

GE 159 Plastics Avenue Pittsfield, MA 01201 USA

Transmitted via Overnight Courier

September 8, 2006

Mr. Dean Tagliaferro
U.S. Environmental Protection Agency
Region I – New England
10 Lyman Street, Suite 2
Pittsfield, MA 01201

Ms. Susan Steenstrup Bureau of Waste Site Cleanup Department of Environmental Protection 436 Dwight Street Springfield, MA 01103

Re: GE-Pittsfield/Housatonic River Site

Monthly Status Report Pursuant to Consent Decree for August 2006 (GECD900)

Dear Mr. Tagliaferro and Ms. Steenstrup:

Enclosed are copies of General Electric's (GE's) monthly progress report for August 2006 activities conducted by GE at the GE-Pittsfield/Housatonic River Site. This monthly report is submitted pursuant to Paragraph 67 of the Consent Decree (CD) for this Site, which was entered by the U.S. District Court on October 27, 2000.

The enclosed monthly report includes not only the activities conducted by GE under the CD, but also other activities conducted by GE at the GE-Pittsfield/Housatonic River Site (as defined in the CD). The report is formatted to apply to the various areas of the Site as defined in the CD, and to provide for each area, the information specified in Paragraph 67 of the CD. The activities conducted specifically pursuant to or in connection with the CD are marked with an asterisk. GE is submitting a separate monthly report to the Massachusetts Department of Environmental Protection (MDEP), with a copy to the United States Environmental Protection Agency (EPA), describing the activities conducted by GE at properties outside the CD Site pursuant to GE's November 2000 Administrative Consent Order from MDEP.

The enclosed monthly report includes, where applicable, tables that list the samples collected during the subject month, summarize the analytical results received during that month from sampling or other testing activities, and summarize other groundwater monitoring and oil recovery information obtained during that month. Also, enclosed for each of you (and for Weston) is a CD-ROM that contains these same tables of the analytical data and monitoring information in electronic form.

Please call Andrew Silfer or me if you have any questions.

Richard W. Dates / The

Sincerely,

Richard W. Gates

Remediation Project Manager

Enclosure

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\8-06 CD Monthly\Letter.doc

cc: Robert Cianciarulo, EPA (cover letter only)

Tim Conway, EPA (cover letter only)

Sharon Hayes, EPA

William Lovely, EPA (Items 7, 8, 9, 10, 11, 12, 16/17, 22, 23, and 25 only)

Rose Howell, EPA (cover letter and CD-ROM of report)

Holly Inglis, EPA (hard copy and CD-ROM of report)

Susan Svirsky, EPA (Items 7, 15, and 20 only)

K.C. Mitkevicius, USACE (CD-ROM of report)

Thomas Angus, MDEP (cover letter only)

Jane Rothchild, MDEP (cover letter only)

Anna Symington, MDEP (cover letter only)

Nancy E. Harper, MA AG

Susan Peterson, CT DEP

Field Supervisor, US FWS, DOI

Kenneth Finkelstein, Ph.D., NOAA (Items 13, 14, and 15 only)

Dale Young, MA EOEA

Mayor James Ruberto, City of Pittsfield

Thomas Hickey, Director, Pittsfield Economic Development Authority

Linda Palmieri, Weston

Richard Nasman, P.E., Berkshire Gas (CD-ROM of report)

Michael Carroll GE (CD-ROM of report)

Andrew Silfer, GE (cover letter only)

Rod McLaren, GE (CD-ROM of report)

James Nuss, BBL

James Bieke, Goodwin Procter

Jim Rhea, OEA (narrative only)

Teresa Bowers, Gradient

Public Information Repositories (1 hard copy, 5 copies of CD-ROM)

GE Internal Repository (1 hard copy)

(w/o separate CD-ROM, except where noted)

August 2006

MONTHLY STATUS REPORT PURSUANT TO CONSENT DECREE FOR GE-PITTSFIELD/HOUSATONIC RIVER SITE

GENERAL ELECTRIC COMPANY

PITTSFIELD, MASSACHUSETTS

Background

The General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and other governmental entities have entered into a Consent Decree (CD) for the GE-Pittsfield/Housatonic River Site, which was entered by the U.S. Court on October 27, 2000. In accordance with Paragraph 67 of the CD, GE is submitting this monthly report, prepared on GE's behalf by Blasland, Bouck & Lee, Inc. (BBL), which summarizes the status of activities conducted by GE at the GE-Pittsfield/Housatonic River Site ("Site") (as defined in the CD).

This report covers activities in the areas listed below (as defined in the CD and/or the accompanying Statement of Work for Removal Actions Outside the River [SOW]). Only those areas that have had work activities for the month subject to reporting are included. The specific activities conducted pursuant to or in connection with the CD are noted with an asterisk.

General Activities (GECD900)

GE Plant Area (non-groundwater)

- 1. 20s, 30s, 40s Complexes (GECD120)
- 2. East Street Area 2 South (GECD150)
- 3. East Street Area 2 North (GECD140)
- 4. East Street Area 1 North (GECD130)
- 5. Hill 78 and Building 71 Consolidation Areas (GECD210/220)
- 6. Hill 78 Area Remainder (GECD160)
- 7. Unkamet Brook Area (GECD170)

Former Oxbow Areas (non-groundwater)

- 8. Former Oxbow Areas A & C (GECD410)
- 9. Lyman Street Area (GECD430)
- 10. Newell Street Area I (GECD440)
- 11. Newell Street Area II (GECD450)
- 12. Former Oxbow Areas J & K (GECD420)

Housatonic River

- 13. Upper ½-Mile Reach (GECD800)
- 14. 1½-Mile Reach (only for activities, if any, conducted by GE) (GECD820)
- 15. Rest of the River (GECD850)

Housatonic River Floodplain

- 16. Current Residential Properties Adjacent to 1½-Mile Reach (Actual/Potential Lawns) (GECD710)
- 17. Non-Residential Properties Adjacent to 1½-Mile Reach (excluding banks) (GECD720)
- 18. Current Residential Properties Downstream of Confluence (Actual/Potential Lawns) (GECD730)

Other Areas

- 19. Allendale School Property (GECD500)
- 20. Silver Lake Area (GECD600)

Groundwater Management Areas (GMAs)

- 21. Plant Site 1 (GECD310)
- 22. Former Oxbows J & K (GECD320)
- 23. Plant Site 2 (GECD330)
- 24. Plant Site 3 (GECD340)
- 25. Former Oxbows A&C (GECD350)

GENERAL ACTIVITIES GE-PITTSFIELD/HOUSATONIC RIVER SITE (GECD900) AUGUST 2006

a. Activities Undertaken/Completed

Continued GE-EPA electronic data exchanges for the Housatonic River Watershed and Areas Outside the River.*

b. Sampling/Test Results Received

- Sample results were received for routine sampling conducted pursuant to GE's NPDES Permit for the GE facility. Sampling records and results are provided in Attachment A to this report.
- NPDES Discharge Monitoring Reports (DMRs) for the period of July 1 through July 31, 2006, are provided in Attachment B to this report.
- GE received a report from Columbia Analytical Services, Inc. (CAS) titled *NPDES Biomonitoring Report for August 2006*, which included analytical results for samples collected for NPDES-related whole effluent toxicity testing, as well as an attached report from Aquatec Biological Sciences providing the results of the whole effluent toxicity testing performed in August 2006. A copy of this document is provided in Attachment C.
- GE received a report from CAS titled *NPDES Chronic Biomonitoring Report for August 2006*, which included analytical results for samples collected for NPDES-related chronic whole effluent testing, as well as an attached report from Aquatec Biological Sciences providing the results of the chronic whole effluent toxicity testing performed in August 2006. A copy of that report is provided in Attachment D.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue NPDES sampling and monitoring activities.
- Attend public and Citizens Coordinating Council (CCC) meetings, as appropriate.
- Submit revised *Project Operations Plan* (POP) following receipt of EPA comments on February 2006 draft.*
- Submit revised *Field Sampling Plan/Quality Assurance Project Plan* (FSP/QAPP) following receipt of EPA comments on February 2006 draft.*

GENERAL ACTIVITIES (cont'd) GE-PITTSFIELD/HOUSATONIC RIVER SITE (GECD900) AUGUST 2006

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

ITEM 1 PLANT AREA 20s, 30s, 40s COMPLEXES (GECD120) AUGUST 2006

a. <u>Activities Undertaken/Completed</u>

- Completed processing and stockpiling of crushed materials, and completed demobilization activities associated with 40s Complex demolition activities.
- Conducted air monitoring for particulates in connection with demolition activities in the 40s Complex, as identified in Table 1-1.
- Conducted wipe sampling of equipment associated with the 40s Complex demolition activities, as identified in Table 1-1.
- Initiated pre-demolition removal activities (e.g., asbestos abatement, equipment/liquids removal) at Building 32 Substation.
- Conducted pond silt sampling at Pittsfield Sand & Gravel, as identified in Table 1-1.
- Conducted building material characterization sampling at the Building 32 Substation in support of future demolition activities, as identified in Table 1-1.
- Conducted sampling of paint from the exterior of the T31-4 transformer, as identified in Table 1-1.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted letter to EPA describing GE's plans for demolition of the Building 32 Substation and disposition of building materials at the Hill 78 On-Plant Consolidation Area (OPCA), including results of sampling above-grade materials at the Building 32 Substation (August 10, 2006).*

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Initiate installation of erosion control measures (riprap, topsoil, seed, etc.) at the crushed material stockpile and the material wedge along Kellogg Street and Woodlawn Avenue.
- Submit letter and figure to EPA documenting final as-built subgrade elevations of the temporary crushed material stockpile at the 40s Complex; and following EPA approval, install vegetative cover over crushed material stockpile.
- In Fall 2006, conduct annual inspections of 20s and 30s Complexes to assess compliance with Grants of Environmental Restrictions and Easements (EREs).*

ITEM 1 (cont'd) PLANT AREA 20s, 30s, 40s COMPLEXES (GECD120) AUGUST 2006

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

Received EPA approval of GE's plans for consolidation of certain building materials from the Building 32 Substation at the Hill 78 OPCA, as described in GE's August 10, 2006 submission (described above) (August 24, 2006).*

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date Received
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	by GE or BBL
Building 32 Substation Sampling	SUB32-CONC-NW-1	8/30/06	Concrete	SGS	PCB	
Building 32 Substation Sampling	SUB32-CONC-SE-1	8/30/06	Concrete	SGS	PCB	
Building 32 Substation Sampling	SUB32-TRANS-OIL-1	8/30/06	Oil	SGS	PCB	
Building 32 Substation Sampling	SUB32-TRANS-PAINT-1	8/30/06	Paint	SGS	TCLP-LEAD	
Jackson Demolition 40's Complex Equipment Sampling	JACKSON-BUCKET-W1	8/14/06	Wipe	SGS	PCB	8/17/06
Jackson Demolition 40's Complex Equipment Sampling	JACKSON-BUCKET-W2	8/14/06	Wipe	SGS	PCB	8/17/06
Jackson Demolition 40's Complex Equipment Sampling	JACKSON-BUCKET-W3	8/14/06	Wipe	SGS	PCB	8/17/06
Jackson Demolition 40's Complex Equipment Sampling	JACKSON-CLAM-W1	8/14/06	Wipe	SGS	PCB	8/17/06
Jackson Demolition 40's Complex Equipment Sampling	JACKSON-CLAM-W2	8/14/06	Wipe	SGS	PCB	8/17/06
Jackson Demolition 40's Complex Equipment Sampling	JACKSON-CLAM-W3	8/14/06	Wipe	SGS	PCB	8/17/06
Jackson Demolition 40's Complex Equipment Sampling	JACKSON-SBUCKET-W1	8/14/06	Wipe	SGS	PCB	8/17/06
Jackson Demolition 40's Complex Equipment Sampling	JACKSON-SBUCKET-W2	8/14/06	Wipe	SGS	PCB	8/17/06
Jackson Demolition 40's Complex Equipment Sampling	JACKSON-SBUCKET-W3	8/14/06	Wipe	SGS	PCB	8/17/06
Pittsfield Sand & Gravel Pond Silt Sampling	PSG-PONDSILT-C1	8/14/06	Soil	SGS	PCB, VOC, SVOC, Metals	0, 11, 00
Transformer T31-4 Sampling	T31-4-Paint-1	8/14/06	Solid	SGS	TCLP-Lead	
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/1/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/1/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/1/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/1/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Background Location	8/1/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/2/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/2/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/2/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/2/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Background Location	8/2/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/3/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/3/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/3/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/3/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Background Location	8/3/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/4/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/4/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/4/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/4/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Background Location	8/4/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/7/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/7/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/7/06	Air	Berkshire Environmental	Particulate Matter	8/14/06

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\8-06 CD Monthly\Tracking Logs\Tracking.xls TABLE 1-1

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date Received
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	by GE or BBL
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/7/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/7/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/8/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/8/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/8/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/8/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/8/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/9/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/9/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/9/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/9/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/9/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/10/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/10/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/10/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/10/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/10/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/11/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/11/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/11/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/11/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/11/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/14/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/14/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/14/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/14/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/14/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/15/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/15/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/15/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/15/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/15/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/16/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/16/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/16/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/16/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/16/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/17/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/17/06	Air	Berkshire Environmental	Particulate Matter	8/21/06

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\8-06 CD Monthly\Tracking Logs\Tracking.xls TABLE 1-1

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date Received
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	by GE or BBL
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/17/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/17/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/17/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/18/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/18/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/18/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/18/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/18/06	Air	Berkshire Environmental	Particulate Matter	8/21/06

TABLE 1-2 PCB DATA RECEIVED DURING AUGUST 2006

JACKSON DEMOLITION 40'S COMPLEX EQUIPMENT SAMPLING 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in µg/100cm²)

	Date								
Sample ID	Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
Jackson-Bucket-W1	8/14/2006	ND(1.0)	ND(1.0)						
Jackson-Bucket-W2	8/14/2006	ND(1.0)	ND(1.0)						
Jackson-Bucket-W3	8/14/2006	ND(1.0)	ND(1.0)						
Jackson-Clam-W1	8/14/2006	ND(1.0)	ND(1.0)						
Jackson-Clam-W2	8/14/2006	ND(1.0)	ND(1.0)						
Jackson-Clam-W3	8/14/2006	ND(1.0)	ND(1.0)						
Jackson-SBucket-W1	8/14/2006	ND(1.0)	ND(1.0)						
Jackson-SBucket-W2	8/14/2006	ND(1.0)	ND(1.0)						
Jackson-SBucket-W3	8/14/2006	ND(1.0)	ND(1.0)						

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 1-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING AUGUST 2006

40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
08/01/06	W3 - West of 40s Complex	0.055*	0.048*	10:15	WSW
	MC3 - Near Bldg. 16 & 19	0.086*		10:30	
	M2 - South of Bldg. 5	0.064*		10:30	
	S2 - Woodlawn Avenue	0.071*		10:30	
08/02/06	W3 - West of 40s Complex	0.054*	0.049*	10:30	WNW
	MC3 - Near Bldg. 16 & 19	0.087*		10:15	
	M2 - South of Bldg. 5	0.062*		10:30	
	S2 - Woodlawn Avenue	0.072*		10:30	
08/03/06	W3 - West of 40s Complex	0.035*	0.034*	10:45	WNW
	MC3 - Near Bldg. 16 & 19	0.061*		10:45	
	M2 - South of Bldg. 5	0.042*		10:45	
	S2 - Woodlawn Avenue	0.047*		10:45	
08/04/06	W3 - West of 40s Complex	0.010*	0.008*	11:30	NNW
	MC3 - Near Bldg. 16 & 19	0.035*		11:00	
	M2 - South of Bldg. 5	0.011*		11:00	
	S2 - Woodlawn Avenue	0.012*		11:00	
08/07/06	W3 - West of 40s Complex	0.035*	0.024*	10:30	SSW
	MC3 - Near Bldg. 16 & 19	0.073*		10:30	
	M2 - South of Bldg. 5	0.045*		10:30	
	S2 - Woodlawn Avenue	0.078*		10:30	
08/08/06	W3 - West of 40s Complex	0.015*	0.010*	11:00	NNW
	MC3 - Near Bldg. 16 & 19	0.012*		11:15	
	M2 - South of Bldg. 5	0.015*		11:15	
	S2 - Woodlawn Avenue	0.017*		11:15	
08/09/06	W3 - West of 40s Complex	0.011*	0.006*	10:15	Calm
	MC3 - Near Bldg. 16 & 19	0.012*		5:45 ³	
	M2 - South of Bldg. 5	0.010*		10:30	
	S2 - Woodlawn Avenue	0.010*		10:30	
08/10/06	W3 - West of 40s Complex	0.021*	0.012*	10:45	SSW
	MC3 - Near Bldg. 16 & 19	0.021*		10:30	
	M2 - South of Bldg. 5	0.021*		10:30	
	S2 - Woodlawn Avenue	0.023*		10:30	
08/11/06	W3 - West of 40s Complex	0.007*	0.004*	10:45	NNW
	MC3 - Near Bldg. 16 & 19	0.007*		10:45	
	M2 - South of Bldg. 5	0.006*		10:45	
	S2 - Woodlawn Avenue	0.005*		10:45	
08/14/06	W3 - West of 40s Complex	0.019*	0.011*	11:15	SSW
	MC3 - Near Bldg. 16 & 19	0.019*		11:00	
	M2 - South of Bldg. 5	0.017*		11:00	
	S2 - Woodlawn Avenue	0.019*		11:00	
08/15/06	W3 - West of 40s Complex	0.021*	0.007*	11:00	WSW
	MC3 - Near Bldg. 16 & 19	0.019*		10:45	
	M2 - South of Bldg. 5	0.021*		10:45	
	S2 - Woodlawn Avenue	0.018*		10:45	

TABLE 1-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING AUGUST 2006

40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
08/16/06	W3 - West of 40s Complex	0.012*	0.006*	10:30	NNW
	MC3 - Near Bldg. 16 & 19	0.012*		10:15	
	M2 - South of Bldg. 5	0.010*		10:30	
	S2 - Woodlawn Avenue	0.012*		10:30	
08/17/06	W3 - West of 40s Complex	0.008*	0.005*	11:00	Calm
	MC3 - Near Bldg. 16 & 19	0.011*		11:00	
	M2 - South of Bldg. 5	0.012*		11:00	
	S2 - Woodlawn Avenue	0.009*		11:00	
08/18/06	W3 - West of 40s Complex	0.018*	0.005*	10:30	SSW
	MC3 - Near Bldg. 16 & 19	0.018*		10:15	
	M2 - South of Bldg. 5	0.015*		10:30	
	S2 - Woodlawn Avenue	0.017*		10:30	
Notification Level		0.120			

Notes:

40s Complex demolition activities completed August 18, 2006.

Background monitoring station is located east of Building 9B, between 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

^{*} Measured with a DR-2000 or DR-4000.

¹ Monitoring was performed only on days when site activities occurred.

 $^{^{2}}$ The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.

³ Sampling period was shortened due to instrument malfunction.

ITEM 2 PLANT AREA EAST STREET AREA 2-SOUTH (GECD150) AUGUST 2006

a. Activities Undertaken/Completed

Conducted Liquid-Phase Carbon Absorption (LPCA) sampling at Building 64G, as identified in Table 2-1.

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine process sampling at Buildings 64G and/or 64T.
- Submit to EPA and MDEP a revised draft ERE and survey plans for the City Recreational Area.*
- In Fall 2006, conduct annual inspection of cover at City Recreational Area.*

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
Building 64G LPCA Monitoring	G6-64G-07	7/18/06	Water	Accutest	PCB	8/3/06
Building 64G LPCA Monitoring	G6-64G-11	7/18/06	Water	Accutest	PCB	8/3/06
Building 64G LPCA Monitoring	G6-64G-15	7/18/06	Water	Accutest	PCB	8/3/06

TABLE 2-2 PCB DATA RECEIVED DURING AUGUST 2006

BUILDING 64G LPCA MONITORING EAST STREET AREA 2 - SOUTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Sample ID	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
G6-64G-07	7/18/2006	ND(0.000050)							
G6-64G-11	7/18/2006	ND(0.000050)							
G6-64G-15	7/18/2006	ND(0.000050)							

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

ITEM 3 PLANT AREA EAST STREET AREA 2-NORTH (GECD140) AUGUST 2006

a. Activities Undertaken/Completed

- Completed site restoration and general housekeeping activities at former Buildings 1, 2, 3, and 3B, and associated annexes (Buildings 1A and 100 Annex).
- Conducted drum sampling at Building 78 of oil drained from product lines below grade near the Buildings 1, 2 and 3 footprint, as identified in Table 3-1.
- Conducted wipe sampling of equipment used in association with Buildings 1, 2 and 3 demolition activities, as identified in Table 3-1.
- Collected and tankered approximately 30,000 gallons of water from Building 9 to Building 64G for treatment.
- Collected and tankered approximately 3,000 gallons of water from the Buildings 1, 2 and 3 demolition project to Building 64G for treatment.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

- Submitted Final Removal Design/Removal Action (RD/RA) Work Plan (August 25, 2006).*
- Submitted letter to EPA confirming discussions related to an earlier preliminary verbal notification to EPA (made on August 25, 2006) regarding sampling of oil from two sections of pipe removed from an underground tunnel located adjacent to former Building 5 (August 28, 2006).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue removal and investigation of piping located in the underground tunnel located adjacent to former Building 5, as outlined in the above-referenced August 28, 2006 letter to EPA.
- Schedule initiation of demolition activities associated with Buildings 7, 17, 17C and 19 following final EPA approval of demolition debris disposition.

ITEM 3 (cont'd) PLANT AREA EAST STREET AREA 2-NORTH (GECD140) AUGUST 2006

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date Received by
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	GE or BBL
Buildings 1, 2, & 3 Oil Drum Sampling	F1753-1	8/22/06	Oil	SGS	PCB	8/25/06
Buildings 1, 2, & 3 Oil Drum Sampling	F1754-1	8/22/06	Oil	SGS	PCB	8/25/06
Lenox Construction Buildings 1, 2, & 3 Utility Cut Equipment Sampling	LENOX-EXCAVATORBUCKET-W1	8/15/06	Wipe	SGS	PCB	8/17/06
Lenox Construction Buildings 1, 2, & 3 Utility Cut Equipment Sampling	LENOX-EXCAVATORBUCKET-W2	8/15/06	Wipe	SGS	PCB	8/17/06
Lenox Construction Buildings 1, 2, & 3 Utility Cut Equipment Sampling	LENOX-EXCAVATORBUCKET-W3	8/15/06	Wipe	SGS	PCB	8/17/06

TABLE 3-2 PCB DATA RECEIVED DURING AUGUST 2006

LENOX CONSTRUCTION BUILDINGS 1, 2, & 3 UTILITY CUT EQUIPMENT SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in μg/100cm²)

Sample ID	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
Lenox-ExcavatorBucket-W1	8/15/2006	ND(1.0)	ND(1.0)						
Lenox-ExcavatorBucket-W2	8/15/2006	ND(1.0)	ND(1.0)						
Lenox-ExcavatorBucket-W3	8/15/2006	ND(1.0)	ND(1.0)						

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 3-3 PCB DATA RECEIVED DURING AUGUST 2006

BUILDINGS 1, 2, & 3 OIL DRUM SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

Sample ID	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
F1753-1	8/22/2006	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	270	270
F1754-1	8/22/2006	ND(470)	ND(470)	ND(470)	ND(470)	ND(470)	ND(470)	760	760

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

ITEM 4 PLANT AREA EAST STREET AREA 1-NORTH (GECD130) AUGUST 2006

a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

In Fall 2006, conduct annual determination of any change in ownership of properties with Conditional Solutions, and conduct annual inspection of those properties.*

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

ITEM 5 PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) AUGUST 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Continued consolidation of excavated materials from Former Oxbow Areas A and C into the OPCAs.
- Initiated final grading of consolidated materials in Building 71 OPCA in preparation for final cover system.
- Consolidated at the OPCAs certain leachate material from Newell Street Area I.
- Conducted air monitoring for particulates and PCBs, as identified in Table 5-1.
- Continued transfer of leachate from Building 71 OPCA to Building 64G for treatment. The total amount transferred in August 2006 was 121,000 gallons (see Table 5-4).

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted an Addendum to the Phase II Final OPCA Cover Construction Plan that was submitted in May 2006 (August 25, 2006).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Conduct semi-annual inspection of capped portion of Building 71 OPCA and submit report thereon.
- Complete consolidation of excavated materials from Former Oxbow Areas A and C into the OPCAs.
- Consolidate excavated materials from the Lyman Street Area into the Building 71 OPCA, if available.
- Continue Phase II final cover construction for Building 71 OPCA.

ITEM 5 (cont'd) PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) AUGUST 2006

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u> (cont'd)

- Prepare and submit plan to address the blockage within the storm sewer line located beneath the Hill 78 OPCA; and following EPA approval, mobilize Contractor to site to address blockage. (This matter is discussed further in Item 6.)

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

- Received EPA conditional approval of GE's May 5, 2006 plan titled 2006 Consolidation and Phase II Final Cover Construction (August 1, 2006).
- Received EPA approval of GE's August 25, 2006 Addendum to Phase II Final OPCA Cover Construction Plan (August 29, 2006).

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or BBL
Ambient Air Particulate Matter Sampling	North of OPCAs	8/1/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/1/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/1/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/1/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/1/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Background Location	8/1/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/2/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/2/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/2/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/2/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/2/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Background Location	8/2/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/3/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/3/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/3/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/3/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/3/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Background Location	8/3/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/4/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/4/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/4/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/4/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/4/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Background Location	8/4/06	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/7/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/7/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/7/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/7/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/7/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/7/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/8/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/8/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/8/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/8/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/8/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/8/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/9/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/9/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/9/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/9/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/9/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/9/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/10/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/10/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
, and one, and a discondition water barriping	Southeast of OPCAs	8/10/06	Air	Berkshire Environmental	Particulate Matter	8/14/06

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or BBL
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/10/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/10/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/10/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/11/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/11/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/11/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/11/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/11/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/11/06	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/14/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/14/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/14/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/14/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/14/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/14/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/15/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/15/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/15/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/15/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/15/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/15/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/16/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/16/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/16/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/16/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/16/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/16/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/17/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/17/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/17/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/17/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/17/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/17/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/18/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/18/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/18/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/18/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/18/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/18/06	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/21/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/21/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/21/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/21/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/21/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
	West OLUPLIAS	8/21/Uh		Derkstille Environmeniai	Particulate Manor	8/24/Hh

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or BBL
Ambient Air Particulate Matter Sampling	North of OPCAs	8/22/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/22/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/22/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/22/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/22/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Background Location	8/22/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/23/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/23/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/23/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/23/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/23/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Background Location	8/23/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/24/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/24/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/24/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/24/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/24/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Background Location	8/24/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/25/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/25/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/25/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/25/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/25/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Background Location	8/25/06	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/28/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/28/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/28/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/28/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/28/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Background Location	8/28/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/29/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/29/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/29/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/29/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/29/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Background Location	8/29/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/30/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/30/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/30/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/30/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/30/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Background Location	8/30/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	North of OPCAs	8/31/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/31/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/31/06	Air	Berkshire Environmental	Particulate Matter	9/1/06

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or BBL
Ambient Air Particulate Matter Sampling	Northwest of OPCAs	8/31/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	West of OPCAs	8/31/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Background Location	8/31/06	Air	Berkshire Environmental	Particulate Matter	9/1/06
PCB Ambient Air Sampling	Field Blank	7/24 - 7/25/06	Air	Berkshire Environmental	PCB	8/8/06
PCB Ambient Air Sampling	Northwest of OPCAs	7/24 - 7/25/06	Air	Berkshire Environmental	PCB	8/8/06
PCB Ambient Air Sampling	West of OPCAs	7/24 - 7/25/06	Air	Berkshire Environmental	PCB	8/8/06
PCB Ambient Air Sampling	West of OPCAs colocated	7/24 - 7/25/06	Air	Berkshire Environmental	PCB	8/8/06
PCB Ambient Air Sampling	North of OPCAs	7/24 - 7/25/06	Air	Berkshire Environmental	PCB	8/8/06
PCB Ambient Air Sampling	Southeast of OPCAs	7/24 - 7/25/06	Air	Berkshire Environmental	PCB	8/8/06
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	7/24 - 7/25/06	Air	Berkshire Environmental	PCB	8/8/06
PCB Ambient Air Sampling	Background East of Building 9B	7/24 - 7/25/06	Air	Berkshire Environmental	PCB	8/8/06
PCB Ambient Air Sampling	Field Blank	7/31 - 8/01/06	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	Northwest of OPCAs	7/31 - 8/01/06	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	West of OPCAs	7/31 - 8/01/06	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	West of OPCAs colocated	7/31 - 8/01/06	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	North of OPCAs	7/31 - 8/01/06	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	Southeast of OPCAs	7/31 - 8/01/06	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	7/31 - 8/01/06	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	Background East of Building 9B	7/31 - 8/01/06	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	Field Blank	8/03 - 8/04/06	Air	Berkshire Environmental	PCB	8/10/06
PCB Ambient Air Sampling	Northwest of OPCAs	8/03 - 8/04/06	Air	Berkshire Environmental	PCB	8/10/06
PCB Ambient Air Sampling	West of OPCAs	8/03 - 8/04/06	Air	Berkshire Environmental	PCB	8/10/06
PCB Ambient Air Sampling	West of OPCAs colocated	8/03 - 8/04/06	Air	Berkshire Environmental	PCB	8/10/06
PCB Ambient Air Sampling	North of OPCAs	8/03 - 8/04/06	Air	Berkshire Environmental	PCB	8/10/06
PCB Ambient Air Sampling	Southeast of OPCAs	8/03 - 8/04/06	Air	Berkshire Environmental	PCB	8/10/06
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	8/03 - 8/04/06	Air	Berkshire Environmental	PCB	8/10/06
PCB Ambient Air Sampling	Background East of Building 9B	8/03 - 8/04/06	Air	Berkshire Environmental	PCB	8/10/06
PCB Ambient Air Sampling	Field Blank	8/08 - 8/09/06	Air	Berkshire Environmental	PCB	8/15/06
PCB Ambient Air Sampling	Northwest of OPCAs	8/08 - 8/09/06	Air	Berkshire Environmental	PCB	8/15/06
PCB Ambient Air Sampling	West of OPCAs	8/08 - 8/09/06	Air	Berkshire Environmental	PCB	8/15/06
PCB Ambient Air Sampling	West of OPCAs colocated	8/08 - 8/09/06	Air	Berkshire Environmental	PCB	8/15/06
PCB Ambient Air Sampling	Field Blank	8/10 - 8/11/06	Air	Berkshire Environmental	PCB	8/17/06
PCB Ambient Air Sampling	Northwest of OPCAs	8/10 - 8/11/06	Air	Berkshire Environmental	PCB	8/17/06
PCB Ambient Air Sampling	West of OPCAs	8/10 - 8/11/06	Air	Berkshire Environmental	PCB	8/17/06
PCB Ambient Air Sampling	West of OPCAs colocated	8/10 - 8/11/06	Air	Berkshire Environmental	PCB	8/17/06
PCB Ambient Air Sampling	North of OPCAs	8/10 - 8/11/06	Air	Berkshire Environmental	PCB	8/17/06
PCB Ambient Air Sampling	Southeast of OPCAs	8/10 - 8/11/06	Air	Berkshire Environmental	PCB	8/17/06
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	8/10 - 8/11/06	Air	Berkshire Environmental	PCB	8/17/06
PCB Ambient Air Sampling	Background East of Building 9B	8/10 - 8/11/06	Air	Berkshire Environmental	PCB	8/17/06
PCB Ambient Air Sampling	Field Blank	8/14 - 8/15/06	Air	Berkshire Environmental	PCB	8/21/06
PCB Ambient Air Sampling	Northwest of OPCAs	8/14 - 8/15/06	Air	Berkshire Environmental	PCB	8/21/06
PCB Ambient Air Sampling	West of OPCAs colocated	8/14 - 8/15/06	Air	Berkshire Environmental	PCB	8/21/06
PCB Ambient Air Sampling	North of OPCAs	8/14 - 8/15/06	Air	Berkshire Environmental	PCB	8/21/06
PCB Ambient Air Sampling	Southeast of OPCAs	8/14 - 8/15/06	Air	Berkshire Environmental	PCB	8/21/06
1 Ob / Inbioni All Gampling	Pittsfield Generating (PGE)	8/14 - 8/15/06	Air	Berkshire Environmental	PCB	8/21/06

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or BBL
PCB Ambient Air Sampling	Background East of Building 9B	8/14 - 8/15/06	Air	Berkshire Environmental	PCB	8/21/06

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS (all results are ug/m³)

Date	Northwest of OPCAs	Northwest of OPCAs colocated	West of OPCAs	West of OPCAs colocated	North of OPCAs	Southeast of OPCAs	Pittsfield Generating (PGE)	Background Sample Location - East of Building 9B	Data Validated?
01/10/06 - 01/11/06	0.0005	ND	0.0020		0.0005	ND	0.0005	0.0003	No
02/07/06 - 02/08/06	ND	0.0002 J	ND		ND	0.0003	0.0003	0.0002 J	No
03/07/06 - 03/08/06	ND	ND	ND		ND	0.0006	0.0006	0.0008	No
04/06/06 - 04/07/06	0.0006		0.0004	0.0005	0.0005	0.0009	0.0014	0.0005	No
04/18/06 - 04/19/06	0.0010		0.0011	0.0009	0.0040	0.0019	0.0148	0.0031	No
04/25/06 - 04/26/06	0.0009		0.0010	0.0009	0.0007	0.0013	0.0019	0.0007	No
04/27/06 - 04/28/06	0.0006		0.0006	0.0007	0.0004	0.0009	0.0020	0.0005	No
05/02/06 - 05/03/06 ¹	NA		NA	NA	NA	NA	NA	NA	NA
05/04/06 - 05/05/06	0.0019		0.0037	0.0030	0.0017	0.0041	0.0069	0.0026	No
05/09/06 - 05/10/06	0.0003		0.0004	0.0004	ND	0.0005	0.0004	0.0050	No
05/11/06 - 05/12/06	0.0014		0.0024	0.0026	0.0010	0.0005	0.0006	0.0011	No
05/16/06 - 05/17/06	0.0004		0.0007	0.0011	0.0006	0.0009	0.0014	0.0009	No
05/18/06 - 05/19/06	0.0018		0.0015	0.0021	0.0017	0.0015	0.0017	0.0019	No
05/23/06 - 05/24/06	0.0003		ND	0.0004	ND	0.0011	0.0017	0.0005	No
05/25/06 - 05/26/06	0.0032 ²		0.0018	0.0056	0.0041	0.0015	0.0044	0.0010	No
05/31/06 - 06/01/06	0.0069		0.0056	0.0060	0.0069	0.0030	0.0062	0.0024	No
06/01/06 - 06/02/06	0.0031		0.0028	0.0043	0.0034	0.0038	0.0087	0.0030	No
06/06/06 - 06/07/06	0.0006		ND	ND	ND	ND	ND	0.0018	No
06/12/06 - 06/13/06	0.0017		0.0046	0.0037	0.0041	0.0013	0.0388	0.0009	No
06/13/06 - 06/14/06	0.0010		0.0010	0.0007	0.0009	0.0022	0.0061	0.0014	No
06/20/06 - 06/21/06	0.0027		0.0020	0.0030	0.0031	0.0024	0.0047	0.0012	No
06/22/06 - 06/23/06	0.0028		0.0029	0.0027	0.0036	0.0022	0.0032	0.0025	No
06/27/06 - 06/28/06	0.0036 J		0.0021 J	0.0019 J	0.0026 J	0.0006 J	0.0018 J	0.0019 J	PDR ³
06/29/06 - 06/30/06	0.0013 J		0.0014 J	0.0010 J	0.0020 J	0.0006 J	0.0021 J	0.0036 J	PDR ³
07/06/06 - 07/07/06	0.0008 J		0.0003 J	0.0007 J	0.0006 J	0.0005 J	0.0029 J	0.0004 J	PDR ³
07/11/06 - 07/12/06	0.0024		0.0018	0.0018	0.0016	0.0011	0.0045	0.0017	PDR ³
07/13/06 - 07/14/06	0.0008 J		0.0014 J	0.0010 J	0.0007 J	0.0008 J	0.0023 J	0.0012 J	PDR ³
07/18/06 - 07/19/06	0.0018 J		0.0026 J	0.0021 J	0.0020 J	0.0033 J	0.0089 J	0.0022 J	PDR ³
07/20/06 - 07/21/06	0.0033		0.0024	0.0031	0.0010	0.0008	0.0025	0.0021	PDR ³
07/24/06 - 07/25/06	0.0014		0.0016	0.0016	0.0017	0.0014	0.0045	0.0014	PDR ³
07/31/06 - 08/01/06	0.0017		0.0016 J	0.0011 J	0.0005 J	0.0015	0.0070	0.0023	PDR ³
08/03/06 - 08/04/06	0.0010		0.0017	0.0023	0.0013	0.0030	0.0107	0.0026	PDR ³
08/08/06 - 08/09/06	ND		0.0005	0.0004 J	NA ⁴	NA ⁴	NA ⁴	NA ⁴	PDR ³
08/10/06 - 08/11/06	0.0011 J		0.0011 J	0.0010 J	0.0004 J	0.0006 J	0.0020 J	0.0005 J	PDR ³

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS (all results are ug/m³)

Date	Northwest of OPCAs	Northwest of OPCAs colocated	West of OPCAs	West of OPCAs colocated	North of OPCAs	Southeast of OPCAs	Pittsfield Generating (PGE)	Background Sample Location - East of Building 9B	Data Validated?
08/14/06 - 08/15/06	0.0024		NA ⁵	0.0019	0.0017	0.0008	0.0024	0.0016 J	PDR ³
Exceedances of Notification Level (0.05 µg/m³)	None	None	None	None	None	None	None	None	

(See Notes on Pages 3 and 4)

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS (all results are ug/m³)

Notes:

All sampling and analytical activities performed and/or coordinated by Berkshire Environmental Consultants, Inc.

NA - Not Available

ND - Non Detect (<0.0003)

- J Sample results were qualified as estimated.
- No data available due to laboratory error.
- Data provided for information purposes only. Sampling period did not meet QA/QC criteria of 24 hours ± 60 minutes due to an interruption in street power.
- ³ Preliminary data review (PDR) was conducted based on the following data quality indicators associated with the tabulated data set above: sampling collection time, sampling calibration check, temperature receipt, associated blanks, laboratory control samples recoveries, and surrogate recoveries.
- During the extraction step one of the SGS lab extractionists reported ethyl ether fumes. The analyst doing the extraction confirmed that the soxtherm had leaked and the extract volumes were low for a number of samples. The samples were analyzed but QA/QC review showed that the results were unacceptable.

 SGS' Lab Director and QA/QC group also confirmed that the low volume results were unacceptable. The lab only reported the validated results.
- 5 Sample result for the W location from 08/14/06 to 08/15/06 not available due to equipment malfunction.

