0.40)        | ND(1.6)         | NA NA           | NA NA           |
| Indeno(1,2,3-cd)pyrene            | ND(27)          | 0.31 J          | 1.2 J           | NA I            | NA              |
| Isophorone                        | ND(27)          | 0.28 J          | ND(1.6)         | NA NA           | NA              |
| Naphthalene                       | ND(27)          | 0.065 J         | 0.12 J          | NA I            | NA NA           |
| Pentachiorobenzene                | ND(27)          | ND(0.40)        | ND(1.6)         | NA NA           | NA NA           |
| Pentachlorophenol                 | ND(130)         | ND(2.0)         | ND(7.7)         | NA NA           | NA NA           |
| Phenanthrene                      | ND(27)          | 0.87            | 2.3             | NA NA           | NA NA           |
| Phenol                            | ND(27)          | ND(0.40)        | ND(1.6)         | NA NA           | NA NA           |
| Pyrene                            | ND(27)          | 1.0             | 3.4             | NA I            | NA NA           |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | 0-1               | RAA15-C6<br>1-3      | RAA15-C6<br>3-6  | RAA15-C6<br>4-6 | RAA15-C8<br>6-8 |
|-----------------------------------|-------------------|----------------------|------------------|-----------------|-----------------|
| Parameter Date Collected:         | 03/06/03          | 03/06/03             | 03/06/03         | 03/06/03        | 02/26/03        |
| Furans                            | <del></del>       |                      |                  |                 |                 |
| 2,3,7,8-TCDF                      | ND(0.00018) X     | ND(0.000086) X       | ND(0.000059) X   | NA              | NA              |
| TCDFs (total)                     | ND(0.0012) XQJ    | ND(0.00062) XQJ      | ND(0.00071) X    | NA              | NA              |
| 1,2,3,7,8-PeCDF                   | 0.00018           | 0.000065             | 0.000018         | NA              | NA              |
| 2,3,4,7,8-PeCDF                   | 0.00015           | 0.000064             | 0.000023         | NA              | NA              |
| PeCDFs (total)                    | ND(0.0017) X      | ND(0.00096) X        | ND(0.0015) X     | NA              | NA              |
| 1,2,3,4,7,8-HxCDF                 | 0.00039           | 0.00016              | 0.000028         | NA              | NA              |
| 1,2,3,6,7,8-HxCDF                 | ND(0.00020) X     | 0.000064             | ND(0.00022) X    | NA              | NA              |
| 1,2,3,7,8,9-HxCDF                 | 0.000021          | 0.0000044 J          | 0.0000013 J      | NA              | NA              |
| 2,3,4,6,7,8-HxCDF                 | 0.000039          | 0.000022             | 0.000014         | NA              | NA              |
| HxCDFs (total)                    | ND(0.0013) X      | ND(0.00072) X        | ND(0.0011) X     | NA              | NA              |
| 1,2,3,4,6,7,8-HpCDF               | 0.00027           | 0.00012              | 0.000070         | NA              | NA              |
| 1,2,3,4,7,8,9-HpCDF               | 0.000092          | 0.000034             | 0.0000099        | NA              | NA              |
| HpCDFs (total)                    | ND(0.00048) X     | ND(0.00022) X        | ND(0.00018) X    | NA              | NA              |
| OCDF                              | 0.00021           | 0.000087             | 0.000043         | NA NA           | NA              |
| Dioxins                           |                   |                      |                  |                 |                 |
| 2,3,7,8-TCDD                      | ND(0.00000079) X  | ND(0.00000041) X     | ND(0.00000071) X | NA              | NA              |
| TCDDs (total)                     | ND(0.000017) X    | ND(0.000011) X       | ND(0.000021) X   | NA NA           | NA NA           |
| 1,2,3,7,8-PeCDD                   | ND(0.000014) X    | ND(0.0000056) X      | ND(0.0000025) X  | NA NA           | NA NA           |
| PeCDDs (total)                    | ND(0.000055) X    | ND(0.000026) X       | ND(0.000027) X   | NA NA           | NA NA           |
| 1,2,3,4,7,8-HxCDD                 | 0.0000023 J       | ND(0.0000012) X      | 0.0000018 J      | NA NA           | NA NA           |
| 1,2,3,6,7,8-HxCDD                 | 0.0000042 J       | 0.0000028 J          | 0.0000041 J      | NA NA           | NA NA           |
| 1,2,3,7,8,9-HxCDD                 | ND(0.0000026) XQJ | ND(0.0000022) X      | 0.0000038 QJ     | NA I            | NA NA           |
| HxCDDs (total)                    | ND(0.000093) XQJ  | ND(0.000047) X       | ND(0.000050) XQJ | NA I            | NA NA           |
| 1,2,3,4,6,7,8-HpCDD               | 0.000031          | 0.000028             | 0.000029         | NA NA           | NA NA           |
| HpCDDs (total)                    | 0.000065          | 0.000064             | 0.000059         | NA NA           | NA NA           |
| OCDD                              | 0.00016 QJ        | 0.00027 QJ           | 0.00019          | NA NA           | NA NA           |
| Total TEQs (WHO TEFs)             | 0.00016           | 0.000070             | 0.000034         | NA I            | NA NA           |
| Inorganics                        |                   | 0.000070             | 0.000004         | 1477            | INA             |
| Antimony                          | 0.520 B           | 0.790 B              | 2.20 B           | NA              | A14             |
| Arsenic                           | 4.30              | 7.00                 | 7.20 B           | NA NA           | NA NA           |
| Barium                            | 79.1              | 101                  | 125              | NA NA           | NA NA           |
| Beryllium                         | 0.300 B           | 0.390 B              | 0.380 B          | NA I            | NA NA           |
| Cadmium                           | 0.490 B           | 0.130 B              | 0.500 B          | NA NA           | NA NA           |
| Chromium                          | 9.70              | 8.30                 | 12.5             | NA NA           | NA NA           |
| Cobalt                            | 4.90 B            | 4.40 B               | 4.90 B           |                 | NA NA           |
| Copper                            | 33.5              | 38.5                 | 50.6             | NA<br>NA        | NA NA           |
| Cyanide                           | 0.550 B           | 0.220 B              | 0.290 B          | NA NA           | NA NA           |
| Lead                              | 188               | 98.2                 | 220              |                 | NA NA           |
| Mercury                           | 0.700             | 0.190                |                  | NA NA           | NA              |
| Nickel                            | 10.7              | 10.3                 | 2.70             | NA NA           | NA NA           |
| Selenium                          | ND(0.670)         | ND(0.610)            | 13.2             | NA              | NA NA           |
| Silver                            | ND(1.30)          | ND(1.20)             | ND(0.600)        | NA NA           | NA NA           |
| Thallium                          | ND(1.30)          | ND(1.20)<br>ND(1.20) | ND(1.20)         | NA NA           | NA NA           |
| Tin                               | ND(7.40)          |                      | 1.00 B           | NA NA           | NA NA           |
| Vanadium                          | 14.9              | ND(9.20)             | ND(13.0)         | NA              | NA NA           |
| Zinc                              | 688               | 15.6                 | 19.0             | NA              | NA NA           |
| £411 194                          | 000               | 68.7                 | 133              | NA              | NA              |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-C8<br>6-10 | RAA15-C11  | RAA15-C17<br>0-1 | RAA15-C18<br>1-3  | RAA15-C18<br>3-6     |
|-----------------------------------|------------------|------------|------------------|-------------------|----------------------|
| Parameter Date Collected:         | 02/26/03         | 02/21/03   | 02/25/03         | 02/26/03          | 02/26/03             |
| Volatile Organics                 |                  |            |                  |                   |                      |
| 2-Butanone                        | NA               | ND(0.0045) | ND(0.0051) J     | ND(0.0049) J      | NA NA                |
| Acetone                           | NA               | ND(0.018)  | ND(0.020) J      | ND(0.019) J       | NA NA                |
| Benzene                           | NA               | ND(0.0045) | ND(0.0051)       | ND(0.0049)        | NA NA                |
| Carbon Disulfide                  | NA               | 0.00069 J  | ND(0.0051)       | ND(0.0049)        | NA NA                |
| Chloroform                        | NA               | ND(0.0045) | ND(0.0051)       | ND(0.0049)        | NA NA                |
| Ethylbenzene                      | NA               | ND(0.0045) | ND(0.0051)       | ND(0.0049)        | NA NA                |
| Methylene Chloride                | NA               | ND(0.0045) | ND(0.0051)       | 0.0027 J          | NA NA                |
| Toluene                           | NA NA            | ND(0.0045) | ND(0.0051)       | 0.0014 J          | NA NA                |
| trans-1,2-Dichloroethene          | NA               | ND(0.0045) | ND(0.0051)       | ND(0.0049)        | NA NA                |
| Trichloroethene                   | NA               | ND(0.0045) | ND(0.0051)       | ND(0.0049)        | NA NA                |
| Vinyl Chloride                    | NA NA            | ND(0.0030) | ND(0.010)        | ND(0.0043)        | NA<br>NA             |
| Xylenes (total)                   | NA NA            | ND(0.0045) | ND(0.0051)       | ND(0.0049)        | NA NA                |
| Semivolatile Organics             |                  | 1(0.00 .0) | 112(0.0001)      | 115(0.0040)       | 117                  |
| 1,2,4,5-Tetrachlorobenzene        | ND(0.35)         | ND(7.7)    | ND(1.6)          | ND(0.39)          | ND(0.44)             |
| 1,2,4-Trichlorobenzene            | ND(0.35)         | ND(7.7)    | ND(1.6)          | 0.12 J            | ND(0.44)             |
| 1,4-Dichlorobenzene               | ND(0.35)         | ND(7.7)    | ND(1.6)          | ND(0.39)          | ND(0.44)             |
| 1,4-Naphthoguinone                | ND(1.7)          | ND(37)     | ND(7.9)          | ND(1.9)           | ND(2.1)              |
| 2-Methylnaphthalene               | ND(0.35)         | 2.0 J      | ND(1.6)          | ND(0.39)          | ND(0.44)             |
| 3&4-Methylphenol                  | ND(0.71)         | ND(15)     | ND(3.3)          | ND(0.78)          | ND(0.44)             |
| 3,3'-Dichlorobenzidine            | ND(1.7)          | ND(37)     | ND(7.9)          | ND(1.9)           | ND(2.1)              |
| 3-Methylcholanthrene              | ND(1.7)          | 2.1 J      | ND(7.9)          | ND(1.9)           | ND(2.1)              |
| Acenaphthene                      | ND(0.35)         | 9.7        | 0.12 J           | ND(0.39)          | ND(2.1)<br>ND(0.44)  |
| Acenaphthylene                    | ND(0.35)         | 0.65 J     | 0.38 J           | 0.11 J            | 0.099 J              |
| Aniline                           | ND(0.35)         | ND(7.7)    | ND(1.6)          | ND(0.39)          | ND(0.44)             |
| Anthracene                        | ND(0.35)         | 27         | 0.44 J           | 0.055 J           | 0.057 J              |
| Benzo(a)anthracene                | ND(0.35)         | 86         | 1.5 J            | 0.20 J            | 0.20 J               |
| Benzo(a)pyrene                    | ND(0.35)         | 71         | 1.5 J            | 0.20 J            | 0.25 J               |
| Benzo(b)fluoranthene              | ND(0.35)         | 68         | 1.7              | 0.27 J            | 0.25 J<br>0.27 J     |
| Benzo(g,h,i)perylene              | ND(0.35)         | 21         | 0.53 J           | 0.099 J           |                      |
| Benzo(k)fluoranthene              | ND(0.35)         | 37         | 1.8              | 0.099 J<br>0.28 J | 0.088 J              |
| bis(2-Ethylhexyl)phthalate        | ND(0.35)         | ND(7.7)    | ND(1.6)          | ND(0.39)          | 0.30 J               |
| Chrysene                          | ND(0.35)         | 92         | 1.8              | 0.26 J            | ND(0.44)<br>0.27 J   |
| Dibenzo(a,h)anthracene            | ND(0.35)         | 11         | ND(1.6)          | ND(0.39)          | ND(0.44)             |
| Dibenzofuran                      | ND(0.35)         | 6.2 J      | ND(1.6)          | ND(0.39)          | ND(0.44)<br>ND(0.44) |
| Diethylphthalate                  | ND(0.35)         | ND(7.7)    | ND(1.6)          | ND(0.39)          |                      |
| Di-n-Butylphthalate               | ND(0.35)         | ND(7.7)    | ND(1.6)          | ND(0.39)          | ND(0.44)             |
| Fluoranthene                      | ND(0.35)         | 190        | 4.2              | 0.46              | ND(0.44)<br>0.52     |
| Fluorene                          | ND(0.35)         | 130        | ND(1.6)          | ND(0.39)          | ND(0.44)             |
| Hexachlorobenzene                 | ND(0.35)         | ND(7.7)    | ND(1.6)          | ND(0.39)          |                      |
| Indeno(1,2,3-cd)pyrene            | ND(0.35)         | 26         | 0.65 J           | 0.11 J            | ND(0.44)             |
| Isophorone                        | ND(0.35)         | ND(7.7)    | ND(1.6)          | ND(0.39)          | 0.11 J               |
| Naphthalene                       | ND(0.35)         | 4.7 J      | 0.12 J           | ND(0.39)          | ND(0.44)             |
| Pentachlorobenzene                | ND(0.35)         | ND(7.7)    |                  |                   | 0.028 J              |
| Pentachiorophenol                 | ND(0.33)         | ND(37)     | ND(1.6)          | ND(0.39)          | ND(0.44)             |
| Phenanthrene                      |                  |            | ND(7.9)          | ND(1.9)           | ND(2.1)              |
| Phenol                            | ND(0.35)         | 120        | 1.7              | 0.17 J            | 0.21 J               |
|                                   | ND(0.35)         | ND(7.7)    | ND(1.6)          | ND(0,39)          | ND(0.44)             |
| Pyrene                            | ND(0.35)         | 140        | 2.5              | 0.34 J            | 0.38 J               |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-C8<br>6-10 | RAA15-C11<br>1-3 | RAA15-C17<br>0-1 | RAA15-C18<br>1-3 | RAA15-C18<br>3-6 |
|-----------------------------------|------------------|------------------|------------------|------------------|------------------|
| Parameter Date Collected:         | 02/26/03         | 02/21/03         | 02/25/03         | 02/26/03         | 02/26/03         |
| Furans                            |                  |                  |                  |                  |                  |
| 2,3,7,8-TCDF                      | 0.00000074 J     | ND(0.000038) X   | ND(0.000016) X   | ND(0.000027) X   | ND(0.000014) X   |
| TCDFs (total)                     | ND(0.0000079) X  | ND(0.00071) X    | ND(0.00015) X    | ND(0.00020) X    | ND(0.00010) X    |
| 1,2,3,7,8-PeCDF                   | ND(0.00000018)   | 0.000020 J       | 0.0000076 J      | 0.0000099 J      | ND(0.000051) X   |
| 2,3,4,7,8-PeCDF                   | ND(0.00000036) X | 0.000030 J       | 0.000015 J       | 0.000012 J       | ND(0.000036) X   |
| PeCDFs (total)                    | ND(0.000020) X   | ND(0.0017) X     | ND(0.00040) X    | ND(0.00035) X    | ND(0.000086) X   |
| 1,2,3,4,7,8-HxCDF                 | 0.00000056 J     | 0.000085         | 0.000024 J       | 0.000037         | 0.000057 J       |
| 1,2,3,6,7,8-HxCDF                 | ND(0.0000025) X  | ND(0.00021) X    | ND(0.000041) X   | ND(0.000048) X   | ND(0.000011) X   |
| 1,2,3,7,8,9-HxCDF                 | ND(0.00000012)   | ND(0.0000044) X  | ND(0.0000015)    | ND(0.0000063)    | ND(0.00000061)   |
| 2,3,4,6,7,8-HxCDF                 | 0.00000029 J     | 0.000021 J       | 0.0000086 J      | 0.0000054 J      | ND(0.0000015) X  |
| HxCDFs (total)                    | ND(0.000017) X   | ND(0.0014) X     | ND(0.00035) X    | ND(0.00029) X    | ND(0.000072) X   |
| 1,2,3,4,6,7,8-HpCDF               | ND(0.0000011) X  | 0.00012          | 0.000049 J       | 0.000084         | 0.000042 J       |
| 1,2,3,4,7,8,9-HpCDF               | ND(0.00000016)   | 0.000047 J       | 0.000013 J       | 0.000031         | ND(0.0000020) XJ |
| HpCDFs (total)                    | ND(0.0000023) X  | 0.00029          | ND(0.00014) X    | 0.00021 J        | ND(0.000083) XJ  |
| OCDF                              | 0.0000015 J      | 0.00017          | 0.000094 J       | 0.00025 J        | 0.000039 J       |
| Dioxins                           |                  |                  |                  |                  |                  |
| 2,3,7,8-TCDD                      | ND(0.00000035)   | ND(0.0000014)    | ND(0.0000011)    | ND(0.0000012)    | ND(0.0000016)    |
| TCDDs (total)                     | ND(0.00000035)   | ND(0.0000029) X  | 0.0000017 J      | ND(0.0000012)    | ND(0.0000016)    |
| 1,2,3,7,8-PeCDD                   | ND(0.00000019)   | ND(0.0000047) X  | ND(0.0000016) X  | ND(0.0000013) X  | ND(0.0000012)    |
| PeCDDs (total)                    | ND(0.00000019)   | ND(0.000036) X   | ND(0.0000081) X  | ND(0.0000060) X  | ND(0.0000012)    |
| 1,2,3,4,7,8-HxCDD                 | ND(0.00000018)   | ND(0.0000025) X  | ND(0.0000022)    | ND(0.0000021) X  | ND(0.0000012)    |
| 1,2,3,6,7,8-HxCDD                 | ND(0.00000017)   | 0.0000055 J      | ND(0.0000044) X  | ND(0.0000020) X  | ND(0.0000016) X  |
| 1,2,3,7,8,9-HxCDD                 | ND(0.00000018)   | ND(0.0000040) X  | ND(0.0000046) X  | ND(0.0000022) X  | ND(0.0000012)    |
| HxCDDs (total)                    | ND(0.00000089) X | ND(0.000054) X   | ND(0.000036) X   | ND(0.000022) X   | ND(0.0000087) X  |
| 1,2,3,4,6,7,8-HpCDD               | ND(0.0000013) X  | 0.000076         | 0.000085         | 0.000030         | 0.000022 J       |
| HpCDDs (total)                    | ND(0.00000056)   | 0.00014          | 0.00016          | 0.000056 J       | 0.000037 J       |
| OCDD                              | 0.0000092 J      | 0.00064          | 0.00062          | 0.00027          | 0.00026 J        |
| Total TEQs (WHO TEFs)             | 0.00000069       | 0.000046         | 0.000018         | 0.000018         | 0.0000052        |
| Inorganics                        |                  |                  |                  |                  |                  |
| Antimony                          | ND(6.40) J       | ND(7.00)         | ND(0.520)        | ND(7.10) J       | ND(8.00) J       |
| Arsenic                           | 2.20             | 4.30             | 5.90             | 5.30             | 5.20             |
| Barium                            | 14.4 B           | 50.1             | 47.6 J           | 75.0             | 66.4             |
| Beryllium                         | ND(0.310)        | 0.0940 B         | 0.550 B          | 0.600            | 0.720            |
| Cadmium                           | ND(0.530)        | 0.440 B          | 0.530 B          | ND(0.120)        | ND(0.660)        |
| Chromium                          | 4.20             | 8.90             | 18.9 J           | 21.2             | 31.6             |
| Cobalt                            | 5.20 B           | 6.00             | 8.60             | 8.40             | 9.00             |
| Copper                            | 8.60             | 51.7             | 52.0 J           | 28.3             | 30.5             |
| Cyanide                           | 0.200 B          | 0.200 B          | ND(0.290)        | ND(0.590)        | 0.310 B          |
| Lead                              | 4.50             | 37.8             | 128 J            | 31.8             | 52.0             |
| Mercury                           | 0.0170 B         | 0.250            | 0.140            | 0.220            | 0.270            |
| Nickel                            | 8.50 J           | 14.1             | 18.3             | 16.8 J           | 16.7 J           |
| Selenium                          | ND(0.530) J      | ND(0.580)        | ND(0.620)        | ND(0.590) J      | 0.390 B          |
| Silver                            | ND(1.10)         | 0.210 B          | ND(1.20)         | ND(1.20)         | ND(1.30)         |
| Thallium                          | ND(1.10)         | ND(1.20) J       | ND(1.20)         | ND(1.20)         | ND(1.30)         |
| Tin                               | ND(4.10)         | ND(6.30)         | ND(8.20)         | ND(6.80)         | ND(7.90)         |
| Vanadium                          | ND(5.00)         | 10.5             | 24.4             | 17.6             | 16.4             |
| Zinc                              | 28.4             | 84.3             | 165              | 73.0             | 101              |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | RAA15-C18<br>4-6<br>02/26/03             | RAA15-C18<br>6-10<br>02/26/03 | RAA15-C18<br>8-10<br>02/26/03 | RAA15-C19<br>0-1<br>02/27/03 | RAA15-C20<br>6-10<br>03/04/03 | RAA15-C20<br>8-10<br>03/04/03 |
|----------------------------------------------------------------|------------------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|
| Volatile Organics                                              | A SA | UL/LU/UU                      | 02/20/03                      | OLILI 100                    | 1 03104103                    | 1 03/04/03                    |
| 2-Butanone                                                     | ND(0.0063) J                             | NA                            | ND(0.0063) J                  | ND(0.013) J                  | l NA                          | ND(0.0078) J                  |
| Acetone                                                        | ND(0.025) J                              | NA NA                         | ND(0.005) J                   | ND(0.053) J                  | NA<br>NA                      | ND(0.0078) 3                  |
| Benzene                                                        | ND(0.0063)                               | NA NA                         | ND(0.0063)                    | ND(0.033) 3                  | NA NA                         | ND(0.0078)                    |
| Carbon Disulfide                                               | ND(0.0063)                               | NA NA                         | ND(0.0063)                    | ND(0.013)                    | NA NA                         | ND(0.0078)                    |
| Chloroform                                                     | ND(0.0063)                               | NA NA                         | ND(0.0063)                    | ND(0.013)                    | NA NA                         | ND(0.0078)                    |
| Ethylbenzene                                                   | ND(0.0063)                               | NA NA                         | ND(0.0063)                    | ND(0.013)                    | NA NA                         | ND(0.0078)                    |
| Methylene Chloride                                             | 0.0023 J                                 | NA NA                         | 0.0032 J                      | ND(0.013)                    | NA NA                         | 0.0025 J                      |
| Toluene                                                        | 0.0023 J                                 | NA NA                         | 0.0032 J                      | ND(0.013)                    | NA<br>NA                      | ND(0.0078)                    |
| trans-1,2-Dichloroethene                                       | ND(0.0063)                               | NA NA                         | ND(0.0063)                    | ND(0.013)                    | NA NA                         | ND(0.0078)                    |
| Trichloroethene                                                | ND(0.0063)                               | NA NA                         | ND(0.0063)                    | ND(0.013)                    | NA NA                         | ND(0.0078)                    |
| Vinyl Chloride                                                 | ND(0.003)                                | NA NA                         | ND(0.003)                     | ND(0.013)                    | NA NA                         | ND(0.0078)                    |
| Xylenes (total)                                                | ND(0.0063)                               | NA NA                         | ND(0.0063)                    | ND(0.013)                    | NA NA                         | ND(0.0078)                    |
| Semivolatile Organics                                          | 110(0.0000)                              | 14/1                          | 140(0.0000)                   | 140(0.013)                   | i iva                         | ND(0.0076)                    |
| 1,2,4,5-Tetrachlorobenzene                                     | NA I                                     | ND(0.45)                      | l NA l                        | ND(0.47)                     | ND(0.55)                      | l NA                          |
| 1,2,4-Trichlorobenzene                                         | NA NA                                    | ND(0.45)                      | NA I                          | ND(0.47)                     | ND(0.55)                      | NA NA                         |
| 1.4-Dichlorobenzene                                            | NA NA                                    | ND(0.45)                      | NA NA                         | ND(0.47)                     | ND(0.55)                      | NA NA                         |
| 1,4-Naphthoquinone                                             | NA NA                                    | ND(2.2)                       | NA NA                         | ND(2.3)                      | ND(0.33)                      | NA NA                         |
| 2-Methylnaphthalene                                            | NA NA                                    | ND(0.45)                      | NA I                          | ND(2.3)                      | ND(2.7)                       | NA NA                         |
| 3&4-Methylphenol                                               | NA NA                                    | ND(0.91)                      | NA NA                         | ND(0.47)                     | ND(1.1)                       | NA NA                         |
| 3,3'-Dichlorobenzidine                                         | NA NA                                    | ND(2.2)                       | NA NA                         | · ND(2.3)                    | ND(1.1)<br>ND(2.7)            | NA<br>NA                      |
| 3-Methylcholanthrene                                           | NA NA                                    | ND(2.2)                       | NA NA                         | ND(2.3)                      | ND(2.7)                       | NA NA                         |
| Acenaphthene                                                   | NA NA                                    | ND(0.45)                      | NA NA                         | ND(2.3)<br>ND(0.47)          | ND(2.7)<br>ND(0.55)           | NA NA                         |
| Acenaphthylene                                                 | NA NA                                    | ND(0.45)                      | NA NA                         | 0.065 J                      |                               |                               |
| Aniline                                                        | NA NA                                    | ND(0.45)                      | NA NA                         |                              | ND(0.55)                      | NA<br>NA                      |
| Anthracene                                                     | NA NA                                    | ND(0.45)                      | NA NA                         | ND(0.47)                     | ND(0.55)                      | NA<br>NA                      |
| Benzo(a)anthracene                                             | NA NA                                    | ND(0.45)                      | NA NA                         | ND(0.47)<br>0.22 J           | ND(0.55)                      | NA NA                         |
| Benzo(a)pyrene                                                 | NA NA                                    | ND(0.45)                      | NA NA                         | 0.22 J<br>0.27 J             | ND(0.55)<br>ND(0.55)          | NA<br>NA                      |
| Benzo(b)fluoranthene                                           | NA NA                                    | ND(0.45)                      | NA NA                         | 0.27 J                       |                               | NA NA                         |
| Benzo(g,h,i)perylene                                           | NA NA                                    | ND(0.45)                      | NA NA                         | 0.27 J                       | ND(0.55)                      | NA NA                         |
| Benzo(k)fluoranthene                                           | NA NA                                    | ND(0.45)                      | NA NA                         | 0.13 J                       | ND(0.55)<br>ND(0.55)          | NA<br>NA                      |
| bis(2-Ethylhexyl)phthalate                                     | NA NA                                    | ND(0.45)                      | NA NA                         | ND(0.47)                     |                               | NA NA                         |
| Chrysene                                                       | NA NA                                    | ND(0.45)                      | NA NA                         | 0.31 J                       | ND(0.55)                      | NA<br>NA                      |
| Dibenzo(a,h)anthracene                                         | NA NA                                    | ND(0.45)                      | NA NA                         | ND(0.47)                     | ND(0.55)<br>ND(0.55)          | NA<br>NA                      |
| Dibenzofuran                                                   | NA NA                                    | ND(0.45)                      | NA NA                         | ND(0.47)                     | ND(0.55)                      | NA<br>NA                      |
| Diethylphthalate                                               | NA I                                     | ND(0.45)                      | NA I                          | ND(0.47)                     | ND(0.55)                      | NA<br>NA                      |
| Di-n-Butylphthalate                                            | NA I                                     | ND(0.45)                      | NA NA                         | ND(0.47)                     |                               | NA NA                         |
| Fluoranthene                                                   | NA +                                     | ND(0.45)                      | NA I                          | 0.49                         | ND(0.55)                      |                               |
| Fluorene                                                       | NA NA                                    | ND(0.45)                      | NA NA                         | ND(0.47)                     | ND(0.55)<br>ND(0.55)          | NA<br>NA                      |
| Hexachlorobenzene                                              | NA NA                                    | ND(0.45)                      | NA NA                         |                              |                               |                               |
| Indeno(1,2,3-cd)pyrene                                         | NA NA                                    | ND(0.45)                      | NA NA                         | ND(0.47)                     | ND(0.55)                      | NA<br>NA                      |
| Isophorone                                                     | NA NA                                    | ND(0.45)                      | NA NA                         | 0.15 J                       | ND(0.55)                      | NA NA                         |
| Naphthalene                                                    | NA NA                                    | ND(0.45)                      | NA NA                         | ND(0.47)                     | ND(0.55)                      | NA<br>NA                      |
| Pentachlorobenzene                                             |                                          |                               |                               | ND(0.47)                     | ND(0.55)                      | NA NA                         |
|                                                                | NA NA                                    | ND(0.45)                      | NA NA                         | ND(0.47)                     | ND(0.55)                      | NA NA                         |
| Pentachlorophenol                                              | NA                                       | ND(2.2)                       | NA I                          | ND(2.3)                      | ND(2.7)                       | NA NA                         |
| Phenanthrene                                                   | NA NA                                    | ND(0.45)                      | NA I                          | 0.24 J                       | ND(0.55)                      | NA NA                         |
| Phenol Pyrene                                                  | NA NA                                    | ND(0.45)<br>ND(0.45)          | NA<br>NA                      | ND(0.47)<br>0.39 J           | ND(0.55)<br>ND(0.55)          | NA<br>NA                      |

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | RAA15-C18<br>4-6<br>02/26/03 | RAA15-C18<br>6-10<br>02/26/03 | RAA15-C18<br>8-10<br>02/26/03 | RAA15-C19<br>0-1           | RAA15-C20<br>6-10                  | RAA15-C20<br>8-10 |
|----------------------------------------------------------------|------------------------------|-------------------------------|-------------------------------|----------------------------|------------------------------------|-------------------|
| Furans                                                         | 02/20/03                     | 02/20/03                      | 02/26/03                      | 02/27/03                   | 03/04/03                           | 03/04/03          |
| 2,3,7,8-TCDF                                                   | NA                           | ND(0.00000068)                | NIA                           | L ND(0 00000GG) V          | L ND(0.00000047)                   |                   |
| TCDFs (total)                                                  | NA NA                        | ND(0.00000068)                | NA<br>NA                      | ND(0.0000066) X            | ND(0.00000017)                     | NA NA             |
| 1,2,3,7,8-PeCDF                                                | NA<br>NA                     | ND(0.0000008)                 | NA<br>NA                      | ND(0.000049) X             | ND(0.00000017)                     | NA                |
| 2,3,4,7,8-PeCDF                                                | NA NA                        | ND(0.00000034)                | NA<br>NA                      | 0.0000021 J<br>0.0000021 J | ND(0.000000093)                    | NA                |
| PeCDFs (total)                                                 | NA NA                        | ND(0.00000033)                | NA<br>NA                      | ND(0.000043) X             | ND(0.000000088)<br>ND(0.000000091) | NA                |
| 1,2,3,4,7,8-HxCDF                                              | NA NA                        | ND(0.00000034)                | NA<br>NA                      | 0.0000034 J                | ND(0.000000091)                    | NA<br>NA          |
| 1,2,3,6,7,8-HxCDF                                              | NA NA                        | ND(0.00000022)                | NA NA                         | ND(0.0000057) X            | ND(0.00000008)                     | NA<br>NA          |
| 1,2,3,7,8,9-HxCDF                                              | NA NA                        | ND(0.00000021)                | NA NA                         | ND(0.0000007) X            | ND(0.000000000)                    | NA<br>NA          |
| 2,3,4,6,7,8-HxCDF                                              | NA                           | ND(0.00000024)                | NA                            | ND(0.00000041)             | ND(0.000000000)                    | NA<br>NA          |
| HxCDFs (total)                                                 | NA                           | 0.00000064 J                  | NA                            | ND(0.000038) X             | 0.0000000073)                      | NA NA             |
| 1,2,3,4,6,7,8-HpCDF                                            | NA                           | 0.00000082 J                  | NA                            | 0.000016 J                 | 0.00000034 J                       | NA NA             |
| 1,2,3,4,7,8,9-HpCDF                                            | NA                           | ND(0.0000038)                 | NA NA                         | ND(0.00000059)             | ND(0.00000011)                     | NA NA             |
| HpCDFs (total)                                                 | NA                           | ND(0.0000016) X               | NA                            | 0.000030 J                 | ND(0.00000059) X                   | NA NA             |
| OCDF                                                           | NA                           | 0.0000015 J                   | NA                            | ND(0.000019)               | ND(0.00000046) X                   | NA NA             |
| Dioxins                                                        |                              |                               |                               | 1 (0.0000.0)               | 1(0.000000.0) //                   | 14/1              |
| 2,3,7,8-TCDD                                                   | NA                           | ND(0.00000095)                | NA                            | ND(0.0000012)              | ND(0.00000023)                     | NA                |
| TCDDs (total)                                                  | NA                           | ND(0.00000095)                | NA                            | ND(0.0000012)              | ND(0.00000023)                     | NA NA             |
| 1,2,3,7,8-PeCDD                                                | NA                           | ND(0.00000066)                | NA                            | ND(0.00000078)             | ND(0.00000010)                     | NA NA             |
| PeCDDs (total)                                                 | NA                           | ND(0.00000066)                | NA                            | ND(0.00000078)             | ND(0.00000010)                     | NA                |
| 1,2,3,4,7,8-HxCDD                                              | NA                           | ND(0.00000057)                | NA                            | ND(0.00000064)             | ND(0.00000012)                     | NA NA             |
| 1,2,3,6,7,8-HxCDD                                              | NA                           | ND(0.00000054)                | NA                            | ND(0.0000060)              | ND(0.00000011)                     | NA                |
| 1,2,3,7,8,9-HxCDD                                              | NA                           | ND(0.00000056)                | NA                            | ND(0.0000062)              | ND(0.00000012)                     | NA                |
| HxCDDs (total)                                                 | NA                           | ND(0.00000056)                | NA                            | ND(0.0000024) X            | ND(0.00000012)                     | NA                |
| 1,2,3,4,6,7,8-HpCDD                                            | NA                           | ND(0.00000050)                | NA                            | 0.000013 J                 | ND(0.00000036) X                   | NA                |
| HpCDDs (total)                                                 | NA                           | ND(0.00000050)                | NA                            | 0.000022 J                 | ND(0.00000064) X                   | NA                |
| OCDD                                                           | NA                           | ND(0.0000058)                 | NA                            | 0.00012                    | 0.0000031 J                        | NA                |
| Total TEQs (WHO TEFs)                                          | NA                           | 0.0000011                     | NA                            | 0.0000036                  | 0.00000024                         | NA                |
| Inorganics                                                     |                              |                               |                               |                            |                                    |                   |
| Antimony                                                       | NA                           | ND(8.20) J                    | NA                            | ND(8.60) J                 | ND(10.0) J                         | NA                |
| Arsenic .                                                      | NA                           | 1.80                          | NA                            | 5.50                       | 1.50 B                             | NA                |
| Barium                                                         | NA                           | 35.2                          | NA                            | 75.4                       | 29.3 B                             | NA                |
| Beryllium                                                      | NA                           | ND(0.590)                     | NA                            | 0.860                      | ND(0.570)                          | NA                |
| Cadmium                                                        | NA                           | ND(0.690)                     | NA                            | ND(0.720)                  | ND(0.830)                          | NA                |
| Chromium                                                       | NA                           | 10.2                          | NA                            | 29.4                       | 10.8                               | NA                |
| Cobalt                                                         | NA                           | 6.80 B                        | NA                            | 11.4                       | 7.10 B                             | NA                |
| Copper                                                         | NA                           | 11.2                          | NA                            | 30.4                       | 10.0 J                             | NA                |
| Cyanide                                                        | NA                           | 0.270 B                       | NA                            | 0.320 B                    | ND(0.830)                          | NA                |
| Lead                                                           | NA                           | 5.60                          | NA                            | 50.9                       | 5.20                               | NA                |
| Mercury                                                        | NA                           | 0.0260 B                      | NA                            | 0.190                      | 0.0360 B                           | NA                |
| Nickel                                                         | NA                           | 12.9 J                        | NA                            | 20.0                       | 14.0                               | NA                |
| Selenium                                                       | NA                           | ND(0.690) J                   | NA                            | 1.20                       | ND(0.830) J                        | NA                |
| Silver                                                         | NA                           | ND(1.40)                      | NA                            | ND(1.40)                   | ND(1.70)                           | NA                |
| Thallium                                                       | NA                           | ND(1.40)                      | NA                            | ND(1.40) J                 | ND(1.70) J                         | NA                |
| Tin                                                            | NA                           | ND(5.50)                      | NA                            | ND(14.3)                   | ND(6.10)                           | NA                |
| Vanadium                                                       | NA                           | 12.0                          | NA                            | 21.5                       | 12.0                               | NA                |
| Zinc                                                           | NA                           | 53.7                          | NA                            | 111 J                      | 58.2                               | NA                |

