

GE 159 Plastics Avenue Pittsfield, MA 01201 USA

Transmitted via Overnight Courier

July 7, 2006

Mr. Dean Tagliaferro
U.S. Environmental Protection Agency
Region I – New England
10 Lyman Street, Suite 2
Pittsfield, MA 01201

Ms. Susan Steenstrup Bureau of Waste Site Cleanup Department of Environmental Protection 436 Dwight Street Springfield, MA 01103

Re: GE-Pittsfield/Housatonic River Site

Monthly Status Report Pursuant to Consent Decree for June 2006 (GECD900)

Dear Mr. Tagliaferro and Ms. Steenstrup:

Enclosed are copies of General Electric's (GE's) monthly progress report for June 2006 activities conducted by GE at the GE-Pittsfield/Housatonic River Site. This monthly report is submitted pursuant to Paragraph 67 of the Consent Decree (CD) for this Site, which was entered by the U.S. District Court on October 27, 2000.

The enclosed monthly report includes not only the activities conducted by GE under the CD, but also other activities conducted by GE at the GE-Pittsfield/Housatonic River Site (as defined in the CD). The report is formatted to apply to the various areas of the Site as defined in the CD, and to provide for each area, the information specified in Paragraph 67 of the CD. The activities conducted specifically pursuant to or in connection with the CD are marked with an asterisk. GE is submitting a separate monthly report to the Massachusetts Department of Environmental Protection (MDEP), with a copy to the United States Environmental Protection Agency (EPA), describing the activities conducted by GE at properties outside the CD Site pursuant to GE's November 2000 Administrative Consent Order from MDEP.

The enclosed monthly report includes, where applicable, tables that list the samples collected during the subject month, summarize the analytical results received during that month from sampling or other testing activities, and summarize other groundwater monitoring and oil recovery information obtained during that month. Also, enclosed for each of you (and for Weston) is a CD-ROM that contains these same tables of the analytical data and monitoring information in electronic form.

Please call Andrew Silfer or me if you have any questions.

Sincerely,

Richard W. Gates

Remediation Project Manager

Richard W. Sates/Inc

Enclosure

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Letter doc

cc: Robert Cianciarulo, EPA (cover letter only)

Tim Conway, EPA (cover letter only)

Sharon Hayes, EPA

William Lovely, EPA (Items 7, 8, 9, 10, 11, 12, 16/17, 22, 23, and 25 only)

Rose Howell, EPA (cover letter and CD-ROM of report)

Holly Inglis, EPA (hard copy and CD-ROM of report)

Susan Svirsky, EPA (Items 7, 15, and 20 only)

K.C. Mitkevicius, USACE (CD-ROM of report)

Thomas Angus, MDEP (cover letter only)

Jane Rothchild, MDEP (cover letter only)

Anna Symington, MDEP (cover letter only)

Nancy E. Harper, MA AG

Susan Peterson, CT DEP

Field Supervisor, US FWS, DOI

Kenneth Finkelstein, Ph.D., NOAA (Items 13, 14, and 15 only)

Dale Young, MA EOEA

Mayor James Ruberto, City of Pittsfield

Thomas Hickey, Director, Pittsfield Economic Development Authority

Linda Palmieri, Weston

Richard Nasman, P.E., Berkshire Gas (CD-ROM of report)

Michael Carroll GE (CD-ROM of report)

Andrew Silfer, GE (cover letter only)

Rod McLaren, GE (CD-ROM of report)

James Nuss, BBL

James Bieke, Goodwin Procter

Jim Rhea, QEA (narrative only)

Teresa Bowers, Gradient

Public Information Repositories (1 hard copy, 5 copies of CD-ROM)

GE Internal Repository (1 hard copy)

(w/o separate CD-ROM, except where noted)

June 2006

MONTHLY STATUS REPORT PURSUANT TO CONSENT DECREE FOR GE-PITTSFIELD/HOUSATONIC RIVER SITE

GENERAL ELECTRIC COMPANY

PITTSFIELD, MASSACHUSETTS

Background

The General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and other governmental entities have entered into a Consent Decree (CD) for the GE-Pittsfield/Housatonic River Site, which was entered by the U.S. Court on October 27, 2000. In accordance with Paragraph 67 of the CD, GE is submitting this monthly report, prepared on GE's behalf by Blasland, Bouck & Lee, Inc. (BBL), which summarizes the status of activities conducted by GE at the GE-Pittsfield/Housatonic River Site ("Site") (as defined in the CD).

This report covers activities in the areas listed below (as defined in the CD and/or the accompanying Statement of Work for Removal Actions Outside the River [SOW]). Only those areas that have had work activities for the month subject to reporting are included. The specific activities conducted pursuant to or in connection with the CD are noted with an asterisk.

General Activities (GECD900)

GE Plant Area (non-groundwater)

- 1. 20s, 30s, 40s Complexes (GECD120)
- 2. East Street Area 2 South (GECD150)
- 3. East Street Area 2 North (GECD140)
- 4. East Street Area 1 North (GECD130)
- 5. Hill 78 and Building 71 Consolidation Areas (GECD210/220)
- 6. Hill 78 Area Remainder (GECD160)
- 7. Unkamet Brook Area (GECD170)

Former Oxbow Areas (non-groundwater)

- 8. Former Oxbow Areas A & C (GECD410)
- 9. Lyman Street Area (GECD430)
- 10. Newell Street Area I (GECD440)
- 11. Newell Street Area II (GECD450)
- 12. Former Oxbow Areas J & K (GECD420)

Housatonic River

- 13. Upper ½-Mile Reach (GECD800)
- 14. 1½-Mile Reach (only for activities, if any, conducted by GE) (GECD820)
- 15. Rest of the River (GECD850)

Housatonic River Floodplain

- 16. Current Residential Properties Adjacent to 1½-Mile Reach (Actual/Potential Lawns) (GECD710)
- 17. Non-Residential Properties Adjacent to 1½-Mile Reach (excluding banks) (GECD720)
- 18. Current Residential Properties Downstream of Confluence (Actual/Potential Lawns) (GECD730)

Other Areas

- 19. Allendale School Property (GECD500)
- 20. Silver Lake Area (GECD600)

Groundwater Management Areas (GMAs)

- 21. Plant Site 1 (GECD310)
- 22. Former Oxbows J & K (GECD320)
- 23. Plant Site 2 (GECD330)
- 24. Plant Site 3 (GECD340)
- 25. Former Oxbows A&C (GECD350)

GENERAL ACTIVITIES GE-PITTSFIELD/HOUSATONIC RIVER SITE (GECD900) JUNE 2006

a. <u>Activities Undertaken/Completed</u>

- Continued GE-EPA electronic data exchanges for the Housatonic River Watershed and Areas Outside the River.*
- Resampled the potential backfill source at the Hurley Pit in Hinsdale, MA and potential topsoil source at Stockpile #3 at Maxymillian Technologies, Inc. in Pittsfield, MA, as identified in Table G-1.*
- Executed Fourth Modification to Consent Decree (along with Agencies) to address revision to footprint of Hill 78 On-Plant Consolidation Area (OPCA) and use of crushed building demolition materials in 40s and 30s Complexes (June 9, 2006).*
- In connection with the ambient air monitoring for particulate matter being conducted at several specific areas (namely, the 40s Complex, East Street Area 2-North, the OPCA area, Newell Street Area II, and Floodplain Phase 4), GE notified EPA via electronic mail on June 19, 2006, of exceedances of the particulate matter notification level (120 μg/m³) on June 19, 2006 at several of the site monitors at these areas and at the background monitoring location. (These data are reported in tables under those specific areas.) These exceedances were likely attributable to regional ambient pollution and atmospheric conditions, as reported by EPA and measured at various sites in Pittsfield and other parts of New England, rather than to onsite activities.

b. Sampling/Test Results Received

- See attached tables.
- Sample results were received for routine sampling conducted pursuant to GE's NPDES Permit for the GE facility. Sampling records and results are provided in Attachment A to this report.
- NPDES Discharge Monitoring Reports (DMRs) for the period of May 1 through May 31, 2006, are provided in Attachment B to this report.
- GE received a report from Columbia Analytical Services, Inc. titled *NPDES Biomonitoring Report for June 2006*, which included analytical results for samples collected for NPDES-related whole effluent toxicity testing, as well as an attached report from Aquatec Biological Sciences providing the results of the whole effluent toxicity testing performed in June 2006. A copy of this document is provided in Attachment C.

c. Work Plans/Reports/Documents Submitted

None

GENERAL ACTIVITIES (cont'd) GE-PITTSFIELD/HOUSATONIC RIVER SITE (GECD900) JUNE 2006

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue NPDES sampling and monitoring activities.
- Attend public and Citizens Coordinating Council (CCC) meetings, as appropriate.
- Submit final version of update to *Project Operations Plan* (POP) following EPA review of draft.*
- Submit final version of update to *Field Sampling Plan/Quality Assurance Project Plan* (FSP/QAPP) following EPA review of draft.*
- Submit additional modification to FSP/QAPP regarding the cleaning procedure associated with the EPA TO-4 Puff analysis for air monitoring.*

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

GENERAL CONSENT DECREE ACTIVITIES GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

	Date Re								
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL			
Backfill and Topsoil Sampling	HURLEY-BACKFILL-2	6/5/06	Soil	SGS	PCB, VOC, SVOC, Metals	6/29/06			
Backfill and Topsoil Sampling	MAXYMILLIAN-TOPSOIL-2	6/5/06	Soil	SGS	PCB, VOC, SVOC, Metals	6/29/06			

TABLE G-2 DATA RECEIVED DURING JUNE 2006

BACKFILL AND TOPSOIL SAMPLING GENERAL ACTIVITIES

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	Hurley-Backfill-2	Maxymillian-Topsoil-2
Parameter	Date Collected:	6/5/06	6/5/06
Volatile Organics			
Acetone		ND(0.0050)	0.0074
PCBs			
None Detected			
Semivolatile Organ	nics		
Benzo(a)anthracen	Э	ND(0.33)	0.14 J
Benzo(b)fluoranthe	ne	ND(0.33)	0.12 J
Chrysene		ND(0.33)	0.13 J
Fluoranthene		ND(0.33)	0.20 J
Phenanthrene		ND(0.33)	0.094 J
Pyrene		ND(0.33)	0.35 J
Inorganics			
Arsenic		1.40	4.99
Barium		16.5 B	56.6 B
Beryllium		0.133 B	0.0230 B
Cadmium		0.163 B	0.0350 B
Chromium		4.96	12.3
Cobalt		2.74	9.86
Copper		4.73 B	ND(24.2)
Lead		2.28	16.5 B
Mercury		0.00864 B	0.0719
Nickel		4.70 B	17.5
Selenium		2.05 B	2.22 B
Tin		1.51 B	1.62 B
Vanadium		5.59	9.34
Zinc		13.4	66.8

Notes:

- 1. Samples were collected by Blasland, Bouck, & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, semivolatiles, and metals.
- 2. Only those constituents detected in one or more samples are summarized.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. -- Indicates that all constituents for the parameter group were not detected.

Data Qualifiers:

Organics

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

ITEM 1 PLANT AREA 20s, 30s, 40s COMPLEXES (GECD120) JUNE 2006

a. <u>Activities Undertaken/Completed</u>

- Completed concrete crushing, continued processing and stockpiling of crushed materials, and continued site restoration activities associated with 40s Complex demolition activities.
- Conducted air monitoring for particulates and PCBs in connection with demolition activities in the 40s Complex, as identified in Table 1-1.
- Completed the decommissioning of the Building 43 elevator shaft by filling with cement/bentonite grout.
- Collected and tankered approximately 500 gallons of water from the Building 43 demolition project (elevator shaft grouting) to Building 64G for treatment.

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Complete concrete processing, stockpiling, and site restoration activities associated with 40s Complex demolition activities.
- Continue construction of crushed material stockpile at 40s Complex.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

Received verbal approval from EPA and MDEP to complete the closure and decommissioning of the Building 43 elevator shaft (June 5, 2006).

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
Valor	F1927-C1	5/25/06	Water	SGS	PCB, Mercury	6/30/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
, and contract and addition of the controlling	mos mod blug. To a To	0/12/00	Air	25 Environmental	. a. tiodiato matto	0, 10,00

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Tracking Logs\Tracking.xls TABLE 1-1

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
	W3 - West of 40s Complex	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling						

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Tracking Logs\Tracking.xls TABLE 1-1

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received by GE or BBL
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/23/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/23/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/23/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
PCB Ambient Air Sampling	Field Blank	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	W3 - West of 40s Complex	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	S2 - Woodlawn Avenue	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Tracking Logs\Tracking.xls TABLE 1-1

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
PCB Ambient Air Sampling	M2 - South of Bldg. 5	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	M2-CO South of Bldg. 5	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	MC3 - Near Bldg. 16 & 19	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	BK3-Background - East of Building 9B	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	Field Blank	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	W3 - West of 40s Complex	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	S2 - Woodlawn Avenue	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	M2 - South of Bldg. 5	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	M2-CO South of Bldg. 5	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	MC3 - Near Bldg. 16 & 19	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	BK3-Background - East of Building 9B	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06

TABLE 1-2 DATA RECEIVED DURING JUNE 2006

SAMPLING OF MERCURY CONTAMINATED WATER 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	F1927-C1 5/25/06
PCBs-Unfiltered		
Aroclor-1254		1.1
Total PCBs		1.1
Inorganics-Unfiltered		
Mercury		350

Notes:

- 1. Sample was collected by Blasland, Bouck, & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs and mercury.
- 2. Only detected constituents are summarized.

TABLE 1-3 AMBIENT AIR PCB DATA RECEIVED DURING JUNE 2006

40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Event Period	Date Analytical Results Received by BEC, Inc.	Field Blank (μg/PUF)	W3 - West of 40s Complex (μg/m3)	S2 - Woodlawn Avenue (µg/m3)	M2 - South of Bldg. 5 (μg/m3)	M2-CO South of Bldg. 5 (µg/m3)	MC3 - Near Bldg. 16 & 19 (μg/m3)	BK3-Background - East of Building 9B (µg/m3)
05/23 - 05/24/06	06/05/06	ND (<0.08)	0.0041	0.0021	0.0058	0.0025	0.0055	0.0005
06/20 - 06/21/06	07/05/06	ND (<0.10)	0.0448	0.0019	0.0099	0.0087	0.0101	0.0012
Notification Level		0.05	0.05	0.05	0.05	0.05	0.05	

Notes:

- 1. ND Non-Detect
- 2. The May PCB event for the 40s Complex was run concurrently with a PCB event for Buildings 1, 2, & 3. One colocated site (M2) for both projects was used as a precision check.
- 3. The June PCB event for the 40s Complex was run concurrently with a PCB event for Buildings 1, 2, & 3. One colocated site (M2) for both projects was used as a precision check.

${\bf TABLE~1-4} \\ {\bf AMBIENT~AIR~PARTICULATE~MATTER~DATA~RECEIVED~DURING~JUNE~2006}^I \\$

40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sampler Location	Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
6/1/06	W3 - West of 40s Complex	0.078*	0.072*	9:30 ³	WSW, SSW
	MC3 - Near Bldg. 16 & 19	0.031**		11:15	
	M2 - South of Bldg. 5	0.078*		11:15	
	S2 - Woodlawn Avenue	0.028**		11:15	
6/2/06	W3 - West of 40s Complex	0.019*	0.019*	10:45	WSW
	MC3 - Near Bldg. 16 & 19	0.016**		11:15	
	M2 - South of Bldg. 5	0.019*		10:30	
	S2 - Woodlawn Avenue	0.016**		11:15	
6/5/06	W3 - West of 40s Complex	0.007*	0.005*	11:00	Calm
	MC3 - Near Bldg. 16 & 19	0.010**		10:45	
	M2 - South of Bldg. 5	0.010*		10:45	
	S2 - Woodlawn Avenue	0.016**		10:45	
6/6/06	W3 - West of 40s Complex	0.015*	0.010*	11:15	Calm
	MC3 - Near Bldg. 16 & 19	0.009**		10:30	
	M2 - South of Bldg. 5	0.011*		11:15	
	S2 - Woodlawn Avenue	0.011**		10:30	
6/7/06	W3 - West of 40s Complex	0.011*	0.012*	10:45	NNE
	MC3 - Near Bldg. 16 & 19	0.008**		11:15	
	M2 - South of Bldg. 5	0.010*		10:30	
	S2 - Woodlawn Avenue	0.010**		11:15	
6/8/06	W3 - West of 40s Complex	0.005*	0.003*	10:00	NNE
	MC3 - Near Bldg. 16 & 19	0.005**		10:15	
	M2 - South of Bldg. 5	0.004*		10:00	
	S2 - Woodlawn Avenue	0.011**		10:15	
6/9/06	W3 - West of 40s Complex	0.008*	0.006*	11:30	WNW
	MC3 - Near Bldg. 16 & 19	0.006**		11:15	
	M2 - South of Bldg. 5	0.008*		10:30	
	S2 - Woodlawn Avenue	0.007**		11:15	
6/12/06	W3 - West of 40s Complex	0.007*	0.005*	11:30	WNW
	MC3 - Near Bldg. 16 & 19	0.012**		11:15	
	M2 - South of Bldg. 5	0.011*		11:15	
	S2 - Woodlawn Avenue	0.016**		11:15	
6/13/06	W3 - West of 40s Complex	0.016*	0.009*	12:00	WNW
	MC3 - Near Bldg. 16 & 19	0.015**		11:15	
	M2 - South of Bldg. 5	0.016*		12:00	
	S2 - Woodlawn Avenue	0.014**		11:15	
6/14/06	W3 - West of 40s Complex	0.020*	0.018*	11:15	Calm
	MC3 - Near Bldg. 16 & 19	0.018**		11:15	
	M2 - South of Bldg. 5	0.023*		11:00	
	S2 - Woodlawn Avenue	0.021**		11:15	
6/15/06	W3 - West of 40s Complex	0.012*	0.010*	11:00	NNW
	MC3 - Near Bldg. 16 & 19	0.021**		11:15	
	M2 - South of Bldg. 5	0.018*		10:30	
- 11 - 1	S2 - Woodlawn Avenue	0.034**		11:15	
6/16/06	W3 - West of 40s Complex	0.021*	0.017*	12:00	WNW
	MC3 - Near Bldg. 16 & 19	0.017**		11:15	
	M2 - South of Bldg. 5	0.025*		12:00	
00/40/224	S2 - Woodlawn Avenue	0.055**		11:15	141617:
06/19/06 ⁴	W3 - West of 40s Complex	0.136*	0.136*	9:45	WSW, SSW
	MC3 - Near Bldg. 16 & 19	0.083**		11:15	
	M2 - South of Bldg. 5	0.157*	ı	10:30	

TABLE 1-4 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JUNE 2006

40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
6/20/06	W3 - West of 40s Complex	0.029*	0.028*	11:30	WSW
	MC3 - Near Bldg. 16 & 19	0.018**		11:15	
	M2 - South of Bldg. 5	0.030*		11:15	
	S2 - Woodlawn Avenue	0.018**		11:15	
6/21/06	W3 - West of 40s Complex	0.010*	0.007*	11:00	Variable
	MC3 - Near Bldg. 16 & 19	0.011**		11:15	
	M2 - South of Bldg. 5	0.012*		10:45	
	S2 - Woodlawn Avenue	0.009**		11:15	
6/22/06	W3 - West of 40s Complex	0.038*	0.034*	10:45	SSW
	MC3 - Near Bldg. 16 & 19	0.030**		11:15	
	M2 - South of Bldg. 5	0.045*		11:00	
	S2 - Woodlawn Avenue	0.026**		11:15	
6/23/06	W3 - West of 40s Complex	0.045*	0.037*	10:45	WNW
	MC3 - Near Bldg. 16 & 19	0.031**		10:45	
	M2 - South of Bldg. 5	0.053*		10:45	
	S2 - Woodlawn Avenue	0.024**		10:45	
6/26/06	W3 - West of 40s Complex	0.016*	0.015*	9:45	SSW
	MC3 - Near Bldg. 16 & 19	0.014**		10:00	
	M2 - South of Bldg. 5	0.017*		9:45	
	S2 - Woodlawn Avenue	0.023**		10:00	
6/27/06	W3 - West of 40s Complex	0.013*	0.011*	11:45	SSW
	MC3 - Near Bldg. 16 & 19	0.011**		11:15	
	M2 - South of Bldg. 5	0.014*		11:15	
	S2 - Woodlawn Avenue	0.009**		11:15	
6/28/06	W3 - West of 40s Complex	0.008*	0.008*	11:30	Variable
	MC3 - Near Bldg. 16 & 19	0.009**		11:15	
	M2 - South of Bldg. 5	0.013*		11:15	
	S2 - Woodlawn Avenue	0.012**		11:15	
6/29/06	W3 - West of 40s Complex	0.051*	0.057*	11:30	SSW
	MC3 - Near Bldg. 16 & 19	0.029**		11:15	
	M2 - South of Bldg. 5	0.024*		11:30	
	S2 - Woodlawn Avenue	0.028**		11:15	
6/30/06	W3 - West of 40s Complex	0.034*	0.037*	10:30	WNW
	MC3 - Near Bldg. 16 & 19	0.021**		10:45	
	M2 - South of Bldg. 5	0.051*		11:15	
	S2 - Woodlawn Avenue	0.017**		11:00	
Notification Level		0.120			

Notes:

 ${\it Background monitoring station is located east of Building 9B, between 9B and New York Avenue.}\\$

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

^{*} Measured with a DR-2000 or DR-4000.

^{**} Measured with an EBAM.

¹ Monitoring was performed only on days when site activities occurred.

 $^{^{2}}$ The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.

 $^{^{\}rm 3}$ Sampling period was shortened due to instrument malfunction.

⁴ The exceedances and overall high site values on this day are likely related to regional ambient pollutant and atmospheric conditions as reported by EPA and measured at several other sites in Pittsfield and other parts of New England. The relative difference between the background site concentration and the 40s Complex site concentrations indicate that the 40s Complex was not the significant contributor to these high values.

ITEM 2 PLANT AREA EAST STREET AREA 2-SOUTH (GECD150) JUNE 2006

a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue routine process sampling at Buildings 64G and/or 64T.
- Discuss with EPA and MDEP the draft Grant of Environmental Restriction and Easement (ERE) and survey plans for the City Recreational Area, and then revise and re-submit those documents.*

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

None

EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
64Z Oil/Water Separator Sediment Sampling	64Z-1-2	5/22/06	Sediment	SGS	TCLP-Benzene	6/30/06
64Z Oil/Water Separator Sediment Sampling	64Z-2-2	5/22/06	Sediment	SGS	TCLP-Benzene	6/30/06
64Z Oil/Water Separator Sediment Sampling	64Z-3-2	5/22/06	Sediment	SGS	TCLP-Benzene	6/30/06
64Z Oil/Water Separator Sediment Sampling	64Z-4-2	5/22/06	Sediment	SGS	TCLP-Benzene	6/30/06
64Z Oil/Water Separator Sediment Sampling	64Z-5-2	5/22/06	Sediment	SGS	TCLP-Benzene	6/30/06
64Z Oil/Water Separator Sediment Sampling	64Z-DUP-1 (64Z-1-2)	5/22/06	Sediment	SGS	TCLP-Benzene	6/30/06
Building 64G LPCA Monitoring	E6-64G-01	5/23/06	Water	Columbia	VOC	6/2/06
Building 64G LPCA Monitoring	E6-64G-02	5/23/06	Water	Columbia	SVOC	6/2/06
Building 64G LPCA Monitoring	E6-64G-03	5/23/06	Water	SGS	PCB	6/7/06
Building 64G LPCA Monitoring	E6-64G-04	5/23/06	Water	Columbia	Oil & Grease	6/2/06
Building 64G LPCA Monitoring	E6-64G-05	5/23/06	Water	Columbia	VOC	6/2/06
Building 64G LPCA Monitoring	E6-64G-06	5/23/06	Water	Columbia	SVOC	6/2/06
Building 64G LPCA Monitoring	E6-64G-07	5/23/06	Water	SGS	PCB	6/7/06
Building 64G LPCA Monitoring	E6-64G-08	5/23/06	Water	Columbia	Oil & Grease	6/2/06
Building 64G LPCA Monitoring	E6-64G-09	5/23/06	Water	Columbia	VOC	6/2/06
Building 64G LPCA Monitoring	E6-64G-10	5/23/06	Water	Columbia	SVOC	6/2/06
Building 64G LPCA Monitoring	E6-64G-11	5/23/06	Water	SGS	PCB	6/7/06
Building 64G LPCA Monitoring	E6-64G-12	5/23/06	Water	Columbia	Oil & Grease	6/2/06
Building 64G LPCA Monitoring	E6-64G-13	5/23/06	Water	Columbia	VOC	6/2/06
Building 64G LPCA Monitoring	E6-64G-14	5/23/06	Water	Columbia	SVOC	6/2/06
Building 64G LPCA Monitoring	E6-64G-15	5/23/06	Water	SGS	PCB	6/7/06
Building 64G LPCA Monitoring	E6-64G-16	5/23/06	Water	Columbia	Oil & Grease	6/2/06

Note:

1. Field duplicate sample locations are presented in parenthesis.

TABLE 2-2 DATA RECEIVED DURING JUNE 2006

BUILDING 64G LPCA MONITORING EAST STREET AREA 2 - SOUTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	E6-64G-01 5/23/06	E6-64G-02 5/23/06	E6-64G-03 5/23/06	E6-64G-04 5/23/06	E6-64G-05 5/23/06	E6-64G-06 5/23/06	E6-64G-07 5/23/06	E6-64G-08 5/23/06	E6-64G-09 5/23/06
Volatile Organ		3/23/00	3/20/00	5/25/00	0/20/00	0/20/00	3/23/00	5/25/00	3/23/00	0/20/00
1,1,1-Trichloro		0.0031	NA	NA	NA	0.0028	NA	NA	NA	0.0028
1,1-Dichloroeth	nane	0.0023	NA	NA	NA	0.0024	NA	NA	NA	0.0026
Benzene		0.046	NA	NA	NA	0.00096	NA	NA	NA	ND(0.00021)
Chlorobenzene	9	0.22 D	NA	NA	NA	0.0066	NA	NA	NA	ND(0.00022)
Chloroethane		0.0013	NA	NA	NA	0.0012	NA	NA	NA	0.00085
Chloroform		0.00064	NA	NA	NA	0.00083	NA	NA	NA	0.00098
Ethylbenzene		0.064	NA	NA	NA	0.0015	NA	NA	NA	ND(0.00035)
Toluene		0.0035	NA	NA	NA	ND(0.00028)	NA	NA	NA	ND(0.00028)
trans-1,2-Dichle	oroethene	0.00032	NA	NA	NA	ND(0.00022)	NA	NA	NA	ND(0.00022)
Trichloroethene	е	0.00052	NA	NA	NA	0.00044	NA	NA	NA	ND(0.00040)
Vinyl Chloride		0.0072	NA	NA	NA	0.0043	NA	NA	NA	0.0025
PCBs-Unfilter	ed		•		•		•			
Aroclor-1254		NA	NA	0.00022	NA	NA	NA	ND(0.000065)	NA	NA
Total PCBs		NA	NA	0.00022	NA	NA	NA	ND(0.000065)	NA	NA
Semivolatile C	Organics		•		•		•			
1,4-Dichlorober	nzene	NA	0.010	NA	NA	NA	ND(0.0053)	NA	NA	NA
Acenaphthene		NA	0.035	NA	NA	NA	ND(0.0053)	NA	NA	NA
Fluorene		NA	0.0062	NA	NA	NA	ND(0.0053)	NA	NA	NA
Naphthalene		NA	0.072	NA	NA	NA	ND(0.0053)	NA	NA	NA
Conventionals	s				•					
Oil & Grease		NA	NA	NA	ND(5.0)	NA	NA	NA	ND(5.0)	NA

TABLE 2-2 DATA RECEIVED DURING JUNE 2006

BUILDING 64G LPCA MONITORING EAST STREET AREA 2 - SOUTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	Sample ID:	E6-64G-10	E6-64G-11	E6-64G-12	E6-64G-13	E6-64G-14	E6-64G-15	E6-64G-16
Parameter	Date Collected:	5/23/06	5/23/06	5/23/06	5/23/06	5/23/06	5/23/06	5/23/06
Volatile Orga	nics							
1,1,1-Trichlord	oethane	NA	NA	NA	0.0018	NA	NA	NA
1,1-Dichloroet	thane	NA	NA	NA	0.0022	NA	NA	NA
Benzene		NA	NA	NA	ND(0.00021)	NA	NA	NA
Chlorobenzen	ie	NA	NA	NA	ND(0.00022)	NA	NA	NA
Chloroethane		NA	NA	NA	0.0011	NA	NA	NA
Chloroform		NA	NA	NA	0.00059	NA	NA	NA
Ethylbenzene		NA	NA	NA	ND(0.00035)	NA	NA	NA
Toluene		NA	NA	NA	ND(0.00028)	NA	NA	NA
trans-1,2-Dich	loroethene	NA	NA	NA	ND(0.00022)	NA	NA	NA
Trichloroether	ne	NA	NA	NA	ND(0.00040)	NA	NA	NA
Vinyl Chloride		NA	NA	NA	0.00079	NA	NA	NA
PCBs-Unfilte	red							
Aroclor-1254		NA	ND(0.000065)	NA	NA	NA	0.000051 J	NA
Total PCBs		NA	ND(0.000065)	NA	NA	NA	0.000051 J	NA
Semivolatile	Organics							
1,4-Dichlorobe	enzene	ND(0.0053)	NA	NA	NA	ND(0.0053)	NA	NA
Acenaphthene	Э	ND(0.0053)	NA	NA	NA	ND(0.0053)	NA	NA
Fluorene		ND(0.0053)	NA	NA	NA	ND(0.0053)	NA	NA
Naphthalene		ND(0.0053)	NA	NA	NA	ND(0.0053)	NA	NA
Conventiona	ls	•			•			•
Oil & Grease		NA	NA	ND(5.0)	NA	NA	NA	ND(5.0)

Notes:

- 1. Samples were collected by General Electric Company and submitted to Columbia Analytical Services, Inc. and SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, and oil & grease.
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. With the exception of conventional parameters, only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics (volatiles, PCBs, semivolatiles)

- J Indicates an estimated value less than the practical quantitation limit (PQL).
- D Compound quantitated using a secondary dilution.

TABLE 2-3 TCLP DATA RECEIVED DURING JUNE 2006

64Z OIL/WATER SEPARATOR SEDIMENT SAMPLING EAST STREET AREA 2 - SOUTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	TCLP Regulatory Limits	64Z-1-2 5/22/06	64Z-2-2 5/22/06	64Z-3-2 5/22/06	64Z-4-2 5/22/06	64Z-5-2 5/22/06
Volatile Organ	ics						
Benzene		0.5	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)

Notes:

- 1. Samples were collected by Blasland, Bouck, & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of TCLP Benzene.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Field duplicate sample results are presented in brackets.

ITEM 3 PLANT AREA EAST STREET AREA 2-NORTH (GECD140) JUNE 2006

a. Activities Undertaken/Completed

- Continued transportation of waste associated with utility excavation and site restoration activities at former Buildings 1, 2, 3, and 3B, and associated annexes (Buildings 1A and 100 Annex).
- Conducted air monitoring for particulate matter in connection with the above-mentioned activities at former Buildings 1, 2, 3, and 3B, and associated annexes (Buildings 1A and 100 Annex), as identified in Table 3-1.
- Completed pre-demolition asbestos removal activities at Buildings 7, 17, 17C, and 19.
- Completed pre-demolition equipment/liquids removal activities at Buildings 7, 17, 17C, and 19.
- Conducted sampling of gasoline from Building 19 vehicles, as identified in Table 3-1.
- Conducted oil sampling at Buildings 7, 17, and 19, as identified in Table 3-1.
- Collected and tankered approximately 41,000 gallons of water from Building 9 to Building 64G for treatment.
- Collected and tankered approximately 10,200 gallons of water from the Buildings 1, 2, and 3 demolition project to Building 64G for treatment.
- Conducted drum sampling at Building 78 of oil drained from the Building 3 underground turnstile, as identified in Table 3-1.
- Conducted two-day pre-demolition baseline air monitoring for PCBs in support of future demolition program for Buildings 7, 17, 17C, and 19 (June 17-18 and 18-19, 2006), as identified in Table 3-1.
- Verbally notified EPA of an exceedance of the notification level for PCBs $(0.05~\mu g/m^3)$ at air monitoring stations M2A and M2A-CO (co-located station) on June 18-19, 2006, during the above-mentioned pre-demolition baseline air monitoring event, upon receipt of the analytical data (June 28, 2006).

b. Sampling/Test Results Received

See attached tables.

ITEM 3 (cont'd) PLANT AREA EAST STREET AREA 2-NORTH (GECD140) JUNE 2006

c. Work Plans/Reports/Documents Submitted

- Submitted revised Pre-Excavation Notification letter to EPA and MDEP regarding several anticipated utility-related excavations within East Street Area 2-North, addressing EPA's verbal comments received on June 15, 2006 (June 23, 2006).
- Submitted letter to EPA presenting analytical results of pre-demolition building material characterization samples collected at Buildings 7, 17, 17C, and 19, along with supporting evaluations and proposed waste stream destinations (June 28, 2006).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Submit letter to EPA to follow up on June 28, 2006 notification of exceedance of the notification level for PCBs at air monitoring stations M2A and M2A-CO on June 18-19, 2006, during pre-demolition baseline air monitoring.
- Complete site restoration activities at former Buildings 1, 2, 3, and 3B, and associated former annexes (Buildings 1A and 100 Annex).
- Submit letter to EPA presenting analytical results of oil sampling conducted at Buildings 7, 17, 17C, and 19.
- Initiate pre-demolition activities associated with Buildings 7, 17, 17C, and 19.
- Submit addendum to revised Pre-Excavation Notification letter to EPA regarding several anticipated utility-related excavations within East Street Area 2-North.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

- Received EPA comments on revised Pre-Excavation letter regarding several anticipated utility-related excavations within East Street Area 2-North (June 26, 2006).
- Received EPA conditional approval of GE's April 14, 2006 Conceptual Removal Design/Removal Action (RD/RA) Work Plan Addendum (June 30, 2006).

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received by GE or BBL
Building 78 Drum Sampling	F2538-1	6/19/06	Oil	SGS	PCB	
Building 78 Drum Sampling	F2539-1	6/19/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	07-Base-1	5/12/06	Oil	SGS	PCB	6/22/06
Buildings 7, 17 & 19 Oil Sampling	07-Base-2	5/12/06	Oil	SGS	PCB	6/22/06
Buildings 7, 17 & 19 Oil Sampling	07-Base-3	5/12/06	Oil	SGS	PCB	6/22/06
Buildings 7, 17 & 19 Oil Sampling	07-Base-4	5/12/06	Oil	SGS	PCB	6/22/06
Buildings 7, 17 & 19 Oil Sampling	07-Base-5	5/12/06	Oil	SGS	PCB	6/22/06
Buildings 7, 17 & 19 Oil Sampling	07-Base-6	5/12/06	Oil	SGS	PCB	6/22/06
Buildings 7, 17 & 19 Oil Sampling	07-Base-7	5/12/06	Oil	SGS	PCB	6/22/06
Buildings 7, 17 & 19 Oil Sampling	17-1-1	5/18/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	17-1-10	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-11	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-12	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-13	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-14	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-15	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-16	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-17	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-18	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-19	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-2	5/18/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	17-1-20	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-21	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-22	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-23	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-24	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-25	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-26	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-27	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-3	5/18/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	17-1-4	5/18/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	17-1-5	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-6	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-7	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-8	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-1-9	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17C-1-1	6/29/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17C-1-2	6/29/06	Oil	SGS	PCB	

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
Buildings 7, 17 & 19 Oil Sampling	17C-2-1	6/29/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17C-2-2	6/29/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-10	6/29/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-11	6/29/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-12	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-13	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-14	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-15	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-21	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-22	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-23	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-24	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-25	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-26	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-7	6/29/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-8	6/29/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	17-mez-9	6/29/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	19-1-1	5/15/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-10	6/26/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	19-1-11	5/16/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-12	5/16/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-14	5/16/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-16	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-17	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-18	5/16/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-19	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-2	5/16/06	Liquid	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-20	5/16/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-21	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-22	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-23	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-24	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-26	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-27	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-28	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-29	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-3	5/16/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-30	5/17/06	Oil	SGS	PCB	6/20/06

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Drainet Nama	Field Sample ID	Sample Date	Motrix	Laboratory	Analyses	Date Received by GE or BBL
Project Name	19-1-31	<u> </u>	Matrix Oil	Laboratory SGS	Analyses PCB	_
Buildings 7, 17 & 19 Oil Sampling	19-1-31	5/17/06 5/17/06	Oil	SGS	PCB PCB	6/20/06 6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-32 19-1-4		Oil	SGS	PCB PCB	
Buildings 7, 17 & 19 Oil Sampling		5/16/06				6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-5	5/16/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-6	5/16/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-7	5/16/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-1-8	5/16/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-Mezz-2	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-Mezz2-1	5/16/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	19-Mezz-3	5/17/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	7-1-10	5/12/06	Oil	SGS	PCB	6/22/06
Buildings 7, 17 & 19 Oil Sampling	7-1-11	5/12/06	Oil	SGS	PCB	6/22/06
Buildings 7, 17 & 19 Oil Sampling	7-1-12	5/12/06	Oil	SGS	PCB	6/22/06
Buildings 7, 17 & 19 Oil Sampling	7-1-13	5/15/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	7-1-14	5/15/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	7-1-15	5/15/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	7-1-16	5/15/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	7-1-17	5/15/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	7-1-18	5/15/06	Oil	SGS	PCB	6/20/06
Buildings 7, 17 & 19 Oil Sampling	7-1-8	5/12/06	Oil	SGS	PCB	6/22/06
Buildings 7, 17 & 19 Oil Sampling	7-1-9	5/12/06	Oil	SGS	PCB	6/22/06
Buildings 7, 17 & 19 Oil Sampling	F1752-1	6/28/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	I9-1-13	6/22/06	Oil	SGS	PCB	
Buildings 7, 17 & 19 Oil Sampling	I9-1-9	6/22/06	Oil	SGS	PCB	
Sampling of Gasoline from Building 19 Vehicles	F1614-1	6/2/06	Liquid	SGS	PCB	6/23/06
Sampling of Gasoline from Building 19 Vehicles	F2191-1	6/2/06	Liquid	SGS	PCB	6/23/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/1/06	Àir	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Tracking Logs\Tracking.xls
TABLE 3-1 3 of 5

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M4 - South of Bldg. 15	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	M6 - Southwest of Bldg. 12	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
PCB Ambient Air Sampling	Field Blank	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	M2 - South of Bldg. 5	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Tracking Logs\Tracking.xls
TABLE 3-1
4 of 5

7/7/2006

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
PCB Ambient Air Sampling	M2-CO South of Bldg. 5	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	M4 - South of Bldg. 15	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	M6 - Southwest of Bldg. 12	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	BK3-Background - East of Building 9B	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	Field Blank	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	M2 - South of Bldg. 5	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	M2-CO South of Bldg. 5	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	M4 - South of Bldg. 15	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	M6 - Southwest of Bldg. 12	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	BK3-Background - East of Building 9B	6/20 - 6/21/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	Field Blank	6/17 - 6/18/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	MC3A	6/17 - 6/18/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	M7	6/17 - 6/18/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	M2A	6/17 - 6/18/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	M2A-CO (colocated)	6/17 - 6/18/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	BK3 - Background - East of Building 9B	6/17 - 6/18/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	Field Blank	6/18 - 6/19/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	MC3A	6/18 - 6/19/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	M7	6/18 - 6/19/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	M2A	6/18 - 6/19/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	M2A-CO (colocated)	6/18 - 6/19/06	Air	Berkshire Environmental	PCB	7/6/06
PCB Ambient Air Sampling	BK3 - Background - East of Building 9B	6/18 - 6/19/06	Air	Berkshire Environmental	PCB	7/6/06

TABLE 3-2 PCB DATA RECEIVED DURING JUNE 2006

BUILDINGS 7, 17 AND 19 OIL SAMPLING EAST STREET AREA 2 - NORTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Sample ID	Matrix	Date Collected	Aroclor-1016, -1221, -1232, -1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
7-1-8	Oil	5/12/2006	ND(98)	ND(98)	ND(98)	1500	1500
7-1-9	Oil	5/12/2006	ND(0.95)	ND(0.95)	ND(0.95)	ND(0.95)	ND(0.95)
7-1-10	Oil	5/12/2006	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)
7-1-11	Oil	5/12/2006	ND(0.93)	7.0	9.3	7.0	23.3
7-1-12	Oil	5/12/2006	ND(0.87)	3.9	5.6	3.5	13
7-1-13	Oil	5/15/2006	ND(0.97)	ND(0.97)	ND(0.97)	17	17
7-1-14	Oil	5/15/2006	ND(0.96)	ND(0.96)	5.5	ND(0.96)	5.5
7-1-15	Oil	5/15/2006	ND(190)	ND(190)	ND(190)	1300	1300
7-1-16	Oil	5/15/2006	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)
7-1-17	Oil	5/15/2006	ND(200)	ND(200)	1200	ND(200)	1200
7-1-18	Oil	5/15/2006	ND(4.9)	ND(4.9)	31	60	91
07-Base-1	Oil	5/12/2006	ND(0.97)	ND(0.97)	ND(0.97)	ND(0.97)	ND(0.97)
07-Base-2	Oil	5/12/2006	ND(0.97)	ND(0.97)	ND(0.97)	ND(0.97)	ND(0.97)
07-Base-3	Oil	5/12/2006	ND(0.95)	ND(0.95)	11	ND(0.95)	11
07-Base-4	Oil	5/12/2006	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)
07-Base-5	Oil	5/12/2006	ND(0.87)	ND(0.87)	ND(0.87)	ND(0.87)	ND(0.87)
07-Base-6	Oil	5/12/2006	ND(0.97)	ND(0.97)	ND(0.97)	ND(0.97)	ND(0.97)
07-Base-7	Oil	5/12/2006	ND(0.95)	ND(0.95)	ND(0.95)	ND(0.95)	ND(0.95)
17-1-1	Oil	5/18/2006	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)
17-1-2	Oil	5/18/2006	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)
17-1-3	Oil	5/18/2006	ND(0.97)	ND(0.97)	ND(0.97)	ND(0.97)	ND(0.97)
17-1-4	Oil	5/18/2006	ND(0.99)	ND(0.99)	ND(0.99)	ND(0.99)	ND(0.99)
19-1-1	Oil	5/15/2006	ND(0.92)	ND(0.92)	ND(0.92)	ND(0.92)	ND(0.92)
19-1-2	Liquid	5/16/2006	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
19-1-3	Öil	5/16/2006	ND(0.83)	ND(0.83)	ND(0.83)	ND(0.83)	ND(0.83)
19-1-4	Oil	5/16/2006	ND(93)	ND(93)	ND(93)	ND(93)	ND(93)
19-1-5	Oil	5/16/2006	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)
19-1-6	Oil	5/16/2006	ND(0.99)	ND(0.99)	ND(0.99)	3.2	3.2
19-1-7	Oil	5/16/2006	ND(0.71)	ND(0.71)	ND(0.71)	32	32
19-1-8	Oil	5/16/2006	ND(0.72)	ND(0.72)	ND(0.72)	ND(0.72)	ND(0.72)
19-1-11	Oil	5/16/2006	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)
19-1-12	Oil	5/16/2006	ND(0.55)	ND(0.55)	ND(0.55)	ND(0.55)	ND(0.55)
19-1-14	Oil	5/16/2006	ND(0.94)	ND(0.94)	ND(0.94)	ND(0.94)	ND(0.94)
19-1-16	Oil	5/17/2006	ND(0.94)	ND(0.94)	ND(0.94)	ND(0.94)	ND(0.94)
19-1-17	Oil	5/17/2006	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)
19-1-18	Oil	5/16/2006	ND(0.89)	ND(0.89)	ND(0.89)	ND(0.89)	ND(0.89)
19-1-19	Oil	5/17/2006	ND(0.99)	ND(0.99)	ND(0.99)	ND(0.99)	ND(0.99)
19-1-20	Oil	5/16/2006	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)	ND(0.98)
19-1-21	Oil	5/17/2006	ND(9.4)	14	30	43	87
19-1-22	Oil	5/17/2006	ND(0.94)	ND(0.94)	ND(0.94)	ND(0.94)	ND(0.94)
19-1-23	Oil	5/17/2006	ND(0.98)	ND(0.98)	6.2	5.2	11.4
19-1-24	Oil	5/17/2006	ND(18)	ND(18)	41	60	101
19-1-26	Oil	5/17/2006	ND(19)	ND(19)	26	49	75
19-1-27	Oil	5/17/2006	ND(0.93)	ND(0.93)	ND(0.93)	ND(0.93)	ND(0.93)
19-1-28	Oil	5/17/2006	ND(5.0)	ND(5.0)	ND(5.0)	77	77
19-1-29	Oil	5/17/2006	ND(0.95)	ND(0.95)	ND(0.95)	ND(0.95)	ND(0.95)
19-1-30	Oil	5/17/2006	ND(0.95)	ND(0.95)	ND(0.95)	ND(0.95)	ND(0.95)
19-1-31	Oil	5/17/2006	ND(0.90)	ND(0.90)	ND(0.90)	ND(0.90)	ND(0.90)
19-1-32	Oil	5/17/2006	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)	ND(0.96)
19-MeZZ-2	Oil	5/17/2006	ND(0.87)	ND(0.87)	ND(0.87)	ND(0.87)	ND(0.87)
19-Mezz2-1	Oil	5/16/2006	ND(0.97)	ND(0.97)	ND(0.97)	ND(0.97)	ND(0.97)
19-MeZZ-3	Oil	5/17/2006	ND(0.88)	ND(0.88)	ND(0.88)	ND(0.88)	ND(0.88)

Notes:

- 1. Samples were collected by Blasland, Bouck, & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 3-3 PCB DATA RECEIVED DURING JUNE 2006

SAMPLING OF GASOLINE FROM BUILDING 19 VEHICLES EAST STREET AREA 2 - NORTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

Sample ID	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
F1614-1	6/2/2006	ND(0.98)	ND(0.98)						
F2191-1	6/2/2006	ND(1.0)	ND(1.0)						

Notes:

- 1. Samples were collected by Blasland, Bouck, & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 3-4 AMBIENT AIR PCB DATA RECEIVED DURING JUNE 2006

BUILDINGS 1, 2 AND 3 DEMOLITION ACTIVITIES EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Event Period	Date Analytical Results Received by BEC, Inc.	Field Blank (μg/PUF)	M2 - South of Bldg. 5 (μg/m3)	M2-CO South of Bldg. 5 (μg/m3)	M4 - South of Bldg. 15 (μg/m3)	M6 - Southwest of Bldg. 12 (μg/m3)	BK3-Background - East of Building 9B (µg/m3)
5/23 - 5/24/06	06/05/06	ND (<0.08)	0.0058	0.0025	0.0025	0.0387	0.0005
6/20 - 6/21/06	07/05/06	ND (<0.10)	0.0099	0.0087	0.0048	0.1380 ¹	0.0012
N	Notification Level			0.05	0.05	0.05	0.05

Notes: ND - Non-Detect

¹ Exceeds notification level

TABLE 3-5 AMBIENT AIR PCB DATA RECEIVED DURING JUNE 2006

BUILDINGS 7, 17, 17C & 19 DEMOLITION ACTIVITIES EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Event Period	Date Analytical Results Received by BEC, Inc.	Field Blank (μg/PUF)	MC3A (µg/m3)	M7 (μg/m3)	M2A (μg/m3)	M2A-CO (colocated) (μg/m3)	BK3 - Background - East of Building 9B (μg/m3)
6/17 - 6/18/06	6/26/06	ND (<0.10)	0.0106	0.0036	0.0155	0.0158	0.0015
6/18 - 6/19/06	6/27/06	ND (<0.10)	0.0137	0.0082	0.0509	0.0592	0.0019
Notification Level		0.05	0.05	0.05	0.05	0.05	0.05

Note:

ND - Non Detect

TABLE 3-6 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JUNE 2006

BUILDINGS 1, 2 AND 3 DEMOLITION ACTIVITIES EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
6/1/06	M2 - South of Bldg. 5	0.078*	0.072*	11:15	WSW, SSW
	M4 - South of Bldg. 15	0.070*		11:00	
	M6 - Southwest of Bldg. 12	0.047*		11:00	
6/5/06	M2 - South of Bldg. 5	0.010*	0.005*	10:45	Calm
	M4 - South of Bldg. 15	0.006*		10:30	
	M6 - Southwest of Bldg. 12	0.008*		10:37	
6/6/06	M2 - South of Bldg. 5	0.011*	0.010*	11:15	Calm
	M4 - South of Bldg. 15	0.012*		11:15	
	M6 - Southwest of Bldg. 12	0.010*		11:15	
6/7/06	M2 - South of Bldg. 5	0.010*	0.012*	10:30	NNE
	M4 - South of Bldg. 15	0.010*		10:30	
	M6 - Southwest of Bldg. 12	0.008*		10:30	
6/8/06	M2 - South of Bldg. 5	0.004*	0.003*	10:00	NNE
	M4 - South of Bldg. 15	0.007*		10:00	
	M6 - Southwest of Bldg. 12	0.005*		9:00 ³	
6/12/06	M2 - South of Bldg. 5	0.011*	0.005*	11:15	WNW
	M4 - South of Bldg. 15	0.005*		11:15	
	M6 - Southwest of Bldg. 12	0.005*		11:15	
6/13/06	M2 - South of Bldg. 5	0.016*	0.009*	12:00	WNW
	M4 - South of Bldg. 15	0.010*		12:00	
	M6 - Southwest of Bldg. 12	0.009*		12:00	
6/14/06	M2 - South of Bldg. 5	0.023*	0.018*	11:00	Calm
	M4 - South of Bldg. 15	0.016*		11:00	
	M6 - Southwest of Bldg. 12	0.010*		11:00	
6/15/06	M2 - South of Bldg. 5	0.018*	0.010*	10:30	NNW
	M4 - South of Bldg. 15	0.009*		10:45	
	M6 - Southwest of Bldg. 12	0.029*		10:45	
06/19/06 ⁴	M2 - South of Bldg. 5	0.157*	0.136*	10:30	WSW, SSW
	M4 - South of Bldg. 15	0.133*		10:30	
	M6 - Southwest of Bldg. 12	0.125*		10:30	
6/20/06	M2 - South of Bldg. 5	0.030*	0.028*	11:15	WSW
	M4 - South of Bldg. 15	0.021*		11:15	
	M6 - Southwest of Bldg. 12	0.019*		11:15	
6/21/06	M2 - South of Bldg. 5	0.012*	0.007*	10:45	Variable
	M4 - South of Bldg. 15	0.010*		6:15 ³	
	M6 - Southwest of Bldg. 12	0.007*		10:45	
6/22/06	M2 - South of Bldg. 5	0.045*	0.034*	11:00	SSW
	M4 - South of Bldg. 15	0.051		8:15 ³	
	M6 - Southwest of Bldg. 12	0.063*		11:00	
Notification Level		0.120			

Notes:

Buildings 1, 2, & 3 demolition completed June 22, 2006.

Background monitoring station is located east of Building 9B, between 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

^{*} Measured with a DR-2000 or DR-4000. All others measured with a pDR-1000

^{**} Measured with an EBAM.

¹ Monitoring was performed only on days when site activities occurred.

 $^{^{2}}$ The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.

 $^{^{\}rm 3}$ Sampling period was shortened due to instrument malfunction.

⁴ The exceedances and overall high site values on this day are likely related to regional ambient pollutant and atmospheric conditions as reported by EPA and measured at several other sites in Pittsfield and other parts of New England. The relative difference between the background site concentration and the Bldgs. 1, 2, & 3 site concentrations indicate that Bldgs. 1, 2, & 3 were not the significant contributor to these high values.

ITEM 5 PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) .IUNE 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Initiated construction of mid-slope drainage swales at Building 71 OPCA.
- Conducted air monitoring for particulates and PCBs, as identified in Table 5-1.
- Continued transfer of leachate from Building 71 OPCA to Building 64G for treatment. The total amount transferred in June 2006 was 139,000 gallons (see Table 5-5).
- Consolidated at the OPCAs certain building demolition materials from the Buildings 1, 2, and 3 demolition activities; materials from Phase 4 floodplain properties; materials from the Newell Street Area I (i.e., soil from engineered barrier anchor trenches and site preparation for barrier installation) and Newell Street Area II Removal Actions; road materials from EPA's 1½-Mile Reach Removal Action; and materials from various facility-related activities.
- Received approximately 1,200 cubic yards of clean sand from EPA's 1½-Mile Reach Removal Action and stockpiled it near the OPCAs for future use during final cover installation activities.
- Began to clear obstructions from the storm sewer located beneath Hill 78 OPCA.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue consolidation of certain building demolition materials and complete consolidation of materials from Phase 4 floodplain properties into the OPCAs.
- Complete construction of mid-slope drainage swales at Building 71 OPCA.
- Conduct semi-annual inspection of capped portion of Building 71 OPCA and submit report thereon.