Qualification Notes:

- 1. Samples collected from the NW and Background locations from 02/07/06 to 02/08/06 are estimated values detected between the MDL and the PQL.
- 2. Samples collected from 06/27/06 to 06/28/06 were qualified as estimated due to surrogate recovery and/or laboratory control sample recovery deviations.
- 3. Samples collected from 06/29/06 to 06/30/06 were qualified as estimated due to surrogate recovery and/or laboratory control sample recovery deviations.
- 4. Samples collected from 07/06/06 to 07/07/06 were qualified as estimated due to surrogate recovery deviation.
- 5. All samples collected from 07/11/06 to 07/12/06 were greater than 4°C (PUF temperature was 20.2°C) upon laboratory receipt. The temperature of the temperature blank was recorded as less than 4°C. Following an investigation of the laboratory concerning the temperature receipt of PUF samples exhibiting a temperature greater than 6°C, the laboratory has discovered that the laboratory receipt technician was taking the temperature of the PUF while still wrapped in foil. The foil wrapped around the PUF caused an erroneous temperature reading from the IR thermometer. This was confirmed by 1) the temperature blank exhibiting a temperature less than 4°C and 2) the laboratory receipt technician peeled back the foil of the of PUF samples receipt on 8/1/06 and a temperature reading of less than 5°C was observed; therefore, none of the data were qualified due to the documented PUF temperature deviation.
- 6. Samples collected from 07/13/06 to 07/14/06 were qualified as estimated due to the laboratory not recording the temperature of the PUF upon receipt and laboratory control sample recovery deviations. The temperature of the temperature blank was recorded as less than 4°C.
- 7. Samples collected from 07/18/06 to 07/19/06 were qualified as estimated due to the laboratory not recording the temperature of the PUF upon receipt.
- 8. All samples collected from 07/20/06 to 07/21/06 were greater than 4°C (PUF temperature was 21.4°C) upon laboratory receipt. The temperature of the temperature blank was recorded as less than 4°C. Following an investigation of the laboratory concerning the temperature receipt of PUF samples exhibiting a temperature greater than 6°C, the laboratory has discovered that the laboratory receipt technician was taking the temperature of the PUF while still wrapped in foil. The foil wrapped around the PUF caused an erroneous temperature reading from the IR thermometer. This was confirmed by 1) the temperature blank exhibiting a temperature less than 4°C and 2) the laboratory receipt technician peeled back the foil of the of PUF samples receipt on 8/1/06 and a temperature reading of less than 5°C was observed; therefore, none of the data were qualified due to the documented PUF temperature deviation.
- 9. Samples collected from the W, W colocated and N locations from 07/31/06 to 08/01/06 were qualified as estimated due to one surrogate recovery less than the lower control limit and less than 10%.

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS (all results are ug/m³)

- 11. Samples collected from 08/10/06 to 08/11/06 were qualified as estimated due to low laboratory control sample and laboratory control sample duplicate (LCS/LCSD) recovery less than the lower control limit.
- 12. Sample collected from the Background location from 08/14/06 to 08/15/06 was qualified due to the sampling calibration check.

TABLE 5-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING 2006

PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
01/10/06	North of OPCAs	0.016*	0.010*	10:30	WNW
	Pittsfield Generating Co.	0.023		10:30	
	Southeast of OPCAs	0.017		10:30	
	Northwest of OPCAs	0.023*		10:30	
	West of OPCAs	0.016*		10:30	
02/07/06	North of OPCAs	0.006*	0.005*	10:30	WNW
	Pittsfield Generating Co.	NA ²		NA ²	
	Southeast of OPCAs	0.046 ³		13:45 ⁴	
	Northwest of OPCAs	0.012*		10:15	
	West of OPCAs	0.008*		11:00	
04/17/06	North of OPCAs	0.003*	0.004*	9:45	NNW
04/17/00	Pittsfield Generating Co.	0.005*	0.004	10:15	ININV
	Southeast of OPCAs	0.003		10:13	
	Northwest of OPCAs	0.004		10:30	
	West of OPCAs	0.002		10:30	
04/18/06	North of OPCAs	0.003*	0.003*	9:15 ⁵	NNW
04/16/06	Pittsfield Generating Co.	0.003*	0.003	10:45	ININVV
	Southeast of OPCAs	0.003		10:45	
	Northwest of OPCAs	0.020		10:30	
	West of OPCAs	0.001		10:30	
04/40/06			0.002*	6:15 ⁵	NNW
04/19/06	North of OPCAs	0.001*	0.003*		ININVV
	Pittsfield Generating Co.	0.004*		10:45	
	Southeast of OPCAs	0.005*		10:45	
	Northwest of OPCAs	0.001* 0.004*		11:00	
04/20/06	West of OPCAs North of OPCAs		0.005*	11:00	\A/N!\A/_NINI/A/
04/20/06		0.004*	0.005*	11:30	WNW, NNW
	Pittsfield Generating Co.	0.008*		12:00	
	Southeast of OPCAs	0.006*		11:30	
	Northwest of OPCAs	0.003*		11:30	
0.4/0.4/0.0	West of OPCAs	0.006*	0.007*	11:30	M. 2.11.
04/21/06	North of OPCAs	0.004*	0.007*	10:30	Variable
	Pittsfield Generating Co.	0.010*		10:45	
	Southeast of OPCAs	0.008*		10:30	
	Northwest of OPCAs	0.004*		10:30	
0.4/0.4/0.0	West of OPCAs	0.006*	0.007*	10:30	0.1.
04/24/06	North of OPCAs	0.006*	0.007*	10:45	Calm
	Pittsfield Generating Co.	0.008*		10:45	
	Southeast of OPCAs	0.011*		10:45	
	Northwest of OPCAs	0.005*		10:45	
	West of OPCAs	0.007*		10:45	
04/25/06	North of OPCAs	0.015*	0.018*	10:45	WNW
	Pittsfield Generating Co.	0.025*		10:30	
	Southeast of OPCAs	0.022*		10:30	
	Northwest of OPCAs	0.013*		10:45	
	West of OPCAs	0.019*		10:45	
04/26/06	North of OPCAs	0.003*	0.005*	11:00	SSW
	Pittsfield Generating Co.	0.005*		10:45	
	Southeast of OPCAs	0.004*		10:45	
	Northwest of OPCAs	0.002*		11:00	
	West of OPCAs	0.004*	1	11:00	1

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction	
04/27/06	North of OPCAs	0.009*	0.013*	10:30	WNW	
	Pittsfield Generating Co.	0.014*		10:30		
	Southeast of OPCAs	0.014*		10:30		
	Northwest of OPCAs	0.007*		10:30		
	West of OPCAs	0.012*		10:45		
04/28/06	North of OPCAs	0.003*	0.005*	10:45	NNW	
	Pittsfield Generating Co.	0.006*		10:30		
	Southeast of OPCAs	0.006*		10:45		
	Northwest of OPCAs	0.003*		10:45		
	West of OPCAs	0.005*		10:45		
05/01/06	North of OPCAs	0.006*	0.009*	10:30	ENE	
	Pittsfield Generating Co.	0.009*		10:30		
	Southeast of OPCAs	0.010*		10:30		
	Northwest of OPCAs	0.005*		10:30		
	West of OPCAs	0.010*		10:30		
05/02/06	North of OPCAs	0.007*	0.011*	11:00	Variable	
	Pittsfield Generating Co.	0.010*		11:00		
	Southeast of OPCAs	0.014*		11:00		
	Northwest of OPCAs	0.005*		11:00		
	West of OPCAs	0.009*		11:00		
05/03/06	North of OPCAs	0.001*	0.002*	10:00	NNW	
00/00/00	Pittsfield Generating Co.	0.002*	0.002	10:15	14444	
	Southeast of OPCAs	0.001*		5:30 ⁵		
	Northwest of OPCAs	0.001*		10:15		
	West of OPCAs	0.001*		10:30		
05/04/06	North of OPCAs	0.002	0.006*	11:00	WNW	
03/04/00	Pittsfield Generating Co.	0.011*	0.000	11:00	******	
	Southeast of OPCAs	0.004*		11:00		
	Northwest of OPCAs	0.004*		11:30		
	West of OPCAs	0.006*		11:30		
05/05/06	North of OPCAs	0.004*	0.007*	10:30	WNW	
05/05/06		0.004	0.007	10:30	VVINVV	
	Pittsfield Generating Co.					
	Southeast of OPCAs	0.005*		10:30		
	Northwest of OPCAs	0.005*		10:30		
05/00/00	West of OPCAs	0.006*	0.040*	10:30	M. 2.11.	
05/08/06	North of OPCAs	0.006*	0.010*	10:45	Variable	
	Pittsfield Generating Co.	0.010*		10:45		
	Southeast of OPCAs	0.007*		10:45		
	Northwest of OPCAs	0.007*		10:45		
0.5 (0.5 (West of OPCAs	0.009*	0.01-1	10:45	 -	
05/09/06	North of OPCAs	0.005*	0.013*	11:45	NNE	
	Pittsfield Generating Co.	0.009*		11:45		
	Southeast of OPCAs	0.008*		11:45		
	Northwest of OPCAs	0.005*	1	11:45		
	West of OPCAs	0.009*		11:45		
05/10/06	North of OPCAs	0.004*	0.008*	10:45	ENE	
	Pittsfield Generating Co.	0.009*	1	10:45		
	Southeast of OPCAs	0.005*		10:45		
	Northwest of OPCAs	0.004*		10:45		
	West of OPCAs	0.009*		10:45		

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
05/11/06	North of OPCAs	0.002*	0.006*	11:15	Variable
	Pittsfield Generating Co.	0.007*		11:15	
	Southeast of OPCAs	0.004*		11:15	
	Northwest of OPCAs	0.002*		11:15	
	West of OPCAs	0.007*		11:15	
05/12/06	North of OPCAs	0.006*	0.008*	11:45	Variable
	Pittsfield Generating Co.	0.001*		11:45	
	Southeast of OPCAs	0.004*		11:45	
	Northwest of OPCAs	0.010*		12:00	
	West of OPCAs	0.007*		12:00	
05/15/06	North of OPCAs	0.002*	0.002*	10:45	Variable
	Pittsfield Generating Co.	0.003*		9:30 ⁵	
	Southeast of OPCAs	0.001*		11:15	
	Northwest of OPCAs	0.001*		11:00	
	West of OPCAs	0.002*		11:15	
05/16/06	North of OPCAs	0.007*	0.008*	11:30	W
	Pittsfield Generating Co.	0.008*		11:00	
	Southeast of OPCAs	0.007*		11:00	
	Northwest of OPCAs	0.005*		10:15	
	West of OPCAs	0.005*		11:15	
05/17/06	North of OPCAs	0.016*	0.015*	11:15	SSW
	Pittsfield Generating Co.	0.025*		11:15	
	Southeast of OPCAs	0.014*		11:15	
	Northwest of OPCAs	0.013*		11:15	
	West of OPCAs	0.011*		11:15	
05/18/06	North of OPCAs	0.022*	0.024*	11:00	SSW
	Pittsfield Generating Co.	0.029*		10:45	
	Southeast of OPCAs	0.023*		11:00	
	Northwest of OPCAs	0.021*		11:15	
	West of OPCAs	0.018*		11:30	
05/19/06	North of OPCAs	0.015*	0.022*	10:45	WSW
	Pittsfield Generating Co.	0.019*		10:00	
	Southeast of OPCAs	0.014*		10:45	
	Northwest of OPCAs	0.016*		10:45	
	West of OPCAs	0.014*		10:45	
05/22/06	North of OPCAs	0.001*	0.002*	8:15 ⁶	WNW
	Pittsfield Generating Co.	0.014*		11:15	
	Southeast of OPCAs	0.002*		11:15	
	Northwest of OPCAs	0.001*		11:15	
	West of OPCAs	0.001*		11:15	
05/23/06	North of OPCAs	0.005*	0.008*	11:45	WNW
	Pittsfield Generating Co.	0.005*		11:30	
	Southeast of OPCAs	0.005*		11:45	
	Northwest of OPCAs	0.006*		11:45	
	West of OPCAs	0.002*		12:00	
05/24/06	North of OPCAs	0.004*	0.006*	11:30	WNW
	Pittsfield Generating Co.	0.006*		11:30	
	Southeast of OPCAs	0.004*		11:30	
	Northwest of OPCAs	0.004*		11:30	
	West of OPCAs	0.004*		11:30	

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
05/25/06	North of OPCAs	0.014*	0.014*	10:15	SSW
	Pittsfield Generating Co.	0.021*		10:00	
	Southeast of OPCAs	0.016*		10:15	
	Northwest of OPCAs	0.015*		10:30	
	West of OPCAs	0.011*		10:45	
05/26/06	North of OPCAs	0.028*	0.030*	10:45	Calm
	Pittsfield Generating Co.	0.035*		11:30	
	Southeast of OPCAs	0.028*		11:30	
	Northwest of OPCAs	0.031*		11:45	
	West of OPCAs	0.027*		11:15	
05/30/06	North of OPCAs	0.023*	0.023*	11:00	Variable
	Pittsfield Generating Co.	0.040*		10:30	
	Southeast of OPCAs	0.024*		9:00 ⁵	
	Northwest of OPCAs	0.026*		11:00	
	West of OPCAs	0.012*		11:00	
05/31/06	North of OPCAs	0.046*	0.053*	11:15	WSW
	Pittsfield Generating Co.	0.057*		11:00	
	Southeast of OPCAs	0.046*		11:15	
	Northwest of OPCAs	0.049*		11:30	
	West of OPCAs	0.035*		11:30	
06/01/06	North of OPCAs	0.057*	0.072*	11:15	WSW, SSW
00/01/00	Pittsfield Generating Co.	0.078*	0.072	11:15	11011, 0011
	Southeast of OPCAs	0.059*		11:15	
	Northwest of OPCAs	0.058*		11:15	
	West of OPCAs	0.042*		11:30	
06/02/06	North of OPCAs	0.014*	0.019*	10:30	WSW
00/02/00	Pittsfield Generating Co.	0.020*	0.013	10:30	*****
	Southeast of OPCAs	0.016*		10:30	
	Northwest of OPCAs	0.016*		10:30	
	West of OPCAs	0.013*		10:30	
06/06/06	North of OPCAs	0.008*	0.010*	11:30	Calm
06/06/06		0.008	0.010	11:30	Caim
	Pittsfield Generating Co.				
	Southeast of OPCAs	0.010*		11:30	
	Northwest of OPCAs	0.008*		11:45	
00/40/00	West of OPCAs	0.007*	0.005*	11:45	14/4 04/
06/12/06	North of OPCAs	0.005*	0.005*	10:15	WNW
	Pittsfield Generating Co.	0.014*		10:45	
	Southeast of OPCAs	0.009*		10:30	
	Northwest of OPCAs	0.003*		10:30	
	West of OPCAs	0.003*		11:15	
06/13/06	North of OPCAs	0.009*	0.009*	11:00	WNW
	Pittsfield Generating Co.	0.026*		10:30	
	Southeast of OPCAs	0.011*		11:00	
	Northwest of OPCAs	0.009*		11:00	
	West of OPCAs	0.003*		10:45	
06/14/06	North of OPCAs	0.013*	0.018*	10:45	Calm
	Pittsfield Generating Co.	0.024*		10:45	
	Southeast of OPCAs	0.013*		11:00	
	Northwest of OPCAs	0.014*		11:00	
	West of OPCAs	0.011*		11:00	

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
06/15/06	North of OPCAs	0.009*	0.010*	10:30	NNW
	Pittsfield Generating Co.	0.014*		10:30	
	Southeast of OPCAs	0.010*		10:30	
	Northwest of OPCAs	0.008*		10:30	
	West of OPCAs	0.011*		10:30	
06/16/06	North of OPCAs	0.015*	0.017*	9:45 ⁵	WNW
	Pittsfield Generating Co.	0.022*		11:45	
	Southeast of OPCAs	0.017*		11:45	
	Northwest of OPCAs	0.016*		11:45	
	West of OPCAs	0.026*		6:45 ⁵	
06/19/06 ⁷	North of OPCAs	0.113*	0.136*	10:30	WSW, SSW
	Pittsfield Generating Co.	0.153*		10:45	
	Southeast of OPCAs	0.119*		10:45	
	Northwest of OPCAs	0.119*		10:30	
	West of OPCAs	0.187*		10:30	
06/20/06	North of OPCAs	0.022*	0.028*	10:30	WSW
	Pittsfield Generating Co.	0.031*		10:30	
	Southeast of OPCAs	0.018*		10:45	
	Northwest of OPCAs	0.020*		10:45	
	West of OPCAs	0.038*		10:45	
06/21/06	North of OPCAs	0.007*	0.007*	10:45	Variable
	Pittsfield Generating Co.	0.012*		10:45	
	Southeast of OPCAs	0.009*		10:45	
	Northwest of OPCAs	0.007*		10:45	
	West of OPCAs	0.013*		10:45	
06/22/06	North of OPCAs	0.029*	0.034*	11:30	SSW
	Pittsfield Generating Co.	0.041*		10:45	
	Southeast of OPCAs	0.035*		11:30	
	Northwest of OPCAs	0.030*		11:30	
	West of OPCAs	0.051*		11:30	
06/23/06	North of OPCAs	0.027*	0.037*	10:45	WNW
	Pittsfield Generating Co.	0.046*		10:45	
	Southeast of OPCAs	0.036*		10:45	
	Northwest of OPCAs	0.029*		10:45	
	West of OPCAs	0.057*		10:45	
06/26/06	North of OPCAs	0.012*	0.015*	8:45 ⁸	SSW
	Pittsfield Generating Co.	0.020*		8:30 ⁸	
	Southeast of OPCAs	0.021*		8:30 ⁸	
	Northwest of OPCAs	0.014*		8:45 ⁸	
	West of OPCAs	0.018*		8:45 ⁸	
06/27/06	North of OPCAs	0.012*	0.011*	10:45	SSW
	Pittsfield Generating Co.	0.015*		10:30	
	Southeast of OPCAs	0.012*		10:45	
	Northwest of OPCAs	0.013*		10:45	
	West of OPCAs	0.022*		11:00	
06/28/06	North of OPCAs	0.004*	0.008*	11:30	Variable
	Pittsfield Generating Co.	0.007*		10:45	
	Southeast of OPCAs	0.003*		11:30	
	Northwest of OPCAs	0.007*		11:15	
	West of OPCAs	0.011*		11:30	

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
06/29/06	North of OPCAs	0.055*	0.057*	10:30	SSW
	Pittsfield Generating Co.	0.074*		10:00	
	Southeast of OPCAs	0.047*		11:00	
	Northwest of OPCAs	0.064*		10:30	
	West of OPCAs	0.062*		11:00	
06/30/06	North of OPCAs	0.030*	0.037*	11:00	WNW
	Pittsfield Generating Co.	0.046*		10:30	
	Southeast of OPCAs	0.046*		10:45	
	Northwest of OPCAs	0.039*		11:00	
	West of OPCAs	0.055*		10:45	
07/05/06	North of OPCAs	0.016*	0.021*	11:00	WNW
	Pittsfield Generating Co.	0.024*		11:00	
	Southeast of OPCAs	0.026*		10:45	
	Northwest of OPCAs	0.022*		10:45	
	West of OPCAs	0.032*		11:00	
07/06/06	North of OPCAs	0.002*	0.006*	11:00	WNW
	Pittsfield Generating Co.	0.007*		10:45	
	Southeast of OPCAs	0.021*		11:00	
	Northwest of OPCAs	0.006*		11:00	
	West of OPCAs	0.010*		11:15	
07/07/06	North of OPCAs	0.007*	0.008*	10:45	WNW
0.701700	Pittsfield Generating Co.	0.012*	0.000	10:45	
	Southeast of OPCAs	0.019*		10:45	
	Northwest of OPCAs	0.010*		10:45	
	West of OPCAs	0.017*		10:45	
07/10/06	North of OPCAs	0.030*	0.056*	10:45	Variable
0.7.0700	Pittsfield Generating Co.	0.046*	0.000	10:30	Variable
	Southeast of OPCAs	0.044*		10:45	
	Northwest of OPCAs	0.037*		10:30	
	West of OPCAs	0.056*		10:45	
07/11/06	North of OPCAs	0.048 ⁹	0.070*	11:15	NNW, WNW
07/11/00	Pittsfield Generating Co.	0.088*	0.070	10:15	ININVV, VVINVV
	Southeast of OPCAs	0.085*		10:30	
	Northwest of OPCAs	0.065		10:00	
	West of OPCAs	0.049 ⁹		11:15	
07/12/06	North of OPCAs	0.026**	0.040*	11:15	Calm
07/12/00	Pittsfield Generating Co.	0.026	0.040		Callii
	•			10:30	
	Southeast of OPCAs	0.063*		10:45	
	Northwest of OPCAs	0.054*		10:30	
07/40/00	West of OPCAs	0.022**	0.007*	11:15	NINIT M
07/13/06	North of OPCAs	0.010**	0.007*	11:15	NNE, W
	Pittsfield Generating Co.	0.004*		11:00	
	Southeast of OPCAs	0.002*	1	10:30	
	Northwest of OPCAs	0.004*		11:00	
0=11.17-	West of OPCAs	0.013**	0.000	11:15	
07/14/06	North of OPCAs	0.011**	0.021*	11:00	WNW
	Pittsfield Generating Co.	0.030*		10:30	
	Southeast of OPCAs	0.028*		10:30	
	Northwest of OPCAs	0.026*		10:30	
	West of OPCAs	0.011**		11:00	

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
07/17/06	North of OPCAs	0.022**	0.013*	11:15	Variable
	Pittsfield Generating Co.	0.025*		10:30	
	Southeast of OPCAs	0.029*		11:00	
	Northwest of OPCAs	0.021 ⁹		10:45	
	West of OPCAs	0.018 ⁹		8:15 ¹⁰	
07/18/06	North of OPCAs	0.018**	0.024*	11:15	WNW
	Pittsfield Generating Co.	0.031*		10:15	
	Southeast of OPCAs	0.036*		11:00	
	Northwest of OPCAs	0.018**		11:15	
	West of OPCAs	0.037*		10:45	
07/19/06	North of OPCAs	0.015**	0.013*	11:15	Calm
	Pittsfield Generating Co.	0.017*		10:30	
	Southeast of OPCAs	0.019*		10:30	
	Northwest of OPCAs	0.009**		11:15	
	West of OPCAs	0.019*		10:30	
07/20/06	North of OPCAs	0.011**	0.004*	11:15	Calm
	Pittsfield Generating Co.	0.020*		11:15	
	Southeast of OPCAs	0.021*		11:15	
	Northwest of OPCAs	0.012**		11:15	
	West of OPCAs	0.019*		11:15	
07/21/06	North of OPCAs	0.018**	0.056*	11:00	Variable
0.72.700	Pittsfield Generating Co.	0.052*	0.000	11:30	Validatio
	Southeast of OPCAs	0.052*		11:15	
	Northwest of OPCAs	0.018**		11:00	
	West of OPCAs	0.050*		11:30	
07/24/06	North of OPCAs	0.009**	0.009*	11:15	Variable
0.72.700	Pittsfield Generating Co.	0.010*	0.000	10:30	Validatio
	Southeast of OPCAs	0.010*		10:30	
	Northwest of OPCAs	0.007**		11:15	
	West of OPCAs	0.007*		11:00	
07/25/06	North of OPCAs	0.025**	0.038*	9:45 ⁸	SSW
07/25/00	Pittsfield Generating Co.	0.025	0.030	9:15 ⁸	3300
	Southeast of OPCAs	0.046*		9:00 ⁸	
	Northwest of OPCAs	0.024**		9:45 ⁸	
	West of OPCAs	0.024		9:45 ⁸	
07/26/06	North of OPCAs	0.025**	0.045*	11:15	Variable
07/20/00		0.023	0.045		variable
	Pittsfield Generating Co.			10:30	
	Southeast of OPCAs	0.062*		10:30	
	Northwest of OPCAs	0.025**		11:15	
07/07/00	West of OPCAs	0.064*	0.000*	10:30	00144
07/27/06	North of OPCAs	0.037**	0.082*	11:15	SSW
	Pittsfield Generating Co.	0.108*		10:45	
	Southeast of OPCAs	0.101*	1	10:45	
	Northwest of OPCAs	0.035**		11:15	
0=1001	West of OPCAs	0.113*	9.5	10:30	0.5
07/28/06	North of OPCAs	0.026**	0.041*	9:00 ⁶	SSW
	Pittsfield Generating Co.	0.053*		10:30	
	Southeast of OPCAs	0.052*		10:30	
	Northwest of OPCAs	0.022**		11:00	
	West of OPCAs	0.060*		10:30	

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
07/31/06	North of OPCAs	0.012*	0.015*	10:30	Variable
	Pittsfield Generating Co.	0.020*		10:30	
	Southeast of OPCAs	0.021*		11:30	
	Northwest of OPCAs	0.010**		11:15	
	West of OPCAs	0.013*		10:45	
08/01/06	North of OPCAs	0.050*	0.048*	10:45	WSW
	Pittsfield Generating Co.	0.065*		10:45	
	Southeast of OPCAs	0.064*		10:45	
	Northwest of OPCAs	0.025**		11:15	
	West of OPCAs	0.051*		10:45	
08/02/06	North of OPCAs	0.049*	0.049*	10:30	WNW
	Pittsfield Generating Co.	0.068*		10:30	
	Southeast of OPCAs	0.070*		10:30	
	Northwest of OPCAs	0.031**		11:15	
	West of OPCAs	0.040*		10:00	
08/03/06	North of OPCAs	0.035*	0.034*	11:15	WNW
	Pittsfield Generating Co.	0.044*		10:45	
	Southeast of OPCAs	0.045*		11:15	
	Northwest of OPCAs	0.018**		11:15	
	West of OPCAs	0.037*		10:45	
08/04/06	North of OPCAs	0.005*	0.008*	10:15	NNW
	Pittsfield Generating Co.	0.010*		10:15	
	Southeast of OPCAs	0.010*		10:00	
	Northwest of OPCAs	0.006**		10:45	
	West of OPCAs	0.005*		10:00	
08/07/06	North of OPCAs	0.030*	0.024*	11:15	SSW
	Pittsfield Generating Co.	0.044*		11:15	
	Southeast of OPCAs	0.043*		11:15	
	Northwest of OPCAs	0.022**		11:15	
	West of OPCAs	0.022*		11:00	
08/08/06	North of OPCAs	0.007*	0.010*	11:15	NNW
	Pittsfield Generating Co.	0.013*		10:45	
	Southeast of OPCAs	0.014*		11:15	
	Northwest of OPCAs	0.008**		11:15	
	West of OPCAs	0.008*		11:30	
08/09/06	North of OPCAs	0.007*	0.006*	10:30	Calm
	Pittsfield Generating Co.	0.007*		10:15	
	Southeast of OPCAs	0.008*		10:30	
	Northwest of OPCAs	0.007**		11:15	
	West of OPCAs	0.007*		10:30	
08/10/06	North of OPCAs	0.018*	0.012*	11:00	SSW
	Pittsfield Generating Co.	0.015*		10:30	
	Southeast of OPCAs	0.016*		11:15	
	Northwest of OPCAs	0.016**		11:15	
	West of OPCAs	0.014*		10:45	
08/11/06	North of OPCAs	0.004*	0.004*	10:45	NNW
	Pittsfield Generating Co.	0.004*		11:00	
	Southeast of OPCAs	0.004*		11:00	
	Northwest of OPCAs	0.006**		11:15	
	West of OPCAs	0.004*	1	10:45	

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
08/14/06	North of OPCAs	0.025**	0.011*	11:00	SSW
	Pittsfield Generating Co.	0.014*		10:30	
	Southeast of OPCAs	0.016*		10:45	
	Northwest of OPCAs	0.018**		11:15	
	West of OPCAs	0.013*		11:00	
08/15/06	North of OPCAs	0.013**	0.007*	11:15	WSW
	Pittsfield Generating Co.	0.014*		10:15	
	Southeast of OPCAs	0.013*		11:30	
	Northwest of OPCAs	0.012**		11:15	
	West of OPCAs	0.012*		10:15	
08/16/06	North of OPCAs	0.007**	0.006*	11:15	NNW
	Pittsfield Generating Co.	0.007*		10:45	
	Southeast of OPCAs	0.009*		11:00	
	Northwest of OPCAs	0.007**		11:15	
	West of OPCAs	0.008*		10:45	
08/17/06	North of OPCAs	0.005**	0.005*	11:15	Calm
	Pittsfield Generating Co.	0.006*		11:00	
	Southeast of OPCAs	0.006*		11:00	
	Northwest of OPCAs	0.007**		11:15	
	West of OPCAs	0.005*		11:00	
08/18/06	North of OPCAs	0.011**	0.005*	11:00	SSW
00/10/00	Pittsfield Generating Co.	0.012*	0.000	10:30	0011
	Southeast of OPCAs	0.012		11:00	
	Northwest of OPCAs	0.010**		11:15	
	West of OPCAs	0.010*		10:45	
08/21/06	North of OPCAs	0.012**	0.005*	11:15	WNW
00/21/00	Pittsfield Generating Co.	0.004*	0.003	10:30	******
	Southeast of OPCAs	0.005*		10:45	
	Northwest of OPCAs	0.003**		11:15	
	West of OPCAs	0.003*		10:15	
08/22/06	North of OPCAs	0.008**	0.006*	11:15	WNW
06/22/06		0.006*	0.006	10:45	VVINVV
	Pittsfield Generating Co.				
	Southeast of OPCAs	0.006*		10:45	
	Northwest of OPCAs	0.007**		11:15	
00/00/00	West of OPCAs	0.006*	0.040*	10:30	14/4.04/
08/23/06	North of OPCAs	0.009**	0.012*	11:15	WNW
	Pittsfield Generating Co.	0.010*		10:45	
	Southeast of OPCAs	0.011*		10:15	
	Northwest of OPCAs	0.009**		11:15	
	West of OPCAs	0.010*		10:15	
08/24/06	North of OPCAs	0.005**	0.005*	11:15	Calm
	Pittsfield Generating Co.	0.007*		10:45	
	Southeast of OPCAs	0.005*		11:00	
	Northwest of OPCAs	0.004**		11:15	
	West of OPCAs	0.005*		10:45	
08/25/06	North of OPCAs	0.012**	0.031*	10:45	Calm
	Pittsfield Generating Co.	0.012*		10:45	
	Southeast of OPCAs	0.011*		10:45	
	Northwest of OPCAs	0.008**		10:45	
	West of OPCAs	0.011*		10:30	

PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ¹	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
08/28/06	North of OPCAs	0.016**	0.019*	10:30	Calm
	Pittsfield Generating Co.	0.023*		10:30	
	Southeast of OPCAs	0.023*		10:15	
	Northwest of OPCAs	0.010**		10:30	
	West of OPCAs	0.021*		10:30	
08/29/06	North of OPCAs	0.011**	0.019*	10:15	Calm
	Pittsfield Generating Co.	0.015*		10:15	
	Southeast of OPCAs	0.017*		10:15	
	Northwest of OPCAs	0.022**		10:15	
	West of OPCAs	0.018*		10:00	
08/30/06	North of OPCAs	0.007**	0.011*	10:45	NNW
	Pittsfield Generating Co.	0.008*		10:45	
	Southeast of OPCAs	0.010*		10:45	
	Northwest of OPCAs	0.006**		10:45	
	West of OPCAs	0.007*		10:30	
08/31/06	North of OPCAs	0.005**	0.003*	10:15	Variable
	Pittsfield Generating Co.	0.003*		10:15	
	Southeast of OPCAs	0.004*		10:15	
	Northwest of OPCAs	0.004**		10:15	
	West of OPCAs	0.004*		10:00	
Notification Level	_	0.120	_	_	_
Action Level		0.150			

Notes:

NA - Not Available

Concentrations with no asterisk measured with a pDR-1000.

- * Measured with a DR-2000 or DR-4000
- ** Measured with an EBAM.

Background monitoring station is located east of Building 9B, between Building 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

- ¹ The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.
- $^{^{2}}$ Sampling data invalid interference from cooling tower.
- ³ Reading reflects average concentration manually recorded from the monitor at the end of the day.
- ⁴ Estimated logging period.
- ⁵ Sampling period was shortened due to instrument malfunction.
- ⁶ Sampling period was shortened due to a power failure.
- ⁷ The exceedances (bold concentrations) and overall high site values on this day are likely related to regional ambient pollutant and atmospheric conditions as reported by EPA and measured at several other sites in Pittsfield and other parts of New England. The relative difference between the background site concentration and the OPCAs site concentrations indicate that the OPCAs were not the significant contributor to these high values.
- $^{\rm 8}$ Sampling period was shortened due to mid-morning notification of monitors needed.
- ⁹ Represents data from a DR-4000 and an EBAM.
- ¹⁰ Sampling period was shortened due to relocation of DR and EBAM monitors.

TABLE 5-4 BUILDING 71 CONSOLIDATION AREA LEACHATE TRANSFER SUMMARY PLANT AREA - HILL 78 & BUILDING 71 CONSOLIDATION AREAS

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Month / Year	Total Volume of Leachate Transferred (Gallons)
August 2005	55,000
September 2005	55,000
October 2005	378,000
November 2005	162,500
December 2005	168,000
January 2006	185,000
February 2006	125,000
March 2006	70,000
April 2006	104,000
May 2006	137,000
June 2006	139,000
July 2006	111,000
August 2006	121,000

Leachate is transferred from the Building 71 On-Plant Consolidation Area to Building 64G for treatment.

ITEM 6 PLANT AREA HILL 78 AREA - REMAINDER (GECD160) AUGUST 2006

a. Activities Undertaken/Completed

Completed supplemental pre-design soil investigations, as identified in Table 6-1.*

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue to coordinate with the City of Pittsfield for the clearing of the sanitary sewer line beneath the Hill 78 Area.
- Prepare and submit plan to address the blockage within the storm sewer line located beneath the Hill 78 Area; and following EPA approval, mobilize Contractor to site to address blockage.
- Conduct additional video inspection of the storm and sanitary sewer lines within the Hill 78 Area after the lines have been cleared.
- Submit Supplemental Data Letter Report on supplemental pre-design soil investigations (due to EPA by September 19, 2006) (see Item 6.f below).*

e. General Progress/Unresolved Issues/Potential Schedule Impacts

During cleaning of the 48-inch-diameter storm sewer line beneath Hill 78, a blockage in the pipe was encountered. After additional investigation activities, the blockage was determined to be approximately 42 feet long, located approximately 162 feet from the southern outlet of the pipe, and appeared to consist of construction and demolition debris. As noted above, GE will submit a plan to address this blockage.

f. Proposed/Approved Work Plan Modifications

On August 28, 2006, EPA approved a revised submittal date of September 19, 2006 for the Supplemental Data Letter Report on supplemental pre-design soil investigations.

HILL 78 AREA-REMAINDER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date Received
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
Supplemental Pre-Design Investigation	RAA9-DUP-2 (RAA9-J21)	8/17/06	4-6	Soil	SGS	VOC	
Supplemental Pre-Design Investigation	RAA9-I14	8/17/06	6-8	Soil	SGS	VOC, SVOC, Inorganics, PCDD/PCDF	
Supplemental Pre-Design Investigation	RAA9-I22	8/17/06	0-1	Soil	SGS	VOC	
Supplemental Pre-Design Investigation	RAA9-J21	8/17/06	4-6	Soil	SGS	VOC	
Supplemental Pre-Design Investigation	RAA9-J22	8/17/06	6-8	Soil	SGS	VOC	

Note:

1. Field duplicate sample locations are presented in parenthesis.

TABLE 6-2 PCB DATA RECEIVED DURING AUGUST 2006

SUPPLEMENTAL PRE-DESIGN INVESTIGATION HILL 78 AREA REMAINDER

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

Sample ID	Depth (feet)	Date Collected	Aroclor-1016, -1221, -1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
RAA9-K4	6-15	6/23/2006		0.058		0.058
RAA9-NO5.5	1-6	6/23/2006		29	14	43

Notes:

- These results have been revised by the laboratory and supersede those results reported in Table 6-6 of the July 2006 CD Monthly Report.
- 2. -- Sample results not revised by laboratory.