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | RAA15-C23<br>0-1<br>03/03/03 | RAA15-C24<br>1-3<br>03/03/03 | RAA15-C24<br>3-6<br>03/03/03 | RAA15-C24<br>4-6        | RAA15-C24<br>10-12 |
|----------------------------------------------------------------|------------------------------|------------------------------|------------------------------|-------------------------|--------------------|
| Volatile Organics                                              | 03/03/03                     | 03/03/03                     | 03/03/03                     | 03/03/03                | 03/03/03           |
| 2-Butanone                                                     | ND(0.0062) J                 | ND(0.0064) J                 | NA NA                        | ND(0.0057) I            | 0.0000.1           |
| Acetone                                                        | ND(0.0052) 3                 | ND(0.0064) 3                 | NA NA                        | ND(0.0057) J            |                    |
| Benzene                                                        | ND(0.0062)                   | ND(0.0064)                   | NA NA                        | ND(0.023)               | 0.0079 J           |
| Carbon Disulfide                                               | ND(0.0062)                   | ND(0.0064)                   | NA<br>NA                     | ND(0.0057)              | ND(0.0045)         |
| Chloroform                                                     | ND(0.0062)                   | ND(0.0064)                   | NA NA                        | ND(0.0057)              | ND(0.0045)         |
| Ethylbenzene                                                   | ND(0.0062)                   | ND(0.0064)                   | NA NA                        | ND(0.0057)              | ND(0.0045)         |
| Methylene Chloride                                             | 0.0037 J                     | 0.0028 J                     | NA<br>NA                     | ND(0.0057)<br>0.0030 J  | ND(0.0045)         |
| Toluene                                                        | ND(0.0062)                   | ND(0.0064)                   | NA<br>NA                     |                         | 0.0012 J           |
| trans-1,2-Dichloroethene                                       | ND(0.0062)                   | ND(0.0064)                   | NA NA                        | ND(0.0057)              | ND(0.0045)         |
| Trichloroethene                                                | ND(0.0062)                   | ND(0.0064)                   | NA NA                        | ND(0.0057)              | ND(0.0045)         |
| Vinyl Chloride                                                 | ND(0.012)                    | ND(0.0004)                   | NA NA                        | ND(0.0057)              | ND(0.0045)         |
| Xylenes (total)                                                | ND(0.0062)                   | ND(0.0064)                   | NA<br>NA                     | ND(0.011)<br>ND(0.0057) | ND(0.0091)         |
| Semivolatile Organics                                          | 140(0.0002)                  | 142(0.0004)                  | INA                          | ND(0.0057)              | ND(0.0045)         |
| 1,2,4,5-Tetrachlorobenzene                                     | ND(0.37)                     | ND(0.36)                     | ND(0.34)                     | I NA                    | NIA                |
| 1,2,4-Trichlorobenzene                                         | ND(0.37)                     | ND(0.36)                     | ND(0.34)                     |                         | NA                 |
| 1,4-Dichlorobenzene                                            | ND(0.37)                     | ND(0.36)                     | ND(0.34)                     | NA<br>NA                | NA<br>NA           |
| 1,4-Naphthoquinone                                             | ND(1.8)                      | ND(1.7)                      | ND(0.34)                     | NA<br>NA                | NA                 |
| 2-Methylnaphthalene                                            | ND(0.37)                     | ND(0.36)                     | ND(0.34)                     | NA NA                   | NA                 |
| 3&4-Methylphenol                                               | ND(0.74)                     | ND(0.71)                     |                              |                         | NA                 |
| 3,3'-Dichlorobenzidine                                         | ND(1.8)                      | ND(1.7)                      | ND(0.69)                     | NA<br>NA                | NA                 |
| 3-Methylcholanthrene                                           | ND(1.8)                      | ND(1.7)                      | ND(1.7)                      | NA NA                   | NA                 |
| Acenaphthene                                                   | ND(1.8)                      |                              | ND(1.7)                      | NA                      | NA                 |
| Acenaphthylene                                                 | 0.31 J                       | ND(0.36)<br>0.023 J          | ND(0.34)                     | NA                      | NA                 |
| Aniline                                                        | ND(0.37)                     | ND(0.36)                     | ND(0.34)                     | NA                      | NA                 |
| Anthracene                                                     | 0.088 J                      | ND(0.36)                     | ND(0.34)                     | NA NA                   | NA                 |
| Benzo(a)anthracene                                             | 0.34 J                       | 0.061 J                      | ND(0.34)                     | NA                      | NA                 |
| Benzo(a)pyrene                                                 | 0.58                         |                              | ND(0.34)                     | NA NA                   | NA                 |
| Benzo(b)fluoranthene                                           | 0.60                         | 0.076 J<br>0.072 J           | ND(0.34)                     | NA NA                   | NA                 |
| Benzo(g,h,i)perylene                                           | 0.25 J                       | ND(0.36)                     | ND(0.34)                     | NA NA                   | NA                 |
| Benzo(k)fluoranthene                                           | 0.56                         | 0.077 J                      | ND(0.34)                     | NA NA                   | NA                 |
| bis(2-Ethylhexyl)phthalate                                     | ND(0.37)                     | ND(0.36)                     | ND(0.34)                     | NA                      | NA                 |
| Chrysene                                                       | 0.41                         | 0.088 J                      | ND(0.34)                     | NA NA                   | NA                 |
| Dibenzo(a,h)anthracene                                         | 0.074 J                      | ND(0.36)                     | ND(0.34)                     | NA NA                   | NA                 |
| Dibenzofuran                                                   | ND(0.37)                     | ND(0.36)                     | ND(0.34)                     | NA NA                   | NA                 |
| Diethylphthalate                                               | ND(0.37)                     | ND(0.36)                     | ND(0.34)                     | NA NA                   | NA .               |
| Di-n-Butylphthalate                                            | ND(0.37)                     |                              | ND(0.34)                     | NA NA                   | NA                 |
| Fluoranthene                                                   | 0.52                         | ND(0.36)<br>0.12 J           | ND(0.34)                     | NA NA                   | NA                 |
| Fluorene                                                       | ND(0.37)                     | ND(0.36)                     | ND(0.34)                     | NA NA                   | NA                 |
| Hexachlorobenzene                                              | ND(0.37)                     |                              | ND(0.34)                     | NA NA                   | NA                 |
| Indeno(1,2,3-cd)pyrene                                         | 0.26 J                       | ND(0.36)<br>ND(0.36)         | ND(0.34)                     | NA NA                   | NA                 |
| Isophorone                                                     | ND(0.37)                     | ND(0.36)                     | ND(0.34)                     | NA NA                   | NA NA              |
| Naphthalene                                                    | ND(0.37)                     |                              | ND(0.34)                     | NA NA                   | NA NA              |
| Pentachlorobenzene                                             | ND(0.37)                     | ND(0.36)<br>ND(0.36)         | ND(0.34)                     | NA NA                   | NA NA              |
| Pentachlorophenol                                              | ND(0.37)<br>ND(1.8)          |                              | ND(0.34)                     | NA NA                   | NA                 |
| Phenanthrene                                                   | 0.14 J                       | ND(1.7)                      | ND(1.7)                      | NA I                    | NA                 |
| Phenol                                                         | ND(0.37)                     | 0.052 J                      | ND(0.34)                     | NA NA                   | NA                 |
| Pyrene                                                         | 0.41                         | ND(0.36)<br>0.10 J           | ND(0.34)<br>ND(0.34)         | NA<br>NA                | NA<br>NA           |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: |                  | RAA15-C24<br>1-3<br>03/03/03 | RAA15-C24<br>3-6<br>03/03/03 | RAA15-C24<br>4-6<br>03/03/03 | RAA15-C24<br>10-12<br>03/03/03 |
|----------------------------------------------------------------|------------------|------------------------------|------------------------------|------------------------------|--------------------------------|
| Furans                                                         |                  |                              |                              |                              |                                |
| 2,3,7,8-TCDF                                                   | 0.00000052 J     | ND(0.0000047) X              | ND(0.00000038) X             | NA                           | I NA                           |
| TCDFs (total)                                                  | ND(0.0000041) X  | ND(0.000024) X               | ND(0.0000041) X              | NA NA                        | NA NA                          |
| 1,2,3,7,8-PeCDF                                                | ND(0.0000013)    | 0.0000011 J                  | 0.00000017 J                 | NA NA                        | NA NA                          |
| 2,3,4,7,8-PeCDF                                                | ND(0.00000012)   | ND(0.0000012) X              | ND(0.00000021) X             | NA                           | NA NA                          |
| PeCDFs (total)                                                 | ND(0.0000061) X  | ND(0.000027) X               | ND(0.0000091) X              | NA NA                        | NA                             |
| 1,2,3,4,7,8-HxCDF                                              | ND(0.00000015) X | 0.0000015 J                  | 0.00000022 J                 | NA                           | NA                             |
| 1,2,3,6,7,8-HxCDF                                              | ND(0.00000055) X | ND(0.0000041) X              | ND(0.00000091) X             | NA NA                        | NA NA                          |
| 1,2,3,7,8,9-HxCDF                                              | ND(0.00000011)   | ND(0.00000028)               | 0.00000019 J                 | NA NA                        | NA NA                          |
| 2,3,4,6,7,8-HxCDF                                              | ND(0.00000019) X | ND(0.00000053) X             | ND(0.00000023) X             | NA                           | NA                             |
| HxCDFs (total)                                                 | ND(0.0000035) X  | ND(0.000027) X               | ND(0.0000060) X              | NA                           | NA                             |
| 1,2,3,4,6,7,8-HpCDF                                            | 0.00000041 J     | 0.000018 J                   | ND(0.00000070) X             | NA                           | NA                             |
| 1,2,3,4,7,8,9-HpCDF                                            | ND(0.00000018)   | ND(0.00000043)               | 0.00000035 J                 | NA NA                        | NA                             |
| HpCDFs (total)                                                 | 0.00000082 J     | 0.000033 J                   | ND(0.0000017) X              | NA                           | NA NA                          |
| OCDF                                                           | ND(0.000001)     | ND(0.000013)                 | ND(0.0000011)                | NA                           | NA NA                          |
| Dioxins                                                        |                  | (0.0000)                     | (0.000007.1)                 |                              | 1,77                           |
| 2,3,7,8-TCDD                                                   | ND(0.00000028)   | ND(0.00000067) X             | ND(0.00000015)               | NA                           | NA                             |
| TCDDs (total)                                                  | ND(0.00000028)   | ND(0.00000067) X             | ND(0.00000015)               | NA NA                        | NA NA                          |
| 1,2,3,7,8-PeCDD                                                | ND(0.00000016)   | ND(0.00000031)X              | ND(0.00000072)               | NA NA                        | NA NA                          |
| PeCDDs (total)                                                 | ND(0.00000016)   | ND(0.00000043)               | ND(0.000000072)              | NA NA                        | NA NA                          |
| 1,2,3,4,7,8-HxCDD                                              | ND(0.00000018)   | ND(0.00000049)               | ND(0.00000013) X             | NA NA                        | NA NA                          |
| 1,2,3,6,7,8-HxCDD                                              | ND(0.00000017)   | ND(0.00000046)               | 0.00000019 J                 | NA NA                        | NA NA                          |
| 1,2,3,7,8,9-HxCDD                                              | ND(0.00000018)   | ND(0.00000048)               | ND(0.00000022) X             | NA                           | NA NA                          |
| HxCDDs (total)                                                 | ND(0.00000018)   | ND(0.0000028) X              | ND(0.00000022) X             | NA NA                        | NA NA                          |
| 1,2,3,4,6,7,8-HpCDD                                            | ND(0.00000060) X | 0.0000081 J                  | ND(0.00000074)               | NA                           | NA NA                          |
| HpCDDs (total)                                                 | ND(0.0000011) X  | 0.000016 J                   | 0.0000013 J                  | NA NA                        | NA NA                          |
| OCDD                                                           | ND(0.0000049) J  | 0.000079                     | ND(0.000039)                 | NA NA                        | NA NA                          |
| Total TEQs (WHO TEFs)                                          | 0.00000039       | 0.0000019                    | 0.00000034                   | NA NA                        | NA NA                          |
| Inorganics                                                     |                  |                              | 0.000000                     | 147.                         | 14/1                           |
| Antimony                                                       | ND(6.70) J       | ND(6.50) J                   | ND(6.20) J                   | NA                           | NA                             |
| Arsenic                                                        | 2.50             | 2.60                         | 2.30                         | NA NA                        | NA NA                          |
| Barium                                                         | 21.1 B           | 22.5                         | 14.6 B                       | NA NA                        | NA NA                          |
| Beryllium                                                      | ND(0.410)        | ND(0.380)                    | ND(0.300)                    | NA NA                        | NA NA                          |
| Cadmium                                                        | ND(0.560)        | ND(0.540)                    | ND(0.520)                    | NA NA                        | NA NA                          |
| Chromium                                                       | 8.20             | 7.40                         | 5.20                         | NA NA                        | NA NA                          |
| Cobalt                                                         | 4.80 B           | 4.80 B                       | 4.20 B                       | NA                           | NA .                           |
| Copper                                                         | 9.30             | 10.8                         | 12.4                         | NA NA                        | NA                             |
| Cyanide                                                        | ND(0.560)        | ND(0.540)                    | ND(0.520)                    | NA                           | NA                             |
| Lead                                                           | 8.20 J           | 14.1 J                       | 5.90                         | NA                           | NA                             |
| Mercury                                                        | 0.0370 B         | 0.0350 B                     | 0.0260 B                     | NA                           | NA                             |
| Nickel                                                         | 9.20             | 8.80                         | 8.30                         | NA NA                        | NA NA                          |
| Selenium                                                       | ND(0.560)        | ND(0.540)                    | ND(0.520)                    | NA                           | NA                             |
| Silver                                                         | ND(1.10)         | ND(1.10)                     | ND(1.00)                     | NA                           | NA                             |
| Thallium                                                       | ND(1.10) J       | ND(1.10) J                   | ND(1.00) J                   | NA NA                        | NA NA                          |
| Tin                                                            | ND(3.70)         | ND(4.00)                     | ND(3.50)                     | NA NA                        | NA NA                          |
| Vanadium                                                       | 8.10             | 7.30                         | 5.20                         | NA NA                        | NA NA                          |
| Zinc                                                           | 29.6             | 34.4                         | 30.1                         | NA NA                        | NA NA                          |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | RAA15-C24<br>10-15 | RAA15-D3<br>0-1 | RAA15-D8<br>0-1 | RAA15-D13<br>0-1 | RAA15-D21<br>0-1 |
|----------------------------------------------------------------|--------------------|-----------------|-----------------|------------------|------------------|
| Volatile Organics                                              | 03/03/03           | 03/10/03        | 02/27/03        | 02/25/03         | 03/04/03         |
| 2-Butanone                                                     | NA                 | ND(0.004C) I    | I ND(0.0050) I  | ND(0.0005) 1     | NIEW CORRES      |
| Acetone                                                        | NA<br>NA           | ND(0.0046) J    | ND(0.0059) J    | ND(0.0065) J     | ND(0.0080) J     |
| Benzene                                                        | NA<br>NA           | ND(0.018) J     | ND(0.023) J     | ND(0.026) J      | ND(0.032)        |
| Carbon Disulfide                                               | NA<br>NA           | ND(0.0046)      | ND(0.0059)      | ND(0.0065)       | ND(0.0080)       |
| Chloroform                                                     |                    | ND(0.0046)      | ND(0.0059)      | ND(0.0065)       | ND(0.0080)       |
| Ethylbenzene                                                   | NA<br>NA           | ND(0.0046)      | ND(0.0059)      | ND(0.0065)       | ND(0.0080)       |
| Methylene Chloride                                             | NA<br>NA           | ND(0.0046)      | ND(0.0059)      | ND(0.0065)       | ND(0.0080)       |
| Toluene                                                        | NA NA              | ND(0.0046)      | 0.0015 J        | ND(0.0065)       | 0.0049 J         |
| trans-1,2-Dichloroethene                                       |                    | ND(0.0046)      | ND(0.0059)      | ND(0.0065)       | ND(0.0080)       |
| Trichloroethene                                                | NA<br>NA           | ND(0.0046)      | ND(0.0059)      | ND(0.0065)       | ND(0.0080)       |
| Vinyl Chloride                                                 | NA<br>NA           | ND(0.0046)      | ND(0.0059)      | ND(0.0065)       | ND(0.0080)       |
| Xylenes (total)                                                | NA<br>NA           | ND(0.0092)      | ND(0.012)       | ND(0.013)        | ND(0.016)        |
| Semivolatile Organics                                          | NA                 | ND(0.0046)      | ND(0.0059)      | ND(0.0065)       | ND(0.0080)       |
|                                                                | ND(0.00)           | 11570 343       |                 |                  |                  |
| 1,2,4,5-Tetrachlorobenzene                                     | ND(0.39)           | ND(0.71)        | ND(1.7)         | ND(0.80)         | ND(0.52)         |
| 1,2,4-Trichlorobenzene 1,4-Dichlorobenzene                     | ND(0.39)           | ND(0.71)        | ND(1.7)         | 0.068 J          | ND(0.52)         |
|                                                                | ND(0.39)           | ND(0.71)        | ND(1.7)         | 0.10 J           | ND(0.52)         |
| 1,4-Naphthoquinone                                             | ND(1.9)            | ND(3.5)         | ND(8.1)         | ND(3.9)          | ND(2.5)          |
| 2-Methylnaphthalene                                            | ND(0.39)           | 0.38 J          | 0.29 J          | 0.080 J          | ND(0.52)         |
| 3&4-Methylphenol                                               | ND(0.77)           | ND(1.4)         | ND(3.3)         | ND(1.6)          | ND(1.0)          |
| 3,3'-Dichlorobenzidine                                         | ND(1.9)            | ND(3.5)         | ND(8.1)         | ND(3.9)          | ND(2.5)          |
| 3-Methylcholanthrene                                           | ND(1.9)            | ND(3.5)         | 0.25 J          | ND(3.9)          | ND(2.5)          |
| Acenaphthene                                                   | 0.034 J            | ND(0.71)        | 1.3 J           | 0.068 J          | ND(0.52)         |
| Acenaphthylene                                                 | 0.031 J            | 0.68 J          | 0.31 J          | 0.25 J           | 0.084 J          |
| Aniline                                                        | ND(0.39)           | ND(0.71)        | ND(1.7)         | 1.0              | ND(0.52)         |
| Anthracene                                                     | 0.093 J            | 0.35 J          | 3.1             | 0.27 J           | ND(0.52)         |
| Benzo(a)anthracene                                             | 0.20 J             | 1.1             | 9.4             | 0.95             | 0.24 J           |
| Benzo(a)pyrene                                                 | 0.20 J             | 1.2             | 8.7             | 0.95             | 0.29 J           |
| Benzo(b)fluoranthene                                           | 0.17 J             | 1.1             | 9.8             | 1.2              | 0.27 J           |
| Benzo(g,h,i)perylene                                           | 0.088 J            | 0.52 J          | 3.3             | 0.42 J           | 0.12 J           |
| Benzo(k)fluoranthene                                           | 0.19 J             | 1.2             | 5.9             | 1.2              | 0.30 J           |
| bis(2-Ethylhexyl)phthalate                                     | ND(0.39)           | ND(0.71)        | ND(1.7)         | ND(0.80)         | ND(0.52)         |
| Chrysene                                                       | 0.22 J             | 1.3             | 9.9             | 1.2              | 0.34 J           |
| Dibenzo(a,h)anthracene                                         | ND(0.39)           | 0.16 J          | 1.7             | 0.13 J           | ND(0.52)         |
| Dibenzofuran                                                   | ND(0.39)           | ND(0.71)        | 0.96 J          | ND(0.80)         | ND(0.52)         |
| Diethylphthalate                                               | ND(0.39)           | ND(0.71)        | ND(1.7)         | ND(0.80)         | ND(0.52)         |
| Di-n-Butylphthalate                                            | ND(0.39)           | ND(0.71)        | ND(1.7)         | ND(0.80)         | ND(0.52)         |
| Fluoranthene                                                   | 0.45               | 1.7             | 22              | 2.1              | 0.53             |
| Fluorene                                                       | 0.041 J            | 0.077 J         | 1.6 J           | 0.083 J          | ND(0.52)         |
| Hexachlorobenzene                                              | ND(0.39)           | ND(0.71)        | ND(1.7)         | ND(0.80)         | ND(0.52)         |
| Indeno(1,2,3-cd)pyrene                                         | 0.098 J            | 0.57 J          | 4.1             | 0.50 J           | 0.15 J           |
| Isophorone                                                     | ND(0.39)           | ND(0.71)        | ND(1.7)         | ND(0.80)         | ND(0.52)         |
| Naphthalene                                                    | 0.028 J            | 0.55 J          | 0.81 J          | 0.10 J           | ND(0.52)         |
| Pentachlorobenzene                                             | ND(0.39)           | ND(0.71)        | ND(1.7)         | ND(0.80)         | ND(0.52)         |
| Pentachlorophenol                                              | ND(1.9)            | ND(3.5)         | ND(8.1)         | ND(3.9)          | ND(2.5)          |
| Phenanthrene                                                   | 0.34 J             | 1.1             | 16              | 1.1              | 0.25 J           |
| Phenol                                                         | ND(0.39)           | ND(0.71)        | ND(1.7)         | 0.12 J           | ND(0.52)         |
| Pyrene                                                         | 0.33 J             | 1.6             | 19              | 1.4              | 0.38 J           |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: |                   | RAA15-D3<br>0-1<br>03/10/03 | RAA15-D8<br>0-1<br>02/27/03 | RAA15-D13<br>0-1<br>02/25/03 | RAA15-D21<br>0-1<br>03/04/03 |
|----------------------------------------------------------------|-------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|
| Furans                                                         |                   |                             |                             |                              |                              |
| 2,3,7,8-TCDF                                                   | 0.0000021         | 0.000066                    | ND(0.0000090)               | ND(0.000043) X               | ND(0.000019) X               |
| TCDFs (total)                                                  | ND(0.000021) X    | ND(0.000054) X              | ND(0.00012) X               | ND(0.00046) X                | ND(0.00011) X                |
| 1,2,3,7,8-PeCDF                                                | 0.00000093 J      | 0.0000038 J                 | 0.0000037 J                 | 0.000014                     | 0.0000056 J                  |
| 2,3,4,7,8-PeCDF                                                | 0.0000011 J       | 0.0000040 J                 | 0.0000057 J                 | ND(0.000022) X               | 0.0000039 J                  |
| PeCDFs (total)                                                 | ND(0.000029) X    | ND(0.00010) X               | ND(0.00023) X               | ND(0.0012) X                 | ND(0.000086) X               |
| 1,2,3,4,7,8-HxCDF                                              | 0.0000010 J       | ND(0.000019) X              | 0.000012 J                  | 0.000034                     | 0.0000052 J                  |
| 1,2,3,6,7,8-HxCDF                                              | ND(0.0000028) X   | 0.0000035 J                 | ND(0.000024) X              | ND(0.00019) X                | ND(0.0000095) X              |
| 1,2,3,7,8,9-HxCDF                                              | 0.00000079 J      | ND(0.00000031) X            | ND(0.00000047)              | ND(0.00000095)               | 0.00000019 J                 |
| 2,3,4,6,7,8-HxCDF                                              | 0.00000090 J      | 0.0000019 J                 | ND(0.0000031) X             | 0.000017                     | 0.0000016 J                  |
| HxCDFs (total)                                                 | ND(0.000018) X    | ND(0.000075) XQJ            | ND(0.00020) X               | ND(0.0011) X                 | ND(0.000070) X               |
| 1,2,3,4,6,7,8-HpCDF                                            | 0.0000043 J       | 0.000083                    | 0.000035                    | 0.000069                     | 0.000039                     |
| 1,2,3,4,7,8,9-HpCDF                                            | 0.00000099 J      | 0.0000023 J                 | 0.0000053 J                 | 0.000017                     | ND(0.0000012) X              |
| HpCDFs (total)                                                 | 0.0000083 J       | ND(0.000019) X              | 0.000090                    | ND(0.00021) X                | ND(0.000073) X               |
| OCDF                                                           | ND(0.0000047)     | 0.0000079 J                 | 0.000069                    | 0.00010                      | 0.000031                     |
| Dioxins                                                        |                   |                             |                             |                              |                              |
| 2,3,7,8-TCDD                                                   | ND(0.00000016)    | ND(0.00000039)              | ND(0.0000011)               | ND(0.00000085) X             | ND(0.00000067) X             |
| TCDDs (total)                                                  | ND(0.00000016)    | ND(0.0000013) X             | ND(0.0000011)               | ND(0.0000056) X              | ND(0.0000031) X              |
| 1,2,3,7,8-PeCDD                                                | ND(0.00000041) X  | ND(0.00000056) X            | ND(0.0000051) X             | ND(0.0000019) X              | ND(0.00000046) X             |
| PeCDDs (total)                                                 | ND(0.00000061) X  | ND(0.0000027) X             | ND(0.000017) X              | ND(0.000018) X               | ND(0.0000035) X              |
| 1,2,3,4,7,8-HxCDD                                              | 0.00000067 J      | 0.00000031 J                | ND(0.0000012) X             | 0.0000020 J                  | 0.00000050 J                 |
| 1,2,3,6,7,8-HxCDD                                              | 0.00000062 J      | 0.00000067 J                | ND(0.0000032) X             | 0.0000033 J                  | 0.0000015 J                  |
| 1,2,3,7,8,9-HxCDD                                              | 0.00000066 QJ     | ND(0.00000079) XQJ          | ND(0.0000033) X             | 0.0000033 J                  | ND(0.0000011) X              |
| HxCDDs (total)                                                 | ND(0.0000031) XQJ | ND(0.0000071) XQJ           | ND(0.00036) X               | ND(0.000037) X               | ND(0.000011) X               |
| 1,2,3,4,6,7,8-HpCDD                                            | 0.0000021 J       | 0.0000045 QJ                | 0.000069                    | 0.000032                     | 0.00003                      |
| HpCDDs (total)                                                 | 0.0000033 J       | 0.000010 QJ                 | 0.00013                     | 0.000061                     | 0.000052                     |
| OCDD                                                           | 0.000013          | 0.000031                    | 0.00046                     | 0.00029 J                    | 0.00028 J                    |
| Total TEQs (WHO TEFs)                                          | 0.000018          | 0.0000051                   | 0.000011                    | 0.000026                     | 0.0000064                    |
| Inorganics                                                     |                   |                             |                             |                              |                              |
| Antimony                                                       | ND(7.00) J        | 0.510 B                     | ND(7.60) J                  | ND(0.830)                    | 0.770 J                      |
| Arsenic                                                        | 3.50              | 7.90                        | 4.40                        | 5.90                         | 6.50                         |
| Barium                                                         | 24.3              | 37.5 J                      | 40.5                        | 34.2 J                       | 138                          |
| Beryllium                                                      | ND(0.460)         | 0.380 B                     | 0.420 B                     | 0.350 B                      | ND(0.780)                    |
| Cadmium                                                        | ND(0.590)         | ND(0.540)                   | ND(0.630)                   | ND(0.610)                    | 0.0970 B                     |
| Chromium                                                       | 8.70              | 10.6                        | 10.1                        | 9.90 J                       | 46.0                         |
| Cobalt                                                         | 7.90              | 8.70                        | 6.60                        | 5.90 B                       | 10.0                         |
| Copper                                                         | 22.6              | 42.5 J                      | 20.4                        | 60.3 J                       | 44.2 J                       |
| Cyanide                                                        | ND(0.590)         | ND(0.540)                   | ND(0.630)                   | ND(0.610)                    | 0.320 B                      |
| Lead                                                           | 18.3 J            | 51.9 J                      | 37.7                        | 60.2 J                       | 160                          |
| Mercury                                                        | 0.0670            | 0.790 J                     | 0.0890                      | 0.630                        | 0.490                        |
| Nickel                                                         | 13.2              | 17.4                        | 13.4                        | 12.8                         | 19.4                         |
| Selenium                                                       | ND(0.590)         | ND(0.540)                   | ND(0.630)                   | ND(0.610)                    | ND(0.780) J                  |
| Silver                                                         | ND(1.20)          | ND(1.10)                    | ND(1.30)                    | ND(1.20)                     | ND(1.60)                     |
| Thallium                                                       | ND(1.20) J        | ND(1.10)                    | ND(1.30) J                  | 0.930 B                      | 0.970 J                      |
| Tin                                                            | ND(3.90)          | ND(5.10) J                  | ND(12.6)                    | ND(7.80)                     | ND(10.3)                     |
| Vanadium                                                       | 9.30              | 13.1                        | 12.4                        | 9.20                         | 21.2                         |
| Zinc                                                           | 72.8              | 62.9                        | 78.5 J                      | 130                          | 179                          |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-D25<br>0-1 | RAA15-D27<br>0-1 | RAA15-E1<br>0-1      | RAA15-E1<br>3-6 | RAA15-E1<br>4-6 |
|-----------------------------------|------------------|------------------|----------------------|-----------------|-----------------|
| Parameter Date Collected:         | 03/04/03         | 03/04/03         | 03/10/03             | 03/10/03        | 03/10/03        |
| Volatile Organics                 |                  |                  |                      |                 |                 |
| 2-Butanone                        | ND(0.0086) J     | ND(0.0049) J     | ND(0.0047) J         | NA              | ND(0.0049)      |
| Acetone                           | 0.012 J          | ND(0.019)        | ND(0.019) J          | NA              | ND(0.020) J     |
| Benzene                           | ND(0.0086)       | ND(0.0049)       | ND(0.0047)           | NA              | ND(0.0049)      |
| Carbon Disulfide                  | ND(0.0086)       | ND(0.0049)       | ND(0.0047)           | NA              | ND(0.0049)      |
| Chloroform                        | ND(0.0086)       | ND(0.0049)       | ND(0.0047)           | NA              | ND(0.0049)      |
| Ethylbenzene                      | ND(0.0086)       | ND(0.0049)       | ND(0.0047)           | NA              | ND(0.0049)      |
| Methylene Chloride                | 0.0021 J         | 0.0035 J         | ND(0.0047)           | NA              | ND(0.0049)      |
| Toluene                           | ND(0.0086)       | ND(0.0049)       | ND(0.0047)           | NA              | ND(0.0049)      |
| trans-1,2-Dichloroethene          | ND(0.0086)       | ND(0.0049)       | ND(0.0047)           | NA              | ND(0.0049)      |
| Trichloroethene                   | 0.0039 J         | ND(0.0049)       | ND(0.0047)           | NA              | ND(0.0049)      |
| Vinyl Chloride                    | ND(0.017)        | ND(0.0097)       | ND(0.0094)           | NA              | ND(0.0098)      |
| Xylenes (total)                   | ND(0.0086)       | ND(0.0049)       | ND(0.0047)           | NA              | ND(0.0049)      |
| Semivolatile Organics             | <u> </u>         |                  |                      |                 | 1.12(0.0070)    |
| 1,2,4,5-Tetrachlorobenzene        | ND(0.40)         | ND(0.37)         | ND(0.72)             | ND(0.39)        | I NA            |
| 1,2,4-Trichlorobenzene            | ND(0.40)         | ND(0.37)         | ND(0.72)             | ND(0.39)        | NA NA           |
| 1,4-Dichlorobenzene               | ND(0.40)         | ND(0.37)         | ND(0.72)             | ND(0.39)        | NA NA           |
| 1,4-Naphthoquinone                | ND(1.9)          | ND(1.8)          | ND(3.5)              | ND(1.9)         | NA NA           |
| 2-Methylnaphthalene               | 0.062 J          | 0.055 J          | ND(0.72)             | ND(0.39)        | NA NA           |
| 3&4-Methylphenol                  | ND(0.79)         | ND(0.73)         | ND(1.4)              | ND(0.77)        | NA NA           |
| 3,3'-Dichlorobenzidine            | ND(1.9)          | ND(1.8)          | ND(3.5)              | ND(1.9)         | NA NA           |
| 3-Methylcholanthrene              | ND(1.9)          | 0.052 J          | ND(3.5)              | ND(1.9)         | NA NA           |
| Acenaphthene                      | ND(0.40)         | 0.054 J          | ND(0.72)             | 0.036 J         | NA NA           |
| Acenaphthylene                    | 0.14 J           | 0.38             | 0.053 J              | ND(0.39)        | NA NA           |
| Aniline                           | ND(0.40)         | 0.27 J           | ND(0.72)             | ND(0.39)        | NA NA           |
| Anthracene                        | 0.090 J          | 0.36 J           | ND(0.72)             | 0.16 J          | NA NA           |
| Benzo(a)anthracene                | 0.34 J           | 1.8              | 0.095 J              | 0.21 J          | NA NA           |
| Benzo(a)pyrene                    | 0.40             | 2.1              | 0.12 J               | 0.16 J          | NA NA           |
| Benzo(b)fluoranthene              | 0.44             | 2.4              | 0.12 J               | 0.13 J          | NA NA           |
| Benzo(g,h,i)perylene              | 0.18 J           | 1.0              | ND(0.72)             | ND(0.39)        | T NA            |
| Benzo(k)fluoranthene              | 0.40             | 1.2              | 0.14 J               | 0.17 J          | NA NA           |
| bis(2-Ethylhexyl)phthalate        | ND(0.40)         | ND(0.37)         | ND(0.72)             | ND(0.39)        | T NA            |
| Chrysene                          | 0.46             | 2.1              | 0.17 J               | 0.20 J          | NA NA           |
| Dibenzo(a,h)anthracene            | 0.055 J          | 0.45             | ND(0.72)             | ND(0.39)        | NA NA           |
| Dibenzofuran                      | 0.051 J          | 0.037 J          | ND(0.72)             | 0.042 J         | NA NA           |
| Diethylphthalate                  | ND(0.40)         | ND(0.37)         | ND(0.72)             | ND(0.39)        | NA NA           |
| Di-n-Butylphthalate               | ND(0.40)         | 0.086 J          | ND(0.72)             | ND(0.39)        | NA NA           |
| Fluoranthene                      | 0.73             | 2.9              | 0.19 J               | 0.57            | T NA            |
| Fluorene                          | ND(0.40)         | 0.075 J          | ND(0.72)             | 0.042 J         | NA NA           |
| Hexachlorobenzene                 | ND(0.40)         | ND(0.37)         | ND(0.72)             | ND(0.39)        | T NA            |
| Indeno(1,2,3-cd)pyrene            | 0.22 J           | 1.2              | ND(0.72)             | 0.057 J         | NA NA           |
| Isophorone                        | ND(0.40)         | ND(0.37)         | ND(0.72)             | ND(0.39)        | NA NA           |
| Naphthalene                       | 0.062 J          | 0.064 J          | ND(0.72)             | 0.068 J         | NA NA           |
| Pentachlorobenzene                | ND(0.40)         | ND(0.37)         | ND(0.72)             | ND(0.39)        | NA NA           |
| Pentachlorophenol                 | ND(1.9)          | 0.13 J           | ND(3.5)              | ND(1.9)         | NA NA           |
| Phenanthrene                      | 0.32 J           | 1.1              | ND(0.72)             | 0.53            | NA NA           |
| Phenol                            | ND(0.40)         | ND(0.37)         | ND(0.72)<br>ND(0.72) | ND(0.39)        | NA NA           |
| Pyrene                            | 0.53             | 2.6              | 0.15 J               | 0.31 J          | NA NA           |

| Sample ID:<br>Sample Depth(Feet): | RAA15-D25<br>0-1 | RAA15-D27<br>0-1 | RAA15-E1<br>0-1  | RAA15-E1<br>3-6   | RAA15-E1<br>4-6 |
|-----------------------------------|------------------|------------------|------------------|-------------------|-----------------|
| Parameter Date Collected:         | 03/04/03         | 03/04/03         | 03/10/03         | 03/10/03          | 03/10/03        |
| Furans                            |                  |                  |                  |                   |                 |
| 2,3,7,8-TCDF                      | ND(0.0000038) X  | ND(0.0000047) X  | ND(0.00000021) X | ND(0.00000021)    | NA              |
| TCDFs (total)                     | ND(0.000063) X   | ND(0.00016) X    | ND(0.000023) X   | ND(0.00000021)    | NA              |
| 1,2,3,7,8-PeCDF                   | 0.0000011 J      | 0.0000017 J      | ND(0.00000068) X | ND(0.00000012)    | NA              |
| 2,3,4,7,8-PeCDF                   | 0.0000017 J      | 0.0000025 J      | 0.0000011 J      | ND(0.00000011)    | NA              |
| PeCDFs (total)                    | ND(0.00013) X    | ND(0.00031) X    | ND(0.000052) X   | ND(0.00000018) X  | NA              |
| 1,2,3,4,7,8-HxCDF                 | 0.0000026 J      | 0.0000032 J      | ND(0.0000060) X  | ND(0.00000010)    | NA              |
| 1,2,3,6,7,8-HxCDF                 | ND(0.000019) X   | ND(0.000054) X   | ND(0.00000077) X | ND(0.000000097)   | NA              |
| 1,2,3,7,8,9-HxCDF                 | ND(0.00000018)   | ND(0.00000014) X | ND(0.00000030)   | ND(0.00000012)    | NA              |
| 2,3,4,6,7,8-HxCDF                 | ND(0.0000014) X  | 0.0000012 J      | ND(0.00000071) X | ND(0.00000011)    | NA              |
| HxCDFs (total)                    | ND(0.00011) X    | ND(0.00024) X    | ND(0.000037) X   | 0.00000015 J      | NA              |
| 1,2,3,4,6,7,8-HpCDF               | 0.000026         | 0.0000068        | 0.0000029 J      | ND(0.00000017)    | NA              |
| 1,2,3,4,7,8,9-HpCDF               | 0.0000020 J      | ND(0.00000097) X | ND(0.00000067)   | ND(0.00000021)    | NA              |
| HpCDFs (total)                    | ND(0.000078) X   | ND(0.000016) X   | 0.0000073 J      | ND(0.00000019)    | NA              |
| OCDF                              | 0.000065         | 0.0000073 J      | 0.0000028 J      | ND(0.00000037)    | NA              |
| Dioxins                           |                  |                  |                  | <u> </u>          |                 |
| 2,3,7,8-TCDD                      | ND(0.00000041)   | ND(0.00000025)   | ND(0.00000042)   | ND(0.00000028)    | NA              |
| TCDDs (total)                     | ND(0.0000037) X  | 0.00000051 J     | ND(0.00000039) X | ND(0.00000048) X  | NA NA           |
| 1,2,3,7,8-PeCDD                   | ND(0.00000052) X | ND(0.00000030) X | ND(0.00000032)   | ND(0.0000014)     | NA              |
| PeCDDs (total)                    | ND(0.0000038) X  | ND(0.0000029) X  | ND(0.00000032)   | ND(0.00000033) X  | NA              |
| 1,2,3,4,7,8-HxCDD                 | ND(0.00000090) X | ND(0.00000032) X | ND(0.00000044)   | ND(0.00000022)    | NA NA           |
| 1,2,3,6,7,8-HxCDD                 | 0.0000039 J      | 0.0000011 J      | ND(0.00000041)   | ND(0.00000021)    | NA NA           |
| 1,2,3,7,8,9-HxCDD                 | 0.0000021 J      | 0.00000083 J     | ND(0.00000043)   | ND(0.00000021)    | NA NA           |
| HxCDDs (total)                    | ND(0.000025) X   | ND(0.0000093) X  | ND(0.00000096) X | 0.00000075 J      | NA NA           |
| 1,2,3,4,6,7,8-HpCDD               | 0.000073         | 0.000074         | 0.0000019 J      | 0.00000043 QJ     | NA NA           |
| HpCDDs (total)                    | 0.00016          | 0.000014         | ND(0.0000038) X  | 0.00000043 QJ     | NA NA           |
| OCDD                              | 0.00051 J        | 0.000044 J       | 0.000013 J       | ND(0.0000010) XQJ | NA NA           |
| Total TEQs (WHO TEFs)             | 0.000046         | 0.000054         | 0.000015         | 0.00000010/XQ0    | NA NA           |
| Inorganics                        |                  |                  | 0.00000.0        | 0.00000001        | 1473            |
| Antimony                          | 0.660 J          | ND(6.60) J       | 0.510 B          | ND(7.00)          | NA              |
| Arsenic                           | 9.30             | 5.70             | 2.90             | 4.50              | NA NA           |
| Barium                            | 30.8             | 39.1             | 21.4 J           | 38.0 J            | NA NA           |
| Beryllium                         | ND(0.410)        | ND(0.420)        | 0.310 B          | 0.550 B           | NA NA           |
| Cadmium                           | ND(0.600)        | ND(0.550)        | ND(0.550)        | ND(0.580)         | NA NA           |
| Chromium                          | 8.50             | 9.50             | 4.60             | 9.30              | NA NA           |
| Cobalt                            | 6.10             | 9.40             | 4.30 B           | 10.6              | NA NA           |
| Copper                            | 31.1 J           | 28.1 J           | 24.3 J           | 23.2 J            | NA NA           |
| Cyanide                           | ND(0.600)        | ND(0.550)        | 0.250 B          | 0.210 B           | NA NA           |
| Lead                              | 52.5             | 21.2             | 29.6 J           | 9.60 J            | NA NA           |
| Mercury                           | 0.0730           | 0.0460           | 0.430 J          | 0.920 J           | NA NA           |
| Nickel                            | 12.9             | 17.7             | 7.50             | 17.6              | NA NA           |
| Selenium                          | ND(0.600) J      | ND(0.550) J      | ND(0.550)        | ND(0.580)         | NA NA           |
| Silver                            | ND(1.20)         | ND(1.10)         | ND(1.10)         | ND(1.20)          | NA NA           |
| Thallium                          | ND(1.20) J       | ND(0.960)        | ND(1.10)         | ND(1.20)          | NA NA           |
| Tin                               | ND(5.60)         | ND(4.50)         | ND(5.00)         | ND(3.30)          | NA<br>NA        |
| Vanadium                          | 10.9             | 10.8             | 8.10             | 10.7              | NA<br>NA        |
| Zinc                              | 71.8             | 74.2             | 34.5             | 63.1              | NA<br>NA        |
|                                   | 71.0             | 17.6             | 1 07.7           | 03.1              | NA )            |

#### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:                 | RAA15-E2     | RAA15-E2     | RAA15-E2     | RAA15-E2       | RAA15-E2     |
|----------------------------|--------------|--------------|--------------|----------------|--------------|
| Sample Depth(Feet):        | 0-1          | 1-3          | 3-4          | 3-6            | 10-12        |
| Parameter Date Collected:  | 03/10/03     | 03/10/03     | 03/10/03     | 03/10/03       | 03/10/03     |
| Volatile Organics          |              |              |              |                | ,            |
| 2-Butanone                 | ND(0.0058) J | ND(0.0094) J | ND(0.0060) J | NA             | ND(0.0054) J |
| Acetone                    | ND(0.023) J  | ND(0.038) J  | ND(0.024) J  | NA             | ND(0.022) J  |
| Benzene                    | ND(0.0058)   | ND(0.0094)   | ND(0.0054)   | NA             | ND(0.0060)   |
| Carbon Disulfide           | ND(0.0058)   | ND(0.0094)   | ND(0.0054)   | NA             | ND(0.0060)   |
| Chloroform                 | ND(0.0058)   | ND(0.0094)   | ND(0.0054)   | NA             | ND(0.0060)   |
| Ethylbenzene               | ND(0.0058)   | ND(0.0094)   | ND(0.0054)   | NA             | ND(0.0060)   |
| Methylene Chloride         | ND(0.0058)   | ND(0.0094)   | ND(0.0054)   | NA             | ND(0.0060)   |
| Toluene                    | ND(0.0058)   | ND(0.0094)   | ND(0.0054)   | NA             | ND(0.0060)   |
| trans-1,2-Dichloroethene   | ND(0.0058)   | ND(0.0094)   | ND(0.0054)   | NA             | ND(0.0060)   |
| Trichloroethene            | ND(0.0058)   | ND(0.0094)   | ND(0.0054)   | NA             | ND(0.0060)   |
| Vinyl Chloride             | ND(0.012)    | ND(0.019)    | ND(0.011)    | NA             | ND(0.012)    |
| Xylenes (total)            | ND(0.0058)   | ND(0.0094)   | ND(0.0054)   | NA             | ND(0.0060)   |
| Semivolatile Organics      |              |              |              |                |              |
| 1,2,4,5-Tetrachlorobenzene | ND(1.5)      | 1.9          | NA           | ND(0.38)       | NA NA        |
| 1,2,4-Trichlorobenzene     | ND(1.5)      | ND(1.6)      | NA ·         | ND(0.38)       | NA           |
| 1,4-Dichlorobenzene        | ND(1.5)      | ND(1.6)      | NA           | ND(0.38)       | NA           |
| 1,4-Naphthoguinone         | ND(7.5)      | ND(7.9)      | NA NA        | ND(1.8)        | NA           |
| 2-Methylnaphthalene        | ND(1.5)      | 0.15 J       | NA           | 0.080 J        | NA.          |
| 3&4-Methylphenol           | ND(3.1)      | ND(3.3)      | NA I         | ND(0.76)       | NA NA        |
| 3,3'-Dichlorobenzidine     | ND(7.5)      | ND(7.9)      | NA NA        | ND(1.8)        | NA NA        |
| 3-Methylcholanthrene       | ND(7.5)      | ND(7.9)      | NA NA        | ND(1.8)        | NA           |
| Acenaphthene               | ND(1.5)      | 0.13 J       | NA NA        | 0.13 J         | NA NA        |
| Acenaphthylene             | ND(1.5)      | 0.42 J       | NA NA        | 0.13 J         | NA NA        |
| Aniline                    | ND(1.5)      | ND(1.6)      | NA NA        | ND(0.38)       | NA NA        |
| Anthracene                 | ND(1.5)      | 0.59 J       | NA I         | 0.46           | NA NA        |
| Benzo(a)anthracene         | 0.28 J       | 1.7          | NA I         | 0.91           | NA NA        |
| Benzo(a)pyrene             | 0.21 J       | 1.9          | NA I         | 0.95           | NA NA        |
| Benzo(b)fluoranthene       | 0.17 J       | 1.8          | NA I         | 1.1            | NA NA        |
| Benzo(g,h,i)perylene       | ND(1.5)      | 1.1 J        | NA I         | 0.35 J         | NA NA        |
| Benzo(k)fluoranthene       | ND(1.5)      | 1.9          | NA NA        | 0.68           | T NA         |
| bis(2-Ethylhexyl)phthalate | ND(1.5)      | ND(1.6)      | NA NA        | ND(0.38)       | NA NA        |
| Chrysene                   | 0.38 J       | 2.3          | NA I         | 1.0            | T NA         |
| Dibenzo(a,h)anthracene     | ND(1.5)      | 0.42 J       | NA NA        | 0.13 J         | NA NA        |
| Dibenzofuran               | ND(1.5)      | 0.15 J       | T NA         | 0.14 J         | T NA         |
| Diethylphthalate           | ND(1.5)      | ND(1.6)      | NA NA        | ND(0.38)       | T NA         |
| Di-n-Butylphthalate        | ND(1.5)      | ND(1.6)      | NA I         | ND(0.38)       | T NA         |
| Fluoranthene               | 0.44 J       | 3.2          | NA NA        | 2.2            | NA NA        |
| Fluorene                   | ND(1.5)      | ND(1.6)      | NA T         | 0.14 J         | T NA         |
| Hexachlorobenzene          | ND(1.5)      | ND(1.6)      | T NA         | ND(0.38)       | NA NA        |
| Indeno(1,2,3-cd)pyrene     | ND(1.5)      | 1.2 J        | T NA         | 0.40           | NA NA        |
| Isophorone                 | ND(1.5)      | ND(1.6)      | NA H         | 0.40<br>0.15 J | NA NA        |
| Naphthalene                | ND(1.5)      | 0.23 J       | T NA         | 0.15 J         | NA NA        |
| Pentachlorobenzene         | ND(1.5)      | ND(1.6)      | T NA         |                |              |
| Pentachlorophenol          |              |              |              | ND(0.38)       | NA NA        |
|                            | ND(7.5)      | ND(7.9)      | NA<br>NA     | ND(1.8)        | NA NA        |
| Phenanthrene Phenal        | 0.21 J       | 2.4          | NA NA        | 1.8            | NA NA        |
| Phenol                     | ND(1.5)      | ND(1.6)      | NA I         | ND(0.38)       | NA NA        |
| Pyrene                     | 0.52 J       | 2.4          | NA           | 1.4            | NA NA        |

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | RAA15-E2<br>0-1<br>03/10/03 | RAA15-E2<br>1-3<br>03/10/03 | RAA15-E2<br>3-4<br>03/10/03 | RAA15-E2<br>3-6<br>03/10/03 | RAA15-E2<br>10-12<br>03/10/03 |
|----------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------|
| Furans                                                         |                             |                             |                             |                             |                               |
| 2,3,7,8-TCDF                                                   | ND(0.0000089) X             | 0.00014                     | NA                          | 0.000017                    | NA                            |
| TCDFs (total)                                                  | ND(0.000099) X              | ND(0.0016) X                | NA                          | ND(0.00046) X               | NA                            |
| 1,2,3,7,8-PeCDF                                                | 0.0000056 J                 | 0.000069                    | NA                          | ND(0.000011) X              | NA                            |
| 2,3,4,7,8-PeCDF                                                | 0.0000070                   | 0.000085                    | NA                          | 0.000023                    | NA                            |
| PeCDFs (total)                                                 | ND(0.00014) X               | ND(0.00084) X               | NA                          | ND(0.00028) X               | NA                            |
| 1,2,3,4,7,8-HxCDF                                              | 0.000013                    | 0.000064                    | NA                          | ND(0.000017) X              | NA                            |
| 1,2,3,6,7,8-HxCDF                                              | ND(0.000013) X              | 0.000054 J                  | NA                          | ND(0.0000099) X             | NA                            |
| 1,2,3,7,8,9-HxCDF                                              | ND(0.00000041) X            | ND(0.0000036) X             | NA                          | ND(0.00000067) X            | NA                            |
| 2,3,4,6,7,8-HxCDF                                              | 0.0000044 J                 | 0.000045 J                  | NA                          | ND(0.000014) X              | NA                            |
| HxCDFs (total)                                                 | ND(0.000099) XQJ            | ND(0.00048) X               | NA                          | ND(0.00012) X               | NA                            |
| 1,2,3,4,6,7,8-HpCDF                                            | 0.000014                    | 0.00013                     | NA                          | 0.000033                    | NA                            |
| 1,2,3,4,7,8,9-HpCDF                                            | 0.0000033 J                 | 0.000019 J                  | NA                          | ND(0.0000020) X             | NA                            |
| HpCDFs (total)                                                 | ND(0.000032) X              | 0.00019                     | NA                          | ND(0.000044) X              | NA                            |
| OCDF                                                           | 0.000013                    | 0.000057 J                  | NA                          | 0.0000086 J                 | NA                            |
| Dioxins                                                        |                             |                             |                             |                             |                               |
| 2,3,7,8-TCDD                                                   | ND(0.00000028)              | ND(0.0000030) X             | NA                          | ND(0.00000075) X            | NA                            |
| TCDDs (total)                                                  | ND(0.00000094) X            | ND(0.000049) X              | NA                          | ND(0.000025) X              | NA                            |
| 1,2,3,7,8-PeCDD                                                | ND(0.0000017) X             | ND(0.0000037) X             | NA                          | 0.0000018 J                 | NA                            |
| PeCDDs (total)                                                 | ND(0.0000058) X             | ND(0.000059) X              | NA                          | ND(0.000030) X              | NA                            |
| 1,2,3,4,7,8-HxCDD                                              | ND(0.00000040) X            | 0.0000047 J                 | NA                          | 0.0000018 J                 | NA                            |
| 1,2,3,6,7,8-HxCDD                                              | ND(0.00000082) X            | 0.0000055 J                 | NA                          | 0.0000020 J                 | NA                            |
| 1,2,3,7,8,9-HxCDD                                              | ND(0.00000033) XQJ          | ND(0.000011) X              | NA                          | 0.0000041 J                 | NA                            |
| HxCDDs (total)                                                 | ND(0.000011) XQJ            | ND(0.000081) X              | NA                          | ND(0.000033) X              | NA                            |
| 1,2,3,4,6,7,8-HpCDD                                            | 0.000011                    | 0.000043 J                  | NA                          | 0.0000076 QJ                | NA                            |
| HpCDDs (total)                                                 | 0.000022                    | 0.000082 J                  | NA                          | 0.000018 QJ                 | NA                            |
| OCDD                                                           | 0.000075                    | 0.000084 J                  | NA                          | 0.000017 J                  | NA                            |
| Total TEQs (WHO TEFs)                                          | 0.0000080                   | 0.000083                    | NA                          | 0.000019                    | NA                            |
| Inorganics                                                     |                             |                             |                             |                             |                               |
| Antimony                                                       | 5.00 B                      | 969                         | NA                          | 115                         | NA                            |
| Arsenic                                                        | 3.40                        | 19.1                        | NA                          | 6.50                        | NA                            |
| Barium                                                         | 102 J                       | 1810                        | NA                          | 648 J                       | NA                            |
| Beryllium                                                      | 0.230 B                     | 0.300 B                     | NA                          | 0.380 B                     | NA                            |
| Cadmium                                                        | 0.130 B                     | 5.00                        | NA                          | 5.40                        | NA                            |
| Chromium                                                       | 6.90                        | 39.7                        | NA                          | 17.1                        | NA                            |
| Cobalt                                                         | 6.50                        | 10.2                        | NA                          | 8.50                        | NA                            |
| Copper                                                         | 301 J                       | 8860 J                      | NA                          | 2410                        | NA                            |
| Cyanide                                                        | ND(0.580)                   | 0.400 B                     | NA                          | 0.320 B                     | NA                            |
| Lead                                                           | 367 J                       | 14000 J                     | NA                          | 9560                        | NA                            |
| Mercury                                                        | 1.80 J                      | 10.4                        | NA                          | 6.4                         | NA                            |
| Nickel                                                         | 10.7                        | 38.7                        | NA                          | 17.0                        | NA                            |
| Selenium                                                       | ND(0.580)                   | 1.20 B                      | NA                          | ND(0.570)                   | NA                            |
| Silver                                                         | 0.130 B                     | 5.50                        | NA                          | 2.30                        | NA                            |
| Thallium                                                       | ND(1.20)                    | ND(6.20)                    | NA                          | ND(5.70)                    | NA                            |
| Tin                                                            | 34.5 J                      | 3300 J                      | NA                          | 2750 J                      | NA                            |
| Vanadium                                                       | 7.20                        | 22.9                        | NA                          | 11.0                        | NA                            |
| Zinc                                                           | 66.8                        | 3230                        | NA                          | 2790                        | NA                            |

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | RAA15-E2<br>10-15<br>03/10/03 | RAA15-E4<br>1-3<br>03/07/03 | RAA15-E4<br>3-6<br>03/07/03 | RAA15-E4<br>4-6 |
|----------------------------------------------------------------|-------------------------------|-----------------------------|-----------------------------|-----------------|
| Volatile Organics                                              | 03/10/03                      | 03/07/03                    | 03/07/03                    | 03/07/03        |
|                                                                | NIA                           | I ND(0.0044) I              | 114                         | 1 110/0 00/00 / |
| 2-Butanone                                                     | NA<br>NA                      | ND(0.0044) J                | NA NA                       | ND(0.0046) J    |
| Acetone                                                        |                               | ND(0.018) J                 | NA NA                       | ND(0.018) J     |
| Benzene<br>Carbon Disulfide                                    | NA<br>NA                      | ND(0.0044)                  | NA NA                       | ND(0.0046)      |
| Chloroform                                                     | NA NA                         | ND(0.0044)                  | NA NA                       | ND(0.0046)      |
| Ethylbenzene                                                   | NA NA                         | ND(0.0044)                  | NA                          | ND(0.0046)      |
| Methylene Chloride                                             | NA<br>NA                      | ND(0.0044)                  | NA NA                       | ND(0.0046)      |
| Toluene                                                        | NA<br>NA                      | ND(0.0044)                  | NA NA                       | ND(0.0046)      |
| trans-1,2-Dichloroethene                                       |                               | ND(0.0044)                  | NA NA                       | ND(0.0046)      |
| Trichloroethene                                                | NA<br>NA                      | ND(0.0044)                  | NA NA                       | ND(0.0046)      |
| Vinyl Chloride                                                 | NA                            | ND(0.0044)                  | NA NA                       | ND(0.0046)      |
|                                                                | NA<br>NA                      | ND(0.0089)                  | NA NA                       | ND(0.0091)      |
| Xylenes (total)                                                | NA                            | ND(0.0044)                  | NA NA                       | ND(0.0046)      |
| Semivolatile Organics                                          | ND/O OO                       | ·                           |                             |                 |
| 1,2,4,5-Tetrachlorobenzene                                     | ND(0.36)                      | 2.0                         | 0.42                        | NA              |
| 1,2,4-Trichlorobenzene                                         | ND(0.36)                      | 0.11 J                      | 0.055 J                     | NA              |
| 1,4-Dichlorobenzene                                            | ND(0.36)                      | ND(0.37)                    | ND(0.36)                    | NA              |
| 1,4-Naphthoquinone                                             | ND(1.8)                       | ND(1.8)                     | ND(1.7)                     | NA              |
| 2-Methylnaphthalene                                            | ND(0.36)                      | ND(0.37)                    | ND(0.36)                    | NA              |
| 3&4-Methylphenol                                               | ND(0.73)                      | ND(0 74)                    | ND(0.71)                    | NA              |
| 3,3'-Dichlorobenzidine                                         | ND(1.8)                       | ND(1.8)                     | ND(1.7)                     | NA              |
| 3-Methylcholanthrene                                           | ND(1.8)                       | ND(1.8)                     | ND(1.7)                     | NA              |
| Acenaphthene                                                   | ND(0.36)                      | ND(0.37)                    | ND(0.36)                    | NA              |
| Acenaphthylene                                                 | ND(0.36)                      | 0.12 J                      | ND(0.36)                    | NA              |
| Aniline                                                        | ND(0.36)                      | ND(0.37)                    | ND(0.36)                    | NA              |
| Anthracene                                                     | ND(0.36)                      | 0.13 J                      | ND(0.36)                    | NA NA           |
| Benzo(a)anthracene                                             | ND(0.36)                      | 1.1                         | 0.071 J                     | NA              |
| Benzo(a)pyrene                                                 | ND(0.36)                      | 0.97                        | 0.072 J                     | NA              |
| Benzo(b)fluoranthene                                           | ND(0.36)                      | 0.92                        | 0.056 J                     | NA              |
| Benzo(g,h,i)perylene                                           | ND(0.36)                      | 0.71                        | 0.075 J                     | NA              |
| Benzo(k)fluoranthene                                           | ND(0.36)                      | 0.81                        | 0.070 J                     | NA              |
| bis(2-Ethylhexyl)phthalate                                     | ND(0.36)                      | ND(0.37)                    | ND(0.36)                    | NA              |
| Chrysene                                                       | ND(0.36)                      | 1.1                         | 0.082 J                     | NA              |
| Dibenzo(a,h)anthracene                                         | ND(0.36)                      | 0.30 J                      | ND(0.36)                    | NA              |
| Dibenzofuran                                                   | ND(0.36)                      | ND(0.37)                    | ND(0.36)                    | NA              |
| Diethylphthalate                                               | ND(0.36)                      | ND(0.37)                    | ND(0.36)                    | NA              |
| Di-n-Butylphthalate                                            | ND(0.36)                      | ND(0.37)                    | ND(0.36)                    | NA              |
| Fluoranthene                                                   | ND(0.36)                      | 1.5                         | 0.11 J                      | NA              |
| Fluorene                                                       | ND(0.36)                      | ND(0.37)                    | ND(0.36)                    | NA              |
| Hexachlorobenzene                                              | ND(0.36)                      | 0.052 J                     | ND(0.36)                    | NA              |
| Indeno(1,2,3-cd)pyrene                                         | ND(0.36)                      | 0.81                        | 0.070 J                     | NA              |
| Isophorone                                                     | ND(0.36)                      | ND(0.37)                    | ND(0.36)                    | NA              |
| Naphthalene                                                    | ND(0.36)                      | 0.030 J                     | ND(0.36)                    | NA              |
| Pentachiorobenzene                                             | ND(0.36)                      | 0.12 J                      | ND(0.36)                    | NA              |
| Pentachiorophenol                                              | ND(1.8)                       | ND(1.8)                     | ND(1.7)                     | NA              |
| Phenanthrene                                                   | ND(0.36)                      | 0.35 J                      | 0.073 J                     | NA              |
| Phenol                                                         | ND(0.36)                      | ND(0.37)                    | ND(0.36)                    | NA              |
| Pyrene                                                         | ND(0.36)                      | 1.4                         | 0.13 J                      | NA              |