ITEM 5 (cont'd) PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) JUNE 2006

d. Upcoming Scheduled and Anticipated Activities (next six weeks) (cont'd)

- Conduct additional video inspection of the storm and sanitary sewer lines beneath the Hill 78 OPCA after the lines have been cleared.
- e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
Bullards Gravel Pit Sampling	BULLARDS-GRAVEL-1	5/26/06	Soil	SGS	PCB, VOC, SVOC, Metals	6/12/06
Bullards Topsoil Sampling	BULLARDS-TOPSOIL-1	5/26/06	Soil	SGS	PCB, VOC, SVOC, Metals	6/12/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
	= =====================================	0, =0, 00	· ···	_		0, = 0, 0 0

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received by GE or BBL
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	West of OPCAs	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	North of OPCAs	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling Ambient Air Particulate Matter Sampling	West of OPCAs	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06 7/5/06
Ambient Air Particulate Matter Sampling Ambient Air Particulate Matter Sampling	Background Location	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06 7/5/06
PCB Ambient Air Sampling	Field Blank	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling PCB Ambient Air Sampling	Northwest of OPCAs	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	West of OPCAs	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	West of OPCAs West of OPCAs colocated	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	North of OPCAs	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling PCB Ambient Air Sampling	Southeast of OPCAs	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling PCB Ambient Air Sampling	Pittsfield Generating (PGE)	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling PCB Ambient Air Sampling	Background East of Building 9B	5/23 - 5/24/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling PCB Ambient Air Sampling	Field Blank	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling PCB Ambient Air Sampling	Northwest of OPCAs	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling PCB Ambient Air Sampling	West of OPCAs	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling PCB Ambient Air Sampling	West of OPCAs West of OPCAs colocated	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/12/06
FOD AMDIENT AIT Sampling	West of OFOAS colocated	3/23 - 3/20/00	AII	Derkanne Environmental	FUD	0/12/00

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
PCB Ambient Air Sampling	North of OPCAs	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Southeast of OPCAs	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Background East of Building 9B	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Field Blank	5/31 - 6/01/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Northwest of OPCAs	5/31 - 6/01/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	West of OPCAs	5/31 - 6/01/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	West of OPCAs colocated	5/31 - 6/01/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	North of OPCAs	5/31 - 6/01/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Southeast of OPCAs	5/31 - 6/01/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	5/31 - 6/01/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Background East of Building 9B	5/31 - 6/01/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Field Blank	6/01 - 6/02/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Northwest of OPCAs	6/01 - 6/02/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	West of OPCAs	6/01 - 6/02/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	West of OPCAs colocated	6/01 - 6/02/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	North of OPCAs	6/01 - 6/02/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Southeast of OPCAs	6/01 - 6/02/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	6/01 - 6/02/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Background East of Building 9B	6/01 - 6/02/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Field Blank	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Northwest of OPCAs	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	West of OPCAs	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	West of OPCAs colocated	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	North of OPCAs	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Southeast of OPCAs	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Background East of Building 9B	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/12/06
PCB Ambient Air Sampling	Field Blank	6/12 - 6/13/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	Northwest of OPCAs	6/12 - 6/13/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	West of OPCAs	6/12 - 6/13/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	West of OPCAs colocated	6/12 - 6/13/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	North of OPCAs	6/12 - 6/13/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	Southeast of OPCAs	6/12 - 6/13/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	6/12 - 6/13/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	Background East of Building 9B	6/12 - 6/13/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	Field Blank	6/13 - 6/14/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	Northwest of OPCAs	6/13 - 6/14/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	West of OPCAs	6/13 - 6/14/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	West of OPCAs colocated	6/13 - 6/14/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	North of OPCAs	6/13 - 6/14/06	Air	Berkshire Environmental	PCB	6/26/06

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
PCB Ambient Air Sampling	Southeast of OPCAs	6/13 - 6/14/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	6/13 - 6/14/06	Air	Berkshire Environmental	PCB	6/26/06
PCB Ambient Air Sampling	Background East of Building 9B	6/13 - 6/14/06	Air	Berkshire Environmental	PCB	6/26/06

TABLE 5-2 APPENDIX IX+3 DATA

BULLARDS GRAVEL PIT AND TOPSOIL SAMPLING HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	Bullards-Gravel-1	Bullards-Topsoil-1
Parameter	Date Collected:	5/26/06	5/26/06
Volatile Organic	cs		
Acetone		ND(0.0047)	0.011
Iodomethane		0.012	0.015
PCBs			
Aroclor-1254		0.43	ND(0.036)
Total PCBs		0.43	ND(0.036)
Semivolatile Or	ganics		
None Detected			
Inorganics			
Antimony		ND(4.14)	0.0636 B
Arsenic		2.16	11.8
Barium		20.1 B	48.6 B
Beryllium		0.166 B	0.460 B
Chromium		6.59	13.8
Cobalt		4.22	18.9
Copper		6.44 B	27.7
Lead		3.31	33.3
Mercury		ND(0.0377)	0.0710
Nickel		7.35	31.3
Selenium		1.28 B	3.06
Thallium		ND(1.04)	2.96
Tin		2.03 B	1.73 B
Vanadium		6.98	16.0
Zinc	·	22.4	116

Notes:

- 1. Samples were collected by Blasland, Bouck, & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, and metals.
- 2. Only those constituents detected in one or more samples are summarized.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. -- Indicates that all constituents for the parameter group were not detected.

Data Qualifiers:

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

TABLE 5-3 SUMMARY OF 2006 PCB AMBIENT AIR SAMPLING RESULTS

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS (all results are ug/m³)

Date	Northwest of OPCAs	Northwest of OPCAs colocated	West of OPCAs	West of OPCAs colocated	North of OPCAs	Southeast of OPCAs	Pittsfield Generating (PGE)	Background Sample Location - East of Building 9B
01/10/06 - 01/11/06	0.0005	ND	0.0020		0.0005	ND	0.0005	0.0003
02/07/06 - 02/08/06	ND	0.0002 J	ND		ND	0.0003	0.0003	0.0002 J
03/07/06 - 03/08/06	ND	ND	ND		ND	0.0006	0.0006	0.0008
04/06/06 - 04/07/06	0.0006		0.0004	0.0005	0.0005	0.0009	0.0014	0.0005
04/18/06 - 04/19/06	0.0010		0.0011	0.0009	0.0040	0.0019	0.0148	0.0031
04/25/06 - 04/26/06	0.0009		0.0010	0.0009	0.0007	0.0013	0.0019	0.0007
04/27/06 - 04/28/06	0.0006		0.0006	0.0007	0.0004	0.0009	0.0020	0.0005
05/02/06 - 05/03/06 ¹	NA		NA	NA	NA	NA	NA	NA
05/04/06 - 05/05/06	0.0019		0.0037	0.0030	0.0017	0.0041	0.0069	0.0026
05/09/06 - 05/10/06	0.0003		0.0004	0.0004	ND	0.0005	0.0004	0.0050
05/11/06 - 05/12/06	0.0014		0.0024	0.0026	0.0010	0.0005	0.0006	0.0011
05/16/06 - 05/17/06	0.0004		0.0007	0.0011	0.0006	0.0009	0.0014	0.0009
05/18/06 - 05/19/06	0.0018		0.0015	0.0021	0.0017	0.0015	0.0017	0.0019
05/23/06 - 05/24/06	0.0003		ND	0.0004	ND	0.0011	0.0017	0.0005
05/25/06 - 05/26/06	0.0032^2		0.0018	0.0056	0.0041	0.0015	0.0044	0.0010
05/31/06 - 06/01/06	0.0069		0.0056	0.0060	0.0069	0.0030	0.0062	0.0024
06/01/06 - 06/02/06	0.0031		0.0028	0.0043	0.0034	0.0038	0.0087	0.0030
06/06/06 - 06/07/06	0.0006		ND	ND	ND	ND	ND	0.0018
06/12/06 - 06/13/06	0.0017		0.0046	0.0037	0.0041	0.0013	0.0388	0.0009
06/13/06 - 06/14/06	0.0010		0.0010	0.0007	0.0009	0.0022	0.0061	0.0014
Exceedances of Notification Level (0.05 µg/m³)	None	None	None	None	None	None	None	None

(See Notes on Page 2 of 2)

TABLE 5-3 SUMMARY OF 2006 PCB AMBIENT AIR SAMPLING RESULTS

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS (all results are ug/m³)

Notes:

All sampling and analytical activities performed and/or coordinated by Berkshire Environmental Consultants, Inc.

- NA Not Available
- ND Non Detect (<0.0003)
- J Estimated value detected between the MDL and the PQL
 - ¹ No data available due to laboratory error.
 - ² Data provided for information purposes only. Sampling period did not meet QA/QC criteria of 24 hours ± 60 minutes due to an interruption in street power.

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
1/10/06	North of OPCAs	0.016*	0.010*	10:30	WNW
	Pittsfield Generating Co.	0.023		10:30	
	Southeast of OPCAs	0.017		10:30	
	Northwest of OPCAs	0.023*		10:30	
	West of OPCAs	0.016*		10:30	
2/7/06	North of OPCAs	0.006*	0.005*	10:30	WNW
	Pittsfield Generating Co.	NA ²	5.555	NA ²	
	Southeast of OPCAs	0.046 ³		13:45 ⁴	
	Northwest of OPCAs	0.012*		10:15	
	West of OPCAs	0.008*		11:00	
4/17/06	North of OPCAs	0.008	0.004*	9:45	NNW
4/17/00	Pittsfield Generating Co.	0.005*	0.004	9.45 10:15	ININV
	Southeast of OPCAs	0.003		10:10	
	Northwest of OPCAs	0.004		10:30	
	West of OPCAs	0.002		10:30	
4/18/06	North of OPCAs	0.003*	0.003*	9:15 ⁵	NNW
4/10/00	Pittsfield Generating Co.	0.003*	0.003	10:45	ININV
	Southeast of OPCAs	0.003		10:45	
	Northwest of OPCAs	0.020		10:30	
	West of OPCAs	0.001		10:45	
4/19/06	North of OPCAs	0.003	0.003*	6:15 ⁵	NNW
4/19/00			0.003		ININVV
	Pittsfield Generating Co. Southeast of OPCAs	0.004* 0.005*		10:45 10:45	
	Northwest of OPCAs	0.003		11:00	
	West of OPCAs	0.001		11:00	
4/20/06	North of OPCAs	0.004*	0.005*	11:30	WNW, NNW
4/20/00	Pittsfield Generating Co.	0.004	0.005	12:00	VVINVV, ININVV
	Southeast of OPCAs	0.006*		11:30	
	Northwest of OPCAs	0.003*		11:30	
	West of OPCAs	0.003		11:30	
4/21/06	North of OPCAs	0.004*	0.007*	10:30	Variable
4/21/00	Pittsfield Generating Co.	0.010*	0.007	10:45	variable
	Southeast of OPCAs	0.008*		10:30	
	Northwest of OPCAs	0.004*		10:30	
	West of OPCAs	0.006*		10:30	
4/24/06	North of OPCAs	0.006*	0.007*	10:45	Calm
4/24/00	Pittsfield Generating Co.	0.008*	0.007	10:45	Callii
	Southeast of OPCAs	0.000		10:45	
	Northwest of OPCAs	0.005*		10:45	
	West of OPCAs	0.003		10:45	
4/25/06	North of OPCAs	0.007	0.018*	10:45	WNW
7/20/00	Pittsfield Generating Co.	0.025*	0.010	10:30	**1444
	Southeast of OPCAs	0.023*		10:30	
	Northwest of OPCAs	0.022		10:45	
	West of OPCAs	0.019*		10:45	
4/26/06	North of OPCAs	0.003*	0.005*	11:00	SSW
7120100	Pittsfield Generating Co.	0.005*	0.000	10:45	J J J J J J J J J J J J J J J J J J J
	Southeast of OPCAs	0.003		10:45	
	Northwest of OPCAs	0.004		11:00	
	NOTHINGS! OF OAS	0.002		11.00	

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
4/27/06	North of OPCAs	0.009*	0.013*	10:30	WNW
	Pittsfield Generating Co.	0.014*		10:30	
	Southeast of OPCAs	0.014*		10:30	
	Northwest of OPCAs	0.007*		10:30	
	West of OPCAs	0.012*		10:45	
4/28/06	North of OPCAs	0.003*	0.005*	10:45	NNW
	Pittsfield Generating Co.	0.006*		10:30	
	Southeast of OPCAs	0.006*		10:45	
	Northwest of OPCAs	0.003*		10:45	
	West of OPCAs	0.005*		10:45	
5/1/06	North of OPCAs	0.006*	0.009*	10:30	ENE
	Pittsfield Generating Co.	0.009*		10:30	
	Southeast of OPCAs	0.010*		10:30	
	Northwest of OPCAs	0.005*		10:30	
	West of OPCAs	0.010*		10:30	
5/2/06	North of OPCAs	0.007*	0.011*	11:00	NNW, NNE
	Pittsfield Generating Co.	0.010*		11:00	
	Southeast of OPCAs	0.014*		11:00	
	Northwest of OPCAs	0.005*		11:00	
	West of OPCAs	0.009*		11:00	
5/3/06	North of OPCAs	0.001*	0.002*	10:00	NNW
	Pittsfield Generating Co.	0.002*		10:15	
	Southeast of OPCAs	0.001*		5:30 ⁵	
	Northwest of OPCAs	0.001*		10:15	
	West of OPCAs	0.002*		10:30	
5/4/06	North of OPCAs	0.003*	0.006*	11:00	WNW
	Pittsfield Generating Co.	0.011*		11:00	
	Southeast of OPCAs	0.004*		11:00	
	Northwest of OPCAs	0.001*		11:30	
	West of OPCAs	0.006*		11:30	
5/5/06	North of OPCAs	0.004*	0.007*	10:30	WNW
	Pittsfield Generating Co.	0.007*		10:30	
	Southeast of OPCAs	0.005*		10:30	
	Northwest of OPCAs	0.005*		10:30	
	West of OPCAs	0.006*		10:30	
5/8/06	North of OPCAs	0.006*	0.010*	10:45	Variable
	Pittsfield Generating Co.	0.010*		10:45	
	Southeast of OPCAs	0.007*		10:45	
	Northwest of OPCAs	0.007*		10:45	
	West of OPCAs	0.009*		10:45	
5/9/06	North of OPCAs	0.005*	0.013*	11:45	NNE
	Pittsfield Generating Co.	0.009*		11:45	
	Southeast of OPCAs	0.008*		11:45	
	Northwest of OPCAs	0.005*		11:45	
	West of OPCAs	0.009*		11:45	
5/10/06	North of OPCAs	0.004*	0.008*	10:45	ENE
	Pittsfield Generating Co.	0.009*		10:45	
	Southeast of OPCAs	0.005*		10:45	
	Northwest of OPCAs	0.004*		10:45	
	West of OPCAs	0.009*		10:45	

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
5/11/06	North of OPCAs	0.002*	0.006*	11:15	Variable
	Pittsfield Generating Co.	0.007*		11:15	
	Southeast of OPCAs	0.004*		11:15	
	Northwest of OPCAs	0.002*		11:15	
	West of OPCAs	0.007*		11:15	
5/12/06	North of OPCAs	0.006*	0.008*	11:45	Variable
	Pittsfield Generating Co.	0.001*		11:45	
	Southeast of OPCAs	0.004*		11:45	
	Northwest of OPCAs	0.010*		12:00	
	West of OPCAs	0.007*		12:00	
5/15/06	North of OPCAs	0.002*	0.002*	10:45	Variable
	Pittsfield Generating Co.	0.003*		9:30 ⁵	
	Southeast of OPCAs	0.001*		11:15	
	Northwest of OPCAs	0.001*		11:00	
	West of OPCAs	0.002*		11:15	
5/16/06	North of OPCAs	0.007*	0.008*	11:30	W
	Pittsfield Generating Co.	0.008*		11:00	
	Southeast of OPCAs	0.007*		11:00	
	Northwest of OPCAs	0.005*		10:15	
	West of OPCAs	0.005*		11:15	
5/17/06	North of OPCAs	0.016*	0.015*	11:15	SSW
	Pittsfield Generating Co.	0.025*		11:15	
	Southeast of OPCAs	0.014*		11:15	
	Northwest of OPCAs	0.013*		11:15	
	West of OPCAs	0.011*		11:15	
5/18/06	North of OPCAs	0.022*	0.024*	11:00	SSW
	Pittsfield Generating Co.	0.029*		10:45	
	Southeast of OPCAs	0.023*		11:00	
	Northwest of OPCAs	0.021*		11:15	
	West of OPCAs	0.018*		11:30	
5/19/06	North of OPCAs	0.015*	0.022*	10:45	WSW
	Pittsfield Generating Co.	0.019*		10:00	
	Southeast of OPCAs	0.014*		10:45	
	Northwest of OPCAs	0.016*		10:45	
	West of OPCAs	0.014*		10:45	
5/22/06	North of OPCAs	0.001*	0.002*	8:15 ⁶	WNW
	Pittsfield Generating Co.	0.014*		11:15	
	Southeast of OPCAs	0.002*		11:15	
	Northwest of OPCAs	0.001*		11:15	
	West of OPCAs	0.001*		11:15	
5/23/06	North of OPCAs	0.005*	0.008*	11:45	WNW
	Pittsfield Generating Co.	0.005*		11:30	
	Southeast of OPCAs	0.005*		11:45	
	Northwest of OPCAs	0.006*		11:45	
	West of OPCAs	0.002*		12:00	
5/24/06	North of OPCAs	0.004*	0.006*	11:30	WNW
	Pittsfield Generating Co.	0.006*		11:30	
	Southeast of OPCAs	0.004*		11:30	
	Northwest of OPCAs	0.004*		11:30	
	West of OPCAs	0.004*		11:30	

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
5/25/06	North of OPCAs	0.014*	0.014*	10:15	SSW
	Pittsfield Generating Co.	0.021*		10:00	
	Southeast of OPCAs	0.016*		10:15	
	Northwest of OPCAs	0.015*		10:30	
	West of OPCAs	0.011*		10:45	
5/26/06	North of OPCAs	0.028*	0.030*	10:45	Calm
	Pittsfield Generating Co.	0.035*		11:30	
	Southeast of OPCAs	0.028*		11:30	
	Northwest of OPCAs	0.031*		11:45	
	West of OPCAs	0.027*		11:15	
5/30/06	North of OPCAs	0.023*	0.023*	11:00	Variable
	Pittsfield Generating Co.	0.040*		10:30	
	Southeast of OPCAs	0.024*		9:00 ⁵	
	Northwest of OPCAs	0.026*		11:00	
	West of OPCAs	0.012*		11:00	
5/31/06	North of OPCAs	0.046*	0.053*	11:15	WSW
	Pittsfield Generating Co.	0.057*		11:00	
	Southeast of OPCAs	0.046*		11:15	
	Northwest of OPCAs	0.049*		11:30	
	West of OPCAs	0.035*		11:30	
6/1/06	North of OPCAs	0.057*	0.072*	11:15	WSW, SSW
	Pittsfield Generating Co.	0.078*		11:15	
	Southeast of OPCAs	0.059*		11:15	
	Northwest of OPCAs	0.058*		11:15	
	West of OPCAs	0.042*		11:30	
6/2/06	North of OPCAs	0.014*	0.019*	10:30	WSW
	Pittsfield Generating Co.	0.020*		10:30	
	Southeast of OPCAs	0.016*		10:30	
	Northwest of OPCAs	0.016*		10:30	
	West of OPCAs	0.013*		10:30	
6/6/06	North of OPCAs	0.008*	0.010*	11:30	Calm
	Pittsfield Generating Co.	0.012*		11:30	
	Southeast of OPCAs	0.010*		11:30	
	Northwest of OPCAs	0.008*		11:45	
	West of OPCAs	0.007*		11:45	
6/12/06	North of OPCAs	0.005*	0.005*	10:15	WNW
	Pittsfield Generating Co.	0.014*		10:45	
	Southeast of OPCAs	0.009*		10:30	
	Northwest of OPCAs	0.003*		10:30	
	West of OPCAs	0.003*		11:15	
6/13/06	North of OPCAs	0.009*	0.009*	11:00	WNW
	Pittsfield Generating Co.	0.026*		10:30	
	Southeast of OPCAs	0.011*		11:00	
	Northwest of OPCAs	0.009*		11:00	
	West of OPCAs	0.003*		10:45	
6/14/06	North of OPCAs	0.013*	0.018*	10:45	Calm
	Pittsfield Generating Co.	0.024*		10:45	
	Southeast of OPCAs	0.013*		11:00	
	Northwest of OPCAs	0.014*		11:00	
	West of OPCAs	0.011*		11:00	

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
6/15/06	North of OPCAs	0.009*	0.010*	10:30	NNW
	Pittsfield Generating Co.	0.014*		10:30	
	Southeast of OPCAs	0.010*		10:30	
	Northwest of OPCAs	0.008*		10:30	
	West of OPCAs	0.011*		10:30	
6/16/06	North of OPCAs	0.015*	0.017*	9:45 ⁵	WNW
	Pittsfield Generating Co.	0.022*		11:45	
	Southeast of OPCAs	0.017*		11:45	
	Northwest of OPCAs	0.016*		11:45	
	West of OPCAs	0.026*		6:45 ⁵	
06/19/06 ⁷	North of OPCAs	0.113*	0.136*	10:30	WSW, SSW
	Pittsfield Generating Co.	0.153*		10:45	
	Southeast of OPCAs	0.119*		10:45	
	Northwest of OPCAs	0.119*		10:30	
	West of OPCAs	0.187*		10:30	
6/20/06	North of OPCAs	0.022*	0.028*	10:30	WSW
	Pittsfield Generating Co.	0.031*		10:30	
	Southeast of OPCAs	0.018*		10:45	
	Northwest of OPCAs	0.020*		10:45	
	West of OPCAs	0.038*		10:45	
6/21/06	North of OPCAs	0.007*	0.007*	10:45	Variable
	Pittsfield Generating Co.	0.012*		10:45	
	Southeast of OPCAs	0.009*		10:45	
	Northwest of OPCAs	0.007*		10:45	
	West of OPCAs	0.013*		10:45	
6/22/06	North of OPCAs	0.029*	0.034*	11:30	SSW
	Pittsfield Generating Co.	0.041*		10:45	
	Southeast of OPCAs	0.035*		11:30	
	Northwest of OPCAs	0.030*		11:30	
	West of OPCAs	0.051*		11:30	
6/23/06	North of OPCAs	0.027*	0.037*	10:45	WNW
	Pittsfield Generating Co.	0.046*		10:45	
	Southeast of OPCAs	0.036*		10:45	
	Northwest of OPCAs	0.029*		10:45	
	West of OPCAs	0.057*		10:45	
6/26/06	North of OPCAs	0.012*	0.015*	8:45 ⁸	SSW
	Pittsfield Generating Co.	0.020*		8:30 ⁸	
	Southeast of OPCAs	0.021*		8:30 ⁸	
	Northwest of OPCAs	0.014*		8:45 ⁸	
	West of OPCAs	0.018*		8:45 ⁸	
6/27/06	North of OPCAs	0.012*	0.011*	10:45	SSW
	Pittsfield Generating Co.	0.015*		10:30	
	Southeast of OPCAs	0.012*		10:45	
	Northwest of OPCAs	0.013*		10:45	
	West of OPCAs	0.022*		11:00	
6/28/06	North of OPCAs	0.004*	0.008*	11:30	Variable
	Pittsfield Generating Co.	0.007*		10:45	
	Southeast of OPCAs	0.003*		11:30	
	Northwest of OPCAs	0.007*		11:15	
	West of OPCAs	0.011*		11:30	

PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
6/29/06	North of OPCAs	0.055*	0.057*	10:30	SSW
	Pittsfield Generating Co.	0.074*		10:00	
	Southeast of OPCAs	0.047*		11:00	
	Northwest of OPCAs	0.064*		10:30	
	West of OPCAs	0.062*		11:00	
6/30/06	North of OPCAs	0.030*	0.037*	11:00	WNW
	Pittsfield Generating Co.	0.046*		10:30	
	Southeast of OPCAs	0.046*		10:45	
	Northwest of OPCAs	0.039*		11:00	
	West of OPCAs	0.055*		10:45	
Notification Level		0.120			

Notes:

NA - Not Available

Background monitoring station is located east of Building 9B, between Building 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

^{*} Measured with DR-2000 or DR-4000, all others measured with a pDR-1000.

¹ The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.

² Sampling data invalid - interference from cooling tower.

³ Reading reflects average concentration manually recorded from the monitor at the end of the day.

⁴ Estimated logging period.

⁵ Sampling period was shortened due to instrument malfunction.

⁶ Sampling period was shortened due to a power failure.

⁷ The exceedances and overall high site values on this day are likely related to regional ambient pollutant and atmospheric conditions as reported by EPA and measured at several other sites in Pittsfield and other parts of New England. The relative difference between the background site concentration and the OPCAs site concentrations indicate that the OPCAs were not the significant contributor to these high values.

⁸ Sampling period was shortened due to mid-morning notification of monitors needed.

TABLE 5-5 BUILDING 71 CONSOLIDATION AREA LEACHATE TRANSFER SUMMARY PLANT AREA - HILL 78 & BUILDING 71 CONSOLIDATION AREAS

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Month / Year	Total Volume of Leachate Transferred (Gallons)
June 2005	130,000
July 2005	127,500
August 2005	55,000
September 2005	55,000
October 2005	378,000
November 2005	162,500
December 2005	168,000
January 2006	185,000
February 2006	125,000
March 2006	70,000
April 2006	104,000
May 2006	137,000
June 2006	139,000

Leachate is transferred from the Building 71 On-Plant Consolidation Area to Building 64G for treatment.

ITEM 6 PLANT AREA HILL 78 AREA - REMAINDER (GECD160) JUNE 2006

* All activities described below for this item were conducted pursuant to or in connection with the Consent Decree.

a. Activities Undertaken/Completed

- Began to clear obstructions from the storm sewer line beneath Hill 78.
- Initiated supplemental pre-design soil investigations, as identified in Table 6-1.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue to coordinate with the City of Pittsfield for the clearing of the sanitary sewer line beneath the Hill 78 Area.
- Conduct additional video inspection of the storm and sanitary sewer lines within the Hill 78 Area after the lines have been cleared.*
- Complete supplemental pre-design investigations.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval letter for GE's May 11, 2006 Supplemental Sampling Proposal (June 5, 2006).

HILL 78 AREA-REMAINDER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name Field Sample ID Supplemental Soil Sampling RAA9-B12	Date					
Cumplemental Cail Compliner DAAO DAO	Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
	6/21/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-B12	6/21/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-B12	6/21/06	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling RAA9-C10	6/21/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-C10	6/21/06	6-15	Soil	SGS	PCB, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling RAA9-C10	6/21/06	6-8	Soil	SGS	VOC	
Supplemental Soil Sampling RAA9-C10	6/21/06	0-1	Soil	SGS	VOC, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling RAA9-D8	6/21/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-D8	6/21/06	1-6	Soil	SGS	SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling RAA9-D8	6/21/06	1-3	Soil	SGS	VOC	
Supplemental Soil Sampling RAA9-DUP-1 (RAA9-J21)	6/19/06	1-6	Soil	SGS	PCB, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling RAA9-DUP-2 (RAA9-J21)	6/19/06	4-6	Soil	SGS	VOC	
Supplemental Soil Sampling RAA9-DUP-3 (RAA9-J18)	6/20/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-DUP-4 (RAA9-E6)	6/22/06	0-1	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-E6	6/22/06	0-1	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-E6	6/22/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-E6	6/22/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-F4	6/23/06	0-1	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-F4	6/23/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-F4	6/23/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-G2	6/22/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-G2	6/22/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-G2S	6/21/06	0-1	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-H11W-SD	6/26/06	0-0.5	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling RAA9-H21	6/20/06	0-1	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-H21	6/20/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-H21	6/20/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-I18	6/20/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-I19	6/16/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-I19	6/16/06	1-6	Soil	SGS	PCB, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling RAA9-I19	6/16/06	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling RAA9-I19	6/16/06	4-6	Soil	SGS	VOC	
Supplemental Soil Sampling RAA9-I22	6/19/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-I22	6/19/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-I22	6/19/06	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling RAA9-J12S-SW	6/13/06	NA	Water	SGS	PCB, VOC, SVOC, Metals, CN, Sulfide, PCDD/PCDF	
Supplemental Soil Sampling RAA9-J18	6/20/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-J18	6/20/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-J20	6/16/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling RAA9-J20	6/16/06	6-15	Soil	SGS	PCB, SVOC, Inorganics, PCDD/PCDF	

HILL 78 AREA-REMAINDER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date Received
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
Supplemental Soil Sampling	RAA9-J20	6/16/06	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-J20	6/16/06	10-12	Soil	SGS	VOC	
Supplemental Soil Sampling	RAA9-J21	6/19/06	0-1	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-J21	6/19/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-J21	6/19/06	1-6	Soil	SGS	PCB, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-J21	6/19/06	4-6	Soil	SGS	VOC	
Supplemental Soil Sampling	RAA9-J22	6/19/06	0-1	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-J22	6/19/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-J22	6/19/06	6-15	Soil	SGS	PCB, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-J22	6/19/06	6-8	Soil	SGS	VOC	
Supplemental Soil Sampling	RAA9-K13W-SD	6/15/06	0-0.5	Sediment	SGS	PCB	
Supplemental Soil Sampling	RAA9-K16S-SD	6/14/06	0-0.5	Sediment	SGS	PCB	
Supplemental Soil Sampling	RAA9-K17-SW	6/13/06	NA	Water	SGS	PCB, VOC, SVOC, Metals, CN, Sulfide, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-K19	6/16/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-K19	6/16/06	6-15	Soil	SGS	PCB, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-K19	6/16/06	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-K19	6/16/06	8-10	Soil	SGS	VOČ	
Supplemental Soil Sampling	RAA9-K20	6/16/06	0-1	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-K20	6/16/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-K20	6/16/06	1-6	Soil	SGS	PCB, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-K20	6/16/06	3-4	Soil	SGS	VOC	
Supplemental Soil Sampling	RAA9-K4	6/23/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-L13E-SW	6/13/06	NA	Water	SGS	PCB, VOC, SVOC, Metals, CN, Sulfide, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-L13N-SD	6/15/06	0-0.5	Sediment	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-L14W-SD	6/15/06	0-0.5	Sediment	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-M6	6/23/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-MHD2-SW	6/14/06	NA	Water	SGS	PCB, VOC, SVOC, Metals, CN, Sulfide, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-N4.5	6/23/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-N8	6/22/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-N8	6/22/06	6-15	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-N8	6/22/06	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-NO5.5	6/23/06	0-1	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-NO5.5	6/23/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-SD-DUP-1 (RAA9-L13N-SD)	6/15/06	0-0.5	Sediment	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-SW-DUP-1 (RAA9-L13E-SW)	6/13/06	NA	Water	SGS	PCB, VOC, SVOC, Metals, CN, Sulfide, PCDD/PCDF	
Supplemental Soil Sampling	RAA9-X1	6/15/06	0-1	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-X2	6/20/06	0-1	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-X2	6/20/06	1-6	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-X3	6/20/06	0-1	Soil	SGS	PCB	
Supplemental Soil Sampling	RAA9-X3	6/20/06	1-6	Soil	SGS	PCB	

HILL 78 AREA-REMAINDER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date Received
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
Supplemental Soil Sampling	RAA9-X4	6/15/06	0-1	Soil	SGS	PCB	

Note:

1. Field duplicate sample locations are presented in parenthesis.

ITEM 7 PLANT AREA UNKAMET BROOK AREA (GECD170) JUNE 2006

a. Activities Undertaken/Completed

Continued activities related to the detailed survey (including metes and bounds and topographic survey) of the Unkamet Brook Area (being performed by Hill Engineers, Architects & Planners, Inc.).*

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted Pre-Excavation Notification letter to EPA and MDEP for an excavation to facilitate utility upgrades adjacent to Building OP-1 (June 8, 2006).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Following EPA approval of the Pre-Design Investigation Report (submitted on September 6, 2005), initiate the additional soil sampling activities proposed therein and proposed in the EPA-approved November 2005 Addendum (approval received in March 2006).*
- Continue performing detailed survey of the Unkamet Brook Area.*

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

In a letter dated August 15, 2005, GE proposed to remove Parcel L12-1-2 from the Unkamet Brook Area RAA. That proposal is pending approval from EPA.*

UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received by GE or BBL
General Dynamics Excavation Sampling	GD-SP1-C1	5/18/06	Soil	SGS	TCLP	6/23/06
General Dynamics Excavation Sampling	GD-SP2-C1	5/18/06	Soil	SGS	TCLP	6/23/06

TABLE 7-2 TCLP DATA RECEIVED DURING JUNE 2006

GENERAL DYNAMICS EXCAVATION SAMPLING UNKAMET BROOK AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

	TCLP		
Sample ID:	Regulatory	GD-SP1-C1	GD-SP2-C1
Parameter Date Collected:	Limits	5/18/06	5/18/06
Volatile Organics			
1,1-Dichloroethene	0.7	ND(0.010)	ND(0.010)
1,2-Dichloroethane	0.5	ND(0.010)	ND(0.010)
1,4-Dichlorobenzene	7.5	ND(0.010)	ND(0.010)
2-Butanone	200	ND(0.25)	ND(0.25)
Benzene	0.5	ND(0.010)	ND(0.010)
Carbon Tetrachloride	0.5	ND(0.010)	ND(0.010)
Chlorobenzene	100	ND(0.010)	ND(0.010)
Chloroform	6	ND(0.010)	ND(0.010)
Tetrachloroethene	0.7	ND(0.010)	ND(0.010)
Trichloroethene	0.5	ND(0.010)	ND(0.010)
Vinyl Chloride	0.2	ND(0.010)	ND(0.010)
Semivolatile Organics			
1,4-Dichlorobenzene	7.5	ND(0.010)	ND(0.010)
2,4,5-Trichlorophenol	400	ND(0.010)	ND(0.010)
2,4,6-Trichlorophenol	2	ND(0.010)	ND(0.010)
2,4-Dinitrotoluene	0.13	ND(0.010)	ND(0.010)
Cresol	200	ND(0.010)	ND(0.010)
Hexachlorobenzene	0.13	ND(0.010)	ND(0.010)
Hexachlorobutadiene	0.5	ND(0.010)	ND(0.010)
Hexachloroethane	3	ND(0.010)	ND(0.010)
Nitrobenzene	2	ND(0.010)	ND(0.010)
Pentachlorophenol	100	ND(0.050)	ND(0.050)
Pyridine	5	ND(0.020)	ND(0.020)
Inorganics			
Arsenic	5	ND(0.200)	ND(0.200)
Barium	100	0.160 B	0.120 B
Cadmium	1	0.00890 B	0.00610 B
Chromium	5	0.0221 B	0.00580 B
Lead	5	0.0468 B	0.0208 B
Mercury	0.2	ND(0.000500)	ND(0.000500)
Selenium	1	0.289	0.238
Silver	5	ND(0.100)	ND(0.100)

Notes:

- Samples were collected by Blasland, Bouck, & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of TCLP constituents.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

<u>Inorganics</u>

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

ITEM 8 FORMER OXBOW AREAS A & C (GECD410) JUNE 2006

a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

- Submitted Revision to Second Addendum to Final Removal Design/Removal Action Work Plan for Former Oxbow Areas A and C to EPA (June 13, 2006).
- Submitted Supplemental Information Package to EPA (June 15, 2006).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Submit analytical results for proposed backfill and topsoil sources to EPA.
- Initiate remedial actions following EPA approval of Supplemental Information Package.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

There are potential issues regarding obtaining access to Parcels I8-23-6 and I9-5-1 for remediation.

f. Proposed/Approved Work Plan Modifications

Received EPA approval of GE's June 13, 2006 Revision to Second Addendum to Final RD/RA Work Plan for Former Oxbow Areas A and C (June 23, 2006).

ITEM 9 LYMAN STREET AREA (GECD430) JUNE 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

None

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

Submitted Supplemental Information Package for properties west of Lyman Street to EPA (June 15, 2006).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Initiate remedial actions at properties west of Lyman Street following EPA approval of Supplemental Information Package.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

Restoration issues at Parcels I9-4-14 and I9-4-19 are under discussion.

f. Proposed/Approved Work Plan Modifications

None

ITEM 10 NEWELL STREET AREA I (GECD440) JUNE 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Performed the remaining remediation activity at Parcels J9-23-19, -20, and -21, which involved limited excavation and subsequent installation of a concrete slab over a dirt floor in a building on Parcel J9-23-20.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

Submitted ERE and Notice of Completion for Parcel J9-23-24 to EPA for approval and MDEP for acceptance (June 28, 2006).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Submit report on semi-annual inspection of engineered barriers and restored and revegetated areas.
- Obtain survey of GE-owned strip of land adjacent to Housatonic River for use in connection with ERE.
- Develop and send letters to owners of properties with Conditional Solutions regarding the Conditional Solutions.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

Received EPA comments on draft EREs for GE-owned Parcels J9-23-16 and J9-23-23 (June 21, 2006) and on draft letter to owners of properties with Conditional Solutions (June 16, 2006).

ITEM 11 NEWELL STREET AREA II (GECD450) JUNE 2006

* All activities described below for this item were conducted pursuant to or in connection with the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

- Conducted ambient air monitoring for particulates and PCBs, as identified in Table 11-1.
- Continued shipment of soil excavated from Parcel J9-23-8 to the selected disposal facility located in Port Arthur, Texas.
- Continued with previously planned soil remediation activities (i.e., soil replacement, installation of barriers).
- Conducted wipe sampling of Parratt-Wolff augers from well installations, as identified in Table 11-1.
- Arranged for the appropriate off-site disposal of drums previously removed from Parcel J9-23-8.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue shipments of soil excavated from Parcel J9-23-8 to the selected disposal facility located in Port Arthur, Texas.
- Complete remaining soil remediation activities i.e., installation of engineered barriers.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
Excavation Drum Sampling	D0544-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0545-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0546-SOLID	4/26/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0547-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0548-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0549-SOLID	4/26/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0550-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0551-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0552-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0553-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0554-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0555-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0556-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0557-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0558-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0569-SOLID	5/16/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/26/06
Excavation Drum Sampling	D0761-SOLID	5/25/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/26/06
Excavation Drum Sampling	D0766-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0769-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0770-SOLID	4/26/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0771-SOLID	4/26/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0772-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0773-SOLID	4/26/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0774-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0775-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0776-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0777-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0778-SOLID	4/26/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0780-SOLID	4/26/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0781-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0782-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0783-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0784-SOLID	4/26/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0785-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0786-SOLID	4/27/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0787-SOLID	4/26/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0788-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Tracking Logs\Tracking.xls
TABLE 11-1

1 of 5

NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
Excavation Drum Sampling	D0789-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0790-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0797-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Excavation Drum Sampling	D0799-SOLID	4/6/06	Solid	SGS	PCB, VOC, SVOC, TCLP	6/14/06
Parratt-Wolff Auger Wipes	PWA-Wipe-1	6/9/06	Wipe	SGS	PCB	6/15/06
Parratt-Wolff Auger Wipes	PWA-Wipe-2	6/9/06	Wipe	SGS	PCB	6/15/06
Parratt-Wolff Auger Wipes	PWA-Wipe-3	6/9/06	Wipe	SGS	PCB	6/15/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/2/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/13/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/13/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/7/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/13/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06

 $\label{thm:control_var_equal} $$V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Tracking Logs\Tracking.xls $$TABLE 11-1$$

NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06

 $\label{thm:control} $$V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Tracking Logs\Tracking.xls $$TABLE 11-1$$

NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN1 - Northwest	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN2 - Southwest	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN3 - Southeast	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	NN4 - Northeast	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Tracking Logs\Tracking.xls
TABLE 11-1
4 of 5

NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
PCB Ambient Air Sampling	Field Blank	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/15/06
PCB Ambient Air Sampling	Northwest of NS Area II	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/15/06
PCB Ambient Air Sampling	Southwest of NS Area II	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/15/06
PCB Ambient Air Sampling	Southeast of NS Area II	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/15/06
PCB Ambient Air Sampling	Northeast of NS Area II	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/15/06
PCB Ambient Air Sampling	Northeast of NS Area II - colocated	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/15/06
PCB Ambient Air Sampling	Background - East of Building 9B	6/06 - 6/07/06	Air	Berkshire Environmental	PCB	6/15/06

TABLE 11-2 PCB DATA RECEIVED DURING JUNE 2006

PARRATT-WOLFF AUGER WIPES NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in μg/100cm²)

Sample ID	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
PWA-Wipe-1	6/9/2006	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	3.4	ND(1.0)	3.4
PWA-Wipe-2	6/9/2006	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	3.6	1.7	5.3
PWA-Wipe-3	6/9/2006	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)	39	ND(5.0)	39

Notes:

- 1. Samples were collected by Blasland, Bouck, & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 11-3 DATA RECEIVED DURING JUNE 2006

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

Sample ID: Parameter Date Collected:	D0544-SOLID 4/27/06	D0545-SOLID 4/27/06	D0546-SOLID 4/26/06	D0547-SOLID 4/27/06	D0548-SOLID 4/27/06	D0549-SOLID 4/26/06	D0550-SOLID 4/27/06
Volatile Organics	4/2//06	4/2//06	4/20/00	4/2//06	4/2//06	4/20/00	4/2//06
1,1-Dichloroethene	0.13 J	ND(0.20)	ND(0.29)	ND(0.21)	ND(1.5)	1.9	ND(0.36)
2-Butanone	ND(0.20)	ND(0.20)	ND(0.29)	ND(0.21)	ND(1.5)	ND(0.88)	ND(0.36)
2-Hexanone	ND(0.20)	ND(0.20)	ND(0.29)	ND(0.21)	ND(1.5)	ND(0.88)	ND(0.36)
Acetone	ND(0.20)	ND(0.20)	ND(0.29)	ND(0.21)	ND(1.5)	ND(0.88)	ND(0.36)
Benzene	0.18 J	ND(0.20)	ND(0.29)	ND(0.21)	ND(1.5)	6.8	0.21 J
Carbon Disulfide	ND(0.20)	ND(0.20)	ND(0.29)	ND(0.21)	ND(1.5)	ND(0.88)	ND(0.36)
Chlorobenzene	0.39	ND(0.20)	ND(0.29)	ND(0.21)	ND(1.5)	1.3	0.42
Chloroform	ND(0.20)	ND(0.20)	ND(0.29)	ND(0.21)	ND(1.5)	1.0	ND(0.36)
Ethylbenzene	0.56	0.15 J	ND(0.29)	ND(0.21)	ND(1.5)	7.9	0.24 J
Methylene Chloride	0.32	ND(0.20)	ND(0.29)	ND(0.21)	ND(1.5)	ND(0.88)	ND(0.36)
Tetrachloroethene	ND(0.20)	ND(0.20)	ND(0.29)	ND(0.21)	ND(1.5)	0.54 J	ND(0.36)
Toluene	0.99	0.23	0.46	ND(0.21)	ND(1.5)	24	ND(0.36)
trans-1,2-Dichloroethene	ND(0.20)	ND(0.20)	ND(0.29)	ND(0.21)	ND(1.5)	4.2	ND(0.36)
Trichloroethene	16	10	0.24 J	0.22	69	120	11
Vinyl Chloride	0.23	ND(0.20)	ND(0.29)	ND(0.21)	ND(1.5)	4.6	ND(0.36)
Xylenes (total)	2.4	0.78	0.34	ND(0.21)	ND(1.5)	44	5.8
PCBs							
Aroclor-1254	21	22	35	840	450000	3200	2600
Aroclor-1260	ND(13)	ND(6.7)	ND(19)	ND(35)	ND(51000)	ND(290)	ND(120)
Total PCBs	21	22	35	840	450000	3200	2600
Semivolatile Organics							
1,2,4,5-Tetrachlorobenzene	ND(330)	ND(23)	ND(0.96)	ND(0.92)	4.8 J	ND(61)	ND(12)
1,2,4-Trichlorobenzene	ND(330)	18 J	0.64 J	1.4	33	90	100
1,3-Dichlorobenzene	ND(330)	ND(23)	ND(0.96)	0.16 J	ND(26)	34 J	9.2 J
1,4-Dichlorobenzene	ND(330)	ND(23)	0.24 J	0.29 J	ND(26)	96	18
2,4,5-Trichlorophenol	ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	ND(61)	5.4 J
2,4-Dimethylphenol	ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	ND(61)	ND(12)
2-Acetylaminofluorene	ND(330)	ND(23)	ND(0.97)	ND(0.92)	ND(26)	ND(61)	ND(12)
2-Methylnaphthalene	90 J	26	0.22 J	ND(0.92)	ND(26)	92	12 J
2-Methylphenol	ND(330)	ND(23)	0.47 J	ND(0.92)	ND(26)	ND(61)	ND(12)
3&4-Methylphenol	ND(330)	ND(23)	1.1	ND(0.92)	ND(26)	ND(61)	ND(12)
3,3'-Dichlorobenzidine	ND(670)	ND(47)	ND(1.9)	ND(1.8)	ND(51)	ND(120)	ND(24)
Acenaphthene	ND(330)	ND(23)	ND(0.96)	ND(0.92)	5.0 J	ND(61)	1.8 J
Aniline	ND(330)	ND(23)	0.82 J	ND(0.92)	ND(26)	ND(61)	ND(12)
Anthracene	ND(330)	6.5 J	ND(0.96)	ND(0.92)	ND(26)	ND(61)	ND(12)
Benzo(a)anthracene	ND(330)	ND(23)	0.12 J	ND(0.92)	ND(26)	6.5 J	ND(12)
Benzo(a)pyrene	ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	ND(61)	ND(12)

TABLE 11-3 DATA RECEIVED DURING JUNE 2006

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

	ample ID:	D0544-SOLID 4/27/06	D0545-SOLID 4/27/06	D0546-SOLID 4/26/06	D0547-SOLID 4/27/06	D0548-SOLID 4/27/06	D0549-SOLID 4/26/06	D0550-SOLID 4/27/06	
Parameter Date Collected: 4/27/06 4/27/06 4/26/06 4/27/06 4/27/06 4/27/06 4/27/06 4/27/06 5emivolatile Organics (continued)									
Benzo(b)fluoranthene	,	ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	ND(61)	ND(12)	
Benzo(g,h,i)perylene		ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	ND(61)	ND(12)	
Benzo(k)fluoranthene		ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	ND(61)	ND(12)	
bis(2-Chloroethyl)ether		ND(330)	ND(23)	0.92 J	ND(0.92)	ND(26)	ND(61)	ND(12)	
bis(2-Ethylhexyl)phthalate		ND(170)	ND(12)	ND(0.48)	ND(0.46)	ND(13)	30 J	230	
Chrysene		ND(330)	18 J	0.15 J	ND(0.92)	ND(26)	7.6 J	3.0 J	
Dibenzo(a,h)anthracene		ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	ND(61)	ND(12)	
Dibenzofuran		ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	26 J	3.5 J	
Di-n-Butylphthalate		ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	ND(61)	ND(12)	
Fluoranthene		ND(330)	ND(23)	0.40 J	ND(0.92)	ND(26)	57 J	11 J	
Fluorene		ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	43 J	1.8 J	
Indeno(1,2,3-cd)pyrene		ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	ND(61)	ND(12)	
Naphthalene		ND(330)	4.7 J	0.78 J	ND(0.92)	ND(26)	160	24	
Nitrobenzene		ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	ND(61)	ND(12)	
N-Nitrosodiphenylamine		ND(330)	ND(23)	ND(0.96)	ND(0.92)	ND(26)	ND(61)	ND(12)	
Pentachlorobenzene		ND(330)	ND(23)	ND(0.96)	ND(0.92)	3.6 J	ND(61)	ND(12)	
Phenanthrene		56 J	17 J	0.63 J	ND(0.92)	ND(26)	200	29	
Phenol		ND(330)	ND(23)	2.2	ND(0.92)	ND(26)	ND(61)	ND(12)	
Pyrene		ND(330)	36	0.24 J	ND(0.92)	ND(26)	39 J	9.2 J	

TABLE 11-3 DATA RECEIVED DURING JUNE 2006

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

Sample ID: Parameter Date Collected:	D0551-SOLID 4/27/06	D0552-SOLID 4/6/06	D0553-SOLID 4/27/06	D0554-SOLID 4/27/06	D0555-SOLID 4/27/06	D0556-SOLID 4/6/06	D0557-SOLID 4/6/06
Volatile Organics	4/2//00	4/0/00	4/2//00	4/21/00	4/2//00	4/0/00	4/0/00
1,1-Dichloroethene	ND(1.2)	ND(0.39)	ND(3.0)	ND(1.3)	ND(0.27)	ND(0.19)	ND(0.18)
2-Butanone	ND(1.2)	ND(0.39)	ND(3.0)	ND(1.3)	ND(0.27)	ND(0.19)	ND(0.18)
2-Hexanone	ND(1.2)	ND(0.39)	ND(3.0)	ND(1.3)	ND(0.27)	ND(0.19)	ND(0.18)
Acetone	ND(1.2)	ND(0.39)	ND(3.0)	ND(1.3)	ND(0.27)	ND(0.19)	ND(0.18)
Benzene	ND(1.2)	13	3.2	ND(1.3)	ND(0.27)	3.4	2.2
Carbon Disulfide	ND(1.2)	ND(0.39)	ND(3.0)	ND(1.3)	ND(0.27)	0.14 J	ND(0.18)
Chlorobenzene	ND(1.2)	0.80	ND(3.0)	ND(1.3)	0.63	1.1	0.30
Chloroform	ND(1.2)	ND(0.39)	ND(3.0)	ND(1.3)	ND(0.27)	ND(0.19)	ND(0.18)
Ethylbenzene	ND(1.2)	ND(0.39)	ND(3.0)	ND(1.3)	ND(0.27)	ND(0.19)	ND(0.18)
Methylene Chloride	ND(1.2)	ND(0.39)	ND(3.0)	ND(1.3)	ND(0.27)	ND(0.19)	ND(0.18)
Tetrachloroethene	ND(1.2) ND(1.2)	ND(0.39)	ND(3.0)	ND(1.3) ND(1.3)	ND(0.27)	ND(0.19)	ND(0.18)
Toluene	ND(1.2) ND(1.2)	4.1	1.6 J	ND(1.3)	ND(0.27)	1.2	1.0
trans-1,2-Dichloroethene	ND(1.2) ND(1.2)	0.58	ND(3.0)		ND(0.27) ND(0.27)	ND(0.19)	ND(0.18)
	12	0.58	ND(3.0) 57	ND(1.3)	. ,	. ,	\ /
Trichloroethene				11	1.9	ND(0.19)	5.6
Vinyl Chloride	ND(1.2)	ND(0.39)	ND(3.0)	ND(1.3)	ND(0.27)	ND(0.19)	ND(0.18)
Xylenes (total)	0.70 J	0.61	ND(3.0)	ND(1.3)	ND(0.27)	0.68	0.30
PCBs							
Aroclor-1254	160000	12000	1400	600000	750	ND(1.7)	2200
Aroclor-1260	ND(39000)	ND(830)	1400	ND(47000)	ND(45)	ND(1.7)	ND(170)
Total PCBs	160000	12000	2800	600000	750	ND(1.7)	2200
Semivolatile Organics							
1,2,4,5-Tetrachlorobenzene	8.2 J	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
1,2,4-Trichlorobenzene	260	53	ND(5000)	41 J	3.1 J	ND(730)	18 J
1,3-Dichlorobenzene	ND(47)	7.6 J	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
1,4-Dichlorobenzene	12 J	27 J	ND(5000)	ND(42)	1.3 J	ND(730)	12 J
2,4,5-Trichlorophenol	ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
2,4-Dimethylphenol	ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
2-Acetylaminofluorene	ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
2-Methylnaphthalene	5.0 J	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
2-Methylphenol	ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
3&4-Methylphenol	ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
3,3'-Dichlorobenzidine	ND(94)	ND(100)	ND(10000)	ND(84)	ND(9.0)	ND(1500)	ND(93)
Acenaphthene	ND(47)	ND(50)	ND(5000)	15 J	ND(4.5)	ND(730)	ND(47)
Aniline	ND(47)	28 J	ND(5000)	ND(42)	0.66 J	530 J	ND(47)
Anthracene	ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Benzo(a)anthracene	ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Benzo(a)pyrene	ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	D0551-SOLID	D0552-SOLID	D0553-SOLID	D0554-SOLID	D0555-SOLID	D0556-SOLID	D0557-SOLID
Parameter	Date Collected:	4/27/06	4/6/06	4/27/06	4/27/06	4/27/06	4/6/06	4/6/06
Semivolatile Organics	s (continued)							
Benzo(b)fluoranthene		ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Benzo(g,h,i)perylene		ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Benzo(k)fluoranthene		ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
bis(2-Chloroethyl)ether		ND(47)	31 J	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
bis(2-Ethylhexyl)phthala	ate	ND(24)	22 J	ND(2500)	ND(21)	ND(2.2)	ND(370)	ND(23)
Chrysene		ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Dibenzo(a,h)anthracen	е	ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Dibenzofuran		ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Di-n-Butylphthalate		ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Fluoranthene		ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Fluorene		ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Indeno(1,2,3-cd)pyrene)	ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Naphthalene		6.9 J	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Nitrobenzene		ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
N-Nitrosodiphenylamine	е	ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	300 J	ND(47)
Pentachlorobenzene		ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	ND(47)
Phenanthrene		ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	4.8 J
Phenol		ND(47)	ND(50)	5000	ND(42)	ND(4.5)	640 J	ND(47)
Pyrene		ND(47)	ND(50)	ND(5000)	ND(42)	ND(4.5)	ND(730)	7.9 J