ITEM 7 PLANT AREA UNKAMET BROOK AREA (GECD170) AUGUST 2006

a. Activities Undertaken/Completed

- Continued activities related to the detailed surveys (including metes and bounds and topographic surveys) of the Unkamet Brook Area (being performed by Hill Engineers, Architects & Planners, Inc.).*
- Conducted drum sampling of liquid and soil from the Building 51 catch basin, as identified in Table 7-1.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue performing detailed surveys of the Unkamet Brook Area.*
- Submit to EPA surveyed line for top-of-bank of Unkamet Brook south of Merrill Road.*
- Submit plan for collecting information related to channel flow in Unkamet Brook.*

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

None

f. Proposed/Approved Work Plan Modifications

In a letter dated August 15, 2005, GE proposed to remove Parcel L12-1-2 from the Unkamet Brook Area RAA. That proposal is pending approval from EPA.*

UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Sample							
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	GE or BBL	
Building 51 Catch Basin Liquid Drum Sampling	BLDG51-BASIN-LIQUID	8/16/06	Liquid	SGS	PCB, VOC, SVOC, Total Metals, Inorganics		
Building 51 Catch Basin Soil Drum Sampling	BLDG51-BASIN-SLUDGE	8/16/06	Soil	SGS	PCB, TCLP		

ITEM 8 FORMER OXBOW AREAS A & C (GECD410) AUGUST 2006

a. Activities Undertaken/Completed

- Initiated soil remediation actions.*
- Conducted Toxicity Characteristic Leaching Procedure (TCLP), PCB, grain size, pH, and total organic carbon (TOC) sampling of soil in loam pile on Parcel I8-23-6, as identified in Table 8-1.
- Conducted TCLP sampling of other soil within Parcels I8-23-5, I8-23-6, and I8-23-9, as identified in Table 8-1.
- Removed loam pile from Parcel I8-23-6.
- Conducted air monitoring for particulates and PCBs in connection with remediation actions, as identified in Table 8-1.*
- Based on discussions with EPA and the City of Pittsfield, GE agreed to remove certain additional soils from the drainage swale at the southern end of Oxbow A adjacent to previously approved excavations.
- Continued efforts to obtain access to Parcel I8-23-5 (owned by Exxon Mobil Oil Corporation) to conduct remediation activities.*

b. Sampling/Test Results Received

See attached tables, as well as attached test reports from H.C. Nutting Company.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue soil remediation actions.*
- Submit Addendum to Supplemental Information Package showing modified vegetation restoration plans as agreed with property owners.*

ITEM 8 (cont'd) FORMER OXBOW AREAS A & C (GECD410) AUGUST 2006

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

Awaiting access permission for remediation at Parcel I8-23-5.*

f. Proposed/Approved Work Plan Modifications

None

FORMER OXBOW AREAS A AND C GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date Received
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
Loam Pile Sampling	LP1-Q1-C1	7/31/06	NA	Soil	SGS	TCLP	8/4/06
Loam Pile Sampling	LP1-Q2-C1	7/31/06	NA	Soil	SGS	TCLP	8/4/06
Loam Pile Sampling	LP1-Q3-C1	7/28/06	NA	Soil	SGS	TCLP	8/1/06
Loam Pile Sampling	LP1-Q4-C1	7/28/06	NA	Soil	SGS	TCLP	8/1/06
Loam Pile Sampling	LP2-C1	8/1/06	NA	Soil	SGS	TCLP	8/8/06
Loam Pile Sampling	LP2-C2	8/1/06	NA	Soil	SGS	PCB	8/8/06
Loam Pile Sampling	LP3-C1	8/1/06	NA	Soil	SGS	TCLP	8/8/06
Loam Pile Sampling	LP3-C2	8/1/06	NA	Soil	SGS	PCB	8/8/06
Loam Pile Soil Sampling	I8-23-6-TOPSOILPILE-1	8/8/06	NA	Soil	SGS	Total Organic Matter, PH, Grainsize	8/30/06
Loam Pile Soil Sampling	I8-23-6-TOPSOILPILE-2	8/8/06	NA	Soil	SGS	Total Organic Matter, PH, Grainsize	8/30/06
Loam Pile Soil Sampling	18-23-6-TOPSOILPILE-3	8/8/06	NA	Soil	SGS	Total Organic Matter, PH, Grainsize	8/30/06
Loam Pile Soil Sampling	18-23-6-TOPSOILPILE-4	8/8/06	NA	Soil	SGS	Total Organic Matter, PH, Grainsize	8/30/06
Loam Pile Soil Sampling	18-23-6-TOPSOILPILE-5	8/8/06	NA	Soil	SGS	Total Organic Matter, PH, Grainsize	8/30/06
Loam Pile Soil Sampling	I8-23-6-TOPSOILPILE-6	8/8/06	NA	Soil	SGS	Total Organic Matter, PH, Grainsize	8/30/06
Loam Pile Soil Sampling	I8-23-6-TOPSOILPILE-7	8/8/06	NA	Soil	SGS	Total Organic Matter, PH, Grainsize	8/30/06
Loam Pile Soil Sampling	I8-23-6-TOPSOILPILE-8	8/8/06	NA	Soil	SGS	Total Organic Matter, PH, Grainsize	8/30/06
Loam Pile Soil Sampling	I8-23-6-TOPSOILPILE-9	8/8/06	NA	Soil	SGS	Total Organic Matter, PH, Grainsize	8/30/06
Loam Pile Soil Sampling	I8-23-6-TOPSOILPILE-10	8/8/06	NA	Soil	SGS	Total Organic Matter, PH, Grainsize	8/30/06
Loam Pile Soil Sampling	18-23-6-TOPSOILPILE-11	8/8/06	NA	Soil	SGS	Total Organic Matter, PH, Grainsize	8/30/06
Loam Pile Soil Sampling	18-23-6-TOPSOILPILE-12	8/8/06	NA	Soil	SGS	Total Organic Matter, PH, Grainsize	8/30/06
Soil Sampling	TCLP-18-23-5	8/10/06	0-1	Soil	SGS	TCLP - VOC, SVOC, Metals, Mercury, Pest, Herb	8/16/06
Soil Sampling	TCLP-I8-23-6	8/10/06	0-1	Soil	SGS	TCLP - Metals, Mercury, Pest, Herb	8/16/06
Soil Sampling	TCLP-I8-23-6-SWALE	8/16/06	0-1	Soil	SGS	TCLP - VOC, SVOC, Metals, Hg, Pest, Herb	8/31/06
Soil Sampling	TCLP-I8-23-9	8/10/06	0-1	Soil	SGS	TCLP - VOC, SVOC, Metals, Mercury, Pest, Herb	8/16/06
Ambient Air Particulate Matter Sampling	OX-1	8/1/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	OX-2A	8/1/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	OX-2B	8/1/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Background Location	8/1/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	OX-1	8/2/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	OX-2A	8/2/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	OX-2B	8/2/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Background Location	8/2/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	OX-1	8/3/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	OX-2C	8/3/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	OX-3	8/3/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Background Location	8/3/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	OX-1	8/4/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	OX-2C	8/4/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	OX-3	8/4/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	Background Location	8/4/06	NA	Air	Berkshire Environmental	Particulate Matter	8/7/06
Ambient Air Particulate Matter Sampling	OX-1 OX-2C	8/7/06 8/7/06	NA	Air Air	Berkshire Environmental Berkshire Environmental	Particulate Matter Particulate Matter	8/14/06 8/14/06
Ambient Air Particulate Matter Sampling Ambient Air Particulate Matter Sampling	OX-2C OX-3	8/7/06 8/7/06	NA NA	Air Air	Berkshire Environmental	Particulate Matter Particulate Matter	8/14/06 8/14/06
Ambient Air Particulate Matter Sampling	UA-3	8/1/06	INA	All	Derkstille Environmental	Particulate Matter	8/14/00

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\8-06 CD Monthly\Tracking Logs\Tracking.xls TABLE 8-1

FORMER OXBOW AREAS A AND C GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date Received
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
Ambient Air Particulate Matter Sampling	Background Location	8/7/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-1	8/8/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-2C	8/8/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-3	8/8/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/8/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-1	8/9/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-2B	8/9/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-3	8/9/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/9/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-1	8/10/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-2B	8/10/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-3	8/10/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/10/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-1	8/11/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-2B	8/11/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-3	8/11/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	Background Location	8/11/06	NA	Air	Berkshire Environmental	Particulate Matter	8/14/06
Ambient Air Particulate Matter Sampling	OX-1	8/14/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-2B	8/14/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-3	8/14/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/14/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-1	8/15/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-2B	8/15/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-3	8/15/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/15/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-1	8/16/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-2B	8/16/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-3	8/16/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/16/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-1	8/17/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-2B	8/17/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-3	8/17/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/17/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-1	8/18/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-2B	8/18/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-3	8/18/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	Background Location	8/18/06	NA	Air	Berkshire Environmental	Particulate Matter	8/21/06
Ambient Air Particulate Matter Sampling	OX-1	8/21/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-2B	8/21/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-3	8/21/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Background Location	8/21/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-1	8/22/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-2B	8/22/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-3	8/22/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06

FORMER OXBOW AREAS A AND C GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date Received
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
Ambient Air Particulate Matter Sampling	Background Location	8/22/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-1	8/23/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-2B	8/23/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-3	8/23/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Background Location	8/23/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-1	8/24/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-2B	8/24/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-3	8/24/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Background Location	8/24/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-1	8/25/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-2B	8/25/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-3	8/25/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Background Location	8/25/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	OX-1	8/28/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	OX-2B	8/28/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	OX-2C	8/28/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	OX-3	8/28/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Background Location	8/28/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	OX-1	8/29/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	OX-2C	8/29/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	OX-3	8/29/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Background Location	8/29/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	OX-1	8/30/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	OX-2C	8/30/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	OX-3	8/30/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Background Location	8/30/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	OX-1	8/31/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	OX-2C	8/31/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	OX-3	8/31/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Background Location	8/31/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
PCB Ambient Air Sampling	Field Blank	7/27 - 7/28/06	NA	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	OX-2A	7/27 - 7/28/06	NA	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	OX-1	7/27 - 7/28/06	NA	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	OX-1 (colocated)	7/27 - 7/28/06	NA	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	OX-3	7/27 - 7/28/06	NA	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	Background - East of Building 9B	7/27 - 7/28/06	NA	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	Field Blank	7/28 - 7/29/06	NA	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	OX-2A	7/28 - 7/29/06	NA	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	OX-1	7/28 - 7/29/06	NA	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	OX-1 (colocated)	7/28 - 7/29/06	NA	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	OX-3	7/28 - 7/29/06	NA	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	Background - East of Building 9B	7/28 - 7/29/06	NA	Air	Berkshire Environmental	PCB	8/9/06
PCB Ambient Air Sampling	Field Blank	8/03 - 8/04/06	NA	Air	Berkshire Environmental	PCB	8/10/06
PCB Ambient Air Sampling	OX-2C	8/03 - 8/04/06	NA	Air	Berkshire Environmental	PCB	8/10/06

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\8-06 CD Monthly\Tracking Logs\Tracking.xls TABLE 8-1

FORMER OXBOW AREAS A AND C GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date Received
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
PCB Ambient Air Sampling	OX-1	8/03 - 8/04/06	NA	Air	Berkshire Environmental	PCB	8/10/06
PCB Ambient Air Sampling	OX-1 (colocated)	8/03 - 8/04/06	NA	Air	Berkshire Environmental	PCB	8/10/06
PCB Ambient Air Sampling	OX-3	8/03 - 8/04/06	NA	Air	Berkshire Environmental	PCB	8/10/06
PCB Ambient Air Sampling	Background - East of Building 9B	8/03 - 8/04/06	NA	Air	Berkshire Environmental	PCB	8/10/06

TABLE 8-2 PCB DATA RECEIVED DURING AUGUST 2006

LOAM PILE SAMPLING FORMER OXBOW AREAS A & C GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID	Date Collected	Aroclor-1016, -1221, -1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
LP2-C2	8/1/2006	ND(0.032)	ND(0.032)	0.25	0.25
LP3-C2	8/1/2006	ND(0.034)	ND(0.034)	0.050	0.050

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 8-3 TCLP DATA RECEIVED DURING AUGUST 2006

LOAM PILE SAMPLING FORMER OXBOW AREAS A & C

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	TCLP Regulatory Limits	LP1-Q1-C1 7/31/2006	LP1-Q2-C1 7/31/2006	LP1-Q3-C1 7/28/2006	LP1-Q4-C1 7/28/2006	LP2-C1 8/1/2006	LP3-C1 8/1/2006
Volatile Organ		Limits	7/31/2006	7/31/2006	1128/2006	1128/2006	8/1/2006	8/1/2006
1,1-Dichloroeth		0.7	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1,2-Dichloroeth		0.5	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Butanone	iane	200	ND(0.010) ND(0.25)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Benzene		0.5	ND(0.23)	ND(0.23)	0.0051 J	ND(0.23)	0.0020 J	ND(0.010)
Carbon Tetrach	nloride	0.5	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Chlorobenzene		100	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Chloroform	,	6	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Tetrachloroethe	ene ene	0.7	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Trichloroethene		0.5	ND(0.010)	ND(0.010)	0.0038 J	ND(0.010)	0.0043 J	ND(0.010)
Vinyl Chloride	,	0.2	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Semivolatile C	rganics	0.2	112(0.010)	112(0.010)	112(0.010)	112(0.010)	112 (0.010)	112 (0.010)
1,4-Dichlorober		7.5	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4,5-Trichloron		400	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4,6-Trichloron		2	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4-Dinitrotolue		0.13	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Cresol		200	ND(0.030)	ND(0.030)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Hexachloroben	zene	0.13	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Hexachlorobuta		0.5	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Hexachloroetha		3	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Nitrobenzene	ario	2	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Pentachlorophe	enol	100	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Pyridine	SHOI	5	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Organochlorin	ne Pesticides		(0.0.0)	(0.0.0)	112 (0.0.0)	112 (01010)	112 (0.0.0)	(0.0.0)
Endrin	io i dollolade	0.02	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)
Gamma-BHC (l indane)	0.4	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)
Heptachlor	Lindano)	0.008	ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.0040)
Heptachlor Epo	ovide	0.008	ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.0040)
Methoxychlor	Aldo	10	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Technical Chlo	rdane	0.03	ND(0.0030)	ND(0.0030)	ND(0.0030)	ND(0.0030)	ND(0.0030)	ND(0.0030)
Toxaphene	rdano	0.5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Herbicides		0.0	140(0.000)	140(0.000)	140(0.000)	140(0.000)	140(0.000)	145(0.000)
2,4,5-TP		1	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
2,4-D		10	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.10)	ND(0.40)
Inorganics			(00)	112 (01.10)	112(0110)	(00)	112 (01.10)	112 (01.10)
Arsenic		5	ND(0.200)	ND(0.200)	ND(0.200)	ND(0.200)	ND(0.200)	ND(0.200)
Barium		100	0.481 B	0.757 B	0.697 B	0.360 B	0.222 B	0.509 B
Cadmium		1	0.0110 B	0.00950 B	0.00730 B	0.00830 B	0.00260 B	ND(0.100)
Chromium		5	ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100)	0.00340 B	0.00430 B
Lead		5	0.0946 B	0.107	0.0518 B	0.0543 B	ND(0.100)	ND(0.100)
Mercury		0.2	ND(0.000570)	ND(0.000570)	ND(0.000570)	ND(0.000570)	0.000416 B	0.000269 B
Selenium		1	ND(0.200)	ND(0.200)	ND(0.200)	ND(0.200)	ND(0.200)	ND(0.200)
Silver		5	ND(0.100)	ND(0.100)	0.00420 B	ND(0.100)	ND(0.100)	ND(0.100)
Silvei		ა	(ט. וטט)	(ט. וטטן)	U.UU42U D	(ט. וטט)	(ט. וטט)	(ט. וטט)

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of TCLP constituents.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

Organics (volatiles, semivolatiles, pesticides, herbicides)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TABLE 8-4 TCLP DATA RECEIVED DURING AUGUST 2006

SOIL SAMPLING FORMER OXBOW AREAS A & C

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Sample ID:	TCLP	TCLP-I8-23-5	TCLP-I8-23-6	TCLP-I8-23-6-Swale	TCLP-I8-23-9
Sample Depth (Feet):	Regulatory	0-1	0-1	0-1	0-1
Parameter Date Collected:	Limits	8/10/2006	8/10/2006	8/16/2006	8/10/2006
Volatile Organics					
1,1-Dichloroethene	0.7	ND(0.0010)	NA	ND(0.010)	ND(0.0010)
1,2-Dichloroethane	0.5	ND(0.0010)	NA	ND(0.010)	ND(0.0010)
2-Butanone	200	ND(0.025)	NA	0.014 J	ND(0.025)
Benzene	0.5	ND(0.0010)	NA	ND(0.010)	ND(0.0010)
Carbon Tetrachloride	0.5	ND(0.0010)	NA	ND(0.010)	ND(0.0010)
Chlorobenzene	100	ND(0.0010)	NA	ND(0.010)	ND(0.0010)
Chloroform	6	ND(0.0010)	NA	ND(0.010)	ND(0.0010)
Tetrachloroethene	0.7	ND(0.0010)	NA	ND(0.010)	ND(0.0010)
Trichloroethene	0.5	ND(0.0010)	NA	ND(0.010)	ND(0.0010)
Vinyl Chloride	0.2	ND(0.0010)	NA	ND(0.010)	ND(0.0010)
Semivolatile Organics					
1,4-Dichlorobenzene	7.5	ND(0.010)	NA	ND(0.010)	ND(0.010)
2,4,5-Trichlorophenol	400	ND(0.010)	NA	ND(0.010)	ND(0.010)
2,4,6-Trichlorophenol	2	ND(0.010)	NA	ND(0.010)	ND(0.010)
2,4-Dinitrotoluene	0.13	ND(0.010)	NA	ND(0.010)	ND(0.010)
Cresol	200	ND(0.030)	NA	0.013	ND(0.010)
Hexachlorobenzene	0.13	ND(0.010)	NA	ND(0.010)	ND(0.010)
Hexachlorobutadiene	0.5	ND(0.010)	NA	ND(0.010)	ND(0.010)
Hexachloroethane	3	ND(0.010)	NA	ND(0.010)	ND(0.010)
Nitrobenzene	2	ND(0.010)	NA	ND(0.010)	ND(0.010)
Pentachlorophenol	100	ND(0.050)	NA	ND(0.050)	ND(0.050)
Pyridine	5	ND(0.010)	NA	ND(0.010)	ND(0.010)
Organochlorine Pesticides		,	l .	,	,
Endrin	0.02	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)
Gamma-BHC (Lindane)	0.4	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)
Heptachlor	0.008	ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.0040)
Heptachlor Epoxide	0.008	ND(0.0040)	0.0010 J	ND(0.0040)	ND(0.0040)
Methoxychlor	10	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Technical Chlordane	0.03	ND(0.0030)	ND(0.0030)	ND(0.0030)	ND(0.0030)
Toxaphene	0.5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Herbicides		(0.000)	(5.555)	(0.000)	(0.000)
2,4,5-TP	1	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
2.4-D	10	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)
Inorganics	10	110(0.10)	145 (0.10)	142(0.10)	142(0.10)
Arsenic	5	ND(0.200)	ND(0.200)	ND(0.200)	ND(0.200)
Barium	100	0.596 B	0.731 B	0.200 B	0.678 B
Cadmium	100	0.596 B 0.00180 B	ND(0.100)	0.200 B 0.00460 B	0.00180 B
Chromium	5	ND(0.100)	0.00810 B	ND(0.100)	0.00160 B
Lead	5	0.0760 B	0.00610 B	ND(0.100) ND(0.100)	0.0202 B 0.180
Mercury	0.2	0.000185 B	0.000205 B	0.0000670 B	0.000165 B
Selenium	1	0.000185 B 0.115 B	0.000205 B 0.148 B	ND(0.200)	0.000165 B 0.137 B
Silver	1 5				
olivei	5	0.0102 B	0.00990 B	ND(0.100)	0.0123 B

Notes:

- Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of TCLP
 constituents.
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

Organics (volatiles, semivolatiles, pesticides, herbicides)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TABLE 8-5 DATA RECEIVED DURING AUGUST 2006

LOAM PILE SOIL CHARACTERIZATION DATA FORMER OXBOW AREAS A & C GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID	Date Collected	Total Organic Matter (%)	pH (standard pH units)
I8-23-6-TOPSOILPILE-1	08/08/06	5.2	6.9
I8-23-6-TOPSOILPILE-2	08/08/06	4.0	6.7
I8-23-6-TOPSOILPILE-3	08/09/06	4.7	6.9
I8-23-6-TOPSOILPILE-4	08/09/06	4.9	6.9
I8-23-6-TOPSOILPILE-5	08/10/06	6.0	6.7
I8-23-6-TOPSOILPILE-6	08/10/06	5.7	6.4
I8-23-6-TOPSOILPILE-7	08/11/06	8.4	6.7
I8-23-6-TOPSOILPILE-8	08/11/06	6.6	6.5
I8-23-6-TOPSOILPILE-9	08/11/06	6.8	6.8
18-23-6-TOPSOILPILE-10	08/11/06	6.5	6.0
18-23-6-TOPSOILPILE-11	08/15/06	7.7	6.2
18-23-6-TOPSOILPILE-12	08/15/06	6.3	5.8

Notes:

^{1.} Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of Total Organic Matter and pH.

TABLE 8-6 AMBIENT AIR PCB DATA RECEIVED DURING AUGUST 2006

PCB AMBIENT AIR CONCENTRATIONS FORMER OXBOW AREAS A & C GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Event Period	Date Analytical Results Received by BEC, Inc.	Field Blank (µg/PUF)	OX-2A (µg/m3)	ΟΧ-1 (μg/m3)	ΟΧ-1 (colocated) (μg/m3)	ΟΧ-3 (μg/m3)	Background - East of Building 9B (µg/m3)
7/27 - 7/28/06	8/7/06	ND (<0.10)	0.0038	0.0011	0.0016	0.0020	0.0024
7/28 - 7/29/06	8/7/06	ND (<0.10)	0.0043	0.0005	NA ¹	0.0013	0.0021
8/03 - 8/04/06	8/10/06	ND (<0.10)	0.0013	0.0014	0.0015	0.0036	0.0026
Notifica	tion Level	0.05	0.05	0.05	0.05	0.05	0.05

Notes:

ND - Non-Detect

NOTE: Preliminary data review was conducted based on the following data quality indicators associated with the tabulated data set above: sampling collection time, sampling calibration check, temperature receipt, associated blanks, laboratory control samples recoveries, and surrogate recoveries.

¹ OX-1 colocated sample from 07/28-07/29/06 aborted due to equipment failure.

Qualification Notes:

1. All samples collected from 07/27/06 to 07/29/06 were greater than 4°C (PUF temperature was 9.8°C) upon laboratory receipt. The temperature of the temperature blank was recorded as less than 4°C. Following an investigation of the laboratory concerning the temperature receipt of PUF samples exhibiting a temperature greater than 6°C, the laboratory has discovered that the laboratory receipt technician was taking the temperature of the PUF while still wrapped in foil. The foil wrapped around the PUF caused an erroneous temperature reading from the IR thermometer. This was confirmed by 1) the temperature blank exhibiting a temperature less than 4°C and 2) the laboratory receipt technician peeled back the foil of the of PUF samples receipt on 8/1/06 and a temperature reading of less than 5°C was observed; therefore, none of the data were qualified due to the documented PUF temperature deviation.

PARTICULATE AMBIENT AIR CONCENTRATIONS FORMER OXBOW AREAS A & C GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
08/01/06	OX-1	0.051*	0.048*	10:15	WSW
	OX-2A	0.056*		10:15	
	OX-2B	0.055*		10:15	
08/02/06	OX-1	0.044*	0.049*	11:15	WNW
	OX-2A	0.055*		11:15	
	OX-2B	0.049*		11:30	
08/03/06 ³	OX-1	0.033*	0.034*	11:15	WNW
	OX-2C	0.040*		10:45	
	OX-3	0.036*		11:00	
08/04/06	OX-1	0.009*	0.008*	11:45	NNW
	OX-2C	0.011*		12:00	
	OX-3	0.010*		11:45	
08/07/06	OX-1	0.035*	0.024*	11:00	SSW
	OX-2C	0.037*		11:00	
	OX-3	0.028*		10:45	
08/08/06	OX-1	0.013*	0.010*	11:00	NNW
	OX-2C	0.018*		11:00	
	OX-3	0.011*		11:00	
08/09/06 ³	OX-1	0.008*	0.006*	10:45	Calm
	OX-2B	0.010*		10:45	
	OX-3	0.007*		10:45	
08/10/06	OX-1	0.012*	0.012*	11:30	SSW
	OX-2B	0.018*		11:30	
	OX-3	0.016*		11:30	
08/11/06	OX-1	0.003*	0.004*	10:45	NNW
	OX-2B	0.017*		10:30	
	OX-3	0.006*		10:30	
08/14/06	OX-1	0.016*	0.011*	9:00 ⁴	SSW
	OX-2B	0.018*		11:45	
	OX-3	0.016*		12:00	
08/15/06	OX-1	0.015*	0.007*	11:30	WSW
	OX-2B	0.028*		11:30	
	OX-3	0.015*		11:30	
08/16/06	OX-1	0.009*	0.006*	11:00	NNW
	OX-2B	0.008*		4:10 ⁴	
	OX-3	0.009*		11:00	
08/17/06	OX-1	0.006*	0.005*	11:00	Calm
	OX-2B	0.011*		10:54	
	OX-3	0.007*		11:00	
08/18/06	OX-1	0.014*	0.005*	10:45	SSW
	OX-2B	0.012*		11:00	
	OX-3	0.012*		11:00	

PARTICULATE AMBIENT AIR CONCENTRATIONS FORMER OXBOW AREAS A & C GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

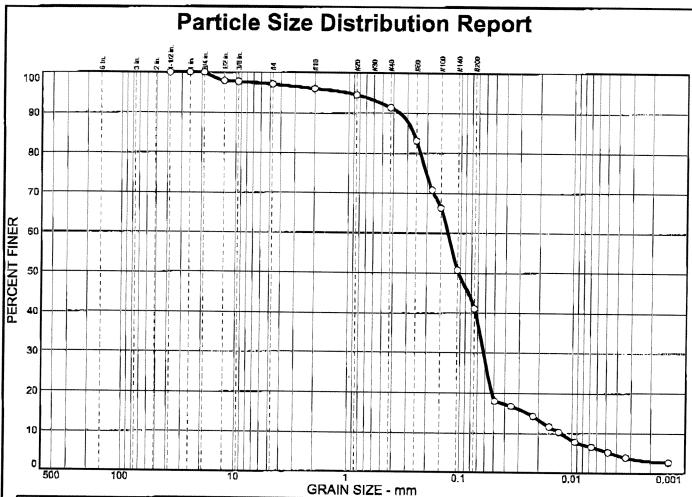
Sampling Date ²	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
08/21/06	OX-1	0.004*	0.005*	10:15	WNW
	OX-2B	0.009*		10:30	
	OX-3	0.004*		10:15	
08/22/06	OX-1	0.007*	0.006*	11:15	WNW
	OX-2B	0.011*		11:15	
	OX-3	0.007*		11:15	
08/23/06	OX-1	0.015*	0.012*	10:15	WNW
	OX-2B	0.014*		10:30	
	OX-3	0.007*		10:30	
08/24/06	OX-1	0.006*	0.005*	10:15	Calm
	OX-2B	0.007*		10:15	
	OX-3	0.007*		10:15	
08/25/06	OX-1	0.015*	0.031*	10:30	Calm
	OX-2B	0.014*		10:45	
	OX-3	0.011*		10:45	
08/28/06 ³	OX-1	0.021*	0.019*	10:30	Calm
	OX-2B	0.018*		4:15 ⁵	
	OX-2C	0.029*		6:15 ⁵	
	OX-3	0.037*		10:30	
08/29/06	OX-1	0.024*	0.019*	11:30	Calm
	OX-2C	0.015*		11:30	
	OX-3	0.009*		6:15 ⁴	
08/30/06	OX-1	0.010*	0.011*	10:30	NNW
	OX-2C	0.008*		10:30	
	OX-3	0.008*		10:00	
08/31/06	OX-1	0.008*	0.003*	9:45 ⁴	Variable
	OX-2C	0.004*		11:00	
	OX-3	0.004*		11:00	
Notification Level		0.120	-		

Notes:

Background monitoring station is located east of Building 9B, between 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

^{*} Measured with DR-2000 or DR-4000.


¹ Monitoring was performed only on days when site activities occurred.

 $^{^{2}}$ The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.

³ Monitoring locations changed due to progression of site activities.

⁴ Sampling period was shortened due to instrument malfunction.

 $^{^{\}rm 5}$ Sampling period was shortened due to relocation of monitors.

% COBBLES	% GRAVEL			% SAND		% FINES	
	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	2.9	1.1	4.6	50.3	35.7	5.4

I	SIEVE	PERCENT	SPEC.*	PASS?
L	SIZE	FINER	PERCENT	(X=NO)
	1.5 in. 1 in. 0.75 in. 0.5 in. 0.375 in. #10 #20 #40 #60 #100 #100 #200	100.0 100.0 100.0 97.9 97.7 97.1 96.0 94.5 91.4 83.2 70.8 66.3 50.7 41.1		

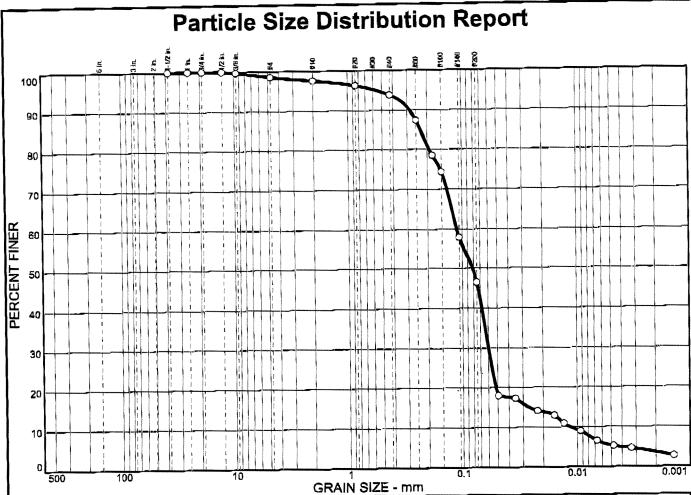
	Soil Description	
PL=	Atterberg Limits	Pl=
D ₈₅ = 0.265 D ₃₀ = 0.0618 C _u = 10.25	Coefficients D60= 0.130 D15= 0.0252 C _C = 2.33	D ₅₀ = 0.104 D ₁₀ = 0.0126
USCS=	<u>Classification</u> AASHT	'O=
F.M.=0.39	Remarks	

Sample No.: 1 Location:

Source of Sample: 1

Date: 8-30-06 Elev./Depth: NA

H. C. NUTTING COMPANY


DECOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS

BINGS 1921

Client: SGS

Project: Soil Testing

Project No: 91882,008

			•	31 W (III)	,,,,		
	% GR	AVEL		% SANI)	% FINES	
 % COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE		CLAY
0.0	0.0	1.4	1.0	3.8	47.3	41.2	5.3

SIEVE	PERCEN	T SPEC.	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5 in 1 in 0.75 in 0.5 in 0.375 in #10 #46 #89 #100 #120	100.0 100.0 100.0 100.0 99.7 98.6 97.6 97.6 96.3 93.8 87.4 78.5 74.4 57.9		

	Soil Description	
	Atterberg Limits	
PL=	LL=	P(=
D ₈₅ = 0.229 D ₃₀ = 0.0597 C _u = 9.66	Coefficients D60= 0.111 D15= 0.0265 Cc= 2.78	D ₅₀ = 0.0811 D ₁₀ = 0.0115
USCS=	Classification AASHT	O=
F.M.=0.27	<u>Remarks</u>	

Sample No.: 1 Location: Source of Sample: 2

Date: 8-30-06

Elev./Depth: NA

H. C. NUTTING COMPANY

BACTER COMPANY

SECTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS
BACE 1921

Client: SGS

Project: Soil Testing

Project No: 91882.008

HOHOLITHUOU

	CITAIN SIZE - (IIII)							
	% COBBLES	% GR	GRAVEL % SAND		O .	% FINES		
	// CODUCES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
-	0.0	1.8	0.6	0.8	3.2	42.5	44.6	6.5

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5 in. 1 in. 0.75 in. 0.5 in. 0.375 in. #40 #20 #40 #60 #80 #100 #140 #200	100.0 100.0 98.2 98.2 97.6 96.8 95.7 93.6 88.5 80.6 76.8 61.4 51.1		

	Soil Description	2
PL=	Atterberg Limits	
PL=	LL=	PI=
D ₈₅ = 0.217 D ₃₀ = 0.0592 C _u = 7.65	Coefficients D60= 0.101 D15= 0.0292 Cc= 2.64	D ₅₀ = 0.0737 D ₁₀ = 0.0132
USCS=	Classification AASHT	ro=
F.M.=0.29	Remarks	

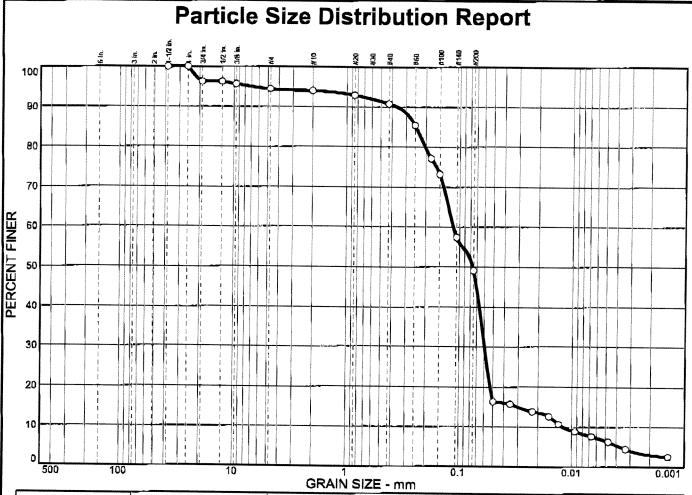
(no specification provided)

Sample No.: 1 Location:

Source of Sample: 3

Date: 8-30-06 Elev./Depth: NA

H. C. NUTTING COMPANY


GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS

AMERICAL 1921

Client: SGS

Project: Soil Testing

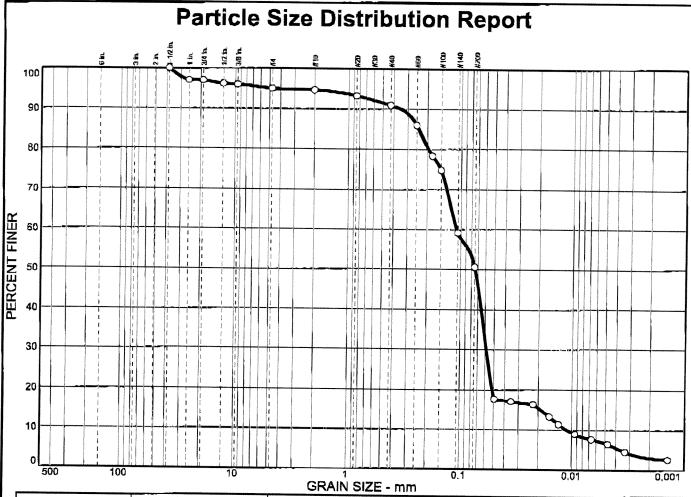
Project No: 91882.008

% COBBLES	% GRAVEL % SAND		COBBLES % GRAV		% SAND			% FINES	
/* CODDLEG	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY		
0.0	3.8	1.8	0.4	3.2	41.7	42,6	6.5		

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X≖NO)
1.5 in. 1 in. 0.75 in. 0.5 in. 420 #40 #60 #80 #100 #140 #200	100.0 100.0 96.2 95.6 94.4 94.0 92.9 90.8 85.4 77.2 73.2 57.4 49.1		

	Soil Description	
PL=	Atterberg Limits	PI=
D ₈₅ = 0.246 D ₃₀ = 0.0595 C _u = 9.45	Coefficients D60= 0.114 D15= 0.0302 C _c = 2.59	D ₅₀ = 0.0763 D ₁₀ = 0.0120
USCS=	Classification AASHT	O=
F.M.=0.41	Remarks	

Sample No.: 1 Location:


Source of Sample: 4

Date: 8-30-06 Elev./Depth: NA

Client: SGS

Project: Soil Testing

Project No: 91882.008

GRAIN SIZE - IIIII)							
% COBBLES	% GRAVEL		% SAND		D	% FINES	
7,0000110	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	3.0	2.0	0.3	3.7	40.4	44.0	6.6

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5 in. l in. 0.75 in. 0.5 in. 0.375 in. #40 #20 #40 #60 #80 #100 #140 #200	100.0 97.0 97.0 96.2 96.0 95.0 94.7 93.3 91.0 86.0 78.3 74.8 59.2 50.6		

	Soil Description	
PL=	Atterberg Limits	Pl=
D ₈₅ = 0.239 D ₃₀ = 0.0583 C _u = 9.79	Coefficients D ₆₀ = 0.109 D ₁₅ = 0.0190 C _c = 2.83	D ₅₀ = 0.0742 D ₁₀ = 0.0111
USCS=	Classification AASHTO	O =
F.M.=0.37	Remarks	

Sample No.: 1 Location:

Source of Sample: 5

Date: 8-30-06 Elev./Depth: NA


H. C. NUTTING COMPANY

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS
BINGS 1991

Client: SGS

Project: Soil Testing

Project No: 91882.008

-	OTATIN OILL - ((II))							
ſ	% COBBLES	% GR	% GRAVEL		% SAND		% FINES	
L	// VUBSE25	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
L	0.0	4.4	3.8	0.3	2.7	38.8	43.5	6.5

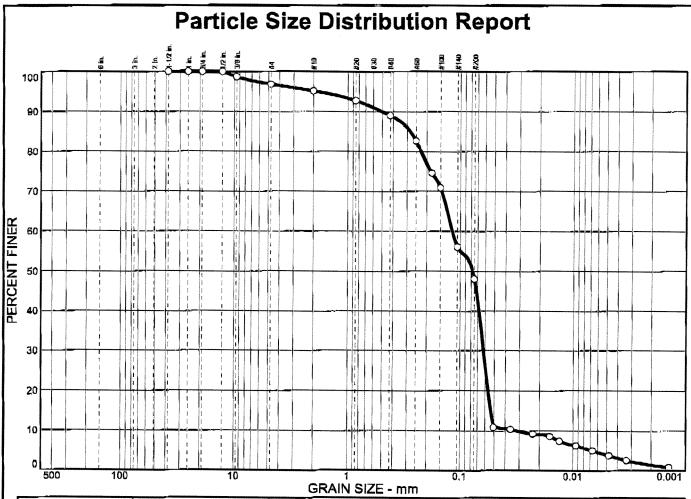
SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5 in. 1 in. 0.75 in. 0.5 in. 0.375 in. #10 #20 #40 #60 #100 #100 #140 #200	100.0 100.0 95.6 92.1 91.8 91.5 90.6 88.8 83.8 76,1 72.5 57.3 50.0		

	Soil Description	
PL≖	Atterberg Limits LL=	PI=
D ₈₅ = 0.266 D ₃₀ = 0.0547 C _u = 14.09	Coefficients D60= 0.114 D15= 0.0148 C _C = 3.25	D ₅₀ = 0.0750 D ₁₀ = 0.0081
USCS=	Classification AASHT	O=
F.M.=0.48	Remarks	

Sample No.: | Location:

Source of Sample: 6

Date: 8-30-06 Elev./Depth: NA


H. C. NUTTING COMPANY

DEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS

Client: SGS

Project: Soil Testing

Project No: 91882.008

-	% COBBLES % GRAVEL		% SAND			% FINES		
	// COSSLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
	0.0	0.0	3.2	1.7	6.1	40.9	44.1	4.0

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5 in. 1 in. 0.75 in. 0.5 in. 0.375 in. #40 #20 #40 #60 #100 #100 #140	100.0 100.0 100.0 100.0 98.7 96.8 95.1 92.7 89.0 82.7 74.6 70.9 56.1 48.1		

Soil Description Soil Description		4.1	
PL=		Soil Description	
PL=		Attechera l imite	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PL=		PI=
USCS= AASHTO= Remarks	D ₈₅ = 0.281 D ₃₀ = 0.0620 C _U = 3.74	D ₆₀ = 0.118 D ₁₅ = 0.0535	D ₅₀ = 0.0776 D ₁₀ = 0.0315
	USCS=		0=
	F.M.=0.34	<u>Remarks</u>	

Sample No.: 1 Location:

Source of Sample: 7

Date: 8-30-06 Elev./Depth: NA

H. C. NUTTING COMPANY

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS

Client: SGS

Project: Soil Testing

Project No: 91882.008

HOHOLITHGOO

GRAIN SIZE - IIIII								
% COBBLES	% GRAVEL		% SAND			% FINES		
	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY	
0.0	0.0	2.8	1.3	4.6	42.5	42.0	6.8	

SIEVÉ	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5 in. 1 in. 0.75 in. 0.5 in. 0.375 in. #10 #20 #40 #60 #100 #140 #200	100.0 100.0 100.0 100.0 98.9 97.2 95.9 94.2 91.3 85.3 76.5 72.7 56.5 48.8		

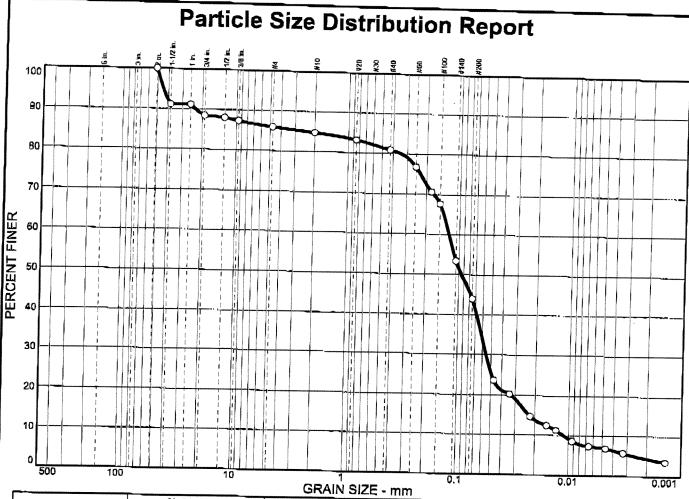
	Soil Description	
PL=	Atterberg Limits LL=	PI=
D ₈₅ = 0.247 D ₃₀ = 0.0562 C _u = 12.89	Coefficients D60= 0.115 D15= 0.0164 C _C = 3.06	D ₅₀ = 0.0774 D ₁₀ = 0.0089
USCS=	Classification AASHT	0=
F.M.=0.31	Remarks	

(no specification provided)

Sample No.: 1 Location:

Source of Sample: 8

Date: 8-30-06 Elev./Depth: NA


H. C. NUTTING COMPANY

GEOTECHNICAL ENVIRONMENTAL AND TESTING ENGINEERS
BACT 1921

Client: SGS

Project: Soil Testing

Project No: 91882.008

% COBBLES	% GRAVEL		% SAND				D	% FINES	
0.0	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY		
0.0	11.6	2.4	1.2	3.9	37.0	36.9	7.0		

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
2.0 in. 1.5 in. 1.0 in. 0.75 in. .50 in. .375 in. #40 #40 #60 #80 #100 #140 #200	100.0 91.2 91.2 88.4 88.0 87.3 86.0 84.8 83.2 80.9 76.8 70.6 67.6 53.4 43.9		

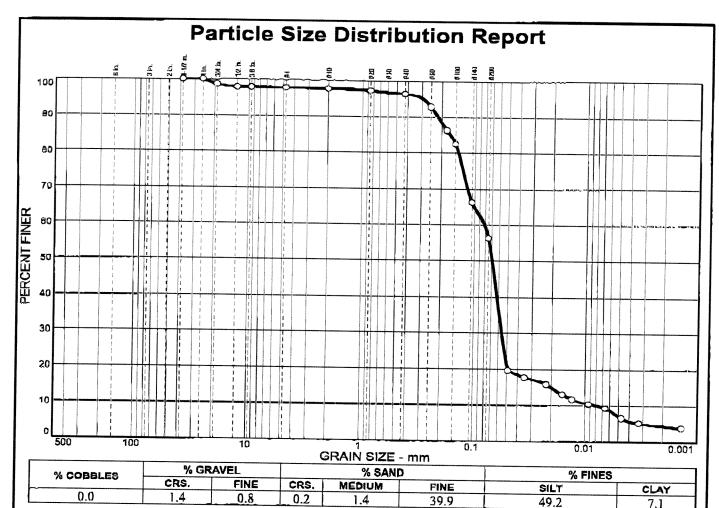
	Soil Description	
D)	Atterberg Limits	
PL=	LL=	PI=
D ₈₅ = 2.32 D ₃₀ = 0.0554 C _u = 11.16	Coefficients D60= 0.124 D15= 0.0226 Cc= 2.24	D ₅₀ = 0.0945 D ₁₀ = 0.0111
USCS=	Classification AASHT	0=
F.M.=0.80	Remarks	