TABLE 2 PRE-DESIGN INVESTIGATION SOIL SAMPLING DATA FOR APPENDIX IX+3 CONSTITUENTS

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | 10-15                                 | RAA15-E4<br>1-3<br>03/07/03 | RAA15-E4<br>3-6<br>03/07/03 | RAA15-E4<br>4-6<br>03/07/03 |
|----------------------------------------------------------------|---------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| Furans                                                         |                                       |                             |                             | 00/01/00                    |
| 2,3,7,8-TCDF                                                   | ND(0.00000030)                        | ND(0.00028) X               | ND(0.000035)X               | NA                          |
| TCDFs (total)                                                  | ND(0.00000030)                        | ND(0.0021) XQJ              | ND(0.00025) XQJ             | NA NA                       |
| 1,2,3,7,8-PeCDF                                                | ND(0.00000020)                        | 0.00027                     | 0.000028                    | NA NA                       |
| 2,3,4,7,8-PeCDF                                                | ND(0.00000019)                        | 0.00027                     | 0.000025                    | NA NA                       |
| PeCDFs (total)                                                 | ND(0.00000019)                        | ND(0.0025) XQJ              | ND(0.00033) XQJ             | NA NA                       |
| 1,2,3,4,7,8-HxCDF                                              | 0.00000032 J                          | 0.00065                     | 0.000066 J                  | NA NA                       |
| 1,2,3,6,7,8-HxCDF                                              | ND(0.00000012)                        | ND(0.00023) X               | ND(0.000031) X              | NA NA                       |
| 1,2,3,7,8,9-HxCDF                                              | ND(0.00000016)                        | 0.000019                    | 0.0000020 J                 | NA                          |
| 2,3,4,6,7,8-HxCDF                                              | ND(0.00000014)                        | 0.000086                    | 0.0000079                   | NA                          |
| HxCDFs (total)                                                 | 0.00000032 J                          | ND(0.0017) XQJ              | ND(0.00023) XQJ             | NA                          |
| 1,2,3,4,6,7,8-HpCDF                                            | ND(0.00000029)                        | 0.00040                     | 0.000046                    | NA NA                       |
| 1,2,3,4,7,8,9-HpCDF                                            | ND(0.0000036)                         | 0.00014                     | 0.000015                    | NA NA                       |
| HpCDFs (total)                                                 | ND(0.00000032)                        | ND(0.00070) X               | ND(0.000081) X              | NA                          |
| OCDF                                                           | ND(0.00000072)                        | 0.00035                     | 0.000042                    | NA                          |
| Dioxins                                                        | · · · · · · · · · · · · · · · · · · · |                             |                             |                             |
| 2,3,7,8-TCDD                                                   | ND(0.00000040)                        | ND(0.0000015) X             | ND(0.00000039) X            | NA                          |
| TCDDs (total)                                                  | ND(0.00000040)                        | ND(0.000049) XQJ            | ND(0.0000039) X             | NA NA                       |
| 1,2,3,7,8-PeCDD                                                | ND(0.00000024)                        | ND(0.000049) X              | ND(0.0000038) X             | NA NA                       |
| PeCDDs (total)                                                 | ND(0.00000024)                        | ND(0.00024) XQJ             | ND(0.000014) X              | NA NA                       |
| 1,2,3,4,7,8-HxCDD                                              | ND(0.00000029)                        | 0.0000043 J                 | 0.00000047 J                | NA NA                       |
| 1,2,3,6,7,8-HxCDD                                              | ND(0.00000028)                        | 0.0000072                   | ND(0.00000072) X            | NA NA                       |
| 1,2,3,7,8,9-HxCDD                                              | ND(0.00000028)                        | 0.0000046 QJ                | ND(0.00000044) XQJ          | NA NA                       |
| HxCDDs (total)                                                 | ND(0.00000028)                        | ND(0.00020) XQJ             | ND(0.000023) XQJ            | NA NA                       |
| 1,2,3,4,6,7,8-HpCDD                                            | ND(0.00000057)                        | 0.000039 QJ                 | 0.0000061 QJ                | NA NA                       |
| HpCDDs (total)                                                 | ND(0.00000057)                        | 0.000080 QJ                 | 0.000012 QJ                 | NA NA                       |
| OCDD                                                           | ND(0.00000030) J                      | 0.000099 QJ                 | 0.000037 QJ                 | NA NA                       |
| Total TEQs (WHO TEFs)                                          | 0.00000049                            | 0.00028                     | 0.000028                    | NA NA                       |
| Inorganics                                                     |                                       |                             | 0.0000                      | 177                         |
| Antimony                                                       | 0.480 B                               | 0.470 B                     | ND(6.50)                    | NA                          |
| Arsenic                                                        | 4.00                                  | 3.90                        | 3.80                        | NA NA                       |
| Barium                                                         | 33.8 J                                | 39.0                        | 28.9                        | NA NA                       |
| Beryllium                                                      | 0.400 B                               | ND(0.440)                   | ND(0.430)                   | NA                          |
| Cadmium                                                        | ND(0.550)                             | ND(0.260)                   | ND(0.160)                   | NA NA                       |
| Chromium                                                       | 7.80                                  | 7.10                        | 8.80                        | NA                          |
| Cobalt                                                         | 7.90                                  | 9.80                        | 6.30                        | NA                          |
| Copper                                                         | 16.5 J                                | 93.0 J                      | 70.3 J                      | NA                          |
| Cyanide                                                        | ND(0.550)                             | ND(0.560)                   | 0.210 B                     | NA                          |
| Lead                                                           | 9.60 J                                | 131 J                       | 86.8 J                      | NA                          |
| Mercury                                                        | 0.450 J                               | 1.60                        | 0.760                       | NA                          |
| Nickel                                                         | 13.6                                  | 14.3 J                      | 12.1 J                      | NA                          |
| Selenium                                                       | ND(0.550)                             | ND(0.560)                   | ND(0.540)                   | NA                          |
| Silver                                                         | ND(1.10)                              | 0.100 B                     | ND(1.10)                    | NA                          |
| Thallium                                                       | ND(1.10)                              | ND(1.10)                    | ND(1.10)                    | NA                          |
| Tin                                                            | ND(3.90)                              | ND(8.40)                    | ND(6.80)                    | NA                          |
| Vanadium                                                       | 8.80                                  | 8.70                        | 7.90                        | NA                          |
| Zinc                                                           | 49.9                                  | 124                         | 92.0                        | NA                          |

### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):   | RAA15-E5<br>0-1                         | RAA15-E6<br>1-3 | RAA15-E6<br>6-8 | RAA15-E6<br>6-10   |  |
|-------------------------------------|-----------------------------------------|-----------------|-----------------|--------------------|--|
| Parameter Date Collected:           |                                         | 03/06/03        | 03/06/03        | 03/06/03           |  |
| Volatile Organics                   |                                         |                 | 1 00/00/00      | 03/00/03           |  |
| 2-Butanone                          | ND(0.0052) J                            | ND(0.0057)      | ND(0.0058)      | NA NA              |  |
| Acetone                             | ND(0.021) J                             | ND(0.023) J     | ND(0.0036)      | NA NA              |  |
| Benzene                             | ND(0.0052)                              | ND(0.0057)      | ND(0.0058)      | NA NA              |  |
| Carbon Disulfide                    | ND(0.0052)                              | ND(0.0057)      | ND(0.0058)      | NA NA              |  |
| Chloroform                          | ND(0.0052)                              | ND(0.0057)      | ND(0.0058)      | NA NA              |  |
| Ethylbenzene                        | ND(0.0052)                              | ND(0.0057)      | ND(0.0058)      | NA NA              |  |
| Methylene Chloride                  | ND(0.0052)                              | ND(0.0057)      | ND(0.0058)      | NA NA              |  |
| Toluene                             | ND(0.0052)                              | ND(0.0057)      | ND(0.0058)      | NA NA              |  |
| trans-1,2-Dichloroethene            | ND(0.0052)                              | ND(0.0057)      | ND(0.0058)      | NA NA              |  |
| Trichloroethene                     | ND(0.0052)                              | ND(0.0057)      | ND(0.0058)      | NA NA              |  |
| Vinyl Chloride                      | ND(0.010)                               | ND(0.0037)      | ND(0.012)       | NA NA              |  |
| Xylenes (total)                     | ND(0.0052)                              | ND(0.0057)      | ND(0.0058)      | NA NA              |  |
| Semivolatile Organics               | *************************************** | 110(0.0007)     | 110(0.0000)     | IVA                |  |
| 1,2,4,5-Tetrachlorobenzene          | ND(15)                                  | ND(0.78)        | NA I            | ND(4.6)            |  |
| 1,2,4-Trichlorobenzene              | ND(15)                                  | ND(0.78)        | T NA            | ND(4.6)            |  |
| 1,4-Dichlorobenzene                 | ND(15)                                  | ND(0.78)        | NA I            | ND(4.6)            |  |
| 1,4-Naphthoquinone                  | ND(74)                                  | ND(3.8)         | NA I            | ND(22)             |  |
| 2-Methylnaphthalene                 | 0.97 J                                  | 0.16 J          | T NA            | ND(4.6)            |  |
| 3&4-Methylphenol                    | ND(30)                                  | ND(1.6)         | NA I            | ND(9.1)            |  |
| 3,3'-Dichlorobenzidine              | ND(74)                                  | ND(3.8)         | T NA            | ND(3.1)<br>ND(22)  |  |
| 3-Methylcholanthrene                | ND(74)                                  | ND(3.8)         | NA NA           | ND(22)<br>ND(22)   |  |
| Acenaphthene                        | 7.4 J                                   | 0.15 J          | NA NA           |                    |  |
| Acenaphthylene                      | ND(15)                                  | 0.30 J          | NA NA           | ND(4.6)<br>ND(4.6) |  |
| Aniline                             | ND(15)                                  | ND(0.78)        | NA NA           | ND(4.6)            |  |
| Anthracene                          | 13 J                                    | 0.64 J          | NA NA           |                    |  |
| Benzo(a)anthracene                  | 35                                      | 2.4             | NA NA           | ND(4.6)            |  |
| Benzo(a)pyrene                      | 33                                      | 2.3             | NA NA           | ND(4.6)            |  |
| Benzo(b)fluoranthene                | 30                                      | 2.0             | NA NA           | ND(4.6)<br>ND(4.6) |  |
| Benzo(q,h,i)perylene                | 12 J                                    | 1.1             | NA NA           | ND(4.6)            |  |
| Benzo(k)fluoranthene                | 31                                      | 2.0             | NA NA           | ND(4.6)            |  |
| bis(2-Ethylhexyl)phthalate          | ND(15)                                  | ND(0.78)        | NA NA           |                    |  |
| Chrysene                            | 38                                      | 2.5             | NA NA           | ND(4.6)<br>ND(4.6) |  |
| Dibenzo(a,h)anthracene              | 4.1 J                                   | 0.44 J          | NA NA           | ND(4.6)            |  |
| Dibenzofuran                        | 3.2 J                                   | 0.18 J          | T NA            | ND(4.6)            |  |
| Diethylphthalate                    | ND(15)                                  | ND(0.78)        | T NA            | ND(4.6)            |  |
| Di-n-Butylphthalate                 | ND(15)                                  | ND(0.78)        | T NA            | ND(4.6)            |  |
| Fluoranthene                        | 92                                      | 4.6             | NA NA           | ND(4.6)            |  |
| Fluorene                            | 5.6 J                                   | 0.21 J          | NA I            | ND(4.6)            |  |
| Hexachlorobenzene                   | ND(15)                                  | ND(0.78)        | T NA            | ND(4.6)            |  |
| Indeno(1,2,3-cd)pyrene              | 15                                      | 1.3             | NA I            | ND(4.6)            |  |
| Isophorone                          | ND(15)                                  | 0.19 J          | T NA            | 1,7 J              |  |
| Naphthalene                         | 2.6 J                                   | 0.21 J          | NA I            | ND(4.6)            |  |
| Pentachlorobenzene                  | ND(15)                                  | ND(0.78)        | NA NA           | ND(4.6)            |  |
| Pentachlorophenol Pentachlorophenol | ND(74)                                  | ND(3.8)         | NA NA           | ND(22)             |  |
| Phenanthrene                        | 62                                      | 2.4             | NA +            | ND(4.6)            |  |
| Phenol                              | ND(15)                                  | ND(0.78)        | NA NA           |                    |  |
| Pyrene                              | 59                                      | 3.3             | NA NA           | ND(4.6)<br>ND(4.6) |  |

#### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | RAA15-E5<br>0-1<br>03/10/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RAA15-E6<br>1-3<br>03/06/03 | RAA15-E6<br>6-8<br>03/06/03 | RAA15-E6<br>6-10<br>03/06/03 |  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------|------------------------------|--|
| Parameter Date Collected: Furans                               | on the control of the | 03/00/03                    | 03/06/03                    | 03/00/03                     |  |
| 2,3,7,8-TCDF                                                   | ND(0.000010) X [0.0000053 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND(0.000014) X              | NA                          | ND(0.0000035) X              |  |
| TCDFs (total)                                                  | ND(0.00010) X [ND(0.000049) X]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND(0.00026) X               | NA NA                       | ND(0.000053) X               |  |
| 1,2,3,7,8-PeCDF                                                | 0.0000049 J [ND(0.000029) X]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000038 J                 | NA NA                       | 0.00000074 J                 |  |
| 2,3,4,7,8-PeCDF                                                | 0.0000049 J [0.0000049 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000057 J                 | NA NA                       | ND(0.00000075) X             |  |
| PeCDFs (total)                                                 | ND(0.00027) XQJ [ND(0.00013) X]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND(0.00035) X               | NA NA                       | ND(0.0000045) X              |  |
| 1,2,3,4,7,8-HxCDF                                              | ND(0.000033) X [0.0000068 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND(0.0000063) X             | NA NA                       | 0.00000099 J                 |  |
| 1,2,3,6,7,8-HxCDF                                              | 0.0000058 J [ND(0.0000036) X]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND(0.000049) X              | NA NA                       | ND(0.0000046) X              |  |
| 1,2,3,7,8,9-HxCDF                                              | ND(0.0000096) [ND(0.00000072)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND(0.00000031) X            | NA NA                       | ND(0.000000090)              |  |
| 2,3,4,6,7,8-HxCDF                                              | 0.0000045 J [0.0000035 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000034 J                 | NA                          | 0.00000036 J                 |  |
| HxCDFs (total)                                                 | ND(0.00021) X [ND(0.000086) X]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND(0.00023) X               | NA                          | ND(0.000023) X               |  |
| 1,2,3,4,6,7,8-HpCDF                                            | ND(0.000021) X [0.000012 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.000029                    | NA                          | 0.0000033 J                  |  |
| 1,2,3,4,7,8,9-HpCDF                                            | 0.0000053 J [0.0000028 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0000030 J                 | NA                          | 0.00000031 J                 |  |
| HpCDFs (total)                                                 | ND(0.000054) X [0.000029 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND(0.000080) X              | NA                          | 0.0000068 J                  |  |
| OCDF                                                           | 0.000021 J [0.000012 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000044                    | NA                          | 0.0000034 J                  |  |
| Dioxins                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                             |                              |  |
| 2,3,7,8-TCDD                                                   | ND(0.0000020) [ND(0.0000023)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND(0.00000030) X            | NA                          | ND(0.00000022)               |  |
| TCDDs (total)                                                  | ND(0.0000020) [ND(0.0000023)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND(0.0000018) X             | NA                          | ND(0.00000022)               |  |
| 1,2,3,7,8-PeĆDD                                                | ND(0.000012) [ND(0.00000097)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00000077 J                | NA                          | ND(0.00000012)               |  |
| PeCDDs (total)                                                 | ND(0.0000029) X [ND(0.00000097)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND(0.0000065) X             | NA                          | ND(0.00000069) X             |  |
| 1,2,3,4,7,8-HxCDD                                              | ND(0.0000012) [ND(0.0000010)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND(0.00000049) X            | NA                          | ND(0.00000012)               |  |
| 1,2,3,6,7,8-HxCDD                                              | ND(0.0000024) X [ND(0.0000013) X]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000023 J                 | NA                          | 0.00000029 J                 |  |
| 1,2,3,7,8,9-HxCDD                                              | 0.0000032 J [ND(0.0000010)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000015 QJ                | NA                          | ND(0.00000012)               |  |
| HxCDDs (total)                                                 | ND(0.000025) X [ND(0.0000076) X]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND(0.000019) XQJ            | NA                          | ND(0.0000023) X              |  |
| 1,2,3,4,6,7,8-HpCDD                                            | 0.000023 J [0.000015 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000029                    | NA                          | 0.0000035 J                  |  |
| HpCDDs (total)                                                 | 0.000052 J [0.000031 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.000094                    | NA                          | 0.0000066 J                  |  |
| OCDD                                                           | 0.00014 [0.000091 J]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00038                     | NA                          | 0.000034                     |  |
| Total TEQs (WHO TEFs)                                          | 0.0000090 [0.0000064]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000088                   | NA                          | 0.0000011                    |  |
| Inorganics                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                             |                              |  |
| Antimony                                                       | 0.500 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND(7.10)                    | NA                          | ND(8.30)                     |  |
| Arsenic                                                        | 3.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.40                        | NA                          | 3.40                         |  |
| Barium                                                         | 72.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 28.6                        | NA                          | 78.3                         |  |
| Beryllium                                                      | 0.370 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.380 B                     | NA                          | 0.500 B                      |  |
| Cadmium                                                        | 0.310 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND(0.590)                   | NA                          | ND(0.690)                    |  |
| Chromium                                                       | 7.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.40                        | NA                          | 15.5                         |  |
| Cobalt                                                         | 5.00 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.80 B                      | NA                          | 6.30 B                       |  |
| Copper                                                         | 41.8 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.90                        | NA                          | 15.6                         |  |
| Cyanide                                                        | 0.210 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.290 B                     | NA                          | 0.260 B                      |  |
| Lead                                                           | 130 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.50                        | NA                          | 18.0                         |  |
| Mercury                                                        | 1.70 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.140                       | NA                          | 0.150                        |  |
| Nickel                                                         | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.70                        | NA                          | 11.6                         |  |
| Selenium                                                       | ND(0.580)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.590)                   | NA                          | ND(0.690)                    |  |
| Silver                                                         | 0.0990 B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND(1.20)                    | NA                          | ND(1.40)                     |  |
| Thallium                                                       | ND(1.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND(1.20)                    | NA                          | 1.10 B                       |  |
| Tin                                                            | ND(5.20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND(3.40)                    | NA                          | ND(4.80)                     |  |
| Vanadium                                                       | 15.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.80                        | NA                          | 15.2                         |  |
| Zinc                                                           | 75.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.5                        | NA                          | 54.9                         |  |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:                                    | RAA15-E7<br>0-1 | RAA15-E8        | RAA15-E11  | RAA15-E11 | RAA15-E11    |
|-----------------------------------------------|-----------------|-----------------|------------|-----------|--------------|
| Sample Depth(Feet): Parameter Date Collected: | 0-1<br>02/27/03 | 1-3<br>02/26/03 | 0-1        | 3-6       | 4-6          |
| Volatile Organics                             | 02/2//03        | 02/20/03        | 02/21/03   | 02/27/03  | 02/27/03     |
|                                               | N/D/0.0000\ I   | L ND(0.0040) I  | ND(0.0000) | ,         |              |
| 2-Butanone                                    | ND(0.0062) J    | ND(0.0044) J    | ND(0.0060) | NA NA     | ND(0.0054) J |
| Acetone                                       | ND(0.025) J     | ND(0.018) J     | ND(0.024)  | NA NA     | ND(0.021) J  |
| Benzene                                       | ND(0.0062)      | ND(0.0044)      | ND(0.0060) | NA        | ND(0.0054)   |
| Carbon Disulfide                              | ND(0.0062)      | ND(0.0044)      | ND(0.0060) | NA        | ND(0.0054)   |
| Chloroform                                    | ND(0.0062)      | ND(0.0044)      | ND(0.0060) | NA        | ND(0.0054)   |
| Ethylbenzene                                  | ND(0.0062)      | ND(0.0044)      | ND(0.0060) | NA        | ND(0.0054)   |
| Methylene Chloride                            | 0.0021 J        | 0.0020 J        | 0.0010 J   | NA        | ND(0.0054)   |
| Toluene                                       | ND(0.0062)      | 0.0010 J        | ND(0.0060) | NA NA     | ND(0.0054)   |
| trans-1,2-Dichloroethene                      | ND(0.0062)      | ND(0.0044)      | ND(0.0060) | NA NA     | ND(0.0054)   |
| Trichloroethene                               | 0.0065          | ND(0.0044)      | ND(0.0060) | NA        | ND(0.0054)   |
| Vinyl Chloride                                | ND(0.012)       | ND(0.0088)      | ND(0.012)  | NA        | ND(0.011)    |
| Xylenes (total)                               | ND(0.0062)      | ND(0.0044)      | ND(0.0060) | NA        | ND(0.0054)   |
| Semivolatile Organics                         |                 |                 |            |           |              |
| 1,2,4,5-Tetrachlorobenzene                    | ND(4.3)         | ND(18)          | ND(2.0)    | ND(1.4)   | NA           |
| 1,2,4-Trichlorobenzene                        | ND(4.3)         | ND(18)          | ND(2.0)    | ND(1.4)   | NA           |
| 1,4-Dichlorobenzene                           | ND(4.3)         | ND(18)          | ND(2.0)    | ND(1.4)   | NA           |
| 1,4-Naphthoquinone                            | ND(21)          | ND(87)          | ND(9.5)    | ND(6.9)   | NA           |
| 2-Methylnaphthalene                           | 0.65 J          | 7.3 J           | ND(2.0)    | 0.16 J    | NA           |
| 3&4-Methylphenol                              | ND(8.6)         | ND(36)          | ND(3.9)    | ND(2.9)   | NA NA        |
| 3,3'-Dichlorobenzidine                        | ND(21)          | ND(87)          | ND(9.5)    | ND(6.9)   | NA           |
| 3-Methylcholanthrene                          | ND(21)          | 5.7 J           | ND(9.5)    | ND(6.9)   | NA           |
| Acenaphthene                                  | 2.1 J           | 30              | ND(2.0)    | 0.89 J    | NA           |
| Acenaphthylene                                | 1.4 J           | 2.2 J           | ND(2.0)    | 0.21 J    | NA NA        |
| Aniline                                       | ND(4.3)         | ND(18)          | ND(2.0)    | ND(1.4)   | NA NA        |
| Anthracene                                    | 5.8             | 80              | 0.30 J     | 2.2       | NA NA        |
| Benzo(a)anthracene                            | 13              | 210             | 1.4 J      | 4.8       | NA NA        |
| Benzo(a)pyrene                                | 12              | 160             | 1.3 J      | 4.7       | NA NA        |
| Benzo(b)fluoranthene                          | 12              | 160             | 1.3 J      | 4.1       | NA NA        |
| Benzo(g,h,i)perylene                          | 5.2             | 36              | 0.42 J     | 3.3       | NA NA        |
| Benzo(k)fluoranthene                          | 9.1             | 120             | 1.3 J      | 3.5       | NA NA        |
| bis(2-Ethylhexyl)phthalate                    | 0.59 J          | ND(18)          | ND(2.0)    | ND(1.4)   | T NA         |
| Chrysene                                      | 15              | 200             | 1.5 J      | 5.2       | NA NA        |
| Dibenzo(a,h)anthracene                        | 2.1 J           | 19              | ND(2.0)    | 1.1 J     | NA NA        |
| Dibenzofuran                                  | 1.7 J           | 20              | ND(2.0)    | 0.44 J    | T NA         |
| Diethylphthalate                              | ND(4.3)         | ND(18)          | ND(2.0)    | ND(1.4)   | NA .         |
| Di-n-Butylphthalate                           | ND(4.3)         | ND(18)          | ND(2.0)    | ND(1.4)   | NA NA        |
| Fluoranthene                                  | 33              | 520             | 3.0        | 11        | NA NA        |
| Fluorene                                      | 3.2 J           | 38              | ND(2.0)    | 0.81 J    | NA NA        |
| Hexachlorobenzene                             | ND(4.3)         | ND(18)          | ND(2.0)    | ND(1.4)   | NA NA        |
| Indeno(1,2,3-cd)pyrene                        | 6.1             | 49              | 0.53 J     | 3.4       | NA<br>NA     |
| Isophorone                                    | ND(4.3)         | ND(18)          | ND(2.0)    |           | <del></del>  |
| Naphthalene                                   | 1.2 J           | 20              | ND(2.0)    | 1.3 J     | NA<br>NA     |
| Pentachlorobenzene                            | ND(4.3)         | <del> </del>    |            | 0.29 J    | NA NA        |
|                                               |                 | ND(18)          | ND(2.0)    | ND(1.4)   | NA NA        |
| Pentachlorophenol  Phonocthrono               | ND(21)          | ND(87)          | ND(9.5)    | ND(6.9)   | NA NA        |
| Phenanthrene Phonol                           | 25              | 300<br>ND(48)   | 1.1 J      | 8.9       | NA NA        |
| Phenol                                        | 0.41 J          | ND(18)          | ND(2.0)    | ND(1.4)   | NA           |
| Pyrene                                        | 22              | 360             | 2.0        | 9.4       | NA           |

### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | 0-1              | RAA15-E8<br>1-3  | RAA15-E11<br>0-1 | RAA15-E11<br>3-6 | RAA15-E11<br>4-6 |
|-----------------------------------|------------------|------------------|------------------|------------------|------------------|
| Parameter Date Collected:         | 02/27/03         | 02/26/03         | 02/21/03         | 02/27/03         | 02/27/03         |
| Furans                            |                  |                  |                  |                  |                  |
| 2,3,7,8-TCDF                      | ND(0.000018) X   | 0.000050         | ND(0.000018) X   | ND(0.000012) X   | NA               |
| TCDFs (total)                     | ND(0.00018) X    | ND(0.00068) X    | ND(0.00016) X    | ND(0.00028) X    | NA               |
| 1,2,3,7,8-PeCDF                   | 0.0000063 J      | 0.000038 J       | 0.000011         | 0.0000044 J      | NA               |
| 2,3,4,7,8-PeCDF                   | 0.000011 J       | 0.000045 J       | ND(0.000015) X   | ND(0.0000076) X  | NA               |
| PeCDFs (total)                    | ND(0.00041) X    | ND(0.0013) XJ    | ND(0.00038) X    | ND(0.00071) X    | NA               |
| 1,2,3,4,7,8-HxCDF                 | 0.000021 J       | 0.00029 J        | 0.000033         | 0.0000084 J      | NA               |
| 1,2,3,6,7,8-HxCDF                 | ND(0.000045) X   | ND(0.00016) XJ   | ND(0.000044) X   | ND(0.000093) X   | NA               |
| 1,2,3,7,8,9-HxCDF                 | ND(0.00000061) X | ND(0.000013) XJ  | 0.0000011 J      | ND(0.00000051)   | NA               |
| 2,3,4,6,7,8-HxCDF                 | ND(0.0000062) X  | ND(0.000018) XJ  | 0.0000062        | 0.0000081 J      | NA               |
| HxCDFs (total)                    | ND(0.00034) X    | ND(0.0012) XJ    | ND(0.00031) X    | ND(0.00051) X    | NA               |
| 1,2,3,4,6,7,8-HpCDF               | 0.000040         | 0.00015 J        | 0.000031         | 0.000025 J       | NA               |
| 1,2,3,4,7,8,9-HpCDF               | 0.000012 J       | 0.00013 J        | 0.0000097        | 0.0000038 J      | NA               |
| HpCDFs (total)                    | ND(0.00012) X    | ND(0.00044) XJ   | 0.000065         | 0.000065         | NA               |
| OCDF                              | 0.000075         | 0.00022 J        | 0.000040         | 0.000025 J       | NA               |
| Dioxins                           |                  |                  |                  |                  |                  |
| 2,3,7,8-TCDD                      | ND(0.0000015)    | ND(0.0000079)    | ND(0.00000032)   | ND(0.0000011)    | NA               |
| TCDDs (total)                     | ND(0.0000015)    | ND(0.0000064) X  | ND(0.0000024) X  | ND(0.0000011)    | NA               |
| 1,2,3,7,8-PeCDD                   | ND(0.0000045) X  | ND(0.00063) XJ   | ND(0.0000013) X  | ND(0.0000014) X  | NA               |
| PeCDDs (total)                    | ND(0.000015) X   | ND(0.0023) XJ    | ND(0.0000079) X  | ND(0.000011) X   | NA               |
| 1,2,3,4,7,8-HxCDD                 | 0.0000016 J      | ND(0.0000057) XJ | ND(0.00000069) X | ND(0.00000076) X | NA               |
| 1,2,3,6,7,8-HxCDD                 | 0.0000047 J      | ND(0.0000086) XJ | ND(0.0000011) X  | 0.0000026 J      | NA               |
| 1,2,3,7,8,9-HxCDD                 | ND(0.0000036)    | ND(0.0000076) XJ | ND(0.00000091) X | ND(0.0000020) X  | NA               |
| HxCDDs (total)                    | ND(0.000043) X   | ND(0.0013) XJ    | ND(0.000032) X   | ND(0.000026) X   | NA               |
| 1,2,3,4,6,7,8-HpCDD               | 0.000073         | 0.000069 J       | 0.000014         | 0.000025 J       | NA               |
| HpCDDs (total)                    | 0.00013          | 0.00019 J        | 0.000029         | 0.000047 J       | NA               |
| OCDD                              | 0.00065          | 0.00061          | 0.00012          | 0.00021          | NA               |
| Total TEQs (WHO TEFs)             | 0.000017         | 0.00039          | 0.000013         | 0.000011         | NA               |
| Inorganics                        |                  |                  |                  |                  |                  |
| Antimony                          | 0.820 J          | ND(6.50) J       | ND(7.20)         | ND(6.50) J       | NA               |
| Arsenic                           | 5.80             | 4.40             | 1.70             | 7.40             | NA               |
| Barium                            | 48.5             | 31.2             | 15.2 B           | 54.1             | NA               |
| Beryllium                         | 0.440 B          | ND(0.330)        | ND(0.600)        | 0.470 B          | NA               |
| Cadmium                           | ND(0.650)        | 0.390 B          | 0.240 B          | ND(0.540)        | NA               |
| Chromium                          | 15.5             | 9.60             | 5.50             | 11.3             | NA               |
| Cobalt                            | 7.90             | 7.00             | 3.60 B           | 7.70             | NA               |
| Copper                            | 44.4             | 34.2             | 15.0             | 30.5             | NA               |
| Cyanide                           | 0.300 B          | 0.210 B          | ND(0.600)        | 0.220 B          | NA               |
| Lead                              | 187              | 53.4             | 14.3             | 79.5             | NA               |
| Mercury                           | 0.260            | 0.130            | 0.0250 B         | 0.270            | NA               |
| Nickel                            | 17.8             | 12.2 J           | 7.20             | 15.5             | NA               |
| Selenium                          | ND(0.650)        | 6.20 J           | ND(0.600)        | ND(0.540)        | NA               |
| Silver                            | 0.370 B          | 1.20             | ND(1.20)         | ND(1.10)         | NA               |
| Thallium                          | ND(1.30) J       | ND(1.10)         | ND(1.20) J       | ND(1.10) J       | NA               |
| Tin                               | ND(13.0)         | ND(10.6)         | ND(4.70)         | ND(10.8)         | NA               |
| Vanadium                          | 17.9             | 10.6             | 5.50 B           | 13.9             | NA               |
| Zinc                              | 148 J            | 105              | 45.2             | 93.0 J           | NA               |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | RAA15-E18<br>0-1<br>02/20/03 | RAA15-E18<br>1-3<br>02/20/03 | RAA15-E18<br>3-6 | RAA15-E18<br>4-6 | RAA15-E20<br>3-6 |
|----------------------------------------------------------------|------------------------------|------------------------------|------------------|------------------|------------------|
|                                                                | 02/20/03                     | 02/20/03                     | 02/20/03         | 02/20/03         | 02/19/03         |
| Volatile Organics                                              | ND(0.0002)                   | 0.0042.1                     | NIX.             | T 0.0000 J T     | N/A              |
| 2-Butanone                                                     | ND(0.0063)                   | 0.0013 J                     | NA NA            | 0.0038 J         | NA               |
| Acetone                                                        | ND(0.025)                    | ND(0.026)                    | NA NA            | 0.0098 J         | NA               |
| Benzene                                                        | ND(0.0063)                   | ND(0.0064)                   | NA NA            | ND(0.0058)       | NA               |
| Carbon Disulfide                                               | ND(0.0063)                   | ND(0.0064)                   | NA NA            | ND(0.0058)       | NA NA            |
| Chloroform                                                     | ND(0.0063)                   | ND(0.0064)                   | NA NA            | ND(0.0058)       | NA NA            |
| Ethylbenzene                                                   | ND(0.0063)                   | ND(0.0064)                   | NA               | ND(0.0058)       | NA               |
| Methylene Chloride                                             | ND(0.0063)                   | ND(0.0064)                   | NA               | ND(0.0058)       | NA               |
| Toluene                                                        | ND(0.0063)                   | ND(0.00081)                  | NA               | ND(0.0058)       | NA               |
| trans-1,2-Dichloroethene                                       | ND(0.0063)                   | ND(0.0064)                   | NA               | ND(0.0058)       | NA               |
| Trichloroethene                                                | ND(0.0063)                   | ND(0.0064)                   | NA               | ND(0.0058)       | NA               |
| Vinyl Chloride                                                 | ND(0.013)                    | ND(0.013)                    | NA               | ND(0.012)        | NA               |
| Xylenes (total)                                                | ND(0.0063)                   | ND(0.0064)                   | NA               | ND(0.0058)       | NA               |
| Semivolatile Organics                                          |                              |                              |                  |                  |                  |
| 1,2,4,5-Tetrachlorobenzene                                     | ND(0.37)                     | ND(0.37)                     | ND(0.40)         | NA               | ND(0.44)         |
| 1,2,4-Trichlorobenzene                                         | ND(0.37)                     | ND(0.37)                     | ND(0.40)         | NA               | ND(0.44)         |
| 1,4-Dichlorobenzene                                            | ND(0.37)                     | ND(0.37)                     | ND(0.40)         | NA               | ND(0.44)         |
| 1,4-Naphthoquinone                                             | ND(1.8)                      | ND(1.8)                      | ND(2.0)          | NA               | ND(2.1)          |
| 2-Methylnaphthalene                                            | ND(0.37)                     | ND(0.37)                     | 0.034 J          | NA               | 0.035 J          |
| 3&4-Methylphenol                                               | ND(0.75)                     | ND(0.75)                     | ND(0.81)         | NA               | ND(0.88)         |
| 3,3'-Dichlorobenzidine                                         | ND(1.8)                      | ND(1.8)                      | ND(2.0)          | NA               | ND(2.1)          |
| 3-Methylcholanthrene                                           | ND(1.8)                      | ND(1.8)                      | ND(2.0)          | NA               | ND(2.1)          |
| Acenaphthene                                                   | ND(0.37)                     | ND(0.37)                     | 0.069 J          | NA               | 0.059 J          |
| Acenaphthylene                                                 | ND(0.37)                     | ND(0.37)                     | ND(0.40)         | NA I             | 0.043 J          |
| Aniline                                                        | ND(0.37)                     | ND(0.37)                     | ND(0.40)         | NA               | ND(0.44)         |
| Anthracene                                                     | ND(0.37)                     | ND(0.37)                     | 0.16 J           | NA               | 0.13 J           |
| Benzo(a)anthracene                                             | 0.074 J                      | 0.10 J                       | 0.31 J           | NA NA            | 0.30 J           |
| Benzo(a)pyrene                                                 | 0.076 J                      | 0.095 J                      | 0.27 J           | NA I             | 0.30 J           |
| Benzo(b)fluoranthene                                           | 0.065 J                      | 0.083 J                      | 0.22 J           | NA I             | 0.22 J           |
| Benzo(g,h,i)perylene                                           | ND(0.37)                     | ND(0.37)                     | 0.098 J          | NA I             | 0.13 J           |
| Benzo(k)fluoranthene                                           | 0.078 J                      | 0.090 J                      | 0.28 J           | T NA T           | 0.28 J           |
| bis(2-Ethylhexyl)phthalate                                     | ND(0.37)                     | ND(0.37)                     | ND(0.40)         | T NA             | ND(0.44)         |
| Chrysene                                                       | 0.091 J                      | 0.12 J                       | 0.32 J           | T NA             | 0.35 J           |
| Dibenzo(a,h)anthracene                                         | ND(0.37)                     | ND(0.37)                     | ND(0.40)         | T NA T           | ND(0.44)         |
| Dibenzofuran                                                   | ND(0.37)                     | ND(0.37)                     | 0.056 J          | T NA             | 0.043 J          |
| Diethylphthalate                                               | ND(0.37)                     | ND(0.37)                     | ND(0.40)         | T NA             | ND(0.44)         |
| Di-n-Butylphthalate                                            | ND(0.37)                     | ND(0.37)                     | ND(0.40)         | NA I             | ND(0.44)         |
| Fluoranthene                                                   | 0.16 J                       | 0.20 J                       | 0.65             | T NA             | 0.60             |
| Fluorene                                                       | ND(0.37)                     | ND(0.37)                     | 0.080 J          | NA NA            | 0.068 J          |
| Hexachlorobenzene                                              | ND(0.37)                     | ND(0.37)                     | ND(0.40)         |                  |                  |
| ndeno(1,2,3-cd)pyrene                                          | ND(0.37)                     | ND(0.37)                     |                  | NA I             | ND(0.44)         |
| sophorone                                                      |                              | ND(0.37)<br>ND(0.37)         | 0.12 J           | NA I             | 0.14 J           |
| <del></del>                                                    | ND(0.37)                     | <u></u>                      | ND(0.40)         | NA I             | ND(0.44)         |
| Naphthalene                                                    | ND(0.37)                     | ND(0.37)                     | 0.081 J          | NA I             | 0.052 J          |
| Pentachlorobenzene                                             | ND(0.37)                     | ND(0.37)                     | ND(0.40)         | NA I             | ND(0.44)         |
| Pentachlorophenol                                              | ND(1.8)                      | ND(1.8)                      | ND(2.0)          | NA               | ND(2.1)          |
| Phenanthrene                                                   | 0.082 J                      | 0.16 J                       | 0.57             | NA NA            | 0.58             |
| Phenol                                                         | ND(0.37)                     | ND(0.37)                     | ND(0.40)         | NA               | ND(0.44)         |
| Pyrene                                                         | 0.13 J                       | 0.17 J                       | 0.48             | NA               | 0.49             |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):       | RAA15-E18<br>0-1 | RAA15-E18<br>1-3 | RAA15-E18<br>3-6 | RAA15-E18<br>4-6 | RAA15-E20<br>3-6 |  |
|-----------------------------------------|------------------|------------------|------------------|------------------|------------------|--|
| Parameter Date Collected:               | 02/20/03         | 02/20/03         | 02/20/03         | 02/20/03         | 02/19/03         |  |
| Furans                                  | ND(0.00004E) V   | L ND(0.000040) V | ND(0.0000040) V  |                  | ND(0.000000) V   |  |
| 2,3,7,8-TCDF                            | ND(0.0000015) X  | ND(0.0000018) X  | ND(0.0000019) X  | NA<br>NA         | ND(0.0000020) X  |  |
| TCDFs (total)                           | ND(0.000068) X   | ND(0.000047) X   | ND(0.000026) X   | NA               | ND(0.000020) X   |  |
| 1,2,3,7,8-PeCDF                         | ND(0.00000041) X | 0.00000071 J     | ND(0.00000052) X | NA<br>NA         | 0.0000012 J      |  |
| 2,3,4,7,8-PeCDF                         | ND(0.00000070) X | 0.0000011 J      | ND(0.00000083) X | NA<br>NA         | 0.0000018 J      |  |
| PeCDFs (total)                          | ND(0.00013) X    | ND(0.000074) X   | ND(0.000045) X   | NA<br>NA         | ND(0.000031) X   |  |
| 1,2,3,4,7,8-HxCDF                       | 0.0000016 J      | 0.0000016 J      | 0.0000014 J      | NA<br>NA         | 0.0000044 J      |  |
| 1,2,3,6,7,8-HxCDF                       | ND(0.000012) X   | ND(0.0000067) X  | ND(0.0000056) X  | NA<br>NA         | ND(0.0000042) X  |  |
| 1,2,3,7,8,9-HxCDF                       | ND(0.00000029)   | ND(0.00000031)   | ND(0.00000017)   | NA               | ND(0.00000029)   |  |
| 2,3,4,6,7,8-HxCDF                       | ND(0.00000055) X | ND(0.00000070) X | 0.00000074 J     | NA               | ND(0.00000085) X |  |
| HxCDFs (total)                          | ND(0.00010) X    | ND(0.000059) X   | ND(0.000050) X   | NA               | ND(0.00019) X    |  |
| 1,2,3,4,6,7,8-HpCDF                     | 0.000024         | 0.000045         | 0.000045         | NA               | 0.00043          |  |
| 1,2,3,4,7,8,9-HpCDF                     | ND(0.00000049)   | ND(0.00000087) X | 0.0000011 J      | NA               | 0.0000052 J      |  |
| HpCDFs (total)                          | 0.000045         | ND(0.000079) X   | 0.000083         | NA               | 0.00094          |  |
| OCDF                                    | 0.000020         | 0.000037         | 0.000037         | NA               | 0.00050          |  |
| Dioxins                                 |                  |                  |                  |                  |                  |  |
| 2,3,7,8-TCDD                            | ND(0.00000063)   | ND(0.00000063)   | ND(0.00000045)   | NA               | ND(0.00000043)   |  |
| TCDDs (total)                           | ND(0.00000063)   | ND(0.00000075) X | 0.00000051 J     | NA               | ND(0.00000043)   |  |
| 1,2,3,7,8-PeCDD                         | ND(0.00000043) X | ND(0.00000039)   | ND(0.00000030)   | NA               | ND(0.00000029)   |  |
| PeCDDs (total)                          | ND(0.0000024) X  | ND(0.0000015) X  | ND(0.00000079) X | NA               | ND(0.00000071) X |  |
| 1,2,3,4,7,8-HxCDD                       | ND(0.00000039)   | ND(0.00000047)   | ND(0.00000028)   | NA               | ND(0.00000052) X |  |
| 1,2,3,6,7,8-HxCDD                       | ND(0.00000090) X | ND(0.0000014) X  | 0.0000041 J      | NA               | 0.0000046 J      |  |
| 1,2,3,7,8,9-HxCDD                       | ND(0.00000082) X | 0.00000097 J     | 0.00000084 J     | NA               | 0.0000016 J      |  |
| HxCDDs (total)                          | ND(0.0000087) X  | ND(0.000011) X   | ND(0.000011) X   | NA               | ND(0.000028) X   |  |
| 1,2,3,4,6,7,8-HpCDD                     | 0.000020         | 0.000032         | 0.000031         | NA               | 0.00024          |  |
| HpCDDs (total)                          | 0.000036         | 0.000052         | 0.000051         | NA               | 0.00055          |  |
| OCDD                                    | 0.00017          | 0.00026          | 0.00032          | NA               | 0.0034           |  |
| Total TEQs (WHO TEFs)                   | 0.0000022        | 0.0000027        | 0.0000025        | NA               | 0.0000099        |  |
| Inorganics                              |                  |                  |                  |                  |                  |  |
| Antimony                                | ND(6.80)         | 0.440 B          | ND(7.30)         | NA               | ND(8.00)         |  |
| Arsenic                                 | 2.20             | 2.60             | 2.00             | NA               | 2.10             |  |
| Barium                                  | 25.4             | 24.3             | 30.7             | NA               | 28.8             |  |
| Beryllium                               | 0.190 B          | 0.0610 B         | ND(0.610)        | NA               | 0.220 B          |  |
| Cadmium                                 | 0.280 B          | 0.270 B          | 0.300 B          | NA               | 0.250 B          |  |
| Chromium                                | 9.60             | 9.40             | 11.0             | NA               | 14.2             |  |
| Cobalt                                  | 5.50 B           | 5.70             | 6.50             | NA               | 5.40 B           |  |
| Copper                                  | 12.2             | 11.1             | 13.1             | NA               | 14.6             |  |
| Cyanide                                 | 0.360 B          | 0.210 B          | ND(0.610)        | NA               | ND(0.670)        |  |
| Lead                                    | 12.2             | 12.9             | 16.0             | NA               | 24.9             |  |
| Mercury                                 | 0.0330 B         | 0.0480           | 0.0590           | NA               | 0.140            |  |
| Nickel                                  | 10.0             | 10.2             | 11.0             | NA               | 10.5             |  |
| Selenium                                | ND(0.570)        | ND(0.570)        | ND(0.610)        | NA NA            | ND(0.670)        |  |
| Silver                                  | ND(1.10)         | ND(1.10)         | ND(1.20)         | NA NA            | ND(1.30)         |  |
| Thallium                                | ND(1.10)         | ND(1.10)         | ND(1.20)         | NA NA            | ND(1.30) J       |  |
| Tin                                     | ND(5.40)         | ND(4.80)         | ND(5.70)         | NA I             | ND(7.80)         |  |
| Vanadium                                | 8.50             | 8.80             | 8.90             | NA NA            | 9.10             |  |
| Zinc                                    | 47.0             | 50.3             | 55.4             | NA NA            | 56.0             |  |
| A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 77.0             |                  | JU,4             | 11/1             | 20.0             |  |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:                                       | RAA15-E20                | RAA15-E21                | RAA15-F2        | RAA15-F2                               | RAA15-F2         |
|--------------------------------------------------|--------------------------|--------------------------|-----------------|----------------------------------------|------------------|
| Sample Depth(Feet):<br>Parameter Date Collected: | 4-6<br>02/19/03          | 0-1<br>02/19/03          | 0-1<br>03/10/03 | 1-3<br>03/10/03                        | 6-10<br>03/10/03 |
| Volatile Organics                                | OZ 15/03                 | 02/15/05                 | 00/10/03        | 1 12 W. 1 **CON 10 10 CON 1. 1 1 1 2 2 | 00/10/00         |
|                                                  | ND(0.0062) J             | ND(0.0061) J             | ND(0.0088) J    | ND(0.0047) J                           | NA               |
| 2-Butanone                                       | ND(0.0062) J             | ND(0.004) J              | ND(0.0088) J    | ND(0.0047)3                            | NA NA            |
| Acetone                                          | ND(0.0062)               | ND(0.0061)               | ND(0.033) 3     | ND(0.0047)                             | NA NA            |
| Benzene<br>Carbon Disulfide                      | ND(0.0062)               | ND(0.0061)               | ND(0.0088)      | ND(0.0047)                             | NA NA            |
|                                                  | ND(0.0062)               | ND(0.0061)               | ND(0.0088)      | ND(0.0047)                             | NA NA            |
| Chloroform                                       |                          | ND(0.0061)               | ND(0.0088)      | ND(0.0047)                             | NA NA            |
| Ethylbenzene<br>Mathylana Chlorida               | ND(0.0062)<br>ND(0.0062) | ND(0.0061)<br>ND(0.0061) | ND(0.0088)      | ND(0.0047)                             | NA NA            |
| Methylene Chloride                               | ND(0.0062)               | ND(0.0061)               | ND(0.0088)      | ND(0.0047)                             | NA NA            |
| Toluene                                          |                          |                          |                 | ND(0.0047)                             | NA NA            |
| trans-1,2-Dichloroethene                         | ND(0.0062)               | ND(0.0061)               | ND(0.0088)      |                                        | NA NA            |
| Trichloroethene                                  | ND(0.0062)               | ND(0.0061)               | ND(0.0088)      | ND(0.0047)<br>ND(0.0093)               | NA NA            |
| Vinyl Chloride                                   | ND(0.012)                | ND(0.012)                | ND(0.018)       |                                        |                  |
| Xylenes (total)                                  | ND(0.0062)               | ND(0.0061)               | ND(0.0088)      | ND(0.0047)                             | NA               |
| Semivolatile Organics                            |                          | 115 (2 (2)               | ND(0.40)        | 1 NB(0.05)                             | ND/0.00\         |
| 1,2,4,5-Tetrachlorobenzene                       | NA NA                    | ND(0.42)                 | ND(0.46)        | ND(0.35)                               | ND(0.36)         |
| 1,2,4-Trichlorobenzene                           | NA                       | ND(0.42)                 | ND(0.46)        | ND(0.35)                               | ND(0.36)         |
| 1,4-Dichlorobenzene                              | NA                       | ND(0.42)                 | ND(0.46)        | ND(0.35)                               | ND(0.36)         |
| 1,4-Naphthoquinone                               | NA                       | ND(2.0)                  | ND(2.2)         | ND(1.7)                                | ND(1.7)          |
| 2-Methylnaphthalene                              | NA                       | ND(0.42)                 | 0.034 J         | ND(0.35)                               | ND(0.36)         |
| 3&4-Methylphenol                                 | NA                       | ND(0.83)                 | ND(0.91)        | ND(0.69)                               | ND(0.71)         |
| 3,3'-Dichlorobenzidine                           | NA                       | ND(2.0)                  | ND(2.2)         | ND(1.7)                                | ND(1.7)          |
| 3-Methylcholanthrene                             | NA                       | ND(2.0)                  | ND(2.2)         | ND(1.7)                                | ND(1.7)          |
| Acenaphthene                                     | NA NA                    | ND(0.42)                 | 0.059 J         | ND(0.35)                               | ND(0.36)         |
| Acenaphthylene                                   | NA                       | 0.085 J                  | 0.13 J          | ND(0.35)                               | ND(0.36)         |
| Aniline .                                        | NA                       | ND(0.42)                 | 0.060 J         | ND(0.35)                               | ND(0.36)         |
| Anthracene                                       | NA                       | 0.086 J                  | 0.20 J          | ND(0.35)                               | ND(0.36)         |
| Benzo(a)anthracene                               | NA                       | 0.29 J                   | 0.59            | ND(0.35)                               | ND(0.36)         |
| Benzo(a)pyrene                                   | NA                       | 0.32 J                   | 0.64            | ND(0.35)                               | ND(0.36)         |
| Benzo(b)fluoranthene                             | NA                       | 0.26 J                   | 0.65            | ND(0.35)                               | ND(0.36)         |
| Benzo(g,h,i)perylene                             | NA                       | 0.15 J                   | 0.23 J          | ND(0.35)                               | ND(0.36)         |
| Benzo(k)fluoranthene                             | NA                       | 0.32 J                   | 0.67            | ND(0.35)                               | ND(0.36)         |
| bis(2-Ethylhexyl)phthalate                       | NA                       | ND(0.42)                 | ND(0.46)        | ND(0.35)                               | ND(0.36)         |
| Chrysene                                         | NA                       | 0.40 J                   | 0.71            | ND(0.35)                               | ND(0.36)         |
| Dibenzo(a,h)anthracene                           | NA                       | ND(0.42)                 | 0.081 J         | ND(0.35)                               | ND(0.36)         |
| Dibenzofuran                                     | NA                       | ND(0.42)                 | 0.051 J         | ND(0.35)                               | ND(0.36)         |
| Diethylphthalate                                 | NA                       | ND(0.42)                 | ND(0.46)        | ND(0.35)                               | ND(0.36)         |
| Di-n-Butylphthalate                              | NA                       | ND(0.42)                 | 0.083 J         | ND(0.35)                               | ND(0.36)         |
| Fluoranthene                                     | NA                       | 0.64                     | 1.3             | ND(0.35)                               | ND(0.36)         |
| Fluorene                                         | NA                       | 0.040 J                  | 0.070 J         | ND(0.35)                               | ND(0.36)         |
| Hexachlorobenzene                                | NA                       | ND(0.42)                 | ND(0.46)        | ND(0.35)                               | ND(0.36)         |
| Indeno(1,2,3-cd)pyrene                           | NA                       | 0.17 J                   | 0.28 J          | ND(0.35)                               | ND(0.36)         |
| Isophorone                                       | NA                       | ND(0.42)                 | ND(0.46)        | ND(0.35)                               | ND(0.36)         |
| Naphthalene                                      | NA                       | 0.031 J                  | 0.044 J         | ND(0.35)                               | ND(0.36)         |
| Pentachlorobenzene                               | NA T                     | ND(0.42)                 | ND(0.46)        | ND(0.35)                               | ND(0.36)         |
| Pentachlorophenol                                | NA NA                    | ND(2.0)                  | ND(2.2)         | ND(1.7)                                | ND(1.7)          |
| Phenanthrene                                     | NA NA                    | 0.42                     | 0.93            | ND(0.35)                               | ND(0.36)         |
| Phenol                                           | NA I                     | ND(0.42)                 | 0.031 J         | ND(0.35)                               | ND(0.36)         |
| Pyrene                                           | NA T                     | 0.56                     | 0.92            | ND(0.35)                               | ND(0.36)         |