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID		D0569-Solid	D0761-Solid	D0766-SOLID	D0769-SOLID	D0770-SOLID	D0771-SOLID
Parameter Date Collected	l: 4/6/06	5/16/06	5/25/06	4/27/06	4/27/06	4/26/06	4/26/06
Volatile Organics	ND/5.0	ND/5 ()	ND (00)	ND(0.05)	ND(0.04)	ND(0.07)	NID(0.4)
1,1-Dichloroethene	ND(5.0)	ND(5.4)	ND(22)	ND(0.25)	ND(0.31)	ND(0.27)	ND(2.1)
2-Butanone	ND(5.0)	ND(27)	ND(550)	ND(0.25)	ND(0.31)	ND(0.27)	ND(2.1)
2-Hexanone	ND(5.0)	ND(27)	ND(110)	ND(0.25)	ND(0.31)	ND(0.27)	ND(2.1)
Acetone	36	ND(27)	ND(550)	ND(0.25)	ND(0.31)	ND(0.27)	ND(2.1)
Benzene	12	34	ND(22)	ND(0.25)	ND(0.31)	0.17 J	ND(2.1)
Carbon Disulfide	ND(5.0)	ND(5.4)	ND(22)	ND(0.25)	ND(0.31)	ND(0.27)	ND(2.1)
Chlorobenzene	3.6 J	3.7 J	ND(22)	ND(0.25)	ND(0.31)	2.4	3.4
Chloroform	ND(5.0)	ND(5.4)	ND(22)	ND(0.25)	ND(0.31)	ND(0.27)	ND(2.1)
Ethylbenzene	ND(5.0)	ND(5.4)	ND(22)	ND(0.25)	1.2	ND(0.27)	ND(2.1)
Methylene Chloride	ND(5.0)	ND(5.4)	ND(110)	0.26	ND(0.31)	ND(0.27)	ND(2.1)
Tetrachloroethene	ND(5.0)	ND(5.4)	ND(22)	ND(0.25)	ND(0.31)	ND(0.27)	ND(2.1)
Toluene	3.2 J	0.97 J	ND(22)	0.17 J	1.2	ND(0.27)	4.3
trans-1,2-Dichloroethene	ND(5.0)	ND(5.4)	ND(22)	ND(0.25)	ND(0.31)	ND(0.27)	ND(2.1)
Trichloroethene	18	ND(5.4)	ND(22)	ND(0.25)	2.9	ND(0.27)	10
Vinyl Chloride	ND(5.0)	ND(5.4)	ND(22)	ND(0.25)	ND(0.31)	ND(0.27)	ND(2.1)
Xylenes (total)	ND(5.0)	ND(5.4)	ND(65)	ND(0.25)	11	0.62	6.1
PCBs	•						
Aroclor-1254	20000	570	ND(5100)	1800	6000	600	250
Aroclor-1260	ND(1200)	ND(74)	18000	ND(420)	ND(1000)	ND(45)	ND(67)
Total PCBs	20000	570	18000	1800	6000	600	250
Semivolatile Organics							
1,2,4,5-Tetrachlorobenzene	ND(67)	ND(1600)	1000	ND(59)	ND(18)	ND(4.5)	ND(980)
1,2,4-Trichlorobenzene	22 J	ND(1600)	7500	ND(59)	25	1.3 J	ND(980)
1,3-Dichlorobenzene	ND(67)	ND(1600)	ND(820)	ND(59)	5.8 J	2.4 J	ND(980)
1,4-Dichlorobenzene	ND(67)	ND(1600)	ND(820)	ND(59)	24	9.7	ND(980)
2,4,5-Trichlorophenol	ND(67)	ND(1600)	ND(820)	ND(59)	ND(18)	ND(4.5)	ND(980)
2,4-Dimethylphenol	ND(67)	7200	ND(820)	280	ND(18)	ND(4.5)	ND(980)
2-Acetylaminofluorene	ND(67)	ND(3300)	ND(1600)	ND(59)	4.6 J	ND(4.5)	ND(980)
2-Methylnaphthalene	ND(67)	ND(1600)	ND(820)	ND(59)	ND(18)	1.2 J	ND(980)
2-Methylphenol	ND(67)	8900	ND(820)	200	ND(18)	ND(4.5)	ND(980)
3&4-Methylphenol	ND(67)	23000	ND(820)	440	ND(18)	ND(4.5)	ND(980)
3,3'-Dichlorobenzidine	ND(130)	ND(3300)	ND(1600)	ND(120)	ND(35)	1.4 J	ND(2000)
Acenaphthene	ND(67)	ND(1600)	ND(820)	ND(59)	ND(18)	ND(4.5)	ND(980)
Aniline	ND(67)	ND(1600)	ND(820)	ND(59)	69	ND(4.5)	ND(980)
Anthracene	ND(67)	ND(1600)	ND(820)	ND(59)	ND(18)	ND(4.5)	ND(980)
Benzo(a)anthracene	ND(67)	ND(1600)	ND(820)	ND(59)	5.8 J	ND(4.5)	ND(980)
Benzo(a)pyrene	ND(67)	ND(1600)	ND(820)	ND(59)	6.1 J	ND(4.5)	ND(980)

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID: Parameter Date Collected:	D0558-SOLID 4/6/06	D0569-Solid 5/16/06	D0761-Solid 5/25/06	D0766-SOLID 4/27/06	D0769-SOLID 4/27/06	D0770-SOLID 4/26/06	D0771-SOLID 4/26/06
Semivolatile Organics (continued)							
Benzo(b)fluoranthene	ND(67)	ND(1600)	ND(820)	ND(59)	4.3 J	ND(4.5)	ND(980)
Benzo(g,h,i)perylene	ND(67)	ND(1600)	ND(820)	ND(59)	5.6 J	ND(4.5)	ND(980)
Benzo(k)fluoranthene	ND(67)	ND(1600)	ND(820)	ND(59)	6.2 J	ND(4.5)	ND(980)
bis(2-Chloroethyl)ether	ND(67)	ND(1600)	ND(820)	ND(59)	77	ND(4.5)	ND(980)
bis(2-Ethylhexyl)phthalate	ND(33)	ND(1600)	ND(820)	ND(29)	8.3 J	ND(2.2)	ND(490)
Chrysene	ND(67)	ND(1600)	ND(820)	ND(59)	5.9 J	0.68 J	ND(980)
Dibenzo(a,h)anthracene	ND(67)	ND(1600)	ND(820)	ND(59)	ND(18)	ND(4.5)	ND(980)
Dibenzofuran	ND(67)	ND(1600)	ND(820)	ND(59)	ND(18)	ND(4.5)	ND(980)
Di-n-Butylphthalate	ND(67)	ND(1600)	ND(820)	380	ND(18)	ND(4.5)	ND(980)
Fluoranthene	ND(67)	ND(1600)	ND(820)	ND(59)	8.4 J	ND(4.5)	ND(980)
Fluorene	ND(67)	ND(1600)	ND(820)	ND(59)	ND(18)	ND(4.5)	ND(980)
Indeno(1,2,3-cd)pyrene	ND(67)	ND(1600)	ND(820)	ND(59)	4.4 J	ND(4.5)	ND(980)
Naphthalene	ND(67)	ND(1600)	ND(820)	9.6 J	10 J	ND(4.5)	ND(980)
Nitrobenzene	ND(67)	ND(1600)	ND(820)	17 J	ND(18)	ND(4.5)	ND(980)
N-Nitrosodiphenylamine	ND(67)	ND(1600)	ND(820)	ND(59)	ND(18)	ND(4.5)	150 J
Pentachlorobenzene	ND(67)	ND(1600)	560 J	ND(59)	ND(18)	ND(4.5)	ND(980)
Phenanthrene	ND(67)	ND(1600)	ND(820)	ND(59)	4.7 J	1.1 J	ND(980)
Phenol	ND(67)	5600	ND(820)	34 J	19	ND(4.5)	580 J
Pyrene	ND(67)	ND(1600)	ND(820)	ND(59)	8.0 J	ND(4.5)	ND(980)

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID		D0773-SOLID	D0774-SOLID	D0775-SOLID	D0776-SOLID	D0777-SOLID	D0778-SOLID
Parameter Date Collected	: 4/27/06	4/26/06	4/27/06	4/27/06	4/27/06	4/27/06	4/26/06
Volatile Organics	1 15 (5 5 5)	1 115 (2.22)	1 117 (2.22)	1 117 (2.22)	T 115 (2.22)	I (a. a.a.)	
1,1-Dichloroethene	ND(0.30)	ND(0.26)	ND(0.20)	ND(0.28)	ND(0.26)	ND(0.050)	ND(0.26)
2-Butanone	ND(0.30)	ND(0.26)	ND(0.20)	ND(0.28)	ND(0.26)	ND(0.050)	ND(0.26)
2-Hexanone	ND(0.30)	ND(0.26)	ND(0.20)	ND(0.28)	ND(0.26)	ND(0.050)	ND(0.26)
Acetone	ND(0.30)	ND(0.26)	ND(0.20)	ND(0.28)	ND(0.26)	ND(0.050)	ND(0.26)
Benzene	ND(0.30)	0.22 J	0.27	0.19 J	ND(0.26)	ND(0.050)	0.47
Carbon Disulfide	ND(0.30)	ND(0.26)	ND(0.20)	ND(0.28)	ND(0.26)	ND(0.050)	ND(0.26)
Chlorobenzene	1.5	2.6	ND(0.20)	7.5	3.9	0.13	120
Chloroform	ND(0.30)	ND(0.26)	ND(0.20)	ND(0.28)	ND(0.26)	ND(0.050)	ND(0.26)
Ethylbenzene	ND(0.30)	ND(0.26)	0.27	1.6	ND(0.26)	ND(0.050)	0.37
Methylene Chloride	ND(0.30)	ND(0.26)	ND(0.20)	ND(0.28)	ND(0.26)	ND(0.050)	ND(0.26)
Tetrachloroethene	ND(0.30)	ND(0.26)	ND(0.20)	ND(0.28)	ND(0.26)	ND(0.050)	ND(0.26)
Toluene	0.16 J	0.40	0.88	ND(0.28)	0.21 J	0.042 J	0.76
trans-1,2-Dichloroethene	ND(0.30)	ND(0.26)	ND(0.20)	ND(0.28)	ND(0.26)	ND(0.050)	ND(0.26)
Trichloroethene	0.45	1.1	11	ND(0.28)	ND(0.26)	0.030 J	ND(0.26)
Vinyl Chloride	ND(0.30)	ND(0.26)	ND(0.20)	ND(0.28)	ND(0.26)	ND(0.050)	ND(0.26)
Xylenes (total)	ND(0.30)	2.0	1.5	6.1	ND(0.26)	0.065	6.3
PCBs	<u> </u>	•					•
Aroclor-1254	44	2300	5400	200	16000	61	600
Aroclor-1260	ND(20)	ND(220)	ND(1100)	ND(130)	ND(11000)	ND(36)	ND(44)
Total PCBs	44	2300	5400	200	16000	61	600
Semivolatile Organics							
1,2,4,5-Tetrachlorobenzene	ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)
1,2,4-Trichlorobenzene	ND(990)	160	ND(570)	12 J	47	ND(1.6)	12 J
1,3-Dichlorobenzene	ND(990)	46 J	ND(570)	8.0 J	25	ND(1.6)	5.6 J
1,4-Dichlorobenzene	ND(990)	140	ND(570)	18 J	110	ND(1.6)	50
2,4,5-Trichlorophenol	ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)
2,4-Dimethylphenol	ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)
2-Acetylaminofluorene	ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)
2-Methylnaphthalene	ND(990)	ND(70)	ND(570)	30 J	1.4 J	0.29 J	3.6 J
2-Methylphenol	ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)
3&4-Methylphenol	ND(990)	ND(70)	ND(570)	ND(30)	3.6 J	ND(1.6)	ND(15)
3,3'-Dichlorobenzidine	ND(2000)	ND(140)	ND(1100)	ND(60)	ND(22)	ND(3.1)	ND(31)
Acenaphthene	ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	3.1 J
Aniline	ND(990)	130	ND(570)	ND(30)	14	ND(1.6)	37
Anthracene	ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	2.0 J
Benzo(a)anthracene	ND(990)	ND(70)	ND(570)	ND(30)	3.2 J	ND(1.6)	4.8 J
Benzo(a)pyrene	ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID: Collected:	D0772-SOLID 4/27/06	D0773-SOLID 4/26/06	D0774-SOLID 4/27/06	D0775-SOLID 4/27/06	D0776-SOLID 4/27/06	D0777-SOLID 4/27/06	D0778-SOLID 4/26/06
Semivolatile Organics (contin		4/21/00	4/20/00	4/2//00	4/21/00	4/2//00	4/21/00	4/20/00
Benzo(b)fluoranthene		ND(990)	ND(70)	ND(570)	ND(30)	2.2 J	ND(1.6)	2.6 J
Benzo(g,h,i)perylene		ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)
Benzo(k)fluoranthene		ND(990)	ND(70)	ND(570)	ND(30)	1.6 J	ND(1.6)	3.0 J
bis(2-Chloroethyl)ether		ND(990)	140	ND(570)	ND(30)	16	ND(1.6)	42
bis(2-Ethylhexyl)phthalate		1000	ND(35)	ND(280)	ND(15)	7.8	0.46 J	4.5 J
Chrysene		ND(990)	10 J	ND(570)	ND(30)	3.5 J	ND(1.6)	6.3 J
Dibenzo(a,h)anthracene		ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)
Dibenzofuran		ND(990)	ND(70)	ND(570)	ND(30)	1.8 J	ND(1.6)	4.3 J
Di-n-Butylphthalate		ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)
Fluoranthene		ND(990)	21 J	ND(570)	ND(30)	7.1 J	ND(1.6)	17
Fluorene		ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	4.2 J
Indeno(1,2,3-cd)pyrene		ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)
Naphthalene		ND(990)	ND(70)	ND(570)	120	3.4 J	ND(1.6)	18
Nitrobenzene		ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)
N-Nitrosodiphenylamine		ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)
Pentachlorobenzene		ND(990)	ND(70)	ND(570)	ND(30)	ND(11)	ND(1.6)	ND(15)
Phenanthrene		ND(990)	12 J	ND(570)	13 J	3.2 J	ND(1.6)	11 J
Phenol	İ	ND(990)	12 J	ND(570)	8.4 J	3.9 J	0.81 J	4.9 J
Pyrene		ND(990)	20 J	ND(570)	ND(30)	6.8 J	ND(1.6)	17

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID: Parameter Date Collected:	D0780-SOLID 4/26/06	D0781-SOLID 4/6/06	D0782-SOLID 4/6/06	D0783-SOLID 4/6/06	D0784-SOLID 4/26/06	D0785-SOLID 4/6/06	D0786-SOLID 4/27/06
Parameter Date Collected: Volatile Organics	4/20/00	4/0/00	4/0/00	4/6/06	4/20/00	4/0/00	4/2//06
1,1-Dichloroethene	ND(0.20)	ND(0.20)	ND(2.0)	ND(5800)	ND(0.20)	ND(0.95)	ND(0.20)
2-Butanone	ND(0.20)	0.66	ND(2.0)	ND(5800)	ND(0.20)	ND(0.95)	ND(0.20)
2-Hexanone	ND(0.20)	ND(0.20) 0.17 J	ND(2.0)	ND(5800)	ND(0.20)	ND(0.95)	ND(0.20)
Acetone	ND(0.20)		ND(2.0)	ND(5800)	ND(0.20)	ND(0.95)	ND(0.20)
Benzene	0.19 J	9.2	7.0	210000 ND(5800)	0.19 J	4.5	ND(0.20)
Carbon Disulfide	ND(0.20)	ND(0.20)	ND(2.0)	(/	ND(0.20)	ND(0.95)	ND(0.20)
Chlorobenzene	ND(0.20)	ND(0.20)	ND(2.0)	ND(5800)	ND(0.20)	ND(0.95)	0.21
Chloroform	ND(0.20)	ND(0.20)	ND(2.0)	ND(5800)	ND(0.20)	ND(0.95)	ND(0.20)
Ethylbenzene	0.38	0.24	4.5	ND(5800)	0.29	ND(0.95)	ND(0.20)
Methylene Chloride	0.21	ND(0.20)	ND(2.0)	ND(5800)	0.15 J	ND(0.95)	0.87
Tetrachloroethene	ND(0.20)	0.14 J	ND(2.0)	ND(5800)	ND(0.20)	ND(0.95)	ND(0.20)
Toluene	0.61	2.6	11	96000	0.41	2.0	0.16 J
trans-1,2-Dichloroethene	ND(0.20)	ND(0.20)	ND(2.0)	ND(5800)	ND(0.20)	ND(0.95)	ND(0.20)
Trichloroethene	3.8	4.8	65	ND(5800)	3.6	1.6	6.6
Vinyl Chloride	0.33	ND(0.20)	1.3 J	ND(5800)	ND(0.20)	ND(0.95)	ND(0.20)
Xylenes (total)	1.7	3.8	22	ND(5800)	0.70	0.64 J	ND(0.20)
PCBs							
Aroclor-1254	ND(24)	300	430	540	600	640	65
Aroclor-1260	80	ND(17)	ND(47)	ND(33)	ND(67)	ND(17)	ND(6.7)
Total PCBs	80	300	430	540	600	640	65
Semivolatile Organics							
1,2,4,5-Tetrachlorobenzene	ND(270)	ND(5.0)	ND(300)	ND(270)	ND(270)	ND(10)	ND(77)
1,2,4-Trichlorobenzene	49 J	6.4	46 J	40 J	ND(270)	3.5 J	ND(77)
1,3-Dichlorobenzene	ND(270)	ND(5.0)	ND(300)	ND(270)	ND(270)	ND(10)	ND(77)
1,4-Dichlorobenzene	ND(270)	ND(5.0)	ND(300)	ND(270)	ND(270)	ND(10)	ND(77)
2,4,5-Trichlorophenol	ND(270)	ND(5.0)	ND(300)	ND(270)	ND(270)	ND(10)	ND(77)
2,4-Dimethylphenol	ND(270)	ND(5.0)	ND(300)	ND(270)	ND(270)	ND(10)	ND(77)
2-Acetylaminofluorene	ND(270)	ND(5.0)	ND(300)	ND(270)	ND(270)	ND(10)	ND(77)
2-Methylnaphthalene	ND(270)	ND(5.0)	140 J	ND(270)	260 J	ND(10)	76 J
2-Methylphenol	ND(270)	ND(5.0)	ND(300)	46 J	ND(270)	ND(10)	ND(77)
3&4-Methylphenol	ND(270)	ND(5.0)	ND(300)	60 J	ND(270)	ND(10)	ND(77)
3,3'-Dichlorobenzidine	ND(530)	ND(10)	ND(600)	ND(530)	ND(550)	ND(20)	ND(150)
Acenaphthene	ND(270)	ND(5.0)	ND(300)	ND(270)	1000 J	ND(10)	300
Aniline	ND(270)	ND(5.0)	ND(300)	ND(270)	ND(270)	16	ND(77)
Anthracene	ND(270)	ND(5.0)	ND(300)	ND(270)	1600	ND(10)	430
Benzo(a)anthracene	ND(270)	ND(5.0)	ND(300)	ND(270)	1700	1.2 J	520
Benzo(a)pyrene	ND(270)	ND(5.0)	ND(300)	ND(270)	1600	ND(10)	380

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID: Parameter Date Collected:	D0780-SOLID 4/26/06	D0781-SOLID 4/6/06	D0782-SOLID 4/6/06	D0783-SOLID 4/6/06	D0784-SOLID 4/26/06	D0785-SOLID 4/6/06	D0786-SOLID 4/27/06
Semivolatile Organics (continued)	4720700	470700	470700	470700	4/20/00	470700	4/21/00
Benzo(b)fluoranthene	ND(270)	ND(5.0)	ND(300)	ND(270)	1100	ND(10)	300
Benzo(g,h,i)perylene	ND(270)	ND(5.0)	ND(300)	ND(270)	800	ND(10)	160
Benzo(k)fluoranthene	ND(270)	ND(5.0)	ND(300)	ND(270)	1300	ND(10)	330
bis(2-Chloroethyl)ether	ND(270)	ND(5.0)	ND(300)	ND(270)	ND(270)	19	ND(77)
bis(2-Ethylhexyl)phthalate	ND(130)	ND(2.5)	ND(150)	ND(130)	ND(140)	ND(5.0)	ND(38)
Chrysene	ND(270)	ND(5.0)	45 J	ND(270)	1700	1.3 J	560
Dibenzo(a,h)anthracene	ND(270)	ND(5.0)	ND(300)	ND(270)	200 J	ND(10)	ND(77)
Dibenzofuran	ND(270)	ND(5.0)	ND(300)	ND(270)	600	ND(10)	210
Di-n-Butylphthalate	ND(270)	ND(5.0)	ND(300)	ND(270)	ND(270)	ND(10)	ND(77)
Fluoranthene	ND(270)	ND(5.0)	ND(300)	ND(270)	4200	3.0 J	1300
Fluorene	ND(270)	ND(5.0)	ND(300)	ND(270)	1200	ND(10)	370
Indeno(1,2,3-cd)pyrene	ND(270)	ND(5.0)	ND(300)	ND(270)	700	ND(10)	150
Naphthalene	ND(270)	ND(5.0)	31 J	ND(270)	530	ND(10)	100
Nitrobenzene	ND(270)	ND(5.0)	ND(300)	ND(270)	ND(270)	ND(10)	ND(77)
N-Nitrosodiphenylamine	ND(270)	ND(5.0)	ND(300)	ND(270)	ND(270)	ND(10)	ND(77)
Pentachlorobenzene	ND(270)	ND(5.0)	ND(300)	ND(270)	ND(270)	ND(10)	ND(77)
Phenanthrene	ND(270)	ND(5.0)	85 J	ND(270)	4800	2.1 J	1500
Phenol	ND(270)	0.62 J	ND(300)	99 J	ND(270)	2.7 J	ND(77)
Pyrene	33 J	ND(5.0)	71 J	ND(270)	3000	2.6 J	950

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID: Parameter Date Collected:	D0787-SOLID 4/26/06	D0788-SOLID 4/6/06	D0789-SOLID 4/6/06	D0790-SOLID 4/6/06	D0797-SOLID 4/6/06	D0799-SOLID 4/6/06
Volatile Organics	4/20/00	4/0/00	4/0/00	4/0/00	4/0/00	4/0/00
1,1-Dichloroethene	ND(0.26)	ND(0.20)	ND(0.19)	ND(0.38)	ND(0.21)	ND(0.19)
2-Butanone	ND(0.26)	ND(0.20)	ND(0.19)	ND(0.38)	ND(0.21)	ND(0.19)
2-Hexanone	ND(0.26)	ND(0.20)	4.7	ND(0.38)	ND(0.21)	ND(0.19)
Acetone	ND(0.26)	ND(0.20)	ND(0.19)	ND(0.38)	ND(0.21)	ND(0.19)
Benzene	0.15 J	15	2.8	0.29 J	8.3	2.9
Carbon Disulfide	ND(0.26)	ND(0.20)	ND(0.19)	ND(0.38)	ND(0.21)	ND(0.19)
Chlorobenzene	ND(0.26)	47	6.3	0.20 J	0.47	ND(0.19)
Chloroform	ND(0.26)	ND(0.20)	ND(0.19)	ND(0.38)	ND(0.21)	ND(0.19)
Ethylbenzene	ND(0.26)	0.10 J	0.16 J	0.20 J	0.32	ND(0.19)
Methylene Chloride	ND(0.26)	ND(0.20)	ND(0.19)	ND(0.38)	ND(0.21)	ND(0.19)
Tetrachloroethene	ND(0.26)	ND(0.20)	ND(0.19)	ND(0.38)	ND(0.21)	ND(0.19)
Toluene	0.84	9.0	1.6	ND(0.38)	5.7	1.1
trans-1.2-Dichloroethene	ND(0.26)	ND(0.20)	ND(0.19)	ND(0.38)	ND(0.21)	ND(0.19)
Trichloroethene	1.8	ND(0.20)	ND(0.19)	14	3.4	170
Vinyl Chloride	ND(0.26)	ND(0.20)	ND(0.19)	ND(0.38)	ND(0.21)	ND(0.19)
Xylenes (total)	ND(0.26)	1.1	2.8	1.2	1.8	ND(0.19)
PCBs	ND(0.26)	1.1	2.0	1.2	1.0	ND(0.19)
	F 400	450000	0400	070000	0.4	4.400
Aroclor-1254	5400	150000	8100	270000	2.4	1400
Aroclor-1260	ND(430)	ND(33000)	ND(200)	ND(17000)	ND(1.3)	ND(50)
Total PCBs	5400	150000	8100	270000	2.4	1400
Semivolatile Organics			· · · · ·			
1,2,4,5-Tetrachlorobenzene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
1,2,4-Trichlorobenzene	68	ND(33)	ND(1100)	ND(330)	ND(870)	5.4 J
1,3-Dichlorobenzene	4.8 J	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
1,4-Dichlorobenzene	28	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
2,4,5-Trichlorophenol	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
2,4-Dimethylphenol	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	5.0 J
2-Acetylaminofluorene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
2-Methylnaphthalene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
2-Methylphenol	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	3.4 J
3&4-Methylphenol	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	11
3,3'-Dichlorobenzidine	ND(17)	ND(67)	ND(2300)	ND(670)	ND(1700)	ND(13)
Acenaphthene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Aniline	4.3 J	ND(33)	ND(1100)	120 J	ND(870)	ND(6.7)
Anthracene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Benzo(a)anthracene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Benzo(a)pyrene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

Sample ID: Parameter Date Collected:	D0787-SOLID 4/26/06	D0788-SOLID 4/6/06	D0789-SOLID 4/6/06	D0790-SOLID 4/6/06	D0797-SOLID 4/6/06	D0799-SOLID 4/6/06
Semivolatile Organics (continued)						I.
Benzo(b)fluoranthene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Benzo(g,h,i)perylene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Benzo(k)fluoranthene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
bis(2-Chloroethyl)ether	4.8 J	ND(33)	ND(1100)	140 J	ND(870)	ND(6.7)
bis(2-Ethylhexyl)phthalate	ND(4.3)	ND(17)	ND(570)	ND(170)	ND(430)	2.8 J
Chrysene	1.1 J	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Dibenzo(a,h)anthracene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Dibenzofuran	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Di-n-Butylphthalate	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Fluoranthene	1.7 J	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Fluorene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Indeno(1,2,3-cd)pyrene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Naphthalene	0.92 J	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Nitrobenzene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
N-Nitrosodiphenylamine	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Pentachlorobenzene	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Phenanthrene	1.6 J	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)
Phenol	ND(8.5)	ND(33)	ND(1100)	ND(330)	ND(870)	6.3 J
Pyrene	1.2 J	ND(33)	ND(1100)	ND(330)	ND(870)	ND(6.7)

Notes:

- 1. Samples were collected by ONYX Environmental Services, and submitted to SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, and TCLP constituents.
- 2. Please refer to Table 11-4 for a summary of TCLP constituents.
- 3. NA Not Analyzed.
- 4. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 5. Only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics (volatiles, PCBs, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

		TCLP							
	Sample ID:	Regulatory	D0544-SOLID	D0545-SOLID	D0546-SOLID	D0547-SOLID	D0548-SOLID	D0549-SOLID	D0550-SOLID
Parameter	Date Collected:	Limits	4/27/06	4/27/06	4/26/06	4/27/06	4/27/06	4/26/06	4/27/06
Volatile Organics									
1,1-Dichloroethene		0.7	ND(0.10)						
1,2-Dichloroethane		0.5	ND(0.10)						
2-Butanone		200	ND(0.20)						
Benzene		0.5	ND(0.10)						
Carbon Tetrachloride		0.5	ND(0.10)						
Chlorobenzene		100	ND(0.10)						
Chloroform		6	ND(0.10)						
Tetrachloroethene		0.7	ND(0.10)						
Trichloroethene		0.5	0.26	0.40	ND(0.10)	ND(0.10)	0.94	ND(0.10)	0.18
Vinyl Chloride		0.2	ND(0.10)						
Semivolatile Organics									
1,4-Dichlorobenzene		7.5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	0.023 J	0.0092 J
2,4,5-Trichlorophenol		400	ND(0.050)						
2,4,6-Trichlorophenol		2	ND(0.050)						
2,4-Dinitrotoluene		0.13	ND(0.050)						
Cresol		200	0.028 J	ND(0.050)	0.042 J	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobenzene		0.13	ND(0.050)						
Hexachlorobutadiene		0.5	ND(0.050)						
Hexachloroethane		3	ND(0.050)						
Nitrobenzene		2	ND(0.050)						
Pentachlorophenol		100	ND(0.050)						
Pyridine		5	ND(0.050)						
Inorganics									
Arsenic		5	ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100)	0.00380 B
Barium		100	0.0340	0.140	1.30	0.560	0.400	0.370	0.710
Cadmium		1	ND(0.0200)	0.000610 B	ND(0.0200)	0.0240	0.0590	0.580	1.10
Chromium		5	ND(0.0500)	0.00100 B	ND(0.0500)	0.00140 B	0.00150 B	0.0320 B	0.00880 B
Lead		5	0.0490 B	0.0480 B	0.0130 B	1.30	1.90	240	110
Mercury		0.2	ND(0.00200)						
Selenium		1	0.00750 B	0.00730 B	0.00920 B	0.00790 B	0.00810 B	0.00720 B	0.0100 B
Silver		5	ND(0.0200)						

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

		TCLP							
	Sample ID:	Regulatory	D0551-SOLID	D0552-SOLID	D0553-SOLID	D0554-SOLID	D0555-SOLID	D0556-SOLID	D0557-SOLID
Parameter	Date Collected:	Limits	4/27/06	4/6/06	4/27/06	4/27/06	4/27/06	4/6/06	4/6/06
Volatile Organics									
1,1-Dichloroethene		0.7	ND(0.10)						
1,2-Dichloroethane		0.5	ND(0.10)						
2-Butanone		200	ND(0.20)						
Benzene		0.5	ND(0.10)	0.12	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Carbon Tetrachloride		0.5	ND(0.10)						
Chlorobenzene		100	ND(0.10)						
Chloroform		6	ND(0.10)						
Tetrachloroethene		0.7	ND(0.10)						
Trichloroethene		0.5	ND(0.10)	ND(0.10)	ND(0.10)	0.14	0.086 J	ND(0.10)	0.076 J
Vinyl Chloride		0.2	ND(0.10)						
Semivolatile Organics									
1,4-Dichlorobenzene		7.5	0.0060 J	ND(0.050)	ND(0.050)	ND(0.050)	0.0099 J	ND(0.050)	ND(0.050)
2,4,5-Trichlorophenol		400	ND(0.050)						
2,4,6-Trichlorophenol		2	ND(0.050)						
2,4-Dinitrotoluene		0.13	ND(0.050)						
Cresol		200	ND(0.050)	ND(0.050)	0.030 J	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobenzene		0.13	ND(0.050)						
Hexachlorobutadiene		0.5	ND(0.050)						
Hexachloroethane		3	ND(0.050)						
Nitrobenzene		2	ND(0.050)						
Pentachlorophenol		100	ND(0.050)						
Pyridine		5	ND(0.050)						
Inorganics									
Arsenic		5	ND(0.100)						
Barium		100	1.50	1.30	10.0	0.340	3.00	1.00	1.10
Cadmium		1	6.50	0.450	0.00450 B	0.0150 B	0.420	0.00470 B	0.180
Chromium		5	0.860	0.00330 B	0.00250 B	0.00150 B	0.00860 B	0.0130 B	0.00460 B
Lead		5	83.0	13.0	1.10	8.40	1.80	0.290	24.0
Mercury		0.2	ND(0.00200)						
Selenium		1	0.00610 B	ND(0.200)	0.00780 B	0.00710 B	0.00950 B	ND(0.200)	ND(0.200)
Silver		5	ND(0.0200)	ND(0.0200)	ND(0.0200)	ND(0.0200)	0.00650 B	ND(0.0200)	ND(0.0200)

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

		TCLP							
Parameter	Sample ID: Date Collected:	Regulatory Limits	D0558-SOLID 4/6/06	D0569-Solid 5/16/06	D0761-Solid 5/25/06	D0766-SOLID 4/27/06	D0769-SOLID 4/27/06	D0770-SOLID 4/26/06	D0771-SOLID 4/26/06
Volatile Organics	Date Concettur.	Liiiito	4,0,00	G/10/00	0/20/00	4/21/00	4/21/00	4720700	4,20,00
1.1-Dichloroethene		0.7	ND(0.10)	ND(0.010)	ND(0.010)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
1,2-Dichloroethane		0.5	ND(0.10)	ND(0.010)	ND(0.010)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
2-Butanone		200	ND(0.20)	ND(0.25)	ND(0.25)	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)
Benzene		0.5	0.16	0.0065 J	ND(0.010)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Carbon Tetrachloride		0.5	ND(0.10)	ND(0.010)	ND(0.010)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Chlorobenzene		100	ND(0.10)	0.013	ND(0.010)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Chloroform		6	ND(0.10)	ND(0.010)	ND(0.010)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Tetrachloroethene		0.7	ND(0.10)	ND(0.010)	ND(0.010)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Trichloroethene		0.5	0.071 J	ND(0.010)	0.040	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Vinyl Chloride		0.2	ND(0.10)	ND(0.010)	ND(0.010)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Semivolatile Organics									
1,4-Dichlorobenzene		7.5	ND(0.050)	ND(0.20)	ND(0.010)	0.0074 J	ND(0.050)	0.025 J	0.023 J
2,4,5-Trichlorophenol		400	ND(0.050)	ND(0.20)	ND(0.010)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
2,4,6-Trichlorophenol		2	ND(0.050)	ND(0.20)	ND(0.010)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
2,4-Dinitrotoluene		0.13	ND(0.050)	ND(0.20)	ND(0.010)	ND(0.050)	0.099	ND(0.050)	ND(0.050)
Cresol		200	ND(0.050)	8.9	ND(0.010)	ND(0.050)	ND(0.050)	ND(0.050)	0.093
Hexachlorobenzene		0.13	ND(0.050)	ND(0.20)	ND(0.010)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobutadiene		0.5	ND(0.050)	ND(0.20)	ND(0.010)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachloroethane		3	ND(0.050)	ND(0.20)	ND(0.010)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Nitrobenzene		2	ND(0.050)	ND(0.20)	ND(0.010)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Pentachlorophenol		100	ND(0.050)	ND(1.0)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Pyridine		5	ND(0.050)	ND(0.40)	ND(0.010)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Inorganics									
Arsenic		5	ND(0.100)	ND(0.200)	ND(0.200)	ND(0.100)	ND(0.100)	0.0120 B	ND(0.100)
Barium		100	2.90	0.0196 J	0.103 J	0.780	2.10	0.660	0.270
Cadmium		1	0.0720	ND(0.100)	0.139	0.140	0.270	0.00120 B	0.00120 B
Chromium		5	0.00410 B	0.0200 J	ND(0.100)	0.000690 B	0.0200 B	0.00260 B	0.0160 B
Lead		5	4.70	0.0539 J	1.34	0.310	19.0	ND(0.100)	0.400
Mercury		0.2	ND(0.00200)	ND(0.000500)	ND(0.000570)	ND(0.00200)	ND(0.00200)	ND(0.00200)	ND(0.00200)
Selenium		1	0.00490 B	0.185 J	ND(0.200)	0.0120 B	0.00900 B	0.0370 B	0.0100 B
Silver		5	ND(0.0200)	ND(0.100)	ND(0.100)	ND(0.0200)	ND(0.0200)	ND(0.0200)	ND(0.0200)

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

		TCLP							
_	Sample ID:	Regulatory	D0772-SOLID	D0773-SOLID	D0774-SOLID	D0775-SOLID	D0776-SOLID	D0777-SOLID	D0778-SOLID
Parameter	Date Collected:	Limits	4/27/06	4/26/06	4/27/06	4/27/06	4/27/06	4/27/06	4/26/06
Volatile Organics									
1,1-Dichloroethene		0.7	ND(0.10)						
1,2-Dichloroethane		0.5	ND(0.10)						
2-Butanone		200	ND(0.20)						
Benzene		0.5	ND(0.10)						
Carbon Tetrachloride		0.5	ND(0.10)						
Chlorobenzene		100	ND(0.10)	ND(0.10)	ND(0.10)	0.14	0.073 J	ND(0.10)	0.35
Chloroform		6	ND(0.10)						
Tetrachloroethene		0.7	ND(0.10)						
Trichloroethene		0.5	ND(0.10)	ND(0.10)	2.2	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Vinyl Chloride		0.2	ND(0.10)						
Semivolatile Organics									
1,4-Dichlorobenzene		7.5	ND(0.050)	0.010 J	ND(0.050)	0.0097 J	0.012 J	ND(0.050)	0.022 J
2,4,5-Trichlorophenol		400	ND(0.050)						
2,4,6-Trichlorophenol		2	ND(0.050)						
2,4-Dinitrotoluene		0.13	ND(0.050)						
Cresol		200	ND(0.050)						
Hexachlorobenzene		0.13	ND(0.050)						
Hexachlorobutadiene		0.5	ND(0.050)						
Hexachloroethane		3	ND(0.050)						
Nitrobenzene		2	ND(0.050)						
Pentachlorophenol		100	ND(0.050)						
Pyridine		5	ND(0.050)						
Inorganics									
Arsenic		5	0.00530 B	0.00560 B	ND(0.100)	0.00500 B	0.00620 B	ND(0.100)	ND(0.100)
Barium		100	0.690	1.20	1.60	1.70	2.00	0.260	1.60
Cadmium		1	0.00360 B	0.170	0.0350	0.470	0.170	0.00500 B	0.150
Chromium		5	0.240	0.0110 B	0.0160 B	0.0100 B	0.00510 B	0.00390 B	0.0140 B
Lead		5	1.30	25.0	4.80	180	14.0	0.0980 B	43.0
Mercury		0.2	ND(0.00200)						
Selenium		1	0.0120 B	0.0110 B	0.00720 B	0.00720 B	0.00770 B	0.0120 B	0.00850 B
Silver		5	ND(0.0200)						

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

		TCLP							
	Sample ID:	Regulatory	D0780-SOLID	D0781-SOLID	D0782-SOLID	D0783-SOLID	D0784-SOLID	D0785-SOLID	D0786-SOLID
Parameter	Date Collected:	Limits	4/26/06	4/6/06	4/6/06	4/6/06	4/26/06	4/6/06	4/27/06
Volatile Organics									
1,1-Dichloroethene		0.7	ND(0.10)						
1,2-Dichloroethane		0.5	ND(0.10)						
2-Butanone		200	ND(0.20)	ND(0.20)	ND(0.20)	240	ND(0.20)	ND(0.20)	ND(0.20)
Benzene		0.5	ND(0.10)	0.15	0.39	1100	ND(0.10)	0.057 J	ND(0.10)
Carbon Tetrachloride		0.5	ND(0.10)						
Chlorobenzene		100	ND(0.10)	ND(0.10)	ND(0.10)	0.11	ND(0.10)	ND(0.10)	ND(0.10)
Chloroform		6	ND(0.10)						
Tetrachloroethene		0.7	ND(0.10)						
Trichloroethene		0.5	0.12	0.086 J	0.28	0.64	0.29	ND(0.10)	0.20
Vinyl Chloride		0.2	ND(0.10)						
Semivolatile Organics									
1,4-Dichlorobenzene		7.5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.25)	ND(0.050)	ND(0.050)	ND(0.050)
2,4,5-Trichlorophenol		400	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.25)	ND(0.050)	ND(0.050)	ND(0.050)
2,4,6-Trichlorophenol		2	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.25)	ND(0.050)	ND(0.050)	ND(0.050)
2,4-Dinitrotoluene		0.13	ND(0.050)	0.092	ND(0.050)	ND(0.25)	ND(0.050)	ND(0.050)	ND(0.050)
Cresol		200	ND(0.050)	ND(0.050)	0.031 J	1.7	0.062	ND(0.050)	ND(0.050)
Hexachlorobenzene		0.13	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.25)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobutadiene		0.5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.25)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachloroethane		3	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.25)	ND(0.050)	ND(0.050)	ND(0.050)
Nitrobenzene		2	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.25)	ND(0.050)	ND(0.050)	ND(0.050)
Pentachlorophenol		100	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.25)	ND(0.050)	ND(0.050)	ND(0.050)
Pyridine		5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.25)	ND(0.050)	ND(0.050)	ND(0.050)
Inorganics									
Arsenic		5	ND(0.100)						
Barium		100	0.0780	3.90	0.0430 B	0.0180 B	0.660	0.370	2.90
Cadmium		1	ND(0.0200)	0.380	0.00140 B	0.0130 B	0.0130 B	0.0160 B	0.0300
Chromium		5	0.000950 B	0.0100 B	0.000900 B	0.00110 B	0.0280 B	0.00210 B	0.00440 B
Lead		5	0.310	47.0	0.100	0.710	2.60	0.0510 B	0.390
Mercury		0.2	ND(0.00200)	ND(0.00200)	ND(0.00200)	0.00170 B	ND(0.00200)	ND(0.00200)	ND(0.00200)
Selenium		1	0.00920 B	0.00410 B	ND(0.200)	0.00670 B	ND(0.200)	0.00510 B	0.00920 B
Silver		5	ND(0.0200)						

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	TCLP						
Sample ID:	Regulatory	D0787-SOLID	D0788-SOLID	D0789-SOLID	D0790-SOLID	D0797-SOLID	D0799-SOLID
Parameter Date Collected:	Limits	4/26/06	4/6/06	4/6/06	4/6/06	4/6/06	4/6/06
Volatile Organics							
1,1-Dichloroethene	0.7	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
1,2-Dichloroethane	0.5	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
2-Butanone	200	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)
Benzene	0.5	ND(0.10)	0.13	ND(0.10)	ND(0.10)	0.094 J	0.068 J
Carbon Tetrachloride	0.5	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Chlorobenzene	100	ND(0.10)	0.39	ND(0.10)	ND(0.10)	0.17	ND(0.10)
Chloroform	6	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Tetrachloroethene	0.7	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Trichloroethene	0.5	ND(0.10)	ND(0.10)	ND(0.10)	0.12	0.12	0.69
Vinyl Chloride	0.2	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Semivolatile Organics							
1,4-Dichlorobenzene	7.5	0.0055 J	0.032 J	0.023 J	ND(0.050)	ND(0.050)	ND(0.050)
2,4,5-Trichlorophenol	400	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
2,4,6-Trichlorophenol	2	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
2,4-Dinitrotoluene	0.13	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Cresol	200	ND(0.050)	ND(0.050)	0.022 J	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobenzene	0.13	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobutadiene	0.5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachloroethane	3	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Nitrobenzene	2	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Pentachlorophenol	100	0.012 J	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Pyridine	5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Inorganics							
Arsenic	5	ND(0.100)	ND(0.100)	ND(0.100)	0.0180 B	ND(0.100)	ND(0.100)
Barium	100	1.80	0.700	0.240	0.880	0.0290 B	4.60
Cadmium	1	0.230	0.00840 B	0.00220 B	0.0150 B	ND(0.0200)	0.0480
Chromium	5	0.00530 B	0.00540 B	0.00120 B	0.00360 B	0.00130 B	0.0180 B
Lead	5	3.10	0.0180 B	0.0690 B	0.350	0.0200 B	15.0
Mercury	0.2	ND(0.00200)	ND(0.00200)	ND(0.00200)	ND(0.00200)	ND(0.00200)	ND(0.00200)
Selenium	1	0.00750 B	0.00800 B	0.00410 B	0.00840 B	ND(0.200)	ND(0.200)
Silver	5	ND(0.0200)	ND(0.0200)	ND(0.0200)	ND(0.0200)	ND(0.0200)	ND(0.0200)

Notes:

- 1. Samples were collected by ONYX Environmental Services, and submitted to SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, and TCLP constituents. Please refer to Table 11-3 for a summary of volatiles, PCBs, and semivolatiles.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Shading indicates that value exceeds the TCLP Regulatory Limits.

Data Qualifiers:

Organics

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TABLE 11-5 AMBIENT AIR PCB DATA RECEIVED DURING JUNE 2006

PCB AMBIENT AIR CONCENTRATIONS **NEWELL STREET AREA II** GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Event Period	Date Analytical Results Received by BEC, Inc.		Northwest of NS Area II (µg/m3)	Southwest of NS Area II (µg/m3)	Southeast of NS Area II (µg/m3)	Northeast of NS Area II (μg/m3)	Northeast of NS Area II - colocated (µg/m3)	Background - East of Bldg. 9B (μg/m3)
06/06 - 06/07/06	06/09/06	ND (<0.10)	0.0162	0.0166	0.0164	0.0227	0.0045	0.0018
Notificati	ion Level	0.05	0.05	0.05	0.05	0.05	0.05	0.05

Note: ND - Non-Detect

TABLE 11-6 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JUNE 2006^1

PARTICULATE AMBIENT AIR CONCENTRATIONS NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
6/1/06	NN1 - Northwest	0.066*	0.072*	11:30	WSW, SSW
	NN2 - Southwest	0.056*		11:15	
	NN3 - Southeast	0.066*		11:15	
	NN4 - Northeast	0.051		10:45	
6/2/06	NN1 - Northwest	0.017*	0.019*	11:45	WSW
	NN2 - Southwest	0.018*		11:45	
	NN3 - Southeast	0.018*		11:45	
	NN4 - Northeast	0.020*		6:15 ³	
6/5/06	NN1 - Northwest	0.007*	0.005*	10:30	Calm
	NN2 - Southwest	0.010*		10:30	
	NN3 - Southeast	0.009*		10:45	
	NN4 - Northeast	0.012		6:15 ³	
6/6/06	NN1 - Northwest	0.012*	0.010*	11:00	Calm
	NN2 - Southwest	0.011*		11:00	
	NN3 - Southeast	0.014*		11:15	
	NN4 - Northeast	0.017 ⁴		12:00	
6/7/06	NN1 - Northwest	0.013*	0.012*	10:15	NNE
	NN2 - Southwest	0.013*		10:30	
	NN3 - Southeast	0.013*		10:45	
	NN4 - Northeast	0.014*		9:15 ³	
6/8/06	NN1 - Northwest	0.007*	0.003*	10:45	NNE
	NN2 - Southwest	0.010*		10:45	
	NN3 - Southeast	0.009*		11:00	
	NN4 - Northeast	0.011*		10:45	
6/9/06	NN1 - Northwest	0.008*	0.006*	11:30	WNW
	NN2 - Southwest	0.009*		11:15	
	NN3 - Southeast	0.007*		11:15	
	NN4 - Northeast	0.011*		11:15	
6/12/06	NN1 - Northwest	0.014*	0.005*	10:45	WNW
	NN2 - Southwest	0.009*		10:45	
	NN3 - Southeast	0.011*		11:15	
	NN4 - Northeast	0.015*		11:00	
6/13/06	NN1 - Northwest	0.016*	0.009*	11:30	WNW
	NN2 - Southwest	0.010*		11:30	
	NN3 - Southeast	0.018*		11:30	
	NN4 - Northeast	0.020*		8:00 ³	
6/14/06	NN1 - Northwest	0.018*	0.018*	12:00	Calm
	NN2 - Southwest	0.016*		11:45	
	NN3 - Southeast	0.024*		11:45	
	NN4 - Northeast	0.029*		7:00 ³	
6/15/06	NN1 - Northwest	0.017*	0.010*	11:00	NNW
	NN2 - Southwest	0.015*		11:00	
	NN3 - Southeast	0.021*		11:00	
	NN4 - Northeast	0.014*		10:45	
6/16/06	NN1 - Northwest	0.031*	0.017*	10:30	WNW
	NN2 - Southwest	0.017*		10:30	
	NN3 - Southeast	0.025*		10:45	
	NN4 - Northeast	0.017*		10:45	
06/19/06 ⁵	NN1 - Northwest	0.111*	0.136*	11:30	WSW, SSW
22 3/ 00	NN2 - Southwest	0.083*	500	11:30	,
	NN3 - Southeast	0.141*		11:45	

TABLE 11-6 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JUNE 2006¹

PARTICULATE AMBIENT AIR CONCENTRATIONS NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
6/20/06	NN1 - Northwest	0.028*	0.028*	11:45	WSW
	NN2 - Southwest	0.023*		11:45	
	NN3 - Southeast	0.031*		11:30	
	NN4 - Northeast	0.031*		11:30	
6/21/06	NN1 - Northwest	0.011*	0.007*	11:30	Variable
	NN2 - Southwest	0.009*		11:30	
	NN3 - Southeast	0.012*		11:30	
	NN4 - Northeast	0.009*		11:15	
6/22/06	NN1 - Northwest	0.030*	0.034*	11:00	SSW
	NN2 - Southwest	0.018		9:45	
	NN3 - Southeast	0.043*		7:15 ³	
	NN4 - Northeast	0.036*		10:45	
6/23/06	NN1 - Northwest	0.042*	0.037*	11:45	WNW
	NN2 - Southwest	0.033*		9:45	
	NN3 - Southeast	0.047*		11:30	
	NN4 - Northeast	0.045*		11:30	
6/26/06	NN1 - Northwest	0.013*	0.015*	11:00	SSW
	NN2 - Southwest	0.018*		10:45	
	NN3 - Southeast	0.017*		10:45	
	NN4 - Northeast	0.015*		10:45	
6/27/06	NN1 - Northwest	0.012*	0.011*	11:15	SSW
	NN2 - Southwest	0.012*		11:30	
	NN3 - Southeast	0.016*		11:30	
	NN4 - Northeast	0.011*		11:45	
6/28/06	NN1 - Northwest	0.008*	0.008*	11:45	Variable
	NN2 - Southwest	0.026*		10:45	
	NN3 - Southeast	0.008*		11:15	
	NN4 - Northeast	0.015*		11:15	
6/29/06	NN1 - Northwest	0.056*	0.057*	10:45	SSW
	NN2 - Southwest	0.052*		11:00	
	NN3 - Southeast	0.072*		11:15	
	NN4 - Northeast	0.028*		11:15	
6/30/06	NN1 - Northwest	0.038 ⁴	0.037*	8:15 ³	WNW
	NN2 - Southwest	0.021*		11:00	
	NN3 - Southeast	0.031*		11:15	
	NN4 - Northeast	0.043		11:15	
Notification Level		0.120			

Notes:

Background monitoring station is located east of Building 9B, between 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

^{*} Measured with DR-2000 or DR-4000. All other measured with pDR-1000.

¹ Monitoring was performed only on days when site activities occurred.

 $^{^{2}}$ The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.

 $^{^{\}rm 3}$ Sampling period was shortened due to instrument malfunction.

 $^{^{\}rm 4}$ Represents data from a pDR-1000 and a DR-4000.

⁵ The exceedances and overall high site values on this day are likely related to regional ambient pollutant and atmospheric conditions as reported by EPA and measured at several other sites in Pittsfield and other parts of New England. The relative difference between the background site concentration and the Area II site concentrations indicate that the Area II site was not the significant contributor to these high values.

ITEM 12 FORMER OXBOW AREAS J & K (GECD420) JUNE 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

Submitted Supplemental Information Package to EPA (June 15, 2006).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Submit revised Figure 4 (Preliminary Soil-Related Response Actions) in response to EPA's June 23, 2006 conditional approval letter (by July 7, 2006).
- Submit analytical results for proposed backfill and topsoil sources to EPA.
- Initiate remedial actions following EPA approval of Supplemental Information Package (anticipated start date early to mid-July).

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval of GE's April 26, 2006 Addendum to Final RD/RA Work Plan for Former Oxbow Areas J and K (June 23, 2006).

ITEM 13 HOUSATONIC RIVER AREA UPPER ½ MILE REACH (GECD800) JUNE 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Conducted annual inspection of potential erosion on restored banks (June 2, 2006).
- Conducted the restored bank vegetation assessment to modify monitoring plot sizes and locations as proposed in 2005 Annual Monitoring Report (June 7, 2006).

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Submit report on bank erosion inspection.
- Install seepage meters in support of upcoming total organic carbon (TOC) report.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

- Issues relating to bank erosion are under discussion with EPA.
- Issues relating to TOC content in isolation layer remain unresolved. EPA and GE have agreed that GE's report on those issues will be deferred until after the seepage meter data are available. The Final Completion Report for Upper ½ Mile Reach Removal Action will be submitted following resolution of those issues.

f. Proposed/Approved Work Plan Modifications

None

ITEM 14 HOUSATONIC RIVER AREA 1½ MILE REACH (GECD820) JUNE 2006

(Note: This item is limited to activities conducted by GE and does not include EPA's work on the 1½ Mile Reach Removal Action)

a. Activities Undertaken/Completed

On June 27, 2006, BBL (on GE's behalf) performed a round of water column monitoring at 10 locations along the Housatonic River between Coltsville, MA and Great Barrington, MA. Two of these locations are situated in the 1½ Mile Reach: Lyman Street Bridge (Location 4) and Pomeroy Avenue Bridge (Location 6A). A composite grab sample was collected at each location and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a, as identified in Table 14-1. (The other eight locations are discussed under Items 15 and 20 below.)