(no specification provided)

Sample No.: 1 Location:

Source of Sample: 9

Date: 8-30-06 Elev./Depth: NA


H. C. NUTTING COMPANY

DECOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS
BINCE 1921

Client: SGS

Project: Soil Testing

Project No: 91882.008

			
SIEVE	PERCENT	SPEC.	PASS?
SIZE	FINER	PERCENT	(X-NO)
1.5 in, 1 in. 0.75 in. 0.5 in. 0.375 in. #40 #20 #80 #100 #140 #200	100.0 100.0 98.6 97.9 97.8 97.6 97.1 96.2 98.3 82.6 66.2 56.3		

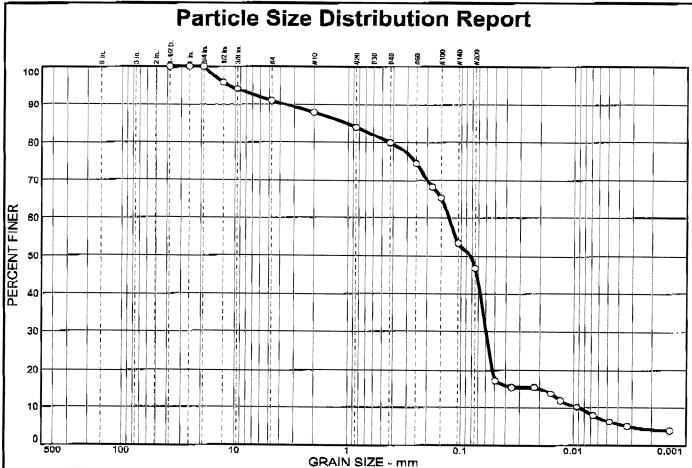
	Soil Description	
PL=	Atterberg Limits LL=	Pi=
Dg5= 0.166 D30= 0.0559 Cu= 10.58	Coefficients D60= 0.0813 D15= 0.0201 Cc= 5.02	D ₅₀ = 0.0689 D ₁₀ = 0.0077
USCS=	Classification AASHT	0=
F.M.=0.23	Remarks	

(no specification provided)

Sample No.: 1 Location:

Source of Sample: 10

Date: 8-30-06 Elev./Depth: NA


H. C. NUTTING COMPANY

SECOTECHNICAL ENVIRONMENTAL AND TESTING ENGINEERS

Client: SGS

Project: Soil Testing

Project No: 91882.008

% COBBLES	% GR	AVEL	% SAND)	% FINES	
/6 COBBLES	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	0.0	9.0	3.2	7.9	33.1	40.3	6.5

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5 in. 1 in. 0.75 in. 0.5 in. 0.375 in. #10 #20 #40 #60 #100 #140 #200	100.0 100.0 100.0 95.7 94.0 91.0 87.8 64.1 79.9 74.5 68.2 65.3 53.4 46.8		

	Soil Description	
PL=	Atterberg Limits	PI=
D ₈₅ = 1.02 D ₃₀ = 0.0595 C _U = 14.53	Coefficients D ₆₀ = 0.129 D ₁₅ = 0.0193 C _c = 3.11	D ₅₀ = 0.0825 D ₁₀ = 0.0088
USCS=	<u>Classification</u> AASHT	`O=
F.M.=0.50	Remarks	

(no specification provided)

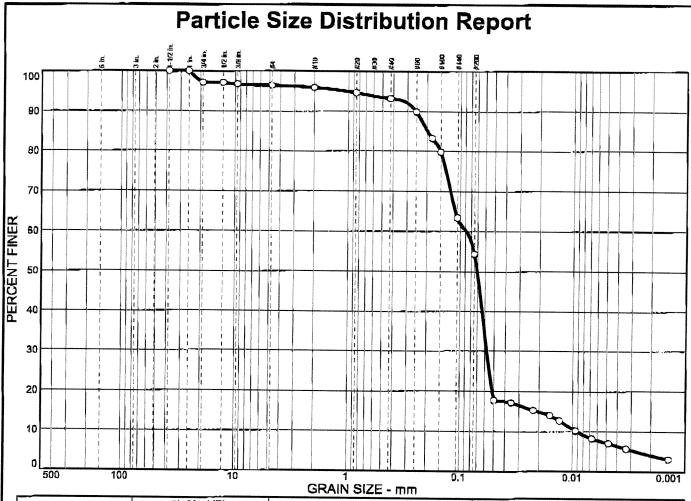
Sample No.: 1 Location:

Source of Sample: 11

Date: 8-30-06

Elev./Depth: NA

H. C. NUTTING COMPANY


LEWESTER SHALL

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS
ENCL 1921

Client: SGS

Project: Soil Testing

Project No: 91882.008

% COBBLES	% GRAVEL			% SAND		% FINES	
// CODDLLO	CRS.	FINE	CRS.	MEDIUM	FINE	SILT	CLAY
0.0	2.9	0.7	0.5	2.7_	38.8	47.2	7.2

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
1.5 in. 1 in. 0.75 in. 0.5 in. 0.375 in. #10 #20 #40 #60 #100 #100 #200	100.0 100.0 97.1 97.1 96.7 96.4 95.9 94.6 93.2 89.9 83.3 79.8 63.4 54.4		

	Soil Description	
PL=	Atterberg Limits LL=	PI=
D ₈₅ = 0.197 D ₃₀ = 0.0577 C _u = 9.67	Coefficients D ₆₀ = 0.0881 D ₁₅ = 0.0205 C _c = 4.15	D ₅₀ = 0.0706 D ₁₀ = 0.0091
USCS=	Classification AASHT0)=
F.M.=0.30	Remarks	

(no specification provided)

Sample No.: 1

Source of Sample: 12

Date: 8-30-06 Elev./Depth: NA

Location:

Client: SGS

Project: Soil Testing

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS

H. C. NUTTING COMPANY

Project No: 91882.008

ANALYSIS FOR MOISTURE, ASH & ORGANICS CONTENT

ASTM D 2974-00 (Test Method A & C)

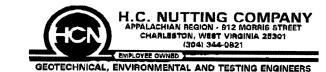
Client: SGS Environment Project: Soil Testing W.O. # 91882.008	ital Services	Date:	08/28/2006				
Boring No. TA6-HO-PO91 Depth Range: -	•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Description: Sampled 8-8-06	Lab No. <u>L0910</u>						
	Moisture Conte	ent (% of O.D. Mass)					
Wet Weight - Sample + Tare (g.)	402.6	Weight of Water (g.)	28.6				
Dry Weight - Sample + Tare (g.)	374.0	Weight of Solids (g.)	266.7				
Tare Weight (g.)	107.3	Moisture Content (%)	10.7				
Ash & Organics Content							
Beginning Weight (g.)	151.40	Tare Weight (g.)	74.00				
Ending Weight (g.)	147.40	Muffle Furnace Temperature (°C)	440				
Ash Content (%)	94.8	Organic Content (%)	5.17				
Boring No. TA6-HO-PO91 Depth Range: - Description: Sampled 8-8-06	,	Sample No.	2 L0911				
	Moistur	e Content					
Wet Weight - Sample + Tare (g.)	394.4	Weight of Water (g.)	70.8				
Dry Weight - Sample + Tare (g.)	323.6	Weight of Solids (g.)	227.0				
Tare Weight (g.)	96.6	Moisture Content (%)	31.2				
	Ash & Orga	inics Content					
Beginning Weight (g.)	155.90	Tare Weight (g.)	74.00				
Ending Weight (g.)	152.60	Muffle Furnace Temperature (°C)	440				
Ash Content (%)	96.0	Organic Content (%)	4,03				

ANALYSIS FOR MOISTURE, ASH & ORGANICS CONTENT ASTM D 2974-00

H.C. NUTTING COMPANY

APPALACHIAN REGION - 912 MORRIS STREET
CHARLESTON, WEST VIRGINIA 26301
(304) 344-0821

EMPLOYEE OWNED


GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS

(Test Method A & C)

Client: SGS Environmer	ntal Services		
Project: Soil Testing			
W.O. # 91882.008	-	Date:	08/28/2006
Boring No. TA6-HO-PO91		Sample No.	3
Depth Range:			L0912
Description: Sampled 8-9-06			
	Moisture Conte	ent (% of O.D. Mass)	
Wet Weight - Sample + Tare (g.)	396.3	Weight of Water (g.)	74.4
Dry Weight - Sample + Tare (g.)	321.9	Weight of Solids (g.)	233.0
Tare Weight (g.)	88.9	Moisture Content (%)	31.9
	Ash & Orga	anics Content	
Beginning Welght (g.)	150.70	Tare Weight (g.)	74.00
Ending Weight (g.)	147.10	Muffle Furnace Temperature (°C)	440
Ash Content (%)	95.3	Organic Content (%)	4.69
Boring No. TA6-HO-PO91		Sample No.	4
Depth Range: -	•	Lab No.	
Description: Sampled 8-9-06			Same See See at Secretary
	Moistur	re Content	
Wet Weight - Sample + Tare (g.)	401.2	Weight of Water (g.)	57.7
Dry Weight - Sample + Tare (g.)	343.5	Weight of Solids (g.)	238.2
Tare Weight (g.)	105.3	Moisture Content (%)	24.2
	Ash & Orga	anics Content	
Beginning Weight (g.)	161.40	Tare Weight (g.)	74.00
Ending Weight (g.)	157.10	Muffle Furnace Temperature (°C)	440
Ash Content (%)	95.1	Organic Content (%)	4.92

AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS, CONCLUSIONS, OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN APPROVAL.

ANALYSIS FOR MOISTURE, ASH & ORGANICS CONTENT

ASTM D 2974-00 (Test Method A & C)

Client: SGS Environmen	ntal Services				
Project: Soil Testing					
W.O. # 91882,008		Date: _	08/28/2006		
Boring No. TA6-HO-PO91	_	Sample No.	5		
Depth Range:	~~	Lab No.	L0914		
Description: Sampled 8-10-06	}				
	Moisture Con	ntent (% of O.D. Mass)			
Wet Weight - Sample + Tare (g.)	391.2	Weight of Water (g.)	54.3		
Dry Weight - Sample + Tare (g.)	336.9	Weight of Solids (g.)	244.8		
Tare Weight (g.)	92.1	Moisture Content (%)	22.2		
	Ash & Organics Content				
Beginning Weight (g.)	155.90	Tare Weight (g.)	74.00		
Ending Weight (g.)	151.00	Muffle Furnace Temperature (°C)	440		
Ash Content (%)	94.0	Organic Content (%)	5.98		
Boring No. TA6-HO-PO91		Sample No.	9		
Depth Range: -	•	_			
Description: Sampled 8-10-06	, 	Lab 140	L0915		
		ure Content			
Wet Weight - Sample + Tare (g.)	405.3	Weight of Water (g.)	91.0		
Dry Weight - Sample + Tare (g.)	314.3	Weight of Solids (g.)	216.7		
Tare Weight (g.)	97.6	Moisture Content (%)	42.0		
	Ash & Org	ganles Content			
Beginning Weight (g.)	156.50	Tare Weight (g.)	74.00		
Ending Weight (g.)	151.80	Muffle Furnace Temperature (°C)	440		
Ash Content (%)	94.3	Organic Content (%)	5,70		

"AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS, CONCLUSIONS.

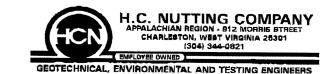
OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN APPROVAL."

ANALYSIS FOR MOISTURE, ASH & ORGANICS CONTENT ASTM D 2974-00

H.C. NUTTING COMPANY
APPALACHIAN REGION - 912 MORRIS STREET
CHARLESTON, WEST VIRGINIA 28301
(304) 344-0821

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS

(Test Method A & C)


Client: SGS Environme	ntal Services		
Project: Soil Testing			
W.O. # 91882.008	-	Date:	08/28/2006
Boring No. TA6-HO-PO91	<u></u>	Sample No.	7
Depth Range:	_		L0916
Description: Sampled 8-11-06	3		
	Moisture Con	ntent (% of O.D. Mass)	
Wet Weight - Sample + Tare (g.)	396.3	Weight of Water (g.)	80.4
Dry Weight - Sample + Tare (g.)	315.9	Weight of Solids (g.)	219.5
Tare Weight (g.)	96.4	Moisture Content (%)	36.6
	Ash & Or	ganics Content	
Beginning Weight (g.)	149.10	Tare Weight (g.)	74.00
Ending Weight (g.)	142.80	Muffle Furnace Temperature (°C)	440
Ash Content (%)	91.6	Organic Content (%)	8.39
Boring No. TA6-HO-PO91		Sample No.	g
Depth Range:	•	-	L0917
Description: Sampled 8-11-06	}		LVJ:/
	Moist	ure Content	
Wet Weight - Sample + Tare (g.)	400.4	Weight of Water (g.)	78.8
Dry Weight - Sample + Tare (g.)	321.6	Weight of Solids (g.)	230.8
Tare Weight (g.)	90.8	Moisture Content (%)	34.1
	Ash & Org	ganics Content	
Beginning Weight (g.)	160.20	Tare Weight (g.)	74.00
Ending Weight (g.)	154.50	Muffle Furnace Temperature (°C)	440
Ash Content (%)	93.4	Organic Content (%)	6.61

DENOTITINGED

"AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS, CONCLUSIONS.

OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN APPROVAL."

ANALYSIS FOR MOISTURE, ASH & ORGANICS CONTENT

ASTM D 2974-00 (Test Method A & C)

Client: SGS Environme	ntal Services		
Project: Soil Testing			
W.O. # 91882.008	_	Date:	08/28/2006
Boring No. TA6-HO-PO91	-	Sample No.	9
Depth Range:			L0918
Description: Sampled 8-11-06	3		
	Moisture Con	ntent (% of O.D. Mass)	
Wet Weight - Sample + Tare (g.)	398.9	Weight of Water (g.)	66.8
Dry Weight - Sample + Tare (g.)	332.1	Weight of Solids (g.)	236.1
Tare Weight (g.)	96.0	Moisture Content (%)	28.3
	Ash & Org	ganics Content	
Beginning Weight (g.)	171.30	Tare Weight (g.)	74.00
Ending Weight (g.)	164.70	Muffle Furnace Temperature (°C)	440
Ash Content (%)	93.2	Organic Content (%)	6.78
Boring No. TA6-HO-PO91	,	Sample No.	10
Depth Range:		Lab No.	
Description: Sampled 8-11-06	j		
	Moistu	ure Content	
Wet Weight - Sample + Tare (g.)	414.8	Weight of Water (g.)	52.2
Dry Weight - Sample + Tare (g.)	362.6	Weight of Solids (g.)	254.1
Tare Weight (g.)	108.5	Moisture Content (%)	20.5
	Ash & Org	ganics Content	
Beginning Weight (g.)	178,70	Tare Weight (g.)	74.00
Ending Weight (g.)	171.90	Muffle Furnace Temperature (°C)	440
Ash Content (%)	93.5	Organic Content (%)	6.49

"AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS. AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS. CONCLUSIONS. OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN APPROVAL."

ANALYSIS FOR MOISTURE, ASH & ORGANICS CONTENT ASTM D 2974-00

(Test Method A & C)

Client: SGS Environmen	ntal Services		
Project: Soil Testing			
W.O. # 91882.008	_	Date:_	08/28/2006
Boring No. TA6-HO-PO91	_	Sample No	11
Depth Range:		Lab No	L0920
Description: Sampled 8-15-06	3		
	Moisture Coi	ntent (% of O.D. Mass)	
Wet Weight - Sample + Tare (g.)	399.5	Weight of Water (g.)	58.1
Dry Weight - Sample + Tare (g.)	341.4	Weight of Solids (g.)	249.0
Tare Weight (g.)	92.4	Moisture Content (%)	23.3
	Ash & Oı	rganics Content	
Beginning Weight (g.)	178.60	Tare Weight (g.)	74.00
Ending Weight (g.)	170.60	Muffle Furnace Temperature (°C)	440
Ash Content (%)	92.4	Organic Content (%)	7.65
Boring No. TA6-HO-PO91		Sample No.	12
Depth Range:			L0921
Description: Sampled 8-15-06	j		
	Molst	ture Content	
Wet Weight - Sample + Tare (g.)	396.7	Weight of Water (g.)	44.1
Dry Weight - Sample + Tare (g.)	352.6	Weight of Solids (g.)	256.2
Tare Weight (g.)	96.4	Moisture Content (%)	17.2
	Ash & On	ganics Content	
Beginning Weight (g.)	185.40	Tare Weight (g.)	74.00
Ending Weight (g.)	178.40	Muffle Furnace Temperature (°C)	440
Ash Content (%)	93.7	Organic Content (%)	6.28

"AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS, CONCLUSIONS, OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN APPROVAL."

SOIL pH TEST REPORT ASTM D4972 (Method A)

H.C. NUTTING COMPANY

APPALACHIAN REGION - 912 MORRIS STREET CHARLESTON, WEST VIRGINIA 26301 (304) 344-0821

EMPLOYEE OWNED

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS

Client: SGS Environmental Services Date: 08/28/2006

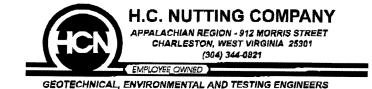
Project: Soil Testing - TA6-HO-PO91

WO No. 91882.008

Lab No.	Sample No.	Test No.	pH Reading / Distilled Water	pH Reading / CaCl
L0910	001	1	6.88	6.35
		2	6.84	6.37
		Difference	0.04	-0.02
		рН	6.86	6,36
L0911	002	1	6.66	6.36
		2	6.64	6.45
		Difference	0.02	-0.09
		рН	6.65	6.41
L0912	003	1	6.88	6.48
		2	6.89	6.5
		Difference	-0.01	-0.02
		рН	6.89	6.49
L0913	004	1	6.90	6.51
		2	6.90	6.31
		Difference	0	0.2
	[pН	6.90	6.41

Tolerer	nce of	2 tes	t results
---------	--------	-------	-----------

Technician:	J.Smith
, community	0.0(((()))


^{+/- 0.065} Distilled water

^{+/- 0.389} CaCl

VO/30/2000 VO.30 FAA HUNUTIINGUU ₩ 024/025

SOIL pH TEST REPORT

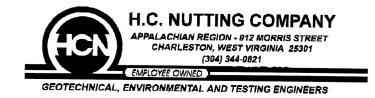
ASTM D4972 (Method A)

Client: SGS Environmental Services	Date:	08/28/2006
Project: Soil Testing - TA6-HO-PO91		

WO No. 91882.008

Lab No.	Sample No.	Test No.	pH Reading / Distilled Water	ph Reading / CaCl
L0914	005	1	6.71	6.61
		2	6.75	6,62
		Difference	-0.04	-0.01
		рН	6.73	6.62
L0915	006	1	6.41	6.30
		2	6.36	6.41
		Difference	0.05	-0.11
		pН	6.39	6.36
L0916	007	1	6.65	6.10
		2	6.68	6.28
		Difference	-0.03	-0.18
		рН	6.67	6.19
L0917	800	1	6.52	6.20
		2	6.56	6.46
		Difference	-0.04	-0.26
		рН	6.54	6.33

Tolerence of 2 test results +/- 0.065 Distilled water


+/- 0.389 CaCl

Technician:	J.Smith

ทบทบ111ทธบบ **2**1025/025

SOIL pH TEST REPORT ASTM D4972 (Method A)

V9/ 90/ 6000 V0.30 IAA

Client:	SGS Environmental Services	Date:	08/28/2006
Project:	Soil Testing - TA6-HO-PO91		
WO No.	91882.008		

Lab No.	Sample No.	Test No.	pH Reading / Distilled Water	pH Reading / CaCl
L0918	009	1	6.82	6.50
		2	6.80	6,59
		Difference	0.02	-0.09
		рН	6.81	6.55
L0919	010	1	6.02	5.71
		2	6.01	5,85
		Difference	0.01	-0.14
		рH	6.02	5.78
L0920	011	1	6.21	6.14
		2	6.25	6.19
		Difference	-0.04	-0.05
		рН	6.23	6.17
L0921	012	1	5.76	5.63
		2	5.74	5.6
		Difference	0.02	0.03

5.75

pН

Tolerence of 2 test results +/- 0.065 Distilled water

+/- 0.389 CaCI

Technician:	J.Smith	

5.62

ITEM 9 LYMAN STREET AREA (GECD430) AUGUST 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Initiated soil remediation actions at properties west of Lyman Street.
- Conducted TCLP sampling of soil from the five general excavation areas, as identified in Table 9-1.
- Conducted air monitoring for particulates in connection with remediation activities, as identified in Table 9-1.
- Conducted drum sampling at Building 78 of well decommissioning materials, as identified in Table 9-1.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Complete soil remediation actions at properties west of Lyman Street.
- Submit Addendum to Supplemental Information Package showing modified vegetation restoration plans as agreed with property owners.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

TABLE 9-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2006

LYMAN STREET AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date Received
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
Drum Sampling	BLDG78-F2818-0823	8/23/06	NA	Soil	SGS	PCB, TCLP	
Drum Sampling	BLDG78-F2918-0823	8/23/06	NA	Liquid	SGS	PCB, VOC, SVOC, Total Metals	
Soil Sampling	TCLP-I9-4-14	8/17/06	0-3	Soil	SGS	TCLP- Metals, Pest, Herb	8/24/06
Soil Sampling	TCLP-I9-4-19	8/17/06	0-1	Soil	SGS	TCLP- Metals, Pest, Herb	8/24/06
Soil Sampling	TCLP-I9-4-19-25-203	8/17/06	0-3	Soil	SGS	TCLP- Metals, Pest, Herb	8/24/06
Soil Sampling	TCLP-I9-4-201-NORTH	8/18/06	0-1	Soil	SGS	TCLP- Metals, Pest, Herb	8/24/06
Soil Sampling	TCLP-I9-4-201-SOUTH	8/18/06	0-6	Soil	SGS	TCLP- Metals, Pest, Herb	8/24/06
Ambient Air Particulate Matter Sampling	LY-1	8/23/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	LY-2B	8/23/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	LY-4	8/23/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Background Location	8/23/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	LY-1	8/24/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	LY-2B	8/24/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	LY-4	8/24/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Background Location	8/24/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	LY-1	8/25/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	LY-2B	8/25/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	LY-4	8/25/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	Background Location	8/25/06	NA	Air	Berkshire Environmental	Particulate Matter	8/29/06
Ambient Air Particulate Matter Sampling	LY-1	8/28/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	LY-2B	8/28/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	LY-4	8/28/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Background Location	8/28/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	LY-1	8/29/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	LY-2B	8/29/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	LY-4	8/29/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Background Location	8/29/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	LY-1	8/30/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	LY-2B	8/30/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	LY-4	8/30/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Background Location	8/30/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	LY-1	8/31/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	LY-2B	8/31/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	LY-4	8/31/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06
Ambient Air Particulate Matter Sampling	Background Location	8/31/06	NA	Air	Berkshire Environmental	Particulate Matter	9/1/06

TABLE 9-2 **TCLP DATA RECEIVED DURING AUGUST 2006**

SOIL SAMPLING LYMAN STREET AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Sample ID:	TCLP	TCLP-I9-4-14	TCLP-I9-4-19	TCLP-I9-4-19-25-203	TCLP-I9-4-201-North	TCLP-I9-4-201-South			
Sample Depth (Feet):	Regulatory	0-3	0-1	0-3	0-1	0-6			
Parameter Date Collected:	Limits	8/17/2006	8/17/2006	8/17/2006	8/18/2006	8/18/2006			
Organochlorine Pesticides	Organochlorine Pesticides								
Endrin	0.02	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)			
Gamma-BHC (Lindane)	0.4	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)	ND(0.040)			
Heptachlor	0.008	ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.0040)			
Heptachlor Epoxide	0.008	ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.0040)			
Methoxychlor	10	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)			
Technical Chlordane	0.03	ND(0.0030)	ND(0.0030)	ND(0.0030)	ND(0.0030)	ND(0.0030)			
Toxaphene	0.5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)			
Herbicides									
2,4,5-TP	1	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)			
2,4-D	10	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)	ND(0.40)			
Inorganics									
Arsenic	5	ND(0.200)	ND(0.200)	ND(0.200)	ND(0.200)	ND(0.200)			
Barium	100	0.766 B	0.683 B	1.46 B	0.568 B	1.17 B			
Cadmium	1	0.00860 B	0.00930 B	0.00770 B	0.0115 B	0.00880 B			
Chromium	5	ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100)	0.0109 B			
Lead	5	0.0913 B	15.8	0.237	17.8	0.570			
Mercury	0.2	0.000121 B	0.000127 B	0.000144 B	0.000168 B	0.000131 B			
Selenium	1	ND(0.200)	ND(0.200)	ND(0.200)	ND(0.200)	ND(0.200)			
Silver	5	0.00510 B	ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100)			

- Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of TCLP constituents.
 ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Shading indicates that value exceeds the TCLP Regulatory Limits.

Data Qualifiers:

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

TABLE 9-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING AUGUST 2006

PARTICULATE AMBIENT AIR CONCENTRATIONS LYMAN STREET AREA GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sampling Date ²	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
08/23/06	LY-1	0.019*	0.012*	10:45	WNW
	LY-2B	0.010*		4:45 ³	
	LY-4	0.014*		10:45	
08/24/06	LY-1	0.007*	0.005*	10:15	Calm
	LY-2B	0.008*		10:45	
	LY-4	0.008*		11:00	
08/25/06	LY-1	0.015*	0.031*	10:45	Calm
	LY-2B	0.017*		11:00	
	LY-4	0.013*		10:45	
08/28/06	LY-1	0.028*	0.019*	10:30	Calm
	LY-2B	0.027*		10:45	
	LY-4	0.016*		10:45	
08/29/06	LY-1	0.023*	0.019*	10:45	Calm
	LY-2B	0.024*		10:45	
	LY-4	0.014*		10:45	
08/30/06	LY-1	0.008*	0.011*	11:00	NNW
	LY-2B	0.009*		10:30	
	LY-4	0.006*		10:45	
08/31/06	LY-1	0.012*	0.003*	11:00	Variable
	LY-2B	0.005*		11:00	
	LY-4	0.004*		11:00	
Notification Level		0.120			

Notes:

Background monitoring station is located east of Building 9B, between 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

^{*} Measured with DR-2000 or DR-4000.

¹ Monitoring was performed only on days when site activities occurred.

² The particulate monitors obtain real-time data. The sampling data were obtained by Berkshire Environmental Consultants, Inc. on the sampling date.

⁴ Sampling period was shortened due to sampler location change.

ITEM 10 NEWELL STREET AREA I (GECD440) AUGUST 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

Completed restoration activities at Parcels J9-23-19, -20, and -21.

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Obtain survey of GE-owned strip of land adjacent to Housatonic River for use in connection with ERE.
- Submit revised drafts of EREs and associated survey plans for GE-owned properties to EPA and MDEP.
- Send letters to owners of properties with Conditional Solutions, as well as to holders of encumbrances on those properties, regarding the Conditional Solutions.
- Conduct semi-annual inspection of engineered barriers and restored and re-vegetated areas.
- Continue preparation of Final Completion Report.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

ITEM 11 NEWELL STREET AREA II (GECD450) AUGUST 2006

* All activities described below for this item were conducted pursuant to or in connection with the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

- Continued shipment of soil excavated from Parcel J9-23-8 to the selected disposal facility located in Port Arthur, Texas.
- Conducted wipe sampling of additional gondola railcars to support the shipment of soil excavated from Parcel J9-23-8 to the selected disposal facility located in Port Arthur, Texas.
- Completed paving work associated with installation of access road and turn-around area.
- Completed assembly of automated DNAPL recovery system for Newell Street Area II, and activated system on August 30, 2006 (see also Item 21.a).
- Conducted drum sampling at Building 78 of water from well development as identified in Table 11-1.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue shipments of soil excavated from Parcel J9-23-8 to the selected disposal facility located in Port Arthur, Texas.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

TABLE 11-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2006

NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or BBL
Building 78 Drum Sampling	B0523-WATER-1	8/24/06	Water	SGS	PCB, VOC, SVOC, Total Metals	
Building 78 Drum Sampling	B0546-WATER-1	8/24/06	Water	SGS	PCB, VOC, SVOC, Total Metals	
Building 78 Drum Sampling	B1459-WATER-1	8/24/06	Water	SGS	PCB, VOC, SVOC, Total Metals	
Building 78 Drum Sampling	B1460-WATER-1	8/24/06	Water	SGS	PCB, VOC, SVOC, Total Metals	
Building 78 Drum Sampling	GMA1-27-WATER-1	8/24/06	Water	SGS	PCB, VOC, SVOC, Total Metals	
Gondola Wipe Sampling	CEFX-33490-W1R	8/24/06	Wipe	SGS	PCB	8/28/06
Gondola Wipe Sampling	CEFX-33490-W2R	8/24/06	Wipe	SGS	PCB	8/28/06
Gondola Wipe Sampling	CEFX-33490-W3R	8/24/06	Wipe	SGS	PCB	8/28/06
Gondola Wipe Sampling	CEFX-33490-W4R	8/24/06	Wipe	SGS	PCB	8/28/06
Gondola Wipe Sampling	CEFX-33490-W5R	8/24/06	Wipe	SGS	PCB	8/28/06
Gondola Wipe Sampling	MHFX-5735-W1R	8/22/06	Wipe	SGS	PCB	8/25/06
Gondola Wipe Sampling	MHFX-5735-W2R	8/22/06	Wipe	SGS	PCB	8/25/06
Gondola Wipe Sampling	MHFX-5735-W3R	8/22/06	Wipe	SGS	PCB	8/25/06
Gondola Wipe Sampling	MHFX-5735-W4R	8/22/06	Wipe	SGS	PCB	8/25/06
Gondola Wipe Sampling	MHFX-5735-W5R	8/22/06	Wipe	SGS	PCB	8/25/06
Newell Street Decon Water Sampling	Newell-Decon-1	7/10/06	Water	SGS	PCB, VOC, SVOC, Total Metals	8/2/06
Sampling Newell St. Well N2SC-01IR	N2SC-01IR-1	7/13/06	Water	SGS	PCB, VOC, SVOC, Total Metals	8/1/06
Sampling Newell St. Well N2SC-03IR	N2SC-03IR-1	7/13/06	Water	SGS	PCB, VOC, SVOC, Total Metals	8/1/06
Soil Sampling	NS-15R-Soil-1	7/6/06	Soil	SGS	PCB, TCLP	8/1/06

TABLE 11-2 PCB DATA RECEIVED DURING AUGUST 2006

SOIL SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

Sample ID	Date Collected	Aroclor-1016, -1221, -1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
NS-15R-Soil-1	7/6/2006	ND(400)	520	ND(400)	520

Notes:

- 1. Sample was collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs and TCLP constituents.
- 2. Please refer to Table 11-3 for a summary of TCLP constituents.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 11-3 TCLP DATA RECEIVED DURING AUGUST 2006

SOIL SAMPLING NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Samula ID.	TCLP	NS-15R-Soil-1
Sample ID: Parameter Date Collected:	Regulatory Limits	7/6/2006
Volatile Organics	LIIIIIIS	770/2000
	0.7	ND(0.040)
1,1-Dichloroethene	0.7	ND(0.010)
1,2-Dichloroethane	0.5	ND(0.010)
2-Butanone	200	ND(0.25)
Benzene	0.5	ND(0.010)
Carbon Tetrachloride	0.5	ND(0.010)
Chlorobenzene	100	ND(0.010)
Chloroform	6	ND(0.010)
Tetrachloroethene	0.7	ND(0.010)
Trichloroethene	0.5	0.022
Vinyl Chloride	0.2	ND(0.010)
Semivolatile Organics		
1,4-Dichlorobenzene	7.5	ND(0.010)
2,4,5-Trichlorophenol	400	ND(0.010)
2,4,6-Trichlorophenol	2	ND(0.010)
2,4-Dinitrotoluene	0.13	ND(0.010)
Cresol	200	ND(0.010)
Hexachlorobenzene	0.13	ND(0.010)
Hexachlorobutadiene	0.5	ND(0.010)
Hexachloroethane	3	ND(0.010)
Nitrobenzene	2	ND(0.010)
Pentachlorophenol	100	ND(0.050)
Pyridine	5	ND(0.010)
Inorganics		· · · · · · · · · · · · · · · · · · ·
Arsenic	5	ND(0.200)
Barium	100	0.557 B
Cadmium	1	ND(0.100)
Chromium	5	0.00570 B
Lead	5	0.203
Mercury	0.2	ND(0.000570)
Selenium	1	ND(0.200)
Silver	5	ND(0.100)

Notes:

- 1. Sample was collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs and TCLP constituents.
- 2. Please refer to Table 11-2 for a summary of PCBs.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

<u>Inorganics</u>

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

TABLE 11-4 WATER SAMPLE DATA RECEIVED DURING AUGUST 2006

SAMPLING NEWELL ST. WELLS NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Sample ID: Parameter Date Collected:		N2SC-03IR-1 07/13/06					
Volatile Organics							
Chloroform	ND(0.64)	1.2 J					
Ethylbenzene	0.15 J	ND(1.6)					
Methylene Chloride	0.22 J	0.51 J					
Toluene	0.81	0.82 J					
Trichloroethene	6.6	42					
Vinyl Chloride	0.27 J	ND(1.6)					
PCBs-Unfiltered							
Aroclor-1254	58	430					
Total PCBs	58	430					
Semivolatile Organics							
1,2,4-Trichlorobenzene	6.2	11					
1,2-Dichlorobenzene	0.14 J	0.18 J					
1,4-Dichlorobenzene	0.84 J	0.49 J					
Naphthalene	ND(1.0)	0.17 J					
Inorganics-Unfiltered	Inorganics-Unfiltered						
Arsenic	ND(0.0100)	0.0108					
Barium	0.556	0.577					
Cadmium	0.000890 B	0.00554 B					
Chromium	0.0440	0.0355					
Lead	0.184	1.57					

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services. Inc. for analysis of PCBs, volatiles, semivolatiles and metals.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics (volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TABLE 11-5 WATER SAMPLE DATA RECEIVED DURING AUGUST 2006

DECON WATER SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	Newell-Decon-1 07/10/06		
Volatile Organics				
None Detected				
PCBs-Unfiltered				
Aroclor-1254		4.9		
Total PCBs		4.9		
Semivolatile Organ	ics			
2-Methylnaphthalene	Э	1.2 J		
bis(2-Ethylhexyl)phtl	nalate	1.7 J		
Naphthalene		32		
Inorganics-Unfilter	ed			
Arsenic		0.0308		
Barium		0.617		
Cadmium		0.0118		
Chromium	0.0711			
Lead		0.783		
Mercury		0.000319		
Selenium	0.0109 B			
Silver		0.000510 B		

Notes:

- 1. Sample was collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, semivolatiles, and metals.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. -- Indicates that all constituents for the parameter group were not detected.
- 4. Only detected constituents are summarized.

Data Qualifiers:

Organics (volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TABLE 11-6 PCB DATA RECEIVED DURING AUGUST 2006

GONDOLA WIPE SAMPLING NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in µg/100cm²)

	Date								
Sample ID	Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
CEFX-33490-W1R	8/24/2006	ND(1.0)	ND(1.0)						
CEFX-33490-W2R	8/24/2006	ND(1.0)	ND(1.0)						
CEFX-33490-W3R	8/24/2006	ND(1.0)	ND(1.0)						
CEFX-33490-W4R	8/24/2006	ND(1.0)	ND(1.0)						
CEFX-33490-W5R	8/24/2006	ND(1.0)	ND(1.0)						
MHFX-5735-W1R	8/22/2006	ND(1.0)	ND(1.0)						
MHFX-5735-W2R	8/22/2006	ND(1.0)	ND(1.0)						
MHFX-5735-W3R	8/22/2006	ND(1.0)	ND(1.0)						
MHFX-5735-W4R	8/22/2006	ND(1.0)	ND(1.0)						
MHFX-5735-W5R	8/22/2006	ND(1.0)	ND(1.0)						

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

ITEM 12 FORMER OXBOW AREAS J & K (GECD420) AUGUST 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a.	Activities	<u>Undertaken/Completed</u>

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

- d. Upcoming Scheduled and Anticipated Activities (next six weeks)
 - Plant trees and shrubs in remediated areas.
 - Submit Addendum to Supplemental Information Package showing modified vegetation restoration plans as agreed with property owners.
- e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

ITEM 13 HOUSATONIC RIVER AREA UPPER ½ MILE REACH (GECD800) AUGUST 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Monitored the three seepage meters in the river in support of upcoming evaluation and report on total organic carbon (TOC) content in the isolation layer.
- Performed the 2006 inspection of aquatic habitat enhancement structures and armor stone (August 23, 2006).
- Performed the 2006 inspection of restored bank vegetation (August 24, 2006).

b. Sampling/Test Results Received

See attached table.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Complete seepage meter monitoring.
- Prepare report presenting results of seepage meter study and evaluation of TOC content in isolation layer (to be submitted in Fall 2006).
- Prepare and submit report on inspection of restored bank vegetation
- Prepare and submit report on inspection of aquatic habitat enhancement structures and armor stone.
- Revise and resubmit report on July 2006 bank erosion inspection.
- Perform repairs related to erosion inspection.

ITEM 13 (cont'd) HOUSATONIC RIVER AREA UPPER ½ MILE REACH (GECD800) AUGUST 2006

e. General Progress/Unresolved Issues/Potential Schedule Impacts

As noted above, GE plans to submit a report evaluating TOC content in the isolation layer in Fall 2006. The Final Completion Report for Upper ½ Mile Reach Removal Action will be submitted following EPA review and approval of that report.

f. Proposed/Approved Work Plan Modifications

TABLE 13-1 SEEPAGE METER MONITORING UPPER 1/2-MILE REACH OF THE HOUSATONIC RIVER

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Location	Start Time	Starting Volume in Collection Bag (mL) Time of Collection		End Volume in Collection Bag (mL)
Seepage-1	7/31/06 9:59 AM	200	8/2/06 9:13 AM	205
Seepage-1	8/2/06 9:13 AM	200	8/9/06 10:02 AM	206
Seepage-1	8/9/06 10:02 AM	200	8/21/06 10:43 AM	199
Seepage-2	7/31/06 10:33 AM	200	8/2/06 9:34 AM	203
Seepage-2	8/2/06 9:34 AM	200	8/9/06 10:30 AM	210
Seepage-2	8/9/06 10:30 AM	200	8/21/06 11:20 AM	
Seepage-3	7/31/06 11:02 AM	200	8/2/06 10:05 AM	202
Seepage-3	8/2/06 10:05 AM	200	8/9/06 11:01 AM	203
Seepage-3	8/9/06 11:01 AM	200	8/21/06 12:04 PM	207

Note:

1. On 8/21/200, the water collection bag at Seepage-2 was observed to be leaking; a likely result of an abrasion on the bag caused by rubbing against the protective plastic cage; as such, on that date data at this location was not recorded.

ITEM 14 HOUSATONIC RIVER AREA 1½ MILE REACH (GECD820) AUGUST 2006

(Note: This item is limited to activities conducted by GE and does not include EPA's work on the 1½ Mile Reach Removal Action)

a. Activities Undertaken/Completed

On August 23, 2006, BBL (on GE's behalf) performed a round of water column monitoring at 10 locations along the Housatonic River between Coltsville, MA and Great Barrington, MA. Two of these locations are situated in the 1½ Mile Reach: Lyman Street Bridge (Location 4) and Pomeroy Avenue Bridge (Location 6A). A composite grab sample was collected at each location and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a, as identified in Table 14-1. (The other eight locations are discussed under Items 15 and 20 below.)