| Sample ID:<br>Sample Depth(Feet): | RAA15-E20<br>4-6 | RAA15-E21<br>0-1 | RAA15-F2<br>0-1  | RAA15-F2<br>1-3  | RAA15-F2<br>6-10 |
|-----------------------------------|------------------|------------------|------------------|------------------|------------------|
| Parameter Date Collected:         | 02/19/03         | 02/19/03         | 03/10/03         | 03/10/03         | 03/10/03         |
| Furans                            |                  |                  |                  |                  | ,                |
| 2,3,7,8-TCDF                      | NA               | ND(0.0000015) X  | 0.000024         | 0.0000026        | 0.0000016        |
| TCDFs (total)                     | NA               | ND(0.000011) X   | ND(0.00022) X    | ND(0.000022) X   | ND(0.000013) X   |
| 1,2,3,7,8-PeCDF                   | NA               | ND(0.00000038) X | 0.0000065 J      | 0.0000020 J      | 0.0000010 J      |
| 2,3,4,7,8-PeCDF                   | NA               | 0.00000056 J     | 0.0000075        | 0.0000018 J      | 0.0000010 J      |
| PeCDFs (total)                    | NA               | ND(0.000019) X   | ND(0.00031) X    | ND(0.000026) X   | ND(0.000010) X   |
| 1,2,3,4,7,8-HxCDF                 | NA               | 0.00000093 J     | 0.0000084        | 0.0000045 J      | 0.0000030 J      |
| 1,2,3,6,7,8-HxCDF                 | NA               | ND(0.0000024) X  | 0.0000046 J      | 0.0000019 J      | 0.0000012 J      |
| 1,2,3,7,8,9-HxCDF                 | NA               | ND(0.00000012)   | ND(0.00000022) X | ND(0.00000011)   | ND(0.000000094)  |
| 2,3,4,6,7,8-HxCDF                 | NA               | 0.00000047 J     | 0.0000054 J      | 0.00000067 J     | 0.00000035 J     |
| HxCDFs (total)                    | NA               | ND(0.000024) X   | ND(0.00026) XQ   | ND(0.000020) XQ  | ND(0.0000082) X  |
| 1,2,3,4,6,7,8-HpCDF               | NA               | 0.000026         | 0.000019         | 0.0000047 J      | 0.0000020 J      |
| 1,2,3,4,7,8,9-HpCDF               | NA               | 0.00000063 J     | 0.0000024 J      | 0.00000082 J     | ND(0.00000060) X |
| HpCDFs (total)                    | NA               | 0.000051         | ND(0.000050) X   | ND(0.000010) X   | ND(0.0000035) X  |
| OCDF                              | NA               | 0.000023         | 0.000012 J       | 0.0000051 J      | 0.0000014 J      |
| Dioxins                           |                  |                  |                  |                  |                  |
| 2,3,7,8-TCDD                      | NA               | ND(0.00000033)   | ND(0.00000032)   | ND(0.00000023)   | ND(0.00000021)   |
| TCDDs (total)                     | NA               | ND(0.00000033)   | ND(0.0000025) X  | ND(0.00000023)   | ND(0.00000021)   |
| 1,2,3,7,8-PeCDD                   | NA               | ND(0.00000027) X | ND(0.00000049) X | ND(0.00000015)   | ND(0.00000012)   |
| PeCDDs (total)                    | NA               | ND(0.0000011) X  | ND(0.0000061) X  | ND(0.00000015)   | ND(0.00000012)   |
| 1,2,3,4,7,8-HxCDD                 | NA               | ND(0.00000023) X | ND(0.00000055) X | ND(0.00000015)   | ND(0.0000014)    |
| 1,2,3,6,7,8-HxCDD                 | NA               | ND(0.00000091) X | 0.0000014 J      | ND(0.00000027) X | ND(0.00000013)   |
| 1,2,3,7,8,9-HxCDD                 | NA               | 0.0000012 J      | 0.0000013 QJ     | ND(0.00000014)   | ND(0.00000013)   |
| HxCDDs (total)                    | NA               | ND(0.0000080) X  | ND(0.000015) XQJ | ND(0.0000012) X  | ND(0.00000067) X |
| 1,2,3,4,6,7,8-HpCDD               | NA               | 0.000028         | 0.000014 QJ      | 0.0000049 QJ     | ND(0.00000023)   |
| HpCDDs (total)                    | NA               | 0.000053         | 0.000033 QJ      | 0.0000095 QJ     | ND(0.00000032) X |
| OCDD                              | NA               | 0.00028          | 0.000080         | 0.000048         | ND(0.0000012) X  |
| Total TEQs (WHO TEFs)             | NA               | 0.0000017        | 0.0000094        | 0.0000023        | 0.0000014        |
| Inorganics                        |                  |                  |                  |                  |                  |
| Antimony                          | NA               | ND(7.60)         | 2.50 B           | ND(6.30)         | ND(6.50)         |
| Arsenic                           | NA               | 2.20             | 3,70             | 2.80             | 6.20             |
| Barium                            | NA               | 29.4             | 38.6 J           | 14.4 J           | 21.4 J           |
| Beryllium                         | NA               | 0.260 B          | 0.390 B          | 0.290 B          | 0.410 B          |
| Cadmium                           | NA               | 0.260 B          | ND(0.690)        | ND(0.520)        | ND(0.540)        |
| Chromium                          | NA               | 12.5             | 7.10             | 5.60             | 10.1             |
| Cobalt                            | NA               | 5.90 B           | 5.20 B           | 5.30             | 10.8             |
| Copper                            | NA               | 14.9             | 61.8 J           | 9.90 J           | 26.1 J           |
| Cyanide                           | NA               | ND(0.630)        | 0.270 B          | ND(0.520)        | 0.200 B          |
| Lead                              | NA               | 18.6             | 77.6 J           | 7.10 J           | 10.1 J           |
| Mercury                           | NA               | 0.110            | 2.30 J           | 0.490 J          | 0.510 J          |
| Nickel                            | NA               | 10.6             | 9.70             | 8.10             | 17.9             |
| Selenium                          | NA               | ND(0.630)        | ND(0.690)        | ND(0.520)        | ND(0.540)        |
| Silver                            | NA               | ND(1.30)         | ND(1.40)         | ND(1.00)         | ND(1.10)         |
| Thallium                          | NA               | ND(1.30) J       | ND(1.40)         | ND(1.00)         | ND(1.10)         |
| Tin                               | NA NA            | ND(6.20)         | 16.1 J           | ND(6.20)         | ND(3.00)         |
| Vanadium                          | NA               | 10.1             | 9.90             | 5.20 B           | 9.50             |
| Zinc                              | NA               | 57.3             | 65.1             | 31.7             | 53.4             |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-F2<br>8-10 | RAA15-F7<br>6-8 | RAA15-F7<br>6-10 | RAA15-F19<br>0-1            | RAA15-F22<br>0-1 |
|-----------------------------------|------------------|-----------------|------------------|-----------------------------|------------------|
| Parameter Date Collected:         | 03/10/03         | 03/05/03        | 03/05/03         | 02/18/03                    | 02/18/03         |
| Volatile Organics                 |                  |                 |                  |                             |                  |
| 2-Butanone                        | ND(0.0047) J     | 0.014 J         | NA               | ND(0.0085) J [ND(0.0093) J] | ND(0.0070) J     |
| Acetone                           | ND(0.019) J      | 0.033 J         | NA               | ND(0.034) J [ND(0.037) J]   | ND(0.028) J      |
| Benzene                           | ND(0.0047)       | 0.0021 J        | NA NA            | ND(0.0085) [ND(0.0093)]     | ND(0.020)3       |
| Carbon Disulfide                  | ND(0.0047)       | ND(0.0093)      | NA NA            | ND(0.0085) [ND(0.0093)]     | ND(0.0070)       |
| Chloroform                        | ND(0.0047)       | ND(0.0093)      | NA NA            | ND(0.0085) [ND(0.0093)]     | ND(0.0070)       |
| Ethylbenzene                      | ND(0.0047)       | ND(0.0093)      | NA NA            | ND(0.0085) [ND(0.0093)]     | ND(0.0070)       |
| Methylene Chioride                | ND(0.0047)       | 0.0025 J        | NA NA            | ND(0.0085) [ND(0.0093)]     | ND(0.0070)       |
| Toluene                           | ND(0.0047)       | ND(0.0093)      | NA NA            | ND(0.0085) [ND(0.0093)]     | ND(0.0070)       |
| trans-1,2-Dichloroethene          | ND(0.0047)       | 0.0057 J        | NA NA            | ND(0.0085) [ND(0.0093)]     | ND(0.0070)       |
| Trichloroethene                   | ND(0.0047)       | 0.0037 J        | NA NA            | ND(0.0085) [ND(0.0093)]     | ND(0.0070)       |
| Vinyl Chloride                    | ND(0.0094)       | 0.0028 J        | NA NA            | ND(0.0003) [ND(0.0093)]     | ND(0.0070)       |
| Xylenes (total)                   | ND(0.0047)       | ND(0.0093)      | NA NA            | ND(0.0085) [ND(0.0093)]     | ND(0.014)        |
| Semivolatile Organics             | 112(0.0041)      | [ ND(0.0055) ]  | 14/7             | [(C60003) [ND(0.0033)]      | [ ND(0.0070)     |
| 1,2,4,5-Tetrachlorobenzene        | NA               | NA              | ND(0.44)         | ND/O EE) IND/4 433          | L ND/0.40\       |
| 1,2,4-Trichlorobenzene            | NA<br>NA         | NA NA           | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| 1,4-Dichlorobenzene               | NA<br>NA         | NA NA           |                  | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| 1,4-Naphthoguinone                | NA<br>NA         | NA NA           | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| 2-Methylnaphthalene               |                  |                 | ND(2.1)          | ND(2.7) [ND(5.4)]           | ND(2.3)          |
|                                   | NA<br>NA         | NA NA           | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| 3&4-Methylphenol                  | NA<br>NA         | NA NA           | ND(0.88)         | ND(1.1) [ND(2.2)]           | ND(0.96)         |
| 3,3'-Dichlorobenzidine            | NA<br>NA         | NA NA           | ND(2.1)          | ND(2.7) [ND(5.4)]           | ND(2.3)          |
| 3-Methylcholanthrene              | NA               | NA NA           | ND(2.1)          | ND(2.7) [ND(5.4)]           | ND(2.3)          |
| Acenaphthene                      | NA NA            | NA NA           | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| Acenaphthylene                    | NA<br>NA         | NA NA           | ND(0.44)         | 0.22 J [0.12 J]             | 0.052 J          |
| Aniline                           | NA               | NA              | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| Anthracene                        | NA               | NA              | ND(0.44)         | 0.15 J [ND(1.1)]            | ND(0.48)         |
| Benzo(a)anthracene                | NA               | NA              | ND(0.44)         | 0.49 J [0.33 J]             | 0.20 J           |
| Benzo(a)pyrene                    | NA               | NA NA           | ND(0.44)         | 0.63 [0.39 J]               | 0.23 J           |
| Benzo(b)fluoranthene              | NA               | NA NA           | ND(0.44)         | 0.64 [0.35 J]               | 0.21 J           |
| Benzo(g,h,i)perylene              | NA               | NA              | ND(0.44)         | 0.19 J [0.31 J]             | 0.13 J           |
| Benzo(k)fluoranthene              | NA               | NA              | ND(0.44)         | 0.69 [0.38 J]               | 0.22 J           |
| bis(2-Ethylhexyl)phthalate        | NA               | NA              | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| Chrysene                          | NA               | NA              | ND(0.44)         | 0.77 [0.51 J]               | 0.27 J           |
| Dibenzo(a,h)anthracene            | NA               | NA              | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| Dibenzofuran                      | NA               | NA              | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| Diethylphthalate                  | NA               | NA              | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| Di-n-Butylphthalate               | NA               | NA              | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| Fluoranthene                      | NA               | NA              | ND(0.44)         | 1.5 [0.89 J]                | 0.40 J           |
| Fluorene                          | NA               | NA              | ND(0.44)         | 0.058 J [ND(1.1)]           | ND(0.48)         |
| Hexachlorobenzene                 | NA               | NA NA           | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| Indeno(1,2,3-cd)pyrene            | NA               | NA              | ND(0.44)         | 0.23 J [0.30 J]             | 0.15 J           |
| Isophorone                        | NA               | NA              | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| Naphthalene                       | NA               | NA              | ND(0.44)         | 0.038 J [ND(1.1)]           | ND(0.48)         |
| Pentachlorobenzene                | NA               | NA              | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| Pentachlorophenol                 | NA               | NA              | ND(2.1)          | ND(2.7) [ND(5.4)]           | ND(2.3)          |
| Phenanthrene                      | NA               | NA              | ND(0.44)         | 0.78 [0.57 J]               | 0.21 J           |
| Phenol                            | NA               | NA              | ND(0.44)         | ND(0.55) [ND(1.1)]          | ND(0.48)         |
| Pyrene                            | NA               | NA              | ND(0.44)         | 0.98 [0.87 J]               | 0.36 J           |

| Sample ID:<br>Sample Depth(Feet):   | RAA15-F2<br>8-10 | RAA15-F7<br>6-8 | RAA15-F7<br>6-10                 | RAA15-F19<br>0-1                                               | RAA15-F22<br>0-1              |
|-------------------------------------|------------------|-----------------|----------------------------------|----------------------------------------------------------------|-------------------------------|
| Parameter Date Collected:<br>Furans | 03/10/03         | 03/05/03        | 03/05/03                         | 02/18/03                                                       | 02/18/03                      |
| 2,3,7,8-TCDF                        | NA               | l NA            | ND(0.00000025)                   | 0.000011 1.00.000038 11                                        | 0.000021                      |
| TCDFs (total)                       | NA<br>NA         | NA NA           | ND(0.00000025)                   | 0.000011 J [0.0000038 J]<br>ND(0.0014) X [ND(0.000094) X]      |                               |
| 1,2,3,7,8-PeCDF                     | NA<br>NA         | NA NA           | ND(0.00000025)                   |                                                                | ND(0.00012) X                 |
| 2,3,4,7,8-PeCDF                     | NA<br>NA         | NA NA           | ND(0.0000013)                    | 0.0000033 J [ND(0.0000010) X]<br>0.0000086 [0.0000014 J]       | 0.0000050 J                   |
| PeCDFs (total)                      | NA NA            | NA NA           | ND(0.0000014)                    | ND(0.0043) X [ND(0.00027) X]                                   | 0.0000047 J                   |
| 1,2,3,4,7,8-HxCDF                   | NA NA            | NA NA           | ND(0.00000014)                   | 0.000018 [0.000027] X]                                         | ND(0.000070) X<br>0.0000049 J |
| 1,2,3,6,7,8-HxCDF                   | NA<br>NA         | NA<br>NA        | ND(0.000000093)                  |                                                                | ND(0.000059) X                |
| 1,2,3,7,8,9-HxCDF                   | NA NA            | NA NA           | ND(0.000000000)                  | ND(0.00065) X [ND(0.000050) X]<br>0.00000069 J [ND(0.0000023)] | ND(0.0000039) X               |
| 2,3,4,6,7,8-HxCDF                   | NA NA            | NA<br>NA        | ND(0.00000011)                   |                                                                |                               |
| HxCDFs (total)                      | NA<br>NA         | NA<br>NA        | ND(0.00000099)                   | 0.000011 [0.0000016 J]                                         | 0.0000012 J                   |
| 1,2,3,4,6,7,8-HpCDF                 | NA NA            | NA<br>NA        |                                  | ND(0.0031) X [ND(0.00023) X]                                   | ND(0.000053) X                |
| 1,2,3,4,7,8,9-HpCDF                 | NA               | NA NA           | ND(0.00000014)<br>ND(0.00000018) | 0.00011 J [0.000035 J]<br>0.00001 J [0.000014 J]               | 0.000033<br>0.0000012 J       |
| HpCDFs (total)                      | NA<br>NA         | NA NA           | ND(0.0000018)                    | 0.000013 [0.00000143]<br>0.00025 J [0.00007 J]                 | <u> </u>                      |
| OCDF (total)                        | NA<br>NA         | NA NA           | ND(0.0000018)                    | 0.00025 J [0.00007 J]<br>0.000085 J [0.000023 J]               | 0.000063<br>0.000025          |
| Dioxins                             | IVA              | INA             | [ ND(0.00000019)                 | 0.000065 3 [0.000025 3]                                        | 0.000025                      |
|                                     | NA               | l NA            | L ND(0.000000000)                | ND(0.0000004) (ND(0.0000057))                                  | LIDIO COCCOCCE                |
| 2,3,7,8-TCDD                        | NA NA            | NA              | ND(0.00000033)<br>ND(0.00000033) | ND(0.00000061) [ND(0.00000057)]                                | ND(0.00000035)                |
| TCDDs (total)                       | NA NA            | NA<br>NA        | 4                                | ND(0.0000033) X [ND(0.00000057)]                               | ND(0.0000023) X               |
| 1,2,3,7,8-PeCDD                     | NA NA            | NA<br>NA        | ND(0.00000016)                   | ND(0.0000047) X [0.0000076 J]                                  | ND(0.00000026)                |
| PeCDDs (total)                      | NA               | NA<br>NA        | ND(0.00000016)                   | ND(0.000034) X [ND(0.0000098) X]                               | ND(0.0000022) X               |
| 1,2,3,4,7,8-HxCDD                   | NA               | NA              | ND(0.00000018)                   | ND(0.0000041) X [0.00000054 J]                                 | ND(0.00000031) X              |
| 1,2,3,6,7,8-HxCDD                   | NA               | NA<br>NA        | ND(0.00000016)                   | 0.000011 [ND(0.0000014) X]                                     | ND(0.0000011) X               |
| 1,2,3,7,8,9-HxCDD                   | NA NA            | NA              | ND(0.00000017)                   | 0.0000081 J [0.0000013 J]                                      | 0.00000085 J                  |
| HxCDDs (total)                      | NA NA            | NA              | ND(0.00000017)                   | ND(0.00011) X [ND(0.000014) X]                                 | ND(0.0000085) X               |
| 1,2,3,4,6,7,8-HpCDD                 | NA               | NA              | ND(0.00000019)                   | 0:000097 J [0.000023 J]                                        | 0.000022                      |
| HpCDDs (total)                      | NA               | NA              | ND(0.00000019)                   | 0.00018 J [0.000041 J]                                         | 0.000038                      |
| OCDD                                | NA               | NA              | ND(0.00000070) X                 | 0.00064 J [0.00017 J]                                          | 0.00019                       |
| Total TEQs (WHO TEFs)               | NA               | NA              | 0.0000034                        | 0.000048 [0.000013]                                            | 0.0000067                     |
| Inorganics                          |                  |                 | ,                                |                                                                |                               |
| Antimony                            | NA               | NA              | 0.660 J                          | ND(10.1) J [ND(10.2)]                                          | ND(8.70) J                    |
| Arsenic                             | NA               | NA              | 5.70                             | 5.70 [5.90]                                                    | 7.20                          |
| Barium                              | NA               | NA              | 110                              | 80.1 [75.9]                                                    | 80.0                          |
| Beryllium                           | NA               | NA              | 0.380 B                          | 1.00 [ND(1.00)]                                                | 0.880                         |
| Cadmium                             | NA               | NA              | 0.0640 B                         | 1.00 [1.10]                                                    | 1.00                          |
| Chromium                            | NA NA            | NA              | 9.70                             | 37.0 [32.3]                                                    | 52.0                          |
| Cobalt                              | NA               | NA<br>NA        | 4.60 B                           | 10.9 [10.5]                                                    | 10.9                          |
| Copper                              | NA NA            | NA<br>NA        | 21.4                             | 41.3 [38.8]                                                    | 48.6                          |
| Cyanide                             | NA<br>NA         | NA<br>NA        | ND(0.670)                        | ND(0.750) [ND(0.850)]                                          | ND(0.720)                     |
| Lead                                | NA               |                 | 99.7                             | 86.9 [78.9]                                                    | 87.9                          |
| Mercury                             | NA               | NA<br>NA        | 0.0280 J                         | 0.440 [0.470]                                                  | 0.800                         |
| Nickel                              | NA<br>NA         | NA<br>NA        | 10.4<br>ND(0.670)                | 22.5 [20.8]                                                    | 20.2                          |
| Selenium                            | NA<br>NA         | NA<br>NA        | ND(0.670)                        | 1.10 [0.950]                                                   | 1.10                          |
| Silver                              | NA<br>NA         | NA<br>NA        | ND(1.30)                         | ND(1.70) [0.160 B]                                             | ND(1.50)                      |
| Thallium<br>Tin                     | NA               | NA<br>NA        | 0.770 J                          | 2.30 [1.10 B]                                                  | 2.20                          |
|                                     | NA               | NA<br>NA        | ND(7.20)                         | 11.5 B [11.1 B]                                                | 12.2 B                        |
| Vanadium                            | NA<br>NA         | NA<br>NA        | 15.6                             | 25.2 [25.5]                                                    | 20.3                          |
| Zinc                                | NA               | NA              | 80.0                             | 141 [130]                                                      | 132                           |

| Sample ID: Sample Depth(Feet): | RAA15-F24<br>0-1 | RAA15-F24<br>1-3     | RAA15-G2<br>3-6 | RAA15-G2<br>4-6 | RAA15-G4<br>0-1      |
|--------------------------------|------------------|----------------------|-----------------|-----------------|----------------------|
| Parameter Date Collected:      | 02/18/03         | 02/18/03             | 03/07/03        | 03/07/03        | 03/04/03             |
| Volatile Organics              |                  |                      |                 |                 |                      |
| 2-Butanone                     | ND(0.0064) J     | ND(0.0049) J         | NA              | ND(0.0048) J    | ND(0.0043) J         |
| Acetone                        | ND(0.026) J      | ND(0.020) J          | NA NA           | ND(0.019) J     | ND(0.017)            |
| Benzene                        | ND(0.0064)       | ND(0.0049)           | NA NA           | ND(0.0048)      | ND(0.0043)           |
| Carbon Disulfide               | ND(0.0064)       | ND(0.0049)           | NA              | ND(0.0048)      | ND(0.0043)           |
| Chloroform                     | ND(0.0064)       | ND(0.0049)           | NA NA           | ND(0.0048)      | ND(0.0043)           |
| Ethylbenzene                   | ND(0.0064)       | ND(0.0049)           | NA              | ND(0.0048)      | ND(0.0043)           |
| Methylene Chloride             | ND(0.0064)       | ND(0.0049)           | NA              | ND(0.0048)      | 0.0016 J             |
| Toluene                        | ND(0.0064)       | ND(0.0049)           | NA NA           | ND(0.0048)      | ND(0.0043)           |
| trans-1,2-Dichloroethene       | ND(0.0064)       | ND(0.0049)           | NA              | ND(0.0048)      | ND(0.0043)           |
| Trichloroethene                | ND(0.0064)       | ND(0.0049)           | NA NA           | ND(0.0048)      | ND(0.0043)           |
| Vinyl Chloride                 | ND(0.013)        | ND(0.0098)           | NA NA           | ND(0.0096)      | ND(0.0087)           |
| Xylenes (total)                | ND(0.0064)       | ND(0.0049)           | NA NA           | ND(0.0048)      | ND(0.0043)           |
| Semivolatile Organics          | ,/               | ,                    |                 | 1 12(0.00,10)   | (0.00.10)            |
| 1,2,4,5-Tetrachlorobenzene     | ND(0.45)         | ND(0.41)             | 0.11 J          | NA I            | ND(0.76)             |
| 1,2,4-Trichlorobenzene         | ND(0.45)         | ND(0.41)             | ND(0.38)        | NA NA           | ND(0.76)             |
| 1,4-Dichlorobenzene            | ND(0.45)         | ND(0.41)             | ND(0.38)        | NA I            | ND(0.76)             |
| 1,4-Naphthoguinone             | ND(2.2)          | ND(2.0)              | ND(1.8)         | NA I            | ND(3.7)              |
| 2-Methylnaphthalene            | ND(0.45)         | ND(0.41)             | 0.033 J         | NA I            | ND(0.76)             |
| 3&4-Methylphenol               | ND(0.90)         | ND(0.82)             | ND(0.76)        | NA NA           | ND(1.5)              |
| 3,3'-Dichlorobenzidine         | ND(2.2)          | ND(2.0)              | ND(1.8)         | NA NA           | ND(3.7)              |
| 3-Methylcholanthrene           | ND(2.2)          | ND(2.0)              | ND(1.8)         | NA NA           | ND(3.7)              |
| Acenaphthene                   | ND(0.45)         | ND(0.41)             | 0.11 J          | NA NA           | 0.061 J              |
| Acenaphthylene                 | 0.046 J          | ND(0.41)             | 0.14 J          | NA NA           | ND(0.76)             |
| Aniline                        | ND(0.45)         | ND(0.41)             | ND(0.38)        | NA I            | ND(0.76)             |
| Anthracene                     | ND(0.45)         | ND(0.41)             | 0.53            | NA I            | 0.15 J               |
| Benzo(a)anthracene             | 0.20 J           | 0.090 J              | 1.5             | NA NA           | 0.49 J               |
| Benzo(a)pyrene                 | 0.22 J           | 0.098 J              | 1.3             | NA ·            | 0.54 J               |
| Benzo(b)fluoranthene           | 0.18 J           | 0.081 J              | 1.2             | NA NA           | 0.52 J               |
| Benzo(g,h,i)perylene           | 0.15 J           | 0.070 J              | 0.97            | NA I            | 0.32 J               |
| Benzo(k)fluoranthene           | 0.13 J           | 0.076 J              | 0.93            | NA NA           | 0.22 J<br>0.51 J     |
| bis(2-Ethylhexyl)phthalate     | ND(0.45)         | ND(0.41)             | ND(0.38)        | NA NA           | ND(0.76)             |
| Chrysene                       | 0.25 J           | 0.11 J               | 1.5             | NA NA           | 0.57 J               |
| Dibenzo(a,h)anthracene         | ND(0.45)         | ND(0.41)             | 0.33 J          | NA NA           | ND(0.76)             |
| Dibenzofuran                   | ND(0.45)         | ND(0.41)             | 0.082 J         | NA NA           | ND(0.76)             |
| Diethylphthalate               | ND(0.45)         | ND(0.41)             | ND(0.38)        | <u> </u>        |                      |
| Di-n-Butylphthalate            | ND(0.45)         | ND(0.41)             | ND(0.38)        | NA<br>NA        | ND(0.76)<br>ND(0.76) |
| Fluoranthene                   | 0.37 J           | 0.17 J               | 3.1             | NA<br>NA        |                      |
| Fluorene                       | ND(0.45)         | ND(0.41)             | 0.14 J          | NA NA           | 1.3                  |
| Hexachlorobenzene              | ND(0.45)         | ND(0.41)             | ND(0.38)        |                 | ND(0.76)             |
| Indeno(1,2,3-cd)pyrene         | 0.18 J           | 0.078 J              | 1.1             | NA NA           | ND(0.76)             |
| Isophorone                     | ND(0.45)         | ND(0.41)             | ND(0.38)        | NA<br>NA        | 0.26 J               |
| Naphthalene                    | ND(0.45)         | ND(0.41)<br>ND(0.41) | 0.054 J         |                 | ND(0.76)             |
| Pentachlorobenzene             | ND(0.45)         |                      |                 | NA NA           | ND(0.76)             |
| Pentachlorophenol              |                  | ND(0.41)             | ND(0.38)        | NA NA           | ND(0.76)             |
|                                | ND(2.2)          | ND(2.0)              | ND(1.8)         | NA              | ND(3.7)              |
| Phenanthrene Phonol            | 0.19 J           | 0.093 J              | 2.1             | NA NA           | 0.66 J               |
| Phenol                         | ND(0.45)         | ND(0.41)             | ND(0.38)        | NA NA           | ND(0.76)             |
| Pyrene                         | 0.35 J           | 0.16 J               | 2.8             | NA              | 0.77                 |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

RAA15-F24 Sample ID: **RAA15-F24** RAA15-G2 RAA15-G2 RAA15-G4 Sample Depth(Feet): 0-1 1-3 3-6 4-6 0-1 **Parameter Date Collected:** 02/18/03 02/18/03 03/07/03 03/07/03 03/04/03 Furans 2.3.7.8-TCDF ND(0.000016) X 0.0000036 ND(0.000085) X NA ND(0.0000021) X TCDFs (total) ND(0.000062) X ND(0.000010) X ND(0.00061) XQJ NA ND(0.000017) X 1,2,3,7,8-PeCDF 0.0000044 J ND(0.00000090) X 0.000050 NA ND(0.00000085) X 2,3,4,7,8-PeCDF 0.0000038 J ND(0.00000027) 0.000049 NA 0.0000012 J PeCDFs (total) ND(0.000048) X ND(0.0000069) X ND(0.00059) X NA ND(0.000045) X 1,2,3,4,7,8-HxCDF 0.0000046 J ND(0.00000072) X 0.00012 NA 0.0000019 J 1,2,3,6,7,8-HxCDF ND(0.0000043) X ND(0.00000079) X ND(0.000056) X NA ND(0.0000023) X 1,2,3,7,8,9-HxCDF ND(0.00000026) ND(0.00000021) NA 0.0000030 J ND(0.00000017) 2,3,4,6,7,8-HxCDF 0.00000099 J 0.00000024 J 0.000015 NA ND(0.00000061) X HxCDFs (total) ND(0.000046) X ND(0.0000078) X ND(0.00038) XQJ NA ND(0.000026) X 1,2,3,4,6,7,8-HpCDF 0.000045 0.0000084 0.000078 NA 0.0000043 J 1,2,3,4,7,8,9-HpCDF ND(0.0000014) X ND(0.00000037) 0.000025 NA ND(0.00000030) HpCDFs (total) ND(0.000096) X 0.000015 ND(0.00014) X NA 0.0000082 J OCDF 0.0000041 J 0.000073 ND(0.0000061) X 0.000068 NA Dioxins 2,3,7,8-TCDD ND(0.00000047) ND(0.00000047) ND(0.00000054) X NA ND(0.00000027) TCDDs (total) 0.00000042 J ND(0.00000047) ND(0.000014) X NA ND(0.00000043) X 1,2,3,7,8-PeCDD ND(0.00000048) X ND(0.00000026) ND(0.0000030) X NA ND(0.00000018) PeCDDs (total) ND(0.0000014) X ND(0.00000026) ND(0.000020) X NA ND(0.00000055) X 1,2,3,4,7,8-HxCDD ND(0.00000033) ND(0.00000028) ND(0.00000084) X NA ND(0.00000023) 1,2,3,6,7,8-HxCDD 0.0000016 J ND(0.00000026) 0.0000015 J NA 0.00000055 J 1,2,3,7,8,9-HxCDD 0.00000092 J ND(0.00000027) 0.0000015 QJ NA ND(0.00000044) X HxCDDs (total) 0.0000096 J ND(0.0000010) X ND(0.000026) XQJ NA ND(0.0000058) X 1,2,3,4,6,7,8-HpCDD 0.000055 0.0000054 J NA 0.0000086 QJ 0.0000092 HpCDDs (total) 0.000089 0.0000090 J 0.000017 QJ NA 0.000018 OCDD 0.00065 0.000059 0.00002 NA 0.000056 J Total TEQs (WHO TEFs) 0.0000055 0.0000011 0.000051 NA 0.0000015 Inorganics ND(8.20) J Antimony ND(7.40) J ND(6.90) NA ND(6.90) J Arsenic 4.20 6.30 6.60 NA 7.80 Barium 69.7 56.0 48.9 NA 23.6 Beryllium 0.790 ND(0.530) 0.660 NA ND(0.330) Cadmium 0.790 0.630 ND(0.100) NA 0.0780 B Chromium 26.8 48.6 10.0 NA 10.1 Cobalt 9.8 8.8 7.80 NA 11.2 Copper 43.5 29.2 61.2 J NA 28.1 J ND(0.620) Cyanide ND(0.680) 0.210 B NA ND(0.580) 84.5 Lead 94.2 J NA 38.1 25.5 Mercury 0.510 0.380 1.30 NA 0.0380 B Nickel 18.1 15.7 17.0 J NA 23.2 Selenium 0.390 B ND(0.620) ND(0.570) NA ND(0.580) J 0.110 B Silver ND(1.20) ND(1.10) NA ND(1.20) Thallium 1.90 1.70 0.640 B NA 1.80 J Tin 11.9 B 8.90 B ND(8.80) NA ND(5.00) Vanadium 17.8 14.3 11.9 NA 12.6 Zinc 118 76.2 124 NA 87.4

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:                                    | RAA15-G4        | RAA15-G4 | RAA15-G4      | RAA15-G6  | RAA15-G6      |
|-----------------------------------------------|-----------------|----------|---------------|-----------|---------------|
| Sample Depth(Feet): Parameter Date Collected: | 1-3<br>03/04/03 | 3-6      | 4-6           | 0-1       | 1-3           |
|                                               | 03/04/03        | 03/04/03 | 03/04/03      | 03/05/03  | 03/05/03      |
| Volatile Organics                             | ND(0.0054) I    | NIA      | LND/0.00540 L | 0.0040.1  | 1 110/0 00/01 |
| 2-Butanone                                    | ND(0.0051) J    | NA NA    | ND(0.0051) J  | 0.0046 J  | ND(0.0049) J  |
| Acetone                                       | ND(0.020)       | NA NA    | ND(0.020)     | 0.035 J   | ND(0.020) J   |
| Benzene<br>Corbon Digulfida                   | ND(0.0051)      | NA NA    | ND(0.0051)    | ND(0.012) | ND(0.0049)    |
| Carbon Disulfide                              | ND(0.0051)      | NA NA    | ND(0.0051)    | ND(0.012) | ND(0.0049)    |
| Chloroform                                    | ND(0.0051)      | NA NA    | ND(0.0051)    | ND(0.012) | ND(0.0049)    |
| Ethylbenzene                                  | ND(0.0051)      | NA NA    | ND(0.0051)    | ND(0.012) | ND(0.0049)    |
| Methylene Chloride                            | 0.0014 J        | NA NA    | ND(0.0051)    | 0.0040 J  | 0.0014 J      |
| Toluene                                       | ND(0.0051)      | NA NA    | ND(0.0051)    | ND(0.012) | ND(0.0049)    |
| trans-1,2-Dichloroethene                      | ND(0.0051)      | NA NA    | ND(0.0051)    | ND(0.012) | ND(0.0049)    |
| Trichloroethene                               | ND(0.0051)      | NA NA    | ND(0.0051)    | ND(0.012) | ND(0.0049)    |
| Vinyl Chloride                                | ND(0.010)       | NA       | ND(0.010)     | ND(0.023) | ND(0.0099)    |
| Xylenes (total)                               | ND(0.0051)      | NA       | ND(0.0051)    | ND(0.012) | ND(0.0049)    |
| Semivolatile Organics                         |                 |          |               |           |               |
| 1,2,4,5-Tetrachlorobenzene                    | ND(1.5)         | ND(14)   | NA            | ND(0.44)  | ND(0.36)      |
| 1,2,4-Trichlorobenzene                        | ND(1.5)         | ND(14)   | NA            | ND(0.44)  | ND(0.36)      |
| 1,4-Dichlorobenzene                           | ND(1.5)         | ND(14)   | NA            | ND(0.44)  | ND(0.36)      |
| 1,4-Naphthoquinone                            | ND(7.3)         | ND(70)   | NA            | ND(2.2)   | ND(1.7)       |
| 2-Methylnaphthalene                           | ND(1.5)         | ND(14)   | NA            | ND(0.44)  | ND(0.36)      |
| 3&4-Methylphenol                              | ND(3.0)         | ND(29)   | NA            | ND(0.89)  | ND(0.72)      |
| 3,3'-Dichlorobenzidine                        | ND(7.3)         | ND(70)   | NA            | ND(2.2)   | ND(1.7)       |
| 3-Methylcholanthrene                          | ND(7.3)         | ND(70)   | NA            | ND(2.2)   | ND(1.7)       |
| Acenaphthene                                  | 0.16 J          | ND(14)   | NA            | 0.056 J   | 0.031 J       |
| Acenaphthylene                                | 0.75 J          | ND(14)   | NA            | 0.055 J   | 0.040 J       |
| Aniline                                       | ND(1.5)         | ND(14)   | NA            | ND(0.44)  | ND(0.36)      |
| Anthracene                                    | 0.69 J          | ND(14)   | NA            | 0.12 J    | 0.10 J        |
| Benzo(a)anthracene                            | 4.0             | ND(14)   | NA            | 0.38 J    | 0.26 J        |
| Benzo(a)pyrene                                | 4.1             | ND(14)   | NA            | 0.45      | 0.26 J        |
| Benzo(b)fluoranthene                          | 4.0             | ND(14)   | NA            | 0.44      | 0.26 J        |
| Benzo(g,h,i)perylene                          | 1.2 J           | ND(14)   | NA NA         | 0.12 J    | 0.069 J       |
| Benzo(k)fluoranthene                          | 4.1             | ND(14)   | NA NA         | 0.53      | 0.25 J        |
| bis(2-Ethylhexyl)phthalate                    | ND(1.5)         | ND(14)   | NA NA         | ND(0.44)  | ND(0.36)      |
| Chrysene                                      | 4.0             | ND(14)   | NA NA         | 0.49      | 0.29 J        |
| Dibenzo(a,h)anthracene                        | 0.39 J          | ND(14)   | NA NA         | ND(0.44)  | ND(0.36)      |
| Dibenzofuran                                  | ND(1.5)         | ND(14)   | NA NA         | ND(0.44)  | ND(0.36)      |
| Diethylphthalate                              | ND(1.5)         | ND(14)   | NA NA         | ND(0.44)  | ND(0.36)      |
| Di-n-Butylphthalate                           | ND(1.5)         | ND(14)   | NA NA         | ND(0.44)  | ND(0.36)      |
| Fluoranthene                                  | 8.0             | ND(14)   | NA NA         | 1.2       | 0.69          |
| Fluorene                                      | ND(1.5)         | ND(14)   | NA NA         | ND(0.44)  | ND(0.36)      |
| Hexachlorobenzene                             | ND(1.5)         | ND(14)   | NA NA         | ND(0.44)  | ND(0.36)      |
| Indeno(1,2,3-cd)pyrene                        | 1.5             | ND(14)   | NA NA         | 0.16 J    | 0.081 J       |
| Isophorone                                    | ND(1.5)         | 45       | NA NA         | ND(0.44)  | ND(0.36)      |
| Naphthalene                                   | ND(1.5)         | ND(14)   | NA NA         | ND(0.44)  |               |
| Pentachlorobenzene                            |                 |          |               |           | ND(0.36)      |
| Pentachiorophenol                             | ND(1.5)         | ND(14)   | NA NA         | ND(0.44)  | ND(0.36)      |
| Phenanthrene                                  | ND(7.3)<br>2.1  | ND(70)   | NA<br>NA      | ND(2.2)   | ND(1.7)       |
|                                               |                 | ND(14)   | NA NA         | 0.58      | 0.44          |
| Phenol                                        | ND(1.5)         | ND(14)   | NA NA         | ND(0.44)  | ND(0.36)      |
| Pyrene                                        | 5.4             | ND(14)   | NA            | 0.67      | 0.42          |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-G4<br>1-3  | RAA15-G4<br>3-6  | RAA15-G4<br>4-6 | RAA15-G6<br>0-1   | RAA15-G6<br>1-3  |
|-----------------------------------|------------------|------------------|-----------------|-------------------|------------------|
| Parameter Date Collected:         | 03/04/03         | 03/04/03         | 03/04/03        | 03/05/03          | 03/05/03         |
| Furans                            |                  |                  |                 |                   |                  |
| 2,3,7,8-TCDF                      | ND(0.0000092) X  | ND(0.0000027) X  | NA              | ND(0.0000052) X   | 0.0000052        |
| TCDFs (total)                     | ND(0.00036) X    | ND(0.000031) X   | NA              | ND(0.000024) X    | ND(0.000018) X   |
| 1,2,3,7,8-PeCDF                   | 0.0000043 J      | 0.0000012 J      | NA              | ND(0.00000089) X  | ND(0.0000017) X  |
| 2,3,4,7,8-PeCDF                   | 0.0000046 J      | 0.0000011 J      | NA              | 0.0000017 J       | 0.0000015 J      |
| PeCDFs (total)                    | ND(0.00045) X    | ND(0.000040) X   | NA              | ND(0.000023) X    | ND(0.000012) X   |
| 1,2,3,4,7,8-HxCDF                 | 0.0000053 J      | 0.0000022 J      | NA              | 0.00000089 J      | 0.0000015 J      |
| 1,2,3,6,7,8-HxCDF                 | ND(0.000030) X   | ND(0.0000034) X  | NA              | ND(0.0000016) X   | ND(0.00000075) X |
| 1,2,3,7,8,9-HxCDF                 | ND(0.00000028) X | ND(0.00000020)   | NA              | ND(0.000000099)   | ND(0.000000098)  |
| 2,3,4,6,7,8-HxCDF                 | 0.0000023 J      | 0.00000066 J     | NA              | ND(0.00000035) X  | ND(0.00000023) X |
| HxCDFs (total)                    | ND(0.00020) X    | ND(0.000022) X   | NA              | ND(0.000013) XQJ  | ND(0.0000073) X  |
| 1,2,3,4,6,7,8-HpCDF               | 0.000010         | 0.0000023 J      | NA              | 0.0000033 J       | 0.0000050 J      |
| 1,2,3,4,7,8,9-HpCDF               | 0.0000020 J      | 0.00000063 J     | NA              | ND(0.00000023) X  | 0.00000053 J     |
| HpCDFs (total)                    | ND(0.000025) X   | ND(0.0000047) X  | NA              | ND(0.0000070) X   | 0.000012         |
| OCDF                              | 0.0000090 J      | 0.0000026 J      | NA              | 0.0000057 J       | 0.000011 J       |
| Dioxins                           |                  |                  |                 |                   |                  |
| 2,3,7,8-TCDD                      | ND(0.00000029)   | ND(0.00000034)   | NA              | ND(0.00000025)    | ND(0.00000026)   |
| TCDDs (total)                     | ND(0.00000079) X | ND(0.00000034)   | NA              | ND(0.00000025)    | ND(0.00000026)   |
| 1.2.3.7.8-PeCDD                   | ND(0.00000068) X | ND(0.00000021)   | NA              | ND(0.0000013)     | ND(0.00000014)   |
| PeCDDs (total)                    | ND(0.0000084) X  | ND(0.00000050) X | NA              | ND(0.00000029) X  | ND(0.00000014)   |
| 1,2,3,4,7,8-HxCDD                 | 0.00000049 J     | ND(0.00000027)   | NA              | ND(0.0000014)     | ND(0.00000015)   |
| 1,2,3,6,7,8-HxCDD                 | 0.0000021 J      | ND(0.00000035) X | NA              | 0.00000045 J      | 0.0000064 J      |
| 1,2,3,7,8,9-HxCDD                 | 0.0000016 J      | ND(0.00000036) X | NA              | 0.00000045 QJ     | ND(0.00000014)   |
| HxCDDs (total)                    | ND(0.000022) X   | ND(0.0000031) X  | NA              | ND(0.0000034) XQJ | ND(0.0000027) X  |
| 1,2,3,4,6,7,8-HpCDD               | 0.000017         | 0.0000037 J      | NA              | 0.0000074         | 0.000012         |
| HpCDDs (total)                    | 0.000033         | 0.0000070 J      | NA              | 0.000013          | 0.000020         |
| OCDD                              | 0.000095 J       | 0.000014         | NA              | 0.000069          | 0.00013 J        |
| Total TEQs (WHO TEFs)             | 0.0000065        | 0.0000016        | NA              | 0.0000017         | 0.0000020        |
| Inorganics                        |                  |                  | ·               | ·                 |                  |
| Antimony                          | 0.550 J          | ND(6.50) J       | NA              | ND(8.10) J        | ND(6.50) J       |
| Arsenic                           | 4.10             | 2.90             | NA              | 2.30              | 1.80             |
| Barium                            | 35.9             | 49.8             | NA              | 24.9 B            | 23.0             |
| Beryllium                         | ND(0.320)        | ND(0.310)        | NA              | 0.340 B           | 0.300 B          |
| Cadmium                           | 0.0580 B         | ND(0.540)        | NA              | ND(0.670)         | ND(0.540)        |
| Chromium                          | 6.80             | 6.00             | NA              | 14.6              | 10.4             |
| Cobalt                            | 4.40 B           | 2.40 B           | NA              | 5.40 B            | 5.10 B           |
| Copper                            | 19.8 J           | 6.80 J           | NA              | 16.1              | 11.9             |
| Cyanide                           | 0,240 B          | ND(0.540)        | NA              | ND(0.670)         | ND(0.540)        |
| Lead                              | 22.1             | 3.90             | NA              | 24.5              | 17.1             |
| Mercury                           | 0.0800           | 0.0230 B         | NA              | 0.200 J           | 0.160 J          |
| Nickel                            | 9.30             | 5.70             | NA              | 10.8              | 9.20             |
| Selenium                          | ND(0.570) J      | ND(0.540) J      | NA              | ND(0.670)         | ND(0.540)        |
| Silver                            | ND(1.10)         | ND(1.10)         | NA              | ND(1.30)          | ND(1.10)         |
| Thallium                          | ND(1.10) J       | ND(1.10) J       | NA              | ND(1.30) J        | ND(1.10) J       |
| Tin                               | ND(5.40)         | ND(3.80)         | NA NA           | ND(6.30)          | ND(4.60)         |
| Vanadium                          | 10.1             | 9.00             | NA NA           | 10.2              | 7.80             |
| Zinc                              | 45.1             | 18.3             | NA NA           | 56.5              | 42.1             |
|                                   | L 43.1           | 10.3             | 177             |                   | 74.1             |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-G6<br>10-15    | RAA15-G6<br>12-14 | RAA15-G11<br>0-1   | RAA15-G11<br>1-3     | RAA15-G11<br>3-6 |
|-----------------------------------|----------------------|-------------------|--------------------|----------------------|------------------|
| Parameter Date Collected:         | 03/05/03             | 03/05/03          | 02/13/03           | 02/13/03             | 02/13/03         |
| Volatile Organics                 |                      | ****              |                    |                      |                  |
| 2-Butanone                        | NA                   | ND(0.0062) J      | ND(0.0065) J       | ND(0.0051) J         | NA               |
| Acetone                           | NA                   | ND(0.025) J       | 0.0076 J           | ND(0.021) J          | NA               |
| Benzene                           | NA                   | ND(0.0062)        | ND(0.0065)         | ND(0.0051)           | NA               |
| Carbon Disulfide                  | NA                   | ND(0.0062)        | ND(0.0065)         | ND(0.0051)           | NA               |
| Chloroform                        | NA                   | ND(0.0062)        | ND(0.0065)         | ND(0.0051)           | NA               |
| Ethylbenzene                      | NA                   | ND(0.0062)        | ND(0.0065)         | ND(0.0051)           | NA               |
| Methylene Chloride                | NA                   | ND(0.0062)        | 0.0017 J           | ND(0.0051)           | NA               |
| Toluene                           | NA                   | ND(0.0062)        | ND(0.0065)         | ND(0.0051)           | NA               |
| trans-1,2-Dichloroethene          | NA                   | ND(0.0062)        | ND(0.0065)         | ND(0.0051)           | NA               |
| Trichloroethene                   | NA                   | ND(0.0062)        | ND(0.0065)         | ND(0.0051)           | NA               |
| Vinyl Chloride                    | NA                   | ND(0.012)         | ND(0.013)          | ND(0.010)            | NA               |
| Xylenes (total)                   | NA                   | ND(0.0062)        | 0.0027 J           | ND(0.0051)           | NA               |
| Semivolatile Organics             |                      |                   |                    |                      |                  |
| 1,2,4,5-Tetrachlorobenzene        | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| 1,2,4-Trichlorobenzene            | ND(0.44)             | NA                | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| 1,4-Dichlorobenzene               | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| 1,4-Naphthoguinone                | ND(2.1)              | NA                | ND(2.0)            | ND(1.8)              | ND(2.1)          |
| 2-Methylnaphthalene               | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| 3&4-Methylphenol                  | ND(0.88)             | NA                | ND(0.82)           | ND(0.74)             | ND(0.87)         |
| 3,3'-Dichlorobenzidine            | ND(2.1)              | NA NA             | ND(2.0)            | ND(1.8)              | ND(2.1)          |
| 3-Methylcholanthrene              | ND(2.1)              | NA NA             | ND(2.0)            | ND(1.8)              | ND(2.1)          |
| Acenaphthene                      | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| Acenaphthylene                    | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| Aniline                           | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| Anthracene                        | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| Benzo(a)anthracene                | ND(0.44)             | NA I              | 0.075 J            | ND(0.37)             | ND(0.43)         |
| Benzo(a)pyrene                    | ND(0.44)             | NA I              | 0.073 J            | ND(0.37)             | ND(0.43)         |
| Benzo(b)fluoranthene              | ND(0.44)             | NA NA             | 0.088 J            | ND(0.37)             | ND(0.43)         |
| Benzo(g,h,i)perylene              | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)<br>ND(0.37) |                  |
| Benzo(k)fluoranthene              | ND(0.44)             | NA NA             | 0.097 J            | ND(0.37)<br>ND(0.37) | ND(0.43)         |
| bis(2-Ethylhexyl)phthalate        | ND(0.44)             | NA NA             |                    |                      | ND(0.43)         |
| Chrysene                          | ND(0.44)             | NA NA             | ND(0.41)<br>0.11 J | ND(0.37)             | ND(0.43)         |
| Dibenzo(a,h)anthracene            | ND(0.44)             | NA NA             |                    | ND(0.37)             | ND(0.43)         |
| Dibenzofuran                      | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)             | ND(0.43)         |
|                                   |                      |                   | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| Diethylphthalate                  | ND(0.44)             | NA<br>NA          | ND(0.41)           | 0.11 J               | ND(0.43)         |
| Di-n-Butylphthalate Fluoranthene  | ND(0.44)<br>ND(0.44) | NA<br>NA          | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| Fluorantnene                      | ND(0.44)<br>ND(0.44) | NA NA             | 0.17 J             | ND(0.37)             | ND(0.43)         |
|                                   |                      |                   | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| Hexachlorobenzene                 | ND(0.44)             | NA I              | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| ndeno(1,2,3-cd)pyrene             | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| sophorone                         | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| Naphthalene                       | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| Pentachlorobenzene                | ND(0.44)             | NA                | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| Pentachlorophenol                 | ND(2.1)              | NA NA             | ND(2.0)            | ND(1.8)              | ND(2.1)          |
| Phenanthrene                      | ND(0.44)             | NA                | 0.096 J            | ND(0.37)             | ND(0.43)         |
| Phenol                            | ND(0.44)             | NA NA             | ND(0.41)           | ND(0.37)             | ND(0.43)         |
| Pyrene                            | ND(0.44)             | NA                | 0.13 J             | ND(0.37)             | ND(0.43)         |