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue Housatonic River monthly water column monitoring.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

TABLE 14-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JUNE 2006

HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
Monthly Water Column Sampling	Location-4	6/27/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-4	5/24/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	6/7/06
Monthly Water Column Sampling	Location-6A	5/24/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	6/7/06
Monthly Water Column Sampling	Location-6A	6/27/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	

TABLE 14-2 SAMPLE DATA RECEIVED DURING JUNE 2006

MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID	Location	Date Collected	Aroclor-1016, -1221, -1232, -1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	POC	TSS	Chlorophyll (a)
LOCATION-4	Lyman Street Bridge	5/24/2006	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	1.01	5.31	0.0013
LOCATION-6A	Pomeroy Ave. Bridge	5/24/2006	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	1.43	6.13	0.0023

Notes:

- 1. Samples were collected by Blasland, Bouck, & Lee, Inc. and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).
- 2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

ITEM 15 HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) JUNE 2006

a. Activities Undertaken/Completed

- On June 27, 2006, BBL (on GE's behalf) performed a round of water column monitoring at 10 locations along the Housatonic River between Coltsville and Great Barrington, MA. Two locations are situated in the 1½ Mile Reach of the Housatonic River and were discussed in Item 14. One location is at the outlet of Silver Lake and is discussed in Item 20 below. Of the remaining seven locations, two are located upstream of the 1½ Mile Reach: Hubbard Avenue Bridge (Location 1) and Newell Street Bridge (Location 2). The five remaining locations are situated in the Rest of the River: Holmes Road Bridge (Location 7); New Lenox Road Bridge (Location 9); Woods Pond Headwaters (Location 10); Schweitzer Bridge (Location 12); and Division Street Bridge (Location 13). Sampling activities were performed at these locations on June 27, 2006 from downstream to upstream. Composite grab samples were collected at each location sampled and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a, as identified in Table 15-1.
- Made presentation to Peer Review Panel on EPA's Model Validation Report and attended peer review meeting (June 28-29, 2006).*
- On GE's behalf, the Academy of Natural Sciences of Philadelphia collected benthic insect samples from the Connecticut portion of the river (June 19, 2006).

b. Sampling/Test Results

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted structural integrity report on Rising Pond Dam (prepared by consultant to owner of that dam, Fox River Paper Company) (June 12, 2006).*

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue Housatonic River monthly water column monitoring.
- Prepare design drawings for installation of replacement gate at Rising Pond Dam.*
- Attend meeting with EPA for transfer of its fate, transport, and bioaccumulation model to GE (July 6, 2006).*

ITEM 15 (cont'd) HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) JUNE 2006

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

TABLE 15-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JUNE 2006

HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received by GE or BBL
,		'			Analyses	
Monthly Water Column Sampling	HR-D1 (Location-12)	5/24/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	6/7/06
Monthly Water Column Sampling	HR-D1 (Location-12)	6/27/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-1	6/27/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-1	5/24/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	6/7/06
Monthly Water Column Sampling	Location-10	5/24/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	6/7/06
Monthly Water Column Sampling	Location-10	6/27/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-12	5/24/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	6/7/06
Monthly Water Column Sampling	Location-12	6/27/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-13	5/24/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	6/7/06
Monthly Water Column Sampling	Location-13	6/27/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-2	6/27/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-2	5/24/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	6/7/06
Monthly Water Column Sampling	Location-7	6/27/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-7	5/24/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	6/7/06
Monthly Water Column Sampling	Location-9	5/24/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	6/7/06
Monthly Water Column Sampling	Location-9	6/27/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	

Note:

1. Field duplicate sample locations are presented in parenthesis.

TABLE 15-2 SAMPLE DATA RECEIVED DURING JUNE 2006

MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - REST OF RIVER

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

		Date	Aroclor-1016, -1221,							
Sample ID	Location	Collected	-1232, -1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	POC	TSS	Chlorophyll (a)
LOCATION-1	Hubbard Avenue Bridge	5/24/2006	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.608	1.80	0.0013
LOCATION-2	Newell Street Bridge	5/24/2006	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.620	5.00	0.00090
LOCATION-7	Holmes Road Bridge	5/24/2006	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.931	5.50	0.0017
LOCATION-9	New Lenox Road Bridge	5/24/2006	ND(0.0000220)	0.0000480 PE	0.000100 AF	0.0000370 AG	0.000185	0.746	4.30	0.0022
LOCATION-10	Headwaters of Woods Pond	5/24/2006	ND(0.0000220)	ND(0.0000220)	0.0000230 AF	0.0000230 AG	0.000046	0.361	1.50	0.0020
LOCATION-12	Schweitzer Bridge	5/24/2006	ND(0.0000220)	ND(0.0000220)	0.0000230 AF	0.0000240 AG	0.000047	0.342	4.10	0.0022
		5/24/2006	[ND(0.0000220)]	[ND(0.0000220)]	[0.0000320 AF]	[0.0000320 AG]	[0.0000640]	[0.399]	[ND(1.00)]	[0.0019]
LOCATION-13	Division Street Bridge	5/24/2006	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.490	4.90	0.0019

Notes:

- 1. Samples were collected by Blasland, Bouck, & Lee, Inc. and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).
- 2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. Field duplicate sample results are presented in brackets.

Data Qualifiers:

- AF Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- AG Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- PE Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

ITEMS 16 & 17 HOUSATONIC RIVER FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1½-MILE REACH (GECD710 AND GECD720) JUNE 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Continued restoration activities at certain Phase 3 floodplain properties.
- Continued soil removal actions at the Phase 4 floodplain properties.
- Conducted ambient air monitoring for particulates and PCBs at the Phase 4 floodplain properties, as identified in Table 16&17-1.
- Collected and tankered approximately 21,300 gallons of water from the dewatering of the vernal pool area to Building 64G for treatment, prior to initiating removal actions at Parcel I6-1-106.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted to EPA photographs of vernal pool areas and a figure showing restoration plantings at Parcel I6-1-106 (in Phase 4) (June 29, 2006).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Submit report on inspection of backfilled/restored areas at Phase 3 floodplain properties.
- Complete soil removal actions at the Phase 4 floodplain properties (except tree planting and final restoration, scheduled to be completed Fall 2006).
- Submit draft Final Completion Report for Phase 1 and 2 floodplain properties.
- Continue work on Final Completion Report for Phase 3 floodplain properties.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

ITEMS 16 & 17 (cont'd) HOUSATONIC RIVER FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1½-MILE REACH (GECD710 AND GECD720) JUNE 2006

f. Proposed/Approved Work Plan Modifications

GE and EPA agreed on the scope of soil removal along the West Branch of the Housatonic River in the southernmost removal area within the Group 4A floodplain properties (June 7, 2006).

TABLE 16&17-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JUNE 2006

FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date Received
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	by GE or BBL
Ambient Air Particulate Matter Sampling	4A-1	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	4C-1	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	4C-2	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/1/06	Air	Berkshire Environmental	Particulate Matter	6/5/06
Ambient Air Particulate Matter Sampling	4A-1	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	4C-1	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	4C-2	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/5/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	4A-1	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	4B-13	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	4C-2	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/6/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	4A-1	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	4B-1	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	4C-2	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/8/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	4A-1	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	4B-1	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	4C-2	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	Background Location	6/9/06	Air	Berkshire Environmental	Particulate Matter	6/12/06
Ambient Air Particulate Matter Sampling	4A-1	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4B-1	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4C-2	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/12/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4A-1	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4B-1	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4C-2	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/13/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4A-1	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4B-1	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4C-2	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/14/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4A-1	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4B-1	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4C-2	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/15/06	Air	Berkshire Environmental	Particulate Matter	6/19/06

 $\label{thm:continuity} $$V:\GE_{CD Monthly}\Tracking Logs\Tracking.xls $$TABLE 16\&17-1 $$1 of 3$$

TABLE 16&17-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JUNE 2006

FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date Received
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	by GE or BBL
Ambient Air Particulate Matter Sampling	4A-1	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4B-1	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4C-2	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	Background Location	6/16/06	Air	Berkshire Environmental	Particulate Matter	6/19/06
Ambient Air Particulate Matter Sampling	4A-1	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4B-1	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4C-2	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/19/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4A-1	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4B-1	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4C-2	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/20/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4A-1	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4B-1	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4C-2	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/21/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4A-1	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4B-1	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4C-2	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/22/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4A-1	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4B-1	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4C-2	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	Background Location	6/23/06	Air	Berkshire Environmental	Particulate Matter	6/26/06
Ambient Air Particulate Matter Sampling	4A-1	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	4B-1	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	4C-2	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/26/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	4A-1	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/27/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	4A-1	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/28/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	4A-1	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/29/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	4A-1	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06
Ambient Air Particulate Matter Sampling	Background Location	6/30/06	Air	Berkshire Environmental	Particulate Matter	7/5/06

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Tracking Logs\Tracking.xls TABLE 16&17-1 2 of 3

TABLE 16&17-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JUNE 2006

FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Sample Date Rec						
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	by GE or BBL
PCB Ambient Air Sampling	Field Blank	5/24 - 5/25/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	4A-1	5/24 - 5/25/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	4B-1	5/24 - 5/25/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	4B-1-CO (colocated)	5/24 - 5/25/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	4C-2	5/24 - 5/25/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	Background - Longfellow Avenue	5/24 - 5/25/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	Field Blank	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	4A-1	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	4B-1	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	4B-1-CO (colocated)	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	4C-2	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	Background - Longfellow Avenue	5/25 - 5/26/06	Air	Berkshire Environmental	PCB	6/9/06
PCB Ambient Air Sampling	Field Blank	6/8 - 6/9/06	Air	Berkshire Environmental	PCB	6/20/06
PCB Ambient Air Sampling	4A-1	6/8 - 6/9/06	Air	Berkshire Environmental	PCB	6/20/06
PCB Ambient Air Sampling	4B-1	6/8 - 6/9/06	Air	Berkshire Environmental	PCB	6/20/06
PCB Ambient Air Sampling	4B-1-CO (colocated)	6/8 - 6/9/06	Air	Berkshire Environmental	PCB	6/20/06
PCB Ambient Air Sampling	4C-2	6/8 - 6/9/06	Air	Berkshire Environmental	PCB	6/20/06
PCB Ambient Air Sampling	Background - Longfellow Avenue	6/8 - 6/9/06	Air	Berkshire Environmental	PCB	6/20/06

TABLE 16&17-2 AMBIENT AIR PCB DATA RECEIVED DURING JUNE 2006

PCB AMBIENT AIR CONCENTRATIONS FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1-1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Event Period	Date Analytical Results Received by BEC, Inc.	Field Blank (μg/PUF)	4A-1 (μg/m3)	4B-1 (μg/m3)	4B-1-CO (colocated) (μg/m3)	4C-2 (μg/m3)	Background - Longfellow Avenue (μg/m3)
05/24 - 05/25/06	06/06/06	ND (<0.10)	0.0007	0.0024	NA ¹	0.0009	0.0038
05/25 - 05/26/06	06/06/06	ND (<0.10)	0.0013	0.0029	0.0014	0.0019	0.0038
06/08 - 06/09/06	06/15/06	ND (<0.10)	0.0008	0.0011	0.0012	0.0017	0.0024
Notificat	ion Level	0.05	0.05	0.05	0.05	0.05	0.05

Notes:

NA - Not Available

¹ Sample not analyzed. Sampling period did not meet QA/QC criteria of ± 60 minutes due to a power failure.

TABLE 16&17-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JUNE 2006¹

PARTICULATE AMBIENT AIR CONCENTRATIONS FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1-1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
6/1/06	4A-1	0.082	0.062*	10:30	WSW, SSW
	4C-1	0.098*		10:15	
	4C-2	0.080		10:15	
6/5/06	4A-1	0.022	0.009*	11:15	Calm
	4C-1	0.014*		11:30	
	4C-2	0.016		11:00	
6/6/06	4A-1	0.026	0.011*	10:15	Calm
	4B-1 ³	0.015*		10:00	
	4C-2	0.024		10:15	
6/8/06	4A-1	0.004*	0.010*	10:45	NNE
	4B-1	0.015*		11:00	
	4C-2	0.007*		10:45	
6/9/06	4A-1	0.005*	0.007*	12:00	WNW
	4B-1	0.006*		11:45	
	4C-2	0.005*		11:30	
6/12/06	4A-1	0.026	0.007*	11:15	WNW
	4B-1	0.011*		11:00	
	4C-2	0.018		10:45	
6/13/06	4A-1	0.039	0.011*	12:00	WNW
	4B-1	0.019*		12:00	
	4C-2	0.023		12:00	
6/14/06	4A-1	0.042	0.016*	11:45	Calm
	4B-1	0.026*		11:45	
	4C-2	0.0314		11:45 ⁵	
6/15/06	4A-1	0.043	0.010*	10:15	NNW
	4B-1	0.014*		10:15	
	4C-2	0.053		9:51	
6/16/06	4A-1	0.051	0.013*	10:15	WNW
	4B-1	0.042*		10:00	
	4C-2	0.054		10:00	
06/19/06 ⁶	4A-1	0.139	0.114*	11:30	WSW, SSW
	4B-1	0.181*		11:30	
	4C-2	0.177		11:15	
6/20/06	4A-1	0.018	0.026*	11:30	WSW
	4B-1	0.038*		11:30	
	4C-2	0.039		11:30	
6/21/06	4A-1	0.031	0.008*	11:15	Variable
	4B-1	0.014*		11:30	
	4C-2	0.041		11:00	
6/22/06	4A-1	0.069	0.028*	5:30 ⁷	SSW
	4B-1	0.048*		9:45	
	4C-2	0.031		9:45	

TABLE 16&17-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JUNE 2006¹

PARTICULATE AMBIENT AIR CONCENTRATIONS FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1-1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
6/23/06	4A-1	0.054	0.040*	12:00	WNW
	4B-1	0.062*		12:00	
	4C-2	0.084		12:00	
6/26/06	4A-1	0.006*	0.016*	12:00	SSW
	4B-1	0.029*		11:45	
	4C-2	0.016*		11:30	
6/27/06	4A-1	0.008*	0.008*	11:45	SSW
6/28/06	4A-1	0.018*	0.015*	11:00	Variable
6/29/06	4A-1	0.081*	0.056*	11:15	SSW
6/30/06	4A-1	0.059 ⁸	0.039*	11:15	WNW
Notification Level		0.120			

Notes:

Background monitoring location at 15 Longfellow Avenue in Pittsfield

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

^{*} Measured with DR-2000 or DR-4000. All other measured with pDR-1000.

¹ Monitoring was performed only on days when site activities occurred.

² The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.

³ Sampling location changed to reflect progression of site activities.

⁴ Reading reflects average concentration manually recorded from the monitor at the end of the day. Unable to download data due to equipment failure.

⁵ Estimated logging period.

⁶ The exceedances and overall high site values on this day are likely related to regional ambient pollutant and atmospheric conditions as reported by EPA and measured at several other sites in Pittsfield and other parts of New England. The relative difference between the background site concentration and the Phase 4 Floodplains site concentrations indicate that the Floodplains were not the significant contributor to these high values.

⁷ Sampling period shortened due to interference from insect.

 $^{^{\}rm 8}$ Represents data from a pDR-1000 and a DR-4000.

ITEM 18 HOUSATONIC RIVER FLOODPLAIN CURRENT RESIDENTIAL PROPERTIES DOWNSTREAM OF CONFLUENCE (ACTUAL/POTENTIAL LAWNS) (GECD730) JUNE 2006

a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

None

e. General Progress/Unresolved Issues/Potential Schedule Impacts

Awaiting EPA approval of GE's Pre-Design Investigation Work Plan (submitted on February 26, 2002). (Based on discussions with EPA, this pre-design sampling will be deferred for some period of time.)*

f. Proposed/Approved Work Plan Modifications

None

ITEM 19 ALLENDALE SCHOOL PROPERTY (GECD500) JUNE 2006

a. Activities Undertaken/Completed

Submitted comments to the Massachusetts Department of Public Health (MDPH) on draft protocol for indoor sampling at Allendale School (June 2, 2006).

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Receive results from outdoor air monitoring conducted by EPA, as well as, potentially, results from indoor sampling conducted by MDPH at Allendale School.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

ITEM 20 OTHER AREAS SILVER LAKE AREA (GECD600) JUNE 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- On June 27, 2006, BBL (on GE's behalf) performed a round of water column monitoring at 10 locations along the Housatonic River between Coltsville and Great Barrington, MA. One location was at the outlet of Silver Lake (Location 4A). A grab sample was collected and submitted to Northeast Analytical for analysis of PCBs (total) and TSS, as identified in Table 20-1. (The other nine locations were discussed under Items 14 and 15 above.)
- Participated in technical meeting with EPA regarding comments and review of the Pilot Study Work Plan for Silver Lake Sediments (June 27, 2006).
- Initiated supplemental soil sampling at certain properties adjacent to the lake in accordance with GE's Addendum to the Third Interim Pre-Design Investigation Report for Soils Adjacent to Silver Lake, as identified in Table 20-1.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted Pilot Study Work Plan for Silver Lake Sediments (June 14, 2006).

d. Upcoming Scheduled Activities (next six weeks)

None

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

Received EPA approval of GE's May 2006 revised Bench-Scale Study Report for Silver Lake Sediments (June 19, 2006).

TABLE 20-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JUNE 2006

SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

			Depth				Date Received
Project Name	Field Sample ID	Sample Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
Additional PDI Soil Sampling	I9-10-8-SB-16-SS	6/1/06	0-1	Soil	SGS	Lead	6/27/06
Additional PDI Soil Sampling	I9-10-8-SB-16-SSS	6/1/06	0-1	Soil	SGS	Lead	Cancel
Additional PDI Soil Sampling	I9-9-11-SB-9	6/8/06	10-15	Soil	SGS	PCB	6/21/06
Additional PDI Soil Sampling	I9-9-18-SB-1-S	6/1/06	0-1	Soil	SGS	Antimony	6/27/06
Additional PDI Soil Sampling	I9-9-18-SB-1-SS	6/1/06	0-1	Soil	SGS	Antimony	Cancel
Additional PDI Soil Sampling	I9-9-1-SB-5	6/6/06	5-7	Soil	SGS	Lead	6/22/06
Additional PDI Soil Sampling	I9-9-1-SB-5	6/6/06	7-9	Soil	SGS	Lead or Arsenic	6/27/06
Additional PDI Soil Sampling	I9-9-1-SB-5-N	6/6/06	3-5	Soil	SGS	Lead	6/22/06
Additional PDI Soil Sampling	I9-9-1-SB-5-N	6/6/06	5-7	Soil	SGS	Lead	6/27/06
Additional PDI Soil Sampling	I9-9-1-SB-5-S	6/6/06	5-7	Soil	SGS	Lead	6/22/06
Additional PDI Soil Sampling	I9-9-1-SB-5-S	6/6/06	9-11	Soil	SGS	Lead or Arsenic	6/27/06
Additional PDI Soil Sampling	I9-9-1-SB-5-S	6/6/06	7-9	Soil	SGS	Lead, Arsenic	6/22/06
Additional PDI Soil Sampling	I9-9-1-SB-6	6/6/06	9-11	Soil	SGS	Lead, Arsenic	6/22/06
Additional PDI Soil Sampling	I9-9-1-SB-6-S	6/6/06	1-3	Soil	SGS	Lead	6/22/06
Additional PDI Soil Sampling	I9-9-1-SB-6-S	6/6/06	3-5	Soil	SGS	Lead	6/22/06
Additional PDI Soil Sampling	I9-9-1-SB-6-S	6/6/06	5-7	Soil	SGS	Lead	6/22/06
Additional PDI Soil Sampling	I9-9-1-SB-6-S	6/6/06	9-11	Soil	SGS	Lead or Arsenic	6/27/06
Additional PDI Soil Sampling	I9-9-1-SB-6-S	6/6/06	7-9	Soil	SGS	Lead, Arsenic	6/22/06
Additional PDI Soil Sampling	19-9-1-SB-6-SS	6/6/06	1-3	Soil	SGS	Lead	6/27/06
Additional PDI Soil Sampling	19-9-1-SB-6-SS	6/6/06	3-5	Soil	SGS	Lead	6/27/06
Additional PDI Soil Sampling	19-9-1-SB-6-SS	6/6/06	5-7	Soil	SGS	Lead	6/27/06
Additional PDI Soil Sampling	19-9-1-SB-6-SS	6/6/06	7-9	Soil	SGS	Lead or Arsenic	6/27/06
Additional PDI Soil Sampling	19-9-1-SB-6-SS	6/6/06	9-11	Soil	SGS	Lead or Arsenic	6/27/06
Additional PDI Soil Sampling	19-9-23-SB-4	6/1/06	0-1	Soil	SGS	PCB	Cancel
Additional PDI Soil Sampling	I9-9-24-SB-10	6/1/06	0-1	Soil	SGS	PCB	6/21/06
Additional PDI Soil Sampling	19-9-24-SB-2-SE	6/8/06	13-15	Soil	SGS	TAL Metals	6/27/06
Additional PDI Soil Sampling	19-9-24-SB-2-SE	6/8/06	9-11	Soil	SGS	TAL Metals	6/27/06
Additional PDI Soil Sampling	19-9-24-SB-2-SES	6/8/06	13-15	Soil	SGS	TAL Metals	
Additional PDI Soil Sampling	19-9-24-SB-2-SES	6/8/06	9-11	Soil	SGS	TAL Metals	
Additional PDI Soil Sampling	19-9-24-SB-2-W	6/8/06	13-15	Soil	SGS	TAL Metals	6/27/06
Additional PDI Soil Sampling	19-9-24-SB-2-W	6/8/06	9-11	Soil	SGS	TAL Metals	6/27/06
Additional PDI Soil Sampling	19-9-24-SB-2-WW	6/8/06	13-15	Soil	SGS	TAL Metals	Cancel
Additional PDI Soil Sampling	19-9-24-SB-2-WW	6/8/06	9-11	Soil	SGS	TAL Metals	Cancel
Additional PDI Soil Sampling	RA-3-SB-15-EE	6/2/06	0-1	Soil	SGS	SVOC	6/27/06

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Tracking Logs\Tracking.xls TABLE 20-1

TABLE 20-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JUNE 2006

SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

			Depth				Date Received
Project Name	Field Sample ID	Sample Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
Additional PDI Soil Sampling	RA-3-SB-15-EE	6/2/06	1-3	Soil	SGS	SVOC	6/27/06
Additional PDI Soil Sampling	RA-3-SB-15-WW	6/2/06	1-3	Soil	SGS	SVOC	6/27/06
Additional PDI Soil Sampling	RA-3-SB-15-WWW	6/2/06	1-3	Soil	SGS	SVOC	6/27/06
Additional PDI Soil Sampling	SL-0606-DUP-1 (I9-9-24-SB-10)	6/1/06	0-1	Soil	SGS	PCB	6/21/06
Additional PDI Soil Sampling	SL-0606-DUP-2 (RA-3-SB-15-EE)	6/2/06	1-3	Soil	SGS	SVOC	6/27/06
Additional PDI Soil Sampling	SL-0606-DUP-3 (I9-9-24-SB-2-SE)	6/8/06	9-11	Soil	SGS	TAL Metals	6/27/06
Additional PDI Soil Sampling	SLB-1BB	6/1/06	1-3	Soil	SGS	Lead	6/27/06
Additional PDI Soil Sampling	SLB-1BB	6/1/06	3-5	Soil	SGS	Lead	6/27/06
Additional PDI Soil Sampling	SLB-1BB	6/1/06	0-1	Soil	SGS	SVOC	6/27/06
Monthly Water Column Sampling	Location-4A	5/24/06	NA	Water	NEA	PCB, TSS	6/7/06
Monthly Water Column Sampling	Location-4A	6/27/06	NA	Water	NEA	PCB, TSS	

Note:

1. Field duplicate sample locations are presented in parenthesis.

TABLE 20-2 SAMPLE DATA RECEIVED DURING JUNE 2006

MONTHLY WATER COLUMN SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

		Date	Aroclor-1016,						
Sample ID	Location	Collected	-1232, -1242	Aroclor 1221	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	TSS
LOCATION-4A	Silver Lake Outlet	5/24/2006	ND(0.0000220)	0.000120 PB	0.0000900 PE	0.0000410 AF	0.0000260 AG	0.0002770	3.00

Notes:

- 1. Sample was collected by Blasland, Bouck, & Lee, Inc. and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs and total suspended solids (TSS).
- 2. Sampling method involved the collection of a single grab sample at 50 percent of the total river width and 50 percent of the total river depth.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

- AF Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- AG Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- PB Aroclor 1221 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1221 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.
- PE Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

ADDITIONAL PRE-DESIGN INVESTIGATION SOIL SAMPLING SILVER LAKE AREA

${\bf GENERAL\ ELECTRIC\ COMPANY\ -\ PITTSFIELD,\ MASSACHUSETTS}$

(Results are presented in dry weight parts per million, ppm)

Sample ID	Depth (Feet)	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
19-9-11-SB-9	10-15	6/8/06	ND(0.059)	ND(0.059)	ND(0.059)	ND(0.059)	ND(0.059)	ND(0.059)	ND(0.059)	ND(0.059)
19-9-24-SB-10	0-1	6/1/06	ND(0.036) [ND(0.035)]	0.041 [0.058]	0.041 [0.058]					

- 1. Samples were collected by Blasland, Bouck, & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Field duplicate sample results are presented in brackets.

ADDITIONAL PRE-DESIGN INVESTIGATION SOIL SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

	Sample ID:	I9-9-1-SB-5	I9-9-1-SB-5	I9-9-1-SB-5-N	I9-9-1-SB-5-N	I9-9-1-SB-5-S	I9-9-1-SB-5-S	I9-9-1-SB-5-S	I9-9-1-SB-6	I9-9-1-SB-6-S
	Sample Depth(Feet):	5-7	7-9	3-5	5-7	5-7	7-9	9-11	9-11	1-3
Parameter	Date Collected:	6/6/06	6/6/06	6/6/06	6/6/06	6/6/06	6/6/06	6/6/06	6/6/06	6/6/06
Semivolatile O)rganics									
2,4-Dimethylph	enol	NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphth		NA	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylphenol	I	NA	NA	NA	NA	NA	NA	NA	NA	NA
3&4-Methylphe	nol	NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene		NA	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	e	NA	NA	NA	NA	NA	NA	NA	NA	NA
Aniline		NA	NA	NA	NA	NA	NA	NA	NA	NA
Anthracene		NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthra	acene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	е	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluorar	nthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)per	rylene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluorar	nthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
bis(2-Chloroeth	yl)ether	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene		NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)an	thracene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran		NA	NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphtha	alate	NA	NA	NA	NA	NA	NA	NA	NA	NA
Diphenylamine		NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene		NA	NA	NA	NA	NA	NA	NA	NA	NA
Fluorene		NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cc	d)pyrene	NA	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene		NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene		NA	NA	NA	NA	NA	NA	NA	NA	NA
Phenol		NA	NA	NA	NA	NA	NA	NA	NA	NA
Pyrene		NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics										
Antimony		NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic		NA	NA	NA	NA	NA	7.82	NA	5.10	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead		2460	32.4	2110	494	790	584	5.07	6.01	703

ADDITIONAL PRE-DESIGN INVESTIGATION SOIL SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

Parameter	Sample ID: Sample Depth(Feet): Date Collected:	19-9-1-SB-6-S 3-5 6/6/06	19-9-1-SB-6-S 5-7 6/6/06	19-9-1-SB-6-S 7-9 6/6/06	I9-9-1-SB-6-S 9-11 6/6/06	I9-9-1-SB-6-SS 1-3 6/6/06	I9-9-1-SB-6-SS 3-5 6/6/06	19-9-1-SB-6-SS 5-7 6/6/06	19-9-1-SB-6-SS 7-9 6/6/06
Semivolatile O		3, 3, 3 3	57 57 5 5	575700	0,0,00	0,0,00	3, 3, 4, 4	3, 3, 3 3	0,0,00
2,4-Dimethylph		NA	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphth	alene	NA	NA	NA	NA	NA	NA	NA	NA
2-Methylphenol		NA	NA	NA	NA	NA	NA	NA	NA
3&4-Methylphe	nol	NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthene		NA	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	Э	NA	NA	NA	NA	NA	NA	NA	NA
Aniline		NA	NA	NA	NA	NA	NA	NA	NA
Anthracene		NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthra	cene	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	9	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluorar	nthene	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)per	ylene	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluorar	nthene	NA	NA	NA	NA	NA	NA	NA	NA
bis(2-Chloroeth	yl)ether	NA	NA	NA	NA	NA	NA	NA	NA
Chrysene		NA	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)an	thracene	NA	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran		NA	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphtha	late	NA	NA	NA	NA	NA	NA	NA	NA
Diphenylamine		NA	NA	NA	NA	NA	NA	NA	NA
Fluoranthene		NA	NA	NA	NA	NA	NA	NA	NA
Fluorene		NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cc	I)pyrene	NA	NA	NA	NA	NA	NA	NA	NA
Naphthalene		NA	NA	NA	NA	NA	NA	NA	NA
Phenanthrene		NA	NA	NA	NA	NA	NA	NA	NA
Phenol		NA	NA	NA	NA	NA	NA	NA	NA
Pyrene		NA	NA	NA	NA	NA	NA	NA	NA
Inorganics									
Antimony		NA	NA	NA	NA	NA	NA	NA	NA
Arsenic		NA	NA	10.9	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA	NA
Lead		1190	1020	268	12.4	22700	1000	1.32 B	42.2

ADDITIONAL PRE-DESIGN INVESTIGATION SOIL SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID:	I9-9-1-SB-6-SS	I9-9-18-SB-1-S	19-9-24-SB-2-SE	19-9-24-SB-2-SE	I9-9-24-SB-2-W	I9-9-24-SB-2-W	I9-10-8-SB-16-SS
Sample Depth(Feet):	9-11	0-1	9-11	13-15	9-11	13-15	0-1
Parameter Date Collected:	6/6/06	6/1/06	6/8/06	6/8/06	6/8/06	6/8/06	6/1/06
Semivolatile Organics							
2,4-Dimethylphenol	NA	NA	NA	NA	NA	NA	NA
2-Methylnaphthalene	NA	NA	NA	NA	NA	NA	NA
2-Methylphenol	NA	NA	NA	NA	NA	NA	NA
3&4-Methylphenol	NA	NA	NA	NA	NA	NA	NA
Acenaphthene	NA	NA	NA	NA	NA	NA	NA
Acenaphthylene	NA	NA	NA	NA	NA	NA	NA
Aniline	NA	NA	NA	NA	NA	NA	NA
Anthracene	NA	NA	NA	NA	NA	NA	NA
Benzo(a)anthracene	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	NA	NA	NA	NA	NA	NA	NA
Benzo(g,h,i)perylene	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	NA	NA	NA	NA	NA	NA	NA
bis(2-Chloroethyl)ether	NA	NA	NA	NA	NA	NA	NA
Chrysene	NA	NA	NA	NA	NA	NA	NA
Dibenzo(a,h)anthracene	NA	NA	NA	NA	NA	NA	NA
Dibenzofuran	NA	NA	NA	NA	NA	NA	NA
Di-n-Butylphthalate	NA	NA	NA	NA	NA	NA	NA
Diphenylamine	NA	NA	NA	NA	NA	NA	NA
Fluoranthene	NA	NA	NA	NA	NA	NA	NA
Fluorene	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	NA	NA	NA	NA	NA	NA	NA
Naphthalene	NA	NA	NA	NA	NA	NA	NA
Phenanthrene	NA	NA	NA	NA	NA	NA	NA
Phenol	NA	NA	NA	NA	NA	NA	NA
Pyrene	NA	NA	NA	NA	NA	NA	NA
Inorganics							
Antimony	NA	ND(6.04)	NA	NA	NA	NA	NA
Arsenic	NA	NA	NA	NA	NA	NA	NA
Cadmium	NA	NA	4.35 [191]	ND(2.19)	1.48	ND(1.16)	NA
Chromium	NA	NA	5.24 [19.1]	10.6	14.5	9.28	NA
Copper	NA	NA	18.2 [54.4]	430	76.1	75.5	NA
Lead	64.8	NA	NA	NA	NA	NA	225

ADDITIONAL PRE-DESIGN INVESTIGATION SOIL SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

Sample Depth(F	Feet): 0-1	RA-3-SB-15-EE 1-3 6/2/06	RA-3-SB-15-WW 1-3 6/2/06	RA-3-SB-15-WWW 1-3 6/2/06	SLB-1BB 0-1 6/1/06	SLB-1BB 1-3 6/1/06	SLB-1BB 3-5 6/1/06
Semivolatile Organics	0,2,00	0,2,00	0/2/00	0,2,00	0, 1,00	0,1,00	0,1,00
2,4-Dimethylphenol	1.1 J	3.1 [2.6]	ND(18)	22	ND(0.87)	NA	NA
2-Methylnaphthalene	0.80 J	0.60 J [0.64 J]	41	0.65 J	ND(0.87)	NA	NA
2-Methylphenol	0.61 J	ND(1.4) [ND(1.4)]	ND(18)	4.0	ND(0.87)	NA	NA
3&4-Methylphenol	0.87 J	2.2 [1.7]	ND(18)	18	0.64 J	NA	NA
Acenaphthene	3.3	2.6 [2.9]	87	1.7	ND(0.87)	NA	NA
Acenaphthylene	3.5	1.7 [2.0]	ND(18)	1.8	0.58 J	NA	NA
Aniline	3.6	19 [19]	ND(18)	13	ND(0.87)	NA	NA
Anthracene	7.1	6.4 [8.7]	190	4.4	0.43 J	NA	NA
Benzo(a)anthracene	21	17 [21]	180	12	1.2	NA	NA
Benzo(a)pyrene	23	19 [24]	140	13	1.3	NA	NA
Benzo(b)fluoranthene	32	24 [31]	140	15	1.5	NA	NA
Benzo(g,h,i)perylene	13	8.6 [9.7]	63	5.8	0.64 J	NA	NA
Benzo(k)fluoranthene	9.5	8.2 [9.1]	55	4.8	0.72 J	NA	NA
bis(2-Chloroethyl)ether	5.9	ND(1.4) [ND(1.4)]	ND(18)	ND(0.69)	ND(0.87)	NA	NA
Chrysene	22	15 [19]	150	11	2.1	NA	NA
Dibenzo(a,h)anthracene	3.2	3.0 [3.1]	21	2.0	ND(0.87)	NA	NA
Dibenzofuran	1.3 J	1.1 J [1.3 J]	73	0.84	ND(0.87)	NA	NA
Di-n-Butylphthalate	2.2	ND(1.4) [ND(1.4)]	ND(18)	0.20 J	0.68 J	NA	NA
Diphenylamine	ND(1.5)	1.2 J [1.3 J]	ND(18)	ND(0.69)	ND(0.87)	NA	NA
Fluoranthene	61	47 [62]	570	33	1.4	NA	NA
Fluorene	2.5	1.6 [2.2]	93	1.3	ND(0.87)	NA	NA
Indeno(1,2,3-cd)pyrene	15	11 [13]	79	7.4	0.66 J	NA	NA
Naphthalene	2.0	2.5 [2.3]	120	1.5	0.18 J	NA	NA
Phenanthrene	37	29 [39]	780	22	0.83 J	NA	NA
Phenol	5.8	0.90 J [0.78 J]	ND(18)	2.7	2.1	NA	NA
Pyrene	50	30 [38]	550	25	2.8	NA	NA
Inorganics	•						
Antimony	NA	NA	NA	NA	NA	NA	NA
Arsenic	NA	NA	NA	NA	NA	NA	NA
Cadmium	NA	NA	NA	NA	NA	NA	NA
Chromium	NA	NA	NA	NA	NA	NA	NA
Copper	NA	NA	NA	NA	NA	NA	NA
Lead	NA	NA	NA	NA	NA	1810	459

Notes

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of semivolatiles and metals.
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. With the exception of metals only those constituents detected in one or more samples are summarized.
- 5. Field duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

ITEM 21 GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) JUNE 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

General:

- Conducted routine groundwater elevation and NAPL monitoring activities.

East Street Area 1-North and South:

- Continued automated groundwater and NAPL pumping at North Side and South Side Caissons. No LNAPL was recovered from the North Side Caisson or the South Side Caisson in June.
- Continued routine well monitoring and manual NAPL removal activities. No LNAPL was removed from this area during June.

East Street Area 2-South:

- Continued automated groundwater and LNAPL removal activities. A total of approximately 6,488,607 gallons of groundwater was recovered from pumping systems 64R, 64S, 64V, 64X, RW-1(S), RW-1(X), and RW-2(X). In addition, approximately 1,647 gallons of LNAPL were removed from pumping systems 64R, 64V, RW-1(S), RW-1(X), 64X, and 64S Caisson.
- Continued automated DNAPL removal activities. Approximately 42 gallons of DNAPL were removed from pumping system RW-3(X) during June.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 12.839 liters (3.388 gallons) of LNAPL was removed from wells in this area during June.
- Treated/discharged 5,361,635 gallons of water through 64G Groundwater Treatment Facility.

East Street Area 2-North:

- Continued well monitoring and NAPL removal activities. No LNAPL was recovered from this area during June.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) JUNE 2006

a. Activities Undertaken/Completed (cont'd)

20s, 30s, and 40s Complexes:

- Continued well monitoring and NAPL removal activities. No LNAPL was recovered from this area during June.
- Decommissioned the Building 43 elevator shaft by filling with cement/bentonite grout.

Lyman Street Area:

- Continued automated groundwater and NAPL removal activities. A total of approximately 562,906 gallons of groundwater was recovered from pumping systems RW-1R, RW-2, and RW-3. No LNAPL was removed from the automated recovery systems during June.
- Continued routine well monitoring and NAPL removal activities. Approximately 0.784 liter (0.207 gallon) of DNAPL was removed from wells in this area during June. No LNAPL was removed from wells in this area during June.

Newell Street Area II:

- Continued routine well monitoring and NAPL removal activities. Approximately 1.259 liters (0.332 gallon) of DNAPL were recovered from this area during June. No LNAPL was recovered from this area during June.
- Installed and developed monitoring wells GMA1-26 through GMA1-28.

Silver Lake Area:

- Continued routine monitoring of staff gauge in lake.

b. Sampling/Test Results Received

See attached tables. Note that the attached tables also include NAPL monitoring and removal data from May 2006 at certain East Street Area 2-South and Newell Street Area II wells that were inadvertently omitted from the May 2006 Monthly Report.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) JUNE 2006

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue routine monitoring activities.
- Repair/replace wells that were damaged during Newell Street Area II Removal Action.
- Continue assembly of automated DNAPL recovery system for Newell Street Area II.
- Following EPA approval of the following proposed activities contained in GE's Spring 2005 NAPL Monitoring Report (submitted on August 30, 2005), GE will:
 - Remove oil skimmer from well 40R and place it in well GMA1-17W.
 - Decommission 31 wells at the Lyman Street Area.
- Submit Groundwater Quality Monitoring Interim Report for Spring 2006 (due by July 31, 2006).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

- The automated DNAPL recovery systems for Newell Street Area II were shut down on July 25, 2005 pursuant to EPA approval of GE's June 7 and 23, 2005 proposals. Each system has been disconnected from the associated recovery wells and the System 1 control shed has been removed. Pipelines scheduled for replacement have been drained and removed. Two replacement recovery wells (N2SC-1I(R) and N2SC-3I(R)) have been installed and developed. The upgraded recovery system will be completed and activated approximately 2 to 3 months after completion of the EPA-approved soil remediation activities in this area.
- As discussed with EPA, GE is continuing to monitor all remaining wells associated with the Newell Street Area II DNAPL recovery systems on a weekly basis and to remove DNAPL accumulations greater than 0.5 foot on a monthly basis until the upgraded recovery system is activated.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) JUNE 2006

f. Proposed/Approved Work Plan Modifications

- Several program modifications were proposed in GE's Spring 2005 NAPL Monitoring Report. Installation of wells GMA1-22, GMA1-23, and GMA1-24 (approved by EPA in an electronic transmittal on March 7, 2006) was completed during late March 2006. EPA approval of the remaining proposed modifications is pending (see Item 21.d above).
- Received EPA approval of GE's May 22, 2006 proposal to remove/replace selected monitoring wells in the 20s and 30s Complexes (June 8, 2006).

TABLE 21-1 AUTOMATED LNAPL & GROUNDWATER RECOVERY SYSTEMS MONTHLY SUMMARY EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

		Vol. LNAPL	Vol. Water	D
Caisson	Month	Collected (gallon)	Recovered (gallon)	Percent Downtime
Northside	June 2005	22.0	21,000	8.57 - Maintenance
	July 2005	0.0	16,600	
	August 2005	1.0	16,000	
	September 2005	4.0	10,400	4.91
	October 2005	24.0	8,900	26.34
	November 2005	4.0	52,000	
	December 2005	12.0	33,900	
	January 2006	1.0	44,300	
	February 2006	1.0	27,700	
	March 2006	5.0	26,800	0.71
	April 2006	0.0	17,500	
	May 2006	0.0	20,500	
	June 2006	0.0	51,700	
Southside	June 2005	2.0	100,300	
	July 2005	0.0	45,800	
	August 2005	1.0	37,100	
	September 2005	9.0	56,300	4.91
	October 2005	4.0	71,000	4.91
	November 2005	2.0	96,600	
	December 2005	0.0	112,800	
	January 2006	15.0	98,400	
	February 2006	0.0	98,500	
	March 2006	3.0	121,500	0.71
	April 2006	12.0	76,200	
	May 2006	12.0	73,500	
	June 2006	0.0	160,900	

TABLE 21-2 ROUTINE WELL MONITORING EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
GMA 1 - East St		North	(IL DIVIE)	(IL DIVIE)	(ieet)	(IL DIVIF)	(IL DIVIE)	(leet)	(leet)
North Caisson	997.84	6/1/06	18.00	17.99	0.01		19.80	0.00	979.85
North Caisson	997.84	6/8/06	18.18	18.17	0.01		19.80	0.00	979.67
North Caisson	997.84	6/14/06	18.30	18.29	0.01		19.80	0.00	979.55
North Caisson	997.84	6/21/06	18.18	18.17	0.01		19.80	0.00	979.67
North Caisson	997.84	6/29/06	18.27	18.25	0.02		19.80	0.00	979.59
GMA 1 - East St	reet Area 1 -	South							
31R	1,000.23	6/28/06	9.10		0.00		15.05	0.00	991.13
33	999.50	6/28/06	Unable to ac	cess				0.00	NA
34	999.90	6/28/06	3.25		0.00		21.00	0.00	996.65
72	1000.62	6/28/06	6.00		0.00		21.98	0.00	994.62
72R	1000.92	6/28/06	6.28		0.00		13.30	0.00	994.64
South Caisson	1001.11	6/1/06	11.34	11.31	0.03		15.00	0.00	989.80
South Caisson	1001.11	6/8/06	12.02	12.00	0.02		15.00	0.00	989.11
South Caisson	1001.11	6/14/06	11.60	11.59	0.01		15.00	0.00	989.52
South Caisson	1001.11	6/21/06	11.91	11.90	0.01		15.00	0.00	989.21
South Caisson	1001.11	6/29/06	7.60	7.59	0.01		15.00	0.00	993.52

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.

TABLE 21-3 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS June 2006

Decement		June		
Recovery System		Oil Collected	Water Recovered	Percent
Location	Month	(gallon)	(gallon)	Downtime
40R	June 2005 July 2005 August 2005 September 2005 October 2005 November 2005 December 2005 January 2006 February 2006 March 2006 April 2006 May 2006 June 2006	0 0 0 0 0 0 0 0 0	(guilott)	0.36 - Power Outage
64R	June 2005 July 2005 August 2005 September 2005 October 2005 November 2005 December 2005 January 2006 February 2006 March 2006 April 2006 May 2006 June 2006	325 225 250 50 75 125 400 400 375 150 75 75	643,200 260,800 73,300 10,200 492,200 988,100 1,062,900 899,800 170,611 375,609 435,398 720,359	0.36 - Power Outage 4.91 10.71
64S System	June 2005 July 2005 August 2005 September 2005 October 2005 November 2005 December 2005 January 2006 February 2006 March 2006 April 2006 May 2006 June 2006	275 10 218 321 82 324 170 245 673 1,285 558 51	527,949 330,937 271,691 172,650 541,419 1,014,521 927,871 1,080,795 1,304,005 1,078,733 696,282 668,110 1,061,071	0.36 - Power Outage 13.73 - Maintenance 4.91 10.71 2.14 5.36 1.79 0.93
64V ¹	June 2005 July 2005 August 2005 September 2005 October 2005 November 2005 December 2005 January 2006 February 2006 March 2006 April 2006 May 2006 June 2006	515 465 581 349 564 515 564 697 598 315 249 431 697	1,177,700 922,700 993,100 714,700 933,400 1,304,100 1,117,000 1,208,800 1,177,900 1,251,800 901,800 911,700 1,228,300	0.36 - Power Outage 4.91 4.91 0.71

TABLE 21-3 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS June 2006

A Sep Or No Der Ja Fe	Month June 2005 July 2005 ugust 2005 otember 2005 ctober 2005 vember 2005 cember 2005	Oil Collected (gallon) 5 15 20 25 25 0	Water Recovered (gallon) 504,000 417,600 489,600 403,200	Percent Downtime 3.21 - Maint. & Power Outage 3.45 - Maintenance
Location 64X A Sep Oi Noi Dei Ja Fe	June 2005 July 2005 ugust 2005 otember 2005 ctober 2005 vember 2005	(gallon) 5 15 20 25 25	(gallon) 504,000 417,600 489,600	Downtime 3.21 - Maint. & Power Outage
64X A Sep O No Dec Ja Fe	June 2005 July 2005 ugust 2005 otember 2005 ctober 2005 vember 2005	5 15 20 25 25	504,000 417,600 489,600	3.21 - Maint. & Power Outage
A Sep Or No De Ja Fe	July 2005 ugust 2005 otember 2005 ctober 2005 vember 2005	15 20 25 25	417,600 489,600	9
A Sep On No De Ja Fe	ugust 2005 otember 2005 otober 2005 vember 2005	20 25 25	489,600	3.45 - Maintenance
Sep Oi Noi De Ja Fe	otember 2005 ctober 2005 vember 2005	25 25		
O No De Ja Fe	ctober 2005 vember 2005	25		
No De Ja Fe	vember 2005			04.40
De Ja Fe		[[[[[[[[[[[[[[[[[[[[403,200	21.43
Ja Fe	cember 2005	6	489,600	
Fe	2006	1	417,600	
	nuary 2006 bruary 2006		417,600	
1 1	March 2006		388,800 504,000	0.71
	April 2006		403,200	0.71
	May 2006	83	403,200	
		14		
	June 2006		518,400	
` '	June 2005	0	972,100	3.21 - Maint. & Power Outage
	July 2005	0	747,100	
	ugust 2005	0	982,100	
·	tember 2005	0	721,200	4.91
	ctober 2005	0	529,600	
	vember 2005	0	573,600	
	cember 2005	0	491,800	
	nuary 2006	0	710,700	
	bruary 2006	0	1,288,600	0.74
	March 2006	0	1,081,726	0.71
	April 2006 May 2006	10 0	408,494	
	June 2006	0	652,543 1,463,805	
	June 2005	0	1,107,860	0.36 - Power Outage
	July 2005	17	813,490	4.00 14 17
	ugust 2005	32	780,217	1.96 - Maintenance
	tember 2005	4	527,699	4.91
	ctober 2005	43	783,765	
	vember 2005	42	1,103,548	
	cember 2005	40	900,898	
	nuary 2006	30	270,228	
	bruary 2006	27	1,042,895	0.74
	March 2006	40	1,049,702	0.71
	April 2006 May 2006	57 77	736,984 744,621	
	June 2006	59	935,039	4.63
İ				
` '	June 2005	0	328,300	3.21 - Maint. & Power Outage
	July 2005	0	109,800	
	ugust 2005	0	142,000	4.04
	otember 2005	0	80,000	4.91
	ctober 2005 vember 2005	0	299,300	
	cember 2005	0	390,700 324,500	
	nuary 2006	0	324,500 417,500	
	bruary 2006	0	381,500	
	March 2006	0	119,720	0.71
	April 2006	0	403,940	0.71
	May 2006	0	385,828	
	June 2006	0	561,633	

TABLE 21-3 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS June 2006

Recovery System Location	Month	Oil Collected (gallon)	Water Recovered (gallon)	Percent Downtime
RW-3(X)	June 2005	62		0.36 - Power Outage
	July 2005	44		_
	August 2005	51		11.76 - Maintenance
	September 2005	40		
	October 2005	19		35.71
	November 2005	51		5.88
	December 2005	31		
	January 2006	27		
	February 2006	20		
	March 2006	36		
	April 2006	29		
	May 2006	29		
	June 2006	42		

Summary of Total Automated Removal								
Water: 6,488,607 Gallons								
LNAPL:	1,647	Gallons						
DNAPL:	42	Gallons						

- 1. The flow meter at recovery well 64V was reset in December 2004.
- The flow meter at recovery well RW-1(S) was reset in January 2006.
 The flow meters at recovery wells RW-1(X), RW-2(X), 64X(W), and 64R were reset in Mar

TABLE 21-4 WELL MONITORING AND RECOVERY OF LNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES **GROUNDWATER MANAGEMENT AREA 1**

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	June 2006 Removal (liters)	
13	5/16/06	17.28	17.25	0.03	0.019	0.037	
13	6/20/06	17.25	17.22	0.03	0.019	0.037	
14	5/16/06	17.37	17.35	0.02	0.012	0.025	
14	6/20/06	17.35	17.33	0.02	0.012	0.023	
25R	5/16/06	24.70	20.35	4.35	2.684	5.392	
2311	6/20/06	23.80	19.41	4.39	2.708	3.392	
48	5/16/06	16.60	15.30	1.30	0.802	1.820	
40	6/20/06	16.90	15.25	1.65	1.018	1.020	
50	5/16/06	9.56	9.55	0.01	0.006	0.018	
50	6/20/06	9.87	9.85	0.02	0.012	0.016	
55	6/20/06	16.55	16.12	0.43	0.019	0.019	
95-04	5/16/06	16.30	14.05	2.25	0.349	0.754	
95-04	6/20/06	16.61	14.00	2.61	0.405	0.754	
95-07	5/16/06	22.50	19.00	3.50	0.543	1.184	
93-07	6/20/06	22.75	18.62	4.13	0.641	1.104	
GMA1-15	5/16/06	15.28	14.75	0.53	0.327	0.574	
GIVIA 1-13	6/20/06	15.25	14.85	0.40	0.247	0.574	
GMA1-16	6/20/06	13.00	12.75	0.25	0.154	0.154	
GMA1-17W	5/16/06	16.18	15.15	1.03	0.635	1.727	
GIVIA 1-17 VV	6/20/06	16.15	14.38	1.77	1.092	1.727	
	6/7/06	11.57	11.33	0.24	0.148		
GMA1-19	6/13/06	11.02	10.45	0.57	0.290	1.135	
GIVIA 1-19	6/20/06	11.28	10.65	0.63	0.327	1.133	
	6/28/06	11.01	10.41	0.60	0.370		

Total LNAPL Removal East Street Area 2 - South for June 2006: 12.839 liters

3.388 gallons

Total LNAPL Removal East Street Area 2 - North for June 2006: 0.000 liters

0.000 gallons

Total LNAPL Removal 20's, 30's & 40's Complexes for June 2006: 0.000 liters

0.000 gallons

Total LNAPL Removal for June 2006: 12.839 liters

3.388 gallons

Note:

1. ft BMP - feet Below Measuring Point.

TABLE 21-5 64G TREATMENT PLANT DISCHARGE DATA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Date	Housatonic River Discharge (gallons)	Recharge Pond Discharge (gallons)	Total Discharge (gallons)
June 2005	4,057,780	318,355	4,376,135
July 2005	3,212,250	389,015	3,601,265
August 2005	2,778,090	356,961	3,135,051
September 2005	2,537,520	335,710	2,873,230
October 2005	5,156,510	177,795	5,334,305
November 2005	5,221,180	163,951	5,385,131
December 2005	5,678,290	104,185	5,782,475
January 2006	6,317,250	89,159	6,406,409
February 2006	8,371,400	114,659	8,486,059
March 2006	5,301,850	200,184	5,502,034
April 2006	4,830,590	255,870	5,086,460
May 2006	5,110,840	263,791	5,374,631
June 2006	5,067,810	293,825	5,361,635

After treatment, the majority of the water processed at GE's Building 64G groundwater treatment facility is discharged to the Housatonic River through NPDES permitted Outfall 005. However, as part of GE's overall efforts to contain NAPL within the site and to optimize NAPL recovery operations, a portion of the treated water discharged from the 64G facility is routed to GE's on-site recharge pond located in East Street Area 2-South.