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue Housatonic River monthly water column monitoring.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

TABLE 14-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2006

HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or BBL
Monthly Water Column Sampling	Location-4	7/26/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/14/06
Monthly Water Column Sampling	Location-4	8/23/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-6A	7/26/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/14/06
Monthly Water Column Sampling	Location-6A	8/23/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	

TABLE 14-2 SAMPLE DATA RECEIVED DURING AUGUST 2006

MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID	Location	Date Collected	Aroclor-1016, -1221, -1232, -1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	POC	TSS	Chlorophyll (a)
LOCATION-4	Lyman Street Bridge	07/26/06	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.230	1.20	0.0019
LOCATION-6A	Pomeroy Ave. Bridge	07/26/06	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.210	1.50	0.0024

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).
- 2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

ITEM 15 HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) AUGUST 2006

a. Activities Undertaken/Completed

On August 23, 2006, BBL (on GE's behalf) performed a round of water column monitoring at 10 locations along the Housatonic River between Coltsville and Great Barrington, MA. Two locations are situated in the 1½ Mile Reach of the Housatonic River and were discussed in Item 14. One location is at the outlet of Silver Lake and is discussed in Item 20 below. Of the remaining seven locations, two are located upstream of the 1½ Mile Reach: Hubbard Avenue Bridge (Location 1) and Newell Street Bridge (Location 2). The five remaining locations are situated in the Rest of the River: Holmes Road Bridge (Location 7); New Lenox Road Bridge (Location 9); Woods Pond Headwaters (Location 10); Schweitzer Bridge (Location 12); and Division Street Bridge (Location 13). Sampling activities were performed at these locations on August 23, 2006 from downstream to upstream. Composite grab samples were collected at each location sampled and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a, as identified in Table 15-1.

b. Sampling/Test Results

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue Housatonic River monthly water column monitoring.
- Prepare design drawings for installation of replacement gate at Rising Pond Dam.*
- Submit plan to EPA and Lead Administrative Trustee (LAT) for placement of riprap in an area adjacent to Woods Pond Dam.*

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

TABLE 15-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2006

HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received by
Project Name	Field Sample ID	Sample Date	e Date Matrix		Analyses	GE or BBL
Monthly Water Column Sampling	HR-D1 (Location-12)	8/23/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	HR-D1 (Location-12)	7/26/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/14/06
Monthly Water Column Sampling	Location-1	7/26/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/14/06
Monthly Water Column Sampling	Location-1	8/23/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-10	7/26/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/14/06
Monthly Water Column Sampling	Location-10	8/23/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-12	7/26/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/14/06
Monthly Water Column Sampling	Location-12	8/23/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-13	8/23/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-13	7/26/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/14/06
Monthly Water Column Sampling	Location-2	8/23/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-2	7/26/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/14/06
Monthly Water Column Sampling	Location-7	7/26/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/14/06
Monthly Water Column Sampling	Location-7	8/23/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-9	8/23/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-9	7/26/06	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/14/06

Note:

1. Field duplicate sample locations are presented in parenthesis.

TABLE 15-2 SAMPLE DATA RECEIVED DURING AUGUST 2006

MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

		Date	Aroclor-1016, -1221,							
Sample ID	Location	Collected	-1232, -1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	POC	TSS	Chlorophyll (a)
LOCATION-1	Hubbard Avenue Bridge	07/26/06	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.364	1.60	0.00090
LOCATION-2	Newell Street Bridge	07/26/06	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.214	ND(1.00)	0.0014
LOCATION-7	Holmes Road Bridge	07/26/06	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.291	ND(1.00)	0.0021
LOCATION-9	New Lenox Road Bridge	07/26/06	ND(0.0000220)	0.0000290 PE	0.0000580 AF	0.0000410 AG	0.000128	0.280	2.40	0.0023
LOCATION-10	Headwaters of Woods Pond	07/26/06	ND(0.0000220)	0.0000450 PE	0.0000780 AF	0.0000530 AG	0.000176	0.445	4.40	0.0028
LOCATION-12	Schweitzer Bridge	07/26/06	ND(0.0000220)	0.0000340 PE	0.0000590 AF	0.0000400 AG	0.000133	0.499	2.90	0.0053
		07/26/06	[ND(0.0000220)]	[0.0000370 PE]	[0.0000690 AF]	[0.0000500 AG]	[0.000156]	[0.530]	[3.40]	[0.0065]
LOCATION-13	Division Street Bridge	07/26/06	ND(0.0000220)	ND(0.0000220)	0.0000260 AF	ND(0.0000220)	0.0000260	0.448	4.40	0.0020

Notes

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).
- 2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. Field duplicate sample results are presented in brackets.

Data Qualifiers:

- AF Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- AG Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- PE Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

ITEMS 16 & 17 HOUSATONIC RIVER FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1½-MILE REACH (GECD710 AND GECD720) AUGUST 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Completed final restoration activities at certain Phase 3 floodplain properties.
- Continued restoration activities at Phase 4 floodplain properties.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Complete restoration activities at Phase 4 floodplain properties.
- Conduct inspections of backfilled/restored areas at Phase 3 and Phase 4 floodplain properties.
- Submit Supplemental Investigation Plan for certain Phase 2 floodplain properties.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

EPA has advised GE that, instead of submitting separate Final Completion Reports for the Phase 1 and 2 floodplain properties, the Phase 3 floodplain properties, and the Phase 4 floodplain properties, GE should submit Final Completion Reports for the 1½ Mile Floodplain Residential Properties and the 1½ Mile Floodplain Non-Residential Properties, including all phases together.

f. Proposed/Approved Work Plan Modifications

ITEM 18 HOUSATONIC RIVER FLOODPLAIN CURRENT RESIDENTIAL PROPERTIES DOWNSTREAM OF CONFLUENCE (ACTUAL/POTENTIAL LAWNS) (GECD730) AUGUST 2006

a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

None

e. General Progress/Unresolved Issues/Potential Schedule Impacts

Awaiting EPA approval of GE's Pre-Design Investigation Work Plan (submitted on February 26, 2002). (Based on discussions with EPA, this pre-design sampling will be deferred for some period of time.)*

f. Proposed/Approved Work Plan Modifications

None

ITEM 19 ALLENDALE SCHOOL PROPERTY (GECD500) AUGUST 2006

a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Receive results from outdoor air monitoring conducted by EPA, as well as results from indoor sampling conducted by the Massachusetts Department of Public Health at Allendale School.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

ITEM 20 OTHER AREAS SILVER LAKE AREA (GECD600) AUGUST 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- On August 23, 2006, BBL (on GE's behalf) performed a round of water column monitoring at 10 locations along the Housatonic River between Coltsville and Great Barrington, MA. One location was at the outlet of Silver Lake (Location 4A). A grab sample was collected and submitted to Northeast Analytical for analysis of PCBs (total) and TSS, as identified in Table 20-1. (The other nine locations were discussed under Items 14 and 15 above.)
- Began selection process for Remediation Contractor for Pilot Study.
- Collected soil samples from Parcel I9-9-19 for analysis or potential analysis for lead, as identified in Table 20-1.
- Collected samples of potential cap (isolation layer) materials from off-site sources for analysis of grain size and TOC (August 7, 22 and 25, 2006), as identified in Table 20-1.
- Collected sample of bank soil for TCLP analysis (August 28, 2006), as identified in Table 20-1.
- Conducted drum sampling at Building 78 of soil cuttings from Silver Lake Area, as identified in Table 20-1.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

- Submitted revised Pilot Study Work Plan for Silver Lake Sediments, along with response to discussions between GE and EPA and to EPA's July 18, 2006 conditional approval letter related to that work plan (August 16, 2006).
- Submitted letter to EPA proposing certain bank soil removal in conjunction with Pilot Study (August 22, 2006).

ITEM 20 (cont'd) OTHER AREAS SILVER LAKE AREA (GECD600) AUGUST 2006

d. Upcoming Scheduled Activities (next six weeks)

- Select Remediation Contractor for Pilot Study of sediment capping and initiate implementation of Pilot Study.
- Perform bank soil removal in conjunction with Pilot Study.
- Submit next Pre-Design Investigation Report for Soils at properties adjacent to Silver Lake (due by September 11, 2006).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

- Received EPA approval of August 16, 2006 revised Pilot Study Work Plan for Silver Lake Sediments (August 30, 2006).
- Received EPA conditional approval of August 22, 2006 proposal for certain bank soil removal in conjunction with Pilot Study (August 30, 2006).

TABLE 20-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2006

SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date Received
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
Additional PDI Soil Sampling	I9-9-19-DUP-1 (I9-9-19-SB-2-SS)	8/29/06	0-1	Soil	SGS	Lead	
Additional PDI Soil Sampling	19-9-19-SB-2-SS	8/29/06	0-1	Soil	SGS	Lead	
Additional PDI Soil Sampling	19-9-19-SB-2-SSE	8/31/06	0-1	Soil	SGS	Lead	
Additional PDI Soil Sampling	19-9-19-SB-2-SSE	8/29/06	0-1	Soil	SGS	Lead	Cancelled
Additional PDI Soil Sampling	19-9-19-SB-2-SSS	8/29/06	0-1	Soil	SGS	Lead	Cancelled
Additional PDI Soil Sampling	19-9-19-SB-2-SSS	8/31/06	0-1	Soil	SGS	Lead	
Additional PDI Soil Sampling	19-9-19-SB-2-SSSE	8/29/06	0-1	Soil	SGS	Lead	Cancelled
Additional PDI Soil Sampling	19-9-19-SB-2-SSSE	8/31/06	0-1	Soil	SGS	Lead	
Additional PDI Soil Sampling	19-9-19-SB-2-SSSS	8/29/06	0-1	Soil	SGS	Lead	Cancelled
Additional PDI Soil Sampling	19-9-19-SB-2-SSSS	8/31/06	0-1	Soil	SGS	Lead	
Additional PDI Soil Sampling	I9-9-19-SB-2-SSSW	8/31/06	0-1	Soil	SGS	Lead	
Additional PDI Soil Sampling	I9-9-19-SB-2-SSSW	8/29/06	0-1	Soil	SGS	Lead	Cancelled
Additional PDI Soil Sampling	19-9-19-SB-2-SSW	8/29/06	0-1	Soil	SGS	Lead	Cancelled
Additional PDI Soil Sampling	19-9-19-SB-2-SSW	8/31/06	0-1	Soil	SGS	Lead	
Additional PDI Soil Sampling	19-9-24-SB-2-SE	6/8/06	13-15	Soil	SGS	TAL Metals	8/21/06
Additional PDI Soil Sampling	19-9-24-SB-2-SE	6/8/06	9-11	Soil	SGS	TAL Metals	8/21/06
Additional PDI Soil Sampling	19-9-24-SB-2-SES	6/8/06	13-15	Soil	SGS	TAL Metals	8/21/06
Additional PDI Soil Sampling	19-9-24-SB-2-SES	6/8/06	9-11	Soil	SGS	TAL Metals	8/21/06
Additional PDI Soil Sampling	19-9-24-SB-2-W	6/8/06	13-15	Soil	SGS	TAL Metals	8/21/06
Additional PDI Soil Sampling	19-9-24-SB-2-W	6/8/06	9-11	Soil	SGS	TAL Metals	8/21/06
Additional PDI Soil Sampling	SL-0606-DUP-3 (I9-9-24-SB-2-SE)	6/8/06	9-11	Soil	SGS	TAL Metals	8/21/06
Monthly Water Column Sampling	Location-4A	8/23/06	NA	Water	NEA	PCB, TSS	
Monthly Water Column Sampling	Location-4A	7/26/06	NA	Water	NEA	PCB, TSS	8/10/06
Silver Lake Pilot Study Isolation Layer Material Sampling	BGRAV-1	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	BGRAV-1	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling	BGRAV-2	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	BGRAV-2	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling	BGRAV-3	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	BGRAV-3	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Pond-Sand-1	8/25/06	NA	Sand	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Pond-Sand-1	8/25/06	NA	Sand	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Pond-Sand-2	8/25/06	NA	Sand	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Pond-Sand-2	8/25/06	NA	Sand	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Pond-Sand-3	8/25/06	NA	Sand	NEA	Grain Size	

TABLE 20-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2006

SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name Field Sample ID Date (feet) Matrix Laboratory Analyses Dy GE or BBL			Sample	Depth				Date Received
Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-1 8/25/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-2 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-2 8/25/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-2 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-1 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-1 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material S	Project Name	Field Sample ID	•	-	Matrix	Laboratory	Analyses	by GE or BBL
Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-1 8/25/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-2 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-1 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-1 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Pond-Sand-3	8/25/06	NA	Sand	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-2 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-1 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-1 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/0	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Top-Soil-1	8/25/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-1 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA Grain Size Silver La	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Top-Soil-1	8/25/06	NA	Soil	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-1 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-1 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-1 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Top-Soil-2	8/25/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Top-Soil-3 8/25/06 NA Soil NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-1 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot St	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Top-Soil-2	8/25/06	NA	Soil	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-1 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Materia	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Top-Soil-3	8/25/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Top-Soil-3	8/25/06	NA	Soil	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 8/25/06 NA Sand NEA TOC 8/31/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Wash-Sand-1	8/25/06	NA	Sand	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-2 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pi	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Wash-Sand-1	8/25/06	NA	Sand	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling Clark-Wash-Sand-3 Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Wash-Sand-2	8/25/06	NA	Sand	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Mate	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Wash-Sand-2	8/25/06	NA	Sand	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Wash-Sand-3	8/25/06	NA	Sand	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Samplin	Silver Lake Pilot Study Isolation Layer Material Sampling	Clark-Wash-Sand-3	8/25/06	NA	Sand	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-2 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling FSAND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation L	Silver Lake Pilot Study Isolation Layer Material Sampling	FSAND-1	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver	Silver Lake Pilot Study Isolation Layer Material Sampling	FSAND-1	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilo	Silver Lake Pilot Study Isolation Layer Material Sampling	FSAND-2	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer M	Silver Lake Pilot Study Isolation Layer Material Sampling	FSAND-2	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake P	Silver Lake Pilot Study Isolation Layer Material Sampling	FSAND-3	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silv	Silver Lake Pilot Study Isolation Layer Material Sampling	FSAND-3	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-2 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling	Silver Lake Pilot Study Isolation Layer Material Sampling	LANEPOND-1	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling	Silver Lake Pilot Study Isolation Layer Material Sampling	LANEPOND-1	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pi	Silver Lake Pilot Study Isolation Layer Material Sampling	LANEPOND-2	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling LANEPOND-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 8/22/06 NA Soil NEA TOC 8/29/06	Silver Lake Pilot Study Isolation Layer Material Sampling	LANEPOND-2	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling	Silver Lake Pilot Study Isolation Layer Material Sampling	LANEPOND-3	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-1 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling	Silver Lake Pilot Study Isolation Layer Material Sampling	LANEPOND-3	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling	Silver Lake Pilot Study Isolation Layer Material Sampling	LANETS-1	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-2 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 Silver Lake Pilot Study Isolation Layer Material Sampling	Silver Lake Pilot Study Isolation Layer Material Sampling	LANETS-1	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 8/22/06 NA Soil NEA TOC 8/29/06	Silver Lake Pilot Study Isolation Layer Material Sampling	LANETS-2	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling LANETS-3 8/22/06 NA Soil NEA TOC 8/29/06 Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 8/22/06 NA Soil NEA TOC 8/29/06	Silver Lake Pilot Study Isolation Layer Material Sampling	LANETS-2	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 8/22/06 NA Soil NEA Grain Size Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 8/22/06 NA Soil NEA TOC 8/29/06	Silver Lake Pilot Study Isolation Layer Material Sampling	LANETS-3	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling POND-1 8/22/06 NA Soil NEA TOC 8/29/06	Silver Lake Pilot Study Isolation Layer Material Sampling	LANETS-3	8/22/06	NA	Soil	NEA	TOC	8/29/06
	Silver Lake Pilot Study Isolation Layer Material Sampling	POND-1	8/22/06	NA	Soil	NEA	Grain Size	
	Silver Lake Pilot Study Isolation Layer Material Sampling	POND-1	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling POND-2 8/22/06 NA Soil NEA Grain Size	Silver Lake Pilot Study Isolation Layer Material Sampling	POND-2	8/22/06	NA	Soil	NEA	Grain Size	

TABLE 20-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2006

SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date Received
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	by GE or BBL
Silver Lake Pilot Study Isolation Layer Material Sampling	POND-2	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling	POND-3	8/22/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	POND-3	8/22/06	NA	Soil	NEA	TOC	8/29/06
Silver Lake Pilot Study Isolation Layer Material Sampling	SL-BANKSAND-1	8/7/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	SL-BANKSAND-1	8/7/06	NA	Soil	NEA	TOC	8/17/06
Silver Lake Pilot Study Isolation Layer Material Sampling	SL-BANKSAND-2	8/7/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	SL-BANKSAND-2	8/7/06	NA	Soil	NEA	TOC	8/17/06
Silver Lake Pilot Study Isolation Layer Material Sampling	SL-BANKSAND-3	8/7/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	SL-BANKSAND-3	8/7/06	NA	Soil	NEA	TOC	8/17/06
Silver Lake Pilot Study Isolation Layer Material Sampling	SL-TOPSOIL-1	8/7/06	NA	Soil	NEA	TOC	8/17/06
Silver Lake Pilot Study Isolation Layer Material Sampling	SL-TOPSOIL-2	8/7/06	NA	Soil	NEA	TOC	8/17/06
Silver Lake Pilot Study Isolation Layer Material Sampling	SL-TOPSOIL-3	8/7/06	NA	Soil	NEA	TOC	8/17/06
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Loam-Sand-1	8/25/06	NA	Sand	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Loam-Sand-1	8/25/06	NA	Sand	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Loam-Sand-2	8/25/06	NA	Sand	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Loam-Sand-2	8/25/06	NA	Sand	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Loam-Sand-3	8/25/06	NA	Sand	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Loam-Sand-3	8/25/06	NA	Sand	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Nassau-Sand-1	8/25/06	NA	Sand	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Nassau-Sand-1	8/25/06	NA	Sand	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Nassau-Sand-2	8/25/06	NA	Sand	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Nassau-Sand-2	8/25/06	NA	Sand	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Nassau-Sand-3	8/25/06	NA	Sand	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Nassau-Sand-3	8/25/06	NA	Sand	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Top-Soil-1	8/25/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Top-Soil-1	8/25/06	NA	Soil	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Top-Soil-2	8/25/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Top-Soil-2	8/25/06	NA	Soil	NEA	TOC	8/31/06
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Top-Soil-3	8/25/06	NA	Soil	NEA	Grain Size	
Silver Lake Pilot Study Isolation Layer Material Sampling	Troy-Top-Soil-3	8/25/06	NA	Soil	NEA	TOC	8/31/06
Silver Lake TCLP Soil Sampling	RA4-PILOT	8/25/06	0-3	Soil	SGS	TCLP	
Soil Drum Sampling	BLDG78-F1751-0823	8/23/06	NA	Soil	SGS	PCB, TCLP	

3 of 3

Note:

^{1.} Field duplicate sample locations are presented in parenthesis.

TABLE 20-2 SAMPLE DATA RECEIVED DURING AUGUST 2006

MONTHLY WATER COLUMN SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

		Date	Aroclor-1016,						
Sample ID	Location	Collected	-1232, -1242	Aroclor 1221	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	TSS
LOCATION-4A	Silver Lake Outlet	7/26/2006	ND(0.0000440)	0.000440 PB	0.000130 PE	0.0000650 AF	0.0000590 AG	0.000694	3.40

Notes:

- 1. Sample was collected by BBL, an ARCADIS company (BBL), and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs and total suspended solids (TSS).
- 2. Sampling methods involved the collection of single grab 50 percent of the total river width, and 50 percent of the total river depth.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

- AG Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- AF Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- PB Aroclor 1221 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1221 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.
- PE Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

ADDITIONAL PRE-DESIGN INVESTIGATION SOIL SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID: Sample Depth (Feet):	
Parameter	Date Collected:	06/08/06
Inorganics		
Cadmium		0.357 B

Notes:

 This result has been revised by the laboratory and supersedes the result reported in Table 20-4 of the June 2006 CD Monthly Report.

Data Qualifiers:

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

SILVER LAKE PILOT STUDY ISOLATION LAYER MATERIAL SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	BGRAV-1	BGRAV-2	BGRAV-3	CLARK-POND-SAND-1	CLARK-POND-SAND-2	CLARK-POND-SAND-3	CLARK-TOP-SOIL-1
Parameter	Date Collected:	08/22/06	08/22/06	08/22/06	08/25/06	08/25/06	08/25/06	08/25/06
Total Organic Carbon								
TOC - Replicate 1		3600	2800	1900	4600	4600	3100	19000
TOC - Replicate 2		2800	2800	2900	2700	4900	6000	15000
TOC - Replicate 3		2000	2200	1900	3200	6500	5500	16000
TOC - Replicate 4		2100	NA	2200	2800	NA	3500	NA
TOC - Average		2600	2600	2200	3300	5300	4500	17000
TOC - % RSD		28	14	22	27	19	32	14

SILVER LAKE PILOT STUDY ISOLATION LAYER MATERIAL SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

D	Sample ID:	CLARK-TOP-SOIL-2	CLARK-TOP-SOIL-3	CLARK-WASH-SAND-1	CLARK-WASH-SAND-2	CLARK-WASH-SAND-3	FSAND-1
Parameter	Date Collected:	08/25/06	08/25/06	08/25/06	08/25/06	08/25/06	08/22/06
Total Organic Carbon							
TOC - Replicate 1		24000	59000	670	3100	1400	7100
TOC - Replicate 2		20000	22000	1300	1600	2100	1800
TOC - Replicate 3		30000	26000	1500	1600	2500	3600
TOC - Replicate 4		NA	23000	2000	1600	2300	2000
TOC - Average		25000	32000	1400	2000	2000	3600
TOC - % RSD		19	55	40	37	24	67

SILVER LAKE PILOT STUDY ISOLATION LAYER MATERIAL SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	FSAND-2	FSAND-3	LANEPOND-1	LANEPOND-2	LANEPOND-3	LANETS-1	LANETS-2	LANETS-3	POND-1
Parameter	Date Collected:	08/22/06	08/22/06	08/22/06	08/22/06	08/22/06	08/22/06	08/22/06	08/22/06	08/22/06
Total Organic Carbon										
TOC - Replicate 1		4900	2000	3000	1800	3700	10000	4800	6900	2900
TOC - Replicate 2		2400	2200	2800	4500	9600	8700	9600	5300	9100
TOC - Replicate 3		1400	2000	2000	2900	10000	7900	5300	3900	3500
TOC - Replicate 4		5200	NA	NA	2300	2300	NA	4000	3900	4000
TOC - Average		3500	2100	2600	2900	6400	8900	5900	5000	4900
TOC - % RSD		55	4.8	22	41	63	12	42	29	59

SILVER LAKE PILOT STUDY ISOLATION LAYER MATERIAL SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	POND-2	POND-3	SL-BANKSAND-1	SL-BANKSAND-2	SL-BANKSAND-3	SL-TOPSOIL-1	SL-TOPSOIL-2	SL-TOPSOIL-3
Parameter	Date Collected:	08/22/06	08/22/06	08/07/06	08/07/06	08/07/06	08/07/06	08/07/06	08/07/06
Total Organic Carbon									
TOC - Replicate 1		2400	3900	2900	2700	2200	13000	12000	14000
TOC - Replicate 2		2200	4400	3600	790	2500	12000	16000	15000
TOC - Replicate 3		3000	3800	3600	3600	2900	12000	12000	14000
TOC - Replicate 4		NA	NA	NA	1200	NA	NA	NA	NA
TOC - Average		2500	4000	3400	2100	2500	12000	14000	14000
TOC - % RSD		16	7.6	12	63	15	4.3	16	5.2

SILVER LAKE PILOT STUDY ISOLATION LAYER MATERIAL SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	TROY-LOAM-SAND-1	TROY-LOAM-SAND-2	TROY-LOAM-SAND-3	TROY-NASSAU-SAND-1	TROY-NASSAU-SAND-2
Parameter	Date Collected:	08/25/06	08/25/06	08/25/06	08/25/06	08/25/06
Total Organic Carbon						
TOC - Replicate 1		1200	1700	1600	710	1000
TOC - Replicate 2		1300	1600	1100	1800	750
TOC - Replicate 3		950	880	1200	700	750
TOC - Replicate 4		NA	1500	NA	700	NA
TOC - Average		1200	1400	1300	980	830
TOC - % RSD		17	26	23	57	17

SILVER LAKE PILOT STUDY ISOLATION LAYER MATERIAL SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

D	Sample ID:	TROY-NASSAU-SAND-3	TROY-TOP-SOIL-1	TROY-TOP-SOIL-2	TROY-TOP-SOIL-3
Parameter	Date Collected:	08/25/06	08/25/06	08/25/06	08/25/06
Total Organic Carbon					
TOC - Replicate 1		910	11000	5400	7200
TOC - Replicate 2		830	6600	7000	6600
TOC - Replicate 3		310	15000	12000	5500
TOC - Replicate 4		1200	13000	7400	NA
TOC - Average		810	11000	8000	6400
TOC - % RSD		45	33	36	14

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to Northeast Analytical, Inc. for analysis of total organic carbon (TOC).
- 2. % RSD Percent relative standard deviation.
- 3. NA Not Analyzed TOC Replicate 4 is only analyzed and reported by laboratory when the % RSD of Replicate 1 thru Replicate 3 is greater than 25%.

ADDITIONAL PRE-DESIGN INVESTIGATION SOIL SAMPLING SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

	Sample ID:	19-9-24-SB-2-SE	19-9-24-SB-2-SE	19-9-24-SB-2-SES	19-9-24-SB-2-SES	I9-9-24-SB-2-W	19-9-24-SB-2-W
	Sample Depth (Feet):	9-11	13-15	9-11	13-15	9-11	13-15
Parameter	Date Collected:	06/08/06	06/08/06	06/08/06	06/08/06	06/08/06	06/08/06
Inorganics							
Aluminum		1760 [3270]	4930	4230	4630	7360	7560
Antimony		38.1 [8.85 B]	1.56 B	3.32 B	1.83 B	2.09 B	1.42 B
Arsenic		5.68 [11.4]	18.4	6.54	4.93	2.68	3.02
Barium		557 [1140]	100	168	75.0	182	47.9
Beryllium		0.196 B [0.358 B]	0.521 B	0.255 B	0.202 B	0.240 B	0.340 B
Cadmium							
Calcium		1380 [5020]	117000	16700	11600	9780	7450
Chromium							
Cobalt		4.55 [2.65]	12.5	4.49	3.54	6.24	5.61
Copper							
Iron		6130 [10200]	16300	49300	26400	28200	45400
Lead		153 [313]	1400	1060	206	575	102
Magnesium		381 [622]	6260	1780	1510	2950	1470
Manganese		3660 [15200]	1080	479	337	299	521
Mercury		0.0890 [0.118]	0.889	0.560	0.472	4.73	0.213
Nickel		3.82 [7.06]	76.6	23.4	12.8	19.6	13.8
Potassium		1160 [488]	927	446	385	310	399
Selenium		2.08 B [7.01]	2.78 B	0.812 B	1.25 B	ND(2.69)	ND(2.27)
Silver		0.724 B [3.02]	1.57 B	ND(1.65)	ND(1.71)	ND(1.34)	ND(1.14)
Sodium		2130 [884]	1100	653	665	148	134
Thallium		1.11 B [17.2]	0.950 B	ND(1.65)	ND(1.71)	ND(1.34)	ND(1.14)
Vanadium		7.76 [15.3]	20.2	13.7	8.38 B	13.6	13.5
Zinc		3410 [10900]	798	2030	154	197	62.6

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of metals.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. -- Analytical results for cadmium, chromium and copper have been previously reported in Table 20-4 of the June 2006 CD Monthly Report and Table 20-3 of the July 2006 CD Monthly Report.
- 4. Field duplicate sample results are presented in brackets.

Data Qualifiers:

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

ITEM 21 GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) AUGUST 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

General:

- Conducted routine groundwater elevation and NAPL monitoring activities.
- Conducted drum sampling at Building 78 of monitoring well purge water, as identified in Table 21-1.

East Street Area 1-North and South:

- Continued automated groundwater and NAPL pumping at North Side and South Side Caissons.
 Approximately 1 gallon of LNAPL was recovered from the North Side Caisson in August. No LNAPL was recovered from the South Side Caisson in August.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 0.018 liter (0.005 gallon) of LNAPL was removed from this area during August.

East Street Area 2-South:

- Continued automated groundwater and LNAPL removal activities. A total of approximately 4,564,836 gallons of groundwater was recovered from pumping systems 64R, 64S, 64V, 64X, RW-1(S), RW-1(X), and RW-2(X). In addition, approximately 955 gallons of LNAPL were removed from pumping systems 64R, 64V, RW-1(S), RW-1(X), 64X, and 64S Caisson.
- Continued automated DNAPL removal activities. Approximately 37 gallons of DNAPL were removed from pumping system RW-3(X) during August.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 10.895 liters (2.875 gallons) of LNAPL were removed from wells in this area during August. Approximately 4.214 liters (1.112 gallons) of DNAPL were removed from wells in this area during August.
- Treated/discharged 3,864,995 gallons of water through 64G Groundwater Treatment Facility.

East Street Area 2-North:

- Continued well monitoring and NAPL removal activities. No LNAPL was recovered from this area during August.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) AUGUST 2006

a. Activities Undertaken/Completed (cont'd)

East Street Area 2-North: (cont'd)

 Well A7 was decommissioned after being damaged during utility excavation activities on August 23, 2006. This well is not utilized as part of GE's current groundwater or NAPL monitoring programs.

20s, 30s, and 40s Complexes:

- Continued well monitoring and NAPL removal activities. No LNAPL was recovered from this area during August.

Lyman Street Area:

- Continued automated groundwater and NAPL removal activities. A total of approximately 216,359 gallons of groundwater was recovered from pumping systems RW-1R, RW-2, and RW-3. No LNAPL was removed from the automated recovery systems during August.
- Continued routine well monitoring and NAPL removal activities. Approximately 0.247 liter (0.065 gallon) of LNAPL was removed from wells in this area during August. Approximately 1.123 liters (0.296 gallons) of DNAPL were removed from wells in this area during August.

Newell Street Area II:

- Continued routine well monitoring and NAPL removal activities. Approximately 6.015 liters (1.587 gallons) of DNAPL were recovered from this area during August. No LNAPL was recovered from this area during August.
- Completed assembly of automated DNAPL recovery system for Newell Street Area II, and activated system on August 30, 2006.

Silver Lake Area:

- Continued routine monitoring of staff gauge in lake.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) AUGUST 2006

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted NAPL Monitoring Report for Spring 2006 (August 30, 2006).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine monitoring activities.
- Repair/replace wells that were damaged during Newell Street Area II Removal Action.
- Conduct LNAPL bail-down test at well 25R.
- Evaluate potential additional groundwater/LNAPL recovery measures at the former scrapyard area at East Street Area 2-South and present the results in a letter to EPA by October 30, 2006.
- Remove/replace/modify selected wells on the 20s and 30s Complexes per GE's approved May 22, 2006 proposal.
- Remove oil skimmer from well 40R and place a new skimmer in well GMA1-17W, following EPA approval of GE's proposal.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

TABLE 21-2 AUTOMATED LNAPL & GROUNDWATER RECOVERY SYSTEMS MONTHLY SUMMARY EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Caisson	Month	Vol. LNAPL Collected (gallon)	Vol. Water Recovered (gallon)	Percent Downtime
Northside	August 2005	1.0	16,000	
	September 2005	4.0	10,400	4.91
	October 2005	24.0	8,900	26.34
	November 2005	4.0	52,000	
	December 2005	12.0	33,900	
	January 2006	1.0	44,300	
	February 2006	1.0	27,700	
	March 2006	5.0	26,800	0.71
	April 2006	0.0	17,500	
	May 2006	0.0	20,500	
	June 2006	0.0	51,700	
	July 2006	0.0	18,500	
	August 2006	1.0	21,700	
Southside	August 2005	1.0	37,100	
	September 2005	9.0	56,300	4.91
	October 2005	4.0	71,000	4.91
	November 2005	2.0	96,600	
	December 2005	0.0	112,800	
	January 2006	15.0	98,400	
	February 2006	0.0	98,500	
	March 2006	3.0	121,500	0.71
	April 2006	12.0	76,200	
	May 2006	12.0	73,500	
	June 2006	0.0	160,900	
	July 2006	0.0	58,900	
	August 2006	0.0	84,900	

TABLE 21-3 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	August 2006 Removal (liters)
34	8/22/06	6.22	6.20	0.02	0.012	0.012
72	8/22/06	6.92	6.91	0.01	0.006	0.006

Total Manual LNAPL Removal for August 2006: 0.018 liters 0.005 gallons

Note:

1. ft BMP - feet Below Measuring Point.

Page 1 of 1 9/7/2006

TABLE 21-4 ROUTINE WELL MONITORING EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected	
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.	
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)	
GMA 1 - East S	GMA 1 - East Street Area 1 - North									
North Caisson	997.84	8/2/06	18.26	18.25	0.01		19.80	0.00	979.59	
North Caisson	997.84	8/9/06	18.14	18.13	0.01		19.80	0.00	979.71	
North Caisson	997.84	8/16/06	18.21	18.20	0.01		19.80	0.00	979.64	
North Caisson	997.84	8/21/06	18.29	18.28	0.01		19.80	0.00	979.56	
North Caisson	997.84	8/30/06	18.60	18.59	0.01		19.80	0.00	979.25	
GMA 1 - East S	treet Area 1 -	South								
31R	1,000.23	8/22/06	9.60		0.00		15.04	0.00	990.63	
33	999.50	8/22/06	6.90		0.00		21.30	0.00	992.60	
34	999.90	8/22/06	6.22	6.20	0.02		21.04	0.00	993.70	
72	1000.62	8/22/06	6.92	6.91	0.01		21.95	0.00	993.71	
72R	1000.92	8/22/06	6.80		0.00		13.30	0.00	994.12	
South Caisson	1001.11	8/2/06	11.78	11.77	0.01		15.00	0.00	989.34	
South Caisson	1001.11	8/9/06	12.14	Р	< 0.01		15.00	0.00	988.97	
South Caisson	1001.11	8/16/06	13.35	13.34	0.01		15.00	0.00	987.77	
South Caisson	1001.11	8/21/06	14.05	14.00	0.05		15.00	0.00	987.11	
South Caisson	1001.11	8/30/06	14.00	13.93	0.07		15.00	0.00	987.18	

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. P indicates that NAPL is present at a thickness < 0.01 feet, the corresponding thickness is recorded as such.

TABLE 21-5 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS August 2006

Recovery		Oil	Water	
System		Collected	Recovered	Percent
Location	Month	(gallon)	(gallon)	Downtime
40R	August 2005 September 2005 October 2005 November 2005 December 2006 January 2006 February 2006 March 2006 April 2006 May 2006 June 2006	0 0 0 0 0 0 0 0 0		
	July 2006 August 2006	0		
64R	August 2005 August 2005 September 2005 October 2005 November 2005 December 2005 January 2006 February 2006	250 50 75 125 400 400 375	73,300 10,200 492,200 988,100 1,062,900 896,700 899,800	4.91 10.71
	March 2006 April 2006 May 2006 June 2006 July 2006 August 2006	150 75 75 550 250 25	170,611 375,609 435,398 720,359 345,697 38,948	0.71
64S System	August 2005 September 2005 October 2005 November 2005 December 2005 January 2006 February 2006 March 2006	218 321 82 324 170 245 673 1,285	271,691 172,650 541,419 1,014,521 927,871 1,080,795 1,304,005 1,078,733	13.73 - Maintenance 4.91 10.71
	April 2006 May 2006 June 2006 July 2006 August 2006	558 51 327 472 238	696,282 668,110 1,061,071 732,853 646,128	5.36 1.79 0.93 0.93
64V ¹	August 2005 September 2005 October 2005 November 2005 December 2005 January 2006	581 349 564 515 564 697	993,100 714,700 933,400 1,304,100 1,117,000 1,208,800	4.91 4.91
	February 2006 March 2006 April 2006 May 2006 June 2006 July 2006 August 2006	598 315 249 431 697 548 548	1,177,900 1,251,800 901,800 911,700 1,228,300 885,300 1,016,400	0.71

TABLE 21-5 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS August 2006

	Percent owntime 21.43 0.71
64X August 2005 September 2005 October 2005 December 2005 December 2005 December 2005 December 2005 December 2005 December 2006 December 2005	21.43
September 2005 October 2005 October 2005 December 2005 December 2005 December 2005 December 2006 December 2005 Dec	
September 2005 October 2005 October 2005 December 2005 December 2005 December 2005 December 2006 December 2005 Dec	
October 2005 November 2005 November 2005 December 2005 December 2005 December 2006 January 2006 February 2006 Agril 2006 April 2006 April 2006 May 2006 May 2006 B3 August 2006 July 2006 August 2006 August 2005 October 2005 October 2005 December 2005 December 2005 December 2005 December 2005 December 2005 January 2006 December 2005 December	
November 2005 December 2005 December 2005 December 2005 January 2006 February 2006 March 2006 April 2006 May 2	
December 2005 January 2006 January 2006 February 2006 March 2006 April 2006 May 2006 May 2006 June 2006 August 2006 August 2005 September 2005 October 2005 November 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006 December 2005 January 2006	0.71
January 2006 February 2006 February 2006 I February 2006 I Sass,800 March 2006 April 2006 April 2006 I August 2006 I August 2006 I August 2005 September 2005 October 2005 November 2005 December 2005 January 2006 I August 2006 I August 2006 I August 2005 I August 2006 I Au	0.71
February 2006 March 2006 April 2006 April 2006 April 2006 April 2006 May 2006 May 2006 June 2006 July 2006 August 2006 August 2005 September 2005 October 2005 November 2005 December 2005 January 2006 January 2006 August 2006 August 2005 October 2005	0.71
March 2006	0.71
April 2006 May 2006 May 2006 June 2006 July 2006 August 2006 RW-2(X) August 2005 September 2005 October 2005 November 2005 December 2005 January 2006 April 2006 11 403,200 403,200 403,200 403,200 403,200 403,200 401,800 403,200 403,200 404,000 127 504,000 982,100 721,200 721,200 529,600 529,600 573,600 573,600 573,600 573,600 571,700	
May 2006 June 2006 June 2006 July 2006 August 2006 RW-2(X) August 2005 September 2005 October 2005 November 2005 December 2005 January 2006 RW-2(X) August 2005 October 20	
June 2006 14 518,400 July 2006 28 388,800 August 2006 127 504,000 RW-2(X) August 2005 0 982,100 September 2005 0 721,200 October 2005 0 529,600 November 2005 0 573,600 December 2005 0 491,800 January 2006 0 710,700	
July 2006 28 388,800 August 2006 127 504,000 RW-2(X) August 2005 0 982,100 September 2005 0 721,200 October 2005 0 529,600 November 2005 0 573,600 December 2005 0 491,800 January 2006 0 710,700	
August 2006 127 504,000 RW-2(X) August 2005 0 982,100 September 2005 0 721,200 October 2005 0 529,600 November 2005 0 573,600 December 2005 0 491,800 January 2006 0 710,700	
September 2005 0 721,200 October 2005 0 529,600 November 2005 0 573,600 December 2005 0 491,800 January 2006 0 710,700	
September 2005 0 721,200 October 2005 0 529,600 November 2005 0 573,600 December 2005 0 491,800 January 2006 0 710,700	
October 2005 0 529,600 November 2005 0 573,600 December 2005 0 491,800 January 2006 0 710,700	4.91
November 2005 0 573,600 December 2005 0 491,800 January 2006 0 710,700	
December 2005 0 491,800 January 2006 0 710,700	
January 2006 0 710,700	
March 2006 0 1,081,726	0.71
April 2006 10 408,494	• • • • • • • • • • • • • • • • • • • •
May 2006 0 652,543	
June 2006 0 1,463,805	
July 2006 0 1,076,551	
August 2006 0 1,146,830	
RW-1(S) ² August 2005 32 780,217 1.96 -	Maintenance
September 2005 4 527,699	4.91
October 2005 43 783,765	4.01
November 2005 42 1,103,548	
December 2005 40 900,898	
January 2006 30 270,228	
February 2006 27 1,042,895	
March 2006 40 1,049,702	0.71
April 2006 57 736,984	0.71
May 2006 77 744,621	
June 2006 59 935,039	4.63
July 2006 28 722,887	4.00
August 2006 17 741,315	
RW-1(X) August 2005 0 142,000	
September 2005 0 80,000	4.91
October 2005 0 299,300	4.51
November 2005 0 390,700	
December 2005 0 3324,500	
January 2006 0 417,500	
February 2006 0 381,500	
March 2006 0 119,720	0.71
April 2006 0 403,940	V.1 1
May 2006 0 385,828	
July 2006 0 561,633	
June 2006 0 369,041	
August 2006 0 471,215	

TABLE 21-5 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS **EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1**

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS August 2006

Recovery System Location	Month	Oil Collected (gallon)	Water Recovered (gallon)	Percent Downtime
RW-3(X)	August 2005	51		11.76 - Maintenance
. ,	September 2005	40		
	October 2005	19		35.71
	November 2005	51		5.88
	December 2005	31		
	January 2006	27		
	February 2006	20		
	March 2006	36		
	April 2006	29		
	May 2006	29		
	June 2006	42		
	July 2006	28		
	August 2006	37		

Summary of Total Automated Removal							
Water: 4,564,836 Gallons							
LNAPL:	955	Gallons					
DNAPL:	37	Gallons					

Notes:

- 1. The flow meter at recovery well 64V was reset in December 2004.
- The flow meter at recovery well RW-1(S) was reset in January 2006.
 The flow meters at recovery wells RW-1(X), RW-2(X), 64X(W), and 64R were reset in March 2006.