### ${\small \mathsf{TABLE}}\ 2\\ \mathsf{PRE-DESIGN}\ \mathsf{INVESTIGATION}\ \mathsf{SOIL}\ \mathsf{SAMPLING}\ \mathsf{DATA}\ \mathsf{FOR}\ \mathsf{APPENDIX}\ \mathsf{IX+3}\ \mathsf{CONSTITUENTS}\\ \\$

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-G6<br>10-15                     | RAA15-G6<br>12-14 | RAA15-G11<br>0-1 | RAA15-G11<br>1-3  | RAA15-G11<br>3-6   |
|-----------------------------------|---------------------------------------|-------------------|------------------|-------------------|--------------------|
| Parameter Date Collected:         | 03/05/03                              | 03/05/03          | 02/13/03         | 02/13/03          | 02/13/03           |
| Furans                            | NEG COCCOSTO                          |                   | 0.0000000        | 0.0000040.1/      | L ND/O COCCOCO V/I |
| 2,3,7,8-TCDF                      | ND(0.00000018)                        | NA NA             | 0.0000092 Y      | 0.0000013 Y       | ND(0.00000030) XJ  |
| TCDFs (total)                     | ND(0.00000012) X                      | NA NA             | 0.000051         | 0.0000013         | ND(0.00000030) XJ  |
| 1,2,3,7,8-PeCDF                   | ND(0.000000094)                       | NA NA             | ND(0.0000027) X  | ND(0.00000052) X  | ND(0.00000032) XJ  |
| 2,3,4,7,8-PeCDF                   | ND(0.000000090)                       | NA<br>NA          | ND(0.0000027) X  | ND(0.00000025) X  | ND(0.00000030) XJ  |
| PeCDFs (total)                    | ND(0.000000092)                       | NA NA             | 0.0000049        | ND(0.00000052) X  | ND(0.00000032) XJ  |
| 1,2,3,4,7,8-HxCDF                 | ND(0.000000056)                       | NA NA             | 0.0000039 J      | ND(0.00000043) X  | ND(0.00000024) X   |
| 1,2,3,6,7,8-HxCDF                 | ND(0.000000052)                       | NA                | ND(0.0000016) X  | ND(0.00000016) X  | ND(0.00000016) X   |
| 1,2,3,7,8,9-HxCDF                 | ND(0.000000066)                       | NA                | ND(0.00000052) X | ND(0.000000046) X | ND(0.00000012) X   |
| 2,3,4,6,7,8-HxCDF                 | ND(0.000000060)                       | NA                | ND(0.0000016) X  | ND(0.00000011) X  | ND(0.00000017) X   |
| HxCDFs (total)                    | ND(0.000000058)                       | NA                | 0.000024         | ND(0.00000043) X  | ND(0.00000024) X   |
| 1,2,3,4,6,7,8-HpCDF               | ND(0.000000097)                       | NA                | 0.000014         | ND(0.0000038)     | ND(0.00000016) X   |
| 1,2,3,4,7,8,9-HpCDF               | ND(0.00000012)                        | NA                | ND(0.00000070) X | ND(0.000000073)   | ND(0.00000012) X   |
| HpCDFs (total)                    | ND(0.00000011)                        | NA                | 0.000025         | ND(0.00000038)    | ND(0.00000016)     |
| OCDF                              | 0.00000039 J                          | NA                | 0.000013         | ND(0.00000041)    | ND(0.00000029)     |
| Dioxins                           |                                       |                   |                  |                   |                    |
| 2,3,7,8-TCDD                      | ND(0.00000023)                        | NA                | ND(0.00000022) X | ND(0.000000056)   | ND(0.00000020) XJ  |
| TCDDs (total)                     | ND(0.00000023)                        | NA                | ND(0.00000051) X | ND(0.000000068) X | ND(0.00000020) XJ  |
| 1,2,3,7,8-PeCDD                   | ND(0.00000011)                        | NA                | ND(0.00000030) X | ND(0.00000015)    | ND(0.00000022)     |
| PeCDDs (total)                    | ND(0.00000011)                        | NA                | ND(0.00000034) X | ND(0.00000027) X  | ND(0.00000066) X   |
| 1,2,3,4,7,8-HxCDD                 | ND(0.00000011)                        | NA                | ND(0.00000024) X | ND(0.00000011) X  | ND(0.00000017) X   |
| 1,2,3,6,7,8-HxCDD                 | ND(0.000000099)                       | NA                | ND(0.00000056) X | ND(0.00000011) X  | ND(0.00000014) X   |
| 1,2,3,7,8,9-HxCDD                 | ND(0:00000010)                        | NA                | ND(0.00000052) X | ND(0.00000015) X  | ND(0.00000014) X   |
| HxCDDs (total)                    | ND(0.00000030) X                      | NA                | ND(0.0000018) X  | ND(0.00000016) X  | ND(0.00000017) X   |
| 1,2,3,4,6,7,8-HpCDD               | ND(0.00000027) X                      | NA                | 0.000012         | ND(0.00000045) X  | ND(0.00000055) X   |
| HpCDDs (total)                    | ND(0.00000045) X                      | NA                | 0.000021         | ND(0.00000045) X  | ND(0.00000055) X   |
| OCDD                              | 0.0000021 QJ                          | NA                | 0.00012          | ND(0.0000035) X   | ND(0.0000042) X    |
| Total TEQs (WHO TEFs)             | 0.00000023                            | NA                | 0.000028         | 0.00000037        | 0.0000037          |
| Inorganics                        | · · · · · · · · · · · · · · · · · · · |                   | 4                |                   |                    |
| Antimony                          | ND(8.00) J                            | NA                | ND(7.50)         | ND(6.80)          | ND(7.90)           |
| Arsenic                           | 2.00                                  | NA                | 4.50             | 2.30              | 2.20               |
| Barium                            | 19.3 B                                | NA                | 53.5             | 29.7              | 45.4               |
| Beryllium                         | 0.320 B                               | NA                | 0.710            | 0.590             | 0.840              |
| Cadmium                           | ND(0.660)                             | NA                | 0.590 B          | 0.380 B           | 0.430 B            |
| Chromium                          | 6.90                                  | NA                | 15.6             | 12.6              | 11.5               |
| Cobalt                            | 5.80 B                                | NA                | 8.70             | 7.00              | 8.30               |
| Copper                            | 6.1                                   | NA                | 16.9             | 13.8              | 11.1               |
| Cyanide                           | ND(0.660)                             | NA                | ND(0.620)        | ND(0.560)         | ND(0.660)          |
| Lead                              | 3.60                                  | NA                | 31.3             | 12.7              | 6.60               |
| Mercury                           | ND(0.0440) J                          | NA                | 0.160            | 0.150             | 0.0590             |
| Nickel                            | 10.3                                  | NA                | 14.3             | 12.5              | 14.9               |
| Selenium                          | ND(0.660)                             | NA NA             | ND(0.620)        | ND(0.560)         | ND(0.660)          |
| Silver                            | ND(1.30)                              | NA NA             | ND(1.30)         | ND(1.10)          | ND(1.30)           |
| Thallium                          | ND(1.30) J                            | NA                | 0.770 B          | 0.750 B           | 0.880 B            |
| Tin                               | ND(4.30)                              | NA NA             | ND(7.20)         | ND(5.90)          | ND(5.40)           |
| Vanadium                          | 8.30                                  | NA NA             | 16.3             | 9.90              | 12.7               |
| Zinc                              | 41.7                                  | NA NA             | 70.0             | 47.7              | 58.4               |
| L-11 FU                           | 71./                                  | 14/7              | 1 70.0           | 7;.1              | 30.4               |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | RAA15-G11<br>4-6<br>02/13/03 | RAA15-G13<br>0-1<br>02/13/03 | RAA15-G15<br>6-10<br>02/13/03 | RAA15-G15<br>8-10<br>02/13/03 | RAA15-G17<br>0-1<br>02/17/03 |
|----------------------------------------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------|
| Volatile Organics                                              |                              |                              | 02710100                      | OZITOIOS                      | 02/1//03                     |
| 2-Butanone                                                     | ND(0.0057) J                 | ND(0.0063) J                 | NA                            | ND(0.0058) J                  | ND(0.0066) J                 |
| Acetone                                                        | ND(0.023) J                  | ND(0.025) J                  | NA NA                         | ND(0.0038) J                  | ND(0.006) J                  |
| Benzene                                                        | ND(0.0057)                   | ND(0.0063)                   | NA NA                         | ND(0.023)3                    | ND(0.026) 3                  |
| Carbon Disulfide                                               | ND(0.0057)                   | ND(0.0063)                   | NA NA                         | ND(0.0058)                    | ND(0.0066)                   |
| Chloroform                                                     | ND(0.0057)                   | ND(0.0063)                   | NA NA                         | ND(0.0058)                    | ND(0.0066)                   |
| Ethylbenzene                                                   | ND(0.0057)                   | ND(0.0063)                   | NA NA                         | ND(0.0058)                    | ND(0.0066)                   |
| Methylene Chloride                                             | ND(0.0057)                   | ND(0.0063)                   | NA NA                         | ND(0.0058)                    | ND(0.0066)                   |
| Toluene                                                        | ND(0.0057)                   | ND(0.0063)                   | NA NA                         | ND(0.0058)                    | ND(0.0066)                   |
| trans-1,2-Dichloroethene                                       | ND(0.0057)                   | ND(0.0063)                   | NA NA                         | ND(0.0058)                    | ND(0.0066)                   |
| Trichloroethene                                                | ND(0.0057)                   | ND(0.0063)                   | NA NA                         | ND(0.0058)                    | ND(0.0066)                   |
| Vinyl Chloride                                                 | ND(0.011)                    | ND(0.013)                    | NA NA                         | ND(0.012)                     | ND(0.013)                    |
| Xylenes (total)                                                | ND(0.0057)                   | ND(0.0063)                   | NA NA                         | ND(0.0058)                    | ND(0.0066)                   |
| Semivolatile Organics                                          |                              | (                            |                               | 112(0.0000)                   | 142(0.0000)                  |
| 1,2,4,5-Tetrachlorobenzene                                     | NA I                         | ND(0.42)                     | ND(0.43)                      | NA I                          | ND(0.46)                     |
| 1,2,4-Trichlorobenzene                                         | NA NA                        | ND(0.42)                     | ND(0.43)                      | T NA                          | ND(0.46)                     |
| 1,4-Dichlorobenzene                                            | NA                           | ND(0.42)                     | ND(0.43)                      | NA I                          | ND(0.46)                     |
| 1,4-Naphthoquinone                                             | NA NA                        | ND(2.1)                      | ND(2.1)                       | T NA T                        | ND(2.3)                      |
| 2-Methylnaphthalene                                            | NA T                         | ND(0.42)                     | ND(0.43)                      | NA NA                         | ND(0.46)                     |
| 3&4-Methylphenol                                               | NA I                         | ND(0.85)                     | ND(0.86)                      | T NA                          | ND(0.93)                     |
| 3,3'-Dichlorobenzidine                                         | NA                           | ND(2.1)                      | ND(2.1)                       | T NA T                        | ND(2.3)                      |
| 3-Methylcholanthrene                                           | NA                           | ND(2.1)                      | ND(2.1)                       | NA I                          | ND(2.3)                      |
| Acenaphthene                                                   | NA                           | ND(0.42)                     | ND(0.43)                      | T NA                          | ND(0.46)                     |
| Acenaphthylene                                                 | NA                           | 0.061 J                      | ND(0.43)                      | T NA                          | 0.065 J                      |
| Aniline                                                        | NA NA                        | ND(0.42)                     | ND(0.43)                      | T NA                          | ND(0.46)                     |
| Anthracene                                                     | NA NA                        | 0.053 J                      | ND(0.43)                      | NA NA                         | ND(0.46)                     |
| Benzo(a)anthracene                                             | NA I                         | 0.20 J                       | ND(0.43)                      | NA NA                         | 0.21 J                       |
| Benzo(a)pyrene                                                 | NA NA                        | 0.23 J                       | ND(0.43)                      | NA NA                         | 0.24 J                       |
| Benzo(b)fluoranthene                                           | NA NA                        | 0.23 J                       | ND(0.43)                      | NA NA                         | 0.25 J                       |
| Benzo(g,h,i)perylene                                           | NA NA                        | 0.081 J                      | ND(0.43)                      | NA NA                         | 0.086 J                      |
| Benzo(k)fluoranthene                                           | NA                           | 0.27 J                       | ND(0.43)                      | NA NA                         | 0.000 J                      |
| bis(2-Ethylhexyl)phthalate                                     | NA                           | ND(0.42)                     | ND(0.43)                      | NA I                          | ND(0.46)                     |
| Chrysene                                                       | NA                           | 0.28 J                       | ND(0.43)                      | NA NA                         | 0.28 J                       |
| Dibenzo(a,h)anthracene                                         | NA                           | ND(0.42)                     | ND(0.43)                      | NA NA                         | ND(0.46)                     |
| Dibenzofuran                                                   | NA                           | ND(0.42)                     | ND(0.43)                      | NA NA                         | ND(0.46)                     |
| Diethylphthalate                                               | NA                           | ND(0.42)                     | ND(0.43)                      | T NA                          | ND(0.46)                     |
| Di-n-Butylphthalate                                            | NA                           | ND(0.42)                     | 0.062 J                       | NA NA                         | ND(0.46)                     |
| Fluoranthene                                                   | NA                           | 0.52                         | ND(0.43)                      | NA NA                         | 0.49                         |
| Fluorene                                                       | NA                           | ND(0.42)                     | ND(0.43)                      | NA NA                         | ND(0.46)                     |
| Hexachlorobenzene                                              | NA                           | ND(0.42)                     | ND(0.43)                      | NA NA                         | ND(0.46)                     |
| Indeno(1,2,3-cd)pyrene                                         | NA                           | 0.10 J                       | ND(0.43)                      | NA NA                         | 0.11 J                       |
| Isophorone                                                     | NA                           | ND(0.42)                     | ND(0.43)                      | NA NA                         | ND(0.46)                     |
| Naphthalene                                                    | NA                           | ND(0.42)                     | ND(0.43)                      | NA NA                         | ND(0.46)                     |
| Pentachlorobenzene                                             | NA                           | ND(0.42)                     | ND(0.43)                      | NA NA                         | ND(0.46)                     |
| Pentachlorophenol                                              | NA                           | ND(2.1)                      | ND(2.1)                       | NA                            | ND(2.3)                      |
| Phenanthrene                                                   | NA NA                        | 0.25 J                       | ND(0.43)                      | NA NA                         | 0.22 J                       |
| Phenol                                                         | NA                           | ND(0.42)                     | ND(0.43)                      | NA NA                         | ND(0.46)                     |
| Pyrene                                                         | NA                           | 0.33 J                       | ND(0.43)                      | NA I                          | 0.34 J                       |

### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-G11<br>4-6 | RAA15-G13<br>0-1 | RAA15-G15<br>6-10 | RAA15-G15<br>8-10 | RAA15-G17<br>0-1 |
|-----------------------------------|------------------|------------------|-------------------|-------------------|------------------|
| Parameter Date Collected:         | 02/13/03         | 02/13/03         | 02/13/03          | 02/13/03          | 02/17/03         |
| Furans                            |                  |                  |                   |                   |                  |
| 2,3,7,8-TCDF                      | NA               | 0.000025 Y       | 0.0000018 Y       | NA                | 0.0000036        |
| TCDFs (total)                     | NA               | 0.00010          | 0.0000040         | NA                | ND(0.000016) X   |
| 1,2,3,7,8-PeCDF                   | NA               | 0.0000073        | ND(0.00000041)    | NA                | ND(0.00000066) X |
| 2,3,4,7,8-PeCDF                   | NA               | 0.0000069        | ND(0.00000016)    | NA                | ND(0.00000045) X |
| PeCDFs (total)                    | NA               | 0.000031         | ND(0.00000041)    | NA                | ND(0.000011) X   |
| 1,2,3,4,7,8-HxCDF                 | NA               | 0.0000066        | ND(0.00000026) X  | NA                | 0.00000067 J     |
| 1,2,3,6,7,8-HxCDF                 | NA               | 0.0000034 J      | ND(0.000000071)   | NA                | ND(0.0000014) X  |
| 1,2,3,7,8,9-HxCDF                 | NA               | ND(0.00000021)   | ND(0.000000097)   | NA                | ND(0.00000015)   |
| 2,3,4,6,7,8-HxCDF                 | NA               | ND(0.0000030) X  | ND(0.000000084)   | NA                | ND(0.00000023) X |
| HxCDFs (total)                    | NA               | 0.000056         | ND(0.00000026) X  | NA                | ND(0.0000092) X  |
| 1,2,3,4,6,7,8-HpCDF               | NA               | 0.000049         | ND(0.00000035) X  | NA                | 0.0000030 J      |
| 1,2,3,4,7,8,9-HpCDF               | NA               | ND(0.0000017) X  | ND(0.00000014)    | NA                | ND(0.00000022)   |
| HpCDFs (total)                    | NA               | 0.000093         | ND(0.00000035) X  | NA                | 0.0000058 J      |
| OCDF                              | NA               | 0.000055         | ND(0.00000026)    | NA                | 0.0000036 J      |
| Dioxins                           |                  |                  |                   |                   |                  |
| 2,3,7,8-TCDD                      | NA               | ND(0.00000018) X | ND(0.00000011) X  | NA                | ND(0.00000045)   |
| TCDDs (total)                     | NA               | ND(0.00000059) X | ND(0.00000011) X  | NA                | ND(0.00000045)   |
| 1,2,3,7,8-PeCDD                   | NA               | ND(0.00000053) X | ND(0.00000026)    | NA                | ND(0.00000022)   |
| PeCDDs (total)                    | NA               | ND(0.00000088) X | ND(0.00000047) X  | NA                | ND(0.00000022)   |
| 1,2,3,4,7,8-HxCDD                 | NA               | ND(0.0000053) X  | ND(0.00000019)    | NA                | ND(0.00000022)   |
| 1,2,3,6,7,8-HxCDD                 | NA               | ND(0.0000021) X  | ND(0.0000017)     | NA                | ND(0.00000021)   |
| 1,2,3,7,8,9-HxCDD                 | NA               | ND(0.0000012) X  | ND(0.00000017)    | NA                | ND(0.00000022)   |
| HxCDDs (total)                    | NA               | 0.0000084        | ND(0.00000019) X  | NA                | 0.00000041 J     |
| 1,2,3,4,6,7,8-HpCDD               | NA               | 0.000047         | ND(0.0000043)     | NA                | 0.0000033 J      |
| HpCDDs (total)                    | NA               | 0.000082         | ND(0.00000043) X  | NA                | 0.0000057 J      |
| OCDD                              | NA               | 0.00053          | ND(0.0000028) X   | NA                | 0.000028         |
| Total TEQs (WHO TEFs)             | NA               | 0.0000090        | 0.0000047         | NA                | 0.0000011        |
| Inorganics                        |                  |                  |                   |                   |                  |
| Antimony                          | NA               | ND(7.70)         | ND(7.80)          | NA                | ND(8.50) J       |
| Arsenic                           | NA               | 4,40             | 1.80              | NA                | 5.90             |
| Barium                            | NA               | 39.8             | 23.2 B            | NA                | 70.5             |
| Beryllium                         | NA               | 0.760            | 0.670             | NA                | ND(0.690)        |
| Cadmium                           | NA               | 0.580 B          | 0.350 B           | NA                | 0.800            |
| Chromium                          | NA               | 23.2             | 24.8              | NA                | 45.2             |
| Cobalt                            | NA               | 6.40 B           | 6.50              | NA                | 9.7              |
| Copper                            | NA               | 20.9             | 14.7              | NA                | 40.3             |
| Cyanide                           | NA               | 0.260 B          | 0.240 B           | NA                | ND(0.310)        |
| Lead                              | NA               | 56.2             | 14.1              | NA                | 66.7             |
| Mercury                           | NA               | 0.250            | 0.150             | NA                | 0.490            |
| Nickel                            | NA               | 12.5             | 11.9              | NA                | 18.0             |
| Selenium                          | NA               | 0.840            | 0.440 B           | NA                | 0.950            |
| Silver                            | NA               | ND(1.30)         | ND(1.30)          | NA                | ND(1.40)         |
| Thailium                          | NA               | ND(1.30)         | 0.790 B           | NA                | 1.90             |
| Tin                               | NA               | ND(8.00)         | ND(6.50)          | NA                | 10.3 B           |
| Vanadium                          | NA               | 15.1             | 8.80              | NA                | 18.8             |
| Zinc                              | NA               | 79.4             | 49.8              | NA                | 109              |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-G20<br>0-1     | RAA15-G20<br>1-3     | RAA15-G20<br>10-15  |
|-----------------------------------|----------------------|----------------------|---------------------|
| Parameter Date Collected:         | 02/14/03             | 02/14/03             | 02/14/03            |
| Volatile Organics                 | 110 (0.0075)         |                      |                     |
| 2-Butanone                        | ND(0.0075) J         | ND(0.0061) J         | NA NA               |
| Acetone                           | ND(0.030) J          | ND(0.025) J          | NA NA               |
| Benzene                           | ND(0.0075)           | ND(0.0061)           | NA                  |
| Carbon Disulfide                  | ND(0.0075)           | ND(0.0061)           | NA NA               |
| Chloroform                        | ND(0.0075)           | ND(0.0061)           | NA                  |
| Ethylbenzene                      | ND(0.0075)           | ND(0.0061)           | NA                  |
| Methylene Chloride                | ND(0.0075)           | ND(0.0061)           | NA                  |
| Toluene                           | ND(0.0075)           | ND(0.0061)           | NA                  |
| trans-1,2-Dichloroethene          | ND(0.0075)           | ND(0.0061)           | NA                  |
| Trichloroethene                   | ND(0.0075)           | ND(0.0061)           | NA                  |
| Vinyl Chloride                    | ND(0.015)            | ND(0.012)            | NA                  |
| Xylenes (total)                   | ND(0.0075)           | ND(0.0061)           | NA                  |
| Semivolatile Organics             |                      |                      |                     |
| 1,2,4,5-Tetrachlorobenzene        | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| 1,2,4-Trichlorobenzene            | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| 1,4-Dichlorobenzene               | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| 1,4-Naphthoquinone                | ND(2.3)              | ND(1.9)              | ND(20) [ND(21) J]   |
| 2-Methylnaphthalene               | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| 3&4-Methylphenol                  | ND(0.94)             | ND(0.78)             | ND(8.1) [ND(8.6)]   |
| 3,3'-Dichlorobenzidine            | ND(2.3)              | ND(1.9)              | ND(20) [ND(21) J]   |
| 3-Methylcholanthrene              | ND(2.3)              | ND(1.9)              | ND(20) [ND(21) J]   |
| Acenaphthene                      | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Acenaphthylene                    | 0.089 J              | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Aniline                           | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Anthracene                        | 0.062 J              | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Benzo(a)anthracene                | 0.27 J               | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Benzo(a)pyrene                    | 0.33 J               | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Benzo(b)fluoranthene              | 0.32 J               | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Benzo(g,h,i)perylene              | 0.12 J               | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Benzo(k)fluoranthene              | 0.38 J               | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| bis(2-Ethylhexyl)phthalate        | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Chrysene                          | 0.39 J               | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Dibenzo(a,h)anthracene            | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Dibenzofuran                      | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(8.6) J] |
| Diethylphthalate                  | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Di-n-Butylphthalate               | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Fluoranthene                      | 0.65                 | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Fluorene                          | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Hexachlorobenzene                 | ND(0.47)             | ND(0.39)             |                     |
| Indeno(1,2,3-cd)pyrene            | 0.15 J               | ND(0.39)<br>ND(0.39) | ND(4.1) [ND(4.3) J] |
| Isophorone                        | ND(0.47)             |                      | ND(4.1) [ND(4.3) J] |
| Naphthalene                       | ND(0.47)<br>ND(0.47) | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Pentachlorobenzene                |                      | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Pentachlorophenol                 | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3) J] |
|                                   | ND(2.3)              | ND(1.9)              | ND(20) [ND(21)]     |
| Phenanthrene Phenanthrene         | 0.29 J               | ND(0.39)             | ND(4.1) [ND(4.3) J] |
| Phenol                            | ND(0.47)             | ND(0.39)             | ND(4.1) [ND(4.3)]   |
| Pyrene                            | 0.45 J               | ND(0.39)             | ND(4.1) [ND(4.3) J] |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | 0-1                      | RAA15-G20<br>1-3                    | RAA15-G20<br>10-15                                                 |
|-----------------------------------|--------------------------|-------------------------------------|--------------------------------------------------------------------|
| Parameter Date Collected:         | 02/14/03                 | 02/14/03                            | 02/14/03                                                           |
| Furans                            | 0.000004.37              | 0.000004734                         |                                                                    |
| 2,3,7,8-TCDF<br>TCDFs (total)     | 0.000034 Y               | 0.0000017 Y                         | ND(0.00000078) [ND(0.00000055)]                                    |
| 1,2,3,7,8-PeCDF                   | 0.00015                  | 0.0000019                           | ND(0.00000078) [ND(0.00000055)]                                    |
| 2,3,4,7,8-PeCDF                   | 0.000012                 | ND(0.00000057) X                    | ND(0.00000043) X [ND(0.00000022)]                                  |
| PeCDFs (total)                    | 0.000012                 | ND(0.00000026) X                    | ND(0.00000031) X [ND(0.00000021)]                                  |
| 1,2,3,4,7,8-HxCDF                 | 0.000094                 | ND(0.00000057)                      | ND(0.00000043) [ND(0.00000022)]                                    |
| 1,2,3,6,7,8-HxCDF                 | 0.0000099<br>0.0000064 J | ND(0.00000061) X                    | ND(0.0000034) X [ND(0.0000039) X]                                  |
| 1,2,3,7,8,9-HxCDF                 | ND(0.0000043)            | ND(0.00000020) X<br>ND(0.000000072) | ND(0.00000015) [ND(0.00000021) X]                                  |
| 2,3,4,6,7,8-HxCDF                 |                          | ND(0.000000072)                     | ND(0.00000022) X [ND(0.00000017)]                                  |
| HxCDFs (total)                    | 0.0000053 J              |                                     | ND(0.00000020) X [ND(0.00000020) X]                                |
| 1,2,3,4,6,7,8-HpCDF               | 0.00014<br>0.00016       | ND(0.00000061)                      | ND(0.00000034) [ND(0.00000039)]                                    |
| 1,2,3,4,7,8,9-HpCDF               | 0.000038 J               | ND(0.0000022) X<br>ND(0.00000014) X | ND(0.00000065) X [ND(0.00000063) X]                                |
| HpCDFs (total)                    | 0.00030                  | ND(0.0000014) X                     | ND(0.00000022) [ND(0.00000020)]                                    |
| OCDF                              | 0.00030                  | ND(0.0000022)<br>ND(0.0000024)      | ND(0.0000065) [ND(0.0000063)]                                      |
| Dioxins                           | 0.00013                  | 140(0.0000024)                      | ND(0.0000015) X [ND(0.0000015)]                                    |
| 2,3,7,8-TCDD                      | ND(0.00000045)           | ND(0.000000077)                     | ND/0 00000000 V ND/0 00000000                                      |
| TCDDs (total)                     | 0.0000033                | ND(0.000000077)                     | ND(0.00000030) X [ND(0.00000023)]                                  |
| 1,2,3,7,8-PeCDD                   | ND(0.0000035) X          | ND(0.00000017)                      | ND(0.00000030) [ND(0.00000023)]                                    |
| PeCDDs (total)                    | ND(0.0000093) X          | ND(0.00000018)                      | ND(0.00000057) [ND(0.00000040)]                                    |
| 1,2,3,4,7,8-HxCDD                 | ND(0.0000012) X          | ND(0.00000042)                      | ND(0.00000057) [ND(0.00000040)]                                    |
| 1,2,3,6,7,8-HxCDD                 | 0.0000056 J              | ND(0.00000092) X                    | ND(0.00000035) [ND(0.00000025)]<br>ND(0.00000031) [ND(0.00000023)] |
| 1,2,3,7,8,9-HxCDD                 | ND(0.0000018) X          | ND(0.00000011) X                    | ND(0.00000031) [ND(0.00000023)]                                    |
| HxCDDs (total)                    | 0.000036                 | ND(0.00000013)                      | ND(0.0000035) [ND(0.0000032)]                                      |
| 1,2,3,4,6,7,8-HpCDD               | 0.00011                  | ND(0.0000019) X                     | ND(0.0000033) [ND(0.0000031)]<br>ND(0.0000015) X [ND(0.0000010) X] |
| HpCDDs (total)                    | 0.00017                  | ND(0.0000019) X                     | ND(0.0000015) X [ND(0.0000010) X]                                  |
| OCDD                              | 0.0011                   | 0.000021                            | 0.000017 J [ND(0.000015)]                                          |
| Total TEQs (WHO TEFs)             | 0.000016                 | 0.000021                            | 0.00000067 [0.00000049]                                            |
| Inorganics                        | 0.000010                 | 0.00000047                          | 0.0000007 [0.0000049]                                              |
| Antimony                          | ND(7.10) J               | ND(7.10) J                          | ND(18.5) J [ND(19.6) J]                                            |
| Arsenic                           | 6.90                     | 2.90                                | 8.70 [8.80]                                                        |
| Barium                            | 89.9                     | 38.7                                | 62.5 [65.7]                                                        |
| Beryllium                         | ND(0.880)                | ND(0.500)                           | ND(0.980) [ND(1.00)]                                               |
| Cadmium                           | 0.900                    | 0.400 B                             | 1.10 B [1.10 B]                                                    |
| Chromium                          | 65.9                     | 12.1                                | 16.5 [17.0]                                                        |
| Cobalt                            | 12.1                     | 7.70                                | 13.9 B [14.7 B]                                                    |
| Copper                            | 55.2                     | 15.6                                | 30.1 [29.1]                                                        |
| Cyanide                           | 0.270 B                  | ND(0.590)                           | ND(1.50) [ND(1.60)]                                                |
| Lead                              | 83.1                     | 14.2                                | 8.10 [8.50]                                                        |
| Mercury                           | 0.830                    | 0.170                               | 0.0990 B [0.0870 B]                                                |
| Nickel                            | 20.9                     | 13.4                                | 27.0 [27.6]                                                        |
| Selenium                          | 0.720                    | ND(0.590)                           | 1.50 B [2.30]                                                      |
| Silver                            | 0.180 B                  | ND(1.20)                            | ND(3.10) [ND(3.30)]                                                |
| Thallium                          | 2.30                     | 1.30                                | ND(3.10) [ND(3.30)]                                                |
| Tin                               | ND(11.3)                 | ND(5.80)                            | ND(12.4) [ND(14.4)]                                                |
| Vanadium                          | 20.0                     | 11.1                                | 18.0 [19.4]                                                        |
| Zinc                              | 122                      | 51.5                                | 87.9 [91.3]                                                        |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:                 | RAA15-G20              | RAA15-G22    | RAA15-G22 | RAA15-H2     | RAA15-H8     |
|----------------------------|------------------------|--------------|-----------|--------------|--------------|
| Sample Depth(Feet):        | 12-15                  | 6-8          | 6-10      | 0-1          | 0-1          |
| Parameter Date Collected:  | 02/14/03               | 02/19/03     | 02/19/03  | 03/05/03     | 02/13/03     |
| Volatile Organics          |                        | <u> </u>     |           |              |              |
| 2-Butanone                 | 0.0094 J [0.010 J]     | ND(0.0059) J | NA        | ND(0.0049) J | ND(0.0045) J |
| Acetone                    | 0.033 J [0.037 J]      | ND(0.024) J  | NA        | ND(0.019) J  | ND(0.018) J  |
| Benzene                    | ND(0.0058) [ND(0.018)] | ND(0.0059)   | NA        | ND(0.0049)   | ND(0.0045)   |
| Carbon Disulfide           | ND(0.0058) [ND(0.018)] | ND(0.0059)   | NA        | ND(0.0049)   | ND(0.0045)   |
| Chloroform                 | ND(0.0058) [ND(0.018)] | ND(0.0059)   | NA        | ND(0.0049)   | ND(0.0045)   |
| Ethylbenzene               | ND(0.0058) [ND(0.018)] | ND(0.0059)   | NA NA     | ND(0.0049)   | ND(0.0045)   |
| Methylene Chloride         | 0.0015 J [0.0038 J]    | ND(0.0059)   | NA        | ND(0.0049)   | ND(0.0045)   |
| Toluene                    | ND(0.0058) [ND(0.018)] | ND(0.0059)   | NA        | ND(0.0049)   | ND(0.0045)   |
| trans-1,2-Dichloroethene   | ND(0.0058) [ND(0.018)] | ND(0.0059)   | <u>NA</u> | ND(0.0049)   | ND(0.0045)   |
| Trichloroethene            | ND(0.0058) [ND(0.018)] | ND(0.0059)   | NA        | ND(0.0049)   | ND(0.0045)   |
| Vinyl Chloride             | ND(0.012) [ND(0.036)]  | ND(0.012)    | NA        | ND(0.0097)   | ND(0.0091)   |
| Xylenes (total)            | ND(0.0058) [ND(0.018)] | ND(0.0059)   | NA        | ND(0.0049)   | ND(0.0045)   |
| Semivolatile Organics      |                        |              |           |              |              |
| 1,2,4,5-Tetrachlorobenzene | NA                     | NA           | ND(0.39)  | ND(0.39)     | ND(0.39)     |
| 1,2,4-Trichlorobenzene     | NA                     | NA           | ND(0.39)  | ND(0.39)     | ND(0.39)     |
| 1,4-Dichlorobenzene        | NA                     | NA           | ND(0.39)  | ND(0.39)     | ND(0.39)     |
| 1,4-Naphthoquinone         | NA NA                  | NA           | ND(1.9)   | ND(1.9)      | 0.042 J      |
| 2-Methylnaphthalene        | NA                     | NA           | ND(0.39)  | 0.076 J      | ND(0.39)     |
| 3&4-Methylphenol           | NA                     | NA           | ND(0.77)  | ND(0.77)     | ND(0.78)     |
| 3,3'-Dichlorobenzidine     | NA                     | NA           | ND(1.9)   | ND(1.9)      | ND(1.9)      |
| 3-Methylcholanthrene       | NA                     | NA           | ND(1.9)   | ND(1.9)      | ND(1.9)      |
| Acenaphthene               | NA                     | . NA         | ND(0.39)  | 0.086 J      | ND(0.39)     |
| Acenaphthylene             | NA                     | NA           | ND(0.39)  | 0.43         | ND(0.39)     |
| Aniline                    | NA                     | . NA         | ND(0.39)  | ND(0.39)     | ND(0.39)     |
| Anthracene                 | NA                     | NA           | ND(0.39)  | 0.40         | ND(0.39)     |
| Benzo(a)anthracene         | NA                     | NA NA        | ND(0.39)  | 1.0          | 0.084 J      |
| Benzo(a)pyrene             | NA                     | NA NA        | ND(0.39)  | 1.3          | 0.099 J      |
| Benzo(b)fluoranthene       | NA                     | NA NA        | ND(0.39)  | 1.2          | 0.090 J      |
| Benzo(g,h,i)perylene       | NA                     | NA           | ND(0.39)  | 0.35 J       | ND(0.39)     |
| Benzo(k)fluoranthene       | NA                     | NA NA        | ND(0.39)  | 1.1          | 0.10 J       |
| bis(2-Ethylhexyl)phthalate | NA                     | NA NA        | ND(0.39)  | ND(0.39)     | ND(0.39)     |
| Chrysene                   | NA                     | NA NA        | ND(0.39)  | 1.4          | 0.11 J       |
| Dibenzo(a,h)anthracene     | NA                     | NA           | ND(0.39)  | 0.15 J       | ND(0.39)     |
| Dibenzofuran               | NA                     | NA           | ND(0.39)  | 0.061 J      | ND(0.39)     |
| Diethylphthalate           | NA                     | NA           | ND(0.39)  | ND(0.39)     | ND(0.39)     |
| Di-n-Butylphthalate        | NA                     | NA           | ND(0.39)  | ND(0.39)     | ND(0.39)     |
| Fluoranthene               | NA                     | NA           | ND(0.39)  | 2.5          | 0.22 J       |
| Fluorene                   | NA                     | NA           | ND(0.39)  | 0.12 J       | ND(0.39)     |
| Hexachlorobenzene          | NA                     | NA NA        | ND(0.39)  | ND(0.39)     | ND(0.39)     |
| Indeno(1,2,3-cd)pyrene     | NA                     | NA NA        | ND(0.39)  | 0.41         | ND(0.39)     |
| Isophorone                 | NA                     | NA           | ND(0.39)  | ND(0.39)     | ND(0.39)     |
| Naphthalene                | NA                     | NA NA        | ND(0.39)  | 0.11 J       | ND(0.39)     |
| Pentachlorobenzene         | NA NA                  | NA NA        | ND(0.39)  | ND(0.39)     | ND(0.39)     |
| Pentachlorophenol          | NA NA                  | NA           | ND(1.9)   | ND(1.9)      | ND(1.9)      |
| Phenanthrene               | NA NA                  | NA NA        | ND(0.39)  | 1.4          | 0.11 J       |
| Phenol                     | NA NA                  | NA NA        | ND(0.39)  | ND(0.39)     | ND(0.39)     |
| Pyrene                     | NA NA                  | NA NA        | ND(0.39)  | 1.7          | 0.14 J       |

### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | RAA15-G20<br>12-15 | RAA15-G22<br>6-8 | RAA15-G22<br>6-10                | RAA15-H2<br>0-1                   | RAA15-H8<br>0-1            |
|----------------------------------------------------------------|--------------------|------------------|----------------------------------|-----------------------------------|----------------------------|
|                                                                | 02/14/03           | 02/19/03         | 02/19/03                         | 03/05/03                          | 02/13/03                   |
| Furans<br>2,3,7,8-TCDF                                         | NA                 | l NA             | ND(0.00000023)                   | ND(0.000017) XJ                   | 0.0000057 YJ               |
| TCDFs (total)                                                  | NA NA              | NA NA            | ND(0.00000023)                   | ND(0.00025) X                     | 0.0000037 13<br>0.000027 J |
| 1,2,3,7,8-PeCDF                                                | NA NA              | NA NA            | ND(0.00000023)                   | 0.0000078                         | ND(0.0000273               |
| 2,3,4,7,8-PeCDF                                                | NA NA              | NA NA            | ND(0.00000014)                   | ND(0.000010) X                    | 0.0000038 J                |
| PeCDFs (total)                                                 | NA NA              | NA NA            | ND(0.00000013)                   | ND(0.00052) X                     | 0.0000038 J                |
| 1,2,3,4,7,8-HxCDF                                              | NA NA              | NA NA            | ND(0.00000013)                   | 0.000016                          | 0.0000123<br>0.0000051 J   |
| 1,2,3,6,7,8-HxCDF                                              | NA NA              | NA NA            | ND(0.000000000)                  | ND(0.000041) X                    | 0.00000313<br>0.0000034 J  |
| 1,2,3,7,8,9-HxCDF                                              | NA NA              | NA NA            | ND(0.000000074)                  | 0.00000020 J                      | ND(0.000010)               |
| 2,3,4,6,7,8-HxCDF                                              | NA NA              | NA NA            | ND(0.000000095)                  | 0.00000020 J                      |                            |
| HxCDFs (total)                                                 | NA NA              | NA NA            | ND(0.000000083)                  | ND(0.00037) X                     | ND(0.0000022) X            |
| 1,2,3,4,6,7,8-HpCDF                                            | NA NA              | NA NA            | ND(0.00000003)                   | 0.000034                          | 0.000067                   |
| 1,2,3,4,7,8,9-HpCDF                                            | NA NA              | NA NA            | ND(0.00000011)                   | 0.000034<br>0.0000047 J           | 0.00013                    |
|                                                                |                    |                  |                                  |                                   | ND(0.0000021) X<br>0.00024 |
| HpCDFs (total) OCDF                                            | NA<br>NA           | NA<br>NA         | ND(0.00000012)<br>ND(0.00000014) | 0.000087                          |                            |
| Dioxins                                                        | IVA                | IVA              | ND(0.00000014)                   | 0.000044                          | 0.000094                   |
|                                                                | NIA.               | ) NA             | ND/0.000000000                   | ND/0.00000000                     | ND(0.00000040) 1           |
| 2,3,7,8-TCDD                                                   | NA<br>NA           | NA<br>NA         | ND(0.00000033)                   | ND(0.00000026)<br>ND(0.0000032) X | ND(0.00000018) J           |
| TCDDs (total)                                                  |                    |                  | ND(0.00000033)                   |                                   | ND(0.00000031) J           |
| 1,2,3,7,8-PeCDD                                                | NA<br>NA           | NA<br>NA         | ND(0.00000015)                   | ND(0.0000010) X                   | ND(0.00000057) J           |
| PeCDDs (total)                                                 | NA<br>NA           | NA<br>NA         | ND(0.00000015)                   | ND(0.0000091) X                   | ND(0.00000057) J           |
| 1,2,3,4,7,8-HxCDD                                              | NA NA              | NA<br>NA         | ND(0.00000018)                   | 0.0000013 J                       | ND(0.00000052) X           |
| 1,2,3,6,7,8-HxCDD                                              | NA NA              | NA<br>NA         | ND(0.00000017)                   | 0.0000040 J                       | ND(0.0000025) X            |
| 1,2,3,7,8,9-HxCDD                                              | NA NA              | NA NA            | ND(0.00000018)                   | 0.00000020 J                      | ND(0.0000016) X            |
| HxCDDs (total)                                                 | NA NA              | NA NA            | ND(0.00000017)                   | ND(0.000036) X                    | 0.000013                   |
| 1,2,3,4,6,7,8-HpCDD                                            | NA NA              | NA NA            | ND(0.00000014)                   | 0.000096                          | 0.000067                   |
| HpCDDs (total)                                                 | NA NA              | NA NA            | ND(0.00000014)                   | 0.00031                           | 0.00012                    |
| OCDD                                                           | NA NA              | NA NA            | ND(0.0000012) X                  | 0.00077                           | 0.00064                    |
| Total TEQs (WHO TEFs)                                          | NA                 | NA               | 0.00000033                       | 0.000010                          | 0.0000062                  |
| Inorganics                                                     |                    |                  |                                  |                                   |                            |
| Antimony                                                       | NA                 | NA               | ND(7.00)                         | 0.560 J                           | ND(7.10)                   |
| Arsenic                                                        | NA                 | NA               | 0.940 B                          | 4.30                              | 3.00                       |
| Barium                                                         | NA NA              | NA               | 8.20 B                           | 40.5                              | 59.5                       |
| Beryllium                                                      | NA                 | NA               | 0.200 B                          | 0.280 B                           | 0.610                      |
| Cadmium                                                        | NA NA              | NA               | ND(0.590)                        | 0.210 B                           | 0.740                      |
| Chromium                                                       | NA                 | NA               | 5.20                             | 7.90                              | 9.60                       |
| Cobalt                                                         | NA NA              | NA               | 4.80 B                           | 5.40 B                            | 6.90                       |
| Copper                                                         | NA NA              | NA               | 4.40                             | 58.7                              | 14.3                       |
| Cyanide                                                        | NA NA              | NA               | ND(0.590)                        | ND(0.240)                         | ND(0.590)                  |
| Lead                                                           | NA                 | NA               | 2.10                             | 72.5                              | 24.5                       |
| Mercury                                                        | <u>NA</u>          | NA               | ND(0.0390)                       | 0.120 J                           | 0.220                      |
| Nickel                                                         | NA NA              | NA               | 10.4                             | 12.2                              | 13.0                       |
| Selenium                                                       | NA NA              | NA               | ND(0.590)                        | ND(0.580)                         | 0.380 B                    |
| Silver                                                         | NA NA              | NA               | ND(1.20)                         | ND(1.20)                          | ND(1.20)                   |
| Thallium                                                       | NA NA              | NA               | ND(1.20) J                       | ND(1.20) J                        | 0.850 B                    |
| Tin                                                            | NA NA              | NA               | ND(4.50)                         | ND(5.80)                          | ND(6.40)                   |
| Vanadium                                                       | NA NA              | NA               | 5.00 B                           | 13.6                              | 10.0                       |
| Zinc                                                           | NA NA              | NA NA            | 26.3                             | 109                               | 148                        |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-H8<br>1-3 | RAA15-H8<br>10-12 | RAA15-H8<br>10-15 | RAA15-H11<br>0-1 | RAA15-H13<br>1-3 |
|-----------------------------------|-----------------|-------------------|-------------------|------------------|------------------|
| Parameter Date Collected:         | 02/13/03        | 02/13/03          | 02/13/03          | 02/12/03         | 02/12/03         |
| Volatile Organics                 |                 |                   |                   |                  | ,                |
| 2-Butanone                        | ND(0.0058) J    | ND(0.0070) J      | NA                | ND(0.0064)       | ND(0.0055)       |
| Acetone                           | ND(0.023) J     | ND(0.028) J       | NA                | ND(0.026) J      | ND(0.022) J      |
| Benzene                           | ND(0.0058)      | ND(0.0070)        | NA                | ND(0.0064)       | ND(0.0055)       |
| Carbon Disulfide                  | ND(0.0058)      | ND(0.0070)        | NA                | ND(0.0064)       | ND(0.0055)       |
| Chloroform                        | ND(0.0058)      | ND(0.0070)        | NA                | ND(0.0064)       | ND(0.0055)       |
| Ethylbenzene                      | ND(0.0058)      | ND(0.0070)        | NA                | ND(0.0064)       | ND(0.0055)       |
| Methylene Chloride                | ND(0.0058)      | ND(0.0070)        | NA                | ND(0.0064)       | ND(0.0055)       |
| Toluene                           | ND(0.0058)      | ND(0.0070)        | NA                | ND(0.0064)       | ND(0.0055)       |
| trans-1,2-Dichloroethene          | ND(0.0058)      | ND(0.0070)        | NA                | ND(0.0064)       | ND(0.0055)       |
| Trichloroethene                   | ND(0.0058)      | ND(0.0070)        | NA                | ND(0.0064)       | ND(0.0055)       |
| Vinyl Chloride                    | ND(0.012)       | ND(0.014)         | NA                | ND(0.013)        | ND(0.011)        |
| Xylenes (total)                   | ND(0.0058)      | ND(0.0070)        | NA                | ND(0.0064)       | ND(0.0055)       |
| Semivolatile Organics             | ····            | <u> </u>          |                   |                  |                  |
| 1,2,4,5-Tetrachlorobenzene        | ND(0.36)        | NA I              | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| 1,2,4-Trichlorobenzene            | ND(0.36)        | NA NA             | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| 1,4-Dichlorobenzene               | ND(0.36)        | NA NA             | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| 1,4-Naphthoguinone                | ND(1.8)         | NA                | ND(2.1)           | ND(2.0)          | ND(1.8)          |
| 2-Methylnaphthalene               | ND(0.36)        | NA                | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| 3&4-Methylphenol                  | ND(0.73)        | NA NA             | ND(0.86)          | ND(0.82)         | ND(0.76)         |
| 3,3'-Dichlorobenzidine            | ND(1.8)         | NA NA             | ND(2.1)           | ND(2.0)          | ND(1.8)          |
| 3-Methylcholanthrene              | ND(1.8)         | NA NA             | ND(2.1)           | ND(2.0)          | ND(1.8)          |
| Acenaphthene                      | ND(0.36)        | NA NA             | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Acenaphthylene                    | 0.024 J         | NA NA             | ND(0.43)          | 0.057 J          | ND(0.38)         |
| Aniline                           | ND(0.36)        | NA I              | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Anthracene                        | ND(0.36)        | NA I              | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Benzo(a)anthracene                | 0.063 J         | NA NA             | ND(0.43)          | 0.16 J           | ND(0.38)         |
| Benzo(a)pyrene                    | 0.073 J         | NA NA             | ND(0.43)          | 0.19 J           | ND(0.38)         |
| Benzo(b)fluoranthene              | 0.066 J         | NA NA             | ND(0.43)          | 0.17 J           | ND(0.38)         |
| Benzo(g,h,i)perylene              | ND(0.36)        | NA NA             | ND(0.43)          | 0.10 J           | ND(0.38)         |
| Benzo(k)fluoranthene              | 0.079 J         | NA                | ND(0.43)          | 0.18 J           | ND(0.38)         |
| bis(2-Ethylhexyl)phthalate        | ND(0.36)        | NA                | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Chrysene                          | 0.090 J         | NA                | ND(0.43)          | 0.23 J           | ND(0.38)         |
| Dibenzo(a,h)anthracene            | ND(0.36)        | NA NA             | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Dibenzofuran                      | ND(0.36)        | NA                | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Diethylphthalate                  | ND(0.36)        | NA                | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Di-n-Butylphthalate               | ND(0.36)        | NA                | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Fluoranthene                      | 0.16 J          | NA NA             | ND(0.43)          | 0.34 J           | ND(0.38)         |
| Fluorene                          | ND(0.36)        | NA                | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Hexachlorobenzene                 | ND(0.36)        | NA                | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Indeno(1,2,3-cd)pyrene            | ND(0.36)        | NA                | ND(0.43)          | 0.12 J           | ND(0.38)         |
| Isophorone                        | ND(0.36)        | NA NA             | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Naphthalene                       | ND(0.36)        | NA                | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Pentachlorobenzene                | ND(0.36)        | NA                | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Pentachlorophenol                 | ND(1.8)         | NA NA             | ND(2.1)           | ND(2.0)          | ND(1.8)          |
| Phenanthrene                      | 0.088 J         | NA NA             | ND(0.43)          | 0.18 J           | ND(0.38)         |
| Phenol                            | ND(0.36)        | NA NA             | ND(0.43)          | ND(0.41)         | ND(0.38)         |
| Pyrene                            | 0.12 J          | NA NA             | ND(0.43)          | 0.30 J           | ND(0.38)         |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | RAA15-H8<br>1-3<br>02/13/03 | RAA15-H8<br>10-12<br>02/13/03 | RAA15-H8<br>10-15<br>02/13/03 | RAA15-H11<br>0-1<br>02/12/03 | RAA15-H13<br>1-3<br>02/12/03 |
|----------------------------------------------------------------|-----------------------------|-------------------------------|-------------------------------|------------------------------|------------------------------|
| Furans                                                         |                             | <b>UD</b> 10100               | 0210/00                       | OLI IZ/00                    | 02/12/03                     |
| 2,3,7,8-TCDF                                                   | 0.0000034 Y                 | NA                            | 0.000012 Y                    | 0.000032 Y                   | 0.0000011 QYJ                |
| TCDFs (total)                                                  | 0.000017                    | NA                            | 0.000050                      | 0.00020                      | 0.0000033                    |
| 1,2,3,7,8-PeCDF                                                | ND(0.0000011) X             | NA                            | 0.0000033 J                   | 0.0000094                    | ND(0.0000011) J              |
| 2,3,4,7,8-PeCDF                                                | ND(0.0000018) X             | NA                            | 0.0000054 J                   | 0.0000095                    | ND(0.0000011)                |
| PeCDFs (total)                                                 | 0.0000047                   | NA                            | 0.000070                      | 0.00016                      | ND(0.0000011) J              |
| 1,2,3,4,7,8-HxCDF                                              | ND(0.0000024) X             | NA                            | 0.000016                      | 0.0000090                    | ND(0.0000011)                |
| 1,2,3,6,7,8-HxCDF                                              | ND(0.0000015) X             | NA                            | 0.0000079                     | 0.000064                     | ND(0.0000010)                |
| 1,2,3,7,8,9-HxCDF                                              | ND(0.00000044)              | NA                            | ND(0.0000015)                 | ND(0.000014)                 | ND(0.0000013)                |
| 2,3,4,6,7,8-HxCDF                                              | ND(0.0000011) X             | NA                            | 0.000013                      | 0.0000045 J                  | ND(0.0000012)                |
| HxCDFs (total)                                                 | 0.000056                    | NA                            | 0.00037                       | 0.00011                      | ND(0.0000013)                |
| 1,2,3,4,6,7,8-HpCDF                                            | 0.00013                     | NA                            | 0.00012                       | 0.000049                     | ND(0.0000010) X              |
| 1,2,3,4,7,8,9-HpCDF                                            | ND(0.0000013) X             | NA                            | 0.0000098                     | ND(0.0000024) X              | ND(0.0000010)                |
| HpCDFs (total)                                                 | 0.00023                     | NA                            | 0.00031                       | 0.000095                     | ND(0.0000010)                |
| OCDF                                                           | 0.000085                    | NA                            | 0.00020                       | 0.000053                     | ND(0.0000021)                |
| Dioxins                                                        |                             |                               |                               |                              |                              |
| 2,3,7,8-TCDD                                                   | ND(0.00000013) X            | NA                            | ND(0.00000048) X              | ND(0.00000037)               | ND(0.00000082)               |
| TCDDs (total)                                                  | ND(0.00000026)              | NA                            | 0.000018                      | 0.0000026                    | ND(0.00000082)               |
| 1,2,3,7,8-PeCDD                                                | ND(0.00000036)              | NA                            | 0.0000064 J                   | ND(0.00000078)               | ND(0.0000014) J              |
| PeCDDs (total)                                                 | ND(0.00000058) X            | NA                            | 0.000036                      | ND(0.0000025)                | ND(0.0000014) J              |
| 1,2,3,4,7,8-HxCDD                                              | ND(0.00000061) X            | NA                            | 0.0000054 J                   | ND(0.00000065) X             | ND(0.0000014)                |
| 1,2,3,6,7,8-HxCDD                                              | 0.0000032 J                 | NA                            | 0.000019                      | ND(0.0000023) X              | ND(0.0000013)                |
| 1,2,3,7,8,9-HxCDD                                              | ND(0.0000014) X             | NA                            | 0.0000075                     | ND(0.0000011) X              | ND(0.0000012)                |
| HxCDDs (total)                                                 | 0.000017                    | NA                            | 0.00015                       | 0.000011                     | ND(0.0000014)                |
| 1,2,3,4,6,7,8-HpCDD                                            | 0.000094                    | NA                            | 0.00021                       | 0.000043                     | ND(0.0000013)                |
| HpCDDs (total)                                                 | 0.00018                     | NA                            | 0.00038                       | 0.000076                     | ND(0.0000013)                |
| OCDD                                                           | 0.0010                      | NA                            | 0.0018                        | 0.00044                      | 0.000014                     |
| Total TEQs (WHO TEFs)                                          | 0.0000041                   | NA                            | 0.000021                      | 0.000012                     | 0.0000020                    |
| Inorganics                                                     |                             |                               |                               |                              |                              |
| Antimony                                                       | ND(6.60)                    | NA                            | ND(7.80)                      | ND(7.40) J                   | ND(6.90) J                   |
| Arsenic                                                        | 3.20                        | NA                            | 1.50                          | 4.40                         | 2.20                         |
| Barium                                                         | 25.5                        | NA                            | 19.5 B                        | 57.8                         | 21.5 B                       |
| Beryllium                                                      | 0.620                       | NA                            | 0.600 B                       | 0.740                        | 0.360 B                      |
| Cadmium                                                        | 0.410 B                     | NA                            | 0.310 B                       | 0.650                        | 0.250 B                      |
| Chromium                                                       | 10.7                        | NA                            | 7.80                          | 27.2                         | 7.20                         |
| Cobalt                                                         | 5.60                        | NA                            | 5.20 B                        | 9.30                         | 3.30 B                       |
| Copper                                                         | 14.4                        | NA                            | 6.40                          | 26.6                         | 5.10                         |
| Cyanide                                                        | ND(0.550)                   | NA                            | ND(0.650)                     | 0.280 B                      | 0.230 B                      |
| Lead                                                           | 17.1                        | NA                            | 7.50                          | 52.0                         | 5.90                         |
| Mercury                                                        | 0.110                       | NA                            | 0.0380 B                      | 0.230                        | ND(0.0690)                   |
| Nickel                                                         | 11.3                        | NA                            | 9.50                          | 16.7                         | 6.80                         |
| Selenium                                                       | ND(0.550)                   | NA                            | ND(0.650)                     | ND(0.620)                    | 0.350 B                      |
| Silver                                                         | ND(1.10)                    | NA                            | ND(1.30)                      | ND(1.20)                     | ND(1.20)                     |
| Thallium                                                       | 0.690 B                     | NA                            | ND(1.30)                      | 1.10 B                       | 0.680 B                      |
| Tin                                                            | ND(4.90)                    | NA                            | ND(5.50)                      | ND(8.10)                     | ND(4.80)                     |
| Vanadium                                                       | 7.70                        | NA                            | 8.20                          | 15.3                         | 9.60                         |
| Zinc                                                           | 47.9                        | NA                            | 38.8                          | 92.2                         | 26.7                         |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-H15<br>0-1 | RAA15-H18<br>0-1 | RAA15-J2<br>0-1  | RAA15-J2<br>1-3  | RAA15-J2<br>10-12 |
|-----------------------------------|------------------|------------------|------------------|------------------|-------------------|
| Parameter Date Collected:         | 02/17/03         | 02/18/03         | 03/05/03         | 03/05/03         | 03/05/03          |
| Volatile Organics                 |                  |                  |                  |                  |                   |
| 2-Butanone                        | ND(0.0052) J     | ND(0.0049) J     | ND(0.0053) J     | ND(0.0056) J     | ND(0.0065) J      |
| Acetone                           | ND(0.021) J      | ND(0.020) J      | ND(0.021) J      | ND(0.023) J      | ND(0.026) J       |
| Benzene                           | ND(0.0052)       | ND(0.0049)       | ND(0.0053)       | ND(0.0056)       | ND(0.0065)        |
| Carbon Disulfide                  | ND(0.0052)       | ND(0.0049)       | ND(0.0053)       | ND(0.0056)       | ND(0.0065)        |
| Chloroform                        | ND(0.0052)       | ND(0.0049)       | ND(0.0053)       | ND(0.0056)       | ND(0.0065)        |
| Ethylbenzene                      | ND(0.0052)       | ND(0.0049)       | ND(0.0053)       | ND(0.0056)       | ND(0.0065)        |
| Methylene Chloride                | ND(0.0052)       | ND(0.0049)       | ND(0.0053)       | ND(0.0056)       | 0.0018 J          |
| Toluene                           | ND(0.0052)       | ND(0.0049)       | ND(0.0053)       | ND(0.0056)       | ND(0.0065)        |
| trans-1,2-Dichloroethene          | ND(0.0052)       | ND(0.0049)       | ND(0.0053)       | ND(0.0056)       | ND(0.0065)        |
| Trichloroethene                   | ND(0.0052)       | ND(0.0049)       | ND(0.0053)       | ND(0.0056)       | ND(0.0065)        |
| Vinyl Chloride                    | ND(0.010)        | ND(0.0099)       | ND(0.011)        | ND(0.011)        | ND(0,013)         |
| Xylenes (total)                   | ND(0.0052)       | ND(0.0049)       | ND(0.0053)       | ND(0.0056)       | ND(0.0065)        |
| Semivolatile Organics             |                  |                  |                  |                  |                   |
| 1,2,4,5-Tetrachlorobenzene        | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA                |
| 1,2,4-Trichlorobenzene            | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA                |
| 1,4-Dichlorobenzene               | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA                |
| 1,4-Naphthoguinone                | ND(2.2)          | ND(3.8)          | ND(2.0)          | ND(1.7)          | NA                |
| 2-Methylnaphthalene               | ND(0.45)         | ND(0.79)         | 0.080 J          | ND(0.36)         | NA                |
| 3&4-Methylphenol                  | ND(0.90)         | ND(1.6)          | ND(0.81)         | ND(0.72)         | NA NA             |
| 3,3'-Dichlorobenzidine            | ND(2.2)          | ND(3.8)          | ND(2.0)          | ND(1.7)          | NA                |
| 3-Methylcholanthrene              | ND(2.2)          | ND(3.8)          | ND(2.0)          | ND(1.7)          | NA NA             |
| Acenaphthene                      | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA NA             |
| Acenaphthylene                    | 0.088 J          | ND(0.79)         | 0.56             | 0.11 J           | NA NA             |
| Aniline                           | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA NA             |
| Anthracene                        | 0.060 J          | ND(0.79)         | 0.16 J           | 0.048 J          | NA NA             |
| Benzo(a)anthracene                | 0.19 J           | 0.12 J           | 0.72             | 0.18 J           | NA NA             |
| Benzo(a)pyrene                    | 0.24 J           | 0.16 J           | 1.1              | 0.20 J           | NA NA             |
| Benzo(b)fluoranthene              | 0.25 J           | 0.10 J           | 1.1              | 0.20 J           | NA NA             |
| Benzo(g,h,i)perylene              | 0.094 J          | ND(0.79)         | 0.41             | 0.078 J          | NA NA             |
| Benzo(k)fluoranthene              | 0.25 J           | 0.20 J           | 0.98             | 0.22 J           | NA NA             |
| bis(2-Ethylhexyl)phthalate        | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA NA             |
| Chrysene                          | 0.29 J           | 0.19 J           | 0.96             | 0.20 J           | NA NA             |
| Dibenzo(a,h)anthracene            | ND(0.45)         | ND(0.79)         | 0.14 J           | ND(0.36)         | NA NA             |
| Dibenzofuran                      | ND(0.45)         | ND(0.79)         | ND(0.40)         |                  |                   |
| Diethylphthalate                  | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA<br>NA          |
| Di-n-Butylphthalate               | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA<br>NA          |
| Fluoranthene                      | 0.50             | 0.36 J           | 1.3              | ND(0.36)<br>0.44 | NA<br>NA          |
| Fluorene                          |                  |                  |                  |                  | NA<br>NA          |
| Hexachlorobenzene                 | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA<br>NA          |
| Indeno(1,2,3-cd)pyrene            | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA<br>NA          |
|                                   | 0.12 J           | ND(0.79)         | 0.44<br>ND(0.40) | 0.099 J          | NA<br>NA          |
| Isophorone                        | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA NA             |
| Naphthalene                       | ND(0.45)         | ND(0.79)         | 0.076 J          | ND(0.36)         | NA NA             |
| Pentachlorobenzene                | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA NA             |
| Pentachlorophenol                 | ND(2.2)          | ND(3.8)          | ND(2.0)          | ND(1.7)          | NA                |
| Phenanthrene                      | 0.24 J           | 0.15 J           | 0.42             | 0.19 J           | NA                |
| Phenol                            | ND(0.45)         | ND(0.79)         | ND(0.40)         | ND(0.36)         | NA NA             |
| Pyrene                            | 0.34 J           | 0.19 J           | 1.1              | 0.25 J           | NA                |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID: RAA15-H15 **RAA15-H18** RAA15-J2 RAA15-J2 RAA15-J2 Sample Depth(Feet): 0-1 0-1 0-1 1-3 10-12 **Parameter Date Collected:** 02/17/03 02/18/03 03/05/03 03/05/03 03/05/03 **Furans** 2.3.7.8-TCDF 0.000013 0.000016 0.000011 J 0.0000086 J NA TCDFs (total) ND(0.000073) X ND(0.000091) X ND(0.00090) X ND(0.00015) X NA 1,2,3,7,8-PeCDF 0.0000031 J 0.0000032 J ND(0.0000033) X 0.0000025 J NA 2,3,4,7,8-PeCDF 0.0000032 J 0.0000036 J 0.0000084 0.0000030 J NA PeCDFs (total) ND(0.000055) X ND(0.000089) X ND(0.0015) X ND(0,00030) X NA 1,2,3,4,7,8-HxCDF 0.0000039 J 0.0000038 J 0.0000088 0.0000046 J NA 1,2,3,6,7,8-HxCDF ND(0.0000054) X ND(0.0000092) X ND(0.00018) X ND(0.000037) X NA 1,2,3,7,8,9-HxCDF ND(0.00000016) ND(0.00000016) 0.00000056 J 0.00000020 J NA 2,3,4,6,7,8-HxCDF 0.0000011 J 0.0000021 J 0.0000067 0.0000019 J NA HxCDFs (total) ND(0.000042) X ND(0.000082) X ND(0.00074) X ND(0.00017) X NA 1,2,3,4,6,7,8-HpCDF 0.000014 0.000027 0.000024 0.0000076 NA 1,2,3,4,7,8,9-HpCDF ND(0.00000077) X 0.0000011 J 0.0000038 J 0.0000015 J NA HpCDFs (total) ND(0.000028) X 0.000051 0.000063 ND(0.000019) X NA OCDF 0.000015 0.000016 0.000024 0.0000063 J NA **Dioxins** 2,3,7,8-TCDD ND(0.00000032) ND(0.00000031) ND(0.00000031) ND(0.00000026) NA TCDDs (total) ND(0.0000022) X 0.00000053 J ND(0.0000014) X 0.00000051 J NA 1,2,3,7,8-PeCDD ND(0.00000026) X ND(0.00000020) ND(0.0000011) X ND(0.00000033) X NA PeCDDs (total) ND(0.0000015) X ND(0.000012) X ND(0.0000011) X ND(0.0000025) X NA 1,2,3,4,7,8-HxCDD ND(0.00000019) X ND(0.00000032) X 0.0000011 J 0.00000022 J NA 1,2,3,6,7,8-HxCDD 0.0000028 J ND(0.00000065) X ND(0.00000078) X ND(0.00000052) X NA 1,2,3,7,8,9-HxCDD ND(0.00000059) X ND(0.00000055) X 0.0000020 J ND(0.00000025) X NA HxCDDs (total) ND(0.0000052) X ND(0.0000064) X ND(0.000029) X ND(0.0000056) X NA 1,2,3,4,6,7,8-HpCDD 0.000016 0.000014 0.000023 0.0000034 J NA HpCDDs (total) 0.000027 0.000025 0.000048 0.0000064 J NA OCDD 0.00015 0.00012 0.00015 0.000022 NA Total TEQs (WHO TEFs) 0.0000045 0.0000054 0.000018 0.0000055 NA Inorganics Antimony ND(8.20) J ND(7.20) J ND(7.30) J ND(6.50) J NA Arsenic 4.10 4.80 3.80 2.20 NA Barium 43.2 34.1 31.6 18.8 B NA Beryllium ND(0.460) ND(0.460) 0.230 B 0.260 B NA Cadmium 0.670 0.550 B 0.230 B ND(0.540) NA Chromium 25.1 10.5 7.40 7.70 NA Cobalt 7.8 8 5.00 B 4.40 B NA Copper 23.6 15.9 32.6 11.1 NA Cyanide ND(0.680) ND(0.400) ND(0.610) ND(0.540) NA Lead 42.5 23.7 76.8 14.5 NA Mercury 0.230 0.110 0.0800 J 0.0570 J NA Nickel 14.5 16.7 10.9 9.50 NA Selenium 0.520 B ND(0.600) ND(0.610) ND(0.540) NA Silver ND(1.40) ND(1.20) ND(1.20) ND(1.10) NA Thallium 1.10 J 1.80 ND(1.20) J ND(1.10) J NA Tin 8.70 B 9.00 B ND(5.30) ND(4.10) NA Vanadium 13.1 11.9 9.20 7.40 NA Zinc 79.6 67.9 79.1 38.6 NA

### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet):            | RAA15-J2<br>10-15   | RAA15-J4<br>0-1                         | RAA15-J4<br>3-6 | RAA15-J4<br>4-6 | RAA15-J4<br>6-8                                    |
|----------------------------------------------|---------------------|-----------------------------------------|-----------------|-----------------|----------------------------------------------------|
| Parameter Date Collected:                    | 03/05/03            | 03/05/03                                | 03/05/03        | 03/05/03        | 03/05/03                                           |
| Volatile Organics                            | 03/03/03            | ·   · · · · · · · · · · · · · · · · · · | 03/03/03        | 03/03/03        | <b>US/03/03</b>                                    |
| 2-Butanone                                   | NA                  | ND(0.0074) J                            | NA              | ND(0.0057) J    | ND(0.0048) J [ND(0.0050) J]                        |
| Acetone                                      | NA NA               | ND(0.030) J                             | NA NA           | ND(0.0037)3     | ND(0.019) J [ND(0.020) J]                          |
| Benzene                                      | NA NA               | ND(0.0074)                              | NA NA           | ND(0.0057)      | ND(0.019)3 [ND(0.020)3]                            |
| Carbon Disulfide                             | NA NA               | ND(0.0074)                              | NA NA           | ND(0.0057)      | ND(0.0048) [ND(0.0050)]                            |
| Chloroform                                   | NA NA               | ND(0.0074)                              | NA NA           | ND(0.0057)      | ND(0.0048) [ND(0.0050)]                            |
| Ethylbenzene                                 | NA NA               | ND(0.0074)                              | NA NA           | ND(0.0057)      | ND(0.0048) [ND(0.0050)]                            |
| Methylene Chloride                           | NA NA               | 0.0019 J                                | NA NA           | ND(0.0057)      | ND(0.0048) [ND(0.0050)]                            |
| Toluene                                      | NA NA               | ND(0.0074)                              | NA NA           | ND(0.0057)      | ND(0.0048) [ND(0.0050)]                            |
| trans-1,2-Dichloroethene                     | NA NA               | ND(0.0074)                              | NA NA           | ND(0.0057)      | ND(0.0048) [ND(0.0050)]                            |
| Trichloroethene                              | NA NA               | 0.00086 J                               | NA NA           | ND(0.0057)      | ND(0.0048) [ND(0.0050)]                            |
| Vinyl Chloride                               | NA NA               | ND(0.015)                               | NA NA           | ND(0.0037)      | ND(0.0048) [ND(0.0050)]<br>ND(0.0095) [ND(0.0099)] |
| Xylenes (total)                              | NA NA               | ND(0.0074)                              | NA NA           | ND(0.011)       | ND(0.0095) [ND(0.0099)]<br>ND(0.0048) [ND(0.0050)] |
| Semivolatile Organics                        | 147                 | ND(0.0074)                              | INA             | ND(0.0037)      | ND(0.0048) [ND(0.0050)]                            |
| 1,2,4,5-Tetrachlorobenzene                   | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA I            | NA                                                 |
| 1,2,4-Trichlorobenzene                       | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA NA           | NA NA                                              |
| 1.4-Dichlorobenzene                          | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA NA           | NA NA                                              |
| 1,4-Dichiologenzene                          | ND(0.42)<br>ND(2.1) | ND(0.53)                                |                 |                 |                                                    |
| 2-Methylnaphthalene                          |                     |                                         | ND(1.9)         | NA NA           | NA NA                                              |
|                                              | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA NA           | NA NA                                              |
| 3&4-Methylphenol                             | ND(0.85)            | ND(1.1)                                 | ND(0.79)        | NA NA           | NA NA                                              |
| 3,3'-Dichlorobenzidine  3-Methylcholanthrene | ND(2.1)             | ND(2.6)                                 | ND(1.9)         | NA NA           | -NA                                                |
|                                              | ND(2.1)             | ND(2.6)                                 | ND(1.9)         | NA NA           | NA                                                 |
| Acenaphthene                                 | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA NA           | NA                                                 |
| Acenaphthylene                               | ND(0.42)            | 0.13 J                                  | ND(0.40)        | NA NA           | NA                                                 |
| Aniline                                      | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA NA           | NA NA                                              |
| Anthracene                                   | ND(0.42)            | 0.11 J                                  | ND(0.40)        | NA NA           | NA                                                 |
| Benzo(a)anthracene                           | ND(0.42)            | 0.42 J                                  | ND(0.40)        | NA NA           | NA                                                 |
| Benzo(a)pyrene                               | ND(0.42)            | 0.47 J                                  | ND(0.40)        | NA NA           | NA NA                                              |
| Benzo(b)fluoranthene                         | ND(0.42)            | 0.50 J                                  | ND(0.40)        | NA NA           | NA                                                 |
| Benzo(g,h,i)perylene                         | ND(0.42)            | 0.13 J                                  | ND(0.40)        | NA NA           | NA                                                 |
| Benzo(k)fluoranthene                         | ND(0.42)            | 0.49 J                                  | ND(0.40)        | NA NA           | NA NA                                              |
| bis(2-Ethylhexyl)phthalate                   | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA              | NA NA                                              |
| Chrysene                                     | ND(0.42)            | 0.52 J                                  | ND(0.40)        | NA              | NA                                                 |
| Dibenzo(a,h)anthracene                       | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA              | NA                                                 |
| Dibenzofuran                                 | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA              | NA                                                 |
| Diethylphthalate                             | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA              | NA NA                                              |
| Di-n-Butylphthalate                          | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA NA           | NA                                                 |
| Fluoranthene                                 | ND(0.42)            | 1.0                                     | ND(0.40)        | NA              | NA                                                 |
| Fluorene                                     | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA              | NA NA                                              |
| Hexachlorobenzene                            | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA NA           | NA                                                 |
| Indeno(1,2,3-cd)pyrene                       | ND(0.42)            | 0.17 J                                  | ND(0.40)        | NA NA           | NA                                                 |
| Isophorone                                   | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA NA           | NA                                                 |
| Naphthalene                                  | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA NA           | NA NA                                              |
| Pentachlorobenzene                           | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA NA           | NA NA                                              |
| Pentachlorophenol                            | ND(2.1)             | ND(2.6)                                 | ND(1.9)         | NA              | NA NA                                              |
| Phenanthrene                                 | ND(0.42)            | 0.52 J                                  | ND(0.40)        | NA              | NA                                                 |
| Phenol                                       | ND(0.42)            | ND(0.53)                                | ND(0.40)        | NA              | NA NA                                              |
| Pyrene                                       | ND(0.42)            | 0.73                                    | ND(0.40)        | NA              | NA                                                 |

| Sample ID:<br>Sample Depth(Feet): | RAA15-J2<br>10-15 | RAA15-J4<br>0-1  | RAA15-J4<br>3-6  | RAA15-J4<br>4-6 | RAA15-J4<br>6-8 |
|-----------------------------------|-------------------|------------------|------------------|-----------------|-----------------|
| Parameter Date Collected:         | 03/05/03          | 03/05/03         | 03/05/03         | 03/05/03        | 03/05/03        |
| Furans                            |                   |                  |                  |                 |                 |
| 2,3,7,8-TCDF                      | ND(0.00000021)    | ND(0.000034) XJ  | ND(0.00000019)   | NA I            | NA              |
| 'TCDFs (total)                    | ND(0.00000033) X  | ND(0.00026) X    | ND(0.00000019)   | NA              | NA              |
| 1,2,3,7,8-PeCDF                   | ND(0.00000013)    | 0.0000074 J      | ND(0.00000011)   | NA              | NA NA           |
| 2,3,4,7,8-PeCDF                   | ND(0.00000012)    | 0.0000085        | ND(0.00000010)   | NA              | NA NA           |
| PeCDFs (total)                    | ND(0.0000013) X   | ND(0.00028) X    | ND(0.00000093) X | NA              | NA              |
| 1,2,3,4,7,8-HxCDF                 | ND(0.000000070) X | 0.000012         | ND(0.000000077)  | NA NA           | NA              |
| 1,2,3,6,7,8-HxCDF                 | ND(0.00000029) X  | ND(0.000031) X   | ND(0.00000019) X | NA              | NA              |
| 1,2,3,7,8,9-HxCDF                 | ND(0.000000086)   | ND(0.00000040) X | ND(0.000000091)  | NA              | NA              |
| 2,3,4,6,7,8-HxCDF                 | ND(0.000000078)   | 0.0000050 J      | ND(0.000000082)  | NA              | NA              |
| HxCDFs (total)                    | ND(0.0000012) X   | ND(0.00036) X    | ND(0.0000018) X  | NA              | NA              |
| 1,2,3,4,6,7,8-HpCDF               | 0.00000021 J      | 0.00042          | 0.0000030 J      | NA NA           | NA.             |
| 1,2,3,4,7,8,9-HpCDF               | ND(0.00000013)    | 0.0000063 J      | ND(0.00000013)   | NA              | NA              |
| HpCDFs (total)                    | 0.00000021 J      | ND(0.00080) X    | 0.0000058 J      | NA              | NA              |
| OCDF                              | ND(0.00000019)    | 0.00026          | 0.0000028 J      | NA              | NA              |
| Dioxins                           |                   |                  |                  |                 |                 |
| 2,3,7,8-TCDD                      | ND(0.00000026)    | ND(0.00000061) X | ND(0.00000025)   | NA I            | NA              |
| TCDDs (total)                     | ND(0.00000026)    | ND(0.0000060) X  | ND(0.00000025)   | NA              | NA              |
| 1,2,3,7,8-PeCDD                   | ND(0.00000012)    | ND(0.0000013) X  | ND(0.00000012)   | NA              | NA              |
| PeCDDs (total)                    | ND(0.00000012)    | ND(0.000013) X   | ND(0.00000012)   | NA NA           | NA              |
| 1,2,3,4,7,8-HxCDD                 | ND(0.00000012)    | ND(0.0000017) X  | ND(0.00000014)   | NA NA           | NA              |
| 1,2,3,6,7,8-HxCDD                 | ND(0.00000012)    | 0.000010         | ND(0.00000013)   | NA              | NA              |
| 1,2,3,7,8,9-HxCDD                 | ND(0.00000012)    | 0.0000057 J      | ND(0.00000013)   | NA              | NA              |
| HxCDDs (total)                    | ND(0.00000012)    | 0.000075 J       | ND(0.00000013)   | NA              | NA              |
| 1,2,3,4,6,7,8-HpCDD               | ND(0.00000016)    | 0.00026          | 0.0000021 J      | NA .            | NA              |
| HpCDDs (total)                    | ND(0.00000016)    | 0.00046          | 0.0000035 J      | NA              | NA              |
| OCDD                              | ND(0.00000092) X  | 0.0025           | 0.000026         | NA              | NA              |
| Total TEQs (WHO TEFs)             | 0.00000028        | 0.000019         | 0.00000032       | NA              | NA              |
| Inorganics                        |                   |                  |                  |                 |                 |
| Antimony                          | ND(7.70) J        | ND(9.60) J       | ND(7.20) J       | NA              | NA              |
| Arsenic                           | 1.40              | 4.30             | 0.710 B          | NA              | NA              |
| Barium                            | 20.6 B            | 50.9             | 14.9 B           | NA              | NA              |
| Beryllium                         | 0.280 B           | 0.550 B          | 0.210 B          | NA              | NA              |
| Cadmium                           | ND(0.640)         | ND(0.800)        | ND(0.600)        | NA              | NA              |
| Chromium                          | 6.30              | 21.3             | 4.60             | NA              | NA              |
| Cobalt                            | 4.70 B            | 8.50             | 3.50 B           | NA NA           | NA              |
| Copper                            | 5.7               | 24.9             | 3.1              | NA              | NA              |
| Cyanide                           | ND(0.640)         | ND(0.350)        | ND(0.600)        | NA              | NA              |
| Lead                              | 3.20              | 46.2             | 2.10             | NA              | NA              |
| Mercury                           | 0.0310 J          | 0.190 J          | ND(0.0400) J     | NA              | NA NA           |
| Nickel                            | 8.70              | 17.1             | 7.00             | NA NA           | NA              |
| Selenium                          | ND(0.640)         | ND(0.800)        | ND(0.600)        | NA              | NA              |
| Silver                            | ND(1.30)          | ND(1.60)         | ND(1.20)         | NA              | NA              |
| Thallium                          | ND(1.30) J        | 1.20 J           | ND(1.20) J       | NA              | NA NA           |
| Tin                               | ND(3.90)          | ND(6.90)         | ND(3.30)         | NA NA           | NA              |
| Vanadium                          | 7.60              | 17.6             | 5.10 B           | NA              | NA NA           |
| Zinc                              | 35.6              | 90.3             | 27.2             | NA NA           | NA              |

### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:                 | RAA15-J4            | RAA15-J4S | RAA15-J6     | RAA15-J6 |  |
|----------------------------|---------------------|-----------|--------------|----------|--|
| Sample Depth(Feet):        | 6-10                | 0-1       | 1-3          | 10-15    |  |
| Parameter Date Collected:  | 03/05/03            | 03/05/03  | 02/13/03     | 02/13/03 |  |
| Volatile Organics          |                     |           |              |          |  |
| 2-Butanone                 | NA NA               | NA        | ND(0.0063) J | NA       |  |
| Acetone                    | NA                  | NA        | ND(0.025) J  | NA       |  |
| Benzene                    | NA                  | NA        | ND(0.0063)   | NA       |  |
| Carbon Disulfide           | NA                  | NA        | ND(0.0063)   | NA       |  |
| Chloroform                 | NA                  | NA        | ND(0.0063)   | NA       |  |
| Ethylbenzene               | NA                  | NA        | ND(0.0063)   | NA       |  |
| Methylene Chloride         | NA                  | NA        | ND(0.0063)   | NA       |  |
| Toluene                    | NA                  | NA        | ND(0.0063)   | NA       |  |
| trans-1,2-Dichloroethene   | NA                  | NA NA     | ND(0.0063)   | NA       |  |
| Trichloroethene            | NA                  | NA        | ND(0.0063)   | NA       |  |
| Vinyl Chloride             | NA                  | NA        | ND(0.013)    | NA       |  |
| Xylenes (total)            | NA                  | NA        | ND(0.0063)   | NA       |  |
| Semivolatile Organics      |                     |           |              |          |  |
| 1,2,4,5-Tetrachlorobenzene | ND(0.38) [ND(0.38)] | NA        | ND(0.42)     | ND(0.40) |  |
| 1,2,4-Trichlorobenzene     | ND(0.38) [ND(0.38)] | NA        | ND(0.42)     | ND(0.40) |  |
| 1,4-Dichlorobenzene        | ND(0.38) [ND(0.38)] | NA        | ND(0.42)     | ND(0.40) |  |
| 1,4-Naphthoguinone         | ND(1.9) [ND(1.8)]   | NA        | ND(2.0)      | ND(1.9)  |  |
| 2-Methylnaphthalene        | ND(0.38) [ND(0.38)] | NA        | ND(0.42)     | ND(0.40) |  |
| 3&4-Methylphenol           | ND(0.77) [ND(0.76)] | NA        | ND(0.83)     | ND(0 79) |  |
| 3,3'-Dichlorobenzidine     | ND(1.9) [ND(1.8)]   | NA NA     | ND(2.0)      | ND(1.9)  |  |
| 3-Methylcholanthrene       | ND(1.9) [ND(1.8)]   | NA NA     | ND(2.0)      | ND(1.9)  |  |
| Acenaphthene               | ND(0.38) [ND(0.38)] | NA NA     | ND(0.42)     | 0.049 J  |  |
| Acenaphthylene             | ND(0.38) [ND(0.38)] | NA NA     | 0.13 J       | ND(0.40) |  |
| Aniline                    | ND(0.38) [ND(0.38)] | NA NA     | ND(0.42)     | ND(0.40) |  |
| Anthracene                 | ND(0.38) [ND(0.38)] | NA NA     | 0.099 J      | 0.085 J  |  |
| Benzo(a)anthracene         | ND(0.38) [ND(0.38)] | NA        | 0.36 J       | 0.24 J   |  |
| Benzo(a)pyrene             | ND(0.38) [ND(0.38)] | NA NA     | 0.43         | 0.24 J   |  |
| Benzo(b)fluoranthene       | ND(0.38) [ND(0.38)] | NA NA     | 0.38 J       | 0.25 J   |  |
| Benzo(g,h,i)perylene       | ND(0.38) [ND(0.38)] | NA NA     | 0.18 J       | 0.080 J  |  |
| Benzo(k)fluoranthene       | ND(0.38) [ND(0.38)] | NA NA     | 0.43         | 0.26 J   |  |
| bis(2-Ethylhexyl)phthalate | ND(0.38) [ND(0.38)] | NA NA     | ND(0.42)     | ND(0.40) |  |
| Chrysene                   | ND(0.38) [ND(0.38)] | NA NA     | 0.51         | 0.33 J   |  |
| Dibenzo(a,h)anthracene     | ND(0.38) [ND(0.38)] | NA NA     | 0.057 J      | ND(0.40) |  |
| Dibenzofuran               | ND(0.38) [ND(0.38)] | NA NA     | ND(0.42)     | 0.062 J  |  |
| Diethylphthalate           | ND(0.38) [ND(0.38)] | NA NA     | ND(0.42)     | ND(0.40) |  |
| Di-n-Butylphthalate        | ND(0.38) [ND(0.38)] | NA NA     | ND(0.42)     | ND(0.40) |  |
| Fluoranthene               | ND(0.38) [ND(0.38)] | NA NA     | 0.92         | 0.82     |  |
| Fluorene                   | ND(0.38) [ND(0.38)] | NA NA     | ND(0.42)     | 0.059 J  |  |
| Hexachlorobenzene          | ND(0.38) [ND(0.38)] | NA NA     | ND(0.42)     | ND(0.40) |  |
| Indeno(1,2,3-cd)pyrene     | ND(0.38) [ND(0.38)] | NA NA     | 0.20 J       | 0.11 J   |  |
| Isophorone                 | ND(0.38) [ND(0.38)] | NA        | ND(0.42)     | ND(0.40) |  |
| Naphthalene                | ND(0.38) [ND(0.38)] | NA NA     | 0.029 J      | 0.071 J  |  |
| Pentachlorobenzene         | ND(0.38) [ND(0.38)] | NA NA     | ND(0.42)     | ND(0.40) |  |
| Pentachlorophenol          | ND(1.9) [ND(1.8)]   | NA NA     | ND(2.0)      | ND(1.9)  |  |
| Phenanthrene               | ND(0.38) [ND(0.38)] | NA NA     | 0.54         | 0.78     |  |
| Phenol                     | ND(0.38) [ND(0.38)] | NA NA     | ND(0.42)     | ND(0.40) |  |
| Pyrene                     | ND(0.38) [ND(0.38)] | NA NA     | 0.67         | 0.46     |  |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-J4<br>6-10                    | RAA15-J4S<br>0-1 | RAA15-J6<br>1-3 | RAA15-J6<br>10-15<br>02/13/03 |  |
|-----------------------------------|-------------------------------------|------------------|-----------------|-------------------------------|--|
| Parameter Date Collected:         | 03/05/03                            | 03/05/03         | 02/13/03        |                               |  |
| Furans                            |                                     |                  |                 |                               |  |
| 2,3,7,8-TCDF                      | ND(0.00000015) [ND(0.00000018)]     | ND(0.000021)X    | 0.000010 Y      | ND(0.0000012) YJ              |  |
| TCDFs (total)                     | ND(0.00000015) [ND(0.0000012) X]    | ND(0.0023) X     | 0.000042        | ND(0.0000012) YJ              |  |
| 1,2,3,7,8-PeCDF                   | ND(0.000000083) [ND(0.00000010)]    | 0.0000067        | ND(0.0000028) X | ND(0.00000022) XJ             |  |
| 2,3,4,7,8-PeCDF                   | ND(0.000000080) [ND(0.000000096)]   | 0.000018         | 0.0000046 J     | ND(0.00000017) J              |  |
| PeCDFs (total)                    | ND(0.000000081) [ND(0.0000036) X]   | ND(0.0029) X     | 0.000050        | ND(0.00000022) XJ             |  |
| 1,2,3,4,7,8-HxCDF                 | ND(0.000000054) [ND(0.00000014) X]  | 0.000016         | 0.0000086       | ND(0.00000045) X              |  |
| 1,2,3,6,7,8-HxCDF                 | 0.000000070 J [ND(0.00000015) X]    | ND(0.00016) X    | 0.0000048 J     | ND(0.00000049) X              |  |
| 1,2,3,7,8,9-HxCDF                 | ND(0.000000063) [ND(0.000000070)]   | ND(0.00000081) X | ND(0.00000051)  | ND(0.00000017)                |  |
| 2,3,4,6,7,8-HxCDF                 | ND(0.000000057) [ND(0.000000063)]   | 0.000015         | 0.0000046 J     | ND(0.00000014)                |  |
| HxCDFs (total)                    | ND(0.00000047) X [ND(0.0000035) X]  | ND(0.0010) X     | 0.00024         | ND(0.0000019) X               |  |
| 1,2,3,4,6,7,8-HpCDF               | ND(0.00000026) X [0.00000060 J]     | 0.000029         | 0.00034         | 0.0000058 J                   |  |
| 1,2,3,4,7,8,9-HpCDF               | ND(0.000000098) [ND(0.00000010)]    | 0.0000042 J      | 0.0000093       | ND(0.00000016)                |  |
| HpCDFs (total)                    | ND(0.00000054) X [0.0000013 J]      | 0.000069         | 0.00083         | 0.000011                      |  |
| OCDF                              | 0.00000046 J [0.00000040 J]         | 0.000015         | 0.00044 D       | ND(0.0000038)                 |  |
| Dioxins                           |                                     |                  |                 |                               |  |
| 2,3,7,8-TCDD                      | ND(0.00000019) [ND(0.00000023)]     | ND(0.00000026)   | 0.00000092 J    | ND(0.00000014) J              |  |
| TCDDs (total)                     | ND(0.00000019) [ND(0.00000023)]     | ND(0.0000044) X  | 0.000039        | ND(0.00000014) J              |  |
| 1,2,3,7,8-PeCDD                   | ND(0.00000089) [ND(0.00000093)]     | 0.0000022 J      | ND(0.0000023)   | ND(0.00000035) J              |  |
| PeCDDs (total)                    | ND(0.000000089) [ND(0.000000093)]   | ND(0.000032) X   | 0.000088        | ND(0.00000072) J              |  |
| 1,2,3,4,7,8-HxCDD                 | ND(0.00000092) [ND(0.0000011)]      | 0.0000026 J      | 0.0000057 J     | ND(0.00000016)                |  |
| 1,2,3,6,7,8-HxCDD                 | ND(0.00000087) [ND(0.00000099)]     | 0.000011         | 0.000031        | ND(0.00000024) X              |  |
| 1,2,3,7,8,9-HxCDD                 | ND(0.00000090) [ND(0.00000010)]     | 0.0000070        | 0.000011        | ND(0.00000014) X              |  |
| HxCDDs (total)                    | ND(0.000000089) [ND(0.00000010)]    | ND(0.00012) X    | 0.00019         | ND(0.00000085) X              |  |
| 1,2,3,4,6,7,8-HpCDD               | ND(0.00000035) X [ND(0.00000012) X] | 0.000041         | 0.00091         | 0.0000045 J                   |  |
| HpCDDs (total)                    | ND(0.0000035) X [ND(0.0000030) X]   | 0.00014          | 0.0017          | 0.0000090                     |  |
| OCDD                              | ND(0.0000026) X [0.0000017 J]       | 0.00012          | 0.0082 D        | ND(0.000046)                  |  |
| Total TEQs (WHO TEFs)             | 0.00000020 [0.00000024]             | 0.000027         | 0.000025        | 0.00000055                    |  |
| Inorganics                        |                                     |                  |                 |                               |  |
| Antimony                          | ND(7.00) J [ND(6.90) J]             | l NA             | ND(7.60)        | ND(7.20)                      |  |
| Arsenic                           | 1.20 B [1.20]                       | NA NA            | 3.70            | 3.50                          |  |
| Barium                            | 8.10 B [8.60 B]                     | NA NA            | 45.6            | 22.7 B                        |  |
| Beryllium                         | 0.160 B [0.170 B]                   | NA NA            | 0.730           | 0.570 B                       |  |
| Cadmium                           | ND(0.580) [ND(0.580)]               | NA NA            | 0.790           | 0.490 B                       |  |
| Chromium                          | 4.70 [4.00]                         | NA NA            | 21.7            | 8.00                          |  |
| Cobalt                            | 4.00 B [4.20 B]                     | NA NA            | 8.30            | 6.70                          |  |
| Copper                            | 6.3 [6.8]                           | NA NA            | 28.9            | 11.2                          |  |
| Cyanide                           | ND(0.580) [ND(0.580)]               | NA NA            | 0.280 B         | 0.240 B                       |  |
| Lead                              | 2.80 [2.80]                         | NA               | 51.2            | 7.50                          |  |
| Mercury                           | ND(0.0390) J [0.0190 J]             | NA NA            | 0.280           | 0.0440                        |  |
| Nickel                            | 7.50 [7.60]                         | NA NA            | 16.4            | 12.2                          |  |
| Selenium                          | ND(0.580) [ND(0.580)]               | NA NA            | 0.600 B         | ND(0.600)                     |  |
| Silver                            | ND(1.20) [ND(1.20)]                 | NA NA            | 0.540 B         | ND(1.20)                      |  |
| Thallium                          | ND(1.20) J [ND(1.20) J]             | NA NA            | 0.950 B         | 0.710 B                       |  |
| Tin                               | ND(3.40) [ND(3.50)]                 | NA NA            | ND(7.50)        | ND(5.60)                      |  |
| Vanadium                          | 5.00 B [5.00 B]                     | NA NA            | 19.4            | 7.10                          |  |
| Zinc                              | 22.9 [23.5]                         | NA NA            | 93.7            | 46.0                          |  |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-J6<br>12-15 | RAA15-J7<br>0-1 | RAA15-J9<br>1-3 | RAA15-J9<br>3-5 | RAA15-J9<br>4-5 |
|-----------------------------------|-------------------|-----------------|-----------------|-----------------|-----------------|
| Parameter Date Collected:         | 02/13/03          | 02/13/03        | 02/20/03        | 02/20/03        | 02/20/03        |
| Volatile Organics                 |                   |                 |                 | _               |                 |
| 2-Butanone                        | ND(0.0055) J      | ND(0.0056) J    | ND(0.0051)      | NA NA           | ND(0.0047)      |
| Acetone                           | ND(0.022) J       | ND(0.022) J     | ND(0.020)       | NA              | ND(0.019)       |
| Benzene                           | ND(0.0055)        | ND(0.0056)      | ND(0.0051)      | NA              | ND(0.0047)      |
| Carbon Disulfide                  | ND(0.0055)        | ND(0.0056)      | ND(0.0051)      | NA              | ND(0.0047)      |
| Chloroform                        | ND(0.0055)        | ND(0.0056)      | ND(0.0051)      | NA              | ND(0.0047)      |
| Ethylbenzene                      | ND(0.0055)        | ND(0.0056)      | ND(0.0051)      | NA              | ND(0.0047)      |
| Methylene Chloride                | ND(0.0055)        | ND(0.0056)      | ND(0.0051)      | NA              | ND(0.0047)      |
| Toluene                           | ND(0.0055)        | ND(0.0056)      | ND(0.0051)      | NA              | ND(0.0047)      |
| trans-1,2-Dichloroethene          | ND(0.0055)        | ND(0.0056)      | ND(0.0051)      | NA              | ND(0.0047)      |
| Trichloroethene                   | ND(0.0055)        | ND(0.0056)      | ND(0.0051)      | NA              | ND(0.0047)      |
| Vinyl Chloride                    | ND(0.011)         | ND(0.011)       | ND(0.010)       | NA NA           | ND(0.0093)      |
| Xylenes (total)                   | ND(0.0055)        | ND(0.0056)      | ND(0.0051)      | NA              | ND(0.0047)      |
| Semivolatile Organics             |                   |                 |                 |                 |                 |
| 1,2,4,5-Tetrachlorobenzene        | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| 1,2,4-Trichlorobenzene            | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| 1,4-Dichlorobenzene               | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| 1,4-Naphthoquinone                | NA                | ND(2.0)         | ND(1.8)         | ND(1.9)         | NA              |
| 2-Methylnaphthalene               | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| 3&4-Methylphenol                  | NA                | ND(0.81)        | ND(0.73)        | ND(0.78)        | NA              |
| 3,3'-Dichlorobenzidine            | NA                | ND(2.0)         | ND(1.8)         | ND(1.9)         | NA              |
| 3-Methylcholanthrene              | NA.               | ND(2.0)         | ND(1.8)         | ND(1.9)         | NA              |
| Acenaphthene                      | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Acenaphthylene                    | NA NA             | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Aniline                           | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Anthracene                        | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Benzo(a)anthracene                | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Benzo(a)pyrene                    | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Benzo(b)fluoranthene              | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Benzo(g,h,i)perylene              | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Benzo(k)fluoranthene              | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| bis(2-Ethylhexyl)phthalate        | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Chrysene                          | NA                | ND(0.40)        | ND(0.37)        | ND(0.39).       | NA              |
| Dibenzo(a,h)anthracene            | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Dibenzofuran                      | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Diethylphthalate                  | NA                | 0.084 J         | ND(0.37)        | ND(0.39)        | NA              |
| Di-n-Butylphthalate               | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Fluoranthene                      | NA                | 0.067 J         | ND(0.37)        | ND(0.39)        | NA NA           |
| Fluorene                          | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA NA           |
| Hexachlorobenzene                 | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Indeno(1,2,3-cd)pyrene            | NA                | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Isophorone                        | NA NA             | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA              |
| Naphthalene                       | NA NA             | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA NA           |
| Pentachiorobenzene                | NA NA             | ND(0.40)        | ND(0.37)        | ND(0.39)        | NA NA           |
| Pentachlorophenol                 | NA NA             | ND(2.0)         | ND(1.8)         | ND(1.9)         | NA NA           |
| Phenanthrene                      | NA NA             | ND(0.40)        | ND(0.37)        | ND(0.39)        | TNA             |
| Phenol                            | NA NA             | ND(0.40)        | ND(0.37)        | ND(0.39)        | TNA             |
| Pyrene                            | NA NA             | 0.051 J         | ND(0.37)        | ND(0.39)        | T NA            |

### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-J6<br>12-15 | RAA15-J7<br>0-1  | RAA15-J9<br>1-3  | RAA15-J9<br>3-5  | RAA15-J9<br>4-5 |
|-----------------------------------|-------------------|------------------|------------------|------------------|-----------------|
| Parameter Date Collected:         | 02/13/03          | 02/13/03         | 02/20/03         | 02/20/03         | 02/20/03        |
| Furans                            |                   |                  |                  |                  |                 |
| 2,3,7,8-TCDF                      | NA                | 0.0000014 Y      | ND(0.00000027)   | ND(0.00000025)   | NA              |
| TCDFs (total)                     | NA                | 0.0000042        | ND(0.00000027)   | ND(0.00000026) X | NA              |
| 1,2,3,7,8-PeCDF                   | NA                | ND(0.00000052) X | ND(0.00000015)   | ND(0.00000012)   | NA              |
| 2,3,4,7,8-PeCDF                   | NA                | ND(0.00000059) X | ND(0.00000015)   | ND(0.00000012)   | NA              |
| PeCDFs (total)                    | NA                | ND(0.0000015) X  | ND(0.00000015)   | ND(0.00000012)   | NA              |
| 1,2,3,4,7,8-HxCDF                 | NA                | ND(0.0000011) X  | ND(0.000000088)  | ND(0.000000078)  | NA              |
| 1,2,3,6,7,8-HxCDF                 | NA                | ND(0.00000071) X | ND(0.000000081)  | ND(0.000000072)  | NA              |
| 1,2,3,7,8,9-HxCDF                 | NA                | ND(0.00000026)   | ND(0.00000010)   | ND(0.000000092)  | NA              |
| 2,3,4,6,7,8-HxCDF                 | NA                | ND(0.00000057) X | ND(0.000000093)  | ND(0.000000083)  | NA              |
| HxCDFs (total)                    | NA                | 0.000013         | ND(0.000000091)  | ND(0.000000080)  | NA              |
| 1,2,3,4,6,7,8-HpCDF               | NA                | 0.000019         | ND(0.00000036) X | ND(0.00000012)   | NA              |
| 1,2,3,4,7,8,9-HpCDF               | NA                | ND(0.00000065) X | ND(0.00000017)   | ND(0.00000015)   | NA              |
| HpCDFs (total)                    | NA                | 0.000040         | ND(0.00000064) X | ND(0.00000013)   | NA              |
| OCDF                              | NA                | 0.000022         | ND(0.00000035) X | ND(0.00000027)   | NA              |
| Dioxins                           |                   |                  |                  |                  |                 |
| 2,3,7,8-TCDD                      | NA                | ND(0.00000012) X | ND(0.00000038)   | ND(0.00000034)   | NA              |
| TCDDs (total)                     | NA                | ND(0.00000022) X | ND(0.00000038)   | ND(0.00000034)   | NA              |
| 1,2,3,7,8-PeCDD                   | NA                | ND(0.00000026) X | ND(0.00000016)   | ND(0.00000014)   | NA NA           |
| PeCDDs (total)                    | NA                | ND(0.00000066) X | ND(0.00000016)   | ND(0.00000066) X | NA              |
| 1,2,3,4,7,8-HxCDD                 | NA                | ND(0.00000046) X | ND(0.00000017)   | ND(0.00000016)   | NA              |
| 1,2,3,6,7,8-HxCDD                 | NA                | ND(0.0000013) X  | ND(0.00000016)   | ND(0.00000015)   | NA              |
| 1,2,3,7,8,9-HxCDD                 | NA                | ND(0.0000012) X  | ND(0.00000017)   | ND(0.00000016)   | NA              |
| HxCDDs (total)                    | NA                | 0.0000039        | ND(0.00000017)   | ND(0.00000031) X | NA              |
| 1,2,3,4,6,7,8-HpCDD               | NA                | 0.000040         | 0.00000036 J     | ND(0.00000017)   | NA              |
| HpCDDs (total)                    | NA                | 0.000067         | 0.00000036 J     | ND(0.00000017)   | NA              |
| OCDD                              | NA                | 0.00028          | 0.0000033 J      | 0.0000017 J      | NA              |
| Total TEQs (WHO TEFs)             | NA                | 0.0000014        | 0.00000037       | 0.00000033       | NA              |
| Inorganics                        |                   |                  |                  |                  |                 |
| Antimony                          | NA                | ND(7.30)         | ND(6.60)         | ND(7.10)         | NA              |
| Arsenic                           | NA                | 3.20             | 2.80             | 4.40             | NA              |
| Barium                            | NA                | 31.7             | 29.3             | 32.9             | NA              |
| Beryllium                         | NA                | 0.650            | 0.190 B          | 0.180 B          | NA              |
| Cadmium                           | NA                | 0.680            | 0.190 B          | 0.340 B          | NA              |
| Chromium                          | NA                | 9.90             | 9.30             | 10.8             | NA              |
| Cobalt                            | NA                | 8.50             | 6.40             | 10.0             | NA              |
| Copper                            | NA                | 16.6             | 7.50             | 19.6             | NA              |
| Cyanide                           | NA                | 0.220 B          | ND(0.550)        | ND(0.590)        | NA              |
| Lead                              | NA                | 29.5             | 4.80             | 8.30             | NA              |
| Mercury                           | NA                | 0.0550           | 0.0370 B         | ND(0.0390)       | NA              |
| Nickel                            | NA                | 16.5             | 11.2             | 18.4             | NA              |
| Selenium                          | NA                | ND(0.610)        | ND(0.550)        | ND(0.590)        | NA              |
| Silver                            | NA                | ND(1.20)         | ND(1.10)         | ND(1.20)         | NA              |
| Thallium                          | NA                | 0.830 B          | ND(1.10)         | ND(1.20)         | NA              |
| Tin                               | NA                | ND(5.60)         | ND(4.60)         | ND(4.70)         | NA              |
| Vanadium                          | NA                | 11.9             | 10.1             | 13.2             | NA              |
| Zinc                              | NA                | 74.7             | 44.9             | 61.7             | NA              |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-J18<br>1-3 | RAA15-J18<br>6-10 | RAA15-J18<br>8-10 | RAA15-J19<br>0-1 | RAA15-L3<br>0-1 |
|-----------------------------------|------------------|-------------------|-------------------|------------------|-----------------|
| Parameter Date Collected:         | 02/14/03         | 02/14/03          | 02/14/03          | 02/18/03         | 03/05/03        |
| Volatile Organics                 | <b>V</b>         | V20 / V           | 1 323 1133        |                  |                 |
| 2-Butanone                        | ND(0.0052) J     | NA                | ND(0.0064) J      | ND(0.0060) J     | ND(0.0070) J    |
| Acetone                           | ND(0.0032) J     | NA NA             | 0.0087 J          | ND(0.024) J      | ND(0.028) J     |
| Benzene                           | ND(0.0052)       | NA NA             | ND(0.0064)        | ND(0.0060)       | ND(0.0070)      |
| Carbon Disulfide                  | ND(0.0052)       | NA NA             | ND(0.0064)        | ND(0.0060)       | ND(0.0070)      |
| Chloroform                        | ND(0.0052)       | NA NA             | ND(0.0064)        | ND(0.0060)       | ND(0.0070)      |
| Ethylbenzene                      | ND(0.0052)       | NA NA             | ND(0.0064)        | ND(0.0060)       | ND(0.0070)      |
| Methylene Chloride                | 0.00088 J        | NA NA             | ND(0.0064)        | ND(0.0060)       | 0.0017 J        |
| Toluene                           | ND(0.0052)       | NA                | ND(0.0064)        | ND(0.0060)       | ND(0.0070)      |
| trans-1,2-Dichloroethene          | ND(0.0052)       | NA                | ND(0.0064)        | ND(0.0060)       | ND(0.0070)      |
| Trichloroethene                   | ND(0.0052)       | NA                | ND(0.0064)        | ND(0.0060)       | ND(0.0070)      |
| Vinyl Chloride                    | ND(0.010)        | NA NA             | ND(0.013)         | ND(0.012)        | ND(0.014)       |
| Xylenes (total)                   | 0.0017 J         | NA                | 0.0026 J          | ND(0.0060)       | ND(0.0070)      |
| Semivolatile Organics             |                  |                   |                   |                  |                 |
| 1,2,4,5-Tetrachlorobenzene        | ND(0.37)         | ND(0.46)          | I NA I            | ND(0.45)         | ND(0.43)        |
| 1,2,4-Trichlorobenzene            | ND(0.37)         | ND(0.46)          | NA I              | ND(0.45)         | ND(0.43)        |
| 1,4-Dichlorobenzene               | ND(0.37)         | ND(0.46)          | NA                | ND(0.45)         | ND(0.43)        |
| 1,4-Naphthoquinone                | ND(1.8)          | ND(2.2)           | NA                | ND(2.2)          | ND(2.1)         |
| 2-Methylnaphthalene               | ND(0.37)         | ND(0.46)          | NA I              | ND(0.45)         | ND(0.43)        |
| 3&4-Methylphenol                  | ND(0.74)         | ND(0.92)          | NA                | ND(0.90)         | ND(0.87)        |
| 3,3'-Dichlorobenzidine            | ND(1.8)          | ND(2.2)           | NA I              | ND(2.2)          | ND(2.1)         |
| 3-Methylcholanthrene              | ND(1.8)          | ND(2.2)           | NA I              | ND(2.2)          | ND(2.1)         |
| Acenaphthene                      | ND(0.37)         | ND(0.46)          | NA NA             | ND(0.45)         | ND(0.43)        |
| Acenaphthylene                    | ND(0.37)         | ND(0.46)          | NA NA             | ND(0.45)         | 0.037 J         |
| Aniline                           | ND(0.37)         | ND(0.46)          | NA I              | ND(0.45)         | ND(0.43)        |
| Anthracene                        | ND(0.37)         | ND(0.46)          | NA I              | ND(0.45)         | ND(0.43)        |
| Benzo(a)anthracene                | ND(0.37)         | 0.064 J           | NA NA             | 0.064 J          | 0.17 J          |
| Benzo(a)pyrene                    | ND(0.37)         | 0.054 J           | NA                | 0.077 J          | 0.19 J          |
| Benzo(b)fluoranthene              | ND(0.37)         | 0.054 J           | NA                | 0.070 J          | 0.20 J          |
| Benzo(g,h,i)perylene              | ND(0.37)         | ND(0.46)          | NA                | 0.066 J          | ND(0.43)        |
| Benzo(k)fluoranthene              | ND(0.37)         | ND(0.46)          | NA                | ND(0.45)         | 0.20 J          |
| bis(2-Ethylhexyl)phthalate        | ND(0.37)         | ND(0.46)          | NA                | ND(0.45)         | ND(0.43)        |
| Chrysene                          | ND(0.37)         | 0.089 J           | NA                | 0.097 J          | 0.21 J          |
| Dibenzo(a,h)anthracene            | ND(0.37)         | ND(0.46)          | NA                | ND(0.45)         | ND(0.43)        |
| Dibenzofuran                      | ND(0.37)         | ND(0.46)          | NA I              | ND(0.45)         | ND(0.43)        |
| Diethylphthalate                  | ND(0.37)         | ND(0.46)          | NA                | ND(0.45)         | ND(0.43)        |
| Di-n-Butylphthalate               | ND(0.37)         | ND(0.46)          | NA                | ND(0.45)         | ND(0.43)        |
| Fluoranthene                      | ND(0.37)         | 0.10 J            | NA                | 0.15 J           | 0.43            |
| Fluorene                          | ND(0.37)         | ND(0.46)          | NA                | ND(0.45)         | ND(0.43)        |
| Hexachlorobenzene                 | ND(0.37)         | ND(0.46)          | NA                | ND(0.45)         | ND(0.43)        |
| Indeno(1,2,3-cd)pyrene            | ND(0.37)         | ND(0.46)          | NA                | 0.066 J          | 0.073 J         |
| Isophorone                        | ND(0.37)         | ND(0.46)          | NA                | ND(0.45)         | ND(0.43)        |
| Naphthalene                       | ND(0.37)         | ND(0.46)          | NA                | ND(0.45)         | ND(0.43)        |
| Pentachlorobenzene                | ND(0.37)         | ND(0.46)          | NA                | ND(0.45)         | ND(0.43)        |
| Pentachlorophenol                 | ND(1.8)          | ND(2.2)           | NA                | ND(2.2)          | ND(2.1)         |
| Phenanthrene                      | ND(0.37)         | 0.060 J           | NA                | 0.083 J          | 0.18 J          |
| Phenol                            | ND(0.37)         | ND(0.46)          | NA                | ND(0.45)         | ND(0.43)        |
| Pyrene                            | ND(0.37)         | 0.12 J            | NA I              | 0.15 J           | 0.27 J          |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | RAA15-J18<br>1-3 | RAA15-J18<br>6-10 | RAA15-J18<br>8-10 | RAA15-J19<br>0-1 | RAA15-L3<br>0-1  |  |
|-----------------------------------|------------------|-------------------|-------------------|------------------|------------------|--|
| Parameter Date Collected:         | 02/14/03         | 02/14/03          | 02/14/03          | 02/18/03         | 03/05/03         |  |
| Furans                            |                  |                   |                   |                  |                  |  |
| 2,3,7,8-TCDF                      | ND(0.00000053) Y | 0.0000034 Y       | NA                | 0.000021 J       | ND(0.0000033) X  |  |
| TCDFs (total)                     | 0.00000063       | 0.0000085         | NA                | ND(0.00015) X    | ND(0.000046) X   |  |
| 1,2,3,7,8-PeCDF                   | ND(0.00000020) X | ND(0.0000020) X   | NA                | ND(0.0000043) X  | 0.0000011 J      |  |
| 2,3,4,7,8-PeCDF                   | ND(0.00000019) X | ND(0.00000085) X  | NA                | 0.0000068 J      | 0.0000015 J      |  |
| PeCDFs (total)                    | ND(0.00000025)   | ND(0.0000020)     | NA                | ND(0.00016) X    | ND(0.000062) X   |  |
| 1,2,3,4,7,8-HxCDF                 | ND(0.00000044) X | ND(0.0000015) X   | NA                | 0.0000080        | ND(0.0000020) X  |  |
| 1,2,3,6,7,8-HxCDF                 | ND(0.00000016) X | ND(0.0000020) X   | NA                | ND(0.000015) X   | ND(0.0000079) X  |  |
| 1,2,3,7,8,9-HxCDF                 | ND(0.00000011)   | ND(0.00000022) X  | NA                | ND(0.00000027)   | 0.00000026 J     |  |
| 2,3,4,6,7,8-HxCDF                 | ND(0.00000018) X | ND(0.00000074) X  | NA                | ND(0.00000025)   | ND(0.0000011) X  |  |
| HxCDFs (total)                    | ND(0.00000044)   | 0.000015          | NA                | ND(0.000097) X   | ND(0.000075) X   |  |
| 1,2,3,4,6,7,8-HpCDF               | ND(0.00000088) X | 0.000022          | NA                | 0.000037         | 0.000055         |  |
| 1,2,3,4,7,8,9-HpCDF               | ND(0.00000011) X | ND(0.0000014) X   | NA                | 0.0000017 J      | 0.0000016 J      |  |
| HpCDFs (total)                    | ND(0.00000088)   | 0.000051          | NA                | ND(0.000069) X   | 0.00011          |  |
| OCDF                              | ND(0.0000013) X  | 0.000038          | NA                | 0.000028         | 0.000049         |  |
| Dioxins                           |                  |                   |                   |                  |                  |  |
| 2,3,7,8-TCDD                      | ND(0.00000011) X | ND(0.000000099)   | NA                | ND(0.00000053)   | ND(0.00000029)   |  |
| TCDDs (total)                     | ND(0.00000011)   | ND(0.00000015)    | NA                | ND(0.0000016) X  | ND(0.0000011) X  |  |
| 1,2,3,7,8-PeCDD                   | ND(0.00000024)   | ND(0.00000026)    | NA                | ND(0.00000046) X | ND(0.00000033) X |  |
| PeCDDs (total)                    | ND(0.00000024)   | ND(0.0000011)     | NA                | ND(0.0000037) X  | ND(0.0000022) X  |  |
| 1,2,3,4,7,8-HxCDD                 | ND(0.00000015)   | ND(0.00000051) X  | NA                | ND(0.00000031)   | ND(0.00000040) X |  |
| 1,2,3,6,7,8-HxCDD                 | ND(0.00000023) X | 0.0000042 J       | NA                | ND(0.0000012) X  | 0.0000022 J      |  |
| 1,2,3,7,8,9-HxCDD                 | ND(0.00000017) X | ND(0.0000011)     | NA                | ND(0.00000076) X | 0.0000015 J      |  |
| HxCDDs (total)                    | ND(0.00000027)   | 0.000023          | NA                | ND(0.000010) X   | ND(0.000019) X   |  |
| 1,2,3,4,6,7,8-HpCDD               | ND(0.0000022) X  | 0.000069          | NA                | 0.000025 J       | 0.000049         |  |
| HpCDDs (total)                    | ND(0.0000022)    | 0.00013           | NA                | 0.000042         | 0.000089         |  |
| OCDD                              | ND(0.000028)     | 0.00074           | NA                | 0.00020 J        | 0.00050          |  |
| Total TEQs (WHO TEFs)             | 0.0000034        | 0.0000025         | NA                | 0.0000085        | 0.0000034        |  |
| Inorganics                        |                  | <u> </u>          |                   |                  |                  |  |
| Antimony                          | ND(6.80) J       | ND(8.30) J        | NA                | ND(8.20) J       | ND(7.90) J       |  |
| Arsenic                           | 5.70             | 1.80              | NA                | 6.70             | 2.40             |  |
| Barium                            | 40.6             | 23.6 B            | NA                | 77.4             | 27.7             |  |
| Beryllium                         | ND(0.400)        | ND(0.280)         | NA                | 0.900            | 0.280 B          |  |
| Cadmium                           | 0.760            | 0.330 B           | NA                | 0.860            | ND(0.660)        |  |
| Chromium                          | 12.4             | 17.5              | NA                | 38.4             | 10.1             |  |
| Cobalt                            | 11.5             | 5.30 B            | NA                | 11.6             | 5.90 B           |  |
| Copper                            | 21.2             | 13.6              | NA                | 34.5             | 12.7             |  |
| Cyanide                           | ND(0.560)        | ND(0.690)         | NA                | ND(0.240)        | ND(0.290)        |  |
| Lead                              | 10.9             | 13.6              | NA                | 58.7             | 15.2             |  |
| Mercury                           | 0.0420           | 0.110             | NA                | 0.540            | 0.0330 J         |  |
| Nickel                            | 22.2             | 9.60              | NA                | 20.5             | 11.3             |  |
| Selenium                          | ND(0.560)        | ND(0.700)         | NA                | 0.610 B          | ND(0.660)        |  |
| Silver                            | ND(1.10)         | ND(1.40)          | NA NA             | ND(1.40)         | ND(1.30)         |  |
| Thallium                          | 1.70             | 1.10 B            | NA NA             | 2.40             | ND(1.30) J       |  |
| Tin                               | ND(5.20)         | ND(7.30)          | NA NA             | 9.40 B           | ND(4.70)         |  |
| Vanadium                          | 11.3             | 7.60              | NA                | 21.8             | 10.3             |  |
| Zinc                              | 75.4             | 54.7              | NA                | 110              | 56.2             |  |

| Sample ID:<br>Sample Depth(Feet): | RAA15-L6<br>0-1 | RAA15-L13<br>3-5 | RAA15-L16<br>0-1 | RAA15-L17<br>0-1 | RAA15-M11<br>0-1 |  |
|-----------------------------------|-----------------|------------------|------------------|------------------|------------------|--|
| Parameter Date Collected:         | 02/13/03        | 02/11/03         | 02/12/03         | 02/17/03         | 02/12/03         |  |
| Volatile Organics                 |                 |                  |                  |                  |                  |  |
| 2-Butanone                        | ND(0.0059) J    | ND(0.0050)       | ND(0.0064)       | ND(0.0054) J     | ND(0.0059)       |  |
| Acetone                           | ND(0.024) J     | ND(0.020) J      | 0.0097 J         | ND(0.022) J      | ND(0.024) J      |  |
| Benzene                           | ND(0.0059)      | ND(0.0050)       | ND(0.0064)       | ND(0.0054)       | ND(0.0059)       |  |
| Carbon Disulfide                  | ND(0.0059)      | ND(0.0050)       | ND(0.0064)       | ND(0.0054)       | ND(0.0059)       |  |
| Chloroform                        | ND(0.0059)      | ND(0.0050)       | ND(0.0064)       | ND(0.0054)       | ND(0.0059)       |  |
| Ethylbenzene                      | ND(0.0059)      | 0.00050 J        | ND(0.0064)       | ND(0.0054)       | ND(0.0059)       |  |
| Methylene Chloride                | ND(0.0059)      | 0.0011 J         | ND(0.0064)       | ND(0.0054)       | ND(0.0059)       |  |
| Toluene                           | ND(0.0059)      | ND(0.0050)       | ND(0.0064)       | ND(0.0054)       | ND(0.0059)       |  |
| trans-1,2-Dichloroethene          | ND(0.0059)      | ND(0.0050)       | ND(0.0064)       | ND(0.0054)       | ND(0.0059)       |  |
| Trichloroethene                   | ND(0.0059)      | ND(0.0050)       | ND(0.0064)       | ND(0.0054)       | ND(0.0059)       |  |
| Vinyl Chloride                    | ND(0.012)       | ND(0.010)        | ND(0.013)        | ND(0.011)        | ND(0.012)        |  |
| Xylenes (total)                   | ND(0.0059)      | 0.0034 J         | ND(0.0064)       | ND(0.0054)       | 0.0014 J         |  |
| Semivolatile Organics             |                 |                  |                  |                  | I                |  |
| 1,2,4,5-Tetrachlorobenzene        | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| 1,2,4-Trichlorobenzene            | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| 1,4-Dichlorobenzene               | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| 1,4-Naphthoguinone                | ND(2.1)         | ND(1.9)          | ND(2.0)          | ND(2.0)          | ND(4.0)          |  |
| 2-Methylnaphthalene               | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| 3&4-Methylphenol                  | ND(0.86)        | 0.098 J          | ND(0.83)         | ND(0.81)         | ND(1.7)          |  |
| 3,3'-Dichlorobenzidine            | ND(2.1)         | ND(1.9)          | ND(2.0)          | ND(2.0)          | ND(4.0)          |  |
| 3-Methylcholanthrene              | ND(2.1)         | ND(1.9)          | ND(2.0)          | ND(2.0)          | ND(4.0)          |  |
| Acenaphthene                      | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| Acenaphthylene                    | 0.085 J         | 0.042 J          | 0.20 J           | 0.030 J          | 0.10 J           |  |
| Aniline                           | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| Anthracene                        | 0.062 J         | 0.051 J          | 0.12 J           | ND(0.40)         | ND(0.83)         |  |
| Benzo(a)anthracene                | 0.23 J          | 0.19 J           | 0.52             | 0.095 J          | 0.21 J           |  |
| Benzo(a)pyrene                    | 0.27 J          | 0.22 J           | 0.63             | 0.12 J           | 0.22 J           |  |
| Benzo(b)fluoranthene              | 0.26 J          | 0.18 J           | 0.64             | 0.11 J           | 0.19 J           |  |
| Benzo(g,h,i)perylene              | 0.11 J          | 0.16 J           | 0.24 J           | ND(0.40)         | ND(0.83)         |  |
| Benzo(k)fluoranthene              | 0.26 J          | 0.21 J           | 0.57             | 0.13 J           | 0.23 J           |  |
| bis(2-Ethylhexyl)phthalate        | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| Chrysene                          | 0.32 J          | 0.23 J           | 0.76             | 0.13 J           | 0.27 J           |  |
| Dibenzo(a,h)anthracene            | ND(0.43)        | ND(0.38)         | 0.10 J           | ND(0.40)         | ND(0.83)         |  |
| Dibenzofuran                      | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| Diethylphthalate                  | 0.10 J          | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| Di-n-Butylphthalate               | ND(0.43)        | 0.13 J           | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| Fluoranthene                      | 0.60            | 0.36 J           | 1.3              | 0.24 J           | 0.37 J           |  |
| Fluorene                          | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| Hexachlorobenzene                 | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| Indeno(1,2,3-cd)pyrene            | 0.13 J          | 0.17 J           | 0.29 J           | ND(0.40)         | ND(0.83)         |  |
| Isophorone                        | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| Naphthalene                       | ND(0.43)        | 0.028 J          | 0.028 J          | ND(0.40)         | ND(0.83)         |  |
| Pentachlorobenzene                | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         | ND(0.83)         |  |
| Pentachlorophenol                 | ND(2.1)         | ND(1.9)          | ND(2.0)          | ND(2.0)          | ND(4.0)          |  |
| Phenanthrene                      | 0.34 J          | 0.19 J           | 0.58             | 0.10 J           | 0.18 J           |  |
| Phenol                            | ND(0.43)        | ND(0.38)         | ND(0.42)         | ND(0.40)         |                  |  |
| Pyrene                            | 0.43            | 0.33 J           | 0.97             | 110(0.40)        | ND(0.83)         |  |

## PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sample ID:<br>Sample Depth(Feet): | 0-1             | RAA15-L13<br>3-5 | RAA15-L16<br>0-1 | RAA15-L17<br>0-1 | RAA15-M11<br>0-1 |
|-----------------------------------|-----------------|------------------|------------------|------------------|------------------|
| Parameter Date Collected:         | 02/13/03        | 02/11/03         | 02/12/03         | 02/17/03         | 02/12/03         |
| Furans                            |                 |                  |                  |                  |                  |
| 2,3,7,8-TCDF                      | 0.000013 Y      | 0.0000053 Y      | 0.0000089 Y      | 0.0000014        | 0.0000043 Y      |
| TCDFs (total)                     | 0.000056        | 0.000030         | 0.000056         | ND(0.0000051) X  | 0.000029         |
| 1,2,3,7,8-PeCDF                   | 0.0000046 J     | 0.0000033 J      | ND(0.0000028) X  | ND(0.00000029) X | ND(0.00000086)   |
| 2,3,4,7,8-PeCDF                   | 0.0000090       | 0.0000029 J      | 0.0000040 J      | ND(0.00000034) X | ND(0.0000018)    |
| PeCDFs (total)                    | 0.000051        | 0.000014         | 0.000048         | ND(0.0000064) X  | 0.0000064        |
| 1,2,3,4,7,8-HxCDF                 | 0.000013        | 0.0000038 J      | 0.0000036 J      | 0.00000058 J     | ND(0.0000020) X  |
| 1,2,3,6,7,8-HxCDF                 | 0.0000069       | 0.0000030 J      | ND(0.0000026) X  | ND(0.00000088) X | ND(0.00000066) X |
| 1,2,3,7,8,9-HxCDF                 | ND(0.00000099)  | ND(0.00000065)   | ND(0.0000011)    | ND(0.00000012)   | ND(0.00000074)   |
| 2,3,4,6,7,8-HxCDF                 | 0.0000064 J     | ND(0.0000014) X  | 0.0000032 J      | ND(0.00000017) X | ND(0.00000087) X |
| HxCDFs (total)                    | 0.00041         | 0.000015         | 0.000058         | ND(0.0000060) X  | ND(0.0000036)    |
| 1,2,3,4,6,7,8-HpCDF               | 0.00088         | 0.000076         | 0.000080         | 0.0000018 J      | ND(0.0000028) X  |
| 1,2,3,4,7,8,9-HpCDF               | 0.0000085       | ND(0.0000017) X  | ND(0.0000021) X  | ND(0.00000018)   | ND(0.00000058) X |
| HpCDFs (total)                    | 0.0016          | 0.0000076        | 0.00014          | ND(0.0000029) X  | ND(0.0000028)    |
| OCDF                              | 0.00056 D       | ND(0.0000050)    | 0.000046         | 0.0000012 J      | ND(0.0000017)    |
| Dioxins                           |                 |                  |                  |                  |                  |
| 2,3,7,8-TCDD                      | 0.0000020       | ND(0.00000045)   | ND(0.00000053)   | ND(0.00000040)   | ND(0.00000053)   |
| TCDDs (total)                     | 0.000048        | ND(0.00000045)   | 0.0000014        | ND(0.00000040)   | ND(0.00000053)   |
| 1,2,3,7,8-PeCDD                   | ND(0.0000015) X | ND(0.00000061)   | ND(0.00000084)   | ND(0.00000017)   | ND(0.00000079)   |
| PeCDDs (total)                    | ND(0.0000031)   | ND(0.00000061)   | ND(0.0000017)    | ND(0.00000017)   | ND(0.00000079)   |
| 1,2,3,4,7,8-HxCDD                 | 0.0000036 J     | ND(0.00000054)   | ND(0.00000071)   | ND(0.00000019)   | ND(0.00000081)   |
| 1,2,3,6,7,8-HxCDD                 | 0.000020        | ND(0.00000049)   | ND(0.0000024) X  | ND(0.00000018)   | ND(0.00000072)   |
| 1,2,3,7,8,9-HxCDD                 | 0.0000065 J     | ND(0.0000046)    | ND(0.0000012) X  | ND(0.00000018)   | ND(0.00000068)   |
| HxCDDs (total)                    | 0.00013         | ND(0.0000010)    | 0.000016         | ND(0.00000018)   | ND(0.00000081)   |
| 1,2,3,4,6,7,8-HpCDD               | 0.00045         | 0.0000049 J      | 0.000021         | 0.0000010 J      | ND(0.0000018)    |
| HpCDDs (total)                    | 0.00083         | 0.0000098        | 0.000038         | ND(0.0000016) X  | ND(0.0000018)    |
| OCDD                              | 0.0048 D        | 0.000050         | 0.00011          | 0.0000076 J      | 0.000010 J       |
| Total TEQs (WHO TEFs)             | 0.000028        | 0.0000037        | 0.000058         | 0.00000069       | 0.0000019        |
| Inorganics                        |                 |                  |                  |                  |                  |
| Antimony                          | ND(7.80)        | ND(6.90) J       | ND(7.60) J       | ND(8.20) J       | ND(7.60) J       |
| Arsenic                           | 4.10            | 3.90             | 6.30             | 3.80             | 4.80             |
| Barium                            | 47.1            | 47.5             | 59.0             | 41.8             | 57.0             |
| Beryllium                         | 0.820           | 0.490 B          | 0.600 B          | ND(0.500)        | 0.780            |
| Cadmium                           | 0.910           | 0.570 B          | 0.740            | 0.500 B          | 0.550 B          |
| Chromium                          | 22.7            | 11.6             | 11.8             | 23.6             | 12.9             |
| Cobalt                            | 7.60            | 8.30             | 9.50             | 7.4              | 8.80             |
| Copper                            | 26.0            | 21.4             | 23.5             | 25.7             | 32.3             |
| Cyanide                           | 0.320 B         | 0.230 B          | 0.300 B          | ND(0.610)        | 0.250 B          |
| Lead                              | 52.9            | 262              | 45.3             | 33               | 45.1             |
| Mercury                           | 0.240           | 0.170            | 0.150            | 0.240            | ND(0.0940)       |
| Nickel                            | 15.2            | 15.7             | 19.1             | 13.7             | 14.7             |
| Selenium                          | 0.410 B         | ND(0.580)        | ND(0.630)        | 0.360 B          | 0.490 B          |
| Silver                            | 0.0900 B        | ND(1.20)         | ND(1.30)         | ND(1.20)         | ND(1.30)         |
| Thallium                          | 0.860 B         | 0.950 B          | 1,00 B           | 1.60             | 1.20 B           |
| Tin                               | ND(8.00)        | 34.7             | ND(6.70)         | 8.00 B           | ND(6.40)         |
| Vanadium                          | 13.8            | 11.5             | 14.9             | 13.4             | 17.0             |
| Zinc                              | 95.7            | 88.6             | 95.4             | 69.2             | 79.9             |

| Sample ID:<br>Sample Depth(Feet): | RAA15-N6<br>1-3    | RAA15-N6<br>3-6 | RAA15-N6<br>4-6 | RAA15-P13<br>1-3 |
|-----------------------------------|--------------------|-----------------|-----------------|------------------|
| Parameter Date Collected:         | 02/13/03           | 02/13/03        | 02/13/03        | 02/10/03         |
| Volatile Organics                 | 115/0 005//        |                 |                 |                  |
| 2-Butanone                        | ND(0.0051) J       | NA NA           | ND(0.0053) J    | ND(0.0053)       |
| Acetone                           | ND(0.020) J        | NA              | ND(0.021) J     | ND(0.021) J      |
| Benzene                           | ND(0.0051)         | NA              | ND(0.0053)      | ND(0.0053)       |
| Carbon Disulfide                  | ND(0.0051)         | NA              | ND(0.0053)      | ND(0.0053)       |
| Chloroform                        | ND(0.0051)         | NA              | ND(0.0053)      | ND(0.0053)       |
| Ethylbenzene                      | ND(0.0051)         | NA              | ND(0.0053)      | ND(0.0053)       |
| Methylene Chloride                | 0.0012 J           | NA              | 0.0011 J        | 0.00096 J        |
| Toluene                           | ND(0.0051)         | NA              | ND(0.0053)      | ND(0.0053)       |
| trans-1,2-Dichloroethene          | ND(0.0051)         | NA              | ND(0.0053)      | ND(0.0053)       |
| Trichloroethene                   | ND(0.0051)         | NA              | ND(0.0053)      | ND(0.0053)       |
| Vinyl Chloride                    | ND(0.010)          | NA              | ND(0.011)       | ND(0.011)        |
| Xylenes (total)                   | ND(0.0051)         | NA              | ND(0.0053)      | ND(0.0053)       |
| Semivolatile Organics             |                    |                 |                 |                  |
| 1,2,4,5-Tetrachlorobenzene        | ND(0.37)           | ND(0.38)        | NA              | ND(0.40)         |
| 1,2,4-Trichlorobenzene            | ND(0.37)           | ND(0.38)        | NA              | ND(0.40)         |
| 1,4-Dichlorobenzene               | ND(0.37)           | ND(0.38)        | NA              | ND(0.40)         |
| 1,4-Naphthoquinone                | ND(1.8)            | ND(1.8)         | NA              | ND(1.9)          |
| 2-Methylnaphthalene               | ND(0.37)           | ND(0.38)        | NA              | ND(0.40)         |
| 3&4-Methylphenol                  | ND(0.74)           | ND(0.76)        | NA NA           | ND(0.80)         |
| 3,3'-Dichlorobenzidine            | ND(1.8)            | ND(1.8)         | NA NA           | ND(1.9)          |
| 3-Methylcholanthrene              | ND(1.8)            | ND(1.8)         | NA NA           | ND(1.9)          |
| Acenaphthene                      | ND(0.37)           | ND(0.38)        | NA NA           | ND(0.40)         |
| Acenaphthylene                    | ND(0.37)           | ND(0.38)        | . NA            | 0.037 J          |
| Aniline                           | ND(0.37)           | ND(0.38)        | NA NA           | ND(0.40)         |
| Anthracene                        | ND(0.37)           | ND(0.38)        | NA NA           | ND(0.40)         |
| Benzo(a)anthracene                | ND(0.37)           | ND(0.38)        | NA NA           | 0.11 J           |
| Benzo(a)pyrene                    | ND(0.37)           | ND(0.38)        | NA NA           | 0.11 J           |
| Benzo(b)fluoranthene              | ND(0.37)           | ND(0.38)        | NA I            |                  |
| Benzo(g,h,i)perylene              | ND(0.37)           | ND(0.38)        | NA NA           | 0.11 J           |
| Benzo(k)fluoranthene              | ND(0.37)           | ND(0.38)        | NA NA           | 0.11 J           |
| bis(2-Ethylhexyl)phthalate        | ND(0.37)           |                 |                 | 0.14 J           |
| Chrysene                          | ND(0.37)           | ND(0.38)        | NA NA           | ND(0.40)         |
| Dibenzo(a,h)anthracene            | ND(0.37)           | ND(0.38)        | NA NA           | 0.17 J           |
| Dibenzofuran                      |                    | ND(0.38)        | NA NA           | ND(0.40)         |
| Diethylphthalate                  | ND(0.37)<br>0.13 J | ND(0.38)        | NA NA           | ND(0.40)         |
|                                   |                    | ND(0.38)        | NA NA           | ND(0.40)         |
| Di-n-Butylphthalate Fluoranthene  | ND(0.37)           | ND(0.38)        | NA NA           | ND(0.40)         |
| Fluorene                          | ND(0.37)           | ND(0.38)        | NA NA           | 0.23 J           |
|                                   | ND(0.37)           | ND(0.38)        | NA NA           | ND(0.40)         |
| Hexachlorobenzene                 | ND(0.37)           | ND(0.38)        | NA NA           | ND(0.40)         |
| Indeno(1,2,3-cd)pyrene            | ND(0.37)           | ND(0.38)        | NA NA           | 0.11 J           |
| Isophorone                        | ND(0.37)           | ND(0.38)        | NA NA           | ND(0.40)         |
| Naphthalene                       | ND(0.37)           | ND(0.38)        | NA NA           | ND(0.40)         |
| Pentachlorobenzene                | ND(0.37)           | ND(0.38)        | NA              | ND(0.40)         |
| Pentachlorophenol                 | ND(1.8)            | ND(1.8)         | NA              | ND(1.9)          |
| Phenanthrene                      | ND(0.37)           | ND(0.38)        | NA              | 0.13 J           |
| Phenol                            | ND(0.37)           | ND(0.38)        | NA              | ND(0.40)         |
| Pyrene                            | 0.048 J            | ND(0.38)        | NA              | 0.24 J           |

| Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: |                  | RAA15-N6<br>3-6<br>02/13/03 | RAA15-N6<br>4-6<br>02/13/03 | RAA15-P13<br>1-3<br>02/10/03 |  |
|----------------------------------------------------------------|------------------|-----------------------------|-----------------------------|------------------------------|--|
| Furans                                                         |                  | 1 02.000                    | 02710700                    | 021003                       |  |
| 2,3,7,8-TCDF                                                   | 0.0000017 Y      | ND(0.00000019)              | NA                          | 0.0000059 Y                  |  |
| TCDFs (total)                                                  | 0.0000056        | ND(0.00000019)              | NA NA                       | 0.0000351                    |  |
| 1,2,3,7,8-PeCDF                                                | ND(0.00000041) X | ND(0.00000013) X            | NA NA                       | ND(0.000022) X               |  |
| 2,3,4,7,8-PeCDF                                                | ND(0.00000037) X | ND(0.00000017) X            | NA NA                       | 0.0000032J X                 |  |
| PeCDFs (total)                                                 | ND(0.00000046)   | ND(0.00000017) X            | NA NA                       | 0.000026                     |  |
| 1,2,3,4,7,8-HxCDF                                              | ND(0.00000066) X | ND(0.00000018) X            | NA NA                       | 0.0000031 J                  |  |
| 1,2,3,6,7,8-HxCDF                                              | ND(0.00000025) X | ND(0.00000013) X            | NA NA                       | ND(0.0000018) X              |  |
| 1,2,3,7,8,9-HxCDF                                              | ND(0.00000015)   | ND(0.000000086) X           | NA NA                       | ND(0.00000010)X              |  |
| 2,3,4,6,7,8-HxCDF                                              | ND(0.00000026) X | ND(0.000000086) X           | NA                          | 0.0000033 J                  |  |
| HxCDFs (total)                                                 | ND(0.0000018) X  | ND(0.00000018) X            | NA NA                       | 0.000025                     |  |
| 1,2,3,4,6,7,8-HpCDF                                            | ND(0.0000016) X  | ND(0.00000023) X            | NA NA                       | 0.000015                     |  |
| 1,2,3,4,7,8,9-HpCDF                                            | ND(0.00000013) X | ND(0.000000074)             | NA                          | ND(0.0000011)                |  |
| HpCDFs (total)                                                 | ND(0.0000016) X  | ND(0.00000023) X            | NA                          | 0.000022                     |  |
| OCDF                                                           | ND(0.0000030)    | ND(0.00000042)              | NA                          | 0.000011 J                   |  |
| Dioxins                                                        |                  |                             |                             | 1 0.00000                    |  |
| 2,3,7,8-TCDD                                                   | ND(0.00000011)   | ND(0.000000097) X           | NA                          | ND(0.00000042)               |  |
| TCDDs (total)                                                  | ND(0.00000011)   | ND(0.000000097) X           | NA NA                       | ND(0.00000042)               |  |
| 1,2,3,7,8-PeCDD                                                | ND(0.00000021)   | ND(0.00000017)              | NA.                         | ND(0.00000042)               |  |
| PeCDDs (total)                                                 | ND(0.00000021) X | ND(0.00000017) X            | NA NA                       | ND(0.00000067)               |  |
| 1,2,3,4,7,8-HxCDD                                              | ND(0.00000016)   | ND(0.00000011) X            | NA NA                       | ND(0.00000056)               |  |
| 1,2,3,6,7,8-HxCDD                                              | ND(0.00000019) X | ND(0.0000000086)            | NA NA                       | ND(0.00000053)               |  |
| 1,2,3,7,8,9-HxCDD                                              | ND(0.00000025) X | ND(0.00000011) X            | NA NA                       | ND(0.00000033)               |  |
| HxCDDs (total)                                                 | ND(0.00000059) X | ND(0.00000011) X            | NA NA                       | ND(0.0000016)                |  |
| 1,2,3,4,6,7,8-HpCDD                                            | ND(0.0000024) X  | ND(0.00000033) X            | NA NA                       | 0.000010                     |  |
| HpCDDs (total)                                                 | ND(0.0000024) X  | ND(0.00000033) X            | NA NA                       | 0.000010                     |  |
| OCDD                                                           | ND(0.000021)     | ND(0.0000043) X             | NA NA                       | 0.00014                      |  |
| Total TEQs (WHO TEFs)                                          | 0.00000055       | 0.00000023                  | NA NA                       | 0.000040                     |  |
| Inorganics                                                     |                  |                             |                             | 0.0000040                    |  |
| Antimony                                                       | ND(6.70)         | ND(6.90)                    | NA                          | ND(7.30) J                   |  |
| Arsenic                                                        | 5.20             | 3.50                        | NA NA                       | 6.80                         |  |
| Barium                                                         | 24.4             | 23.8                        | NA NA                       | 61.3                         |  |
| Beryllium                                                      | 0.620            | 0.530 B                     | NA NA                       | 0.650                        |  |
| Cadmium                                                        | 0.390 B          | 0.390 B                     | NA                          | 0.530 B                      |  |
| Chromium                                                       | 8.20             | 7.90                        | NA NA                       | 13.2                         |  |
| Cobalt                                                         | 6.80             | 7.70                        | NA NA                       | 8.50                         |  |
| Copper                                                         | 9.10             | 11.0                        | NA NA                       | 17.2                         |  |
| Cyanide                                                        | ND(0.560)        | ND(0.570)                   | NA NA                       | 0.260 B                      |  |
| Lead                                                           | 9.90             | 6.70                        | NA NA                       | 43.9                         |  |
| Mercury                                                        | 0.0510           | 0.0420                      | NA NA                       | ND(0.110)                    |  |
| Nickel                                                         | 10.8             | 12.8                        | NA NA                       | 15.6                         |  |
| Selenium                                                       | ND(0.560)        | ND(0.570)                   | NA NA                       | 0.480 B                      |  |
| Silver                                                         | ND(1.10)         | ND(1.10)                    | NA NA                       | ND(1.20)                     |  |
| Thallium                                                       | ND(1.10)         | ND(1.10)                    | NA I                        | 1.50                         |  |
| Tin                                                            | ND(5.80)         | ND(5.20)                    | NA NA                       | ND(6.90)                     |  |
| Vanadium                                                       | 11.2             | 9.10                        | NA                          | 18.0                         |  |
| Zinc                                                           | 37.9             | 39.7                        | NA NA                       | 81.1                         |  |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

#### Notes

- Samples were collected by Blasland Bouck & Lee, Inc., and were submitted to Severn Trent Laboratories, Inc. for analysis of Appendix IX+3
  constituents.
- 2. Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan, General Electric Company, Pittsfield, Massachusetts, Blasland Bouck & Lee, Inc. (approved November 4, 2002 and resubmitted December 10, 2002).
- 3. With the exception of dioxin/furans, only those constituents detected in one or more samples are summarized.
- 4. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 5. NA Not Analyzed.
- 5. Field duplicate sample results are presented in brackets.
- 7. Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998.