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

				Julie 20					
Well	Measuring Point Elev.	Date	Depth to Water	Depth to LNAPL	LNAPL Thickness	Depth to DNAPL	Total Depth	DNAPL Thickness	Corrected Water Elev.
Name	(feet)	Date	(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
30's Complex	()		(11 2 1111)	(11 2)	()	(11 2 1111)	(11 2 1111)	(,	(1001)
95-15	986.38	5/30/06	8.05		0.00		16.90		978.33
95-15	986.38	6/19/06	8.10		0.00		16.90		978.28
GMA1-10	984.86	5/30/06	7.30		0.00		19.70	0.00	977.56
GMA1-10	984.86	6/19/06	7.74		0.00		19.75	0.00	977.12
GMA1-12	992.26	5/30/06	16.15		0.00		22.15	0.00	976.11
GMA1-12	992.26	6/19/06	16.16		0.00		22.15	0.00	976.10
RF-02	982.43	5/30/06	5.51		0.00		18.30	0.00	976.92
RF-02	982.43	6/19/06	5.68		0.00		18.30	0.00	976.75
RF-03	985.40	5/30/06	9.56		0.00		18.45	0.00	975.84
RF-03	985.40	6/19/06	9.62		0.00		18.44	0.00	975.78
RF-03D	985.31	5/30/06	7.38		0.00		35.99	0.00	977.93
RF-03D	985.31	6/19/06	7.47		0.00		36.08	0.00	977.84
RF-16	987.91	5/30/06	9.30		0.00		20.75	0.00	978.61
RF-16	987.91	6/19/06	9.38		0.00		20.74	0.00	978.53
40s Complex									
95-17	1,007.67	5/30/06	Buried Unde					0.00	NA
95-17	1,007.67	6/19/06	Buried Unde					0.00	NA
RF-4	1,011.99	5/30/06	15.03		0.00		23.97	0.00	996.96
RF-4	1,011.99	6/19/06	14.99		0.00		23.98	0.00	997.00
East Street Are									
13	990.88	5/16/06	17.28	17.25	0.03		22.60	0.00	973.63
13	990.88	6/20/06	17.25	17.22	0.03		22.64	0.00	973.66
14	991.61	5/16/06	17.37	17.35	0.02		25.65	0.00	974.26
14	991.61	6/20/06	17.35	17.33	0.02		25.62	0.00	974.28
19	983.59	6/7/06	10.15		0.00		18.30	0.00	973.44
19	983.59	6/13/06	10.58		0.00		18.30	0.00	973.01
19	983.59	6/20/06	10.65		0.00		18.30	0.00	972.94
19	983.59	6/28/06	8.25		0.00		18.30	0.00	975.34
25R	998.31	5/16/06	24.70	20.35	4.35		30.70	0.00	977.66
25R	998.31	6/20/06	23.80	19.41	4.39		30.75	0.00	978.59
26RR	1,000.58	5/16/06	22.06	22.00	0.06		28.48	0.00	978.58
26RR	1,000.58	6/20/06	20.76	20.72	0.04		28.50	0.00	979.86
34	982.54	5/16/06	7.70		0.00		10.70	0.00	974.84
34	982.54	6/20/06	7.69		0.00		10.68	0.00	974.85
36	983.02	5/16/06	8.30		0.00		13.40	0.00	974.72
36	983.02	6/20/06	8.37		0.00		13.40	0.00	974.65
40R	991.60	6/1/06	17.15		0.00		NM	0.00	974.45
40R	991.60	6/8/06	15.33		0.00		NM	0.00	976.27
40R	991.60	6/14/06	15.13		0.00		NM	0.00	976.47
40R	991.60	6/21/06	15.20		0.00		NM	0.00	976.40
40R	991.60	6/29/06	16.55	45.00	0.00		NM	0.00	975.05
48	992.39	5/16/06	16.60	15.30	1.30		22.61	0.00	977.00
48	992.39	6/20/06	16.90	15.25	1.65		22.65	0.00	977.02
49R	988.71	5/16/06	15.05		0.00		24.90	0.00	973.66
49R	988.71	6/20/06	15.05		0.00		24.88	0.00	973.66
49RR	989.80	5/16/06	16.15		0.00		23.04	0.00	973.65
49RR	989.80	6/20/06	16.11		0.00		23.04	0.00	973.69
50	985.79	5/16/06	9.56	9.55	0.01		23.43	0.00	976.24 975.94
50	985.79	6/20/06	9.87	9.85	0.02		23.41	0.00	
<u>55</u>	989.45	5/16/06	16.19	16.00	0.19		30.02	0.00	973.44 973.30
55 64R	989.45 993.37	6/20/06 6/1/06	16.55 17.25	16.12 17.22	0.43		30.05 19.00	0.00	
64R	993.37	6/8/06	17.23	17.22	0.03		19.00	0.00	976.15 976.06
64R	993.37	6/14/06	16.70	16.50	0.02		20.50	0.00	976.86
64R		6/21/06		16.50				0.00	976.86
64R	993.37 993.37	6/21/06	16.60 15.84	15.76	0.10 0.08		20.50 20.50	0.00	976.86
64S	984.48	6/1/06	19.12	15.76 P	< 0.08		28.70	0.00	965.36
64S	984.48	6/8/06	19.12	P P			28.70	0.00	965.28
					< 0.01				
64S	984.48	6/14/06	19.20	Р	< 0.01		28.70	0.00	965.28
64S	984.48	6/21/06	19.20	P	< 0.01		28.70	0.00	965.28
64S	984.48	6/29/06	19.17	Р	< 0.01		28.70	0.00	965.31

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

				June 20					
Well	Measuring Point Elev.	Date	Depth to Water	Depth to LNAPL	LNAPL Thickness	Depth to DNAPL	Total Depth	DNAPL Thickness	Corrected Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
64S-Caisson	NA	6/1/06	10.62	10.60	0.02		14.55	0.00	NA
64S-Caisson	NA	6/8/06	10.40	10.39	0.01		14.55	0.00	NA
64S-Caisson	NA	6/14/06	10.50	10.49	0.01		14.55	0.00	NA
64S-Caisson	NA	6/21/06	10.60	10.58	0.02		14.55	0.00	NA
64S-Caisson	NA	6/29/06	10.07	10.06	0.01		14.55	0.00	NA
64V	987.29	6/1/06	21.80	21.60	0.20		29.60	0.00	965.68
64V	987.29	6/8/06	22.70	22.50	0.20	P	29.60	< 0.01	964.78
64V 64V	987.29 987.29	6/14/06	21.80	21.60	0.20	Р	29.60	< 0.01	965.68 965.48
64V	987.29	6/21/06 6/29/06	22.00 22.00	21.80 21.70	0.20 0.30	 P	29.60 29.60	0.00 < 0.01	965.57
64X(N)	984.83	6/1/06	11.90	P P	< 0.01		15.85	0.00	972.93
64X(N)	984.83	6/8/06	11.53	11.52	0.01		15.85	0.00	973.31
64X(N)	984.83	6/14/06	11.98	11.97	0.01		15.85	0.00	972.86
64X(N)	984.83	6/21/06	11.95	11.94	0.01		15.85	0.00	972.89
64X(N)	984.83	6/29/06	11.45	11.43	0.02		15.85	0.00	973.40
64X(S)	981.56	6/1/06	15.10	15.07	0.03		23.82	0.00	966.49
64X(S)	981.56	6/8/06	14.70	14.68	0.02		23.82	0.00	966.88
64X(S)	981.56	6/14/06	15.30	15.22	0.08		23.82	0.00	966.33
64X(S)	981.56	6/21/06	15.28	15.22	0.06		23.82	0.00	966.34
64X(S)	981.56	6/29/06	14.65	14.55	0.10		23.82	0.00	967.00
64X(W)	984.87	6/1/06	18.30	Р	< 0.01		24.35	0.00	966.57
64X(W)	984.87	6/8/06	17.81	17.80	0.01		24.35	0.00	967.07
64X(W)	984.87	6/14/06	18.40	18.38	0.02		24.35	0.00	966.49
64X(W)	984.87	6/21/06	16.30	16.29	0.01		24.35	0.00	968.58
64X(W)	984.87	6/29/06	17.74	17.73	0.01		24.35	0.00	967.14
95-01	983.77	5/16/06 6/20/06	10.03		0.00		17.20 17.20	0.00	973.74 973.77
95-01 95-04	983.77 988.70	5/16/06	10.00 16.30	14.05	0.00 2.25		21.60	0.00	973.77
95-04	988.70	6/20/06	16.61	14.00	2.61		21.62	0.00	974.49
95-07	994.91	5/16/06	22.50	19.00	3.50		29.40	0.00	975.67
95-07	994.91	6/20/06	22.75	18.62	4.13		29.25	0.00	976.00
3-6C-EB-22	986.94	5/16/06	13.35		0.00		20.00	0.00	973.59
3-6C-EB-22	986.94	6/20/06	13.58		0.00		20.00	0.00	973.36
E2SC-03I	982.12	5/30/06	9.85		0.00	35.90	42.35	6.45	972.27
E2SC-03I	982.12	6/28/06	9.65		0.00	37.13	42.38	0.00	972.47
E2SC-17	985.38	5/30/06	11.60		0.00		45.75	0.00	973.78
E2SC-17	985.38	6/28/06	11.10		0.00		45.75	0.00	974.28
E2SC-21	981.70	5/16/06	Well is Destr					0.00	NA
E2SC-22	986.51	5/16/06	11.55		0.00		17.35	0.00	974.96
E2SC-22	986.51	6/20/06	11.74		0.00		17.45	0.00	974.77
E2SC-23	992.07	5/16/06	18.64		0.00		21.15	0.00	973.43
E2SC-23 E2SC-24	992.07 987.90	6/20/06 5/16/06	16.45		0.00		21.15 21.60	0.00	975.62 973.25
=====			14.65						
E2SC-24 ES2-06	987.90 986.00	6/20/06 5/16/06	15.15 12.70		0.00		21.61 34.55	0.00	972.75 973.30
ES2-06	986.00	6/20/06	12.98		0.00		34.55	0.00	973.02
ES2-11	985.05	5/16/06	10.85		0.00		19.55	0.00	974.20
ES2-11	985.05	6/20/06	10.60		0.00		19.58	0.00	974.45
ES2-12	984.41	5/16/06	11.08		0.00		18.40	0.00	973.33
ES2-12	984.41	6/20/06	11.43		0.00		18.40	0.00	972.98
GMA1-13	991.41	5/16/06	17.60		0.00		27.13	0.00	973.81
GMA1-13	991.41	6/20/06	17.65		0.00		27.15	0.00	973.76
GMA1-14	997.43	5/16/06	18.84	18.82	0.02		23.30	0.00	978.61
GMA1-14	997.43	6/20/06	17.87		0.00		23.30	0.00	979.56
GMA1-15	988.59 988.59	5/16/06	15.28	14.75	0.53		17.84	0.00	973.80
GMA1-15 GMA1-16	988.59	6/20/06	15.25	14.85	0.40		17.84	0.00	973.71
GMA1-16 GMA1-16	986.82	5/16/06 6/20/06	12.80 13.00	12.65 12.75	0.15 0.25		20.00 20.01	0.00	974.16 974.05
GMA1-17E	993.03	5/16/06	15.14	15.11	0.25		17.30	0.00	974.05
GMA1-17E	993.03	6/20/06	14.80	14.79	0.03		17.30	0.00	978.24
GMA1-17U	992.63	5/16/06	16.18	15.15	1.03		23.25	0.00	977.41
GMA1-17W	992.63	6/20/06	16.15	14.38	1.77		23.25	0.00	978.13
J		5, 25, 55			<u> </u>			0.00	3.3.10

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DEPLITED	Depth	Thickness	Water Elev.
Name	(feet)	Date	(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
GMA1-19	984.28	6/7/06	11.57	11.33	0.24	(IL DIVIP)	17.13	0.00	972.93
GMA1-19 GMA1-19	984.28	6/13/06	11.02	10.45	0.24		17.13	0.00	972.93
GMA1-19	984.28	6/20/06	11.02	10.45	0.63		17.14	0.00	973.79
		6/28/06							
GMA1-19	984.28	6/7/06	11.01 9.90	10.41	0.60		17.14	0.00	973.83
GMA1-20	983.49				0.00		17.30	0.00	973.59
GMA1-20 GMA1-20	983.49 983.49	6/13/06 6/20/06	10.08 10.25		0.00		17.30 17.30	0.00	973.41 973.24
GMA1-20	983.49	6/28/06	9.95		0.00		17.30	0.00	973.54
GMA1-21	985.68	6/7/06	12.02		0.00		19.48	0.00	973.66
GMA1-21	985.68	6/13/06	12.15		0.00		19.48	0.00	973.53
GMA1-21	985.68	6/20/06	12.40		0.00		19.45	0.00	973.28
GMA1-21	985.68	6/28/06	12.10		0.00		19.45	0.00	973.58
GMA1-22	988.45	6/20/06	14.65		0.00		19.25	0.00	973.80
GMA1-23	986.16	6/20/06	12.45		0.00		17.32	0.00	973.71
GMA1-24	983.81	6/20/06	10.55		0.00		16.12	0.00	973.26
HR-G2-MW-1	982.60	6/20/06	10.40		0.00		18.24	0.00	972.20
HR-G2-MW-2	981.39	6/20/06	8.40		0.00		17.68	0.00	972.99
HR-G2-MW-3	987.14	6/20/06	14.35		0.00		22.00	0.00	972.79
HR-G2-RW-1	976.88	6/20/06	5.80		0.00		18.70	0.00	972.55
RW-1(S)	987.23	6/1/06	19.50	19.20	0.30		28.60	0.00	968.01
RW-1(S)	987.23	6/8/06	18.80	18.30	0.50		28.60	0.00	968.90
RW-1(S)	987.23	6/14/06	18.70	18.68	0.02		28.60	0.00	968.55
RW-1(S)	987.23	6/21/06	19.00	18.80	0.20		28.60	0.00	968.42
RW-1(S)	987.23	6/29/06	17.25	17.20	0.05		28.60	0.00	970.03
RW-1(X)	982.68	6/1/06	14.30		0.00		20.80	0.00	968.38
RW-1(X)	982.68	6/8/06	14.20		0.00		20.80	0.00	968.48
RW-1(X)	982.68	6/14/06	14.20		0.00		20.80	0.00	968.48
RW-1(X)	982.68	6/21/06	14.20		0.00		20.80	0.00	968.48
RW-1(X)	982.68	6/29/06	14.20		0.00		20.80	0.00	968.48
RW-2(X)	985.96	6/1/06	13.45		0.00		15.30	0.00	972.51
RW-2(X)	985.96	6/8/06	12.80		0.00		15.30	0.00	973.16
RW-2(X)	985.96	6/14/06	13.39		0.00		15.30	0.00	972.57
RW-2(X)	985.96	6/21/06	13.30		0.00		15.30	0.00	972.66
RW-2(X)	985.96	6/29/06	12.70		0.00		15.30	0.00	973.26
RW-3(X)	980.28	6/1/06	8.40		0.00	42.90	44.40	1.50	971.88
RW-3(X)	980.28	6/8/06	8.02		0.00	42.90	44.40	1.50	972.26
RW-3(X)	980.28	6/14/06	8.80		0.00	42.80	44.40	1.60	971.48
RW-3(X)	980.28	6/21/06	8.70		0.00	42.70	44.40	1.70	971.58
RW-3(X)	980.28	6/29/06	7.80		0.00	42.80	44.40	1.60	972.48

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
Housatonic Riv	/er								
SG-HR-1	990.73	6/7/06		See Note 7 r					972.13
SG-HR-1	990.73	6/13/06	19.05	See Note 7 r	egarding dep	th to water			971.68
SG-HR-1	990.73	6/21/06	18.60	See Note 7 r	egarding dep	th to water			972.13
SG-HR-1	990.73	6/28/06	17.95	See Note 7 r	egarding dep	th to water			972.78

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 6. Well HR-G2-RW-1 is constructed at an angle of 41.67 degrees from vertical. Depth to water data reflect measurements collected along the angled well casing. Groundwater elevations are corrected to account for the angle of the well casing.
- 7. A survey reference point (SG-HR-1) was established on the Newell Street Bridge. The "Depth to Water" value(s) provided in the above table refers to the vertical distance from the surveyed reference point to the water surface.
- 8. A weighted bailer has been installed at this location to remove accumulations of DNAPL. The DNAPL thickness reported is that measured within the bailer upon the initial retrieval.
- 9. This table also includes groundwater data collected from certain wells during sampling activities conducted in May 2006 that was not included in the previous monthly report.

TABLE 21-7 ACTIVE RECOVERY SYSTEMS MONTHLY SUMMARY LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

	Volume Water	RW-1 DNAPL	RW-1R LNAPL	RW-3 LNAPL
Month / Year	Pumped (gallon)	Recovered (gallon)	Recovered (gallon)	Recovered (gallon)
June 2004	410,230			
July 2004	328,363			
August 2004	310,473			
September 2004	499,209		1	20
October 2004	426,078			
November 2004	421,409			12
December 2004	539,528			10
January 2005	443,634			10
February 2005	409,113			5
March 2005	455,192			5
April 2005	425,145			5
May 2005	357,497			
June 2005	422,006			10
July 2005	310,647		5	10
August 2005	302,572			
September 2005	198,753			
October 2005	314,247			
November 2005	412,936			
December 2005	332,721			
January 2006	342,548			
February 2006	336,595			
March 2006	322,169			
April 2006	245,626			
May 2006	253,821			
June 2006	562,906			

- 1. Volume of water pumped is total from Wells RW-1R, RW-2, and RW-3.
- 2. -- indicates LNAPL or DNAPL was not recovered by the system.
- 3. There was 40 hours of downtime for RW-1/1R, RW-2, and RW-3 during June 2006.

TABLE 21-8 MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Well Name	Date	Depth to Water (ft BMP)	Depth to DNAPL (ft BMP)	DNAPL Thickness (feet)	DNAPL Removed (liters)	June 2006 Removal (liters)
LSSC-07	6/7/06	10.20	24.70	0.38	0.234	
	6/13/06	10.50	24.75	0.33	0.204	0.765
	6/21/06	10.45	24.78	0.30	0.185	0.765
	6/26/06	10.15	24.85	0.23	0.142	
LSSC-08I	6/7/06	11.90	23.37	0.01	0.006	0.018
	6/21/06	11.88	23.36	0.02	0.012	0.010

Total Manual DNAPL Removal for June 2006: 0.784 liters 0.207 gallons

Note:

1. ft BMP - feet Below Measuring Point.

TABLE 21-9 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Name (feet) (fe	147 II	Measuring	5.4	Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
E-07 982.87 6/26/06 No longer part of monthly monitoring 0.00 NA EPA-01 983.04 6/26/06 11.30 0.00 22.65 0.00 971.7 LS-24 986.58 6/26/06 Covered by Pallet 0.00 0.00 NA LS-30 986.440 6/26/06 13.340 0.00 21.90 22.20 0.30 973.0 LS-31 987.90 6/26/06 13.38 0.00 23.10 23.32 0.22 973.7 LS-38 986.95 6/26/06 14.75 0.00 25.05 0.00 972.2 LS-44 980.78 6/26/06 8.90 0.00 24.80 0.00 971.8 LSSC-07 982.48 6/72/06 10.20 0.00 24.75 25.08 0.33 971.9 LSSC-07 982.48 6/13/06 10.50 0.00 24.75 25.08 0.33 972.2 LSSC-07 982.48 6/26/06 10.15 0.00 24.78 25.08 0.30 972.0 LSSC-07 982.48 6/26/06 10.15 0.00 24.78 25.08 0.30 972.0 LSSC-08 983.13 6/72/06 11.90 0.00 24.78 25.08 0.30 972.0 LSSC-08 983.13 6/13/06 11.90 0.00 24.78 25.08 0.30 972.0 LSSC-08 983.13 6/13/06 11.10 0.00 23.37 23.38 0.01 971.2 LSSC-08 983.13 6/26/06 11.188 0.00 23.36 23.38 0.02 971.2 LSSC-08 983.13 6/26/06 11.88 0.00 23.36 23.38 0.00 971.0 LSSC-08 983.13 6/26/06 11.88 0.00 23.36 23.38 0.00 971.0 LSSC-08 983.13 6/26/06 11.80 0.00 23.36 23.38 0.00 971.0 LSSC-08 983.11 6/26/06 11.50 0.00 23.36 23.38 0.00 971.0 LSSC-08 983.11 6/26/06 11.50 0.00 23.36 23.38 0.00 971.0 LSSC-08 983.11 6/26/06 11.50 0.00 23.36 0.00 971.0 LSSC-08 983.13 6/26/06 11.50 0.00 23.38 0.00 971.7 LSSC-08 983.11 6/26/06 11.50 0.00 23.54 0.00 972.3 LSSC-30 980.88 6/26/06 8.50 0.00 24.56 0.00 972.3 LSSC-30 980.88 6/26/06 8.50 0.00 24.56 0.00 972.0 RW-1 984.88 6/26/06 8.50 0.00 24.56 0.00 972.0 RW-1 984.88 6/26/06 8.50 0.00 25.54 0.00 972.0 RW-1 984.88 6/26/06 8.50 0.00 24.50 0.00 972.0 RW-1 984.88 6/26/06 8.50 0.00 24.50 0.00 972.0 RW-1 984.88 6/26/06 No longer part of monthly monitoring 0.00 NA RW-1 984.88 6/26/06 No longer part of monthly monitoring 0.00 P2.042 <-0.01 989.4 RW-1 984.88 6/26/06 No longer part of monthly monitoring 0.00 P2.042 <-0.01 989.4 RW-1 984.88 6/26/06 No longer part of monthly monitoring 0.00 P2.042 <-0.01 98	Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
EPA-01 983.04 6/26/06 11:30 0.00 22.65 0.00 971.7 LS-24 986.58 6/26/06 13:40 0.00 21:90 22:20 0.30 973.0 LS-31 987.090 6/26/06 13:38 0.00 23:10 23:32 0.22 973.7 LS-38 986.95 6/26/06 14:75 0.00 25:05 0.00 972.2 LSSC-07 982.48 6/7/06 10:20 0.00 24:80 0.00 971.8 LSSC-07 982.48 6/13/06 10:50 0.00 24:75 25:08 0.33 971.9 LSSC-07 982.48 6/26/06 10:15 0.00 24:78 25:08 0.33 971.2 LSSC-081 983.13 6/72/06 11:90 0.00 24:78 25:08 0.33 971.2 LSSC-081 983.13 <th></th> <th></th> <th>0/00/00</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>			0/00/00							
LS-24 986.58 6/26/06 Covered by Pallet 0.00 0.00 NA										
LS-30 986.440 6/26/06 13.40 0.00 21.90 22.20 0.30 973.0										
LS-31 987.090 6/26/06 13.38 0.00 23.10 23.32 0.22 973.7				•						
LS-38 986.95 6/26/06 8.90 0.00 25.05 0.00 972.2										
LS-44										
LSSC-07 982.48 6/7/06 10.20 0.00 24.70 25.08 0.38 972.2										
LSSC-07 982.48 6/13/06 10.50 0.00 24.75 25.08 0.33 971.9 LSSC-07 982.48 6/2/06 10.45 0.00 24.78 25.08 0.23 972.3 LSSC-07 982.48 6/26/06 10.15 0.00 24.85 25.08 0.23 972.3 LSSC-08I 983.13 6/7/06 11.90 0.00 23.37 23.38 0.01 971.2 LSSC-08I 983.13 6/3/06 11.20 0.00 23.36 0.00 971.2 LSSC-08I 983.13 6/26/06 11.42 0.00 23.38 0.02 971.2 LSSC-08I 983.13 6/26/06 11.50 0.00 23.38 0.00 971.6 LSSC-18I 987.32 6/26/06 13.50 0.00 14.68 0.00 972.1 LSSC-32 980.										971.88
LSSC-07 982.48 6/21/06 10.45 0.00 24.78 25.08 0.30 972.0										
LSSC-07 982.48 6/26/06 10.15 0.00 24.85 25.08 0.23 972.3 LSSC-08I 983.13 6/7/06 11.90 0.00 23.37 23.38 0.01 971.2 LSSC-08I 983.13 6/21/06 11.88 0.00 23.36 0.00 971.0 LSSC-08I 983.13 6/26/06 11.88 0.00 23.38 0.02 971.2 LSSC-08I 983.13 6/26/06 11.50 0.00 23.38 0.00 971.7 LSSC-08I 983.11 6/26/06 11.50 0.00 21.38 0.00 971.7 LSSC-16I 980.88 6/26/06 8.50 0.00 28.54 0.00 972.3 LSSC-32 980.68 6/26/06 8.51 0.00 29.80 0.00 972.1 LSSC-33 980.49<										
LSSC-08 983.13										972.03
LSSC-08I 983.13 6/13/06 12.10 0.00 23.36 0.00 971.0 LSSC-08I 983.13 6/21/06 11.88 0.00 23.36 23.38 0.02 971.2 LSSC-08I 983.13 6/26/06 11.42 0.00 23.38 0.00 971.6 LSSC-08S 983.11 6/26/06 11.50 0.00 14.68 0.00 971.6 LSSC-16I 980.88 6/26/06 8.50 0.00 28.54 0.00 972.3 LSSC-32 980.68 6/26/06 8.51 0.00 35.24 0.00 972.3 LSSC-32 980.69 6/26/06 8.40 0.00 35.24 0.00 972.0 MW-6R 985.14 6/26/06 No longer part of monthly monitoring 0.00 P 21.00 < 0.01 972.7 RW-1 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>972.33</td>										972.33
LSSC-08 983.13							23.37			971.23
LSSC-08I 983.13 6/26/06 11.42 0.00 23.38 0.00 971.7 LSSC-08S 983.11 6/26/06 11.50 0.00 14.68 0.00 971.6 LSSC-16I 980.88 6/26/06 8.50 0.00 28.54 0.00 972.3 LSSC-18I 987.32 6/26/06 8.51 0.00 18.58 0.00 973.4 LSSC-32 980.68 6/26/06 8.51 0.00 35.24 0.00 972.1 LSSC-33 980.49 6/26/06 8.40 0.00 29.80 0.00 972.1 LSSC-33 984.88 6/10/06 12.15 0.00 P 21.00 <0.01 972.7 RW-1 984.88 6/10/06 12.15 0.00 P 21.00 <0.01 972.7 RW-1 984.88 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>971.03</td></t<>										971.03
LSSC-08S 983.11 6/26/06 11.50 0.00 14.68 0.00 971.6 LSSC-16I 980.88 6/26/06 8.50 0.00 28.54 0.00 972.3 LSSC-18 987.32 6/26/06 13.90 0.00 18.58 0.00 973.4 LSSC-32 980.68 6/26/06 8.40 0.00 35.24 0.00 972.0 MW-6R 985.14 6/26/06 8.40 0.00 29.80 0.00 972.1 RW-1 984.88 6/1/06 12.15 0.00 P 21.00 <0.01 972.7 RW-1 984.88 6/8/06 11.90 0.00 P 21.00 <0.01 972.7 RW-1 984.88 6/21/06 12.30 0.00 P 21.00 <0.01 972.9 RW-1 984.88 6/29/06 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>23.36</td> <td></td> <td></td> <td>971.25</td>							23.36			971.25
LSSC-16I 980.88 6/26/06 8.50 0.00 28.54 0.00 972.3 LSSC-18 987.32 6/26/06 13.90 0.00 18.58 0.00 973.4 LSSC-32 980.68 6/26/06 8.51 0.00 29.80 0.00 972.1 LSSC-33 980.49 6/26/06 No longer part of monthly monitoring 29.80 0.00 972.0 MW-6R 985.14 6/26/06 No longer part of monthly monitoring 0.00 NA RW-1 984.88 6/1/06 12.15 0.00 P 21.00 < 0.01										971.71
LSSC-18 987.32 6/26/06 13.90 0.00 18.58 0.00 973.4 LSSC-32 980.68 6/26/06 8.51 0.00 35.24 0.00 972.1 LSSC-33 980.49 6/26/06 No longer part of monthly monitoring 0.00 29.80 0.00 972.0 MW-6R 985.14 6/26/06 No longer part of monthly monitoring 0.00 NA RW-1 984.88 6/10/06 12.15 0.00 P 21.00 < 0.01			6/26/06	11.50		0.00		14.68	0.00	971.61
LSSC-32 980.68 6/26/06 8.51 0.00 35.24 0.00 972.1 LSSC-33 980.49 6/26/06 8.40 0.00 29.80 0.00 972.0 MW-6R 985.14 6/26/06 No longer part of monthly monitoring 0.00 NA RW-1 984.88 6/1/06 12.15 0.00 P 21.00 < 0.01 972.7 RW-1 984.88 6/8/06 11.90 0.00 P 21.00 < 0.01 972.9 RW-1 984.88 6/14/06 12.10 0.00 P 21.00 < 0.01 972.9 RW-1 984.88 6/21/06 12.30 0.00 P 21.00 < 0.01 972.9 RW-1 984.88 6/29/06 11.90 0.00 P 21.00 < 0.01 972.5 RW-1 (R) 985.07 6/1/06 15.65 -	LSSC-16I		6/26/06	8.50		0.00		28.54	0.00	972.38
LSSC-33 980.49 6/26/06 8.40 0.00 29.80 0.00 972.0 MW-6R 985.14 6/26/06 No longer part of monthly monitoring 0.00 NA RW-1 984.88 6/1/06 12.15 0.00 P 21.00 < 0.01			6/26/06	13.90		0.00		18.58	0.00	973.42
MW-6R 985.14 6/26/06 No longer part of monthly monitoring 0.00 NA RW-1 984.88 6/1/06 12.15 0.00 P 21.00 < 0.01	LSSC-32		6/26/06	8.51		0.00		35.24	0.00	972.17
RW-1 984.88 6/1/06 12.15 0.00 P 21.00 < 0.01 972.7 RW-1 984.88 6/8/06 11.90 0.00 P 21.00 < 0.01	LSSC-33	980.49	6/26/06	8.40		0.00		29.80	0.00	972.09
RW-1 984.88 6/8/06 11.90 0.00 P 21.00 < 0.01 972.9 RW-1 984.88 6/14/06 12.10 0.00 P 21.00 < 0.01	MW-6R	985.14	6/26/06	No longer part	of monthly m	nonitoring			0.00	NA
RW-1 984.88 6/14/06 12.10 0.00 P 21.00 < 0.01 972.7 RW-1 984.88 6/21/06 12.30 0.00 P 21.00 < 0.01	RW-1	984.88	6/1/06	12.15		0.00	Р	21.00	< 0.01	972.73
RW-1 984.88 6/21/06 12.30 0.00 P 21.00 < 0.01 972.5 RW-1 984.88 6/29/06 11.90 0.00 P 21.00 < 0.01	RW-1	984.88	6/8/06	11.90		0.00	Р	21.00	< 0.01	972.98
RW-1 984.88 6/29/06 11.90 0.00 P 21.00 < 0.01 972.9 RW-1 (R) 985.07 6/1/06 15.65 0.00 P 20.42 < 0.01	RW-1	984.88	6/14/06	12.10		0.00		21.00	< 0.01	972.78
RW-1 (R) 985.07 6/1/06 15.65 0.00 P 20.42 < 0.01 969.4 RW-1 (R) 985.07 6/8/06 15.69 0.00 P 20.42 < 0.01	RW-1	984.88	6/21/06	12.30		0.00	Р	21.00	< 0.01	972.58
RW-1 (R) 985.07 6/8/06 15.69 0.00 P 20.42 < 0.01 969.3 RW-1 (R) 985.07 6/14/06 15.08 0.00 P 20.42 < 0.01	RW-1	984.88	6/29/06	11.90		0.00	Р	21.00	< 0.01	972.98
RW-1 (R) 985.07 6/14/06 15.08 0.00 P 20.42 < 0.01 969.9 RW-1 (R) 985.07 6/21/06 15.10 0.00 P 20.42 < 0.01	RW-1 (R)	985.07	6/1/06	15.65		0.00	Р	20.42	< 0.01	969.42
RW-1 (R) 985.07 6/21/06 15.10 0.00 P 20.42 < 0.01 969.9 RW-1 (R) 985.07 6/29/06 15.00 0.00 P 20.42 < 0.01	RW-1 (R)	985.07	6/8/06	15.69		0.00	Р	20.42	< 0.01	969.38
RW-1 (R) 985.07 6/29/06 15.00 0.00 P 20.42 < 0.01 970.0 RW-2 987.82 6/1/06 13.60 0.00 21.75 0.00 974.2 RW-2 987.82 6/8/06 13.40 0.00 21.75 0.00 974.4 RW-2 987.82 6/14/06 13.90 0.00 21.75 0.00 973.9 RW-2 987.82 6/21/06 13.90 0.00 21.75 0.00 973.9 RW-2 987.82 6/29/06 13.45 0.00 21.75 0.00 974.3 RW-3 984.08 6/1/06 16.45 16.43 0.02 21.57 0.00 967.5 RW-3 984.08 6/8/06 16.60 16.55 0.05 21.57 0.00 967.5	RW-1 (R)	985.07	6/14/06	15.08		0.00	Р	20.42	< 0.01	969.99
RW-2 987.82 6/1/06 13.60 0.00 21.75 0.00 974.2 RW-2 987.82 6/8/06 13.40 0.00 21.75 0.00 974.4 RW-2 987.82 6/14/06 13.90 0.00 21.75 0.00 973.9 RW-2 987.82 6/21/06 13.90 0.00 21.75 0.00 973.9 RW-2 987.82 6/29/06 13.45 0.00 21.75 0.00 974.3 RW-3 984.08 6/1/06 16.45 16.43 0.02 21.57 0.00 967.6 RW-3 984.08 6/8/06 16.60 16.55 0.05 21.57 0.00 967.5	RW-1 (R)	985.07	6/21/06	15.10		0.00	Р	20.42	< 0.01	969.97
RW-2 987.82 6/8/06 13.40 0.00 21.75 0.00 974.4 RW-2 987.82 6/14/06 13.90 0.00 21.75 0.00 973.9 RW-2 987.82 6/21/06 13.90 0.00 21.75 0.00 973.9 RW-2 987.82 6/29/06 13.45 0.00 21.75 0.00 974.3 RW-3 984.08 6/1/06 16.45 16.43 0.02 21.57 0.00 967.6 RW-3 984.08 6/8/06 16.60 16.55 0.05 21.57 0.00 967.5	RW-1 (R)	985.07	6/29/06	15.00		0.00	Р	20.42	< 0.01	970.07
RW-2 987.82 6/14/06 13.90 0.00 21.75 0.00 973.9 RW-2 987.82 6/21/06 13.90 0.00 21.75 0.00 973.9 RW-2 987.82 6/29/06 13.45 0.00 21.75 0.00 974.3 RW-3 984.08 6/1/06 16.45 16.43 0.02 21.57 0.00 967.6 RW-3 984.08 6/8/06 16.60 16.55 0.05 21.57 0.00 967.5	RW-2	987.82	6/1/06	13.60		0.00		21.75	0.00	974.22
RW-2 987.82 6/21/06 13.90 0.00 21.75 0.00 973.9 RW-2 987.82 6/29/06 13.45 0.00 21.75 0.00 974.3 RW-3 984.08 6/1/06 16.45 16.43 0.02 21.57 0.00 967.6 RW-3 984.08 6/8/06 16.60 16.55 0.05 21.57 0.00 967.5	RW-2	987.82	6/8/06	13.40		0.00		21.75	0.00	974.42
RW-2 987.82 6/29/06 13.45 0.00 21.75 0.00 974.3 RW-3 984.08 6/1/06 16.45 16.43 0.02 21.57 0.00 967.6 RW-3 984.08 6/8/06 16.60 16.55 0.05 21.57 0.00 967.5	RW-2	987.82	6/14/06	13.90		0.00		21.75	0.00	973.92
RW-2 987.82 6/29/06 13.45 0.00 21.75 0.00 974.3 RW-3 984.08 6/1/06 16.45 16.43 0.02 21.57 0.00 967.6 RW-3 984.08 6/8/06 16.60 16.55 0.05 21.57 0.00 967.5										973.92
RW-3 984.08 6/1/06 16.45 16.43 0.02 21.57 0.00 967.6 RW-3 984.08 6/8/06 16.60 16.55 0.05 21.57 0.00 967.5				13.45						974.37
RW-3 984.08 6/8/06 16.60 16.55 0.05 21.57 0.00 967.5					16.43					967.65
		984.08		16.60						967.53
										967.70
										967.45
										967.57

TABLE 21-9 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
Housatonic	River (Lyma	n Street B	ridge)						
BM-2A	986.32	6/7/06	15.75	See Note 5 r	See Note 5 regarding depth to water				
BM-2A	986.32	6/13/06	16.20	See Note 5 r	egarding dep	th to water			970.12
BM-2A	986.32	6/21/06	15.50	See Note 5 r	egarding dep	th to water			970.82
BM-2A	986.32	6/26/06	15.15	See Note 5 r	egarding dep	th to water		·	971.17

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 5. A survey reference point (BM-2A) was established on the Lyman Street Bridge. The "Depth to Water" value(s) provided in the above table refers to the vertical distance from the surveyed reference point to the water surface.

TABLE 21-10 ACTIVE DNAPL RECOVERY SYSTEMS MONTHLY SUMMARY NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Recovery System	Date	Total Gallons Recovered
System 1 ⁽¹⁾	June 2005	18.7
	July 2005	14.3
	August 2005	(4)
	September 2005	(4)
	October 2005	(4)
	November 2005	(4)
	December 2005	(4)
	January 2006	(4)
	February 2006	(4)
	March 2006	(4)
	April 2006	(4)
	May 2006	(4)
	June 2006	(4)
System 2 ⁽²⁾	June 2005	32.4
	July 2005	48.6
	August 2005	(4)
	September 2005	(4)
	October 2005	(4)
	November 2005	(4)
	December 2005	(4)
	January 2006	(4)
	February 2006	(4)
	March 2006	(4)
	April 2006	(4)
	May 2006	(4)
	June 2006	(4)
Total Automated DNA	PL Removal for June 2006:	0.0 Gallons

- 1. System 1 wells are NS-15, NS-30, and NS-32.
- 2. System 2 wells are N2SC-01I, N2SC-03I, and N2SC-14.
- 3. In January 2005, System 2 malfunctioned during weeks 2 and 3, pumping mostly water. The volume reported for those two weeks is an estimated quantity that was included in the total volume removed.
- 4. The DNAPL recovery systems for the Newell Street Area II were shut down on July 25, 2005. The upgraded systems will be completed and activated approximately 2 to 3 months after completion of the EPA-approved soil remediation activities in this area.

TABLE 21-11 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

CONSENT DECREE MONTHLY STATUS REPORT GROUNDWATER MANAGEMENT AREA 1 - NEWELL STREET AREA II MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL June 2006

Well Name	Date	Depth to Water (ft BMP)	Depth to DNAPL (ft BMP)	DNAPL Thickness (feet)	DNAPL Removed (liters)	June 2006 Removal (liters)	
Name		(IL DIVII)	(IL DIVII)	(ieet)	(IILEIS)	(111613)	
N2SC-08	6/26/06	12.20	40.60	2.04	1.259	1.259	

Total DNAPL Removal for June 2006: 1.259 liters

0.332 gallons

Note:

1. ft BMP - feet Below Measuring Point.

TABLE 21-12 ROUTINE WELL MONITORING NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
N2SC-01I	984.99	6/7/06	12.45		0.00	37.50	41.60	4.10	972.54
N2SC-01I	984.99	6/14/06	12.73		0.00	37.63	41.60	3.97	972.26
N2SC-01I	984.99	6/21/06	12.70		0.00	37.71	41.60	3.89	972.29
N2SC-01I	984.99	6/26/06	12.65		0.00	37.80	41.60	3.80	972.34
N2SC-01I(R)	986.01	6/7/06	12.70		0.00	39.85	40.60	0.75	973.31
N2SC-01I(R)	986.01	6/14/06	13.02		0.00	39.55	40.55	1.00	972.99
N2SC-01I(R)	986.01	6/21/06	13.05		0.00	39.45	40.55	1.10	972.96
N2SC-01I(R)	986.01	6/26/06	12.82		0.00	39.35	40.60	1.25	973.19
N2SC-02	985.56	6/26/06	11.40		0.00		39.35	0.00	974.16
N2SC-03I	986.24	6/7/06	10.85		0.00	36.31	38.90	2.59	975.39
N2SC-03I	986.24	6/14/06	11.11		0.00	36.40	38.88	2.48	975.13
N2SC-03I	986.24	6/21/06	11.18		0.00	36.40	38.88	2.48	975.06
N2SC-03I	986.24	6/26/06	11.05		0.00	36.65	38.88	2.23	975.19
N2SC-03I(R)	985.86	6/7/06	12.35		0.00	39.20	40.55	1.35	973.51
N2SC-03I(R)	985.86	6/14/06	12.68		0.00	38.70	40.53	1.83	973.18
N2SC-03I(R)	985.86	6/21/06	12.70		0.00	38.10	40.56	2.46	973.16
N2SC-03I(R)	985.86	6/26/06	12.50		0.00	37.98	40.56	2.58	973.36
N2SC-07	984.61	6/26/06	10.60		0.00		36.90	0.00	974.01
N2SC-08	986.07	6/26/06	12.20		0.00	40.60	42.64	2.04	973.87
N2SC-14	985.06	6/7/06	13.74		0.00	38.10	40.28	2.18	971.32
N2SC-14	985.06	6/14/06	14.02		0.00	38.65	40.30	1.65	971.04
N2SC-14	985.06	6/21/06	14.00		0.00	38.55	40.25	1.70	971.06
N2SC-14	985.06	6/26/06	13.74		0.00	38.40	40.30	1.90	971.32
NS-15R	NA	6/7/06	12.70		0.00		41.20	0.00	NA
NS-15R	NA	6/14/06	11.82		0.00		20.35	0.00	NA
NS-15R	NA	6/21/06	11.74		0.00		20.35	0.00	NA
NS-15R	NA	6/26/06	11.35		0.00		20.46	0.00	NA
NS-30	985.99	6/7/06	10.80		0.00	36.05	36.31	0.26	975.19
NS-30	985.99	6/14/06	11.10		0.00	35.65	36.35	0.70	974.89
NS-30	985.99	6/21/06	11.10		0.00	36.10	36.35	0.25	974.89
NS-30	985.99	6/26/06	10.80		0.00	35.98	36.35	0.37	975.19
NS-32	986.20	6/7/06	12.38		0.00	39.80	39.90	0.10	973.82
NS-32	986.20	6/14/06	11.96		0.00	38.98	39.20	0.22	974.24
NS-32	986.20	6/21/06	11.95		0.00	39.05	39.20	0.15	974.25
NS-32	986.20	6/26/06	11.70		0.00	39.10	39.20	0.10	974.50

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.

TABLE 21-13 ROUTINE WELL MONITORING SILVER LAKE AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)	
Monitoring Wells Adjacent to Silver Lake										
SLGW-01D	983.13		l					0.00	NA	
SLGW-01S	982.94							0.00	NA	
SLGW-02D	985.10							0.00	NA	
SLGW-02S	985.39							0.00	NA	
SLGW-03D	979.14							0.00	NA	
SLGW-03S	980.21	6/26/06	No longer part	of monthly m	onitoring			0.00	NA	
SLGW-04D	983.51	0/20/00	No longer part	or morning m	ioriitorii ig			0.00	NA	
SLGW-04S	984.02							0.00	NA	
SLGW-05D	979.30							0.00	NA	
SLGW-05S	979.12						0.00	NA		
SLGW-06D	981.63							0.00	NA	
SLGW-06S	981.66							0.00	NA	
Staff Gauge wit	hin Silver Lal	ке								
Silver Lake Gauge	980.30	6/7/06	4.33	4.33 See Note 4 regarding depth to water					984.63	
Silver Lake Gauge	980.30	6/13/06	4.43 See Note 4 regarding depth to water					984.73		
Silver Lake Gauge	980.30	6/21/06	4.35 See Note 4 regarding depth to water				984.65			
Silver Lake Gauge	980.30	6/28/06	4.05 See Note 4 regarding depth to water				984.35			

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. A survey reference point was established on the Silver Lake staff gauge. The "Depth to Water" value(s) provided in the above table refers to the vertical distance from the surveyed reference point to the water surface.
- Additional groundwater elevation data was collected from wells near Silver Lake that are located in the 30s Complex and at the Lyman Street Area. Those results are presented in the monitoring tables for those Removal Action Areas.

ITEM 22 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS J & K (GMA 2) (GECD320) JUNE 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Continued routine river elevation monitoring.

b. Sampling/Test Results Received

See attached table.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine river elevation monitoring.
- Submit Groundwater Quality Monitoring Interim Report for Spring 2006 (due by July 31, 2006).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

TABLE 22-1 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 2

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)	
Housatonic River (Foot Bridge)										
GMA2-SG-1	989.82	6/28/2006	15.88	See Note 1 regarding depth to water					973.94	

Note:

1. A survey reference point was established on the Oxbow J & K foot bridge. The "Depth to Water" value(s) provided in the above table refers to the vertical distance from the surveyed reference point to the water surface.

ITEM 23 GROUNDWATER MANAGEMENT AREAS PLANT SITE 2 (GMA 3) (GECD330) JUNE 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

- Conducted routine groundwater elevation and NAPL monitoring activities. Approximately 22.748 liters (6.00 gallons) of LNAPL were removed by the automatic skimmer located in well 51-21 and an additional 2.031 liters (0.54 gallon) of LNAPL were manually removed from the wells in this area (see Table 23-3).
- Completed spring 2006 groundwater sampling event, with the resampling of certain wells for selected analytes (see Item 23.e).

b. Sampling/Test Results Received

- See attached tables.
- Preliminary analytical results received in June 2006 from the spring 2006 GMA 3 interim groundwater quality monitoring activities are shown in Table 23-2. These preliminary results have been compared to the applicable Method 1 GW-2 and GW-3 groundwater standards and UCLs for groundwater set forth in the MCP. These comparisons indicate the following:
 - The MCP UCL for chlorobenzene in groundwater (10 ppm) was exceeded in the samples from monitoring wells 89A and 89D-R. Similar exceedances were previously observed in these wells.
 - There were no other exceedances of UCLs in any of the groundwater sample results received in June 2006.
 - The MCP GW-2 standards were not exceeded in any of the GW-2 groundwater sample results received in June 2006.
 - Although wells 89A and 89D-R are natural attenuation wells and not monitoring points for GW-3 standards, we note, for completeness, that the concentrations of chlorobenzene in the samples from those wells were greater than the MCP GW-3 standard. The chlorobenzene concentrations at these locations were also greater than MCP UCL for chlorobenzene in groundwater, as discussed above. This was also true in previous sampling events. In addition, the benzene concentration in well 89D-R was greater than the respective MCP GW-3 standard. Similar observations were made during prior sampling events at these wells.

ITEM 23 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 2 (GMA 3) (GECD330) JUNE 2006

b. Sampling/Test Results Received (cont'd)

■ There were no other exceedances of MCP GW-3 standards in any of the groundwater sample results received in June 2006.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue ongoing groundwater and NAPL monitoring and recovery activities.
- Initiate soil gas investigation near Building 51 following EPA approval of GE's May 31, 2006 Work Plan.
- Initiate preparation of Baseline Groundwater Quality Monitoring Interim Report for Spring 2006 (due to EPA by August 31, 2006).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

A sample cooler shipped on April 26, 2006 was lost during shipping. Once located and delivered to the laboratory, the samples were found to be outside allowable temperature limits. These samples consisted of samples collected from wells 54B-R, 82B-R, and 95B-R for PCDD/PCDF analysis and samples collected from wells 16C-R and 95B-R for methane/ethane/ethene analyses. As a result, GE recollected samples from these wells in June 2006 for the required analyses.

f. Proposed/Approved Work Plan Modifications

None

TABLE 23-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JUNE 2006

GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or BBL
Semi-Annual Groundwater Sampling	114A	5/9/06	Groundwater	SGS	VOC, Natural Attenuation	6/16/06
Semi-Annual Groundwater Sampling	115A	5/10/06	Groundwater	SGS	VOC, Natural Attenuation	6/8/06
Semi-Annual Groundwater Sampling	115B	5/10/06	Groundwater	SGS	VOC, Natural Attenuation	6/8/06
Semi-Annual Groundwater Sampling	16C-R	5/31/06	Groundwater	SGS	Methane, Ethene, Ethane	6/29/06
Semi-Annual Groundwater Sampling	16C-R	4/26/06	Groundwater	SGS	VOC, Natural Attenuation	6/8/06
Semi-Annual Groundwater Sampling	54B-R	4/26/06	Groundwater	SGS	PCB, PCB (f), SVOC, CN, CN (f), PCDD/PCDF, Sulfide	6/8/06
Semi-Annual Groundwater Sampling	54B-R	6/1/06	Groundwater	SGS	PCDD/PCDF	6/29/06
Semi-Annual Groundwater Sampling	54B-R	4/28/06	Groundwater	SGS	VOC, Metals, Metals (f), Pest, Herb	6/12/06
Semi-Annual Groundwater Sampling	82B-R	4/26/06	Groundwater	SGS	PCB, PCB (f), VOC, SVOC, Metals, Metals (f), CN, CN (f), Sulfide, PCDD/PCDF, Pest, Herb	6/8/06
Semi-Annual Groundwater Sampling	82B-R	6/1/06	Groundwater	SGS	PCDD/PCDF	6/29/06
Semi-Annual Groundwater Sampling	89A	5/2/06	Groundwater	SGS	VOC, SVOC (Limited), Natural Attenuation	6/7/06
Semi-Annual Groundwater Sampling	89B	5/2/06	Groundwater	SGS	VOC, SVOC (Limited), Natural Attenuation	6/7/06
Semi-Annual Groundwater Sampling	89D-R	5/2/06	Groundwater	SGS	VOC, Natural Attenuation	6/7/06
Semi-Annual Groundwater Sampling	95A	5/1/06	Groundwater	SGS	VOC, SVOC (Limited), Natural Attenuation	6/7/06
Semi-Annual Groundwater Sampling	95B-R	5/31/06	Groundwater	SGS	Methane, Ethene, Ethane, PCDD/PCDF	6/29/06
Semi-Annual Groundwater Sampling	95B-R	4/26/06	Groundwater	SGS	PCB, PCB (f), VOC, VOC (Expanded List), Metals, Metals (f), CN, CN (f), Sulfide, PCDD/PCDF, Pest, Herb, Natural Attenuation	6/8/06
Semi-Annual Groundwater Sampling	GMA-DUP-6 (95B-R)	5/31/06	Groundwater	SGS	Methane, Ethene, Ethane, PCDD/PCDF	6/29/06
Semi-Annual Groundwater Sampling	GMA-DUP-6 (95B-R)	4/26/06	Groundwater	SGS	PCB, PCB (f), VOC, VOC (Expanded List), Metals, Metals (f), CN, CN (f), Sulfide, PCDD/PCDF, Pest, Herb, Natural Attenuation	6/8/06

1 of 1

Notes:

- 1. Field duplicate sample locations are presented in parenthesis.
- 2. (f) Indicates filtered analysis requested.