TABLE 21-6 WELL MONITORING AND RECOVERY OF LNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Well	Date	Depth to Water	Depth to LNAPL	LNAPL Thickness	LNAPL Removed	August 2006 Removal
Name		(ft BMP)	(ft BMP)	(feet)	(liters)	(liters)
13	8/21/06	18.22	18.10	0.12	0.074	0.074
14	8/21/06	18.38	18.15	0.23	0.142	0.142
25R	8/21/06	25.85	20.66	5.19	3.202	3.202
48	8/21/06	17.75	16.00	1.75	1.080	1.080
55	8/21/06	17.50	16.70	0.80	0.494	0.494
	7/14/06	14.81	13.74	1.07	2.600	
95-04R	8/21/06	15.00	14.30	0.70	1.730	4.430
95-04K	7/14/06	18.13	18.11	0.02	0.050	4.430
	8/21/06	19.26	19.24	0.02	0.049	
GMA1-15	8/21/06	15.98	15.61	0.37	0.228	0.228
GMA1-16	8/21/06	14.10	13.66	0.44	0.271	0.271
GMA1-17W	8/21/06	17.15	15.65	1.50	0.308	0.308
	8/2/06	12.10	11.35	0.75	0.463	
	8/9/06	11.53	11.51	0.02	0.012	
GMA1-19	8/16/06	11.90	11.65	0.25	0.154	0.666
	8/21/06	11.48	11.45	0.03	0.019	
	8/29/06	11.72	11.51	0.21	0.019	

Total LNAPL Removal East Street Area 2 - South for August 2006: 10.895 liters 2.875 gallons

Total LNAPL Removal for August 2006: 10.895 liters 2.875 gallons

Note:

1. ft BMP - feet Below Measuring Point.

TABLE 21-7 WELL MONITORING AND RECOVERY OF DNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Well	Date	Depth to Water	Depth to DNAPL	DNAPL Thickness		
Name		(ft BMP)	(ft BMP)	(feet)	(liters)	(liters)
E2SC-03I	8/21/06	9.90	35.50	6.83	4.214	4.214

Total DNAPL Removal East Street Area 2 - South for August 2006: 4.214 liters

1.112 gallons

Total DNAPL Removal for August 2006: 4.214 liters

1.112 gallons

Note:

1. ft BMP - feet Below Measuring Point

TABLE 21-8 64G TREATMENT PLANT DISCHARGE DATA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Date	Housatonic River Discharge (gallons)	Recharge Pond Discharge (gallons)	Total Discharge (gallons)	
August 2005	2,778,090	356,961	3,135,051	
September 2005	2,537,520	335,710	2,873,230	
October 2005	5,156,510	177,795	5,334,305	
November 2005	5,221,180	163,951	5,385,131	
December 2005	5,678,290	104,185	5,782,475	
January 2006	6,317,250	89,159	6,406,409	
February 2006	8,371,400	114,659	8,486,059	
March 2006	5,301,850 200,184		5,502,034	
April 2006	4,830,590	255,870	5,086,460	
May 2006	5,110,840	263,791	5,374,631	
June 2006	5,067,810	293,825	5,361,635	
July 2006	4,631,550	348,554	4,980,104	
August 2006	3,542,620	322,375	3,864,995	

After treatment, the majority of the water processed at GE's Building 64G groundwater treatment facility is discharged to the Housatonic River through NPDES permitted Outfall 005. However, as part of GE's overall efforts to contain NAPL within the site and to optimize NAPL recovery operations, a portion of the treated water discharged from the 64G facility is routed to GE's on-site recharge pond located in East Street Area 2-South.

TABLE 21-9 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

	August 2000									
	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected	
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.	
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)	
East Street Area						•				
13	990.88	8/21/06	18.22	18.10	0.12		22.50	0.00	972.77	
14	991.61	8/21/06	18.38	18.15	0.23		25.60	0.00	973.44	
19	983.59	8/2/06	11.40		0.00		18.30	0.00	972.19	
19	983.59	8/9/06	11.45		0.00		18.23	0.00	972.14	
19	983.59	8/16/06	11.60		0.00		18.20	0.00	971.99	
19	983.59	8/21/06	11.20		0.00		18.20	0.00	972.39	
19	983.59	8/29/06	11.52		0.00		18.15	0.00	972.07	
25R	998.31	8/21/06	25.85	20.66	5.19		30.75	0.00	977.29	
26RR	1,000.58	1/0/00	22.41	22.25	0.16		28.49	0.00	978.32	
40R	991.60	8/2/06	17.40		0.00		NM	0.00	974.20	
40R	991.60	8/9/06	17.70		0.00		NM	0.00	973.90	
40R	991.60	8/16/06	16.55		0.00		NM	0.00	975.05	
40R	991.60	8/21/06	18.05		0.00		NM	0.00	973.55	
40R	991.60	8/30/06	18.20		0.00		NM	0.00	973.40	
48	992.39	8/21/06	17.75	16.00	1.75		22.68	0.00	976.27	
49R	988.71	8/21/06	15.80		0.00		24.89	0.00	972.91	
49RR	989.80	8/21/06	16.90		0.00		23.04	0.00	972.90	
55	989.45	8/21/06	17.50	16.70	0.80		30.04	0.00	972.69	
64R	993.37	8/2/06	16.08	16.06	0.02		20.50	0.00	977.31	
64R	993.37	8/9/06	16.04	16.03	0.01		20.50	0.00	977.34	
64R	993.37	8/16/06	16.06	Р	< 0.01		20.50	0.00	977.31	
64R	993.37	8/21/06	16.30	16.29	0.01		20.50	0.00	977.08	
64R	993.37	8/30/06	16.18	P	< 0.01		20.50	0.00	977.19	
64S	984.48	8/2/06	19.25	P	< 0.01		28.70	0.00	965.23	
64S	984.48	8/9/06	19.23	Р	< 0.01		28.70	0.00	965.25	
64S	984.48	8/16/06	19.30		0.00		28.70	0.00	965.18	
64S	984.48	8/21/06	19.20	Р	< 0.01		28.70	0.00	965.28	
64S	984.48	8/30/06	19.30	Р	< 0.01		28.70	0.00	965.18	
64S-Caisson	NA	8/2/06	10.68	10.66	0.02		14.55	0.00	NA	
64S-Caisson	NA	8/9/06	11.00	10.95	0.05		14.55	0.00	NA	
64S-Caisson	NA	8/16/06	11.00	10.98	0.02		14.55	0.00	NA	
64S-Caisson	NA	8/21/06	10.40	Р	< 0.01		14.55	0.00	NA	
64S-Caisson	NA	8/30/06	10.77	10.75	0.02		14.55	0.00	NA	
64V	987.29	8/2/06	21.80	21.50	0.30		29.60	0.00	965.77	
64V	987.29	8/9/06	22.00	21.70	0.30		29.60	0.00	965.57	
64V	987.29	8/16/06	21.80	21.70	0.10	Р	29.60	< 0.01	965.58	
64V	987.29	8/21/06	21.90	21.70	0.20		29.60	0.00	965.58	
64V	987.29	8/30/06	21.90	21.50	0.40		29.60	0.00	965.76	
64X(N)	984.83	8/2/06	12.60	P	< 0.01		15.85	0.00	972.23	
64X(N)	984.83	8/9/06	12.75	Р	< 0.01		15.85	0.00	972.08	
64X(N)	984.83	8/16/06	12.95	12.94	0.01		15.85	0.00	971.89	
64X(N)	984.83	8/21/06	12.34	12.33	0.01		15.85	0.00	972.50	
64X(N)	984.83	8/30/06	12.61	12.60	0.01		15.85	0.00	972.23	
64X(S)	981.56	8/2/06	16.05	15.90	0.15		23.82	0.00	965.65	
64X(S)	981.56	8/9/06	16.10	16.00	0.10		23.82	0.00	965.55	
64X(S)	981.56	8/16/06	16.40	16.33	0.07		23.82	0.00	965.23	

TABLE 21-9 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)	Date	(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
64X(S)	981.56	8/21/06	15.25	15.15	0.10		23.82	0.00	966.40
64X(S)	981.56	8/30/06	15.50	15.45	0.10		23.82	0.00	966.11
64X(W)	984.87	8/2/06	19.13	19.10	0.03		24.35	0.00	965.77
64X(W)	984.87	8/9/06	19.13	19.10	0.03		24.35	0.00	965.59
64X(W)	984.87	8/16/06	19.50	19.47	0.01		24.35	0.00	965.40
64X(W)	984.87	8/21/06	18.40	18.38	0.03		24.35	0.00	966.49
64X(W)	984.87	8/30/06	18.75	18.73	0.02		24.35	0.00	966.14
95-01	983.77	8/21/06	10.75		0.00		17.25	0.00	972.82
95-04R	988.70	7/14/06	14.81	13.74	1.07		22.15	0.00	974.89
95-04R	988.70	8/21/06	15.00	14.30	0.70		22.05	0.00	974.35
95-04R 95-07R	994.91	7/14/06	18.13	18.11	0.70		26.05	0.00	976.80
95-07R 95-07R	994.91	8/21/06	19.26	19.24	0.02		26.10	0.00	975.67
3-6C-EB-22	986.94	8/21/06	14.20		0.02		20.10	0.00	972.74
E2SC-03I	982.12	8/21/06	9.90		0.00	35.50	42.33	6.83	972.22
E2SC-17	985.38	8/21/06	11.50		0.00		45.75	0.00	973.88
E2SC-23	992.07	8/21/06	17.75		0.00		21.15	0.00	974.32
E2SC-24	987.90	8/21/06	15.51		0.00		21.61	0.00	972.39
ES2-06	986.00	8/21/06	13.30		0.00		34.55	0.00	972.70
GMA1-14	997.43	8/21/06	9.42	9.40	0.00		23.26	0.00	988.03
GMA1-14 GMA1-15	988.59	8/21/06	15.98	15.61	0.02		17.84	0.00	972.95
GMA1-16	986.82	8/21/06	14.10	13.66	0.44		20.00	0.00	973.13
GMA1-17E	993.03	8/21/06	15.90	15.88	0.02		17.30	0.00	977.15
GMA1-17W	992.63	8/21/06	17.15	15.65	1.50		23.25	0.00	976.88
GMA1-19	984.28	8/2/06	12.10	11.35	0.75		17.13	0.00	972.88
GMA1-19	984.28	8/9/06	11.53	11.51	0.02		17.14	0.00	972.77
GMA1-19	984.28	8/16/06	11.90	11.65	0.25		17.13	0.00	972.61
GMA1-19	984.28	8/21/06	11.48	11.45	0.03		17.14	0.00	972.83
GMA1-19	984.28	8/29/06	11.72	11.51	0.21		17.14	0.00	972.76
GMA1-20	983.49	8/2/06	10.98		0.00		17.14	0.00	972.51
GMA1-20	983.49	8/9/06	11.02		0.00		17.28	0.00	972.47
GMA1-20	983.49	8/16/06	11.20		0.00		19.44	0.00	972.29
GMA1-20	983.49	8/21/06	10.84		0.00		17.30	0.00	972.65
GMA1-20	983.49	8/29/06	11.00		0.00		17.30	0.00	972.49
GMA1-21	985.68	8/2/06	13.05		0.00		19.48	0.00	972.63
GMA1-21	985.68	8/9/06	13.25		0.00		19.46	0.00	972.43
GMA1-21	985.68	8/16/06	13.30		0.00		19.44	0.00	972.38
GMA1-21	985.68	8/21/06	13.00		0.00		19.45	0.00	972.68
GMA1-21	985.68	8/29/06	13.10		0.00		19.45	0.00	972.58
GMA1-22	988.45	8/21/06	15.40		0.00		19.25	0.00	973.05
GMA1-23	986.16	8/21/06	13.23		0.00		17.30	0.00	972.93
GMA1-24	983.81	8/21/06	11.20		0.00		16.10	0.00	972.61
GMA1-24	983.81	8/29/06	11.35		0.00		16.10	0.00	972.46
HR-G2-MW-1	982.60	8/21/06	8.50		0.00		18.24	0.00	974.10
HR-G2-MW-2	981.39	8/21/06	8.74		0.00		17.76	0.00	972.65
HR-G2-MW-3	987.14	8/21/06	14.75		0.00		22.00	0.00	972.39
HR-G2-RW-1	976.88	8/21/06	6.20		0.00		18.70	0.00	972.25
RW-1(S)	987.23	8/2/06	19.25	19.10	0.15		28.60	0.00	968.12

TABLE 21-9 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)	
RW-1(S)	987.23	8/16/06	19.20	19.18	0.02	Р	28.60	< 0.01	968.05	
RW-1(S)	987.23	8/21/06	18.96	18.94	0.02		28.60	0.00	968.29	
RW-1(S)	987.23	8/30/06	19.25	19.00	0.25		28.60	0.00	968.21	
RW-1(X)	982.68	8/2/06	14.00		0.00		20.80	0.00	968.68	
RW-1(X)	982.68	8/9/06	14.25		0.00		20.80	0.00	968.43	
RW-1(X)	982.68	8/16/06	14.29		0.00		20.80	0.00	968.39	
RW-1(X)	982.68	8/21/06	14.20		0.00		20.80	0.00	968.48	
RW-1(X)	982.68	8/30/06	13.95		0.00		20.80	0.00	968.73	
RW-2(X)	985.96	8/2/06	14.30		0.00		15.30	0.00	971.66	
RW-2(X)	985.96	8/9/06	14.35		0.00		15.30	0.00	971.61	
RW-2(X)	985.96	8/16/06	14.78		0.00		15.30	0.00	971.18	
RW-2(X)	985.96	8/21/06	13.75		0.00		15.30	0.00	972.21	
RW-2(X)	985.96	8/30/06	14.15		0.00		15.30	0.00	971.81	
RW-3(X)	980.28	8/2/06	9.20		0.00	43.00	44.40	1.40	971.08	
RW-3(X)	980.28	8/9/06	9.30		0.00	42.90	44.40	1.50	970.98	
RW-3(X)	980.28	8/16/06	9.70		0.00	42.80	44.40	1.60	970.58	
RW-3(X)	980.28	8/21/06	10.80		0.00	42.90	44.40	1.50	969.48	
RW-3(X)	980.28	8/30/06	9.10		0.00	42.60	44.40	1.80	971.18	
Housatonic Rive	er									
SG-HR-1	990.73	8/2/06	19.89	See Note 7 reg	garding depth	to water	•	•	970.84	
SG-HR-1	990.73	8/9/06	19.70	See Note 7 reg	garding depth	to water			971.03	
SG-HR-1	990.73	8/16/06	16.73	See Note 7 reg	See Note 7 regarding depth to water 974.00					
SG-HR-1	990.73	8/23/06	19.55	See Note 7 reg	garding depth	to water	•	•	971.18	
SG-HR-1	990.73	8/30/06	19.50	See Note 7 reg	garding depth	to water			971.23	

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 6. Well HR-G2-RW-1 is constructed at an angle of 41.67 degrees from vertical. Depth to water data reflect measurements collected along the angled well casing. Groundwater elevations are corrected to account for the angle of the well casing.
- 7. A survey reference point (SG-HR-1) was established on the Newell Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.
- 8. A weighted bailer has been installed at this location to remove accumulations of DNAPL. The DNAPL thickness reported is that measured within the bailer upon the initial retrieval.

TABLE 21-10 ACTIVE RECOVERY SYSTEMS MONTHLY SUMMARY LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Month / Year	Volume Water Pumped (gallon)	RW-1 DNAPL Recovered (gallon)	RW-1R LNAPL Recovered (gallon)	RW-3 LNAPL Recovered (gallon)
August 2004	310,473			
September 2004	499,209		1	20
October 2004	426,078			
November 2004	421,409			12
December 2004	539,528			10
January 2005	443,634			10
February 2005	409,113			5
March 2005	455,192			5
April 2005	425,145			5
May 2005	357,497			
June 2005	422,006			10
July 2005	310,647		5	10
August 2005	302,572			
September 2005	198,753			
October 2005	314,247			
November 2005	412,936			
December 2005	332,721			
January 2006	342,548			
February 2006	336,595			
March 2006	322,169			
April 2006	245,626			
May 2006	253,821			
June 2006	562,906			
July 2006	206,016			
August 2006	216,359			

Notes:

- 1. Volume of water pumped is total from Wells RW-1R, RW-2, and RW-3.
- 2. -- indicates LNAPL or DNAPL was not recovered by the system.
- 3. There was 8 hours of downtime for RW-1/1R. There was no downtime for RW-2 or RW-3 during August 2006.

TABLE 21-11 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	August 2006 Removal (liters)
LS-31	8/30/06	14.50	14.10	0.40	0.247	0.247

Total Manual LNAPL Removal for August 2006: 0.247 liters 0.065 gallons

Note:

1. ft BMP - feet Below Measuring Point.

Page 1 of 1 9/7/2006

TABLE 21-12 MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL LYMAN STREET AREA

GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Well Name	Date	Depth to Water (ft BMP)	Depth to DNAPL (ft BMP)	DNAPL Thickness (feet)	DNAPL Removed (liters)	August 2006 Removal (liters)
LS-30	8/30/06	14.40	19.50	2.7	1.67	1.67
	8/2/06	11.35	24.70	0.38	0.234	
	8/9/06	11.41	24.65	0.43	0.265	
LSSC-07	8/16/06	11.60	24.72	0.36	0.222	1.111
	8/23/06	11.30	24.78	0.30	0.185	
	8/30/06	11.35	24.75	0.33	0.204	
LSSC-08I	8/16/06	13.10	23.37	0.01	0.006	0.012
L33C-001	8/23/06	12.75	23.35	0.01	0.006	0.012

Total Manual DNAPL Removal for August 2006: 1.123 liters

0.296 gallons

Note:

1. ft BMP - feet Below Measuring Point.

TABLE 21-13 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
EPA-01	983.04	8/30/06	12.60		0.00		22.65	0.00	970.44
LS-24	986.58	8/30/06	14.28		0.00		15.06	0.00	972.30
LS-30	986.440	8/30/06	14.40		0.00	19.50	22.20	2.70	972.04
LS-31	987.090	8/30/06	14.50	14.10	0.40	23.10	23.32	0.22	972.96
LS-38	986.95	8/30/06	16.06		0.00		25.04	0.00	970.89
LS-44	980.78	8/30/06	10.20		0.00		24.78	0.00	970.58
LSSC-07	982.48	8/2/06	11.35		0.00	24.70	25.08	0.38	971.13
LSSC-07	982.48	8/9/06	11.41		0.00	24.65	25.08	0.43	971.07
LSSC-07	982.48	8/16/06	11.60		0.00	24.72	25.08	0.36	970.88
LSSC-07	982.48	8/23/06	11.30		0.00	24.78	25.08	0.30	971.18
LSSC-07	982.48	8/30/06	11.35		0.00	24.75	25.08	0.33	971.13
LSSC-08I	983.13	8/2/06	12.94		0.00		23.39	0.00	970.19
LSSC-08I	983.13	8/9/06	12.93		0.00		23.38	0.00	970.20
LSSC-08I	983.13	8/16/06	13.10		0.00	23.37	23.38	0.01	970.03
LSSC-08I	983.13	8/23/06	12.75		0.00	23.35	23.36	0.01	970.38
LSSC-08I	983.13	8/30/06	12.80		0.00		23.37	0.00	970.33
LSSC-08S	983.11	8/30/06	12.82		0.00		14.68	0.00	970.29
LSSC-16I	980.88	8/30/06	9.65		0.00		28.53	0.00	971.23
LSSC-18	987.32	8/30/06	14.97		0.00		18.58	0.00	972.35
LSSC-32	980.68	8/30/06	9.77		0.00		35.24	0.00	970.91
LSSC-33	980.49	8/30/06	9.60		0.00		29.24	0.00	970.89
RW-1	984.88	8/2/06	12.70		0.00	Р	21.00	< 0.01	972.18
RW-1	984.88	8/9/06	12.81		0.00	Р	21.00	< 0.01	972.07
RW-1	984.88	8/16/06	13.00		0.00	Р	21.00	< 0.01	971.88
RW-1	984.88	8/21/06	12.80		0.00	Р	21.00	< 0.01	972.08
RW-1	984.88	8/30/06	12.90		0.00	Р	21.00	< 0.01	971.98
RW-1 (R)	985.07	8/2/06	14.80		0.00	Р	20.42	< 0.01	970.27
RW-1 (R)	985.07	8/9/06	14.69		0.00	Р	20.42	< 0.01	970.38
RW-1 (R)	985.07	8/16/06	14.80		0.00	Р	20.42	< 0.01	970.27
RW-1 (R)	985.07	8/21/06	15.75		0.00	Р	20.42	< 0.01	969.32
RW-1 (R)	985.07	8/30/06	15.60		0.00	Р	20.42	< 0.01	969.47
RW-2	987.82	8/2/06	14.85		0.00		21.75	0.00	972.97
RW-2	987.82	8/9/06	14.75		0.00		21.75	0.00	973.07
RW-2	987.82	8/16/06	15.30		0.00		21.75	0.00	972.52
RW-2	987.82	8/21/06	14.55		0.00		21.75	0.00	973.27
RW-2	987.82	8/30/06	15.10		0.00		21.75	0.00	972.72
RW-3	984.08	8/2/06	16.64	16.61	0.03		21.57	0.00	967.47
RW-3	984.08	8/9/06	16.58	16.45	0.13		21.57	0.00	967.62
RW-3	984.08	8/16/06	16.30	16.28	0.02		21.57	0.00	967.80
RW-3	984.08	8/21/06	16.60	16.50	0.10		21.57	0.00	967.57
RW-3	984.08	8/30/06	16.85	16.70	0.15		21.57	0.00	967.37

TABLE 21-13 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
Housatonic River (Lyman Street Bridge)									
BM-2A	986.32	8/2/06	16.48	See Note 5	See Note 5 regarding depth to water				
BM-2A	986.32	8/9/06	16.40	See Note 5	See Note 5 regarding depth to water				
BM-2A	986.32	8/16/06	16.50	See Note 5	regarding de	oth to water			969.82
BM-2A	986.32	8/23/06	16.35	See Note 5	regarding de	oth to water	•		969.97
BM-2A	986.32	8/30/06	16.38	See Note 5	regarding de	oth to water	•	·	969.94

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 5. A survey reference point (BM-2A) was established on the Lyman Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

9/7/2006

TABLE 21-14 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

CONSENT DECREE MONTHLY STATUS REPORT GROUNDWATER MANAGEMENT AREA 1 - NEWELL STREET AREA II MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL August 2006

Well Name	Date	Depth to Water (ft BMP)	Depth to DNAPL (ft BMP)	DNAPL Thickness (feet)	DNAPL Removed (liters)	August 2006 Removal (liters)
N2SC-01I	8/30/06	12.35	36.30	4.10	2.530	2.530
N2SC-03I	8/30/06	10.90	35.40	2.35	1.450	1.450
N2SC-08	8/30/06	11.94	38.80	2.35	1.45	1.450
NS-30	8/30/06	10.60	34.40	0.70	0.432	0.432
NS-32	8/30/06	11.61	37.75	0.25	0.154	0.154

Total DNAPL Removal for August 2006: 6.015 liters 1.587 gallons

Note:

1. ft BMP - feet Below Measuring Point.

TABLE 21-15 ROUTINE WELL MONITORING NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
N2SC-01I	984.99	8/2/06	13.55		0.00	37.10	40.45	3.35	971.44
N2SC-01I	984.99	8/9/06	12.55		0.00	36.25	40.40	4.15	972.44
N2SC-01I	984.99	8/16/06	12.60		0.00	36.50	40.40	3.90	972.39
N2SC-01I	984.99	8/23/06	12.60		0.00	36.50	40.40	3.90	972.39
N2SC-01I	984.99	8/30/06	12.35		0.00	36.30	40.40	4.10	972.64
N2SC-01I(R)	986.01	8/2/06	13.91		0.00	39.20	40.60	1.40	972.10
N2SC-02	985.56	8/30/06	11.50		0.00		38.35	0.00	974.06
N2SC-03I	986.24	8/2/06	10.93		0.00	35.30	37.79	2.49	975.31
N2SC-03I	986.24	8/9/06	11.05		0.00	35.35	37.80	2.45	975.19
N2SC-03I	986.24	8/16/06	11.15		0.00	35.55	37.75	2.20	975.09
N2SC-03I	986.24	8/23/06	12.91		0.00	35.80	37.75	1.95	973.33
N2SC-03I	986.24	8/30/06	10.90		0.00	35.40	37.75	2.35	975.34
N2SC-03I(R)	985.86	8/2/06	13.60		0.00	37.90	40.60	2.70	972.26
N2SC-03I(R)	985.86	8/9/06	13.65		0.00	38.00	40.58	2.58	972.21
N2SC-03I(R)	985.86	8/16/06	12.85		0.00	36.80	39.55	2.75	973.01
N2SC-07	984.61	8/30/06	10.53		0.00		35.83	0.00	974.08
N2SC-08	986.07	8/30/06	11.94		0.00	38.80	41.15	2.35	974.13
N2SC-14	985.06	8/2/06	14.90		0.00	38.55	40.30	1.75	970.16
NS-15R	NA	8/2/06	11.18		0.00		19.04	0.00	NA
NS-15R	NA	8/9/06	11.20		0.00		19.00	0.00	NA
NS-15R	NA	8/16/06	11.40		0.00		19.00	0.00	NA
NS-15R	NA	8/23/06	11.04		0.00		14.00	0.00	NA
NS-15R	NA	8/30/06	11.02		0.00		19.03	0.00	NA
NS-30	985.99	8/2/06	10.70		0.00	34.45	35.15	0.70	975.29
NS-30	985.99	8/9/06	10.75		0.00	34.35	35.15	0.80	975.24
NS-30	985.99	8/16/06	10.90		0.00	34.30	35.10	0.80	975.09
NS-30	985.99	8/23/06	10.60		0.00	34.30	35.30	1.00	975.39
NS-30	985.99	8/30/06	10.60		0.00	34.40	35.10	0.70	975.39
NS-32	986.20	8/2/06	11.70		0.00	37.80	38.05	0.25	974.50
NS-32	986.20	8/9/06	11.70		0.00	37.85	38.04	0.19	974.50
NS-32	986.20	8/16/06	11.95		0.00	37.85	38.03	0.18	974.25
NS-32	986.20	8/23/06	11.62		0.00	37.70	38.00	0.30	974.58
NS-32	986.20	8/30/06	11.61		0.00	37.75	38.00	0.25	974.59

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.

9/7/2006

TABLE 21-16 ROUTINE WELL MONITORING SILVER LAKE AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)	
Staff Gauge within Silver Lake										
Silver Lake Gauge	980.30	8/2/06	4.53	See Note 4	See Note 4 regarding depth to water					
Silver Lake Gauge	980.30	8/9/06	4.58	See Note 4	See Note 4 regarding depth to water					
Silver Lake Gauge	980.30	8/16/06	4.56	See Note 4	See Note 4 regarding depth to water					
Silver Lake Gauge	980.30	8/23/06	4.98	See Note 4 regarding depth to water					985.28	
Silver Lake Gauge	980.30	8/30/06	4.48	See Note 4	regarding de	epth to water	•		984.78	

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. A survey reference point was established on the Silver Lake staff gauge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.
- Additional groundwater elevation data were collected from wells near Silver Lake that are located in the 30s Complex and at the Lyman Street Area. Those results are presented in the monitoring tables for those Removal Action Areas.

ITEM 22 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS J & K (GMA 2) (GECD320) AUGUST 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Continued routine river elevation monitoring.

b. Sampling/Test Results Received

See attached table.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue routine river elevation monitoring.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

TABLE 22-1 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 2

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)			
Housatonic R	Housatonic River (Foot Bridge)											
GMA2-SG-1	989.82	8/30/06	17.08	See Note 2	-	972.74						

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. A survey reference point was established on the Oxbow J & K foot bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

ITEM 23 GROUNDWATER MANAGEMENT AREAS PLANT SITE 2 (GMA 3) (GECD330) AUGUST 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

- Conducted routine groundwater elevation and NAPL monitoring activities. Approximately 106.877 liters (28.20 gallons) of LNAPL were removed by the automatic skimmer located in well 51-21 and an additional 4.960 liters (1.31 gallons) of LNAPL were manually removed from the wells in this area (see Table 23-6).
- Conducted soil gas investigation near Building 51, including sampling of soil gas as well as sampling of groundwater and LNAPL near the soil gas sample locations, as identified in Table 23-1.
- Collected and tankered approximately 455 gallons of drummed water from GMA 3 to Building 64G for treatment.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted Groundwater Quality Monitoring Interim Report for Spring 2006 (August 30, 2006).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue ongoing groundwater and NAPL monitoring and recovery activities.
- Submit report on soil gas investigation near Building 51 (due to EPA by September 11, 2006).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

TABLE 23-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2006

GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Received by
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	GE or BBL
Soil Gas Investigation	51-8	8/8/06	Water	SGS	VOC, SVOC	8/25/06
Soil Gas Investigation	51-8	8/8/06	NAPL	SGS	VOC, SVOC	8/25/06
Soil Gas Investigation	DUP-1 (51-8)	8/8/06	Water	SGS	VOC, SVOC	8/25/06
Soil Gas Investigation	DUP-1 (51-8)	8/8/06	NAPL	SGS	VOC, SVOC	8/25/06
Soil Gas Investigation	GMA3-10	8/8/06	Water	SGS	VOC, SVOC	8/25/06
Soil Gas Investigation	GMA3-10	8/8/06	NAPL	SGS	VOC, SVOC	8/25/06
Soil Gas Investigation	SG-51E	8/7/06	Air	Lancaster	VOC, SVOC	8/31/06
Soil Gas Investigation	SG-51S	8/7/06	Air	Lancaster	VOC, SVOC	8/31/06
Soil Gas Investigation	SG-51W	8/7/06	Air	Lancaster	VOC, SVOC	8/31/06
Soil Gas Investigation	SG-DUP-1 (SG-51S)	8/7/06	Air	Lancaster	VOC, SVOC	8/31/06
Soil Gas Investigation	UB-PZ-3	8/8/06	NAPL	SGS	VOC, SVOC	8/25/06
Soil Gas Investigation	UB-PZ-3	8/8/06	Water	SGS	VOC, SVOC	8/25/06

Notes:

- 1. Field duplicate sample locations are presented in parenthesis.
- 2. (f) Indicates filtered analysis requested.

BASELINE SEMI-ANNUAL GROUNDWATER SAMPLING GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	2A 04/19/06	16A 04/20/06	39B-R 04/20/06	114B-R 04/20/06
Volatile Organics					
Benzene				1.4 J	0.021 J
Chlorobenzene					
Ethylbenzene			ND(5.0)	ND(5.0)	ND(0.050)
Methylene Chloride		ND(0.50)	ND(5.0)	ND(5.0)	ND(0.050)
Toluene				0.70 J	ND(0.050)
Trichloroethene			ND(5.0)		ND(0.050)
Vinyl Chloride		ND(0.20)	ND(2.0)	ND(2.0)	0.013 J
Xylenes (total)		ND(1.0)	ND(10)	ND(10)	ND(0.10)
Total VOCs					0.32 J

Notes:

- 1. These results have been revised by the laboratory and supersede those results reported in Table 23-2 and Table 24-2 of the May 2006 CD Monthly Report.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. -- Sample results not revised by laboratory.

Data Qualifiers:

Organics (volatiles)

TABLE 23-3 NAPL DATA RECEIVED DURING AUGUST 2006

SOIL GAS INVESTIGATION GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Pagulto are presented in parts are million, page)

(Results are presented in parts per million, ppm)

	Sample ID:	51-8	GMA3-10	UB-PZ-3
Parameter	Date Collected:	08/08/06	08/08/06	08/08/06
Volatile Organics				
Methylene Chloride		0.90 J [0.67 J]	0.77 J	0.73 J
Tetrachloroethene		0.55 J [0.47 J]	ND(1.0)	ND(1.0)
Trichloroethene		0.65 J [0.34 J]	ND(1.0)	ND(1.0)
Semivolatile Organics	1			
1,2,4-Trichlorobenzene		7.7 [8.1]	0.89 J	7.9
1,3-Dichlorobenzene		1.5 [1.5]	ND(1.0)	1.2
1,4-Dichlorobenzene		4.2 [4.0]	0.22 J	ND(1.0)
Naphthalene		ND(1.0) [0.29 J]	ND(1.0)	ND(1.0)

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of VOCs and selected SVOCs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Only those constituents detected in one or more samples are summarized.
- 4. Field duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (volatiles, semivolatiles)

TABLE 23-4 GROUNDWATER DATA RECEIVED DURING AUGUST 2006

SOIL GAS INVESTIGATION GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Pagulto are presented in parts are million, page)

(Results are presented in parts per million, ppm)

	Sample ID:	51-8	GMA3-10	UB-PZ-3
Parameter	Date Collected:	08/08/06	08/08/06	08/08/06
Volatile Organics				
2-Butanone		0.0056 [0.0058]	0.0042 J	0.0042 J
Acetone		0.017 [0.018]	0.011	0.014
Toluene		0.00021 J [ND(0.0010)]	ND(0.0010)	ND(0.0010)
Trichloroethene		0.00096 J [0.0010]	ND(0.0010)	0.00027 J
Vinyl Chloride		0.0013 [0.0015]	ND(0.0010)	ND(0.0010)
Semivolatile Orga	anics			
1,2,4-Trichloroben	zene	0.0014 [0.0012]	ND(0.0010)	0.0015
1,3-Dichlorobenze	ne	0.00048 J [0.00052 J]	ND(0.0010)	0.00030 J
1,4-Dichlorobenze	ne	0.0024 [0.0025]	0.00026 J	ND(0.0010)

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of VOCs and selected SVOCs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Only those constituents detected in one or more samples are summarized.
- 4. Field duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (volatiles, semivolatiles)

TABLE 23-5 SOIL GAS DATA RECEIVED DURING AUGUST 2006

SOIL GAS INVESTIGATION GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in ug/m³)

Sample ID:	SG-51E	SG-51S	SG-51W
Parameter Date Collected:	08/07/06	08/07/06	08/07/06
Volatile Organics			
1,1,1-Trichloroethane	25	ND(55) [ND(55)]	ND(5.5)
1,1,2-trichloro-1,2,2-trifluoroethane	33	ND(77) [45 J]	ND(7.7)
1,1-Dichloroethane	2.3 J	ND(40) [ND(40)]	ND(4.0)
1,2,4-Trimethylbenzene	24	24 J [25 J]	240
1,2-Dichloroethane	ND(4.0)	ND(40) [11 J]	ND(4.0)
1,3,5-Trimethylbenzene	6.9	9.8 J [12 J]	57
1,3-butadiene	2.5 J	ND(44) [ND(44)]	3.3 J
2-Butanone	130	870 [770]	380
2-Hexanone	ND(8.2)	35 J [ND(82)]	ND(8.2)
4-Ethyltoluene	19	29 J [26 J]	110
4-Methyl-2-pentanone	4.4 J	ND(82) [ND(82)]	21
Acetone	270	3300 [3900]	480
Acetonitrile	ND(3.4)	48 [68]	ND(3.4)
Acrolein	ND(4.6)	46 J [46 J]	ND(4.6)
Benzene	3.5	9.9 J [12 J]	4.2
Carbon Disulfide	3.0 J	130 [140]	ND(3.1)
Carbon Tetrachloride	8.0	ND(63) [ND(63)]	ND(6.3)
Chlorodifluoromethane	ND(3.5)	ND(35) [59]	ND(3.5)
Chloroform	62	31 J [32 J]	1.5 J
cis-1,2-Dichloroethene	14	ND(40) [ND(40)]	ND(4.0)
Cumene	1.6 J	ND(49) [ND(49)]	6.9
Dichlorodifluoromethane	1.9 J	ND(49) [ND(49)]	ND(4.9)
Ethyl Acetate	ND(3.6)	49 [54]	9.2
Ethylbenzene	13	380 [360]	67
Heptane	9.4	44 [39 J]	11
Hexane	10	40 [50]	15
Isooctane	ND(4.7)	28 J [47]	2.0 J
m&p-Xylene	29	710 [670]	110
Methyl Methacrylate	ND(4.1)	ND(41) [89]	ND(4.1)
Methyl tert-butyl ether	2.1 J	49 [45]	13
Methylene Chloride	ND(3.5)	73 [190]	ND(3.5)
Octane	3.7 J	1200 [1100]	5.6
o-Xylene	12	160 [160]	58
Pentane	28	220 [220]	71
Propene	180	170 [170]	380
Styrene	1.7 J	17 J [16 J]	7.4
tert-Butyl Alcohol	1.4 J	ND(30) [ND(30)]	ND(3.0)
Tetrachloroethene	61	ND(68) [ND(68)]	ND(6.8)
Toluene	8.4	5700 [6000]	40
Trichloroethene	910	82 [81]	ND(5.4)
Trichlorofluoromethane	12	ND(56) [19 J]	21
Semivolatile Organics		. /	-
1,3-Dichlorobenzene	5.1 J	ND(60) [ND(60)]	11
Naphthalene	9.6	17 [17]	21

TABLE 23-5 SOIL GAS DATA RECEIVED DURING AUGUST 2006

SOIL GAS INVESTIGATION GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in ug/m³)

Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to Lancaster Laboratories for analysis of VOCs and selected SVOCs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Only those constituents detected in one or more samples are summarized.
- 4. Field duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (volatiles, semivolatiles)

TABLE 23-6 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	August 2006 Removal (liters)
	8/16/06	12.65	11.50	1.15	0.680	
51-08	8/23/06	12.60	11.45	1.15	0.709	2.006
	8/29/06	12.50	11.50	1.00	0.617	
51-16R	8/29/06	11.25	10.84	0.41	0.25	0.253
51-17	8/29/06	11.60	10.65	0.95	0.59	0.586
	8/2/06	15.79	15.77	0.02	12.51	
	8/9/06	16.08	Р	< 0.01	15.92]
51-21	8/16/06	16.70	16.30	0.40	15.92	106.877
	8/21/06	16.05	16.03	0.02	29.18	
	8/30/06	16.03	16.00	0.03	33.35	
59-03R	8/29/06	12.56	12.00	0.56	0.40	0.395
CMA2.40	8/8/06	12.30	11.64	0.66	0.408	0.040
GMA3-10	8/16/06	12.15	11.81	0.34	0.210	0.618
GMA3-12	8/2/06	12.23	11.90	0.33	0.816	0.816
	8/2/06	11.75	11.73	0.02	0.019	
CMA2 42	8/9/06	11.90	11.88	0.02	0.012	0.004
GMA3-13	8/16/06	12.00	11.96	0.04	0.024	0.061
	8/29/06	12.02	12.01	0.01	0.006	
UB-PZ-3	8/8/06	12.76	12.48	0.28	0.173	0.225
UD-PZ-3	8/29/06	12.80	12.65	0.15	0.05	0.225

Total Automated LNAPL Removal at well 51-21 for August 2006: 106.877 liters 28.20 Gallons

Total Manual LNAPL Removal at all other wells for August 2006: 4.960 liters

1.31 Gallons

Total LNAPL Removed for August 2006: 111.837 liters

29.51 Gallons

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. P indicates that LNAPL or DNAPL is present at a thickness that is < 0.01 feet. The corresponding thickness is recorded as such.