#### Data Qualifiers:

#### Organics (volatiles, semivolatiles, dioxin/furans)

- D Compound quantitated using a secondary dilution.
- J Indicates that the associated numerical value is an estimated concentration.
- Q Indicates the presence of quantitative interferences.
- X Estimated maximum possible concentration.
- Y 2.3.7.8-TCDF results have been confirmed on a DB-225 column.

#### Inorganics

- B Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).
- J Indicates that the associated numerical value is an estimated concentration.

### TABLE 3 HISTORICAL SOIL SAMPLING DATA FOR PCBs

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

| Location ID | Sample ID        | Depth(Feet) | Date<br>Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|-------------|------------------|-------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|
| FP-1        | FP-1             | 4-8         | 10/5/1989         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
|             |                  | 8-12        | 10/5/1989         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
|             |                  | 12-16       | 10/5/1989         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
| FP-2        | FP-2             | 4-8         | 10/5/1989         | ND(0.050)    | NA NA        | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
| FP-3        | FP-3             | 4-8         | 10/5/1989         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | 0.33         | 0.050        | 0.38       |
| FP-4        | FP-4             | 4-8         | 10/5/1989         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
| K-1         | ROO1B0002        | 0-2         | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | 0.15         | 0.15       |
|             | ROO1B0204        | 2-4         | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
|             | ROO1B0406        | 4-6         | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
|             | ROO1B0608        | 6-8         | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
|             | ROO1B0810        | 8-10        | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
|             | ROO1B1012        | 10-12       | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
|             | ROO1B1214        | 12-14       | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
|             | ROO1B1416        | 14-16       | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
| K-2         | ROO2B0002        | 0-2         | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | 0.070        | 0.070      |
|             | ROO2B0204        | 2-4         | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
|             | ROO2B0406        | 4-6         | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
|             | ROO2B0608        | 6-8         | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
|             | ROO2B0810        | 8-10        | 1/31/1991         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
| SA-1        | SA-1             | 4-8         | 10/5/1989         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
|             |                  | 8-12        | 10/5/1989         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | 0.050        | 0.050      |
| SA-2        | SA-2             | 4-8         | 10/5/1989         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | 0.080        | 0.050        | 0.13       |
|             |                  | 8-12        | 10/5/1989         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
| SBS-15      | K10-10-33-SBS-15 | 0-0.5       | 4/28/1998         | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | NĎ(0.050)    | 0.22         | 0.47         | 0.69       |
| SBS-16      | K10-10-33-SBS-16 | 0-0.5       | 4/28/1998         | ND(0.048)    | ND(0.048)    | ND(0.048)    | ND(0.048)    | ND(0.048)    | ND(0.048)    | 0.22         | 0.22       |
| SBS-17      | K10-10-33-SBS-17 | 0-0.5       | 4/28/1998         | ND(0.057)    | ND(0.057)    | ND(0.057)    | ND(0.057)    | ND(0.057)    | 0.41         | 0.79         | 1.2        |
| SBS-18      | K10-10-33-SBS-18 | 0-0.5       | 4/28/1998         | ND(0.051)    | ND(0.051)    | ND(0.051)    | ND(0.051)    | ND(0.051)    | 0.26         | 0.62         | 0.88       |
| YB-1        | YB-1             | 4-8         | 10/6/1989         | ND(0.18)     | NA           | ND(0.18)     | ND(0.18)     | ND(0.18)     | 0.25         | 0.18         | 0.43       |
| YB-2        | YB-2             | 4-8         | 10/6/1989         | ND(0.17)     | NA           | ND(0.17)     | ND(0.17)     | ND(0.17)     | 0.63         | 0.17         | 0.80       |
| YB-3        | YB-3             | 4-8         | 10/6/1989         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
| YB-4        | YB-4             | 4-8         | 10/6/1989         | ND(0.050)    | NA ·         | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)  |
| YB-5        | YB-5             | 4-8         | 10/6/1989         | ND(0.050)    | NA           | ND(0.050)    | ND(0.050)    | ND(0.050)    | ND(0.050)    | 0.080        | 0.080      |

#### Notes:

- 1. Samples were collected and analyzed by General Electric Company subcontractors for PCBs.
- 2. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 3. NA Not Analyzed.

| Location ID:                           |            | FP-2                                   | FP-3       | J-2S                                  | J-3S       | J-4S       | K-1                        | K-2                        |
|----------------------------------------|------------|----------------------------------------|------------|---------------------------------------|------------|------------|----------------------------|----------------------------|
| Sample ID:                             | FP-1       | FP-2                                   | FP-3       | ROJ2S                                 | ROJ3S      | ROJ4S      | ROO1B1416                  | ROO2B0810                  |
| Sample Depth(Feet):                    | 8-12       | 4-8                                    | 4-8        | 0-0.3                                 | 0-0.3      | 0-0.3      | 14-16                      | 8-10                       |
| Parameter Date Collected:              | 10/05/89   | 10/05/89                               | 10/05/89   | 12/10/91                              | 12/10/91   | 12/10/91   | 01/31/91                   | 01/31/91                   |
| Volatile Organics                      |            |                                        |            |                                       |            |            |                            |                            |
| 1,1,1-Trichloroethane                  | ND(0.0050) | ND(0.0050)                             | ND(0.0050) | ND(0.0060)                            | ND(0.0050) | ND(0.0070) | ND(0.0060)                 | ND(0.0060)                 |
| 1,1,2-trichloro-1,2,2-trifluoroethane  | NA         | NA                                     | NA         | 0.0030 J                              | 0.0020 J   | 0.0030 J   | ND(0.012)                  | ND(0.012)                  |
| Acetone                                | NA         | NA                                     | NA         | 0.039                                 | 0.028      | 0.059      | 0.022 B                    | 0.032 B                    |
| Methylene Chloride                     | 0.0060     | 0.0060                                 | 0.0050 J   | 0.074 B                               | 0.055 B    | 0.087      | 0.033 B                    | 0.038 B                    |
| Toluene .                              | 0.0040 J   | 0.0030 J                               | 0.0030 J   |                                       | ND(0.0050) |            | ND(0.0060)                 | ND(0.0060)                 |
| Trichloroethene                        | 0.0010 J   | ND(0.0050)                             | ND(0.0050) |                                       | ND(0.0050) | ND(0.0070) | ND(0.0060)                 | ND(0.0060)                 |
| Semivolatile Organics                  |            | <u> </u>                               | <u> </u>   | · · · · · · · · · · · · · · · · · · · |            |            | 1(0.000)                   | 1 (10(0.0000)              |
| Acenaphthene                           | ND(2.0)    | ND(1.9)                                | 1.3 J      | 0.052 J                               | 0.063 J    | ND(1.2)    | ND(0.39)                   | ND(0.40)                   |
| Acenaphthylene                         | ND(2.0)    | ND(1.9)                                | 0.43 J     | NR                                    | ND(0.36)   | 0.25 J     | ND(0.39)                   | ND(0.40)                   |
| Anthracene                             | ND(2.0)    | ND(1.9)                                | 3.6        | 0.14 J                                | 0.10 J     | 0.18 J     | ND(0.39)                   | ND(0.40)                   |
| Benzo(a)anthracene                     | ND(2.0)    | 0.26 J                                 | 8.1        | 0.57                                  | 0.63       | 1.5        | ND(0.39)                   | 0.045 J                    |
| Benzo(a)pyrene                         | ND(2.0)    | 0.20 J                                 | 5.6        | 0.45                                  | 0.60       | 1.5        | ND(0.39)                   |                            |
| Benzo(b)fluoranthene                   | ND(2.0)    | ND(1.9)                                | 5.0        | 0.58 Z                                | 0.65 Z     | 3.2 Z      | ND(0.39)                   | 0.042 J<br>0.086 JZ        |
| Benzo(g,h,i)perylene                   | ND(2.0)    | ND(1.9)                                | 3.5        | 0.38 J                                | 0.85 Z     | ND(1.2)    | ND(0.39)                   |                            |
| Benzo(k)fluoranthene                   | ND(2.0)    | ND(1.9)                                | 4.2        | 0.28 Z                                | 0.65 Z     | 3.2 Z      | ND(0.39)<br>ND(0.39)       | ND(0.40)                   |
| bis(2-Ethylhexyl)phthalate             | ND(2.0)    | ND(1.9)                                | ND(2.0)    | ND(0.38)                              | 0.053 J    | 0.42 J     |                            | 0.086 JZ                   |
| Chrysene                               | ND(2.0)    | 0.23 J                                 | 5.8        | 0.70                                  | 0.053 J    | 2.2        | ND(0.39)                   | 0.067 J                    |
| Dibenzo(a,h)anthracene                 | ND(2.0)    | ND(1.9)                                | 0.73 J     | 0.70<br>0.097 J                       | 0.88 J     |            | ND(0.39)                   | 0.059 J                    |
| Di-n-Butylphthalate                    | ND(2.0)    | ND(1.9)                                | ND(2.0)    | ND(0.38)                              | ND(0.36)   | ND(1.2)    | ND(0.39)                   | ND(0.40)                   |
| Iuoranthene                            | 0.35 J     | 0.55 J                                 | 15         |                                       |            | 0.15 J     | ND(0.39)                   | 0.053 J                    |
| Fluorene                               | ND(2.0)    | ND(1.9)                                | 1.5 J      | 1.0<br>0.058 J                        | 1.2        | 2.8        | ND(0.39)                   | 0.080 J                    |
| ndeno(1,2,3-cd)pyrene                  | ND(2.0)    | ND(1.9)                                | 3.0        | 0.058 J<br>0.32 J                     | 0.049 J    | 0.14 J     | ND(0.39)                   | ND(0.40)                   |
| Naphthalene                            | ND(2.0)    | ND(1.9)                                | 1.2 J      |                                       | 0.29 J     | ND(1.2)    | ND(0.39)                   | ND(0.40)                   |
| N-Nitrosodiphenylamine                 | ND(2.0)    |                                        |            | NR<br>NR                              | ND(0.36)   | 0.15 J     | ND(0.39)                   | ND(0.40)                   |
| Phenanthrene                           | 0.48 J     | ND(1.9)<br>0.48 J                      | 0.25 J     | ND(0.38)                              | ND(0.36)   | ND(1.2)    | ND(0.39)                   | ND(0.40)                   |
| Pyrene                                 | 0.46 J     | 0.48 J<br>0.42 J                       | 17<br>13   | 0.77                                  | 0.63       | 1.7        | ND(0.39)                   | 0.053 J                    |
| Furans                                 | 0.27 3     | 0.423                                  | 13         | 0.81                                  | 1.0        | 2.4        | ND(0.39)                   | 0.097 J                    |
| 2,3,7.8-TCDF                           |            | ······································ |            |                                       |            |            |                            |                            |
| <u> </u>                               | NA NA      | NA NA                                  | NA         | NA                                    | NA         | NA         | ND(0.00024)                | ND(0.000032)               |
| CDFs (total)                           | NA NA      | NA                                     | NA NA      | NA                                    | NA         | NA         | ND(0.000040)               | ND(0.000067)               |
| 1,2,3,7,8-PeCDF                        | NA         | NA                                     | NA         | NA                                    | NA         | NA         | NA                         | NA                         |
| 2,3,4,7,8-PeCDF                        | NA         | NA                                     | NA         | NA                                    | NA         | NA         | NA                         | NA                         |
| PeCDFs (total)                         | NA NA      | NA                                     | NA         | NA                                    | NA         | NA         | ND(0.000049)               | ND(0.000043)               |
| 1,2,3,4,7,8-HxCDF                      | NA         | NA                                     | NA         | NA                                    | NA         | NA         | NA                         | NA                         |
| ,2,3,6,7,8-HxCDF                       | NA         | NA                                     | NA NA      | NA                                    | NA         | NA         | NA                         | NA                         |
| ,2,3,7,8,9-HxCDF                       | NA         | NA                                     | NA         | NA                                    | NA         | NA         | NA                         | NA                         |
| 2,3,4,6,7,8-HxCDF                      | NA         | NA                                     | NA         | NA                                    | NA         | NA         | NA                         | NA NA                      |
| AxCDFs (total)                         | NA         | NA                                     | NA         | NA                                    | NA         | NA         | ND(0.000077)               | ND(0.000079)               |
| ,2,3,4,6,7,8-HpCDF                     | NA         | NA                                     | NA NA      | NA                                    | NA         | NA         | NA                         | NA                         |
| ,2,3,4,7,8,9-HpCDF                     | NA         | NA                                     | NA         | NA                                    | NA         | NA         | NA                         | NA                         |
| lpCDFs (total)                         | NA         | NA                                     | NA         | NA                                    | NA         | NA         | ND(0.00011)                | ND(0.00010)                |
| OCDF                                   | NA         | NA                                     | NA         | NA                                    | NA         | NA         | ND(0.00018)                | ND(0.00018)                |
| Dioxins                                |            |                                        |            |                                       |            |            |                            |                            |
| ,3,7,8-TCDD                            | NA         | NA                                     | NA         | NA                                    | NA         | NA         | ND(0.000048)               | ND(0.000071)               |
| CDDs (total)                           | NA         | NA                                     | NA         | NA                                    | NA         |            | ND(0.000048)               | ND(0.000071)               |
| ,2,3,7,8-PeCDD                         | NA         | NA                                     | NA         | NA                                    | NA         | NA         | NA NA                      | NA                         |
| eCDDs (total)                          | NA         | NA                                     | NA         | NA                                    | NA         |            | ND(0.000072)               | ND(0.000070)               |
| ,2,3,4,7,8-HxCDD                       | NA         | NA                                     | NA         | NA                                    | NA NA      | NA NA      | NA NA                      | NA                         |
| ,2,3,6,7,8-HxCDD                       | NA         | NA                                     | NA         | NA                                    | NA         | NA NA      | NA I                       | NA NA                      |
| ,2,3,7,8,9-HxCDD                       | NA         | NA NA                                  | NA NA      | NA NA                                 | NA         | NA NA      | NA NA                      | NA NA                      |
| IxCDDs (total)                         | NA         | NA                                     | NA NA      | NA NA                                 | NA I       | NA         | ND(0.00011)                |                            |
| ,2,3,4,6,7,8-HpCDD                     | NA         | NA NA                                  | NA NA      | NA NA                                 | NA NA      | NA I       |                            | ND(0.00011)                |
| ······································ | ·          | NA I                                   | NA NA      | NA NA                                 | NA NA      | NA NA      | NA NA                      | NA NA                      |
| lpCDDs (total)                         | (VA        |                                        |            |                                       |            |            |                            |                            |
| (pCDDs (total)                         | NA NA      | NA NA                                  | NA NA      | NA NA                                 | NA NA      | NA NA      | ND(0.00012)<br>ND(0.00024) | ND(0.00013)<br>ND(0.00022) |

| Location ID:              | FP-1     | FP-2     | FP-3     | J-2S      | J-3S       | J-4S      | K-1       | K-2       |
|---------------------------|----------|----------|----------|-----------|------------|-----------|-----------|-----------|
| Sample ID:                | FP-1     | FP-2     | FP-3     | ROJ2S     | ROJ3S      | ROJ4S     | ROO1B1416 | ROO2B0810 |
| Sample Depth(Feet):       | 8-12     | 4-8      | 4-8      | 0-0.3     | 0-0.3      | 0-0.3     | 14-16     | 8-10      |
| Parameter Date Collected: | 10/05/89 | 10/05/89 | 10/05/89 | 12/10/91  | 12/10/91   | 12/10/91  | 01/31/91  | 01/31/91  |
| Inorganics                |          |          |          |           |            |           |           |           |
| Aluminum                  | NA       | NA       | NA       | 5670 *    | 5500 *     | 10100 *   | 4200      | 2900      |
| Antimony                  | NA       | NA       | NA       | 10.5 BN   | ND(7.70) N | 11.1 BN   | ND(1.20)  | ND(1.20)  |
| Arsenic                   | NA       | NA       | NA       | 21.9      | 5.50       | 9.50      | 2.00      | ND(1.20)  |
| Barium                    | NA       | NA       | NA       | 41.5 B    | 28.0 B     | 66.8      | ND(24.0)  | ND(24.0)  |
| Beryllium                 | NA       | NA       | NA       | ND(0.240) | ND(0.210)  | 0.300 B   | ND(0.590) | ND(0.600) |
| Calcium                   | NA       | NA       | NA       | 9570 E    | 8240 E     | 18100 E   | 17000     | ND(600)   |
| Chromium                  | NA       | NA       | NA       | 41.0      | 7.70       | 17.8      | 3.20      | 4.20      |
| Cobalt                    | NA       | NA       | NA       | 9.40 B    | 5.60 B     | 14.8 B    | ND(5.90)  | ND(6.00)  |
| Copper                    | NA       | NA       | NA       | 95.6 N    | 12.0 N     | 58.8 N    | 11.0      | ND(3.00)  |
| Cyanide                   | NA       | NA       | NA       | 120       | ND(0.550)  | ND(0.750) | ND(0.590) | ND(0.600) |
| Iron                      | NA       | NA       | NA       | 68700 *   | 14400 *    | 44200 *   | 12000     | 7400      |
| Lead                      | NA       | NA       | NA       | 121 *     | 13.5 *     | 195 *     | ND(12.0)  | ND(12.0)  |
| Magnesium                 | NA       | NA       | NA       | 7150      | 4590       | 11500     | 9800      | 1300      |
| Manganese                 | NA       | NA       | NA       | 854 N*    | 214 N*     | 987 N*    | 300       | 56.0      |
| Mercury                   | NA       | NA       | NA       | 0.600     | ND(0.110)  | 0.210     | ND(0.120) | ND(0.120) |
| Nickel                    | NA       | NA       | NA       | 43.8      | 9.90       | 27.9      | 9.30      | ND(4.80)  |
| Potassium                 | NA       | NA       | NA       | 393 B     | 969 B      | 1120 B    | ND(590)   | ND(600)   |
| Sodium                    | NA       | NA       | NA       | 120 B     | 166 B      | 174 B     | ND(590)   | ND(600)   |
| Sulfide                   | NA       | NA       | NA       | 65.0      | ND(11.0)   | ND(14.9)  | NA        | NA        |
| Vanadium                  | NA       | NA       | NA       | 14.1      | 11.6       | 27.3      | 5.90      | ND(6.00)  |
| Zinc                      | NA       | NA       | NA       | 164       | 33.0       | 266       | 38.0      | 19.0      |

| Location ID                           | OX-J-SS1                     | OX-J-SS2        | OX-J-SS3        | OX-J-SS4                              | OX-J-SS5                        |  |  |
|---------------------------------------|------------------------------|-----------------|-----------------|---------------------------------------|---------------------------------|--|--|
| Sample ID                             |                              | OX-J-SS2        | OX-J-SS3        | OX-J-SS4                              | OX-J-SS5                        |  |  |
| Sample Depth(Feet)                    |                              | 0-0.3           | 0-0.3           | 0-0.3                                 | 0-0.3                           |  |  |
| Parameter Date Collected              | 09/16/94                     | 09/16/94        | 09/16/94        | 09/16/94                              | 09/16/94                        |  |  |
| Volatile Organics                     |                              |                 |                 |                                       |                                 |  |  |
| 1,1,1-Trichloroethane                 |                              |                 | NA              | NA                                    | NA NA                           |  |  |
| 1,1,2-trichloro-1,2,2-trifluoroethane | o-1,2,2-trifluoroethane NA I |                 | NA NA           | NA NA                                 | NA NA                           |  |  |
| Acetone                               | NA NA                        | NA              | NA NA           | NA                                    | NA NA                           |  |  |
| Methylene Chloride                    | NA                           | NA              | NA              | NA NA                                 | T NA                            |  |  |
| Toluene                               | NA NA                        | NA              | NA              | NA NA                                 | NA NA                           |  |  |
| Trichloroethene                       | NA                           | NA              | NA              | NA                                    | NA NA                           |  |  |
| Semivolatile Organics                 |                              |                 |                 |                                       |                                 |  |  |
| Acenaphthene                          | NA                           | NA              | NA NA           | NA NA                                 | NA NA                           |  |  |
| Acenaphthylene                        | NA                           | NA              | NA              | NA                                    | NA NA                           |  |  |
| Anthracene                            | NA                           | NA              | NA              | NA NA                                 | NA NA                           |  |  |
| Benzo(a)anthracene                    | NA                           | NA              | NA              | NA NA                                 | T NA                            |  |  |
| Benzo(a)pyrene                        | NA                           | NA              | NA              | NA NA                                 | NA NA                           |  |  |
| Benzo(b)fluoranthene                  | NA                           | NA              | NA              | NA NA                                 | NA NA                           |  |  |
| Benzo(g,h,i)perylene                  | NA NA                        | NA              | NA              | NA NA                                 | NA NA                           |  |  |
| Benzo(k)fluoranthene                  | NA                           | NA              | NA              | NA                                    | NA NA                           |  |  |
| bis(2-Ethylhexyl)phthalate            | NA NA                        | NA              | NA              | NA                                    | NA NA                           |  |  |
| Chrysene                              | NA NA                        | NA              | NA              | NA                                    | NA NA                           |  |  |
| Dibenzo(a,h)anthracene                | NA                           | NA              | NA              | NA                                    | NA NA                           |  |  |
| Di-n-Butylphthalate                   | NA                           | NA              | NA              | NA                                    | NA NA                           |  |  |
| Fluoranthene                          | NA NA                        | NA NA           | NA NA           | NA                                    | NA NA                           |  |  |
| Fluorene                              | NA                           | NA              | NA              | NA NA                                 | NA NA                           |  |  |
| Indeno(1,2,3-cd)pyrene                | NA NA                        | NA              | NA              | NA                                    | . NA                            |  |  |
| Naphthalene                           | NA                           | NA NA           | NA              | NA NA                                 | NA NA                           |  |  |
| N-Nitrosodiphenylamine                | NA                           | NA NA           | NA              | NA                                    | NA NA                           |  |  |
| Phenanthrene                          | NA NA                        | NA              | NA NA           | NA                                    | NA NA                           |  |  |
| Pyrene                                | NA NA                        | NA              | NA              | NA                                    | NA NA                           |  |  |
| Furans                                |                              |                 |                 | · · · · · · · · · · · · · · · · · · · |                                 |  |  |
| 2,3,7,8-TCDF                          | 0.0000068                    | 0.000016        | 0.000037        | 0.000035                              | 0.0000057 [0.0000055]           |  |  |
| TCDFs (total)                         | 0.0000591                    | 0.000161        | 0.000321        | 0.000321                              | 0.000065   [0.000045  ]         |  |  |
| 1,2,3,7,8-PeCDF                       | 0.0000023 J                  | 0.0000059       | 0.0000099       | 0.000018                              | 0.0000020 J [0.0000018 J]       |  |  |
| 2,3,4,7,8-PeCDF                       | 0.0000098                    | 0.000016        | 0.0000076       | 0.000039                              | 0.0000067 [0.0000065]           |  |  |
| PeCDFs (total)                        | 0.00013 I                    | 0.000261        | 0.000461        | 0.000451                              | 0.000097   [0.000086  ]         |  |  |
| 1,2,3,4,7,8-HxCDF                     | 0.0000046                    | 0.000015        | 0.000018        | 0.000036                              | 0.0000043 [0.0000032]           |  |  |
| 1,2,3,6,7,8-HxCDF                     | 0.0000066                    | 0.0000261       | 0.0000301       | 0.0000321                             | 0.0000060 [ [0.0000051 ]]       |  |  |
| 1,2,3,7,8,9-HxCDF                     | 0.0000011 J                  | 0.0000029       | 0.0000036       | 0.0000062                             | 0.00000099 J [0.00000081 J]     |  |  |
| 2,3,4,6,7,8-HxCDF                     | 0.0000094                    | 0.000016        | 0.000035        | 0.000031                              | 0.0000072   [0.0000058  ]       |  |  |
| HxCDFs (total)                        | 0.000131                     | 0.000351        | 0.000521        | 0.000501                              | 0.000092   [0.000080  ]         |  |  |
| 1,2,3,4,6,7,8-HpCDF                   | 0.0000261                    | 0.000161        | 0.000111        | 0.000151                              | 0.000024   [0.000019  ]         |  |  |
| 1,2,3,4,7,8,9-HpCDF                   | 0.0000021 J                  | 0.0000060       | 0.0000064       | 0.000013                              | 0.0000021 J [0.0000014 J]       |  |  |
| HpCDFs (total)                        | 0.0000611                    | 0.000301        | 0.000231        | 0.000421                              | 0.000052   [0.000043  ]         |  |  |
| OCDF<br>Di-                           | 0.000033                     | 0.00010         | 0.000089        | 0.00029                               | 0.000026 [0.000022]             |  |  |
| Dioxins                               |                              |                 |                 |                                       |                                 |  |  |
| 2,3,7,8-TCDD                          | ND(0.00000046)               | ND(0.00000046)  | ND(0.00000032)  | 0.00000055                            | ND(0.00000036) [ND(0.00000028)] |  |  |
| TCDDs (total)                         | 0.00000082                   | 0.0000035       | 0.0000046       | 0.0000099                             | 0.00000069 [0.0000011]          |  |  |
| 1,2,3,7,8-PeCDD                       | ND(0.00000083) Q             | ND(0.0000021) Q | ND(0.0000020) Q | ND(0.0000030) X                       | ND(0.00000049) [ND(0.00000045)] |  |  |
| PeCDDs (total)                        | ND(0.0000012) Q              | 0.000014        | 0.0000084       | 0.000011                              | ND(0.0000010) [ND(0.00000091)]  |  |  |
| 1,2,3,4,7,8-HxCDD                     | 0.0000011 J                  | 0.0000019 J     | 0.0000020 J     | 0.0000043                             | 0.00000068 J [0.00000057 J]     |  |  |
| 1,2,3,6,7,8-HxCDD                     | 0.0000029                    | 0.0000052       | 0.0000074       | 0.000023                              | 0.0000019 J [0.0000018 J]       |  |  |
| 1,2,3,7,8,9-HxCDD                     | 0.0000019 J                  | 0.0000031       | 0.0000038       | 0.0000068                             | 0.0000011 J [0.00000090 J]      |  |  |
| HxCDDs (total)                        | 0.000024                     | 0.000047        | 0.000057        | 0.00013                               | 0.000015 [0.000013]             |  |  |
| 1,2,3,4,6,7,8-HpCDD                   | 0.000050                     | 0.000091        | 0.00011         | 0.00068                               | 0.000034 [0.000031]             |  |  |
| HpCDDs (total)                        | 0.00010                      | 0.00017         | 0.00025         | 0.0021                                | 0.000074 [0.000067]             |  |  |
| OCDD                                  | 0.00039                      | 0.00086         | 0.00084         | 0.0065                                | 0.00026 [0.00024]               |  |  |
| Total TEQs (WHO TEFs)                 | 0.0000099                    | 0.000021        | 0.000021        | 0.000049                              | 0.0000073 [0.0000066]           |  |  |

| Location ID:<br>Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | OX-J-SS1<br>OX-J-SS1<br>0-0.3<br>09/16/94 | OX-J-SS2<br>OX-J-SS2<br>0-0.3<br>09/16/94 | OX-J-SS3<br>OX-J-SS3<br>0-0.3<br>09/16/94 | OX-J-SS4<br>OX-J-SS4<br>0-0.3<br>09/16/94 | OX√J-SS5<br>OX√J-SS5<br>0-0.3<br>09/16/94 |
|--------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|
| Inorganics                                                                     |                                           |                                           |                                           |                                           |                                           |
| Aluminum                                                                       | NA                                        | NA I                                      | NA                                        | NA                                        | NA                                        |
| Antimony                                                                       | NA                                        | NA NA                                     | NA NA                                     | NA NA                                     | NA NA                                     |
| Arsenic                                                                        | NA                                        | NA NA                                     | NA                                        | NA                                        | NA NA                                     |
| Barium                                                                         | NA                                        | NA                                        | NA                                        | NA                                        | NA NA                                     |
| Beryllium ·                                                                    | NA                                        | NA NA                                     | NA                                        | NA                                        | NA NA                                     |
| Calcium                                                                        | NA                                        | NA NA                                     | NA                                        | NA                                        | NA NA                                     |
| Chromium                                                                       | NA                                        | NA                                        | NA NA                                     | NA                                        | NA NA                                     |
| Cobalt                                                                         | NA                                        | NA                                        | NA                                        | NA                                        | NA NA                                     |
| Copper                                                                         | NA                                        | NA NA                                     | NA NA                                     | NA                                        | NA NA                                     |
| Cyanide                                                                        | ND(0.600)                                 | ND(0.590)                                 | ND(0.620)                                 | ND(0.630)                                 | ND(0.580) [ND(0.580)]                     |
| Iron                                                                           | NA                                        | NA                                        | NA                                        | NA NA                                     | NA                                        |
| Lead                                                                           | NA                                        | NA                                        | NA                                        | NA                                        | NA NA                                     |
| Magnesium                                                                      | NA                                        | NA                                        | NA NA                                     | NA                                        | NA NA                                     |
| Manganese                                                                      | NA                                        | NA                                        | NA                                        | NA                                        | NA NA                                     |
| Mercury                                                                        | NA                                        | NA                                        | NA NA                                     | NA                                        | NA NA                                     |
| Nickel                                                                         | NA                                        | NA                                        | NA I                                      | NA                                        | NA NA                                     |
| Potassium                                                                      | NA                                        | NA NA                                     | NA I                                      | NA NA                                     | NA NA                                     |
| Sodium                                                                         | NA                                        | NA                                        | NA                                        | NA NA                                     | NA NA                                     |
| Sulfide                                                                        | NA                                        | NA                                        | NA                                        | NA NA                                     | NA NA                                     |
| Vanadium                                                                       | NA                                        | NA                                        | NA                                        | NA I                                      | NA NA                                     |
| Zinc                                                                           | NA                                        | NA                                        | NA                                        | NA NA                                     | NA NA                                     |

| Location ID:<br>Sample ID:<br>Sample Depth(Feet):<br>Parameter Date Collected: | OX-J-SS6<br>0-0.3 | YB-2<br>YB-2<br>4-8<br>10/06/89 |
|--------------------------------------------------------------------------------|-------------------|---------------------------------|
| Volatile Organics                                                              | 1 00,10,04        | 10,00,00                        |
| 1,1,1-Trichloroethane                                                          | NA NA             | 0.0040 J                        |
| 1,1,2-trichloro-1,2,2-trifluoroethane                                          | NA NA             | NA NA                           |
| Acetone                                                                        | NA NA             | NA NA                           |
| Methylene Chloride                                                             | NA NA             | 0.0030 J                        |
| Toluene                                                                        | NA                | 0.0010 J                        |
| Trichloroethene                                                                | NA                | ND(0.0050                       |
| Semivolatile Organics                                                          | <u> </u>          |                                 |
| Acenaphthene                                                                   | NA                | ND(2.0)                         |
| Acenaphthylene                                                                 | NA                | 0.27 J                          |
| Anthracene                                                                     | NA                | ND(2.0)                         |
| Benzo(a)anthracene                                                             | NA                | 0.30 J                          |
| Benzo(a)pyrene                                                                 | NA                | 0.37 J                          |
| Benzo(b)fluoranthene                                                           | NA                | 0.38 J                          |
| Benzo(g,h,i)perylene                                                           | NA                | ND(2.0)                         |
| Benzo(k)fluoranthene                                                           | NA                | 0.46 J                          |
| bis(2-Ethylhexyl)phthalate                                                     | NA                | ND(2.0)                         |
| Chrysene                                                                       | NA                | 0.31 J                          |
| Dibenzo(a,h)anthracene                                                         | NA                | ND(2.0)                         |
| Di-n-Butylphthalate                                                            | NA                | ND(2.0)                         |
| Fluoranthene                                                                   | NA NA             | 0.47 J                          |
| Fluorene                                                                       | NA                | ND(2.0)                         |
| Indeno(1,2,3-cd)pyrene                                                         | NA                | ND(2.0)                         |
| Naphthalene                                                                    | NA                | ND(2.0)                         |
| N-Nitrosodiphenylamine                                                         | NA                | ND(2.0)                         |
| Phenanthrene                                                                   | NA                | 0.29 J                          |
| Pyrene                                                                         | NA                | 0.70 J                          |
| Furans                                                                         |                   |                                 |
| 2,3,7,8-TCDF                                                                   | 0.000013          | NA                              |
| TCDFs (total)                                                                  | 0.000111          | NA                              |
| 1,2,3,7,8-PeCDF                                                                | 0.000035          | NA                              |
| 2,3,4,7,8-PeCDF                                                                | 0.0000069         | NA                              |
| PeCDFs (total)                                                                 | 0.0000941         | NA                              |
| 1,2,3,4,7,8-HxCDF                                                              | 0.0000048         | NA                              |
| 1,2,3,6,7,8-HxCDF                                                              | 0.00000651        | NA                              |
| 1,2,3,7,8,9-HxCDF                                                              | 0.0000011 J       | NA                              |
| 2,3,4,6,7,8-HxCDF                                                              | 0.00000771        | NA                              |
| HxCDFs (total)                                                                 | 0.0000921         | NA                              |
| 1,2,3,4,6,7,8-HpCDF                                                            | 0.0000221         | NA                              |
| 1,2,3,4,7,8,9-HpCDF                                                            | 0.0000019 J       | NA                              |
| HpCDFs (total)                                                                 | 0.0000461         | NA                              |
| DCDF                                                                           | 0.000022          | NA                              |
| Dioxins                                                                        |                   |                                 |
| 2,3,7,8-TCDD                                                                   | ND(0.00000047)    | NA                              |
| CDDs (total)                                                                   | 0.0000038         | NA                              |
| ,2,3,7,8-PeCDD                                                                 | ND(0.00000071)    | NA                              |
| PeCDDs (total)                                                                 | ND(0.0000019)     | NA                              |
| ,2,3,4,7,8-HxCDD                                                               | 0.00000078 J      | NA                              |
| ,2,3,6,7,8-HxCDD                                                               | 0.0000022 J       | NA                              |
| ,2,3,7,8,9-HxCDD                                                               | 0.0000014 J       | NA                              |
| fxCDDs (total)                                                                 | 0.000020          | NA                              |
| ,2,3,4,6,7,8-HpCDD                                                             | 0.000037          | NA                              |
| IpCDDs (total)                                                                 | 0.00010           | NA                              |
| OCDD                                                                           | 0.00027           | NA                              |
| otal TEQs (WHO TEFs)                                                           | 0.0000086         | NA                              |

# PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY- PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

| Location II             |             | YB-2     |
|-------------------------|-------------|----------|
| Sample II               |             | YB-2     |
| Sample Depth(Fee        |             | 4-8      |
| Parameter Date Collecte | d: 09/16/94 | 10/06/89 |
| Inorganics              |             |          |
| Aluminum                | NA          | NA       |
| Antimony                | NA          | NA       |
| Arsenic                 | NA NA       | NA       |
| Barium                  | NA          | NA       |
| Beryllium               | NA          | NA       |
| Calcium                 | NA          | NA       |
| Chromium                | NA          | NA       |
| Cobalt                  | NA          | NA       |
| Copper                  | NA NA       | NA       |
| Cyanide                 | ND(0.560)   | NA       |
| Iron                    | NA          | NA       |
| Lead                    | NA          | NA       |
| Magnesium               | NA NA       | NA       |
| Manganese               | NA NA       | NA       |
| Mercury                 | NA          | NA       |
| Nickel                  | NA          | NA       |
| Potassium               | NA NA       | NA       |
| Sodium                  | NA NA       | NA       |
| Sulfide                 | NA          | NA       |
| Vanadium                | NA          | NA       |
| Zinc                    | NA NA       | NA       |

#### Notes

- 1. Samples were collected and analyzed by General Electric Company subcontractors for Appendix IX + 3 constituents.
- 2. Field duplicate sample results are presented in brackets.
- 3. With the exception of dioxin/furans, only those constituents detected in one or more samples are summarized.
- 4. NA Not Analyzed.
- 5. NC Not Calculated Insufficient data to calculate TEQ.
- 6. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 7. NR Not Reported. Data for this parameter group was entered from summary data tables and not the laboratory report form.
- 8. Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998.

#### Data Qualifiers:

### Organics (volatiles, semivolatiles, dioxin/furans)

- B Analyte was also detected in the associated method blank.
- I Polychlorinated Diphenyl Ether (PCDPE) Interference.
- J Indicates that the associated numerical value is an estimated concentration.
- Q Indicates the presence of quantitative interferences.
- X Estimated Maximum Possible Concentration
- Z Co eluting isomers could not be chromatographically resolved in the sample.

#### Inorganics

- B Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).
- N Indicates sample matrix spike analysis was outside control limits.
- E Serial dilution results not within 10%. Applicable only if analyte concentration is at least 50X the IDL in original sample.
- Indicates laboratory duplicate analysis was outside control limits.

#### TABLE 5 **EPA SOIL SAMPLING DATA FOR PCBs**

### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

| Location ID | Sample ID          | Depth(Feet) | Date<br>Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|-------------|--------------------|-------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|
| RAA15-E1    | OJ-BH000937-0-0060 | 6-10        | 3/10/2003         | ND(0.019)    | ND(0.019)  |
| RAA15-E15   | OJ-BH000928-0-0060 | 6-10        | 2/26/2003         | ND(0.019)    | ND(0.019)    | ND(0.019)    | ND(0.019)    | ND(0.019)    | 0.10         | 0.13         | 0.23       |

#### Notes:

1. Sample collection and analysis performed by United States Environmental Protection Agency (EPA) Subcontractors. Results provided to GE under a Data Exchange Agreement between GE and EPA.

2. ND - Analyte was not detected. The number in parentheses is the associated detection limit.

### TABLE 6 EPA SOIL SAMPLING DATA FOR APPENDIX IX+3 CONSTITUENTS

### PRE-DESIGN INVESTIGATION REPORT FOR THE FORMER OXBOW AREAS J AND K REMOVAL ACTION GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

| Location ID: Sample ID: Sample Depth(Feet): Parameter Date Collected: | RAA15-E1<br>OJ-BH000937-0-0060<br>6-10<br>03/10/03 | RAA15-E15<br>OJ-BH000928-0-0060<br>6-10<br>02/26/03 |  |  |  |
|-----------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------|--|--|--|
| Volatile Organics                                                     |                                                    |                                                     |  |  |  |
| Acetone                                                               | 0.0070                                             | NA                                                  |  |  |  |
| Semivolatile Organics                                                 |                                                    |                                                     |  |  |  |
| 2-Methylnaphthalene                                                   | ND(0.38)                                           | 1.1 J                                               |  |  |  |
| Acenaphthene                                                          | ND(0.38)                                           | 0.86 J                                              |  |  |  |
| Acenaphthylene                                                        | ND(0.38)                                           | 0.27 J                                              |  |  |  |
| Anthracene                                                            | ND(0.38)                                           | 2.2                                                 |  |  |  |
| Benzo(a)anthracene                                                    | ND(0.38)                                           | 3.7                                                 |  |  |  |
| Benzo(a)pyrene                                                        | ND(0.38)                                           | 2.4 J                                               |  |  |  |
| Benzo(b)fluoranthene                                                  | ND(0.38)                                           | 2.3 J                                               |  |  |  |
| Benzo(g,h,i)perylene                                                  | ND(0.38)                                           | 1.4 J                                               |  |  |  |
| Benzo(k)fluoranthene                                                  | ND(0.38) J                                         | 4.0 J                                               |  |  |  |
| Chrysene                                                              | ND(0.38)                                           | 3.6 J                                               |  |  |  |
| Dibenzo(a,h)anthracene                                                | ND(0.38)                                           | 0.74 J                                              |  |  |  |
| Dibenzofuran                                                          | ND(0.38)                                           | 0.53 J                                              |  |  |  |
| Fluoranthene                                                          | ND(0.38)                                           | 5.8                                                 |  |  |  |
| Fluorene                                                              | ND(0.38)                                           | 1.4 J                                               |  |  |  |
| Indeno(1,2,3-cd)pyrene                                                | ND(0.38)                                           | 1.4 J                                               |  |  |  |
| Naphthalene                                                           | ND(0.38)                                           | 0.38 J                                              |  |  |  |
| Phenanthrene                                                          | ND(0.38)                                           | 7.7 J                                               |  |  |  |
| Pyrene                                                                | ND(0.38)                                           | 8.2                                                 |  |  |  |
| Herbicides                                                            |                                                    |                                                     |  |  |  |
| None Detected                                                         | May had                                            |                                                     |  |  |  |
| Inorganics                                                            |                                                    |                                                     |  |  |  |
| Antimony                                                              | ND(0.300)                                          | 0.400                                               |  |  |  |
| Arsenic                                                               | 4.40                                               | 0.810 J                                             |  |  |  |
| Barium                                                                | 21.6                                               | 6.20                                                |  |  |  |
| Beryllium                                                             | ND(0.200)                                          | 0.110                                               |  |  |  |
| Chromium                                                              | 7.20                                               | 4.40                                                |  |  |  |
| Cobalt                                                                | 7.50                                               | 3.10                                                |  |  |  |
| Copper                                                                | 12.3                                               | 3.10                                                |  |  |  |
| Lead                                                                  | 4.30                                               | 5.50 J                                              |  |  |  |
| Nickel                                                                | 13.0 J                                             | 5.10                                                |  |  |  |
| Selenium                                                              | 0.970                                              | ND(0.280) J                                         |  |  |  |
| Vanadium                                                              | 7.50                                               | 4.10                                                |  |  |  |
| Zinc                                                                  | 49.5 J                                             | 21.9                                                |  |  |  |

#### Notes:

- Sample collection and analysis performed by United States Environmental Protection Agency (EPA) Subcontractors. Results provided to GE
  under a Data Exchange Agreement between GE and EPA.
- 2. Only those constituents detected in one or more samples are summarized.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. NA Not Analyzed.

#### Data Qualifiers:

J - Estimated Value.

## **Figures**





L: ON=\*, DFF=REF\* P: PAGESET/PLT-BL (PLTHALF) 7/11/03 STR-54-LAS DMW LAF N/20425001/20425G22.DMG FIGURE 1

BIASIAND, BOUCK & LEE, INC.





: 20425X05.DWG : ON=\*, OFF=REF : PAGESET/PLT-DL

7/11/03 SYR-54-LAS DMW LAF N/20425001/20425G20.DWG

**FIGURE** 

BLASLAND, BOUCK & LEE, INC. engineers & scientists





- FORMER RIVER CHANNEL AND OXBOW/LOW-LYING AREAS DELINEATED USING THE CITY OF PITTSFIELD'S RECHANNELIZATION MAPPING, 1940.
- 3. EASEMENTS AND PROPERTY LINES ARE APPROXIMATE.
- 4. SOIL SAMPLES INCLUDE ALL OF THE FOLLOWING PARAMETERS UNLESS ANALYZED ONLY FOR THE PARAMETERS INDICATED IN PARENTHESES:
  - V = VOLATILE ORGANIC COMPOUNDS (VOCs)
  - S = SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs)
  - D = POLYCHLORINATED DIBENZO-P-DIOXINS (PCDDs) AND POLYCHLORINATED DIBENZOFURANS (PCDFs)
  - I = INORGANICS



GENERAL ELECTRIC COMPANY
PITTSFIELD, MASSACHUSETTS
FORMER OXBOW AREAS J AND K

SAMPLE LOCATIONS
(1- TO 3- FOOT INTERVAL)



FIGURE 5

X: 20425X05.DWG L: ON-\*, OFF-REF\* P: PAGESET/PLT-BL 7/11/03 SYR-54-LAS DMW LAF N/20425001/20425G24.DWG



20425X05.DWG DN=", OFF=REF"

P: PAGESET/PLT-BL 7/11/03 SYR-54-LAS DMW LAF N/20425001/2042525.DWG FIGURE 6





D = POLYCHLORINATED DIBENZO-P-DIOXINS (PCDDs) AND POLYCHLORINATED DIBENZOFURANS (PCDFs)

X: 20425X05.DWG L: ON=", OFF=REF" P: PAGESET/PLT=BL 7/11/03 SYR=54-LAS DMW LAF N/20425001/20425G27.DWG

FORMER OXBOW AREAS J AND K

EXISTING APPENDIX IX + 3 SOIL SAMPLE LOCATIONS (10- TO 15-FOOT INTERVAL)



FIGURE 8