BASELINE SEMI-ANNUAL GROUNDWATER SAMPLING GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Parameter	Sample ID: Date Collected:	16C-R 4/26-5/31/2006	54B-R 4/26-6/1/2006	82B-R 4/26-6/1/2006	89A 5/2/06
Volatile Organics	·	·			
Benzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	5.6
Chlorobenzene		0.0012 J	ND(0.0050)	ND(0.0050)	14
Toluene		ND(0.0050)	ND(0.0050)	0.0040 J	ND(1.0)
Vinyl Chloride		ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(1.0)
Total VOCs		0.0012 J	ND(0.20)	0.0040 J	20
PCBs-Unfiltered	•	•			
Aroclor-1254		NA	0.00017	0.00029	NA
Total PCBs		NA	0.00017	0.00029	NA
PCBs-Filtered		•			
Aroclor-1254		NA	0.00019	0.00024	NA
Total PCBs		NA	0.00019	0.00024	NA
Semivolatile Organ	nics	•		•	
1,4-Dichlorobenzene		NA	ND(0.010)	ND(0.010)	NA
2-Chlorophenol		NA	ND(0.010)	ND(0.010)	0.0068 J
4-Chlorophenol	NA NA NA		0.010		
Organochlorine Pe	sticides	L.			
None Detected		NA			NA
Organophosphate	Pesticides				
None Detected		NA			NA
Herbicides					
None Detected		NA			NA
Furans		14/1			14/1
2,3,7,8-TCDF		NA	ND(0.000000016)	ND(0.00000000067)	NA
TCDFs (total)		NA NA	ND(0.0000000016)	ND(0.00000000007)	NA NA
1,2,3,7,8-PeCDF		NA NA	ND(0.0000000010)	0.000000000000000000000000000000000000	NA NA
2,3,4,7,8-PeCDF		NA NA	ND(0.0000000010) X	ND(0.000000010) X	NA NA
PeCDFs (total)		NA NA	0.0000000010 / X	0.000000011	NA
1,2,3,4,7,8-HxCDF		NA	0.000000013 J	0.000000014 J	NA
1,2,3,6,7,8-HxCDF		NA	ND(0.000000024)	ND(0.00000000080) X	NA
1,2,3,7,8,9-HxCDF		NA	ND(0.000000024)	ND(0.0000000025)	NA
2,3,4,6,7,8-HxCDF		NA	ND(0.0000000024)	ND(0.0000000056) X	NA
HxCDFs (total)		NA	0.000000027	0.000000014	NA
1,2,3,4,6,7,8-HpCDF	=	NA	0.0000000021 J	0.000000014 J	NA
1,2,3,4,7,8,9-HpCDF		NA	ND(0.0000000024)	ND(0.000000025)	NA
HpCDFs (total)		NA	0.000000035	0.000000014	NA
OCDF		NA	0.000000055 J	0.0000000029 J	NA
Dioxins	•	•			
2,3,7,8-TCDD		NA	ND(0.000000012)	ND(0.00000000060)	NA
TCDDs (total)		NA	ND(0.000000012)	ND(0.00000000060)	NA
1,2,3,7,8-PeCDD		NA	ND(0.000000024)	ND(0.000000025)	NA
PeCDDs (total)		NA	ND(0.000000024)	ND(0.000000025)	NA
1,2,3,4,7,8-HxCDD		NA	ND(0.000000024)	ND(0.000000025)	NA
1,2,3,6,7,8-HxCDD		NA	ND(0.000000024)	ND(0.000000025)	NA
1,2,3,7,8,9-HxCDD		NA	ND(0.000000024)	ND(0.000000025)	NA
HxCDDs (total)		NA	ND(0.000000024)	ND(0.000000025)	NA
1,2,3,4,6,7,8-HpCDI)	NA	ND(0.000000024)	0.000000019 J	NA
HpCDDs (total)		NA	ND(0.000000024)	0.000000031	NA
OCDD		NA	0.00000012 J	0.00000015 J	NA
Total TEQs (WHO T	EFs)	NA	0.000000030	0.000000026	NA

BASELINE SEMI-ANNUAL GROUNDWATER SAMPLING GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	16C-R	54B-R	82B-R	89A
	Date Collected:	4/26-5/31/2006	4/26-6/1/2006	4/26-6/1/2006	5/2/06
Inorganics-Unfiltered					
Antimony		NA	ND(0.0600)	0.0120 B	NA
Arsenic		NA	0.00510 B	ND(0.0100)	NA
Barium		NA	0.200	0.0630 B	NA
Chromium		NA	0.00120 B	0.00110 B	NA
Cobalt		NA	0.00130 B	0.000990 B	NA
Copper		NA	ND(0.0250)	ND(0.0250)	NA
Lead		NA	ND(0.00500)	ND(0.00500)	NA
Nickel		NA	0.00280 B	ND(0.0400)	NA
Selenium		NA	0.00400 B	ND(0.00500)	NA
Sulfide		NA	4.80 B	ND(5.00)	NA
Tin		NA	ND(0.0300)	ND(0.0300)	NA
Zinc		NA	ND(0.0200)	0.00940 B	NA
Inorganics-Filtered	•			•	•
Antimony		NA	ND(0.0600)	ND(0.0600)	NA
Arsenic		NA	ND(0.0100)	ND(0.0100)	NA
Barium		NA	0.0980 B	0.0490 B	NA
Chromium		NA	ND(0.0100)	ND(0.0100)	NA
Cobalt		NA	ND(0.0500)	ND(0.0500)	NA
Copper		NA	0.00160 B	ND(0.0250)	NA
Lead		NA	ND(0.00500)	ND(0.00500)	NA
Nickel		NA	0.00200 B	ND(0.0400)	NA
Selenium		NA	ND(0.00500)	ND(0.00500)	NA
Tin		NA	ND(0.0300)	ND(0.0300)	NA
Zinc		NA	0.00540 B	ND(0.0200)	NA
Natural Attenuation Par	ameters				•
Alkalinity (Total)		130	NA	NA	340
Chloride		2.0	NA	NA	340
Dissolved Iron		ND(0.100)	NA	NA	0.0290 B
Dissolved Organic Carbo	n	0.810 B	NA	NA	5.70
Ethane		ND(0.020)	NA	NA	ND(0.20)
Ethene		ND(0.020)	NA	NA	ND(0.20)
Methane		0.0446	NA	NA	5.80
Nitrate Nitrogen		0.130	NA	NA	ND(0.100)
Nitrite Nitrogen		ND(0.500)	NA	NA	ND(0.500)
Sulfate (turbidimetric)		6.30	NA	NA	ND(5.00)

BASELINE SEMI-ANNUAL GROUNDWATER SAMPLING GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Parameter	Sample ID: Date Collected:	89B 5/2/06	89D-R 5/2/06	95A 5/1/06	95B-R 4/26-5/31/2006
Volatile Organics	·				
Benzene		0.017	12	ND(0.0050)	0.0031 J [0.0030 J]
Chlorobenzene		0.15	34	ND(0.0050)	0.073 [0.074]
Toluene		0.0067 J	ND(0.10)	ND(0.0050)	ND(0.0050) [ND(0.0050)]
Vinyl Chloride		ND(0.010)	0.17	ND(0.0020)	ND(0.0020) [ND(0.0020)]
Total VOCs		0.17 J	46	ND(0.20)	0.076 J [0.077 J]
PCBs-Unfiltered					
Aroclor-1254		NA	NA	NA	0.00024 [0.000044 J]
Total PCBs		NA	NA	NA	0.00024 [0.000044 J]
PCBs-Filtered				•	
Aroclor-1254		NA	NA	NA	0.00011 [0.000083]
Total PCBs		NA	NA	NA	0.00011 [0.000083]
Semivolatile Organic	S			l .	
1,4-Dichlorobenzene	1	NA	NA	NA	0.0025 J [0.0023 J]
2-Chlorophenol		ND(0.010)	NA NA	ND(0.010)	ND(0.010) [ND(0.010)]
4-Chlorophenol		ND(0.010)	NA NA	ND(0.010)	ND(0.010) [ND(0.010)]
Organochlorine Pesti	icides	()		(3.0.0)	(
None Detected	1	NA	NA	NA	
Organophosphate Pe	esticides	101	101	101	
None Detected	Sticiaes	NA	NA	NA	
Herbicides		INA	INA	INA	
None Detected		NΙΔ	NIA	NA	
		NA	NA	NA	
Furans		NIA.	NIA	l NIA	ND(0.000000040) IND(0.000000044)]
2,3,7,8-TCDF		NA NA	NA	NA	ND(0.0000000012) [ND(0.0000000011)]
TCDFs (total)		NA	NA NA	NA NA	ND(0.000000012) [ND(0.0000000011)]
1,2,3,7,8-PeCDF		NA	NA	NA	0.00000000092 J [ND(0.0000000024)]
2,3,4,7,8-PeCDF		NA	NA NA	NA	0.0000000017 J [ND(0.0000000024)]
PeCDFs (total)		NA	NA NA	NA NA	0.0000000044 [ND(0.0000000024)]
1,2,3,4,7,8-HxCDF		NA NA	NA	NA	0.0000000026 J [ND(0.0000000024)]
1,2,3,6,7,8-HxCDF		NA NA	NA NA	NA NA	0.0000000019 J [ND(0.0000000024)]
1,2,3,7,8,9-HxCDF		NA	NA NA	NA NA	0.0000000011 J [ND(0.0000000024)]
2,3,4,6,7,8-HxCDF		NA NA	NA NA	NA NA	0.000000013 J [ND(0.0000000024)]
HxCDFs (total)		NA NA	NA NA	NA NA	0.000000023 [ND(0.0000000024)]
1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF		NA NA	NA NA	NA NA	0.000000025 J [0.0000000073 J] 0.000000014 J [ND(0.000000024)]
HpCDFs (total)		NA NA	NA NA	NA NA	0.0000000044 [0.0000000024)]
OCDF		NA NA	NA NA	NA NA	0.000000044 [0.000000073] 0.000000018 J [0.000000048 J]
Dioxins		INA	INA	INA	0.000000018 3 [0.000000048 3]
	1	NI A	NI A	NIA.	ND(0.0000000000) IND(0.00000000000000000000000000000000000
2,3,7,8-TCDD		NA NA	NA NA	NA NA	ND(0.0000000010) [ND(0.0000000010)] ND(0.0000000010) [ND(0.0000000010)]
TCDDs (total)			NA NA	NA NA	, , , , , , , , , , , , , , , , , , , ,
1,2,3,7,8-PeCDD		NA NA	NA NA	NA NA	0.00000000083 J [ND(0.0000000024)]
PeCDDs (total)			NA NA	NA NA	ND(0.0000000024) [ND(0.0000000024)]
1,2,3,4,7,8-HxCDD		NA NA	NA NA	NA NA	0.00000000079 J [ND(0.0000000024)]
1,2,3,6,7,8-HxCDD 1,2,3,7,8,9-HxCDD		NA NA	NA NA	NA NA	0.000000010 J [ND(0.000000024)]
			NA NA	NA NA	0.000000010 J [ND(0.0000000024)]
HxCDDs (total)		NA NA	NA NA	NA NA	ND(0.0000000024) [ND(0.0000000024)]
1,2,3,4,6,7,8-HpCDD		NA NA	NA NA	NA NA	0.000000034 J [ND(0.000000024)]
HpCDDs (total)		NA NA	NA NA	NA NA	0.0000000058 [ND(0.0000000024)]
OCDD	\	NA	NA NA	NA NA	0.000000017 J [0.0000000058 J]
Total TEQs (WHO TER	-S)	NA	NA	NA	0.0000000035 [0.0000000034]

BASELINE SEMI-ANNUAL GROUNDWATER SAMPLING GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	89B	89D-R	95A	95B-R
Parameter	Date Collected:	5/2/06	5/2/06	5/1/06	4/26-5/31/2006
Inorganics-Unfilt	ered				
Antimony		NA	NA	NA	ND(0.0600) [ND(0.0600)]
Arsenic		NA	NA	NA	ND(0.0100) [ND(0.0100)]
Barium		NA	NA	NA	0.0780 B [0.0780 B]
Chromium		NA	NA	NA	0.000840 B [ND(0.0100)]
Cobalt		NA	NA	NA	ND(0.0500) [ND(0.0500)]
Copper		NA	NA	NA	ND(0.0250) [ND(0.0250)]
Lead		NA	NA	NA	0.00140 B [ND(0.00500)]
Nickel		NA	NA	NA	ND(0.0400) [ND(0.0400)]
Selenium		NA	NA	NA	ND(0.00500) [ND(0.00500)]
Sulfide		NA	NA	NA	2.40 B [ND(5.00)]
Tin		NA	NA	NA	0.0320 [ND(0.0300)]
Zinc		NA	NA	NA	0.00870 B [0.00410 B]
Inorganics-Filter	ed				
Antimony		NA	NA	NA	ND(0.0600) [ND(0.0600)]
Arsenic		NA	NA	NA	ND(0.0100) [ND(0.0100)]
Barium		NA	NA	NA	0.0710 B [0.0710 B]
Chromium		NA	NA	NA	ND(0.0100) [ND(0.0100)]
Cobalt		NA	NA	NA	ND(0.0500) [ND(0.0500)]
Copper		NA	NA	NA	ND(0.0250) [ND(0.0250)]
Lead		NA	NA	NA	ND(0.00500) [ND(0.00500)]
Nickel		NA	NA	NA	ND(0.0400) [ND(0.0400)]
Selenium		NA	NA	NA	ND(0.00500) [ND(0.00500)]
Tin		NA	NA	NA	ND(0.0300) [ND(0.0300)]
Zinc		NA	NA	NA	0.0110 B [ND(0.0200)]
Natural Attenuati	ion Parameters				
Alkalinity (Total)		200	330	110	180 [190]
Chloride		110	620	1.7	87 [83]
Dissolved Iron		1.90	ND(0.100)	ND(0.100)	0.510 [0.490]
Dissolved Organic	Carbon	4.60	6.60	1.40	3.80 [4.00]
Ethane	_	ND(0.20)	ND(0.020)	ND(0.020)	ND(0.20) [ND(0.20)]
Ethene		ND(0.20)	0.64	ND(0.020)	ND(0.20) [ND(0.20)]
Methane		2.70	1.30	0.320	2.46 [2.71]
Nitrate Nitrogen		ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100) [ND(0.100)]
Nitrite Nitrogen		ND(0.500)	ND(0.500)	ND(0.500)	ND(0.500) [ND(0.500)]
Sulfate (turbidimet	tric)	ND(5.00)	ND(1.00)	15.0	ND(5.00) [ND(5.00)]

BASELINE SEMI-ANNUAL GROUNDWATER SAMPLING GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Demonster	Sample ID: Date Collected:	114A	115A	115B
Parameter Volatile Organics	Date Collected:	5/9/06	5/10/06	5/10/06
		ND(0.00E0)	ND(0.00E0)	ND(0.00E0)
Benzene Chlorobenzene		ND(0.0050)	ND(0.0050)	ND(0.0050)
		ND(0.0050)	ND(0.0050)	ND(0.0050)
Toluene Vinyl Chloride		ND(0.0050)	ND(0.0050)	ND(0.0050)
Total VOCs		ND(0.0020) ND(0.20)	ND(0.0020)	ND(0.0020) ND(0.20)
PCBs-Unfiltered		ND(0.20)	ND(0.20)	ND(0.20)
Aroclor-1254	T	NA	NA	NA
Total PCBs		NA NA	NA NA	NA NA
PCBs-Filtered		INA	INA	INA
Aroclor-1254	1	NA	NA	NA
Total PCBs		NA NA	NA NA	NA NA
Semivolatile Organ	ice	INA	IVA	IVA
1,4-Dichlorobenzene		NA	NA	NA
2-Chlorophenol	,	NA NA	NA NA	NA NA
4-Chlorophenol		NA NA	NA NA	NA NA
Organochlorine Pe	eticidos	INA	14/4	INA
None Detected	sticiues	NA	NA	NA
Organophosphate	Posticidos	INA	INA	INA
None Detected	resticiues	NA	NA	NA
Herbicides		INA	INA	INA
	1	NIA	NIA.	NIA
None Detected		NA	NA	NA
Furans				
2,3,7,8-TCDF		NA NA	NA NA	NA
TCDFs (total)		NA NA	NA NA	NA NA
1,2,3,7,8-PeCDF		NA NA		NA NA
2,3,4,7,8-PeCDF PeCDFs (total)		NA NA	NA NA	NA NA
1,2,3,4,7,8-HxCDF		NA NA	NA NA	NA NA
1,2,3,4,7,8-HxCDF		NA NA	NA NA	NA NA
1,2,3,7,8,9-HxCDF		NA NA	NA NA	NA NA
2,3,4,6,7,8-HxCDF		NA NA	NA NA	NA NA
HxCDFs (total)		NA NA	NA NA	NA NA
1,2,3,4,6,7,8-HpCDF	:	NA NA	NA NA	NA NA
1,2,3,4,7,8,9-HpCDF	:	NA NA	NA NA	NA NA
HpCDFs (total)		NA	NA	NA
OCDF		NA	NA	NA NA
Dioxins	L.			
2,3,7,8-TCDD	1	NA	NA	NA
TCDDs (total)		NA NA	NA NA	NA NA
1,2,3,7,8-PeCDD		NA	NA NA	NA NA
PeCDDs (total)		NA	NA	NA
1,2,3,4,7,8-HxCDD		NA	NA	NA
1,2,3,6,7,8-HxCDD		NA	NA	NA
1,2,3,7,8,9-HxCDD		NA	NA	NA
HxCDDs (total)		NA	NA	NA
1,2,3,4,6,7,8-HpCDE)	NA	NA	NA
HpCDDs (total)		NA	NA	NA
OCDD		NA	NA	NA
Total TEQs (WHO T	EFs)	NA	NA	NA

BASELINE SEMI-ANNUAL GROUNDWATER SAMPLING GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Parameter	Sample ID: Date Collected:	114A 5/9/06	115A 5/10/06	115B 5/10/06
Inorganics-Unfilt		3/3/00	3/10/00	3/10/00
	ereu	NA	NA	NA
Antimony Arsenic		NA NA	NA NA	NA NA
Barium		NA	NA NA	NA NA
Chromium		NA	NA	NA NA
Cobalt		NA NA	NA NA	NA NA
Copper		NA	NA	NA
Lead		NA	NA	NA
Nickel		NA	NA	NA
Selenium		NA	NA	NA
Sulfide		NA	NA	NA
Tin		NA	NA	NA
Zinc		NA	NA	NA
Inorganics-Filtere	ed			
Antimony		NA	NA	NA
Arsenic		NA	NA	NA
Barium		NA	NA	NA
Chromium		NA	NA	NA
Cobalt		NA	NA	NA
Copper		NA	NA	NA
Lead		NA	NA	NA
Nickel		NA	NA	NA
Selenium		NA	NA	NA
Tin		NA	NA	NA
Zinc		NA	NA	NA
Natural Attenuati	on Parameters		•	
Alkalinity (Total)		120	150	240
Chloride		1.6	2.0	8.6
Dissolved Iron		ND(0.100)	ND(0.100)	ND(0.100)
Dissolved Organic	Carbon	0.400 B	0.610 B	1.40
Ethane		ND(0.020)	ND(0.020)	ND(0.020)
Ethene		ND(0.020)	ND(0.020)	ND(0.020)
Methane		0.330	ND(0.00720)	ND(0.00720)
Nitrate Nitrogen		ND(0.100)	ND(0.100)	0.360
Nitrite Nitrogen		ND(0.500)	ND(0.500)	ND(0.500)
Sulfate (turbidimet	tric)	7.70	ND(5.00)	13.0

BASELINE SEMI-ANNUAL GROUNDWATER SAMPLING GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Notes:

- Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, Appendix IX+3 constituents, and Natural Attenuation Parameters.
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998.
- 5. With the exception of dioxin/furans and Natural Attenuation Parameters, only those constituents detected in one or more samples are summarized.
- 6. Field duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (volatiles, PCBs, semivolatiles, pesticides, herbicides, dioxin/furans)

- J Indicates an estimated value less than the practical quantitation limit (PQL).
- X Estimated maximum possible concentration.

<u>Inorganics and Natural Attenuation Parameters</u>

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TABLE 23-3 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	June 2006 Removal (liters)	
51-08	6/27/2006	11.10	10.80	0.30	0.185	0.185	
51-17	6/27/2006	11.00	9.80	1.20	0.740	0.740	
	6/1/2006	14.95	Р	< 0.01	4.55		
	6/8/2006	14.90	Р	< 0.01	5.69		
51-21	6/14/2006	15.00	Р	< 0.01	4.55	22.748	
	6/21/2006	15.21	Р	< 0.01	4.55		
	6/29/2006	15.10	Р	< 0.01	3.41		
59-03R	6/27/2006	11.95	11.15	0.80	0.494	0.494	
	6/7/2006	11.06	10.72	0.34	0.210		
GMA3-10	6/13/2006	11.05	10.75	0.30	0.185	0.759	
GIVIA3-10	6/21/2006	11.25	10.92	0.33	0.204	0.759	
	6/27/2006	11.24	10.98	0.26	0.160		
GMA3-12	6/27/2006	11.61	11.33	0.28	0.692	0.692	
	6/7/2006	10.98	10.91	0.07	0.043		
CMA2 12	6/13/2006	11.04	10.93	0.11	0.068	0.005	
GMA3-13	6/21/2006	11.30	11.10	0.20	0.123	0.395	
	6/27/2006	11.40	11.14	0.26	0.160		

Total Automated LNAPL Removal at well 51-21 for June 2006: 22.748 liters

6.00 Gallons

Total Manual LNAPL Removal at all other wells for June 2006: 2.031 liters

0.54 Gallons

Total LNAPL Removed for June 2006: 24.779 liters

6.54 Gallons

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. P indicates that LNAPL or DNAPL is present at a thickness that is < 0.01 feet. The corresponding thickness is recorded as such.

TABLE 23-4 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
51-05	996.44	6/27/06	9.34		0.00		11.88	0.00	987.10
51-06	997.36	6/27/06	10.58		0.00		14.50	0.00	986.78
51-07	997.08	6/27/06	10.60		0.00		11.24	0.00	986.48
51-08	997.08	6/7/06	10.54	10.50	0.04		14.67	0.00	986.58
51-08	997.08	6/13/06	10.58	10.55	0.03		14.68	0.00	986.53
51-08	997.08	6/21/06	10.78	10.75	0.03		14.68	0.00	986.33
51-08	997.08	6/27/06	11.10	10.80	0.30		14.68	0.00	986.26
51-09	997.70	6/27/06	10.88		0.00		11.57	0.00	986.82
51-11	994.37	6/27/06	8.11		0.00		13.50	0.00	986.26
51-12	996.55	6/27/06	7.50		0.00		13.30	0.00	989.05
51-13	997.42	6/27/06	DRY		0.00		9.98	0.00	987.44
51-14	996.77	6/27/06	10.65		0.00		14.90	0.00	986.12
51-15	996.43	6/27/06	10.10	10.04	0.06		14.30	0.00	986.39
51-16R	996.39	6/27/06	10.10	10.03	0.07		14.54	0.00	986.36
51-17	996.43	6/27/06	11.00	9.80	1.20		14.50	0.00	986.55
51-18	997.12	6/27/06	10.72		0.00		12.60	0.00	986.40
51-19	996.43	6/27/06	10.24		0.00		14.06	0.00	986.19
51-21	1001.49	6/1/06	14.95	Р	< 0.01		NM	0.00	986.54
51-21	1001.49	6/8/06	14.90	Р	< 0.01		NM	0.00	986.59
51-21	1001.49	6/14/06	15.00	Р	< 0.01		NM	0.00	986.49
51-21	1001.49	6/21/06	15.21	Р	< 0.01		NM	0.00	986.28
51-21	1001.49	6/29/06	15.10	Р	< 0.01		NM	0.00	986.39
59-01	997.52	6/27/06	11.10		0.00		11.40	0.00	986.42
59-03R	997.64	6/27/06	11.95	11.15	0.80		17.03	0.00	986.43
59-07	997.96	6/27/06	11.46	11.45	0.01		23.50	0.00	986.51
GMA3-7	1000.17	6/27/06	13.40		0.00		19.83	0.00	986.77
GMA3-10	997.54	6/7/06	11.06	10.72	0.34		17.94	0.00	986.80
GMA3-10	997.54	6/13/06	11.05	10.75	0.30		17.94	0.00	986.77
GMA3-10	997.54	6/21/06	11.25	10.92	0.33		17.95	0.00	986.60
GMA3-10	997.54	6/27/06	11.24	10.98	0.26		17.94	0.00	986.54
GMA3-11	997.25	6/27/06	10.26		0.00		18.30	0.00	986.99
GMA3-12	997.84	6/7/06	11.20	11.10	0.10		21.24	0.00	986.73
GMA3-12	997.84	6/13/06	11.32	11.15	0.17		21.24	0.00	986.68
GMA3-12	997.84	6/21/06	11.46	11.30	0.16		21.24	0.00	986.53
GMA3-12	997.84	6/27/06	11.61	11.33	0.28		21.24	0.00	986.49
GMA3-13	997.73	6/7/06	10.98	10.91	0.07		17.70	0.00	986.82
GMA3-13	997.73	6/13/06	11.04	10.93	0.11		17.72	0.00	986.79
GMA3-13	997.73	6/21/06	11.30	11.10	0.20		17.70	0.00	986.62
GMA3-13	997.73	6/27/06	11.40	11.14	0.26		17.70	0.00	986.57
GMA3-14	997.42	6/27/06	10.78		0.00		16.95	0.00	986.64
GMA3-15	996.74	6/27/06	11.25		0.00		17.20	0.00	985.49
UB-MW-10	995.99	6/27/06	9.51		0.00		14.92	0.00	986.48
UB-PZ-3	998.15	6/27/06	11.98	11.78	0.20		13.40	0.00	986.36

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity
- 3. NM indicates information not measured
- 4. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.

ITEM 24 GROUNDWATER MANAGEMENT AREAS PLANT SITE 3 (GMA 4) (GECD340) JUNE 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Conducted routine groundwater elevation monitoring.

b. Sampling/Test Results Received

See attached table.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine monitoring at well GMA4-3.
- Conducted quarterly monitoring at 17 wells along the northern boundary of GMA 4.
- Initiate preparation of Groundwater Quality Monitoring Interim Report for Spring 2006 (due to EPA by August 31, 2006).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval of GE's August 30, 2005 and February 27, 2006 Groundwater Quality Monitoring Interim Reports for Spring and Fall 2005 (June 5, 2006).

TABLE 24-1 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 4

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS June 2006

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
GMA4-3	1,003.95	6/27/2006	17.30		0.00		26.25	0.00	986.65

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.

ITEM 25 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS A & C (GMA 5) (GECD350) JUNE 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a.	Activities Undertaken/Completed	

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Submit Groundwater Quality Monitoring Interim Report for Spring 2006 (due by July 31, 2006).

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

Attachment A

NPDES Sampling Records and Results
June 2006

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JUNE 2006

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or BBL
NPDES Sampling	001-A7347	6/5/06	Water	Columbia	Oil & Grease	6/12/06
NPDES Sampling	001-A7349	6/5/06	Water	SGS	PCB	6/16/06
NPDES Sampling	001-A7356	6/6/06	Water	Columbia	TSS	6/15/06
NPDES Sampling	005-A7315/A7316	5/16/06	Water	SGS	PCB	6/7/06
NPDES Sampling	005-A7325/A7326	5/23/06	Water	SGS	PCB	6/7/06
NPDES Sampling	005-A7339/A7340	5/30/06	Water	SGS	PCB	6/16/06
NPDES Sampling	005-A7357/A7358	6/6/06	Water	Columbia	TSS, BOD	6/15/06
NPDES Sampling	005-A7357/A7358	6/6/06	Water	SGS	PCB	6/16/06
NPDES Sampling	005-A7370/A7371	6/13/06	Water	SGS	PCB	6/16/06
NPDES Sampling	005-A7380/A7381	6/20/06	Water	SGS	PCB	
NPDES Sampling	005-A7390/A7391	6/27/06	Water	SGS	PCB	
NPDES Sampling	05B-A7309	5/12/06	Water	SGS	PCB	6/7/06
NPDES Sampling	06A-A7342	5/30/06	Water	Columbia	Oil & Grease	6/15/06
NPDES Sampling	06A-A7344	5/30/06	Water	SGS	PCB	6/16/06
NPDES Sampling	09B-A7326	5/23/06	Water	Columbia	TSS, BOD	6/8/06
NPDES Sampling	09B-A7341	5/30/06	Water	Columbia	TSS, BOD	6/8/06
NPDES Sampling	09B-A7359	6/6/06	Water	Columbia	TSS, BOD	6/15/06
NPDES Sampling	09B-A7372	6/13/06	Water	Columbia	TSS, BOD	6/21/06
NPDES Sampling	09B-A7382	6/20/06	Water	Columbia	TSS, BOD	6/28/06
NPDES Sampling	09B-A7392	6/27/06	Water	Columbia	TSS, BOD	
NPDES Sampling	09C-A7322	5/22/06	Water	Columbia	Oil & Grease	6/8/06
NPDES Sampling	09C-A7332	5/29/06	Water	Columbia	Oil & Grease	6/8/06
NPDES Sampling	09C-A7345	6/4/06	Water	Columbia	Oil & Grease	6/15/06
NPDES Sampling	09C-A7367	6/12/06	Water	Columbia	Oil & Grease	6/21/06
NPDES Sampling	09C-A7377	6/19/06	Water	Columbia	Oil & Grease	6/28/06
NPDES Sampling	09C-A7383	6/25/06	Water	Columbia	Oil & Grease	
NPDES Sampling	64G-A7320	5/22/06	Water	Columbia	Oil & Grease	6/8/06
NPDES Sampling	64G-A7330	5/29/06	Water	Columbia	Oil & Grease	6/8/06
NPDES Sampling	64G-A7352	6/5/06	Water	Columbia	Oil & Grease	6/15/06
NPDES Sampling	64G-A7365	6/12/06	Water	Columbia	Oil & Grease	6/21/06
NPDES Sampling	64G-A7375	6/19/06	Water	Columbia	Oil & Grease	6/28/06
NPDES Sampling	64G-A7387	6/26/06	Water	Columbia	Oil & Grease	
NPDES Sampling	64G-A7388	6/26/06	Water	Columbia	Oil & Grease	
NPDES Sampling	64T-A7318	5/22/06	Water	Columbia	Oil & Grease	6/8/06

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\6-06 CD Monthly\Tracking Logs\Tracking.xls TABLE A-1

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JUNE 2006

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Received by GE or BBL
NPDES Sampling	64T-A7328	5/29/06	Water	Columbia	Oil & Grease	6/8/06
NPDES Sampling	64T-A7350	6/5/06	Water	Columbia	Oil & Grease	6/15/06
NPDES Sampling	64T-A7363	6/12/06	Water	Columbia	Oil & Grease	6/21/06
NPDES Sampling	64T-A7373	6/19/06	Water	Columbia	Oil & Grease	6/28/06
NPDES Sampling	64T-A7385	6/26/06	Water	Columbia	Oil & Grease	
NPDES Sampling	A7301R	5/9/06	Water	Aquatec	Acute Toxicity Test	6/7/06
NPDES Sampling	A7302C	5/9/06	Water	Aquatec	Acute Toxicity Test	6/7/06
NPDES Sampling	A7354R	6/6/06	Water	Aquatec	Acute Toxicity Test	
NPDES Sampling	A7354RCN	6/6/06	Water	Columbia	CN	6/15/06
NPDES Sampling	A7354RTM	6/6/06	Water	Columbia	Metals (10)	6/15/06
NPDES Sampling	A7355C	6/6/06	Water	Aquatec	Acute Toxicity Test	
NPDES Sampling	A7355CCN	6/6/06	Water	Columbia	CN	6/15/06
NPDES Sampling	A7355CDM	6/6/06	Water	Columbia	Filtered Metals (8)	6/15/06
NPDES Sampling	A7355CTM	6/6/06	Water	Columbia	Metals (10)	6/15/06
NPDES Sampling	JUL06WK1	6/27/06	Water	Columbia	Cu, Pb, Zn	
NPDES Sampling	JUN06WK1	5/30/06	Water	Columbia	Cu, Pb, Zn	6/8/06
NPDES Sampling	JUN06WK3	6/13/06	Water	Columbia	Cu, Pb, Zn	6/21/06
NPDES Sampling	JUN06WK4	6/20/06	Water	Columbia	Cu, Pb, Zn	6/28/06
NPDES Sampling	MAY06WK4	5/23/06	Water	Columbia	Cu, Pb, Zn	6/8/06

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	Sample ID:	001-A7347	001-A7349	001-A7356	005-A7315/A7316	005-A7325/A7326	005-A7339/A7340	005-A7357/A7358
Parameter Da	te Collected:	6/5/06	6/5/06	6/6/06	5/16/06	5/23/06	5/30/06	6/6/06
PCBs-Unfiltered				•				
Aroclor-1254		NA	0.00013	NA	0.000091	0.000032 J	ND(0.000065)	0.000046 J
Aroclor-1260		NA	ND(0.000065)	NA	0.000062 J	ND(0.000065)	ND(0.000065)	ND(0.000065)
Total PCBs		NA	0.00013	NA	0.000153	0.000032 J	ND(0.000065)	0.000046 J
Inorganics-Unfiltered								
Aluminum		NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA
Cyanide		NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA
Inorganics-Filtered								
Aluminum		NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA
Conventionals								
Biological Oxygen Demand	d (5-day)	NA	NA	NA	NA	NA	NA	ND(2.0)
Total Suspended Solids		NA	NA	3.30	NA	NA	NA	ND(1.00)
Oil & Grease		ND(5.0)	NA	NA	NA	NA	NA	NA

Page 1 of 5

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	Sample ID:	005-A7370/A7371	05B-A7309	06A-A7342	06A-A7344	09B-A7326	09B-A7341	09B-A7359	09B-A7372
Parameter	Date Collected:	6/13/06	5/12/06	5/30/06	5/30/06	5/23/06	5/30/06	6/6/06	6/13/06
PCBs-Unfiltered									
Aroclor-1254		ND(0.000065)	0.0028	NA	0.000082	NA	NA	NA	NA
Aroclor-1260		ND(0.000065)	0.0026	NA	0.00051	NA	NA	NA	NA
Total PCBs		ND(0.000065)	0.0054	NA	0.000592	NA	NA	NA	NA
Inorganics-Unfiltered	d					•		•	
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA	NA
Cyanide		NA	NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA	NA
Inorganics-Filtered									
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA	NA
Conventionals									
Biological Oxygen De	mand (5-day)	NA	NA	NA	NA	ND(2.0) J {ND(2.0)}	ND(2.0)	ND(2.0)	ND(2.0)
Total Suspended Soli	ds	NA	NA	NA	NA	14.1	1.30	9.61	4.50
Oil & Grease		NA	NA	ND(5.0)	NA	NA	NA	NA	NA

Page 2 of 5

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

_	Sample ID:	09B-A7382	09C-A7322	09C-A7332	09C-A7345	09C-A7367	09C-A7377	64G-A7320	64G-A7330	64G-A7352
Parameter	Date Collected:	6/20/06	5/22/06	5/29/06	6/4/06	6/12/06	6/19/06	5/22/06	5/29/06	6/5/06
PCBs-Unfiltered										
Aroclor-1254		NA								
Aroclor-1260		NA								
Total PCBs		NA								
Inorganics-Unfiltered										
Aluminum		NA								
Cadmium		NA								
Calcium		NA								
Chromium		NA								
Copper		NA								
Cyanide		NA								
Lead		NA								
Magnesium		NA								
Nickel		NA								
Silver		NA								
Zinc		NA								
Inorganics-Filtered										
Aluminum		NA								
Cadmium		NA								
Chromium		NA								
Copper		NA								
Lead		NA								
Nickel		NA								
Silver		NA								
Zinc		NA								
Conventionals	•									
Biological Oxygen Dem	nand (5-day)	5.9	NA							
Total Suspended Solids		74.2	NA							
Oil & Grease		NA	ND(5.0)	ND(5.2)	ND(5.0)	ND(5.0)	ND(5.2)	ND(5.0)	ND(5.2)	ND(5.0)

Page 3 of 5

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	Sample ID:	64G-A7365	64G-A7375	64T-A7318	64T-A7328	64T-A7350	64T-A7363	64T-A7373	A7354RCN	A7354RTM
	Collected:	6/12/06	6/19/06	5/22/06	5/29/06	6/5/06	6/12/06	6/19/06	6/6/06	6/6/06
PCBs-Unfiltered										
Aroclor-1254		NA	NA							
Aroclor-1260		NA	NA							
Total PCBs		NA	NA							
Inorganics-Unfiltered										
Aluminum		NA	ND(0.100)							
Cadmium		NA	0.000503 B							
Calcium		NA	14.2							
Chromium		NA	0.00118 B							
Copper		NA	ND(0.0200)							
Cyanide		NA	ND(0.0100)	NA						
Lead		NA	ND(0.00500)							
Magnesium		NA	4.46							
Nickel		NA	ND(0.0400)							
Silver		NA	ND(0.0100)							
Zinc		NA	0.0125 B							
Inorganics-Filtered										
Aluminum		NA	NA							
Cadmium		NA	NA							
Chromium		NA	NA							
Copper		NA	NA							
Lead		NA	NA							
Nickel		NA	NA							
Silver		NA	NA							
Zinc	İ	NA	NA							
Conventionals										
Biological Oxygen Demand ((5-day)	NA	NA							
Total Suspended Solids	İ	NA	NA							
Oil & Grease		ND(5.0)	ND(5.2)	ND(5.0)	ND(5.2)	ND(5.0)	ND(5.0)	ND(5.2)	NA	NA

Page 4 of 5

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	Sample ID:	A7355CCN	A7355CDM	A7355CTM	JUN06WK1	JUN06WK3	JUN06WK4	MAY06WK4
Parameter	Date Collected:	6/6/06	6/6/06	6/6/06	5/30/06	6/13/06	6/20/06	5/23/06
PCBs-Unfiltered								
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA
Inorganics-Unfilte	ered							
Aluminum		NA	NA	ND(0.100)	NA	NA	NA	NA
Cadmium		NA	NA	0.000360 B	NA	NA	NA	NA
Calcium		NA	NA	87.1	NA	NA	NA	NA
Chromium		NA	NA	0.00158 B	NA	NA	NA	NA
Copper		NA	NA	ND(0.0200)	ND(0.0200)	ND(0.0200)	ND(0.0200)	ND(0.0200)
Cyanide		0.0375	NA	NA	NA	NA	NA	NA
Lead		NA	NA	ND(0.00500)	ND(0.00500)	ND(0.00500)	0.0171	ND(0.00500)
Magnesium		NA	NA	34.0	NA	NA	NA	NA
Nickel		NA	NA	ND(0.0400)	NA	NA	NA	NA
Silver		NA	NA	ND(0.0100)	NA	NA	NA	NA
Zinc		NA	NA	0.0120 B	ND(0.0200)	ND(0.0200)	0.0743	ND(0.0200)
Inorganics-Filtere	d							
Aluminum		NA	ND(0.100)	NA	NA	NA	NA	NA
Cadmium		NA	0.000508 B	NA	NA	NA	NA	NA
Chromium		NA	0.00160 B	NA	NA	NA	NA	NA
Copper		NA	ND(0.0200)	NA	NA	NA	NA	NA
Lead		NA	ND(0.00500)	NA	NA	NA	NA	NA
Nickel		NA	ND(0.0400)	NA	NA	NA	NA	NA
Silver		NA	ND(0.0100)	NA	NA	NA	NA	NA
Zinc		NA	0.0212	NA	NA	NA	NA	NA
Conventionals								
Biological Oxygen	Demand (5-day)	NA	NA	NA	NA	NA	NA	NA
Total Suspended S		NA	NA	NA	NA	NA	NA	NA
Oil & Grease		NA	NA	NA	NA	NA	NA	NA

Notes:

- 1. Samples were collected by General Electric Company and submitted to Columbia Analytical Services, Inc. and SGS Environmental Services, Inc. for analysis of PCBs, cyanide, total suspended solids (TSS), BOD, oil & grease, and metals (filtered and unfiltered).
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. With the exception of inorganics and conventional parameters only those constituents detected in one or more samples are summarized.
- 5. Sample ID 09B-A7326 for BOD analysis was re-analyzed due to a laboratory internal QA/QC failure; however, the sample was re-analyzed outside holding time. The re-analyzed sample result is presented in curly brackets {}.

Data Qualifiers:

<u>Organics</u>

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

Attachment B

NPDES Discharge Monitoring Reports May 2006

Form Approved.

TEE NAME/ADDRESS (Include Facility Name/Location if Different)

GENERAL ELECTRIC CORPORATION

KESS ATTN: JEFFREY G. RUEBESAM 100 WGCDLAWN AVENUE

ATTN: MICHAEL T CARROLL, EHS&F

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY LOCATION PITTEFIELD

MA 01201

MA0003871 PERMIT NUMBER

005 1 DISCHARGE NUMBER

		MONITORING PERIOD											
	YEAR	MO	DAY		YEAR	MO	DAY						
FROM	06	05	OT	то	00	05	34						

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

OMB No. 2040-0004

MAJOR (SUBR W) F - FINAL

WATERS TO HOUSATONIC RIVER

*** NO DISCHARGE | | ***

NOTE: Read Instructions before completing this form.

PARAMETER		QUAN	TITY OR LOADING		Q	UALITY OR CONCE	ENTRATION		NO.	FREQUENCY	SAMPLE
1		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
BOD. E-DAY (20 DEG C)	SAMPLE MEASUREMENT	0	0	(26) LBS/DY	特殊特殊特	学长共长者	科科科特特		0	01/30	СР
DOSIO F C C SEE COMMENTS BELOW	PERMIT REQUIREMENT	90 MD AVG	135 DAILY MX	9	****	********	华华安安安	各种作品 科科特格		ONCE/ MONTH	COMPO:
BOLIDS, TOTAL BUSPENDED	SAMPLE MEASUREMENT	0	0	(26) LBS/DY	传传传传传	经存货条件	李宗恭李宗恭		0	01/30	CP
DO530 T O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	188 MO AVG	270 DAILY MX		*******	华女长女子女	本本本本本	各种条件 特殊条件		ONCE/ MONTH	COMPO
DIL & GREASE	SAMPLE MEASUREMENT	科學科學科	0	(26) LBS/DY	******	法母女会会会	0	MG/L	0	01/07	GR
DOSSA T A O SEE COMMENTS BELOW	PERMIT REQUIREMENT	****	135 DAILY MX		****	****	15 DAILY M			MEEKL	YGRAB
POLYCHLORINATED BIPHENYLS (PCBS)	SAMPLE MEASUREMENT	0.00009	0.0003	(26) LBS/DY	****	*******	经格拉格林县		0	01/07	CP
39516 F G O SEE COMMENTS BELOW	PERMIT REQUIREMENT	0.01 MD AVQ	0.03 DAILY MX		长长林林林林	****	安林特特特公	安安安安		MEEKL	YCOMPO
FLOW, IN CONDUIT OR THRU TREATMENT PLAN	Orimi EE	0.214	0.441	(03) MGD	科特科科科	长头孙长头	*****	4	0		
SEE COMMENTS BELOW	PERMIT REQUIREMENT	2.09 MD AVG	2.09 DAILY MX	MGD	*****	***	长春谷谷谷	安安特格 特勒特普	1	CONTI	NRCORD
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT									lo nam	
	SAMPLE MEASUREMENT					-					
	PERMIT REQUIREMENT									F. Car	
NAME/TITLE PRINCIPAL EXECUTIVE	OFFICER 1 certi		this document and all attaches spervision in accordance with					TELEPHO	NE	D	ATE
Michael T. Carroll Mgr. Pittsfield Remediation	on Prog. to asso submi or the submi	are that qualified personnel tted. Based on my inquiry of se persons directly responsib tted is, to the best of my kno	properly gather and evaluate f the person or persons who n ble for gathering the informat wiledge and belief, true, accur	the information nanage the system, tion, the information rate, and complete.		T. Carro		3 448-59	902	2006	6 2/
TYPED OR PRINTED			ant penalties for submitting fa d imprisonment for knowing			ICER OR AUTHORIZ	ED AGENT AR	EA NUMBE	R	YEAR	MO DAY

FROM

I am aware that there are significant penalties for submitting false information,

including the possibility of fine and imprisonment for knowing violations.

Form Approved. OMB No. 2040-0004

GLNERO, SLECTBIC CORPORATION ADDRESS ATTEN JETTREY S. RUEBESAM

100 MODULANN AUENUR

PATTER TEAT

FACILITY

Ma 01201

GENERAL ELECTRIC COMPANY LOCATION STATELINE

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

MA0003891 PERMIT NUMBER

YEAR MO DAY

064 3 DISCHARGE NUMBER

YEAR MO DAY

OFFICER OR AUTHORIZED AGENT

MAJOH (SUBR W 7 F - FINAL

WASTEWATER TREATMENT (OCS)

*** NO DISCHARGE !

NUMBER

YEAR

MO

DAY

PARAMETER		QUANT	TTY OR LOADING		(QUALITY OR CONC	ENTRATION		NO.	FREQUENCY OF	Orini LL
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
77.	SAMPLE MEASUREMENT	於你特特如於	茶水水水水水		6.4	法安务长收益	7.9	* 1/21	0	99/99	RCDR
REE COMMENTS BELOW	PERMIT REQUIREMENT	在经验收款款	*****	如安安安 安安安安	A.O MINIMUM	*******	9 0 MAXIMUM	5U		MEEKL	TRANG
TESMICE URAN	SAMPLE MEASUREMENT	水水粉粉水水	特殊会会教徒	×	各在你本本	NODI [6]	NODI [6]	(22			
SIEDR T D C	PERMIT REQUIREMENT	社会会会会会	各转换数数数	本於 安县 游於安县	最快量指验者	REPORT MD AVS	REPORT DAILY MO	FPT	139	ONCE/	COMPE
	SAMPLE MEASUREMENT						,	17			
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT			9		19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
7	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT			-							
	PERMIT REQUIREMENT			100 100 100 100 100 100 100 100 100 100							
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT		4			10 mm 10 mm					
NAME/TITLE PRINCIPAL EXECUTIV	VE OFFICER 1 certif	y under penalty of law that ed under my direction or su	this document and all attack	hments were	ned G	- 0		TELEPHO	NE	D	ATE
Michael T. Carroll Mgr. Pittsfield Remedia	tion Prog. to assu	re that qualified personnel p ted. Based on my inquiry of the persons directly responsib ted is, to the best of my kno	properly gather and evaluat the person or persons who de for gathering the inform	te the information manage the systemation, the information	em, action	1-Carr		13 448-5	902	2006	6 21

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

TYPED OR PRINTED

BEE GERMETTE FOR COST SEE PAGE 6 + 9 OF PERMIT. FEDWILLER NAME/ADDRESS (Include Facility Name/Location if Different)

SINFRAG ELECTRIC CORPORATION

ADDRESS ALTH UELFREY G. RUEBESAM

100 KEODLAUN AVENUE

PATTERIEUP

MA 01201

LOCATION TOT TELED

FACILITY SEMERAL BLECTRIC COMPANY

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

064 G DISCHARGE NUMBER

		M	ONITO	RING	PERIOD)	
	YEAR	MO	DAY		YEAR	MO	DAY
ROM	.06	05	01	TO	06	.05	31

MAJOR

(SUBR W) F - TINAL

GROUNDWATER TREATMENT (005)

*** NO DISCHARGE | ***

PARAMETER		QUANT	ITY OR LOADING		0	QUALITY OR CONC	ENTRATION		NO.	FREQUENCY OF	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
lw .	SAMPLE MEASUREMENT	经保持条件	李安安安安		6.6	经安全共享公司	7.7	SU 12	0	99/99	RCDR
HAGO T O C HE COMMENTS BELOW	PERMIT REQUIREMENT	共集計算條款	经济技术会会	5.长安长 安安安长	6.0 MUNIMUM	\$ 15 · \$ · \$ · \$ · \$	9 0 MAXIMUM	su		WEEKL	(RANG-
SE MINUTALS & ACT	SAMPLE MEASUREMENT	各族教教教育	安静的安静的		长春安安安	NODI [9]	NODI [9]	5 19			
030 T 0 0 E COMMENTS BELOW	PERMIT REQUIREMENT	安排其状体长	在教育學者	水水水水 水水水水	长轮轮条谷谷。	REPORT MB AVG	REPORT	MG/L		GTRLY	GRAB
LATTLE COMPOUNDS	SAMPLE MEASUREMENT	於特特特的	女爷爷爷爷		计验长本领领	THE RESERVE TO STREET, STORY OF THE PARTY OF	NODI [9]	4 10			
ER COMMENTS BELOW	PERMIT REQUIREMENT	於於於特殊	於北極東特數	· 安安安安 ·	长男孩女长身	REPORT MO AVG	REPORT DAILY M	MG/L		GTRLY	GRAB
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT		1								
	PERMIT REQUIREMENT				100 A 100 A						4
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMEN	r									
	PERMIT REQUIREMENT								8 18		
IAME/TITLE PRINCIPAL EXECUTIVE	E OFFICER 1 cert	fy under penalty of law that t	his document and all attach	ments were		10		TELEPHO	NE		DATE
Michael T. Carroll Mgr. Pittsfield Remediati	on Prog. to ass subm or the subm	red under my direction or sug ure that qualified personnel p litted. Based on my inquiry of use persons directly responsibl litted is, to the best of my know	roperly gather and evaluat the person or persons who le for gathering the informs wiedge and belief, true, acco	e the informatio manage the syst ation, the inform arate, and comp	lete.	T. Caux		13 448-5	902	2006	6 2/
TYPED OR PRINTED	I am inclu	aware that there are significan ding the possibility of fine and	nt penalties for submitting ! Imprisonment for knowing	false information g violations.		FFICER OR AUTHORI	ZED AGENT AF	REA NUMB	ER	YEAR	MO DA

TYPED OR PRINTED COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE CENTENTS FOR JOSE

SEE PAGE R + 9 OF PERMIT.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

THERE ELECTRIC CORPORATION

FACILITY

ADDRESS OF THE JEFFREY G. RUEBESAM

100 WESTER WILLIAMS

ATTA: BICHAEL T CARROLL, EMS&F

7' TTSKIELD

MA 01201

GINFRAL BLECTPIC COMPANY LOCATION PARTIES IELD

WW 01501

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

DISCHARGE NUMBER

		MONITORING PERIOD												
7	YEAR	MO	DAY		YEAR	MO	DAY							
FROM	0.6	05	01	то	06	05	31							

MAJOR (SUBR W)

F - FINAL

DISCHARGE TO HOUSATONIC RIVER

NOTE: Read Instructions before completing this form.

PARAMETER		QUANT	TITY OR LOADING		O	QUALITY OR CONC	ENTRATION		NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
MATER C. IT ARENHEIT	SAMPLE MEASUREMENT	特殊特殊情	林林长春林		经验存款的			4. 150			
ott wild a li	PERMIT REQUIREMENT	存在外状状	多非安全条件	· · · · · · · · · · · · · ·	4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	70 MD AVG	75 DAILY MX	DEG. F		ONCE/ MONTH	GRAB
P 10 10	SAMPLE MEASUREMENT	********	本学会会会	X		外外长水头		(12)			-
400 K .O C E LOHMENTO BELOW	PERMIT REQUIREMENT	各种特殊特	各种种种类型	长长长长	6.0 MINIMUM	******	9.0 MAXIMUM	SU.		MEEKL	RANG
YOMLOR (MATER MAERIUS (MOSE)	SAMPLE MEASUREMENT	松松於於春花	女女女女女女		经格依依格格			1 21			
STE A C C E COMMENTS BELOW	PERMIT REQUIREMENT	新林香桂松 和	安佐谷长安县	***** ****	旅旅游长安安	REPORT MD AVG	REPORT DAILY MX	PPB		GTRLY	GRAB
A, IN CONDUIT OF	SAMPLE MEASUREMENT			(03)	各校条於發發	· 查查查检查。					
DEC SECTION OF COMMENTS BELLOW	PERMIT REQUIREMENT	REPORT MO AVG	DAILY MX	MGD	经协模技术等	特殊教育等	表共和国的共	化化合物 公共检验		ONCE/ MONTH	10年から20年の後期の
	SAMPLE MEASUREMENT	-									
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT	1									
	PERMIT REQUIREMENT										
2 2	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT								5000		

Michael T. Carroll Mgr. Pittsfield Remediation Prog.

TYPED OR PRINTED

prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

2006 6 413 448-5902 MO DAY NUMBER YEAR

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

CERTIFICATION OF THE NAME/ADDRESS (Include Facility Name/Location if Different)

GINERAL ELECTRIC CORPORATION

ADDRESS ATTN JEFFREY G. RUEBESAM

100 KODDLAHN AVENUE

PUTUELLE FACILITY

MA 01201

LOCATION PATTER IF IF

SCHERAL ELECTRIC COMPANY MA 01201 NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

009 A DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY FROM TO 06

MAJOR (SUBF W T - FINAL

OPA SAMPLE FLENT DEFORE OOF

NOTE: Read Instructions before completing this form.

PARAMETER		QUAN	TITY OR LOADING			QUALITY OR CONC	ENTRATION		NO. EX	FREQUENCY OF	SAMPLE TYPE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	E^	ANALYSIS	11172
CD, SHOAY LIST DEG C)	SAMPLE MEASUREMENT			(26)	於非於於於於	经私外条件	安安安安安	8			
GS10 V U G	PERMIT REQUIREMENT	106 MD AVG	438 DAILY MX	LBS/D	社会社会基础	李泰林朱孙 李	李安保保持	公本会社 格科特件		WEEKL)	COMPO
BIDE, TETAL. JETEVJED	SAMPLE MEASUREMENT			(26)	外外按按特件	*********	经验证债务	3			
G530 0 0 0 EE COMMENTS BELOW	PERMIT REQUIREMENT	213 MO AVO	B76 DAILY MX	LBS/D	经股份股份	特殊保持等	安全保管管理	4 4 4 4 0 5 4 4		WEEKL	COMPO
LOW: IN CONDUIT OR HRU THEATMENT PLAN	SAMPLE MEASUREMENT			(03)	******	· 查替特金素	其各体的方	25			
CGSD V 0 0	PERMIT REQUIREMENT	REPORT	REPORT DAILY MX	MGD	**************************************	*****	海海外海市沿	3 *****		CONTI	URCORD
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT					3 Ann 15		20 10 10			
	SAMPLE MEASUREMEN	г									
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMEN	т		\							
	PERMIT REQUIREMENT										
2 9	SAMPLE MEASUREMEN	т									
	PERMIT REQUIREMENT	T days and									
AME/TITLE PRINCIPAL EXECUTIVE	E OFFICER 1 cer	I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designe-					TELEPHO	NE	DATE		
Michael T. Carroll Mgr. Pittsfield Remediat	ion Prog. to as subsider the su	sure that qualified personnel nitted. Based on my inquiry of ose persons directly responsi nitted is, to the best of my kn	properly gather and evaluate of the person or persons who a ble for gathering the informa- owledge and belief, true, accu-	the information manage the systemation, the information, and complete the complete	n, tion te.	1. Caro		13 448-5	902	2006	6 2/
TYPED OR PRINTED	inch		ant penulties for submitting f nd imprisonment for knowing			NATURE OF PRINCIPA FFICER OR AUTHORIZ	ED AGENT A	REA NUMB	ER	YEAR	MO DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

FEE PACE IN OF PERMIT.