TABLE 23-7 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)	2000	(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
51-05	996.44	8/29/06	10.63	10.60	0.03		11.41	0.00	985.84
51-06	997.36	8/29/06	11.20		0.00		14.56	0.00	986.16
51-07	997.08	8/29/06	9.00		0.00		11.24	0.00	988.08
51-08	997.08	8/2/06	12.65	11.25	1.40		14.66	0.00	985.73
51-08	997.08	8/8/06	12.88	11.36	1.52		14.70	0.00	985.61
51-08	997.08	8/9/06	12.75	11.40	1.35		14.70	0.00	985.59
51-08	997.08	8/16/06	12.65	11.50	1.15		14.68	0.00	985.50
51-08	997.08	8/23/06	12.60	11.45	1.15		14.67	0.00	985.55
51-08	997.08	8/29/06	12.50	11.50	1.00		14.69	0.00	985.51
51-09	997.70	8/29/06	11.56		0.00		11.60	0.00	986.14
51-11	994.37	8/29/06	9.30		0.00		13.54	0.00	985.07
51-12	996.55	8/29/06	7.73		0.00		13.34	0.00	988.82
51-13	997.42	8/29/06	Dry at 9.90 Fe		0.00		9.73	0.00	NA
51-14	996.77	8/29/06	11.45		0.00		14.80	0.00	985.32
51-15	996.43	8/29/06	11.14	10.95	0.19		14.40	0.00	985.47
51-16R	996.39	8/29/06	11.25	10.84	0.41		14.55	0.00	985.52
51-17	996.43	8/29/06	11.60	10.65	0.95		14.50	0.00	985.71
51-17	997.12	8/29/06	8.23		0.00		12.60	0.00	988.89
51-19	996.43	8/29/06	Well is Subme				14.06	0.00	NA
51-13	1001.49	8/2/06	15.79	15.77	0.02		NM	0.00	985.72
51-21	1001.49	8/9/06	16.08	P	< 0.02		NM	0.00	985.41
51-21	1001.49	8/16/06	16.70	16.30	0.40		NM	0.00	985.16
51-21	1001.49	8/21/06	16.05	16.03	0.02		NM	0.00	985.46
51-21	1001.49	8/30/06	16.03	16.00	0.02		NM	0.00	985.49
59-01	997.52	8/29/06	Dry at 11.40 F				11.43	0.00	NA
59-03R	997.64	8/29/06	12.56	12.00	0.56		17.05	0.00	985.60
59-07	997.96	8/29/06	12.04	12.02	0.02		23.54	0.00	985.94
GMA3-10	997.54	8/2/06	11.98	11.52	0.46		17.96	0.00	985.99
GMA3-10	997.54	8/8/06	12.30	11.64	0.66		17.96	0.00	985.85
GMA3-10	997.54	8/9/06	12.10	11.70	0.40		17.93	0.00	985.81
GMA3-10	997.54	8/16/06	12.15	11.81	0.34		17.95	0.00	985.71
GMA3-10	997.54	8/23/06	12.03	11.81	0.22		17.96	0.00	985.71
GMA3-10	997.54	8/29/06	12.02	11.81	0.21		17.93	0.00	985.72
GMA3-11	997.25	8/29/06	9.96		0.00		18.30	0.00	987.29
GMA3-12	997.84	8/2/06	12.23	11.90	0.33		21.24	0.00	985.92
GMA3-12	997.84	8/9/06	12.20	12.09	0.11		21.24	0.00	985.74
GMA3-12	997.84	8/16/06	12.31	12.15	0.16		21.22	0.00	985.68
GMA3-12	997.84	8/23/06	12.30	12.18	0.12		21.24	0.00	985.65
GMA3-12	997.84	8/29/06	12.30	12.12	0.18		21.20	0.00	985.71
GMA3-13	997.73	8/2/06	11.75	11.73	0.02		17.70	0.00	986.00
GMA3-13	997.73	8/9/06	11.90	11.88	0.02		17.68	0.00	985.85
GMA3-13	997.73	8/16/06	12.00	11.96	0.04		17.68	0.00	985.77
GMA3-13	997.73	8/23/06	11.96		0.00		17.62	0.00	985.77
GMA3-13	997.73	8/29/06	12.02	12.01	0.01		17.64	0.00	985.72
GMA3-14	997.42	8/29/06	10.97		0.00		16.83	0.00	986.45

TABLE 23-7 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
UB-MW-10	995.99	8/29/06	10.40		0.00		14.95	0.00	985.59
UB-PZ-3	998.15	8/8/06	12.76	12.48	0.28		13.40	0.00	985.65
UB-PZ-3	998.15	8/29/06	12.80	12.65	0.15		13.42	0.00	985.49

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 6. This table also includes groundwater data collected from certain wells during sampling activities conducted in April 2006 that was not compiled in time to include in the previous monthly report.

ITEM 24 GROUNDWATER MANAGEMENT AREAS PLANT SITE 3 (GMA 4) (GECD340) AUGUST 2006

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

- Conducted routine groundwater elevation monitoring at well GMA4-3.
- Conducted drum sampling at Building 78 of monitoring well purge water, as identified in Table 24-1.

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine monitoring at well GMA4-3.
- Submit Groundwater Quality Monitoring Interim Report for Spring 2006 (originally due to EPA by August 30, 2006) (see Item 24.e below).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

EPA and GE agreed that GE would defer submittal of the Groundwater Quality Monitoring Interim Report for Spring 2006 (originally due by August 30, 2006) to a later date to be agreed upon by EPA and GE. Based on discussions with EPA, GE will submit that report in September 2006.

f. Proposed/Approved Work Plan Modifications

None

TABLE 24-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2006

GROUNDWATER MANAGEMENT AREA 4 GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date Received
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	by GE or BBL
Building 78 Purge Water Drum Sampling	BLDG78-F2145	8/16/06	Water	SGS	PCB, VOC, SVOC, Total Metals	
Building 78 Purge Water Drum Sampling	BLDG78-GMA-4-COMP	8/16/06	Water	SGS	PCB, VOC, SVOC, Total Metals	

TABLE 24-2 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 4

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2006

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
GMA4-3	1.003.95	8/29/06	18.15		0.00		26.25	0.00	985.80

Notes:

- ft BMP feet Below Measuring Point.
 --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.

Attachment A

NPDES Sampling Records and Results August 2006

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2006

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
NPDES Sampling	001-A7473	8/1/06	Water	Columbia	Oil & Grease	8/8/06
NPDES Sampling	001-A7475	8/1/06	Water	Accutest	PCB	8/17/06
NPDES Sampling	001-A7488	8/7/06	Water	Columbia	TSS	8/15/06
NPDES Sampling	005-A7460/A7461	7/25/06	Water	Accutest	PCB	8/15/06
NPDES Sampling	005-A7477/A7478	8/1/06	Water	Accutest	PCB	8/17/06
NPDES Sampling	005-A7489/A7490	8/7/06	Water	Accutest	PCB	8/24/06
NPDES Sampling	005-A7501/A7502	8/7/06	Water	Columbia	TSS, BOD	8/16/06
NPDES Sampling	005-A7516/A7517	8/15/06	Water	Accutest	PCB	8/28/06
NPDES Sampling	005-A7528/A7529	8/21/06	Water	Accutest	PCB	
NPDES Sampling	005-A7539/A7540	8/28/06	Water	Accutest	PCB	
NPDES Sampling	05B-A7463	7/28/06	Water	Columbia	Oil & Grease	8/8/06
NPDES Sampling	05B-A7465	7/28/06	Water	Accutest	PCB	8/15/06
NPDES Sampling	06A-A7466	7/28/06	Water	Columbia	Oil & Grease	8/8/06
NPDES Sampling	06A-A7468	7/28/06	Water	Accutest	PCB	8/15/06
NPDES Sampling	09B-A7458	7/24/06	Water	Columbia	TSS, BOD	8/1/06
NPDES Sampling	09B-A7489	7/31/06	Water	Columbia	TSS, BOD	8/8/06
NPDES Sampling	09B-A7499	8/7/06	Water	Columbia	TSS, BOD	8/16/06
NPDES Sampling	09B-A7518	8/15/06	Water	Columbia	TSS, BOD	8/24/06
NPDES Sampling	09B-A7531	8/21/06	Water	Columbia	TSS, BOD	
NPDES Sampling	09B-A7541	8/29/06	Water	Columbia	TSS, BOD	
NPDES Sampling	09C-A7450	7/22/06	Water	Columbia	Oil & Grease	8/1/06
NPDES Sampling	09C-A7452	7/23/06	Water	Columbia	Oil & Grease	8/1/06
NPDES Sampling	09C-A7480	8/3/06	Water	Columbia	Oil & Grease	8/16/06
NPDES Sampling	09C-A7497	8/7/06	Water	Columbia	Oil & Grease	8/16/06
NPDES Sampling	09C-A7519	8/15/06	Water	Columbia	Oil & Grease	8/24/06
NPDES Sampling	09C-A7521	8/20/06	Water	Columbia	Oil & Grease	
NPDES Sampling	09C-A7532	8/27/06	Water	Columbia	Oil & Grease	
NPDES Sampling	64G-A7456	7/24/06	Water	Columbia	Oil & Grease	8/1/06
NPDES Sampling	64G-A7471	7/31/06	Water	Columbia	Oil & Grease	8/8/06
NPDES Sampling	64G-A7495	8/7/06	Water	Columbia	Oil & Grease	8/16/06
NPDES Sampling	64G-A7513	8/14/06	Water	Columbia	Oil & Grease	8/24/06
NPDES Sampling	64G-A7525	8/21/06	Water	Columbia	Oil & Grease	
NPDES Sampling	64G-A7536	8/28/06	Water	Columbia	Oil & Grease	

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2006

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
NPDES Sampling	64T-A7454	7/24/06	Water	Columbia	Oil & Grease	8/1/06
NPDES Sampling	64T-A7469	7/31/06	Water	Columbia	Oil & Grease	8/8/06
NPDES Sampling	64T-A7492	8/7/06	Water	Columbia	Oil & Grease	8/16/06
NPDES Sampling	64T-A7511	8/14/06	Water	Columbia	Oil & Grease	8/24/06
NPDES Sampling	64T-A7523	8/21/06	Water	Columbia	Oil & Grease	
NPDES Sampling	64T-A7534	8/28/06	Water	Columbia	Oil & Grease	
NPDES Sampling	A7406R	7/10/06	Water	Aquatec	Chronic Toxicity Test	8/1/06
NPDES Sampling	A7407C	7/10/06	Water	Aquatec	Chronic Toxicity Test	8/1/06
NPDES Sampling	A7408R	7/12/06	Water	Aquatec	Chronic Toxicity Test	8/1/06
NPDES Sampling	A7409C	7/12/06	Water	Aquatec	Chronic Toxicity Test	8/1/06
NPDES Sampling	A7410R	7/14/06	Water	Aquatec	Chronic Toxicity Test	8/1/06
NPDES Sampling	A7411C	7/14/06	Water	Aquatec	Chronic Toxicity Test	8/1/06
NPDES Sampling	A7482R	8/7/06	Water	Aquatec	Acute Toxicity Test	8/24/06
NPDES Sampling	A7482R	8/7/06	Water	Aquatec	Chronic Toxicity Test	8/24/06
NPDES Sampling	A7482RCN	8/7/06	Water	Columbia	CN	8/18/06
NPDES Sampling	A7482RTM	8/7/06	Water	Columbia	Metals (10)	8/18/06
NPDES Sampling	A7483C	8/7/06	Water	Aquatec	Acute Toxicity Test	8/24/06
NPDES Sampling	A7483C	8/7/06	Water	Aquatec	Chronic Toxicity Test	8/24/06
NPDES Sampling	A7483CCN	8/7/06	Water	Columbia	CN	8/18/06
NPDES Sampling	A7483CDM	8/7/06	Water	Columbia	Filtered Metals (8)	8/18/06
NPDES Sampling	A7483CTM	8/7/06	Water	Columbia	Metals (10)	8/18/06
NPDES Sampling	A7484R	8/9/06	Water	Aquatec	Chronic Toxicity Test	8/24/06
NPDES Sampling	A7484RCN	8/9/06	Water	Columbia	CN	8/17/06
NPDES Sampling	A7484RTM	8/9/06	Water	Columbia	Metals (10)	8/17/06
NPDES Sampling	A7485C	8/9/06	Water	Aquatec	Chronic Toxicity Test	8/24/06
NPDES Sampling	A7485CCN	8/9/06	Water	Columbia	CN	8/17/06
NPDES Sampling	A7485CDM	8/9/06	Water	Columbia	Filtered Metals (8)	8/17/06
NPDES Sampling	A7485CTM	8/9/06	Water	Columbia	Metals (10)	8/17/06
NPDES Sampling	A7486R	8/11/06	Water	Aquatec	Chronic Toxicity Test	8/24/06
NPDES Sampling	A7486RCN	8/11/06	Water	Columbia	CN	8/22/06
NPDES Sampling	A7486RTM	8/11/06	Water	Columbia	Metals (10)	8/22/06
NPDES Sampling	A7487C	8/11/06	Water	Aquatec	Chronic Toxicity Test	8/24/06
NPDES Sampling	A7487CCN	8/11/06	Water	Columbia	CN	8/22/06
NPDES Sampling	A7487CDM	8/11/06	Water	Columbia	Filtered Metals (8)	8/22/06

 $\label{lem:control_var_control} $$V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2006\8-06 CD Monthly\Tracking Logs\Tracking.xls $$TABLE A-1$$ 2 of 3$

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2006

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date Received
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	by GE or BBL
NPDES Sampling	A7487CTM	8/11/06	Water	Columbia	Metals (10)	8/22/06
NPDES Sampling	AUG06WK1	8/1/06	Water	Columbia	Cu, Pb, Zn	8/8/06
NPDES Sampling	AUG06WK3	8/15/06	Water	Columbia	Cu, Pb, Zn	8/24/06
NPDES Sampling	AUG06WK4	8/21/06	Water	Columbia	Cu, Pb, Zn	
NPDES Sampling	JUL06WK5	7/25/06	Water	Columbia	Cu, Pb, Zn	8/1/06
NPDES Sampling	SEP06WK1	8/29/06	Water	Columbia	Cu, Pb, Zn	

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	001-A7473	001-A7475	001-A7488	005-A7460/A7461	005-A7477/A7478	005-A7489/A7490	005-A7501/A7502
Parameter Da	ate Collected:	08/01/06	08/01/06	08/07/06	07/25/06	08/01/06	08/07/06	08/07/06
PCBs-Unfiltered								
Aroclor-1260		NA	ND(0.000050)	NA	ND(0.000050)	ND(0.000050)	ND(0.000050)	NA
Total PCBs		NA	ND(0.000050)	NA	ND(0.000050)	ND(0.000050)	ND(0.000050)	NA
Inorganics-Unfiltered								
Aluminum		NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA
Cyanide		NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA
Inorganics-Filtered								
Aluminum		NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA
Conventionals								<u> </u>
Biological Oxygen Der	nand (5-day)	NA	NA	NA	NA	NA	NA	ND(2.0)
Oil & Grease		ND(5.0)	NA	NA	NA	NA	NA	NA
Total Suspended Solid	ls	NA	NA	6.10	NA	NA	NA	ND(1.01)

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Davamatar D	Sample ID: ate Collected:	005-A7516/A7517	05B-A7463	05B-A7465	06A-A7466 07/28/06	06A-A7468	09B-A7458	09B-A7489	09B-A7499
	ate Collected:	08/15/06	07/28/06	07/28/06	07/28/06	07/28/06	07/24/06	07/31/06	08/07/06
PCBs-Unfiltered				T	г	1	1		
Aroclor-1260		ND(0.000050)	NA	0.0085	NA	0.0012	NA	NA	NA
Total PCBs		ND(0.000050)	NA	0.0085	NA	0.0012	NA	NA	NA
Inorganics-Unfiltered									
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA	NA
Cyanide		NA	NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA	NA
Inorganics-Filtered			•	•	•		•	•	
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA	NA
Conventionals	Į.					·	· ·		t.
Biological Oxygen Der	mand (5-dav)	NA	NA	NA	NA	NA	ND(2.0)	ND(2.0)	ND(2.0)
Oil & Grease	2. 2 (2 2.2.))	NA	ND(5.0)	NA	ND(5.0)	NA	NA	NA	NA
Total Suspended Solid	ls	NA	NA	NA NA	NA	NA NA	12.4	5.60	4.30

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	09B-A7518	09C-A7450	09C-A7452	09C-A7480	09C-A7497	09C-A7519	64G-A7456	64G-A7471	64G-A7495
Parameter Da	ate Collected:	08/15/06	07/22/06	07/23/06	08/03/06	08/07/06	08/15/06	07/24/06	07/31/06	08/07/06
PCBs-Unfiltered										
Aroclor-1260		NA								
Total PCBs		NA								
Inorganics-Unfiltered	•				•	•	•		•	
Aluminum		NA								
Cadmium		NA								
Calcium		NA								
Chromium		NA								
Copper		NA								
Cyanide		NA								
Lead		NA								
Magnesium		NA								
Nickel		NA								
Silver		NA								
Zinc		NA								
Inorganics-Filtered										
Aluminum		NA								
Cadmium		NA								
Chromium		NA								
Copper		NA								
Lead		NA								
Nickel		NA								
Silver		NA								
Zinc		NA								
Conventionals									·	
Biological Oxygen Dem	nand (5-day)	ND(2.0)	NA							
Oil & Grease	İ	NA	ND(5.2)	ND(5.2)	ND(5.2)	ND(5.3)	ND(5.0)	ND(5.2)	ND(5.0)	ND(5.3)
Total Suspended Solids	S	5.00	NA							

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Sample ID Parameter Date Collected		64T-A7454 07/24/06	64T-A7469 07/31/06	64T-A7492 08/07/06	64T-A7511 08/14/06	A7482RCN 08/07/06	A7482RTM 08/07/06	A7483CCN 08/07/06
PCBs-Unfiltered	<u>'</u>	•	•				•	
Aroclor-1260	NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics-Unfiltered		•	•				•	
Aluminum	NA	NA	NA	NA	NA	NA	ND(0.100)	NA
Cadmium	NA	NA	NA	NA	NA	NA	ND(0.00500)	NA
Calcium	NA	NA	NA	NA	NA	NA	27.4	NA
Chromium	NA	NA	NA	NA	NA	NA	ND(0.0100)	NA
Copper	NA	NA	NA	NA	NA	NA	ND(0.0200)	NA
Cyanide	NA	NA	NA	NA	NA	ND(0.0100)	NA	0.0279
Lead	NA	NA	NA	NA	NA	NA	ND(0.00500)	NA
Magnesium	NA	NA	NA	NA	NA	NA	9.59	NA
Nickel	NA	NA	NA	NA	NA	NA	ND(0.0400)	NA
Silver	NA	NA	NA	NA	NA	NA	ND(0.0100)	NA
Zinc	NA	NA	NA	NA	NA	NA	ND(0.0200)	NA
Inorganics-Filtered								
Aluminum	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium	NA	NA	NA	NA	NA	NA	NA	NA
Chromium	NA	NA	NA	NA	NA	NA	NA	NA
Copper	NA	NA	NA	NA	NA	NA	NA	NA
Lead	NA	NA	NA	NA	NA	NA	NA	NA
Nickel	NA	NA	NA	NA	NA	NA	NA	NA
Silver	NA	NA	NA	NA	NA	NA	NA	NA
Zinc	NA	NA	NA	NA	NA	NA	NA	NA
Conventionals								
Biological Oxygen Demand (5-day)	NA	NA	NA	NA	NA	NA	NA	NA
Oil & Grease	ND(5.0)	ND(5.2)	ND(5.0)	ND(5.2)	ND(5.0)	NA	NA	NA
Total Suspended Solids	NA	NA	NA	NA	NA	NA	NA	NA

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	ample ID: Collected:	A7483CDM 08/07/06	A7483CTM 08/07/06	A7484RCN 08/09/06	A7484RTM 08/09/06	A7485CCN 08/09/06	A7485CDM 08/09/06	A7485CTM 08/09/06	A7486RCN 08/11/06
PCBs-Unfiltered	oonootou.	00/01/00	00/01/00	00/00/00	00/00/00	00/00/00	00/00/00	00/00/00	00/11/00
Aroclor-1260		NA							
Total PCBs		NA							
Inorganics-Unfiltered			•				•		
Aluminum		NA	ND(0.100)	NA	ND(0.100)	NA	NA	ND(0.100)	NA
Cadmium		NA	ND(0.00500)	NA	ND(0.00500)	NA	NA	ND(0.00500)	NA
Calcium		NA	68.6	NA	20.7	NA	NA	86.8	NA
Chromium		NA	ND(0.0100)	NA	ND(0.0100)	NA	NA	ND(0.0100)	NA
Copper		NA	ND(0.0200)	NA	ND(0.0200)	NA	NA	ND(0.0200)	NA
Cyanide		NA	NA	ND(0.0100)	NA	0.0444	NA	NA	ND(0.0100)
Lead		NA	ND(0.00500)	NA	ND(0.00500)	NA	NA	ND(0.00500)	NA
Magnesium		NA	28.5	NA	7.31	NA	NA	37.8	NA
Nickel		NA	ND(0.0400)	NA	ND(0.0400)	NA	NA	ND(0.0400)	NA
Silver		NA	ND(0.0100)	NA	ND(0.0100)	NA	NA	ND(0.0100)	NA
Zinc		NA	ND(0.0200)	NA	ND(0.0200)	NA	NA	ND(0.0200)	NA
Inorganics-Filtered	-								
Aluminum		ND(0.100)	NA	NA	NA	NA	ND(0.100)	NA	NA
Cadmium		ND(0.00500)	NA	NA	NA	NA	ND(0.00500)	NA	NA
Chromium		ND(0.0100)	NA	NA	NA	NA	ND(0.0100)	NA	NA
Copper		ND(0.0200)	NA	NA	NA	NA	ND(0.0200)	NA	NA
Lead		ND(0.00500)	NA	NA	NA	NA	ND(0.00500)	NA	NA
Nickel		ND(0.0400)	NA	NA	NA	NA	ND(0.0400)	NA	NA
Silver		ND(0.0100)	NA	NA	NA	NA	ND(0.0100)	NA	NA
Zinc		0.0252	NA	NA	NA	NA	ND(0.0200)	NA	NA
Conventionals	-								
Biological Oxygen Demand	d (5-day)	NA							
Oil & Grease		NA							
Total Suspended Solids		NA							

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Sample I	D: A7486RTM	A7487CCN	A7487CDM	A7487CTM	AUG06WK1	AUG06WK3	JUL06WK5
Parameter Date Collecte	d: 08/11/06	08/11/06	08/11/06	08/11/06	08/01/06	08/15/06	07/25/06
PCBs-Unfiltered							
Aroclor-1260	NA	NA	NA	NA	NA	NA	NA
Total PCBs	NA	NA	NA	NA	NA	NA	NA
Inorganics-Unfiltered		•	•	•	•		
Aluminum	ND(0.100)	NA	NA	ND(0.100)	NA	NA	NA
Cadmium	ND(0.00500)	NA	NA	ND(0.00500)	NA	NA	NA
Calcium	27.8	NA	NA	87.2	NA	NA	NA
Chromium	ND(0.0100)	NA	NA	ND(0.0100)	NA	NA	NA
Copper	ND(0.0200)	NA	NA	ND(0.0200)	ND(0.0200)	ND(0.0200)	ND(0.0200)
Cyanide	NA	0.0197	NA	NA	NA	NA	NA
Lead	ND(0.00500)	NA	NA	ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)
Magnesium	10.2	NA	NA	37.4	NA	NA	NA
Nickel	ND(0.0400)	NA	NA	ND(0.0400)	NA	NA	NA
Silver	ND(0.0100)	NA	NA	ND(0.0100)	NA	NA	NA
Zinc	ND(0.0200)	NA	NA	ND(0.0200)	ND(0.0200)	ND(0.0200)	ND(0.0200)
Inorganics-Filtered							
Aluminum	NA	NA	ND(0.100)	NA	NA	NA	NA
Cadmium	NA	NA	ND(0.00500)	NA	NA	NA	NA
Chromium	NA	NA	ND(0.0100)	NA	NA	NA	NA
Copper	NA	NA	ND(0.0200)	NA	NA	NA	NA
Lead	NA	NA	ND(0.00500)	NA	NA	NA	NA
Nickel	NA	NA	ND(0.0400)	NA	NA	NA	NA
Silver	NA	NA	ND(0.0100)	NA	NA	NA	NA
Zinc	NA	NA	ND(0.0200)	NA	NA	NA	NA
Conventionals							
Biological Oxygen Demand (5-day)) NA	NA	NA	NA	NA	NA	NA
Oil & Grease	NA	NA	NA	NA	NA	NA	NA
Total Suspended Solids	NA	NA	NA	NA	NA	NA	NA

Notes

- 1. Samples were collected by General Electric Company and submitted to Accutest Laboratories and Columbia Analytical Services, Inc. for analysis of PCBs, cyanide, TSS, BOD, oil & grease, and metals (filtered and unfiltered).
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. With the exception of inorganics and conventional parameters, only those constituents detected in one or more samples are summarized.

Attachment B

NPDES Discharge Monitoring Reports July 2006

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

ATTN: MICHAEL T CARROLL, EHS&F

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

MO DAY

OI

YEAR

FROM

005 DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY

07

31

06

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W) F - FINAL

WATERS TO HOUSATONIC RIVER

*** NO DISCHARGE ! 1 *** NOTE: Read Instructions before completing this form.

PARAMETER		QUAN	TITY OR LOADING		QI	UALITY OR CONCE	ENTRATION		NO.	FREQUENCY OF	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TIPE
30D, 5-DAY (20 DEG. C)	SAMPLE MEASUREMENT	0	0	(25)	***	****	***		0	01/30	СР
DOS10 T 0 0 BEE COMMENTS BELOW	PERMIT REQUIREMENT	90 MD AVG	135 DAILY MX	LBS/DY	母母母母母母	华华华华	长桥桥长桥桥	******		ONCE/ MONTH	COMP
BOLIDS, TOTAL BUSPENDED	SAMPLE MEASUREMENT	0	0	(26)	****	****	***		0	01/30	СР
00530 T O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	188 MD AVG	270 DAILY MX	LBS/DY	长长年长春共	安安特特技术	茶棒棒棒棒棒	*****		ONCE/ MONTH	COMP
DIL & GREASE	SAMPLE MEASUREMENT	***	24.6	(26)	***	***	5.2	(19) MG/L	0	01/07	GR
00556 T 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMENT	经快售保险	135 DAILY MX		*****	特特特特特	15 DAILY MX			MEEKT/	'GRAB
POLYCHLORINATED BIPHENYLS (PCBS)	SAMPLE MEASUREMENT	0	0	(26) LBS/DY	***	****	***		0	01/07	СР
39516 T O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	0.01 MD AVG	DAILY MX		并并条头并在	外外并传染体	*******	各本格格 各格格格		WEEKL)	COMP
FLOW, IN CONDUIT OR THRU TREATMENT PLAN	SAMPLE MEASUREMENT	0.178	0.300	(03) MGD	安安安安安	****	****		0		RC
SCOSO T O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	2.09 MD AVG	2.09 DAILY MX	MGD	科技等外部部	计设计计计	安林林林林寺	你你你你 你你你你		CONTI	IRCDR
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
9	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
NAME/TITLE PRINCIPAL EXECUTIVE		y under penalty of law that t ed under my direction or su	his document and all attache pervision in accordance with				1	TELEPHON	ΙE	D/	ATE

Mgr. Pittsfield Remediation Prog.

TYPED OR PRINTED

d. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Michael Caux SIGNATURE OF PRINCIPAL EXECUTIVE

OFFICER OR AUTHORIZED AGENT

23 2006 8 413 448-5902 MO DAY NUMBER YEAR

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN JEFFREY G. RUEBESAM

LOO WOODLAWN AVENUE

DITTERTELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

064 T DISCHARGE NUMBER

MAJOR (SUBR W) F - FINAL

WASTEWATER TREATMENT (005)

*** NO DISCHARGE ! | *** NOTE: Read Instructions before completing this form.

Form Approved.

OMB No. 2040-0004

FACIL	JTY CHECKET OF THE PERSON		4 01201			M	ONITO	RING	PERIO)	
	TION PITTSFIELD		01201	FROM	YEAR 06	MO 07	DAY 01	то	YEAR 06	MO 07	DAY 31
61	TN: MICHAEL T CA	ARROLL, EMS&	÷								
	DADAMETER										

PARAMETER		QUAN	TITY OR LOADING			QUALITY OR CONC	ENTRATION		NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
ah gu	SAMPLE MEASUREMENT	泰特特特特	特特格特特		7.0	长松松桥长台	7.6	(12.	0	99/99	RCDR
00400 T 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMENT	*****	*******	计设备符 特殊条件	6.0 MINIMUM	外条数件经济。	9.0 MAXIMUM	SU		MEEKL)	RANG-
DISENZOFURAN	SAMPLE MEASUREMENT	计论特价计	****		李安安安泰	NODI [6]	NODI [6]	(22			
BIGCZ T O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	外投资条件长	********	作於於替 發於於於	******	REPORT MO AVG	PEPORT DAILY MO	PPT		ONCE/ MONTH	COMPO
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT						*				
	PERMIT REQUIREMENT		- 7								
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
NAME/TITLE PRINCIPAL EXECUTIVE	E OFFICER 1 certify		his document and all attachr pervision in accordance with			and T. C.		TELEPHO	NE	D/	ATE

Mgr. Pittsfield Remediation Prog.

TYPED OR PRINTED

submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

413 448-5902 2000 YEAR MO DAY NUMBER

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

NAME

FACILITY

SENERAL ELECTRIC CORPORATION

ADDRESS ATTN JEFFREY G. RUEBESAM

100 KOODLAWN AVENUE

PITTSFIELD

MA 01201

GENERAL ELECTRIC COMPANY LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

FROM

064 G DISCHARGE NUMBER

MAJOR

(SUBR W) F - FINAL GROUNDWATER TREATMENT (005)

*** NO DISCHARGE !

Form Approved.

OMB No. 2040-0004

MONITORING PERIOD YEAR MO DAY YEAR MO DAY 01 TO 07 NOTE: Read Instructions before completing this form.

PARAMETER		QUANT	TITY OR LOADING			QUALITY OR CONCE	ENTRATION		NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TTPE
14	SAMPLE MEASUREMENT	苦禁於於禁於	******		7.5	非特殊特殊	7.6	SU	0	99/99	RCDR
00400 T O G	PERMIT REQUIREMENT	林长长松松长	科学科学科	於於於於 於於格於	6.0 MINIMUM	安安在非安安	9.0 MAXIMU			MEEKT.	(RANG-
ASE NEUTRALS & ACI	SAMPLE MEASUREMENT	检查检验检验	林桥桥桥桥桥		各种特殊特殊	NODI [9]	NODI [9]	4 4 70			
6030 T 0 0	PERMIT REQUIREMENT	****	安装券款收款	长谷林林	***	REPORT MD AVG	PEPOR	06700		OTRLY	GRAB
GLATILE COMPOUNDS, GC/MS)	SAMPLE MEASUREMENT	*******	泰林格林格		经 经经验的		NODI [9]				
8732 T 0 0	PERMIT REQUIREMENT	计长长性长序	长龄长长牡蜂	长松松松	特拉格林特	REPORT MO AVG	REPOR DAILY	100000		GTRLY	GRAS
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT			<u></u>							
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										5.2
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										7.7
AME/TITLE PRINCIPAL EXECUTIVE			his document and all attachs pervision in accordance with		4			TELEPHO	NE	D/	TE
Michael T. Carroll Mgr. Pittsfield Remediati	tion Prog. to assure submitte or those submittee	e that qualified personnel pr ed. Based on my inquiry of t persons directly responsible ed is, to the best of my know	roperly gather and evaluate the person or persons who me for gathering the informativedge and belief, true, accur	the information anage the system on, the informat ate, and complet	ation system, M.T. Carroll 413					2006	8 23
TYPED OR PRINTED			t penalties for submitting fal			SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT				VEAR A	O DAY

TYPED OR PRINTED

including the possibility of fine and imprisonment for knowing violations.

CODE NUMBER YEAR | MO | DAY |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE COMMENTS FOR GOS1. SEE PAGE 8 + 9 OF PERMIT.

NAME

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

007 1 DISCHARGE NUMBER

OFFICER OR AUTHORIZED AGENT

MONITORING PERIOD YEAR MO DAY YEAR MO DAY FROM TO

Form Approved. OMB No. 2040-0004

MO

YEAR

NUMBER

DAY

MAJOR (SUBR W) F - FINAL

DISCHARGE TO HOUSATONIC RIVER

NOTE: Read Instructions before completing this form.

PARAMETER		QUAN	ITITY OR LOADING	,	1	QUALITY OR CONCE	ENTRATION		NO.	FREQUENCY OF	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
EMPERATURE, WATER EG. FAHRENHEIT	SAMPLE MEASUREMENT	李恭恭恭恭	於母母教養		华谷谷谷谷谷			(15)			
CO11 W O C RE COMMENTS BELOW	PERMIT REQUIREMENT	安林特林安	非非非非非	****	茶谷香茶花茶	70 MB AVG	75 DATLY MX	DEG. F		ONCE/ MONTH	GRAD
	SAMPLE MEASUREMENT	长水水水水	於非法宗宗			经检验检验		(12)			
0400 W O O SE COMMENTS BELOW	PERMIT REQUIREMENT	禁长长锋特务	新花林林木林	***	6.0 MINIMUM	并安长各种养	9.0 MAXIMUM	SU		WEEKL)	RANG-
LYCHLORINATED PHENYLS (PCBS)	SAMPLE MEASUREMENT	计分替标准	特殊特殊特特		特殊转移特			(21)			
516 W 0 0 E COMMENTS BELOW	PERMIT REQUIREMENT	*****	专类作业类类	· · · · · · · · · · · · · · · · · · ·	经销售帐帐条	REPORT MO AVO	DAILY MX	PPB		QTRLY	GRAB
OW, IN CONDUIT OR RU TREATMENT PLAN	O'MILLE			(03)	****	· 茶袋袋袋	转条条条件				
OSO W O O E CCMMENTS BELOW	PERMIT REQUIREMENT	REPORT MO AVG	REPORT DAILY MX	MGD	*****	於安安等作學	林林林泰林本	长於於於 於於於於		ONCE/ MONTH	CALCT
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT			A							
ME/TITLE PRINCIPAL EXECUTIVE	prepared	red under my direction or sup	this document and all attachs apervision in accordance with	h a system designed	ed	- 1		TELEPHO	NE	DA	ATE
Michael T. Carroll		re that qualified personnel p tted. Based on my inquiry of se persons directly responsibl	properly gather and evaluate f the person or persons who m ble for gathering the informati	e the information manage the system ation, the informati	m, M.	T. Carol		13 448-59	902	2006	8 23
lama		ware that there are significan	d is, to the best of my knowledge and belief, true, accurate, and complete. ure that there are significant penalties for submitting false information, OFFICER OR AUTHORIZED AGENT AREA MI						:B	VEAR A	10 D4

TYPED OR PRINTED COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

including the possibility of fine and imprisonment for knowing violations.

SAMPLE AT MANHOLE PRIOR TO CITY STORM DRAIN.

MA 01201

FACILITY GENERAL ELECTRIC COMPANY LOCATION PITTEFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

FROM

009 A DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY TO 06

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W) F - FINAL

09A SAMPLE POINT BEFORE 009

NOTE: Read Instructions before completing this form.

PARAMETER		QUAN	TITY OR LOADING		Q	UALITY OR CONCE	NTRATION		NO.	FREQUENCY OF	SAMIFEL
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
RCD E-DAY (20 DEG. C)	SAMPLE MEASUREMENT		7	(26)	安安安安安	经济验验检验	******				
00310 V 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMENT	106 MO AVG	438 DAILY MX	LBS/D	经存在的证	*****	\$ 45-35-35 At 35	各条条条 条条条条		MEEKLY	COMPE
SGLIDE, TOTAL SUSPENDED	SAMPLE MEASUREMENT			(26)	各体体体体	计算标准条件	计计学计算				
00530 V C C SEE COMMENTS BELOW	PERMIT REQUIREMENT	213 MD AVG	B76 DAILY MX	LBS/D	****	學學學學學	李林安安安	各字字字 字字字令		MEEKLY	COMPO
FLOW, IN CONDUIT OR THRU TREATMENT PLAN	SAMPLE MEASUREMENT			(03)	林林林林林	传传传传传传	*****				
50050 V 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMENT	REPORT MD AVG	DAILY MX	MGD	部分条件条件	- 《中华华华特	非非条件和	李安安安 李安安安		CONTIN	IRCORI
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT					,					
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT					14					
	PERMIT REQUIREMENT										

Michael T. Carroll Mgr. Pittsfield Remediation Prog. to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

413 448-5902 2006 DAY NUMBER YEAR MO

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 11 OF PERMIT

TYPED OR PRINTED

SEE DMR 0071

SAMPLE AT 09A

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY Q. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

TO

MA0003891 PERMIT NUMBER

YEAR MO DAY

FROM

009 B

YEAR MO DAY

DISCHARGE NUMBER

MAJOR (SUBR W) F - FINAL

09B SAMPLE POINT PRIOR TO 009

*** NO DISCHARGE !

Form Approved.