SEE DMF OCGI

SAMPLE AT 094

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

FACILITY

SLANGE ELECTRIC CORPORATION

ADDRESS ATTY UNITREY S. RUEBESAM

16 3 KETIDLAUM AVENUE

DEFINE LEAD. MA 01201 SEMPO-L ELECTRIC COMPANY

LOCATION mirrer IMLD

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

009 B DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY 01

MAJOR (SUBR W) F - FINAL

OPR SAMPLE PAINT PRIOR TO GOP

*** NO DISCHARGE | | *** NOTE: Read Instructions before completing this form.

PARAMETER		QUANT	TITY OR LOADING	-	Q	UALITY OR CONC	ENTRATION		NO.	FREQUENCY OF	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	
(CD) 6 2547 (CD) 1067 CD	SAMPLE MEASUREMENT	0	0	(26) LBS/DY	李林林林林	计和转换符件	李安林等分		0	01/07	СР
DOOLO D A G	PERMIT REQUIREMENT	106 MD AVG	438 DAILY MX	LBS/D	*****	*****	经收款款款	수 중 연하 - 안 한 한 한		MEEKL)	COMPO
NCLIDE, VETAL	SAMPLE MEASUREMENT	0.9	1.3	(26) LBS/DY	教育社会	普替奇特發發	会社会社会		0	01/07	СР
VOERO V C C SEE GERMENTS BELOW	PERMIT REQUIREMENT	213 MD AVG	876 DAILY MX		*************************************	**************************************	经保险股份	434X 2444		MEEKL	COMPO
THE TREATMENT PLAN	SAMPLE MEASUREMENT	0.062	0.653	(03) MGD	安安安安安安	经营业营业	- 各些债务等。		0	99/99	RC
SCOSO V C SEE COMMERTS BELOW	PERMIT REQUIREMENT	REPORT MO AVG	REPORT DAILY MX		非邻邻斯克斯	****	苏萨克斯斯	海安斯拉 海安斯特		CONTI	IRCORD
S4	SAMPLE MEASUREMENT										
9	PERMIT REQUIREMENT									- 0	
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT							*			
	PERMIT REQUIREMENT								Svq		
	SAMPLE MEASUREMENT	г									
	PERMIT								1.10		
NAME/TITLE PRINCIPAL EXECUTIV			this document and all attach spervision in accordance with			A Commission of the Commission		TELEPHO	NE	D	ATE

TYPED OR PRINTED

submitted is, to the best of my knowledge and bellef, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

MO DAY NUMBER YEAR

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAUL IT OF PERMIT. SEE DMR OC91: SAMPLE AT 098

MINUSA ELECTRIC CORPORATION ADDRESS ATTA SEFFRET G. RUEBESAM

100 ACCOLANN AVENUE

FIT STIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY LOCATION PORTER TO THE

ATTN: SICHASE T CARROLL, EMS&F

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

009 1 DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY TO 46

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W) F - FINAL

PROCESSES TO UNMAMET BROOK

#** NO DISCHARGE ! ! *** NOTE: Read Instructions before completing this form.

PARAMETER		QUANT	TITY OR LOADING		(QUALITY OR CONC	ENTRATION		NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
(SC DEC (C) .	SAMPLE MEASUREMENT	0	0	(26)	转换给安林特	经按禁禁收款	拉拉长松松科	1	0	01/07	СР
SEE COMMENTS BELOW	PERMIT REQUIREMENT	105 MD AVG	438 DAILY MX	LBS/DY	共享和益的 年	非特殊特殊	*****	松香香香		MEEKL	COMPE
• 1.1	SAMPLE MEASUREMENT	安英安斯林安	安安安安安安		6.8	格拉林格茨	7.5	()2:	0	01/07	- GR
POADO U C C SEE CORMENTO BELOW	PERMIT REQUIREMENT	****	计算操作操作	****	6.0 MINIMUM	新华华省	9.0 MAXIMUN	SU		MEEKL	RANG-
BOLIDS, TOTAL BUSPENNER	SAMPLE MEASUREMENT	0.9	1.3	(26)	李林林春春	沙海安特保力	外外接套外收		0	01/07	СР
DOSTO / U C SEE COMMENTS BELOW	PERMIT REQUIREMENT	213 MO AVG	976 DATLY MX	LBS/DY	****	*****	建设有关条约	本本本本		MEEKL	COMP
HL to CREACE	SAMPLE MEASUREMENT	少春年香茶香	.0	(26)	於於於於於	· 安林於孫與子	.0	(19	0	01/07	GR
DOSSA V (+ C BEE COMMEN'S BELOW	PERMIT REQUIREMENT	新州安京省 泰	DAILY MX	LBS/DY	神乐电压学型	****	DATLY M	MG/L MG/L		WEEKL	YGRAB
POLYCHLOR GRATED BIPHERYLS (FORS)	SAMPLE MEASUREMENT	安全安全安全	各条条条条		李林林长春本	NODI [9]	NODI [9]	1, 19			
STE COMMENTS BELOW	PERMIT REQUIREMENT	补贴格格验验	4. * * * * * * * * * * * * * * * * * * *	水水水水	经基本格益	REPORT	REPORT DAILY M	MG/L		QTRLY	GRAB
FLOW, IN CONDUIT OF THRU TREATMENT PLAN	SAMPLE MEASUREMENT	0.062	0.653	(03)	公林於於於	B 景於在林松。	\$ 教务会长的		C	99/99	RC
50050 V 0 0 BEE COMMENTS BELOW	PERMIT REQUIREMENT	REPORT MD AVG	REPORT DAILY MX	MGD	多各种长金融	并在本非科林	*****	长於如於 明於發程		CONTI	DRCOR
	SAMPLE MEASUREMENT										
	PERMIT			Ä							

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER

TYPED OR PRINTED

Michael T. Carroll Mgr. Pittsfield Remediation Prog. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

TELEPHONE DATE 2/ 6 413,448-5902 2006 MO DAY NUMBER YEAR

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

REPORT SUM OF LOAD CRA + ORB, FOR BOD. TBD. FLOW. BER FARE IN DI PERMIT SEE DMRS GOTA + GOTB.

SAMPLE

AT CLEST-MODE POINT TO BROOK FOR PH. OIL & GREASE AND FUE

PEHMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN. JEFFREY G. RUEBESAM

100 WEIGHLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

01

MA0003891 PERMIT NUMBER

YEAR MO DAY

05

05

SUM A

DISCHARGE NUMBER

YEAR MO DAY

06

MAJOR (SUBR W) F - FINAL

METALS: 001, 004, 005, 007, 009, 011

*** NO DISCHARGE ! ! *** NOTE: Read Instructions before completing this form.

PARAMETER		QUANTITY OR LOADING QUALITY OR CONCENTRATION					NTRATION		NO. EX	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TIPE
HOSPHORUS: TOTAL. (AS P)	SAMPLE MEASUREMENT	***	0	(26)	特特特特特	长柱长柱长柱	各套套套套套		0	01/30	СР
0665 1 0 0 F FFLUENT GROSS VALUE	PERMIT REQUIREMENT	*******	REPORT DAILY MX		*****	14.44.44.44.44	*****	华林林 李子子		ONCE/ MONTH	COMPO
TOTAL RECOVERABLE	SAMPLE MEASUREMENT	***	0	(26) LBS/DY	***	长谷松长各 钱	长林林林林		0	01/30	СР
01074 1 0 C FFLUENT GROSS VALUE	PERMIT EREQUIREMENT	*****	REPORT DAILY MX	LBS/DY	****	计计算计算	拉查提查 查	****		ONCE/ MONTH	COMPE
SILVER	SAMPLE MEASUREMENT	***	0	(26)	***	经共存转换	***		0	01/30	СР
01079 1 0 0 EFFLUENT GROSS VALUE	PERMIT	并非非非非	REPORT DAILY MX	LBS/D	作技术长长44 /	华华华华 林	共业的企业共	松松松松		ONCE/	100 E 100 E 200 E 200 E 200 E 200 E 200 E 200 E 200 E 200 E 200 E 200 E 200 E 200 E 200 E 200 E 200 E 200 E 20
INC - TOTAL RECOVERABLE	SAMPLE MEASUREMENT	****	0.2	(26) LBS/DY	***	***	华华安安安		0	01/07	СР
01074 1 0 0 EFFLUENT GROSS VALUE	PERMIT PREQUIREMENT	计算标准算量	REPORT DAILY MX		作基果基件基 /	4.44.44	安林安泰安林	· 安安安安		WEEKL)	COMPI
ALUMINUM, TOTAL (AS AL)	SAMPLE MEASUREMENT	长长谷谷长长	0	(26) LBS/DY	****	· 查替长龄转换	***	6	0	01/30	CP
01105 1 0 0 EFFLUENT GROSS VALU	PERMIT EREQUIREMENT	*****	REPORT DAILY MX		*************************************	北条货业的水	美华货币 非	安安安安 安安安安		ONCE/ MONTH	PER LICENCE POLICIONS
CADMIUM TOTAL RECOVERABLE	SAMPLE MEASUREMENT	餐餐餐餐餐	0	(26) LBS/DY	茶餐茶茶餐箱	· 按於於於於	***	×	0	01/30	CP
01113 1 0 0 EFFLUENT GROSS VALU	PERMIT EREQUIREMENT	*****	REPORT DAILY MX	LBS/D	V ******	李安长朱安	香港作品企	安安安安		ONCE/ MONT	10 10 10 10 10 10 10 10 10 10 10 10 10 1
LEAD TOTAL RECOVERABLE	SAMPLE MEASUREMENT	****	0.03	(26) LBS/DY	长妆妆妆妆	* *****	并并并 参	35	C	01/07	СР
01114 1 0 0 EFFLUENT GROSS VALU	PERMIT	各种技术状态	REPORT DAILY MX		****	表表示的	各种物质存在	***		WEEKL	YCOMP

TYPED OR PRINTED

Michael T. Carroll Mgr. Pittsfield Remediation Prog.

to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

413 448-5902 2006 YEAR MO DAY NUMBER

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

COMPOSITE PROPORTIONATE TO FLOW

Form	Approved.
	No. 2040-0004

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

GENERAL ELECTRIC CORPORATION

ADDRESS ATTY DEFFREY & RUEBESAM

103 REGDLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

178E000AM PERMIT NUMBER

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)

DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

SUM A DISCHARGE NUMBER

DAY

MAJOR (SUBF W) F - FINAL

METALS: 001, 004, 005, 007, 009, 011

*** NO DISCHARGE | | *** NOTE: Read Instructions before completing this form.

MO DAY YEAR MO LOCATION PITTEFIELD MA 01201 FROM ATTN: MICHAEL T CARROLL, EHS&F

FREQUENCY PARAMETER SAMPLE NO. QUANTITY OR LOADING QUALITY OR CONCENTRATION TYPE EX **ANALYSIS AVERAGE** MAXIMUM UNITS MINIMUM **AVERAGE** MAXIMUM UNITS CHROMIUM ********** (26) SAMPLE 长长长长长长 於於於於於於 长春长长安全 CP 0 01/30 MEASUREMENT TUTAL RECOVERABLE LBS/DY 01118 1 0 0 REPORT ONCE COMPO PERMIT 经营业营业 长春春春春春 **华长长芬托长 美花袋袋袋袋 长长长** EFFLUENT GROSS VALUEREQUIREMENT DAILY MX 长谷谷长 MONT LBS/D CUPFER **新长长长长** 长春葵葵粉 (26) 於於於於於於 **** SAMPLE 0 01/07 CP "GTAL RECOVERABLE MEASUREMENT LBS/DY 01119 1 0 0 WEEKLYCOMPE 经条件保存者 REPORT 长松松铁铁铁 经会会会保存 **安林林林林**春 经转移物 PERMIT EFFLUENT GROSS VALUEREQUIREMENT DAILY MX LBS/D 安长谷长 CYANIDE, TOTAL (26) 상 한 분 분 등 하 茶餐餐餐餐餐 外科安科科特 **特格特格特** SAMPLE CP 01/30 0.07 0 RECOVERABLE MEASUREMENT LBS/DY ONCE/ GRAB 78248 1 REPORT 经营养的 世界安安托条 秦林林恭秦林 经共年於學院 於於於於安於 PERMIT MONT EFFLUENT GROSS VALUEREQUIREMENT 长行经长 DAILY MX LBS/D SAMPLE MEASUREMENT PERMIT REQUIREMENT SAMPLE MEASUREMENT PERMIT REQUIREMENT SAMPLE MEASUREMENT PERMIT REQUIREMENT SAMPLE MEASUREMENT PERMIT REQUIREMENT I certify under penalty of law that this document and all attachments were DATE NAME/TITLE PRINCIPAL EXECUTIVE OFFICER TELEPHONE

Michael T. Carroll Mgr. Pittsfield Remediation Prog.

TYPED OR PRINTED

prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED/AGENT

2006 413 448-5902 6 DAY YEAR MO NUMBER

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

CEMPOSITE PROPORTIONATE TO FLOW.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME

FACILITY

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

GENERAL ELECTRIC COMPANY

LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

SUM B DISCHARGE NUMBER

(SUBR W)

MAJOR

F - FINAL TOXICS: 001, 004, 005, 007, 009, 011

*** NO DISCHARGE | | *** NOTE: Read Instructions before completing this form.

		M	ONITO	RING	PERIOD)	
0000000000	YEAR	MO	DAY		YEAR	MO	DAY
FROM	06	05	Ol	то	06	05	31

PARAMETER		QUANT	ITY OR LOADING			QUALITY OR CONC	ENTRATION	N.	NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MUMIXAM	UNITS	EX	ANALYSIS	ITEL
VOAEL STATEE 48HR A	SAMPLE MEASUREMENT	特特特特特	***		100	安长谷野安省	**********	0/	0	01/30	СР
FOMBD 1 0 0 EFFLUENT GROSS VALU	PERMIT REQUIREMENT	教育特殊格会	*****	****** *****	DAILY MN	教会会会会会	经营业营业	PER- CENT		ONCE/ MONTH	COMPO
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
*	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT				`						
R	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT	<			14						
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
6	PERMIT REQUIREMENT			A CO							
NAME/TITLE PRINCIPAL EXECUTIV	E OFFICER I certify	under penalty of law that t d under my direction or su	his document and all attach	ments were	POS-DER PASSED DE LA CASA DE LA C		Telephone St. F. St. S. Land	TELEPHO	NE	D	ATE

Mgr. Pittsfield Remediation Prog.

TYPED OR PRINTED

or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Carron SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

413 448-5902 2006 6 02/ MO DAY NUMBER YEAR

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

FOR JULY, AUG. , SEPT. REPORT ACUTE AND COMPOSITE PROPORTIONATE TO FLOW. MONTHLY DRY WEATHER TESTING. SUBMIT THIS DMR WITH A NODI '?' WHEN SUBMITTING SEE DMR SUMC FOR QUARTERLY WET WEATHER ACUTE. CHRONIC WET WEATHER RESULTS ON DMR SUMC

Attachment C

NPDES Biomonitoring Report June 2006

June 23, 2006

Mr. Jeffrey Nicholson GE Corporate Environmental Programs 159 Plastics Avenue Pittsfield, MA 01201

Re: NPDES Biomonitoring Report for June 2006

Submission #: R2631832

Dear Mr. Nicholson:

Enclosed is our report on the Whole Effluent Toxicity testing conducted in Jun 2006. The Outfall Composite samples were collected on 6/6/06 at 11:00 am. The Housatonic River samples were collected on 6/6/06 at 8:15 am. The Outfall Composite and Housatonic River samples were analyzed at Columbia Analytical Services for total cyanide, ammonia, total organic carbon, total phosphorus, chloride, total solids, total suspended solids, total residual chlorine, and total metals. Dissolved metals were analyzed for only on the Outfall Composite samples. Results are presented in Appendix 2. The Outfall Composite and Housatonic River samples were sent directly by General Electric to Aquatec Biological Services for the acute aquatic toxicity testing including the analysis of alkalinity, hardness, specific conductance, and pH. Results are presented in Appendix 1.

Should you have any questions please contact me at (585)288-5380 x130.

Thank you for allowing us to provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Carlton Beechler Project Manager

enc.

CC: Jill Piskorz, Pat Fuse and Nicole Evans vial email.

NPDES BIOMONITORING REPORT

GENERAL ELECTRIC COMPANY Pittsfield, MA NPDES PERMIT MA 0003891

Monthly Acute Toxicity Monitoring
Dry Weather Conditions
June 2006

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on		
****	(Date)	(Authorized Signature)
		Michael T. Carroll
		General Electric Co. – Pittsfield, MA Permit MA0003891

Prepared by: Carlton R. Beechler

June 23, 2006

TABLE OF CONTENTS

		<u>PAGE</u>
I.	Summary	1
II.	Review of Toxicity Analytical Results	2
III.	Review of Wastewater Sampling Procedures	3
IV.	Review of Individual Discharges	5

Table I – Summary of Analytical Test Results

Appendices:

- 1. Chemical and Acute Toxicity Data from Aquatec Biological Sciences
- 2. Laboratory Reports from Columbia Analytical Services, Inc. and O'Brien & Gere, Inc.
- 3. Chain of Custody Forms

I. Summary

On June 5-6, 2006 sampling of wastewater discharges from the General Electric Company facility in Pittsfield MA was conducted in accordance with the dry weather toxicity testing requirement of the GE NPDES Permit MA0003891. Composite samples were collected from GE outfalls 001, 005-64T, 005-64G and 09B over a 24-hour period. These composite samples were combined in a flow-proportioned manner to generate a single wastewater sample that was shipped to Aquatec Biological Sciences in Williston, Vermont. A grab sample of Housatonic River water, to be used as dilution water in the toxicity test, was collected upstream of the GE discharges on June 6, 2006 and shipped to AquaTec along with the wastewater composite. AquaTec dechlorinated the composite sample prior to the acute toxicity test following the toxicity reduction procedures summarized in a letter dated November 11, 1993 to EPA Region I from JG Ruebesam of General Electric Company. The composite wastewater sample and the dilution water sample were tested for chemical constituents by Aquatec Biological Sciences and Columbia Analytical Services. The analytical results are summarized in Table I and the detailed laboratory test data are include as Appendices to this report. As a result of land transfer documents executed on April 27, 2005 and recorded in the Berkshire County Registry of Deeds on May 2, 2005, Outfalls 001 and 004 were transferred to the Pittsfield Economic Development Authority (PEDA). Outfalls 001 and 004 DMRs will no longer be submitted under the GE NPDES Permit No. MA0003891. However, GE's NPDES Permit requires that the metal and toxicity composites to be made by compositing samples from the following outfalls: 001, 004, 005, 007, and 009. These two composites will continue to include an aliquot of water from outfall 001 and outfall 004, and will be reported on GE's DMR until further actions by the Agencies.

The results from Aquatec Biological Sciences for the acute toxicity test on the wastewater discharge sample indicated a No Observed Acute Effect Level (NOAEL) of 100%.

II. Review of Toxicity Test Results

The wastewater discharge sample collected on June 5-6, 2006 was tested for 48-hour acute toxicity using Daphnia pulex organisms. The sample did not require dechlorination with sodium thiosulfate (Na₂S₂O₃) prior to toxicity testing. Aquatec Biological Sciences reported the results of this toxicity testing as follows:

Effluent toxicity as NOAEL =	100%
Effluent toxicity as $LC_{50} =$	>100%

No limit is established for wet weather NOAEL in the GE NPDES permit.

The following table summarizes the results of the control sample analyses performed by AquaTec during the acute toxicity bioassay:

Control Analysis	Result
Survival in 100% dilution water	88%
Survival in laboratory water	88%
Survival in laboratory water	
with 100 mg/L sodium thiosulfate	100%
LC ₅₀ for Daphnia pulex in sodium	
chloride reference toxicant solution	3.959g NaCl/L June 7, 2006

The Daphnia survival rates in control solutions of upstream dilution water, laboratory water and reference toxicant solution were within acceptable limits, indicating that the results of the toxicity test are valid.

III. Review of Wastewater Sampling Procedures

Composite samples of the individual NPDES wastewater discharges were collected over a 24-hour period. These samples were composited in a flow-weighted manner to generate a single combined discharge sample for toxicity testing and chemical analysis.

The 24-hour composite samples from the individual discharges were collected as follows:

Each automatic sampler (at outfall 001, 64T, 64G, and 09B) was programmed to collect approximately 7 liters of wastewater into a 10-liter glass container in a time-proportioned manner over a 24-hour period. Outfalls 004, 007, and 09A have been plugged and no longer flow.

All sample containers were packed in ice or refrigerated to keep the wastewater samples cold during the 24-hour collection period.

Flow meter readings were taken at the beginning and end of the 24-hour collection period to determine the total 24-hour flow for each wastewater discharge.

At the end of the 24-hour collection period, the discharge samples were taken to Building 64G where OB&G personnel composited these samples, in a flow weighted manner, to generate a single combined sample for the acute toxicity test and the chemical analyses, as follows:

The proportions of each individual discharge sample needed to produce a single combined sample were calculated from the flow measurements. The calculated sample volumes were then transferred from their original collection containers to a 2.5 or 5 gallon mixing container. The combined discharge sample was then split into various containers for toxicity testing and chemical analyses. These containers were shipped by vendor courier to AquaTec for toxicity testing and by FedEx (overnight) to Columbia Analytical Services for chemical analyses. All samples were chilled with ice packs during shipment.

A grab sample of Housatonic River water was collected on the second day of sampling at the Lyman Road Bridge in Hinsdale, MA, upstream of the GE site. This sample was split for chemical analysis and toxicity testing in a similar manner as the combined effluent sample (see above).

Details of the times and dates of sample collection as well as the names of the individuals collecting and transporting the samples are provided on the chain of custody forms in Appendix 3 of this report.

IV. Review of Individual NPDES Discharges

The following is a brief description of each of the seven outfalls that are monitored for acute and chronic toxicity in accordance with NPDES Permit MA0003891 issued to the General Electric Company, Pittsfield, MA.

- 1. Outfall 001 is permitted to discharge storm water runoff from the oil/water separator in Building 31W to Silver Lake.
- 2. Outfall 004 is permitted to discharge storm water runoff to Silver Lake. (Outfall plugged)
- 3. Outfall 005 is permitted to discharge contact cooling water, non-contact cooling water, treated process water and storm water runoff from the Wastewater Treatment Plant in Building 64T, and treated groundwater from the Groundwater Treatment Plant in Building 64G to the Housatonic River. Monitoring samples are collected separately from the effluents of 64G and 64T. Both samples are included in the flow composite sample used for toxicity testing.
- 4. Outfall 007 is permitted to discharge stormwater runoff to the Housatonic River. (Outfall plugged)
- 5. Outfall 09A is permitted to discharge non-contact cooling water and stormwater runoff to Unkamet Brook. (Outfall plugged)
- 6. Outfall 09B is permitted to discharge non-contact cooling water, treated process water and stormwater runoff from the oil/water separator in Building 119W to Unkamet Brook.

Table I – Summary of Analytical results for

NPDES Outfall Composite Sample and Housatonic River Dilution Water June 5-6, 2006

Aquatic Toxicity Results: No Observed Effect Level (NOAEL) = 100% LC50 = >100%

Chemical Analyses: (all results are mg/L unless otherwise indicated)

		Effluent	Housatonic
Parameter Tested	Laboratory	Composite	River
Ammonia	CAS	0.246	ND (0.100)
Chloride	CAS	179	10.8
Total Alkalinity	CAS	354	47.2
Total Organic Carbon	CAS	6.25	5.66
Total Phosphorus	CAS	ND (0.0500)	ND (0.0500)
Total Solids	CAS	677	87.0
Total Suspended Solids	CAS	1.40	1.90
Hardness	Aquatec	356	58
Spec. Conductance (umhos)	Aquatec	1268	151
pH (SU)	Aquatec	7.7	7.4
TRC (start of toxicity test)	Aquatec	ND	ND
•			
Cyanide	CAS	0.0375	ND (0.0100)
Aluminum, total	CAS	ND (0.100)	ND (0.100)
Aluminum, dissolved	CAS	ND (0.100)	NA
Cadmium, total	CAS	0.000360	0.000503
Cadmium, dissolved	CAS	0.000508	NA
Chromium, total	CAS	0.00158	0.00118
Chromium, dissolved	CAS	0.00160	NA
Copper, total	CAS	ND (0.0200)	ND (0.0200)
Copper, dissolved	CAS	ND (0.0200)	NA
Lead, total	CAS	ND (0.00500)	ND (0.00500)
Lead, dissolved	CAS	ND (0.00500)	NA
Nickel, total	CAS	ND (0.0400)	ND (0.0400)
Nickel, dissolved	CAS	ND (0.0400)	NA
Silver, total	CAS	ND (0.0100)	ND (0.0100)
Silver, dissolved	CAS	ND (0.0100)	NA
Zinc, total	CAS	0.0120	0.0125
Zinc, dissolved	CAS	0.0212	NA
pH (SU)	OB&G	7.91	7.79
Hardness	Aquatec	356	64

All results are mg/L unless otherwise indicated.

ND - Not detected (Number in parentheses is detection limit.)

NA – Not analyzed

APPENDIX 1

Chemical and Acute Toxicity Data

Aquatec Biological Sciences

Whole Effluent Toxicity Testing
Of Wastewaters Discharged from
The General Electric Plant
Pittsfield, Massachusetts

Samples Collected in June 2006

Submitted to:

General Electric

Area Environmental & Facility Programs
100 Woodlawn Avenue
Pittsfield, Massachusetts 01201

SDG number: 9583

Effluent ID: Outfall Composite A7355C Aquatec sample number: 32034

Receiving water ID: Housatonic River A7354R Aquatec sample number: 32035

Study Director: John Williams

June 19, 2006

Submitted by:

Aquatec Biological Sciences, Inc. 273 Commerce Street Williston, Vermont 05454

Phone: (802) 860-1638 Fax: (802) 860-1638

Accreditation: NH Environmental Laboratory Accreditation Program NELAP / NELAC accredited for the requested analysis.

Signatures and Approval

Submitted by:

Aquatec Biological Sciences, Inc.

273 Commerce Street Williston, Vermont 05454 Phone: (802) 860-1638

Fax: (802) 860-1638

Study Director John Williams

Quality Assurance Office Philip C. Downey, Ph. D.

Whole Effluent Toxicity Test Report Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on:	Date: 6/19/06
and the state of t	and the second second
Authorized signatu	re
John Williams	
Name	
Manager, Envir	onmental Toxicology
Title	
Aquatec Biolog	ical Sciences, Inc.
Laboratory	

Table of Contents

		Page
Signatures ar	nd Approval	2
Whole Efflue	nt Toxicity Test Report Certification	3 5
List of Tables	,	5
Summary of	Static Acute Toxicity Test With Daphnia pulex	6
·		
1.0 Introduct	tion	
	1.1 Background	7
	1.2 Objective of the General Electric Study	7
2.0 Materials	and Methods	
	2.1 Protocol	7
	2.2 Effluent and receiving water samples	8
	2.3 Control water	8
	2.4 Test organism	8
	2.5 Test procedure	9
	2.6 Test monitoring	9
	2.7 Reference toxicant test	10
3.0 Statistics	3	
	3.1 Statistical protocol	10
4.0 Results		
	4.1 Effluent toxicity test	10
	4.2 Reference toxicant test	11
5.0 Qualifier		* 4
	5.1 Qualifiers and Special Conditions	11
		40
References		12
A	Chain of Custody Documentation	
Appendix 1	Chain-of-Custody Documentation	
Appendix 2	Summary of Test Conditions	
Appendix 3	U.S. EPA Region 1 Toxicity Test Summary and	
A manufacture A	Statistical Flow Chart	
Appendix 4	Bench Data, Daphnia pulex Acute Toxicity Test	
Appendix 5	Standard Reference Toxicant test Control Chart	
Appendix 6	SOP TOX2-001, Standard Operating Procedure for	
	Daphnid (Ceriodaphnia dubia, Daphnia magna,	
	and <i>Daphnia pulex</i>) Acute Toxicity Test	

List of Tables

		Page
Table 1	Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)	13
Table 2	The water quality measurements recorded during the 48-hour static toxicity test for <i>Daphnia pulex</i> exposed to General Electric Pittsfield Plant effluent	14
Table 3	Cumulative percent mortalities recorded during the 48-hour static toxicity test for <i>Daphnia pulex</i> exposed to General Electric Pittsfield Plant effluent	15

Summary of Static Acute Toxicity Test with *Daphnia pulex*

Sponsor: General Electric

Protocol title: US EPA-821-R-02-012. Methods for Measuring the

Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5th Ed., October

2002. Method 2021.0

Aquatec SDG: 9583

Test material: Composite effluent from the General Electric

Company located in Pittsfield, Massachusetts

GE sample ID: OUTFALL COMPOSITE A7355C

Dilution water: Water from the Housatonic River (grab sample)

GE sample ID: HOUSATONIC RIVER A7354R

Dates collected: June 6, 2006

Date received: June 6, 2006

Test dates: June 7 - 9, 2006

Test concentrations: 100%, 75%, 50%, 35%, 15%, 5% effluent.

Dilution water control (Housatonic River A7354R)

Laboratory control 1 (culture water)

Laboratory control 2 (culture water with sodium

thiosulfate)

Results: The 48-hour LC50 value was determined to be

>100% effluent. The Acute No-Observed-Effect-

Concentration (A-NOEC) was 100% effluent.

1.0 Introduction

1.1 Background

In 1972, amendments were made to the Clean Water Act (CWA) prohibiting the discharge of any pollutant from a point source to waters of the United States, unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Since the passing of the 1972 amendments to the CWA, significant progress has been made in cleaning up industrial wastewater and municipal sewage point source discharges. EPA defines point sources as discrete discharges via pipes or man-made ditches.

In 1984, the U.S. Environmental Protection Agency (EPA) released a national policy statement and a supporting document that recommended, where appropriate, effluent permit limits should be based on effluent toxicity as measured in aquatic toxicity tests. Generally, permits require that no toxic discharge occur in toxic amounts. The routine use of dilution-series toxicity tests and/or biologically-based criteria (i.e., invertebrate and vertebrate community studies) have become increasingly utilized to calculate or estimate the potential toxicity of a discharge.

EPA has the authority to delegate primary responsibility for the implementation, permitting, and enforcement of NPDES regulations to appropriate State regulatory agencies. Even when EPA delegates this authority to the states, EPA still maintains oversight responsibility.

1.2 Objective of the General Electric Study

The objective of this study was to measure the acute toxicity of the composite wastewater discharged by the General Electric facility located in Pittsfield, Massachusetts to the Housatonic River. The water flea, *Daphnia pulex*, is exposed to effluent and dilutions of effluent under static conditions. *Daphnia pulex* is routinely used by regulatory agencies and by contract laboratories for toxicity testing and EPA has published guidance documents for the performance of this test (U.S. EPA, 2002).

A toxicity test was conducted from June 7 - 9, 2006 at Aquatec Biological Sciences, Inc. (Aquatec) located in Williston Vermont. Aquatec Biological Sciences, Inc. holds NELAC accreditation for the requested whole effluent toxicity test. All original raw data and the final report produced for this study are stored in Aquatec's archives in Williston, Vermont.

2.0 Materials and Methods

2.1 Protocol

Procedures used in this acute toxicity test followed those described in the Aquatec Standard Operating Procedure (SOP) TOX2-001, Daphnid Acute R5, May 4, 2006. This SOP generally follows the standard methodology presented in U.S. EPA. 2002 (EPA-821-R-02-012. *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*, 5th Ed.,

June 19, 2006

October 2002, Method 2021.0 (as summarized in Appendix 2 of this report). A copy of the SOP is located in Appendix 6 (Controlled document, please do not copy or distribute.)

Additional SOPs used in this study are outlined below:

Title	SOP Number	Revision Date			
Sample Acceptance	TOX1-017	Rev. 4, February, 2004			
Hardness – total titrimetric method	TOX1-011	Rev. 3, May 2003			
Alkalinity – total titrimetric method	TOX1-010	Rev. 6, April 2004			
Thermo-Orion 145 A+ Conductivity Meter	TOX1-016	Rev. 1, April 2004			
Dissolved oxygen	TOX1-006	Rev. 7, April 2004			
pH measurement	TOX1-007	Rev. 2, April 2004			
Salinity: refraction method	TOX1-008	Rev. 3, January, 2003			

2.2 Effluent and Receiving Water Samples

The effluent sample (Outfall Composite A7355C) was collected by GE personnel from June 5-6, 2006. The receiving water sample (Housatonic River A7354R) was a grab collected from the Housatonic River on June 6, 2006. Samples were delivered to Aquatec on the same day. Upon receipt at Aquatec on June 6, 2006, the temperature of the temperature blank contained within the cooler was 0.0°C. The effluent and receiving water were prepared for testing and characterized (Table 1). The receiving water was the dilution water for preparing effluent concentrations and was also the reference control for statistical comparisons.

2.3 Control water

Laboratory control water for the toxicity test was a 1:1 mixture of laboratory reconstituted moderately hard water and 60-micron filtered river water collected from the Lamoille River, Vermont. This water was characterized for the following parameters: pH (7.5); dissolved oxygen (8.1 mg/L); conductivity (207 uS/cm). An additional dechlorination control (laboratory water with 0.2 N sodium thiosulfate added) was included in the test array, even though chlorine was not detected in the effluent sample.

2.4 Test Organism

Daphnids (*Daphnia pulex*), less than 24-hours old were obtained from Aquatec laboratory cultures. The culture system consisted of several 1-liter glass beakers containing approximately 1-liter of culture medium and up to approximately 100 daphnids. The culture water was laboratory reconstituted moderately hard water. Prior to use, the culture water was characterized:

Parameter	Result
Total hardness (mg/L)	Within range of 80-110 mg/L
Alkalinity (mg/L as CaCO ₃)	Within range of 60-70 mg/L
pH	Nominal 7.7 – 8.0

The culture area was maintained at a nominal temperature of 20°C (range 19 – 21°C) with a regulated photoperiod of 16 hours light and 8 hours of darkness.

Daphnid cultures were fed a combination of green algae (*Selenastrum* capricornutum) and YCT obtained from Aquatic BioSystems of Fort Collins, Colorado. The cultures were fed a ration of *Selenastrum* and YCT daily Monday through Friday. Daphnids were transferred to new culture medium weekly.

Approximately 24 hours before toxicity test initiation, all daphnid neonates were removed from the culture beakers. Offspring produced within 24 hours were used for toxicity testing.

2.5 Test Procedures

Prior to initiating the toxicity test, a sub-sample of effluent and receiving water was decanted for subsequent alkalinity and hardness determination. A sub-sample was also check for presence of chlorine to determine whether dechlorination of effluent is required. Chlorine was not detected, therefore dechlorination of the effluent was not required. The sample was then aerated and warmed to test temperature.

The toxicity test was conducted at effluent concentrations of 100%, 75%, 50%, 35%, 15%, and 5% effluent. Test concentrations were prepared by diluting the appropriate volume of effluent with dilution water to a total volume of 400 mL. Test solutions were then decanted to five replicate 30-mL cups per concentration, each containing approximately 20 mL of test solution. Three sets of control replicates were also included in the test array, set up as the effluent replicates. The controls included: Housatonic River A7354R water (dilution control), a laboratory control (a mix of moderately hard water and Lamoille River, VT water), and a laboratory control with sodium thiosulfate added (dechlorination control). The dechlorination control was included in the test array even though residual chlorine was not detected in the effluent.

Prior to testing, daphnids less than 24-hours old were collected from the cultures, pooled in Carolina bowl, and fed. The test was initiated when the daphnid neonates were transferred to the replicate test cups, five daphnids per cup. The toxicity test cups were incubated to maintain temperature in the range of 19°C to 21°C. The lighting cycle was 16 hours light and eight hours dark and a luminance of approximately 80 ft-c.

2.6 Test Monitoring

The number of surviving daphnids was observed at approximately 24-hour intervals during the test, with the final count of surviving daphnids at approximately 48 hours. Temperature was measured daily in one replicate of each test treatment. The parameters of pH, dissolved oxygen, and conductivity were measured at the beginning and the end of the test.

Total hardness was measured by the EDTA titrimetric method and total alkalinity was measured by potentiometric titration to an endpoint of 4.5. The check for residual chlorine was performed with an acidified sample to which potassium iodide and starch indicator added. If chlorine was detected, the color was titrated away with 0.02 N sodium thiosulfate to determine the equivalent volume of 0.2 N sodium thiosulfate to add to effluent (if needed).

Dissolved oxygen was measured with a YSI Model 58 dissolved oxygen meter. A Beckman Phi 40 was used to measure pH. A Thermo-Orion Model 145 conductivity meter was used to measure conductivity. Salinity was measured with an Atago salinity refractometer.

2.7 Reference Toxicant Test

A 48-hour standard reference toxicant (SRT) test was conducted concurrently with the effluent toxicity test. The SRT test was conducted as a quality control procedure to establish the health and sensitivity of the test organisms. The SRT included four concentrations of reagent grade sodium chloride (NaCl) with nominal concentrations of 0.75, 1.5, 3.0, 6.0, and 12 g NaCl/L. Four test replicates, each containing five daphnid neonates were test at each concentration and the laboratory control.

3.0 Statistics

3.1 Statistical protocol

The concentration-response relationships observed were characterized by the median lethal concentration (LC50), which was the calculated concentration lethal to 50 percent of the test organisms. If no concentrations resulted in 50% mortality, the LC50 was reported as greater than the highest concentration effluent (in this case >100% effluent), by direct observation. If greater than 50 percent mortality was observed in any effluent treatment, then a computer program (TOXIS2) was used to calculate the LC50 value, following the U.S. EPA statistical flowchart (Appendix 3).

The Acute-No-Observable-Effect Concentration (A-NOEC) was determined statistically using multiple comparison tests (TOXIS2), with the receiving water control as the reference.

4.0 Results

4.1 Effluent Toxicity Test

Results of effluent and receiving water characterizations performed at Aquatec as part of the toxicity test are presented in Table 1. Water quality parameters measured during the toxicity test are presented in Table 2. Measured temperatures during the test were within the range of 19°C to 21°C. The percent mortality data for the toxicity test are presented in Table 3. Acute toxicity was not

demonstrated during this evaluation. The 48-hour LC50 value was >100% effluent. The A-NOEC was 100% effluent.

4.2 Reference Toxicant Test

A standard reference toxicant (SRT) test was performed concurrently with the effluent toxicity test, using the same batch of daphnid neonates. The resulting 48-hour LC50, calculated by the Spearman-Karber method, was 3.96 g NaCl/L with 95% confidence intervals of 1.68-4.81 g/L. This LC50 value was within the Control Chart limits generated for tests in our laboratory.

5.0 Qualifiers

5.1 Qualifiers and Special Conditions

Qualifiers or special conditions were not applicable to the reported toxicity test.

References

American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17th Edition

U.S. Environmental Protection Agency, 2002. 5th Edition. *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*. EPA-821-R-02-012.

Table 1. Results of the characterization of the General Electric Pittsfield Plant effluent and receiving water (Housatonic River).

Parameter	Effluent OUTFALL COMPOSITE A7355C	Housatonic River A7354R HOUSATONIC RIVER A7354R		
Temperature	19.8	20.3		
рН	7.7	7.4		
Alkalinity (as CaCO ₃), mg/L	348	48		
Hardness (as CaCO ₃), mg/L	356	58		
Dissolved oxygen, mg/L	9.3	9.4		
Specific conductivity, uS/cm	1268	151		
Salinity (°/ _{oo})	0	0		
Total residual chlorine (mg/L)	ND	ND		

Note: Characterizations reflect conditions of sample after preparation for the toxicity test. ND = not detected

Table 2. Water quality measurements recorded during the 48-hour static toxicity test with *Daphnia pulex* exposed to General Electric Pittsfield Plant effluent, June 7 - 9, 2006.

Test Concentration	Dissolved Oxygen Temperature								
(% effluent)	0	рН 24	48	0	(mg/L) 24	48	0	(°C) 24	48
Dechl. Control	7.6	***	7.5	8.2	-	8.7	20.7	20.5	20.5
Lab Control	7.5	-	7.6	8.1	-	8.7	20.5	20.4	20.5
Dilution Control	7.4	-	7.4	9.4	-	8.7	20.3	20.8	20.5
5%	7.4	-	7.5	9.7	-	8.7	20.4	20.4	20.5
15%	7.5	_	7.8	9.7	_	8.7	20.3	20.5	20.4
35%	7.6	-	7.9	9.6	-	8.7	20.2	20.5	20.3
50%	7.7		8.2	9.5	-	8.7	20.2	20.4	20.4
75%	7.7	Non-	8.3	9.4	14	8.7	20.0	20.4	20.4
100%	7.7	••	8.3	9.3	-	8.8	19.8	20.4	20.5

Measurements at time 0 were from a sub-sample of the prepared treatment. Measurements at time 48 were from the combined water from all replicates for each treatment.

Dechl. Control = laboratory water with sodium thiosulfate added (dechlorination control).

Lab Control = a mix of natural river water and moderately hard water. Dilution Control = receiving water (Housatonic River).

Table 3. Cumulative percent mortalities recorded during the 48-hour static acute toxicity test with *Daphnia pulex* exposed to General Electric Pittsfield Plant effluent, June 7 - 9, 2006.

Effluent Conc.			24-hou	r				****	48-ŀ	our		
(%)	Α	В	С	D	E	Avg	Α	В	С	D	E	Avg
Dechl. Control	0	0	0	0	0	0	0	0	0	0	0	0
Lab Control	0	0	0	0	20	4	20	0	0	0	20	8
Rec. Control	0	0	0	0	0	0	0	0	0	0	0	0
5%	0	0	0	0	0	0	0	0	0	0	0	0
15%	0	0	0	0	0	0	0	20	0	0	0	4
35%	0	0	0	0	0	0	0	0	0	0	0	0
50%	0	0	0	0	0	0	0	0	0	0	0	0
75%	0	0	0	0	0	0	0	0	0	0	20	4
100%	0	0	20	0	0	4	0	20	20	0	0	8

Dechl. Control = laboratory water with sodium thiosulfate added (dechlorination control).

Lab Control = a mix of natural river water and moderately hard water. Dilution Control = receiving water (Housatonic River).

Percent mortality = (# dead/5) X 100

NPDES Permit No. MA0003891 SDG: 9583 June 19, 2006

Appendix 1 Chain-of-Custody Documentation

	Aqu	latec Bi	iolog f-Cust	Aquatec Biological Sciences Chain-of-Custody Record	273 Commerce Street Williston, VT 05495 TEL: (802) 860-1638 FAX: (802) 658-3189	Street 495 1638 3189
COMPANY INFORMATION	COMPANY'S PROJECT INFORMATION	JECT INFORMA	NOIT	SHIPPING INFORMATION	VOLUME/CONTAINER TYPE/ PRESERVATIVE	PE/
Name: General Electric Company	Project Name: GE PITTSFIEL	TSFIELD	S	Carrier.	4°C	4°C 4°C
Address: O'Brien & Gere	Outfall Composite	al			H ₂ SO ₄ H ₂ SO ₄	HNO3
1000 East Street, Gate 64	Project Number; 06004)4	4	Airbill Number:		
City/State/Zip: Pittsfield, MA 01201	Sampler Name(s): 14 ARIC WHENCEUS	IMIK WYS	.		Plastic Plastic Plastic Glass Arr	Amber Plastic Glass
-	NPDES Permit #: MA0003891	003891	<u> </u>	Date Shipped: 6 0 0		
Facsimile: 744-763 C	Quote #: 10/05	Client Code: GEPITTS		Hand Delivered: Yes No	1 gai 1/2 gal 1 L 40 ml 256	250 ml 0.5 L
SAMPLE IDENTIFICATION DATE	COLLECTION DATE TIME GRAB	COMPOSITE	MATRIX	ANALYSIS (detection limits, mg/L)	NUMBER OF CONTAINERS	- SS
Outfall Composite A 7355 C 6-6	00/11/00/29	\	Effluent /	Daphnia pulex 48-h Static Acute Toxicity		
Outfall Composite A7355C	1 (474)	7	Effluent	Total Residual Chlorine		-
Housatonic River A 7354 R	815 8 AM		Receiving	Dilution Water		
Housatonic River A 7354R V	8 fm		Receiving	Total Residual Chlorine		-
	DATE TIME Recei	Received by: (signature)	(0)	NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the labels with clear tape. Tape the caps of the sample bottles to ensure that they do not become dislodged during shipment. Nest the samples in sufficient ice to maintain 0°C	the labels (Date, time, initials) and control that they sample bottles to ensure that they at the samples in sufficient ice to main	ver the do not ntain 0°C –
NAC			P	6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the report.	iperatures exceeding 6°C will be qua	ified in the
Relinquished by: (signature) / DATE	9:00 -	Received by: (signature)		Notes to Lab: Ambient cooler temperature: sample if chlorine is detected.	ature: $\bigcap_i \mathfrak{o}^\circ C$. Dechlorinate the effluent	effluent
Relinquished by: (signature) DATE	TIME	Received by: (signature)	(ө			

Appendix 2 Summary of Test Conditions

SDG: 9583 Client: GENERAL ELECTRIC, PITTSFIELD, MA, MA0003891

Test Description: Daphnid, Daphnia pulex, acute toxicity test

ASSOCIATED PROTOCOL: EPA 2002, 5th ed. (EPA-821-R-02-012) Methods for Measuring the Acute
Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Method 2002.0

Toxicity of Effluents and Receiving Waters to Fre-	
1. Test type:	Static, non-renewal
2. Test temperature:	20 <u>+</u> 1°C
3. Light quality:	Ambient laboratory illumination
4. Photoperiod:	16 hr. light, 8 hr. dark
5. Test chamber size:	30 ml
6. Test solution volume:	15-20 ml / replicate
7. Renewal of test concentrations:	None
8. Age of test organisms:	Less than 24 h
9. No. organisms / test chamber:	5
10. No. of replicate chambers / concentration:	5
11. No. of organisms / concentration:	20
12. Feeding regime:	Feed 0.1 ml of YTC and algal suspension prior to testing. Not fed during test.
13. Cleaning:	None
14. Aeration:	None
15. Dilution water:	Receiving Water (Housatonic River)
16. Test concentrations:	5, 15, 35, 50, 75, 100%
17. Laboratory control:	1:1 mix of reconstituted moderately hard water and Lamoille River water. Dechlorination control.
18. Test duration:	48 h
19. Monitoring:	Day 0: temperature, DO, pH, and conductivity. Day 1: temperature, DO, pH, and conductivity. Day 2: temperature, DO, pH Hardness, alkalinity, salinity, TRC Biological monitoring daily (survival)
19. End points:	Survival
20. Reference toxicant test:	Sodium chloride 48-h LC50
21. Test acceptability	90% or greater
22. Data interpretation:	Acute: 48 h LC50 (Point estimate by EPA statistical flowchart using TOXIS 2) and A-NOEC by hypothesis test statistics compared to the receiving water control (EPA statistical flowchart using TOXIS 2)

NPDES Permit No. MA0003891 SDG: 9583 June 19, 2006

Appendix 3 U.S. EPA Region 1 Toxicity Test Summary and Statistical Flow Chart

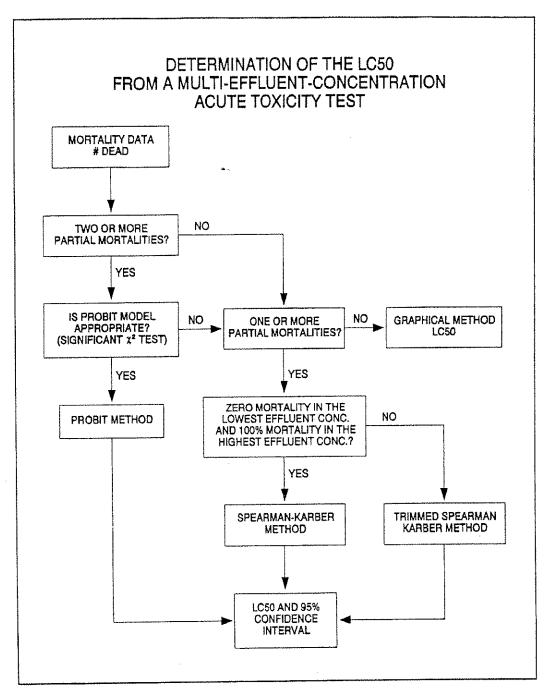


Figure 6. Flowchart for determination of the LC50 for multi-effluent-concentration acute toxicity tests.

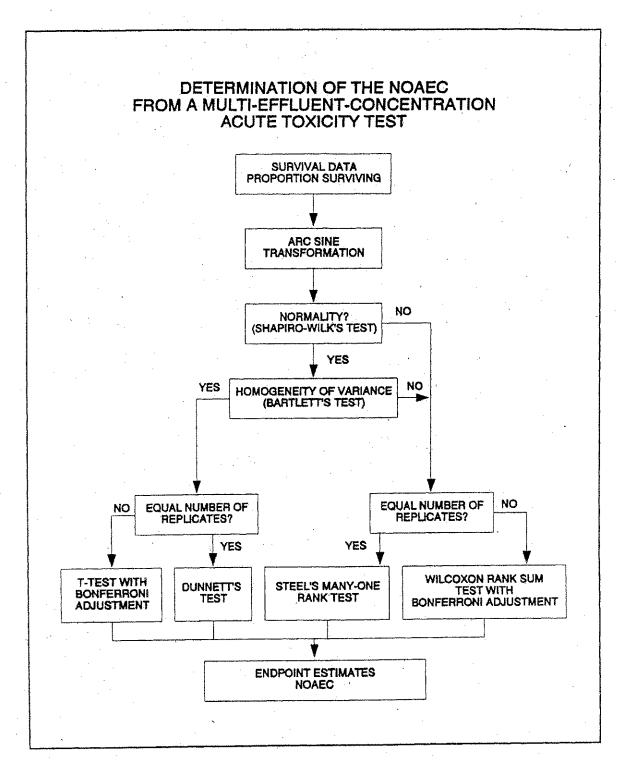


Figure 13. Flowchart for analysis of multi-effluent-concentration test data.

NPDES Permit No. MA0003891 SDG: 9583 June 19, 2006

Appendix 4 Bench Data, *Daphnia pulex* Acute Toxicity Test

Aquatec Biological Sciences, Inc.

Test Date: 6/07/06
Sample Date: 6/06/06
Species: Daphnia pulex
Test Type: Acute - 48 hours

Test Number: 47908

Test Material: Effluent - Industrial

Source: MA0003891

General Electric Company Pittsfield, MA

	SUMMARY											
=============== End Point	Day	Transformation	Conc	#Reps	Mean	StDev	% Surv					
Proportion Alive		Arc sine sqrt w/ adj.										
•			0.000 B	5	1.25	.130						
		X	0.000 D	5	1.35	0.000						
		X	5.000 D	5	1.35	0.000						
		X	15.000 D	5	1.30	.106						
		X	35.000 D	5	1.35	0.000						
		х	50.000 D	5	1.35	0.000						
		x	75.000 D	5	1.30	.106						
		x	100.000 D	5	1.25	.130						
Proportion Alive	2	No transformation										
4:			0.000 B	5	. 92	.110						
			0.000 D	5	1.00	0.000						
			5.000 D	5	1.00	0.000						
			15.000 D	5	. 96	.089						
			35.000 D	5	1.00	0.000						
			50.000 D	5	1.00	0.000						
			75.000 D	5	.96	.089						
			100.000 D	5	. 92	.110						

X = indicates concentrations used in calculations

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×====			##====##*	~ ~	=======================================	~ ~ ~ ~ ~ <del>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ </del>	=======================================
		- HYPOTHES	IS TEST -					1
	=======			===±****	=======	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
End Point	Day	Transformation/Analysis	NOEC	LOEC	TU	MSE	MSD	
Proportion Alive		Arc sine sqrt w/ adj.						
Proportion marve	_	Steel many-one rank test	>100.000	>100.000	< 1.00	.006	.111	

	~~====================================	*=**=====	- PROPORTION PO	INT ESTI	MATE -	*************	*#~=======	====
======================================	========= Day	e======≈ Method	***************************************	P	Conc	95% CI	TÜ	====
Proportion Alive		Probit		EC 50	> 100.000	f=	< 1.00	

WATER FLEA TEST DATA

# 

Test Number: 47908

( ) Chronic (x) Acute 48 hours

Test Date: 7-Jun-06
Source: MA0003891 Test Material: EFF2 (%)

		Cont.		D	aily	Su	cviv	al		Prop	Total	Max
Conc	Rep	No. Sex	Start	1 :	2 3	4	5	6	End	Alive	Young	Young
0.00 B	1	F	5		4					.80		
0.00 B	2	F	5		5					1.00		
0.00 B	3	F	5		5					1.00		
0.00 B	4	F	5		5					1.00		
0.00 B	5	F	5		4					.80		
0.00 D	1	F	5		5					1.00		
0.00 D	2	F	5		5					1.00		
0.00 D	3	F	5		5					1.00		
0.00 D	4	F	5		5					1.00		
0.00 D	5	F	5		5					1.00		
5.00 D	1	F	5		5					1.00		
5.00 D	2	F	5		5					1.00		
5.00 D	3	F	5		5					1.00		
5.00 D	4	F	5		5					1.00		
5.00 D	5	F	5		5					1.00		
15.00 D	1	F	5		5					1.00		
15.00 D	2	F	5		4					.80		
15.00 D	3	F	5		5					1.00		
15.00 D	4.	F	5		5					1.00		
15.00 D	5	F	5		5					1.00		
35.00 D	1	F	5		5					1.00		
35.00 D	2	F	5		5					1.00		
35.00 D	3	F	5		5					1.00		
35.00 D	4	F	5		5					1.00		
35.00 D	5	F	5		5					1.00		
50.00 D	1	F	5		5					1.00		
50.00 D	2	F	5		5					1.00		
50.00 D	3	F	5		5					1.00		
50.00 D	4	F	5		5					1.00		
50.00 D	5	F	5		5					1.00		
75.00 D	1	F	5		5					1.00		
75.00 D	2	F	5		5					1.00		
75.00 D	3	F	5		5					1.00		
75.00 D	4	F	5		5					1.00		
75.00 D	5	F	5		4					.80		
100.00 D	1	F	5		5					1.00		
100.00 D	2	F	5		4					.80		
100.00 D		F	5		4					.80		
100.00 D		F	5		5					1.00		
100.00 D	<del>*</del> 5	F	5		5					1.00		

QC / KS
6/12/06

Client: GENERAL ELECTRIC, PITTSFIELD, MA

MA0003891

Test Description: Daphnia pulex 48-h daily renewal acute toxicity test
SURVIVAL DATA, SAMPLE 32034

Test #: 47908

SDG: 9583

Treatment (%)				DATA, SAMELL	
Rec. A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				Day 1 # Surviving	Day 2 # Surviving
Contr C		Α		5	5
Contr C	Water	в	5	<b>う</b>	5
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Contr	ᅡ	5	5	
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		D	5		5
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		εľ	5	5	5
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.0	A	5	5	5
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		в	5		5
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		c	5		
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Ļ			2
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Į.		<u> </u>	5
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	15	_		<u> </u>	2
35 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	I U	- 1		<u> </u>	<u> </u>
35 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		L		5	<u>t</u>
35 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5				5	<u> </u>
35 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		ı		5	5
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					5
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	35	Α	5	5	5
50 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		В	5	5	and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th
50 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		c	5	5	5
50 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		D	5	5	5
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		E	5	5	5
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	50	Α	5	5	5
C 5 5 5 S D 5 5 S E 5 5 S  75 A 5 5 S B 5 5 S C 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S D 5 S		В	5	5	5
75 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		С	5	5	5
75 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		D	5	5	S
75 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		Ε	5	5	ς,
B 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	75	Α	5	5	S
C 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		В	5	5	5
D 5 5 5 4 E 5 5 5 4  100 A 5 5 5 5 B 5 7 4 C 5 4 4 D 5 5 5 5 E 5 5 5		С	5	5	
E 5 5 4  100 A 5 5 5  B 5 7 4  C 5 4 4  D 5 5 5  E 5 5 5  Sample # 32034		D	5	5	n
100 A 5 5 5 B 5 5 4 C 5 4 4 D 5 5 5 5 E 5 5 5		Е	5	5	1 4
B 5 5 4 C 5 4 4 D 5 5 5 E 5 5 5	100	Α	5	5	
C 5 4 4 D 5 5 5 S E 5 5 S Sample # 32034				5	
E 5 5 5 Sample # 32034				<u> </u>	<u> </u>
E 5 5 5 Sample # 32034					T = =
Sample # 32034					
Sample #   32034				5	<u> </u>
1/D/T KS6/7 KS6/8/06 11:45 366-9-06				US LINE INVE	₹66-9-06 1114

Client: GENERAL ELECTRIC, PITTSFIELD, MA Test #: 47908 SDG: 9583

MA0003891

Test Description: Daphnia pulex 48-h daily renewal acute toxicity test

#### SURVIVAL DATA, LAB CONTROL AND DECHLORINATION CONTROL

Treatment (%)	į.	Day 0	Day 1 # Surviving	Day 2 # Surviving
Lab	Α	5	5	4
Contr	В	5	5	5
	Ç	5	5	(1)
	D	5	5	Ы
	Ε	5	Н	4
Dechlor.	Α	5	5	5
Control	В	5	5	5)
	С	5	5	5
	D	5	5	5 5 5
	E	5	5	5
		11:30		
I/D/T		13617	KS 6/8/06 11:35	69-0611:40 JG

Note: Residual chlorine was not detected in the effluent sample, therefore sodium thiosulfate was not added to the effluent before toxicity testing. Although chlorine was not detected, an additional dechlorination control (0.1 mL of 0.25 N sodium thiosulfate per liter of moderately hard / Lamoille River water) was included in the test array.

Aquatec Biological Sciences, Inc. Williston Vermont
Reviewed by:
Date: 6/16/06

## Daphnia pulex Culture Log

CULTURE	WATER RENEWAL? MHw(Lot#)519001	FED (MWF Sel/YCT TuTh Sel)	CLEARED OF NEONATES? (TIME)	Culture Beakers Washed?	Temp. (°C)	DATE	INIT.
5/15 A,B,C		Sel			_	5-21-06	KS
	$\checkmark$	YC/Sel	$\checkmark$	/	20.3	5-22-06	
5/15 A,B,C 4/22 C	,,,,,	Sel			_	5-23-06	KS
	V	Yelsel	$\checkmark$		20.8	5-24-06	
5/15 A,B,C 4/22C		Se)				5-250/a	KK
5/15 A.B.C 4/22C	/	4c/Sel			207°C	5-26-06	JG
1 1		Sel				5-28-06	KS
5/15A1B1C	<u></u>	Yclsel	/ 10:15		21.0	5-29-06	KS
L	V	1	V 9:30			5-30-06	<u> </u>
	ure 5/30 coll	ected to	om 5/15 A1B	,C. 5-30	-06 KS	,	
5/15A1B1C 5/30 mass	<b>V</b>	YC Sel	<b>✓</b>		20.8	5-31-06	KS
<u></u>	<b>***</b>	Sel	•	-		6-1-de	KK
5/30 MASS, 5/15 A, B, C		4c/Sel			<i>2</i> 0.5°C	62-06	JG
	***************************************	Sel				6-4-06	KS
5/30 mass 5/15 A1 B1C	6406WAR	Yc/sel	✓		21.0	6-5-06	KS
5/30 mass		Se(	· · · · · · · · · · · · · · · · · · ·		20.9	6-6-06	KS
5/15 A1B, C		Yc/sel	V 12:60		20.9	<u>.</u>	
5/30mass	$\checkmark$	yc/sel	<b>/</b>		20.9	6-7-06	KS
5/15ABIC			V 11:15	) _	20,9		1
			And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s				

Selenastrum Lot#: 51606 Sel /53106 Sel YC or YCT Lot#: 32306 46 / 5180646

@ Neonzies used for restring.

Toxicology QA/Tox Forms

Client: GENERAL ELECTRIC, PITTSFIELD, MA Test #: 47908 SDG: 9583

MA0003891 OUTFALL 001

Test Description: Daphnia pulex 48-h daily renewal acute toxicity test

Lab pH 7,5 7.6 Contr DO 8, 8, 7 Temp 20,5 20,4 20,5 Cond. 2077	Treatment (%)	Parameter	Day	Day	Day
Control DO 8.1		- LI	0		<del></del>
Temp   20,5   20,4   20,5					1.6
Cond.   ZO 7   ZO 3   ZO 3   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5   ZO 5	Contr				8.7
Dechlorination				20.4	20.5
Control  DO  S.2  Temp 20.7  ZO.5  Cond. 204  Rec. pH 7,4 Water DO  Q.4 S.7  Contr  Temp 20.3  ZO.8  ZO.5  Cond. 151  DO  Q.7  Temp 20.4  ZO.4  ZO.5  Cond. 206  Temp 20.4  ZO.4  ZO.5  Cond. 206  Temp 20.3  ZO.6  Cond. 206  Temp 20.3  ZO.5  ZO.6  Cond. 206  Temp 20.3  ZO.5  ZO.6  ZO.6  Temp 20.3  ZO.5  ZO.6  ZO.6  Temp 20.3  ZO.5  ZO.6  ZO.6  Temp 20.3  ZO.5  ZO.6  ZO.6  ZO.6  ZO.6  ZO.6  ZO.7  Temp 20.2  ZO.7  ZO.7  ZO.7  Temp 20.2  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  ZO.7  Z			207		·
Temp 20.7 20.5 20.5  Cond. 204					7.5
Cond. 204 — — — — — — — — — — — — — — — — — — —	Control		8.2		8.7
Rec. pH 7.4 7.4 7.4 7.4 Water DO 9.4 8.7 Temp 20.3 20.8 20.5 Cond. 151 — — — — — — — — — — — — — — — — — —			20.7	20.5	20,5
Water DO 9.4 8.7  Contr Temp 20.3 20.8 20.5  Cond. 151		Cond.	204		~ <del>~~</del>
Control Temp	Rec.	рН	7.4		7.4
Cond. 15   74   7.5    5.0 pH 7.4   7.5    DO 9.7   81.7    Temp 20.4   20.4   20.5    Cond. 206   78.7    Temp 20.3   70.5   20.4    Cond. 329   79.4    Temp 20.2   20.5   20.3    Cond. 558   79.4    DO 9.6   81.7    Temp 20.2   20.5   20.3    Cond. 558   79.4    DO 9.5   8.7    Temp 20.2   20.4   20.4    Cond. 730   79.4    Temp 20.2   20.4   20.4    Cond. 730   79.4    Temp 20.0   70.4   20.4    Cond. 1000   79.8    Temp 20.0   70.4   20.4    Cond. 1000   79.8    Temp 19.8   20.4   20.5    Cond. 1268   79.8    Sample # 32034   32034   32034	Water	DO	9.4		8.7
5.0 pH 7.4 7.5 pO 9.7 8.7 Temp 20.3 20.5 20.4 Cond. 329	Contr	Temp	20.3	20.8	20.5
DO 9,7 8,7 Temp 20,4 20,4 20,5 Cond. 206  15 pH 7,5 7.8 DO 9,7 8,7 Temp 20,3 20,5 20,4 Cond. 329  35 pH 7,6 7.9 DO 9,6 8,7 Temp 20,2 20,5 20,3 Cond. 558  50 pH 7,7 8,2 DO 9,5 8,7 Temp 20,2 20,4 20,4 Cond. 730  75 pH 7,7 8,3 DO 9,4 8,7 Temp 20,0 70,4 20,4 Cond. 1000  100 pH 7,7 8,3 DO 9,3 8,8 Temp 19,8 20,4 20,5 Cond. 1268  Sample# 32034 32034 32034		Cond.	151		
DO 9,7	5.0	рН	7.4		7.5
Temp 20,4 20,4 20,5 Cond. 206 — — — — — — — — — — — — — — — — — — —		DO	9.7		8.7
Cond.   206		Temp	20,4	20,4	20,5
15 pH 7,5 7.8  DO 9,7 8,7  Temp 20,3 20,5 20,4  Cond. 329		Cond.	206	AA JAK	
Temp 20.3 20.5 20.4  Cond. 329	15	pН	7.5		7.8
Temp 20.3 20.5 20.4 Cond. 329 — — — — — — — — — — — — — — — — — — —		DO	9.7		8.7
Cond. 329 — — — — — — — — — — — — — — — — — — —		Temp	20,3	20,5	
DO 9.6 S.7  Temp 20.2 Z0.5 Z0.3  Cond. 558  DO 95 S.7  Temp 20.2 Z0.4 Z0.4  Cond. 730  75 pH 7.7 S.3  DO 9.4 S.7  Temp 20.0 Z0.4 Z0.4  Cond. 1000  100 pH 7.7 S.3  DO 9.3 S.8  Temp 19.8 Z0.4 Z0.5  Cond. 1268  Sample # 32034 32034 32034		Cond.	329	we ha	
Temp 20.2 Z0,5 Z0,3 Cond. 558  50 pH 717 8.2 DO 95 8.7 Temp 20.2 Z0,4 20,4 Cond. 730  75 pH 717 8.3 DO 9,4 8.7 Temp 20.0 Z0.4 Z0,4 Cond. 1000  100 pH 717 8.3 DO 9,3 S.8 Temp 19.8 Z0,4 20.5 Cond. 1268  Sample # 32034 32034 32034	35	рН	716		7.9
Cond. 558 — —  50 pH 777 8.2  DO 95 S.7  Temp 20.2 20.4 20.4  Cond. 730 — —  75 pH 777 8.3  DO 9.4 8.7  Temp 20.0 70.4 20.4  Cond. 1000 — —  100 pH 777 8.3  DO 9.3 8.8  Temp 19.8 20.4 20.5  Cond. 1268 — —  Sample # 32034 32034 32034		DO	9.6		8.7
Cond. 558 — —  50 pH 777 8.2  DO 95 S.7  Temp 20.2 20.4 20.4  Cond. 730 — —  75 pH 777 8.3  DO 9.4 8.7  Temp 20.0 70.4 20.4  Cond. 1000 — —  100 pH 777 8.3  DO 9.3 8.8  Temp 19.8 20.4 20.5  Cond. 1268 — —  Sample # 32034 32034 32034		Temp	20.2	20,5	20,3
DO 9.5 8.7  Temp 20.2 20.4 20.4  Cond. 730		Cond.	558		
Temp 20.2 20.4 20.4 Cond. 730 — — — — — — — — — — — — — — — — — — —	50	рН	747		8.2
Cond. 730 — —  75 pH 777 8.3  DO 9.4 8.7  Temp 20.0 70.4 20.4  Cond. 1000 — —  100 pH 777 8.3  DO 9.3 8.8  Temp 19.8 20.4 20.5  Cond. 1268 — —  Sample# 32034 32034 32034		DO	95		8.7
Cond. 730 — —  75 pH 777 8.3  DO 9.4 8.7  Temp 20.0 70.4 20.4  Cond. 1000 — —  100 pH 777 8.3  DO 9.3 8.8  Temp 19.8 20.4 20.5  Cond. 1268 — —  Sample# 32034 32034 32034		Temp	20.2	20,4	20,4
DO 9,4 8.7  Temp 20.0 70.4 20.4  Cond. 1000		Cond.			*************
DO 9,4 8.7  Temp 20.0 70.4 20.4  Cond. 1000	75	рН	7,7		8,3
Temp 20.0 70.4 20.4 Cond. 1000 — — 8.3 DO 9.3 8.8 Temp 19.8 20.4 20.5 Cond. 1268 — — Sample # 32034 32034 32034		DO	9,4		
Cond. 1000 — — — — — — — — — — — — — — — — —		Temp	20.0	70.4	
100 pH 77 8.3 DO 9.3 8.8 Temp 19.8 20.4 20.5 Cond. 1268 — —		Cond.		dest	
DO 9,3 8.8  Temp 19.8 20.4 20.5  Cond. 1268 — —  Sample # 32034 32034 32034	100	pН	77		8.3
Temp 19.8 20.4 20.5  Cond. 1268 — —  Sample # 32034 32034 32034		DO	9,3		8.8
Cond.         1268         —         —           Sample #         32034         32034         32034		Temp	19.8	20.4	20.5
Sample # 32034 32034 32034		Cond.		~~	specific
1/D (2005) KS 6/7/06 KS 6/8/06 JG 6-9-00			32034		
	I/D (2005)		KS 6/7/06	KS 6/8/06	JG 6-9-06

## Alkalinity and Hardness Worksheet

	ess	0.0	0
	Hardnes	356.0	58.0
	Analysis Date	90/2/9	90/2/9
Hardness	Analyst	KS	ΚS
Haro	Final Titrant (ml)	47.6	13.4
	Initial Titrant (ml)	29.8	10.5
	Sample Volume	20	20
	Alkalinity	348.0	48.0
	Analysis Date	90/2/9	90/2/9
Vlkalinity	Analyst	KS	KS
Alka	Final Titrant (ml)	30.6	31.8
	Initial Titrant (ml)	21.9	30.6
	Sample Volume	25	25
	Sampling Date	90/2/9	90/2/9
	Sub ID Code		
	Sample LIMS identifier Sub ID identifier Code	32034 Outfall Composite	Housatonic River
	Sample	32034	32035



### Sample Preparation

Client: GENERAL ELECTRIC, PITTSFIELD, MA MA0003891 SDG: 9583

Test Description: Daphnia pulex acute toxicity test. Test #: 47908

### Sample Identification:

Sample Description	Rec. Water (Housatonic River)	Effluent	
Sample #	32035	32034	

### Sample Preparation:

Filtration	60 micr on	60 paicron	60 micron	60 micron
Chlorine 1	ND	MD		
Dechlorine ²				
Salinity ^(o/oo)	0%00	0%		
Prepared by (Init./date)	KS 6-7-06			

¹ Record vol. 0.025 N sodium thiosulfate to dechorinate 100 mL sample or record "ND" (not detected). ² Dechlorination required if detected. Record vol. 0.25 N sodium thiosulfate added per gallon effluent.

Dilution Plan for: Daphnia pulex static acute toxicity test

### Receiving water is the dilution water

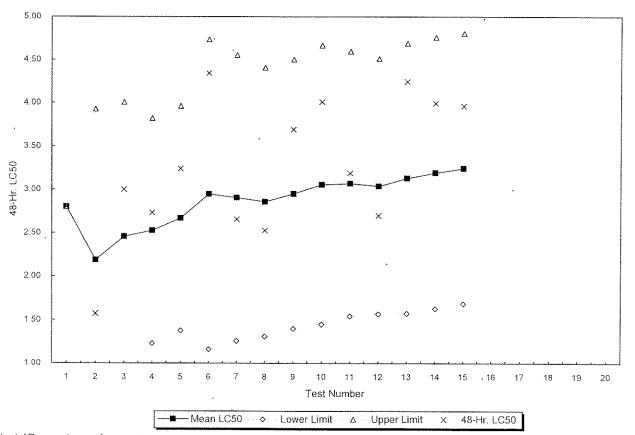
<u>Lab Control</u> = moderately hard water / Lamoille River 1:1 mix

<u>Dechlorination Control</u> = moderately hard water / Lamoille River 1:1 mix + sodium thiosulfate

Concentration (%)	Volume Effluent (mL)	Volume Diluent (mL)	Total Volume (mL)
Laboratory Control	, 0	400	400
Thiosulfate Control	0	400	400
Rec. Water Control	0	400	400
5.0	20	380	400
15	60	340	400
35	140	260	400
50	200	200	400
75	300	100	400
100	400	0	400
Total Volume	1120	1680	

### Comments:

Collect alkalinity and hardness samples on each new effluent and receiving water sample	
SEND SUBSAMPLE OF EFFLUENT AND RECEIVING WATER TO STL FOR TRC ANALYSIS:	


Aquatec Biolo	ogical Sciences, Inc.	Williston		1 .
Reviewed by:	<u> </u>	Date: _	6/16	106

NPDES Permit No. MA0003891 SDG: 9583 June 19, 2006

### Appendix 5 Standard Reference Toxicant test Control Chart

### Reference Toxicant Control Chart Daphnia pulex in Sodium chloride (g/L)

Test Number	Test Date	Organism Age (Days)	48-Hr. LC50	Mean LC50	Lower Limit	Upper Limit	Organism Source
1	06/10/98	1	2.801	2.80	2.80	2.80	Aguaton Pinlagiani Colonas
2	09/17/98	1	1.57	2.00	0.44	3.93	Aquatec Biological Sciences Aquatec Biological Sciences
3	12/15/98	1	3.002	2.46	0.91	4.01	Aquatec Biological Sciences Aquatec Biological Sciences
4	10/08/05	1	2.733	2.53	1.23	3.82	Aquatic BioSystems
5	10/11/05	1	3.241	2.67	1.23	3.96	Aquatic BioSystems Aquatic BioSystems
6	10/19/05	1	4.342	2.95	1.16	4.74	Aquatic BioSystems
. 7	11/02/05	1	2.655	2.91	1.26	4.55	Aquatec Biological Sciences
8	11/08/05	1	2.527	2.86	1.31	4.41	Aquatec Biological Sciences
9	12/07/05	1	3.693	2.95	1.40	4.50	Aquatec Biological Sciences
10	01/05/06	1	4.009	3.06	1.45	4.67	Aquatec Biological Sciences
11	02/08/06	1	3.189	3.07	1.54	4.60	Aquatec Biological Science
12	03/11/06	1	2.698	3.04	1.57	4.51	Aquatec Biological Science
13	04/06/06	1	4.243	3.13	1.57	4.69	Aquatec Biological Sciences
14	05/10/06	1	3.992	3.19	1.62	4.76	Aquatec Biological Sciences
15 '	06/07/06	1	3.959	3.24	1.68	4.81	Aquatec Biological Sciences
16							
17					•		
18							
19							
20							



NPDES Permit No. MA0003891 SDG: 9583 June 19, 2006

### Appendix 6 SOP TOX2-001, Standard Operating Procedure for Daphnid (*Ceriodaphnia dubia*, *Daphnia magna*, and *Daphnia pulex*) Acute Toxicity Test

TOX2-001 Revision 5 May 4, 2006 Page 1 of 8

### Standard Operating Procedure for

Daphnid (Ceriodaphnia dubia, Daphnia magna and Daphnia pulex) Acute Toxicity Test NELAC METHODS / U.S. EPA METHODS 2002.0 AND 2021.0

### 1.0 IDENTIFICATION OF TEST METHOD

This SOP describes procedures for conducting an acute toxicity test with dapnids. This test is used to estimate the acute toxicity of whole effluents or other aqueous samples to the cladocerans, *Ceriodaphnia dubia*, *Daphnia magna* and *Daphnia pulex*. Aquatec Biological Sciences, Inc. holds NELAC accreditation for this method.

### 2.0 APPLICABLE MATRIX OR MATRICES

The described test is used to assess toxicity of wastewaters (effluents, influents), receiving waters, and other prepared agueous solutions.

### 3.0 DETECTION LIMIT

Not applicable.

### 4.0 SCOPE AND APPLICATION

This SOP describes procedures for performing a static or static-renewal acute toxicity test with cladocerans, *Ceriodaphnia dubia*, *Daphnia magna* and *Daphnia pulex*.

### 5.0 SUMMARY OF TEST METHOD

A summary of the test method is attached (Table 1 of this SOP). This test is used to estimate the acute toxicity of whole effluents or other aqueous samples to the freshwater cladocerans. Organisms are exposed, for 24, 48 or 96 hours, typically to five concentrations of effluent (or aqueous sample) and the controls. Acute toxicity is estimated by calculating the lethal concentration 50 value (LC50) and/or the acute no-observed-effect-concentration (A-NOEC). This procedure is based on the guidelines of EPA-821-R-02-012 (Methods 2002.0 and 2021.0).

### 6.0 DEFINITIONS

<u>LC50</u>: The computed concentration that results in 50 percent mortality of the test organisms (may be computed from 48-h or 96-h data).

<u>A-NOEC</u>: The acute no-observed-effect-concentration; The highest concentration resulting in no statistically significant reduction in survival relative to the control (requires four test replicates for statistical analysis).

### 7.0 INTERFERENCES

Not applicable.

### 8.0 SAFETY

Samples acquired for toxicity testing may contain unknown toxicants or health hazards. Protective equipment (e.g., lab coats, disposable gloves) should be worn when handling samples.

### 9.0 EQUIPMENT AND SUPPLIES

Calibrated Instrumentation and Water Quality Apparatus:

pH meter

Dissolved Oxygen (DO) meter

Thermometer (accurate to 0.1°C)

Conductivity meter

Alkalinity titration apparatus

Hardness titration apparatus

Additional Equipment:

Test chambers (30-ml disposable cups), color coded

Test board with randomized scheme, glass cover

Light table

Waste collection bucket

Forms and Paperwork:

Survival and chemistry data form Alkalinity and hardness data form

### 10.0 REAGENTS AND STANDARDS

Laboratory reconstituted water (soft water, moderately hard water, or hard water) Deionized water
Reference toxicant solutions

### 11.0 SAMPLE COLLECTION, PRESERVATION, SHIPMENT, AND STORAGE

Samples for acute toxicity tests are typically collected, cold-preserved, and shipped to Aquatec. Sample acceptance and log-in procedures are outlined in SOP TOX1-017. After receipt at Aquatec, samples should be refrigerated when not being prepared for use in toxicity tests. The holding time for effluent samples is 36 hours from the time of collection until the time of first use.

### 12.0 QUALITY CONTROL

The acute toxicity test is judged to be acceptable and to have met Quality Control standards if the associated dilution water and laboratory control meet the survival criterion of 90% or greater. Also, the test conditions must be within the guidelines described in the protocol (Table 1). Standard reference toxicant (SRT) tests (48-h acute with sodium chloride as the toxicant) should be performed with a representative sub-set of the test organisms and result in an LC50 within the boundaries of the control chart. Deviations from acceptance standards should be documented and may result in the test being viewed as "conditionally acceptable" or "unacceptable" (See Section 19.0 below).

### 13.0 CALIBRATION AND STANDARDIZATION

Not applicable for the toxicity test. Any instrumentation (e.g., water quality instrumentation) required for conducting the test must be calibrated on a daily basis following the relevant SOP or instrument quidelines.

### 14.0 PROCEDURE

### 14.1 Test System and Conditions

The test system and environmental conditions for the daphnid acute toxicity test are summarized in Table 1.

### 14.2 Test Organisms

### **Procurement and Documentation**

Test organisms for the daphnid acute test are obtained from Aquatec's laboratory cultures or commercial supplier. Neonates less than 24-h old are used for testing. Neonates collected for testing may be held in individual culture cups until distributed to tests. Feed neonates approximately 2 hours prior to test initiation by pipeting 0.1 ml yeast-Cerophyll-trout chow (YCT) and Selenastrum capricornutum to all neonate holding cups. Store the culture cups, covered, at test temperature ( $25 \pm 1^{\circ}$ C or  $20 \pm 1^{\circ}$ C).

### **Evaluation of Daphnid Condition and Acclimation**

If, during examination, it appears that more than 10 percent of the parent females or the neonates collected for the test have died during the holding period preceding the test, notify the Toxicity Laboratory Director immediately. A decision will be made regarding the possibility of collecting an alternate stock of neonates for testing. If the test is to be delayed, document the reason on the Project Documentation form. Also, it may be necessary to notify the client.

Ordinarily, *C. dubia* neonates are maintained in laboratory water (1:1 mix of Lamoille River water and moderately hard water) up until the time of test initiation. *D. magna* neonates are maintained in hard water while *D. pulex* neonates are maintained in moderately hard water. The temperature of the neonate stock must be maintained at  $25 \pm 1^{\circ}$ C or  $(20 \pm 1^{\circ}$ C). Return parent stock females

TOX2-001 Revision 5 May 4, 2006 Page 3 of 8

from the neonate cups to the source batch culture. *Ceriodaphnia dubia* are cultured in individual culture cups (one organism per cup) maintained at 25 ± 1°C.

If acclimation to a client's receiving water is required, gradual water changes should be made (eg., 25%-50% hourly) to the parent organisms to receiving water. Neonate release and collection should occur in 100 percent receiving water, if acclimation is required.

### Food

At the time of neonate collection, or on the morning of a scheduled test, feed neonates in each cup 0.1 ml Selenastrum and 0.1 ml yeast-Cerophyll-trout chow (YCT).

### Sample Preparation

Procedures for effluent and diluent sample preparation are described in a separate SOP TOX1-013 ("Preparation of Effluent, Aqueous Samples, and Receiving Water for Toxicity Tests". The typical dilution factors are 0.5, however, consult applicable client permits for the appropriate dilution factor and included permit-limit concentrations when required.

### 14.3 Initiate the Test Prepare Test Chambers

For a test where receiving water is used as the diluent, an additional laboratory control must be included in the test array. New 30-mL disposable plastic condiment cups are used as test chambers. Each test treatment will have four true replicates (no water connection); therefore, 28 test cups will be required. When laboratory water is used as the diluent, 24 test cups are required. Label as:

Client Code

Treatment Replicate (A, B, C, D)

### Measure Initial Chemistries

Remove an aliquot (approximately 100 ml) from each test dilution and the controls. This aliquot is used to measure the following parameters: pH, DO, temperature, and conductivity. Record the data directly on the Toxicity Test Data Form for Day 0. The temperature of the solutions must be within a range of  $\pm$  1°C of the selected test temperature (20 °C or 25°C). Temperature, DO, and pH are to be recorded daily for all test concentrations.

### Recommended water chemistry at time of test initiation

If solutions are not within the ranges specified below, notify the Toxicity Laboratory Director.

pH - acceptable range, 6.0-9.0

DO - acceptable range, 8.0-8.9 mg/L (20°C); 7.4-8.1 (25°C)

Temperature - acceptable range, 19-21°C or 24-26°C

Conductivity - often has a pattern of increasing conductance with increasing sample strength.

Collect a sub-sample of the control and 100% effluent solutions subsequent analysis of hardness and alkalinity. Label and store in a refrigerator at 4°C.

If test solutions are to be stored temporarily prior to starting the test, store the test solutions at the target test temperature.

Decant test solutions to the appropriate test cups, 25 ml per cup. Place the test cups in randomized positions on the test board. Water chemistry measurements are recorded for one replicate of each treatment each day of the test.

### Prepare and distribute test organisms

TOX2-001 Revision 5 May 4, 2006 Page 4 of 8

Select approximately 20 brood cups (containing neonates collected for the test), each with 8 or more neonates. Pool neonates in a crystallizing dish prior to distribution to the test. Randomly distribute neonates to test containers (5 per test container) with a transfer pipet.

Record the date / time of test start along with initials on the data form.

### Aeration

Do not aerate daphnid acute tests.

### Feeding

Daphnids are not fed during acute toxicity test of 24-48 hours duration. If the test duration is 96 hours the test animals are fed 2 hours prior to the 48 hour water change.

### 14.4 Monitoring the test

### Test solution renewal (if required) and biological monitoring

Test solutions in each test cup routinely are not renewed for 48 hour tests (unless the project protocol specifies daily renewal). If the test duration is 96 hours, renew test solutions at 48 hours (or daily, if specified in the project-specific protocol). During the renewal procedure, take care to avoid injuring neonates. Renew the controls first, then from low concentrations to higher test concentrations. This procedure will minimize the potential for back-contamination of a lower test concentration with a higher test concentration. The renewal procedure is conducted over a light table.

Remove the test board from the test rack and remove the glass cover. Carefully measure the temperature of one replicate of each test treatment. Record the data on the Final Chemistry Data form.

Fill four new cups coded for laboratory control with approximately 25 mL of laboratory control water. Remove laboratory control Replicate A test cup from the test board.

Transfer all surviving daphnids with a large-bore pipet to the new test cup containing new control solution. Record the number of survivors in the appropriate box for laboratory control, Replicate A.

Continue the water changes until all surviving animals in each treatment have been transferred to "new" water. Pool the "old test water" from the old test cups into a beaker. This must be saved for final chemistry analysis, when required. When renewals have been completed, record initials, date, and time for renewal in the remarks section of the daphnid acute data form. Replace all test cups in the assigned position on the test board.

### Final Chemistry (daily during test, if required)

Measure the temperature, pH, and D.O., and conductivity of the pooled water sample decanted from the four replicates for each test treatment. It is preferable to do this immediately after completing the renewal to obtain an accurate representation of the test conditions. Discard the solution in the appropriate waste receptacle.

### 14.5 Termination of the Toxicity Test

The daphnid acute test may be ended at 24 hours, 48 hours, or 96 hours depending on permit requirements or the project-specific protocol. The guidelines for actual duration of the test are: 24-h test ( $\pm$  15 minutes from time of test start); 48-h test ( $\pm$  30 minutes from time of test start); and 96-h test ( $\pm$  60 minutes from time of test start).

### Daphnid survival (end of test)

For each replicate, determine the number of live daphnids remaining and record the results in the appropriate data box of the daphnid acute data form. A daphnid is scored as "alive" if any activity

TOX2-001 Revision 5 May 4, 2006 Page 5 of 8

or self-propelled movement is observed. If necessary, examine organisms under a dissecting microscope to determine the number surviving.

Record the time of test completion in remarks section of the daphnid acute data form.

### Final Chemistry (end of test)

Measure and record temperature of one replicate from each test concentration. Combine the test solution from each replicate of each test concentration. Measure and record the final chemistry parameters (conductivity, pH and DO) as specified in 3.2.1 above.

### 15.0 CALCULATIONS

The 48-h LC50 (or 96-h) and A-NOEC (if required) are calculated using the TOXIS2 software program. Enter the test data into the TOXIS2 template prepared for each client. Run the statistical program for the EPA Acute Toxicity Test flow chart (EPA-821-R-02-012 Section 11 Figures 12 and 13) and print the entered test data and the statistical results. Check the entered data against the original hand-written test data and record the date and initials. Place the statistical printouts in the project folder (by SDG) and return the folder with all paperwork to the project holding file.

### 16.0 METHOD PERFORMANCE

Test conditions should be at or near the limits outlined in the Protocol (Table 1).

### 17.0 POLLUTION PREVENTION

Effluents and receiving waters used in toxicity tests are stored refrigerated until the test data have been reviewed and deemed acceptable by the Laboratory Manager or the Director. Contact the Laboratory Manager or Director prior to discarding any stored samples. Effluent and receiving water samples may be discarded following a period of chlorination (e.g., 30 minutes). Effluent samples that have exhibited high toxicity in low test concentrations should be discarded in the "Aqueous Waste" drum for disposal by a certified waste handler. Other samples containing unknown or suspected toxic contaminants should be discarded in the "Aqueous Waste" drum.

### 18.0 DATA ASSESSMENT AND ACCEPTANCE CRITERIA FOR QUALITY CONTROL MEASURES

The Laboratory Manager and/or the Laboratory Director will review test data to ensure that all elements of the data package are available and complete (Log-in work sheets, test IDs, Chain-of-Custody documentation, toxicity test benchsheets, organism records, and SRT data). The reviewer will check to package for transcription errors, clarity of observations and notations, initials, and completeness. The reviewer will also compare the test data to the Quality Control standards outlined in Section 12.0 above. Any deficiencies will be addressed and resolved (with appropriate notation) prior to assembling the package for the final report.

### 19.0 CORRECTIVE ACTIONS FOR OUT-OF-CONTROL DATA

Data that do not meet Quality Control standards will be assessed and a decision will be made whether to reject the test data and deemed "unacceptable" (requiring a repeated test) or "provisionally acceptable" (requiring a qualifier in the final report). An example of and unacceptable test could include one where the controls fail to meet the 90% survival requirement. A designation of a "provisionally acceptable" test might include one where samples were received outside of prescribed holding temperatures or times.

### 20.0 CONTINGENCIES FOR HANDLING OUT-OF-CONTROL OR UNACCEPTABLE DATA

Analysts experiencing and "out-of-control" event (e.g., test replicate spills, test solutions improperly prepared, test temperatures out of target range, etc.) should note the event on the bench sheet and also notify the Laboratory Manager or Laboratory Director. A decision will be made by the Laboratory Manager or Laboratory Director as to whether to continue the test (with the appropriate qualifier) or whether to terminate the test. If the test is terminated, the client should be notified so that re-sampling and re-testing can be scheduled as soon as possible.

CONTROLLED DOCUMENT
TOX2-001
Revision 5
May 4, 2006
Page 6 of 8

### 21.0 WASTE MANAGEMENT

See 17.0 above.

### 22.0 REFERENCES

The test procedure is based upon the guidelines outlined in EPA-821-R-02-012, *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (5th Ed.). Regional guidelines may require in slight modifications of the test protocol (e.g., solution renewals, test duration, target test temperature).

### 23.0 TABLES, DIAGRAMS, FLOW CHARTS, AND VALIDATION DATA

Refer to Tables 12 and 13 (pp. 51 – 54 of EPA-821-R-02-012) and the EPA Statistical Flow Chart, Figures 12 and 13 of EPA-821-R-02-012 Section 11 and related discussions within that document.

### 24.0 TRAINING

Laboratory analysts performing this procedure must receive instruction from a previously trained analyst. Individual parts of the overall procedure may be performed under the guidance of a previously-trained analyst.

To be qualified for the overall procedure outlined in this SOP, the analyst must:

Read this SOP.

Receive verbal and visual instruction. Be trained on pertinent associated SOPs.

Approvals:		
Laboratory Manager:	· Da	ate:

TOX2-001 Revision 5 May 4, 2006 Page 7 of 8

### Table 1. Test Protocol

PROTOCOL: EPA 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Methods 2002.0 (Ceriodaphnia dubia) and 2021.0 (Daphnia magna and Daphnia pulex) acute toxicity tests.

(Daphnia magna and Daphnia pulex) acute toxic	
1. Test type:	Static, no renewal; or daily renewal
2. Test temperature:	25 ± 1°C (or 20 ± 1°C)
3. Light quality:	Ambient laboratory illumination
4. Photoperiod:	16 hr. light, 8 hr. dark
5. Țest chamber size:	30 ml
6. Test solution volume:	25 ml / replicate
7. Renewal of test concentrations:	None if static test, daily if renewal test
8. Age of test organisms:	Less than 24 h
9. No. organisms / test chamber:	5
10. No. of replicate chambers / concentration:	
11. No. of organisms / concentration:	20
12. Feeding regime:	Feed 0.1 ml of YTC and algal suspension prior to testing. Not fed during test for 48-h tests. Feed 2 hours prior to 48-h (before renewal) for 96-h tests
13. Cleaning:	None
14. Aeration:	None
15. Dilution water:	Receiving Water or laboratory water
16. Test concentrations:	6.25, 12.5, 25, 50, 100% (unless specified otherwise by permit)
17. Laboratory control:	Reconstituted water (soft, moderately hard, or hard)
18. Test duration:	48 h; 96 h
19. Monitoring:	Day 0: temperature, DO, pH, and conductivity. Day 1: temperature. Day 2 (or 4): temperature, DO, pH, and conductivity. Hardness, alkalinity on each new sample. Biological monitoring daily
19. End points:	Survival
20. Reference toxicant test;	Sodium chloride 48-h LC50
21. Test acceptability (Control performance):	90% or greater survival
22. Data interpretation:	LC50 / A-NOEC using TOXIS2 statistical program

### **APPENDIX 2**

### **Laboratory Reports**

Columbia Analytical Services, Inc. O'Brien & Gere, Inc.

### NPDES Sampling GE Pittsfield Toxicity pH

Date: 6/6/06	
Acute Dry Acute Wet(Day 1,2 or 3)	
Effluent Composite  Sample # A 7355 C  Date 6-6-06  Time //oam  pH 7,91 su	
River/Dilution Water Sample # $\frac{A735}{A735}$ P  Date $\frac{6-6-0}{8^{15}}$ C  Time $\frac{8^{15}}{7.79}$ Su	
Mark Masnewsky Signed & Dated	6-6-01

Reported: 06/23/06

General Electric

Project Reference: GE PITTSFIELD BIOMONITORING - 6/06

Client Sample ID : A7355CDM

**Order #:** 907632 Sample Matrix: WATER

Date Sampled : 06/06/06 11:00 Date Received: 06/07/06 Submission #: R2631832

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
ALUMINUM	200.7	0.100	0.100 U	MG/L	06/09/06	1.0
CADMIUM	200.7	0.00500	0.000508 B	MG/L	06/09/06	1.0
CHROMIUM	200.7	0.0100	0.00160 B	MG/L	06/09/06	1.0
COPPER	200.7	0.0200	0.0200 ប	MG/L	06/09/06	1.0
LEAD	200.7	0.00500	0.00500 U	MG/L	06/13/06	1.0
NICKEL	200.7	0.0400	0.0400 U	MG/L	06/09/06	1.0
SILVER	200.7	0.0100	0.0100 U	MG/L	06/13/06	1.0
ZINC	200.7	0.0200	0.0212	MG/L	06/09/06	1.0

Reported: 06/23/06

General Electric

Project Reference: GE PITTSFIELD BIOMONITORING - 6/06 Client Sample ID: A7355CTM

Sample Matrix: WATER

Date Sampled: 06/06/06 11:00 Order #: 907633
Date Received: 06/07/06 Submission #: R2631832

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
ALUMINUM	200.7	0.100	0.100 U	MG/L	06/09/06	1.0
CADMIUM	200.7	0.00500	0.000360 B	MG/L	06/09/06	1.0
CALCIUM	200.7	1.00	87.1	MG/L	06/09/06	1.0
CHROMIUM	200.7	0.0100	0.00158 B	MG/L	06/09/06	1.0
COPPER	200.7	0.0200	0.0200 U	${ t MG/L}$	06/09/06	1.0
LEAD	200.7	0.00500	0.00500 U	MG/L	06/13/06	1.0
MAGNESIUM	200.7	1.00	34.0	MG/L	06/09/06	1.0
NICKEL	200.7	0.0400	0.0400 U	MG/L	06/09/06	1.0
SILVER	200.7	0.0100	0.0100 U	MG/L	06/13/06	1.0
ZINC	200.7	0.0200	0.0120 B	MG/L	06/09/06	1.0

Reported: 06/23/06

Sample Matrix: WATER

General Electric

Project Reference: GE PITTSFIELD BIOMONITORING - 6/06

Client Sample ID : A7354RTM

Order #: 907634

Date Sampled: 06/06/06 08:15 Date Received: 06/07/06 Submission #: R2631832

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
ALUMINUM	200.7	0.100	0.100 U	MG/L	06/09/06	1.0
CADMIUM	200.7	0.00500	0.000503 B	MG/L	06/09/06	1.0
CALCIUM	200.7	1.00	14.2	MG/L	06/09/06	1.0
CHROMIUM	200.7	0.0100	0.00118 B	MG/L	06/09/06	1.0
COPPER	200.7	0.0200	0.0200 U	MG/L	06/09/06	1.0
LEAD	200.7	0.00500	0.00500 U	MG/L	06/13/06	1.0
MAGNESIUM	200.7	1.00	4.46	MG/L	06/09/06	1.0
NICKEL	200.7	0.0400	0.0400 U	MG/L	06/09/06	1.0
SILVER	200.7	0.0100	0.0100 U	MG/L	06/13/06	1.0
ZINC	200.7	0.0200	0.0125 B	MG/L	06/09/06	1.0
				•		

Reported: 06/23/06

General Electric

Project Reference: GE PITTSFIELD BIOMONITORING - 6/06

Client Sample ID : A7354R

Sample Matrix: WATER Order #: 907630

Date Sampled: 06/06/06 08:15 Date Received: 06/07/06 Submission #: R2631832

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
LANCOTT A	350.1	0.0500	0.100 U	MG/L	06/09/06	10:26	2.0
AINOMMA	300.0	0.200	10.8	MG/L	06/12/06	18:10	10.0
CHLORIDE	310.1	2.00	47.2	MG/L	06/08/06	10:15	1.0
COTAL ALKALINITY	9060	1.00	5.66	MG/L	06/08/06	20:37	1.0
COTAL ORGANIC CARBON	365.1	0.0500	0.0500 U	MG/L	06/12/06	14:31	1.0
COTAL PHOSPHORUS	160.3	10.0	87.0	MG/L	06/09/06	11:30	1.0
TOTAL SOLIDS TOTAL SUSPENDED SOLIDS	160.3	1.00	1.90	MG/L	06/09/06	13:00	1.0

Reported: 06/23/06

General Electric

Project Reference: GE PITTSFIELD BIOMONITORING - 6/06

Client Sample ID : A7355C

Sample Matrix: WATER

Date Sampled: 06/06/06 11:00 Order #: 907631
Date Received: 06/07/06 Submission #: R2631832

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
AMMONIA	350.1	0.0500	0.246	MG/L	06/09/06	10:26	1.0
CHLORIDE	300.0	0.200	179	MG/L	06/13/06	10:05	40.0
TOTAL ALKALINITY	310.1	2.00	354	MG/L	06/08/06	10:15	1.0
TOTAL ORGANIC CARBON	9060	1.00	6.25	$\mathtt{MG/L}$	06/08/06	21:15	1.0
TOTAL PHOSPHORUS	365.1	0.0500	0.0500 U	MG/L	06/12/06	14:31	1.0
TOTAL SOLIDS	160.3	10.0	677	MG/L	06/09/06	11:30	1.0
TOTAL SUSPENDED SOLIDS	160.2	1.00	1.40	$\mathtt{MG/L}$	06/09/06	13:00	1.0

Reported: 06/23/06

General Electric

Project Reference: GE PITTSFIELD BIOMONITORING - 6/06

Client Sample ID : A7355CCN

Date Sampled: 06/06/06 11:00 Order #: 907635
Date Received: 06/07/06 Submission #: R2631832 Sample Matrix: WATER

			***************************************		***************************************		
ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
TOTAL CYANIDE	335.4	0.0100	0.0375	MG/L	06/14/06	10:56	1.0

Reported: 06/23/06

General Electric

Project Reference: GE PITTSFIELD BIOMONITORING - 6/06

Client Sample ID : A7354RCN

Sample Matrix: WATER

Date Sampled: 06/06/06 08:15 Order #: 907636
Date Received: 06/07/06 Submission #: R2631832

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
TOTAL CYANIDE	335.4	0.0100	0.0100 U	MG/L	06/14/06	10:56	1.0

### APPENDIX 3

**Chain of Custody Forms** 

Ć	)
Columbia Analytical Services	ACCOUNT. TO THE OWNER, THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

ne Mustard St., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE

P

SH #

CAS Contact

Giltorado Presenta REMARKS/ ALTERNATE DESCRIPTION Zn. Acetate MeOH NaHSO₄ INVOICE INFORMATION SUBMISSION I Printed Name ANALYSIS REQUESTED (Include Method Number and Container Preservative) Date/Time Signature BILT 70 E Ē V IV. Dala Validation Report with Raw Dala V. Speicalized Forms / Custom Report Z II. Results + OC Summaries (LCS, DUP, MSMSD as required) REPORT REQUIREMENTS III, Results + QC and Calibration Yes RELINGUISHED BY S I. Results Only Edata Printed Name Signalure Date/Time Ē Ŋ TURNAROUND REQUIREMENTS " 7 5 day RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD GCANS VOA'S

GCANS VOA'S

GCANS VOA'S

GCANS VOA'S

GCANS VOA'S 24 hr Printed Name Date/Time Signature PRESERVATIVE Z CUSTODY SEALS: Y RELINGUISHED BY NUMBER OF CONTAINERS (8) DISSOCUED - LIST ON BOTTLE SAMPLING MATRIX 6-6-06 8 SAM H2U Sampler's Printed Name on ISNEW SKY 113 448 S435 P1.3 1000 815 1/0gm 198 198 Printed Name 1000 10011 Dalle/Time LAVING M MACH hunshim Gruck'AD Oh:b Samples Packed in o S スマ 400 b 36 RECEIVED BY FOR OFFICE USE ONLY LAB ID 907630 907630 907632 40 W 34 907633 109606 40763 907631 Project Number Report CC -4157 SAMPLE RECEIPT: CONDITION/COOLER TEMP SPECIAL INSTRUCTIONS/COMMENTS

Metais (/0) TOTAL MY RIC WITSMED ST 7355 CDM 165 るちとのこと NPOS Brail A7354RCN CLIENT SAMPLE ID NICHURSON 354R in Employee - Owned Company www.caslab.com 47355 ( See QAPP

. A Court Pink - 1 ah Court Pink - Retained by Client

Columbia Analytical Services	

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

An Employee - Owned Company One Musland St., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE

P.

CAS Contact # HS

Preservative Kay
0. NONE
1. NONE
2. HNO3
3. HSO4
4. NāOH
6. Z. Acetate
6. MeOH
7. NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION Olher SUBMISSION #: ANALYSIS REQUESTED (include Method Number and Container Preservative) Printed Name Date/Time Signature BIL 70 Ë Ĉ IV. Data Validation Report with Raw Data V. Spelcalized Forms / Custom Report ŝ REPORT REQUIREMENTS (LCS, DUP, MS/MSD as required) III. Results + QC and Calibration Sey. **RELINQUISHED BY** II. Results + OC Summaries 0 I. Results Only Summaries Edata rinled Name Date/Time TURNAROUND REQUIREMENTS 75章 RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD 24 hr Printed Name GC/MS VOA'S CLASSO CLOSA CL GC/MS SVOA'S CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA CLOSA C Date/Time E PRESERVATIVE z CUSTODY SEALS: NUMBER OF CONTAINERS RELINGUISHED BY TIME MATRIX WASNEWSKY 413 44843S SISAM 100 907630 6-6-06 8 15mm rinted Name Date/Time SAMPLING Environmenta 97.70 DATE Sanples Pached in i 04:40 GSUCYIAN 907634 Sampler's Printed Nam 20202 FOR OFFICE USE ONLY 907631 とな Project Number Report CC SAMPLE RECEIPT: CONDITION/COOLER TEMP: 4 5 F A7354R SPECIAL INSTRUCTIONS/COMMENTS Metals E CLIENT SAMPLE ID (v)

Distributions White . Ontion to Arietrature Valleur . 1 wh

### Cooler Receipt And Preservation Check Form

oject/Client 6E	-Pittsfield		Sub	mission Number_		VELOCITY CLIENT
ooler received on <u>67</u>	-06 by: K	/_co	OURI	ER: CAS UPS	FEDEX	VELOCITY CLIENT
Were custody so Were custody p Did all bottles a Did any VOA w Were Ice or Ice Where did the l Temperature of Is the temperat If No, Explain Date/Time Temperature	eals on outside of apers properly fill urrive in good conditions in good conditions are packs present? bottles originate? f cooler(s) upon return within 0°-6° a Below apperatures Taken:  ID: 161 or (1)	cooler's ed out dition ( ant air ceipt: C?:	(ink, subble bubble N	rigned, etc.)?  ken)?  es?  Ves  No  Color Piss  Reading From: Te	YES YES YES YES YES CAS/RO Yes No	NO NO NO NO NO NO NO CLIENT  Yes Yes No No Sample Bottle
2. Did all bottle	Date:e labels complete labels and tags ag containers used for Cassettes / Tube	(i.e. arree with the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total control of the total con	nalysis th cust ests in	by: , preservation, etc. ody papers?	YES	NO NO NO B Bags Inflated N/A
Explant any dissistant		YES	NO	Sample I.D.	Reagent	Vol. Added
		TES	NO	Campione		
рН	Reagent NaOH		-			
12	HNO ₃	-				
2	H ₂ SO ₄		-			
2						
Residual Chlorine (+/-)						
			1	#I		
5-9**	P/PCBs (608 only)	noles we	re prese	rved at lab as listed	PC OK to adj	iust pH
YES = All samples OK **If pH adjustment is rec	NO = Sar	or H₂SO. on	ere prese	Other Comm	· · ·	just pH

\\ROCHESTER1\GROUP\SMODOCS\Cooler Receipt v 2.doc

		Aquetee			Stological Sciences		273 Commerca Street Willistort, VT 05495 11ELT (802) 880-1638 1FAX: (802) 658a189	erce Street T-05495 860-1638 658-3189	
					NOLLY PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE PRICE TO THE	VOLUME/CONTAINER TYPE/ PRESERVATIVE	ME/CONTAINER PRESERVATIVE	R TYPE/ E	
COMPANY INFORMATION	COMP	ANY'S PRO	COMPANY'S PROJECT INFORMATION	VIION	SHIPPING INFORMATION	-	0,	J ₀ V	ر ۱ ₀ ۲
Name: General Electric Company	Project N	Project Name: GE PITTSFIELD	TSFIELD		Carrier:	4°C 4°C 4°C H ₂ SO ₄	04 H ₂ SO ₄		S ON H
Address: O'Brien & Gere		Outfall Composite	an)		•	<u> </u>   	<u> </u> 	<u> </u>	
1000 East Street, Gate 64	Project	Project Number: 06004			Airbill Number:	Plastic Plastic Plas	Plastic Glass	Amber	Plastic
City/State/Zip: Pilisfield, MA 01201	Sampler	Sampler Name(s): <u>MAR(1</u>	ARK 13891	LIMENICUSK I	Date Shipped: $6-6-06$			n n	
Telephone: (413) 494-0/09							§	) in Oil	ر د
Conject Name: Mark Wasnewsky	Quote #:	£: 10/05	Client Code:	ode: GEPITTS	Hand Delivered: 🖳 Yes 📗 No	1 gal 1/2 gal	1 1 40 11	-	
	191	╟┰		<b>!</b>	ANALYSIS (detection limits, ma/L)	NUMBER	NUMBER OF CONTAINERS	AINERS	
SAMPLE IDENTIFICATION	DATE TIME	E GRAB	COMPOSITE	Fflient	Daphnia pulex 48-h Static Acute Toxicity		······································		
Outfall Composite A7355C	66-04 11 AM	 ≥ c	7		(EPA Method 2021.0). Log in for A48DPS			-	
Outfall Composite A. 20077	09/1	25	\	Effluent	Total Residual Chlorine			-	
Unanatonia Biver A 7 7 7 7	5/5/0	× ×	7	Receiving	Dilution Water				
77.557 H DANIA DINORGANIA		2/2		Receiving	Total Residual Chlorine				
Housatonic Kiver A 735 4 K	W 0 4m	7			AND THE RESIDENCE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY				
									The
Relinquished by: (signature)	DATE	)E	Received by: (sign.	(signature)	NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the labels with clear tape. Tape the caps of the sample bottles to ensure that they do not become dislodged during shipment. Nest the samples in sufficient foe to maintain 0°C – become dislodged during shipment. A temperatures exceeding 6°C will be qualified in the	te the tabels (Dale, ti of the sample bottles dest the samples in s	me, initials to ensure ( ufficient ic	that they detected the total the total the the said of the the said of the the the the the the the the the the	or use to not ain 0°C – led in the
Which a homoughy	1 90-9-9	13:05/	The 1	More	6°C. Results for samples received at report.			•	
	DATE /	TIME Rec	Received by: (sign	(signature)	Notes to Lab: Ambient cooler temperature:	$\mathbf{C}$	ັງ, _ເ ບ°C. Dechlorinate the effluent	ate the ef	fluent
	) }	-			sample ii cinomie is detected.				
Relinquished by: (signature)	DATE	TIME Rec	Received by: (sign	(signature)					

6/6/2006

### ACUTE AQUATIC TOXICITY COMPOSITE

Month: JUNE Week: 2 Fiscal Wk: 23 Weather: DRY

	Gallons/Day	MI in Composite	Percent of Composite
001 004 007 64T 64G 09A 09B	37,580 0 0 11,470 182,800 0 15,874	1,592.86 - 486.17 7,748.14 - 672.83	15.17% 0.00% 0.00% 4.63% 73.79% 0.00% 6.41%
	247,724	10500	100.00%

.. Mark Wasnewsk according to the table above, and given the sample ID#_

Chain-of-Custody Form Number: 086060606 Sample Label Serial Number