OMB No. 2040-0004

NOTE: Read Instructions before completing this form

PARAMETER		QUAN	TITY OR LOADING		Q	UALITY OR CONCE	NTRATION		NO. EX	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TIPE
SCD, E-DAY (20 DEG. C)	SAMPLE MEASUREMENT	0.02	0.1	(26)	林林林林林林	计桥桥桥桥	经长非体验		0	01/DW	СР
RG310 V 0 0 REE COMMENTS BELOW	PERMIT REQUIREMENT	106 MO AVG	438 DAILY MX	LBS/DY	格林条条件	安安安安安	李林林林林	各字标录 专字条条		WEEKLY	COMPC
CLIDE, TOTAL USPENDED	SAMPLE MEASUREMENT	1.5	5.7	(26)	****** -6.7 -M/C	*****	****** -7.0 -207c	CIA	0	01/DW	GR
MG530 V 0 0 MEE COMMENTS BELOW	PERMIT REQUIREMENT	213 MD AVG	B76 DATLY MX	LBS/DY	中非大大作作	经营业业	*****	\$\frac{1}{4} \frac{1}{4} \frac		WEEKL	COMPE
LOW IN CONDUIT OR THRU TREATMENT PLAN	SAMPLE MEASUREMENT	0.027	0.340	MGD	******	本本本本本	经验债务		0	01/DW	СР
SEE COMMENTS BELOW	PERMIT REQUIREMENT	MÉPORT MO AVO	PÉPORT DAILY MX		*****	经存在保护	4.各种特许4.	特殊法法 禁格特技		CONTIN	RCORI
	SAMPLE MEASUREMENT		2.0 Wic	-LBS/DY			5.2- m7c	-M O/ L	-0-	O1/DW	- GR
	PERMIT REQUIREMENT		W IC	unc			mrc	247c			
	SAMPLE MEASUREMENT					-NODI [0]-	NODH[9] 2M ₹ €				
	PERMIT REQUIREMENT					mrc	mic				
	SAMPLE MEASUREMENT	-0.027 2016	-0.340- 2017 C	-MOD					-0	99/99 2010	Re
	PERMIT REQUIREMENT			2#7C							
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
IAME/TITLE PRINCIPAL EXECUTIVE			this document and all attachr pervision in accordance with		<u></u>	11		TELEPHON	VE.	D/	TE
Michael T. Carroll Mgr. Pittsfield Remediation	to assur submitt or those	e that qualified personnel p ed. Based on my inquiry of persons directly responsib	properly gather and evaluate the person or persons who me the for gathering the informat wledge and belief, true, accur	the information nanage the system, ion, the informatio	. W.	TUBE OF PRINCIPAL E		3 448-59	02	2006	8 25

TYPED OR PRINTED

I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

YEAR MO DAY NUMBER

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

NAME

FACILITY

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

GENERAL ELECTRIC COMPANY LOCATION PITTSFIELD

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

009 DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY FROM TO

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W) F - FINAL

PROCESSES TO UNKAMET BROOK

*** NO DISCHARGE ! NOTE: Read Instructions before completing this form

PARAMETER		QUANT	TITY OR LOADING		O	QUALITY OR CONCE	ENTRATION		NO.	FREQUENCY	SAMPLE
<u> </u>		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TIFE
GD. S-DAY = (20 DEG. C)	SAMPLE MEASUREMENT	0.02	0.1	(26)	特殊特殊特殊	外外外外外	李安安安安		0		
0010 V 0 0	PERMIT REQUIREMENT	106 MD AVG	436 DAILY MX	LBS/DY	· 查许特殊的数	计算技术分析	中保持收益法	****** *****		WEEKLY	COMPC
14	SAMPLE MEASUREMENT	华安安安安安	外投资债务		6.7	计算标准符件	7.6	(12)	0	01/DW	y GR
0400 V 0 0 BE COMMENTS BELOW	PERMIT REQUIREMENT	特格特特特	新华特许安长	***	6.0 MINIMUM	经存在帐款条	9: 0 MAXIMUM	SU SU		WEEKLY	YRANG.
OLIDS, TOTAL SUSPENDED	SAMPLE MEASUREMENT	. 1.5	5.7	(26)	新桥条桥桥桥	经长谷谷餐台	************************************		0		
0530 V O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	213 MO AVG	B76 DAILY MX		华华华茶茶	林安林林安林	并分类的	水水水水水水水水水		WEEKLY	COMP
IL & GREASE	SAMPLE MEASUREMENT	长长谷长长		(26) LBS/DY	***	茶粉粉茶卷	5.2	(19) MG/L	0		
0556 V O O BE COMMENTS BELOW	PERMIT REQUIREMENT	安林族安林长	438 DAILY MX		外外并外外并	********	15 DAILY MX			MEEKL	GRAE
CLYCHLORINATED IPHENYLS (PCBS)	SAMPLE MEASUREMENT	****	The same of the sa		存在作作作者	NODI [9]	NODI [9]	(19			
19516 V C C BEE COMMENTS BELOW	PERMIT REQUIREMENT	法非非特殊和	李林林林本林	* 4 4 4 4 * 4 4 4 4	非和共命分析	REPORT MO AVO	REPORT DAILY by	MG/L		QTRLY	GRAE
LOW, IN CONDUIT OR HRU TREATMENT PLAN		0.027	0.340	(03) MGD	****	李林安安林李	· 查查查查验	4	0		
SOOSO V O O SEE COMMENTS BELOW	PERMIT	REPORT	REPORT DAILY MX		特殊學學科特	计学特殊 技术	本本本本本本	各种培养 特格特特		CONTI	SE RESIDENCE PROPERTY.
	SAMPLE MEASUREMENT	ſ									
	PERMIT REQUIREMENT			A /							

Michael T. Carroll Mgr. Pittsfield Remediation Prog.

TYPED OR PRINTED

to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

2006 413 448-5902 MO DAY YEAR NUMBER

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

REPORT SUM OF LOAD 09A + 09B, FOR BOD, TSS, FLOW. SEE DMRS 009A + 009B. SEE PAGE 11 OF PERMIT AT DISCHARGE POINT TO BROOK FOR PH, OIL & GREASE, AND PCB.

SAMPLE

FACILITY

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WODDLAWN AVENUE

ATTN: MICHAEL T CARROLL, EHS&F

PITTSFIELD

MA 01201

GENERAL ELECTRIC COMPANY LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

SUM A DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY FROM 06 07 OI TO 06 07 31 Form Approved. OMB No. 2040-0004

MAJOR

(SUBR W)

F - FINAL

METALS: 001, 004, 005, 007, 009, 011

*** NO DISCHARGE | | *** NOTE: Read Instructions before completing this form.

PARAMETER		QUANT	TITY OR LOADING		QI	UALITY OR CONCE	NTRATION	NO		FREQUENCY OF	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
'HOSPHORUS, TOTAL (AS P)	SAMPLE MEASUREMENT	***	0.3	(26)	长长长长长	***	兴华华华长		0	03/30	СР
00665 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	****	REPORT DAILY MX	LBS/DY	******	快长长长长	安林林林林林	*****		ONCE/ MONTH	COMPO
NICKEL TOTAL RECOVERABLE	SAMPLE MEASUREMENT	***	0	(26)	***	长条件件条件	***		0	03/30	CP
01074 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	***	REPORT DAILY MX	LBS/DY	*****	*****	华林华春林 春	*****		ONCE/ MONTH	COMPO
BILVER FOTAL RECOVERABLE	SAMPLE MEASUREMENT	长长长长长	0	(26) LBS/DY =	***	***	***		0	03/30	СР
01079 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	***	REPORT DAILY MX		*****	****	****	* * * * * * * * * * * * * * * * * * *		ONCE/ MONTH	COMPO
TOTAL RECOVERABLE	SAMPLE MEASUREMENT	***	0.2	(26) LBS/DY	安拉安安安科	安安安安安	经体条条件		0	01/07	CP
01094 1 0 0 EFFLUENT GROSS VALUE	PERMIT	*****	REPORT DAILY MX	LBS/DY	安林长林林	******	****	****		MEEKLY	COMPO
ALUMINUM; TOTAL (AS AL)	SAMPLE MEASUREMENT	***	0.6	(26) LBS/DY	***	茶茶茶茶茶	长棒棒棒棒		0	03/30	CP
01105 1 0 0 EFFLUENT GROSS VALU	PERMIT EREQUIREMENT	*******	REPORT DAILY MX	LBS/DY	****	长州安州谷安	泰林拉米泰特	****		ONCE/ MONTH	COMPO I
CADMIUM TOTAL RECOVERABLE	SAMPLE MEASUREMENT	***	0	(26) LBS/DY	***	****	*******		0	00,00	
01113 1 0 0 EFFLUENT GROSS VALU	PERMIT EREQUIREMENT	******	REPORT DAILY MX		***	林林林林林	****	****		ONCE/ MONTH	COMPO I
LEAD TOTAL RECOVERABLE	SAMPLE MEASUREMENT	长长竹朴长长	0.02	(26) LBS/DY	长头状长头科	***	***	6	0	0	CP
01114 1 0 0	PERMIT	校长校校校长	REPORT	1 200,01	女孙林林长林	业长长长长长	特殊教养 养	体长分分	540,500	MEEKL	COMPE

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER

Michael T. Carroll Mgr. Pittsfield Remediation Prog.

TYPED OR PRINTED

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

TELEPHONE DATE 23 413 448-5902 2006 8 MO DAY NUMBER YEAR

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

FACILITY

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

GENERAL ELECTRIC COMPANY LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

SUM A DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY 06 07 01 06 07

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W) F - FINAL

METALS: 001, 004, 005, 007, 009, 011

*** NO DISCHARGE | | *** NOTE: Read Instructions before completing this form.

PARAMETER		QUANT	TITY OR LOADING			QUALITY OR CONCE	NTRATION		NO. FREQUENCY OF EX ANALYSIS		SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
CHROMIUM TOTAL RECOVERABLE	SAMPLE MEASUREMENT	***	0	(26) LBS/DY	共存存存在	传传传传传传	*****	÷-10	0	03/30	СР
01118 1 0 0 EFFLUENT GROSS VALU	PERMIT EREQUIREMENT	共长长长长	REPORT DAILY MX		****** /	并非特特特	****	*****		ONCE/	COMPO H
COPPER COTAL RECOVERABLE	SAMPLE MEASUREMENT	***	0	(26)	***	* ***	***	6-46	0	01/07	CP
01119 1 0 0 EFFLUENT GROSS VALU	PERMIT EREQUIREMENT	***	REPORT DAILY MX		****	******	技术技术	* ***		MEEKL	YCOMPO
CYANIDE, TOTAL RECOVERABLE	SAMPLE MEASUREMENT	长长朴朴朴长	0.09	(25) LBS/DY	长林春春春	* *****	***	1-49	0	03/30	CP
78248 1 0 0 EFFLUENT GROSS VALU	PERMIT REQUIREMENT	并非共作任务	REPORT DAILY MX		格安安安安	快步折折折拾	长爷长爷爷	* ***		ONCE/ MONT	GRAB H
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT									- 117	
**	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT				318179						
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT					12.00	Managara de la				
NAME/TITLE PRINCIPAL EXECUTIVE	OFFICER 1 certify		his document and all attachn					TELEPHO	NE		ATE
Michael T. Carroll Mgr. Pittsfield Remediation	to assure submitte or those	that qualified personnel p d. Based on my inquiry of persons directly responsibl	pervision in accordance with roperly gather and evaluate the person or persons who m o for gathering the informatived gedge and belief, true, accur	the information amage the system, ion, the informatio	m M.	T. Caroll	707.5.2355.007.5	113 448-59	02	2006	8 23
TYPED OR PRINTED	I am awa	re that there are significan	nt penalties for submitting fa imprisonment for knowing	information, SIGNATURE OF PRINCIPAL EXECUTIVE				REA NUMBE	R	YEAR	MO DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

COMPOSITE PROPORTIONATE TO FLOW.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATION PITTEFIELD

MA 0120

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MAOOO3891 PERMIT NUMBER

SUM B DISCHARGE NUMBER

MONITORING PERIOD

YEAR MO DAY
100 07 01 TO 00 07 31

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W) F - FINAL

TOXICS: 001, 004, 005, 007, 009, 011

*** NO DISCHARGE | | ***
NOTE: Read Instructions before completing this form.

PARAMETER		QUANT	TITY OR LOADING		C	QUALITY OR CONCE	NTRATION		NO. FREQUEN		OWNER FF
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
MOEL STAT 7DAY CHR (ERIODAPHNIA	SAMPLE MEASUREMENT	经保险保存	长松松松松		100	计计算计算	各种体操件类	% 231	0	01/30	
TBD3B 1 0 0 EFFLUENT GROSS VALU	PERMIT REQUIREMENT	****	*****	**** ****	REPORT DAILY MN	杂林林林林秀	安全本本本本	PER- CENT		ONCE/ MONTH	THE REPORT OF THE PARTY OF
IDAEL STAT 48HR ACU	SAMPLE MEASUREMENT	***	****		NODI [8]	计计计计计计	经共体条件	(23)			
FDAGB 1 0 0 EFFLUENT GROSS VALU	PERMIT EREQUIREMENT	*****	****	****	REPORT DAILY MN	长谷谷林林林	****	CENT		ONCE/ MONTH	COMPO
VOAEL STATRE 48HR A J D. PULEX	SAMPLE MEASUREMENT	****	****		100	体体长条件体	***	% 231	0	01/30	A THE RESIDENCE OF
TDM3D 1 0 0 EFFLUENT GROSS VALU	PERMIT PREQUIREMENT	李林林林林	李林林林林林	**** ****	35 DAILY MN	****	华沙沙沙沙	PER- CENT		MONTH	COMPO I
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
3 H	SAMPLE MEASUREMENT						C1				
	PERMIT REQUIREMENT									1.1	
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
NAME/TITLE PRINCIPAL EXECUTIVE			his document and all attache ervision in accordance with		d 711 -	10		TELEPHON	IE.	DA	ATE

Michael T. Carroll

Mgr. Pittsfield Remediation Prog.

TYPED OR PRINTED

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

413 AREA CODE

413 448-5902 2006 8 33 AREA NUMBER YEAR MO DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

MONTHLY DRY WEATHER TESTING. COMPOSITE PROPORTIONATE TO FLOW. FOR JULY, AUG., SEPT. REPORT ACUTE AND CHRONIC. SEE DMR SUMC FOR QUARTERLY WET WEATHER ACUTE. SUBMIT THIS DMR WITH A NODI '9' WHEN SUBMITTING WET WEATHER RESULTS ON DMR SUMC

Attachment C

NPDES Biomonitoring Report August 2006

(585) 288-8475 fax

August 23, 2006

Mr. Jeffrey Nicholson GE Corporate Environmental Programs 159 Plastics Avenue Pittsfield, MA 01201

Re: NPDES Biomonitoring Report for August 2006

Submission #: R2632759

Dear Mr. Nicholson:

Enclosed is our report on the Whole Effluent Toxicity testing conducted in August 2006. The Outfall Composite samples were collected on 8/7/06 at 11:00 am. The Housatonic River samples were collected on 8/7/06 at 8:15 am. The Outfall Composite and Housatonic River samples were analyzed at Columbia Analytical Services for total cyanide, ammonia, total organic carbon, total phosphorus, chloride, total solids, total suspended solids, total residual chlorine, and total metals. Dissolved metals were analyzed for only on the Outfall Composite samples. Results are presented in Appendix 2. The Outfall Composite and Housatonic River samples were sent directly by General Electric to Aquatec Biological Services for the acute aquatic toxicity testing including the analysis of alkalinity, hardness, specific conductance, and pH. Results are presented in Appendix 1.

Should you have any questions please contact me at (585)288-5380 x130.

Thank you for allowing us to provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Carlton Beechler Project Manager

enc.

CC: Jill Piskorz, Pat Fuse and Nicole Evans vial email.

NPDES BIOMONITORING REPORT

GENERAL ELECTRIC COMPANY Pittsfield, MA NPDES PERMIT MA 0003891

Monthly Acute Toxicity Monitoring Wet Weather Conditions August 2006

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on		
	(Date)	(Authorized Signature)
		Michael T. Carroll
		General Electric Co. – Pittsfield, MA Permit MA0003891

Prepared by: Carlton R. Beechler August 23, 2006

TABLE OF CONTENTS

		<u>PAGE</u>
I.	Summary	1
II.	Review of Toxicity Analytical Results	2
III.	Review of Wastewater Sampling Procedures	3
IV.	Review of Individual Discharges	5

Table I – Summary of Analytical Test Results

Appendices:

- 1. Chemical and Acute Toxicity Data from Aquatec Biological Sciences
- 2. Laboratory Reports from Columbia Analytical Services, Inc. and O'Brien & Gere, Inc.
- 3. Chain of Custody Forms

I. Summary

On August 6-7, 2006 sampling of wastewater discharges from the General Electric Company facility in Pittsfield MA was conducted in accordance with the wet weather toxicity testing requirement of the GE NPDES Permit MA0003891. Composite samples were collected from GE outfalls 001, 005-64T, 005-64G and 09B over a 24-hour period. These composite samples were combined in a flow-proportioned manner to generate a single wastewater sample that was shipped to Aquatec Biological Sciences in Williston, Vermont. A grab sample of Housatonic River water, to be used as dilution water in the toxicity test, was collected upstream of the GE discharges on August 7, 2006 and shipped to AquaTec along with the wastewater composite. AquaTec dechlorinated the composite sample prior to the acute toxicity test following the toxicity reduction procedures summarized in a letter dated November 11, 1993 to EPA Region I from JG Ruebesam of General Electric Company. The composite wastewater sample and the dilution water sample were tested for chemical constituents by O'Brien & Gere, Inc. and Columbia Analytical Services. The analytical results are summarized in Table I and the detailed laboratory test data are include as Appendices to this report. As a result of land transfer documents executed on April 27, 2005 and recorded in the Berkshire County Registry of Deeds on May 2, 2005, Outfalls 001 and 004 were transferred to the Pittsfield Economic Development Authority (PEDA). Outfalls 001 and 004 DMRs will no longer be submitted under the GE NPDES Permit No. MA0003891. However, GE's NPDES Permit requires that the metal and toxicity composites to be made by compositing samples from the following outfalls: 001, 004, 005, 007, and 009. These two composites will continue to include an aliquot of water from outfall 001 and outfall 004, and will be reported on GE's DMR until further actions by the Agencies.

The results from Aquatec Biological Sciences for the acute toxicity test on the wastewater discharge sample indicated a No Observed Acute Effect Level (NOAEL) of 100%.

II. Review of Toxicity Test Results

The wastewater discharge sample collected on August 6-7, 2006 was tested for 48-hour acute toxicity using *Daphnia pulex* organisms. The sample did not require dechlorination with sodium thiosulfate (Na₂S₂O₃) prior to toxicity testing. Aquatec Biological Sciences reported the results of this toxicity testing as follows:

Effluent toxicity as NOAEL =	100%
Effluent toxicity as LC ₅₀ =	>100%

No limit is established for wet weather NOAEL in the GE NPDES permit.

The following table summarizes the results of the control sample analyses performed by AquaTec during the acute toxicity bioassay:

Control Analysis Survival in 100% dilution water	Result 100%
Survival in laboratory water	96%
Survival in laboratory water with 100 mg/L sodium thiosulfate	100%
LC ₅₀ for Daphnia pulex in sodium	100/0
chloride reference toxicant solution	3.839g NaCl/L August 8, 2006

The Daphnia survival rates in control solutions of upstream dilution water, laboratory water and reference toxicant solution were within acceptable limits, indicating that the results of the toxicity test are valid.

III. Review of Wastewater Sampling Procedures

Composite samples of the individual NPDES wastewater discharges were collected over a 24-hour period. These samples were composited in a flow-weighted manner to generate a single combined discharge sample for toxicity testing and chemical analysis.

The 24-hour composite samples from the individual discharges were collected as follows:

Each automatic sampler (at outfall 001, 64T, 64G, and 09B) was programmed to collect approximately 7 liters of wastewater into a 10-liter glass container in a time-proportioned manner over a 24-hour period. Outfalls 004, 007, and 09A have been plugged and no longer flow.

All sample containers were packed in ice or refrigerated to keep the wastewater samples cold during the 24-hour collection period.

Flow meter readings were taken at the beginning and end of the 24-hour collection period to determine the total 24-hour flow for each wastewater discharge.

At the end of the 24-hour collection period, the discharge samples were taken to Building 64G where OB&G personnel composited these samples, in a flow weighted manner, to generate a single combined sample for the acute toxicity test and the chemical analyses, as follows:

The proportions of each individual discharge sample needed to produce a single combined sample were calculated from the flow measurements. The calculated sample volumes were then transferred from their original collection containers to a 2.5 or 5 gallon mixing container. The combined discharge sample was then split into various containers for toxicity testing and chemical analyses. These containers were shipped by vendor courier to AquaTec for toxicity testing and by FedEx (overnight) to Columbia Analytical Services for chemical analyses. All samples were chilled with ice packs during shipment.

A grab sample of Housatonic River water was collected on the second day of sampling at the Lyman Road Bridge in Hinsdale, MA, upstream of the GE site. This sample was split for chemical analysis and toxicity testing in a similar manner as the combined effluent sample (see above).

Details of the times and dates of sample collection as well as the names of the individuals collecting and transporting the samples are provided on the chain of custody forms in Appendix 3 of this report.

IV. Review of Individual NPDES Discharges

The following is a brief description of each of the seven outfalls that are monitored for acute and chronic toxicity in accordance with NPDES Permit MA0003891 issued to the General Electric Company, Pittsfield, MA.

- 1. Outfall 001 is permitted to discharge storm water runoff from the oil/water separator in Building 31W to Silver Lake.
- 2. Outfall 004 is permitted to discharge storm water runoff to Silver Lake. (Outfall plugged)
- 3. Outfall 005 is permitted to discharge contact cooling water, non-contact cooling water, treated process water and storm water runoff from the Wastewater Treatment Plant in Building 64T, and treated groundwater from the Groundwater Treatment Plant in Building 64G to the Housatonic River. Monitoring samples are collected separately from the effluents of 64G and 64T. Both samples are included in the flow composite sample used for toxicity testing.
- 4. Outfall 007 is permitted to discharge stormwater runoff to the Housatonic River. (Outfall plugged)
- 5. Outfall 09A is permitted to discharge non-contact cooling water and stormwater runoff to Unkamet Brook. (Outfall plugged)
- 6. Outfall 09B is permitted to discharge non-contact cooling water, treated process water and stormwater runoff from the oil/water separator in Building 119W to Unkamet Brook.

Table I – Summary of Analytical results for

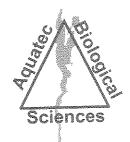
NPDES Outfall Composite Sample and Housatonic River Dilution Water August 6-7, 2006

Aquatic Toxicity Results: No Observed Effect Level (NOAEL) = 100%LC50 = >100%

Chemical Analyses: (all results are mg/L unless otherwise indicated)

		Effluent	Housatonic
Parameter Tested	Laboratory	Composite	River
Ammonia Ammonia	CAS	0.567	ND (0.0500)
Chloride	CAS	152	18.2
Total Alkalinity	CAS	277	105
Total Organic Carbon	CAS	6.99	6.66
Total Phosphorus	CAS	0.0796	ND (0.0500)
Total Solids	CAS	554	159
Total Suspended Solids	CAS	2.60	2.70
Hardness	Aquatec	308	106
Spec. Conductance (umhos)	Aquatec	1032	327
	Aquatec	7.5	7.5
pH (SU) TRC (start of toxicity test)	Aquatec	ND	ND
The (start of tomore)	•		ATT (0.0100)
Cyanide	CAS	0.0279	ND (0.0100)
Aluminum, total	CAS	ND (0.100)	ND (0.100)
Aluminum, dissolved	CAS	ND (0.100)	NA
Cadmium, total	CAS	ND(0.00500)	ND (0.00500)
Cadmium, dissolved	CAS	ND (0.00500)	NA
Chromium, total	CAS	ND (0.0100)	ND (0.0100)
Chromium, dissolved	CAS	ND (0.0100)	NA
Copper, total	CAS	ND (0.0200)	ND (0.0200)
Copper, dissolved	CAS	ND (0.0200)	NA
Lead, total	CAS	ND (0.00500)	ND (0.00500)
Lead, dissolved	CAS	ND (0.00500)	NA
	CAS	ND (0.0400)	ND (0.0400)
Nickel, total Nickel, dissolved	CAS	ND (0.0400)	NA
	CAS	ND (0.0100)	ND (0.0100)
Silver, total	CAS	ND (0.0100)	NA
Silver, dissolved	CAS	ND (0.0200)	ND (0.0200)
Zinc, total	CAS	0.0252	NA
Zinc, dissolved	OB&G	7.77	7.92
pH (SU) Hardness	Aquatec	308	106

All results are mg/L unless otherwise indicated.


ND - Not detected (Number in parentheses is detection limit.)

NA - Not analyzed

APPENDIX 1

Chemical and Acute Toxicity Data

Aquatec Biological Sciences

Aquatec Biological Sciences

August 22, 2006

Mr. Carl Beechler Columbia Analytical Services, 1 Mustard Street – Suite 250 Rochester, NY 14609

Dear Mr. Beechler:

Enclosed please find one bound and one unbound copies of our report of the results for whole effluent toxicity testing of samples received from GE Pittsfield, Massachusetts on August 7, 2006. Please note that the report contains pages 21a and 21b due to a page that was inserted (EPA Region 1 form) after the automated page numbering had been completed.

According to the Chain-of-Custody documentation the samples for Whole Effluent Toxicity (WET) Testing were collected on August 7, 2006. The samples were transported to Aquatec Biological Sciences, Inc. by courier and delivered on the same day. The effluent sample (Sample 32565) was logged in for the acute 48-hour static toxicity test with *Daphnia pulex*. The receiving water sample (Sample 32566) was logged in for dilution water. A subsample of each sample was checked for residual chlorine (not detected) and for alkalinity and hardness measurements at Aquatec Biological Sciences, Inc. The toxicity test was started on August 8, 2006; within the specified holding time.

At the conclusion of the toxicity test on August 10, 2006, a final count of surviving organisms was completed. The average survival was 96 - 100 percent in all test concentrations. Acute toxicity to *Daphnia pulex* was not detected, and the 48-hour LC50 reported as >100% effluent (Section 4.1 of the report).

If you have any questions regarding the report, please call Dr. Philip C. Downey or me.

Sincerely,

John Williams

Mapager, Environmental Toxicology

This report consists of the following numbered pages:

1-44

Whole Effluent Toxicity Testing
Of Wastewaters Discharged from
The General Electric Plant
Pittsfield, Massachusetts

Samples Collected in August 2006

Submitted to:

General Electric
Area Environmental & Facility Programs
100 Woodlawn Avenue
Pittsfield, Massachusetts 01201

SDG number: 9752

Effluent ID: Outfall Composite A7483C Aquatec sample number: 32565

Receiving water ID: Housatonic River A7482R Aquatec sample number: 32566

Study Director: John Williams

August 22, 2006

Submitted by:

Aquatec Biological Sciences, Inc. 273 Commerce Street Williston, Vermont 05454

Phone: (802) 860-1638 Fax: (802) 860-1638

Accreditation: NH Environmental Laboratory Accreditation Program NELAP / NELAC accredited for the requested analysis.

Signatures and Approval

Submitted by:

Aquatec Biological Sciences, Inc.

273 Commerce Street Williston, Vermont 05454 Phone: (802) 860-1638

Fax: (802) 860-1638

Study Director John Williams

8/22/06 Date

Quality Assurance Officer Philip C. Downey, Ph. D.

2

Whole Effluent Toxicity Test Report Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on:	Date:	8/22/06	
	and the second s		
Authorized signatu	re		
Jøhn Williams			
Name			
Manager, Envir	onmental	Toxicology	
Title			
Aquatec Biologi	cal Scien	ices, Inc.	*************
Laboratory			

Table of Contents

		Page
Signatures a		2
	ent Toxicity Test Report Certification	3 5
List of Tables	S Control To 1 1 To 1 Mith Dombnio mulay	5 6
Summary of	Static Acute Toxicity Test With <i>Daphnia pulex</i>	б
1.0 Introduc	tion	
1.0 mirodac	1.1 Background	7
	1.2 Objective of the General Electric Study	7
	•	
2.0 Materials	and Methods	_
	2.1 Protocol	7
	2.2 Effluent and receiving water samples	8
	2.3 Control water	8
	2.4 Test organism	8
	2.5 Test procedure	9
	2.6 Test monitoring	9
	2.7 Reference toxicant test	10
0.0.04-41-41		
3.0 Statistics	3.1 Statistical protocol	10
	3. 1 Statistical protocol	10
4.0 Results		
	4.1 Effluent toxicity test	10
	4.2 Reference toxicant test	11
5.0 Qualifiers		
	5.1 Qualifiers and Special Conditions	11
		12
References		1 2
		······································
Appendix 1	Chain-of-Custody Documentation	
Appendix 2	Summary of Test Conditions	
Appendix 3	U.S. EPA Region 1 Toxicity Test Summary and	
• •	Statistical Flow Chart	
Appendix 4	Bench Data, Daphnia pulex Acute Toxicity Test	
Appendix 5	Standard Reference Toxicant test Control Chart	
Appendix 6	SOP TOX2-001, Standard Operating Procedure for	
- 4-1	Daphnid (Ceriodaphnia dubia, Daphnia magna,	
	and Daphnia pulex) Acute Toxicity Test	

List of Tables

		Page
Table 1	Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)	13
Table 2	The water quality measurements recorded during the 48-hour static toxicity test for <i>Daphnia pulex</i> exposed to General Electric Pittsfield Plant effluent	14
Table 3	Cumulative percent mortalities recorded during the 48-hour static toxicity test for <i>Daphnia pulex</i> exposed to General Electric Pittsfield Plant effluent	15

Summary of Static Acute Toxicity Test with *Daphnia pulex*

Sponsor: General Electric

Protocol title: US EPA-821-R-02-012. Methods for Measuring the

Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5th Ed., October

2002. Method 2021.0

Aguatec SDG: 9752

Test material: Composite effluent from the General Electric

Company located in Pittsfield, Massachusetts

GE sample ID: OUTFALL COMPOSITE A7483C

Dilution water: Water from the Housatonic River (grab sample)

GE sample ID: HOUSATONIC RIVER A7482R

Dates collected: August 7, 2006

Date received: August 7, 2006

Test dates: August 8 - 10, 2006

Test concentrations: 100%, 75%, 50%, 35%, 15%, 5% effluent.

Dilution water control (Housatonic River A7482R)

Laboratory control 1 (culture water)

Laboratory control 2 (culture water with sodium

thiosulfate)

Results: The 48-hour LC50 value was determined to be

>100% effluent. The Acute No-Observed-Effect-Concentration (A-NOEC) was 100% effluent.

1.0 Introduction

1.1 Background

In 1972, amendments were made to the Clean Water Act (CWA) prohibiting the discharge of any pollutant from a point source to waters of the United States, unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Since the passing of the 1972 amendments to the CWA, significant progress has been made in cleaning up industrial wastewater and municipal sewage point source discharges. EPA defines point sources as discrete discharges via pipes or man-made ditches.

In 1984, the U.S. Environmental Protection Agency (EPA) released a national policy statement and a supporting document that recommended, where appropriate, effluent permit limits should be based on effluent toxicity as measured in aquatic toxicity tests. Generally, permits require that no toxic discharge occur in toxic amounts. The routine use of dilution-series toxicity tests and/or biologically-based criteria (i.e., invertebrate and vertebrate community studies) have become increasingly utilized to calculate or estimate the potential toxicity of a discharge.

EPA has the authority to delegate primary responsibility for the implementation, permitting, and enforcement of NPDES regulations to appropriate State regulatory agencies. Even when EPA delegates this authority to the states, EPA still maintains oversight responsibility.

1.2 Objective of the General Electric Study

The objective of this study was to measure the acute toxicity of the composite wastewater discharged by the General Electric facility located in Pittsfield, Massachusetts to the Housatonic River. The water flea, *Daphnia pulex*, is exposed to effluent and dilutions of effluent under static conditions. *Daphnia pulex* is routinely used by regulatory agencies and by contract laboratories for toxicity testing and EPA has published guidance documents for the performance of this test (U.S. EPA, 2002).

A toxicity test was conducted from August 8 - 10, 2006 at Aquatec Biological Sciences, Inc. (Aquatec) located in Williston Vermont. Aquatec Biological Sciences, Inc. holds NELAC accreditation for the requested whole effluent toxicity test. All original raw data and the final report produced for this study are stored in Aquatec's archives in Williston, Vermont.

2.0 Materials and Methods

2.1 Protocol

Procedures used in this acute toxicity test followed those described in the Aquatec Standard Operating Procedure (SOP) TOX2-001, Daphnid Acute R5, May 4, 2006. This SOP generally follows the standard methodology presented in U.S. EPA. 2002 (EPA-821-R-02-012). *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*, 5th Ed.,

SDG: 9752 August 22 2006

October 2002, Method 2021.0 (as summarized in Appendix 2 of this report). A copy of the SOP is located in Appendix 6 (Controlled document, please do not copy or distribute.)

Additional SOPs used in this study are outlined below:

Title	SOP Number	Revision Date
Sample Acceptance	TOX1-017	Rev. 4, February, 2004
Hardness – total titrimetric method	TOX1-011	Rev. 3, May 2003
Alkalinity – total titrimetric method	TOX1-010	Rev. 6, April 2004
Thermo-Orion 145 A+ Conductivity Meter	TOX1-016	Rev. 1, April 2004
Dissolved oxygen	TOX1-006	Rev. 7, April 2004
pH measurement	TOX1-007	Rev. 2, April 2004
Salinity: refraction method	TOX1-008	Rev. 3, January, 2003

2.2 Effluent and Receiving Water Samples

The effluent sample (Outfall Composite A7483C) was collected by GE personnel from August 6 - 7, 2006. The receiving water sample (Housatonic River A7482R) was a grab collected from the Housatonic River on August 7, 2006. Samples were delivered to Aquatec on the same day. Upon receipt at Aquatec on August 7, 2006, the temperature of the temperature blank contained within the cooler was 1.9°C. The effluent and receiving water were prepared for testing and characterized (Table 1). The receiving water was the dilution water for preparing effluent concentrations and was also the reference control for statistical comparisons.

2.3 Control water

Laboratory control water for the toxicity test was a 1:1 mixture of laboratory reconstituted moderately hard water and 60-micron filtered river water collected from the Lamoille River, Vermont. This water was characterized for the following parameters: pH (7.4); dissolved oxygen (8.0 mg/L); conductivity (236 uS/cm). An additional dechlorination control (laboratory water with 0.2 N sodium thiosulfate added) was included in the test array, even though chlorine was not detected in the effluent sample.

2.4 Test Organism

Daphnids (*Daphnia pulex*), less than 24-hours old were obtained from Aquatec laboratory cultures. The culture system consisted of several 1-liter glass beakers containing approximately 1-liter of culture medium and up to approximately 100 daphnids. The culture water was laboratory reconstituted moderately hard water. Prior to use, the culture water was characterized:

Parameter	Result
Total hardness (mg/L)	Within range of 80-110 mg/L
Alkalinity (mg/L as CaCO₃)	Within range of 60-70 mg/L
pH	Nominal 7.7 – 8.0

The culture area was maintained at a nominal temperature of 20° C (range 19 – 21 °C) with a regulated photoperiod of 16 hours light and 8 hours of darkness.

Daphnid cultures were fed a combination of green algae (*Selenastrum* capricornutum) and YCT obtained from Aquatic BioSystems of Fort Collins, Colorado. The cultures were fed a ration of *Selenastrum* and YCT daily Monday through Friday. Daphnids were transferred to new culture medium weekly.

Approximately 24 hours before toxicity test initiation, all daphnid neonates were removed from the culture beakers. Offspring produced within 24 hours were used for toxicity testing.

2.5 Test Procedures

Prior to initiating the toxicity test, a sub-sample of effluent and receiving water was decanted for subsequent alkalinity and hardness determination. A sub-sample was also check for presence of chlorine to determine whether dechlorination of effluent is required. Chlorine was not detected, therefore dechlorination of the effluent was not required. The sample was then aerated and warmed to test temperature.

The toxicity test was conducted at effluent concentrations of 100%, 75%, 50%, 35%, 15%, and 5% effluent. Test concentrations were prepared by diluting the appropriate volume of effluent with dilution water to a total volume of 400 mL. Test solutions were then decanted to five replicate 30-mL cups per concentration, each containing approximately 20 mL of test solution. Three sets of control replicates were also included in the test array, set up as the effluent replicates. The controls included: Housatonic River water (dilution control), a laboratory control (a mix of moderately hard water and Lamoille River, VT water), and a laboratory control with sodium thiosulfate added (dechlorination control). The dechlorination control was included in the test array even though residual chlorine was not detected in the effluent.

Prior to testing, daphnids less than 24-hours old were collected from the cultures, pooled in Carolina bowl, and fed. The test was initiated when the daphnid neonates were transferred to the replicate test cups, five daphnids per cup. The toxicity test cups were incubated to maintain temperature in the range of 19°C to 21 °C. The lighting cycle was 16 hours light and eight hours dark and a luminance of approximately 80 ft-c.

2.6 Test Monitoring

The number of surviving daphnids was observed at approximately 24-hour intervals during the test, with the final count of surviving daphnids at approximately 48 hours. Temperature was measured daily in one replicate of each test treatment. The parameters of pH, dissolved oxygen, and conductivity were measured at the beginning and the end of the test.

Total hardness was measured by the EDTA titrimetric method and total alkalinity was measured by potentiometric titration to an endpoint of 4.5. The check for residual chlorine was performed with an acidified sample to which potassium iodide and starch indicator added. If chlorine was detected, the color was titrated away with 0.02 N sodium thiosulfate to determine the equivalent volume of 0.2 N sodium thiosulfate to add to effluent (if needed).

Dissolved oxygen was measured with a YSI Model 58 dissolved oxygen meter. A Beckman Phi 40 was used to measure pH. A Thermo-Orion Model 145 conductivity meter was used to measure conductivity. Salinity was measured with an Atago salinity refractometer.

2.7 Reference Toxicant Test

A 48-hour standard reference toxicant (SRT) test was conducted concurrently with the effluent toxicity test. The SRT test was conducted as a quality control procedure to establish the health and sensitivity of the test organisms. The SRT included four concentrations of reagent grade sodium chloride (NaCl) with nominal concentrations of 0.75, 1.5, 3.0, 6.0, and 12 g NaCl/L. Four test replicates, each containing five daphnid neonates were test at each concentration and the laboratory control.

3.0 Statistics

3.1 Statistical protocol

The concentration-response relationships observed were characterized by the median lethal concentration (LC50), which was the calculated concentration lethal to 50 percent of the test organisms. If no concentrations resulted in 50% mortality, the LC50 was reported as greater than the highest concentration effluent (in this case >100% effluent), by direct observation. If greater than 50 percent mortality was observed in any effluent treatment, then a computer program (TOXIS2) was used to calculate the LC50 value, following the U.S. EPA statistical flowchart (Appendix 3).

The Acute-No-Observable-Effect Concentration (A-NOEC) was determined statistically using multiple comparison tests (TOXIS2), with the receiving water control as the reference.

4.0 Results

4.1 Effluent Toxicity Test

Results of effluent and receiving water characterizations performed at Aquatec as part of the toxicity test are presented in Table 1. Water quality parameters measured during the toxicity test are presented in Table 2. Measured temperatures during the test were within the range of 19°C to 21°C. The percent mortality data for the toxicity test are presented in Table 3. Acute toxicity was not

demonstrated during this evaluation. The 48-hour LC50 value was >100% effluent. The A-NOEC was 100% effluent.

4.2 Reference Toxicant Test

A standard reference toxicant (SRT) test was performed concurrently with the effluent toxicity test, using the same batch of daphnid neonates. The resulting 48-hour LC50, calculated by the Spearman-Karber method, was 3.84 g NaCl/L with 95% confidence intervals of 3.41-4.32 g/L. This LC50 value was within the Control Chart limits generated for tests in our laboratory.

5.0 Qualifiers

5.1 Qualifiers and Special Conditions

Qualifiers or special conditions were not applicable to the reported toxicity test.

References

American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17th Edition

U.S. Environmental Protection Agency, 2002. 5th Edition. *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*. EPA-821-R-02-012.

Table 1. Results of the characterization of the General Electric Pittsfield Plant effluent and receiving water (Housatonic River).

Parameter	Effluent OUTFALL COMPOSITE A7483C	Housatonic River A7482R HOUSATONIC RIVER A7482R
Temperature	20.4	20.3
рН	7.5	7.5
Alkalinity (as CaCO ₃), mg/L	268	92
Hardness (as CaCO ₃), mg/L	308	106
Dissolved oxygen, mg/L	8.5	8.9
Specific conductivity, uS/cm	1032	327
Salinity (°/₀₀)	0	0
Total residual chlorine (mg/L)	ND	ND

Note: Characterizations reflect conditions of sample after preparation for the toxicity test. ND = not detected

Table 2. Water quality measurements recorded during the 48-hour static toxicity test with *Daphnia pulex* exposed to General Electric Pittsfield Plant effluent, June 7 - 9, 2006.

Test Concentration (% effluent)		рН			issolve Oxyger (mg/L)	n	Tei	mperat (°C)	ture
	0	24	48	0	24	48	0	24	48
Dechl. Control	7.7	-	7.4	8.1	-	8.2	20.9	20.5	20.8
Lab Control	7.4	-	7.4	8.0	**	8.2	20.8	20.5	21.0
Dilution Control	7.5	~	7.8	8.9	-	8.3	20.3	21.0	20.5
5%	7.5	-	7.8	8.9	-	8.4	20.4	20.4	20.4
15%	7.5	-	7.9	8.9		8.3	20.4	20.4	20.5
35%	7.5	-	8.0	8.8	•••	8.3	20.4	20.6	20.7
50%	7.5	-	8.1	8.7	-	8.3	20.4	20.7	20.7
75%	7.5	-	8.2	8.6	-	8.3	20.4	20.5	20.5
100%	7.5	-	8.3	8.5	-	8.4	20.4	20.4	20.4

Measurements at time 0 were from a sub-sample of the prepared treatment. Measurements at time 48 were from the combined water from all replicates for each treatment.

Dechl. Control = laboratory water with sodium thiosulfate added (dechlorination control).

Lab Control = a mix of natural river water and moderately hard water. Dilution Control = receiving water (Housatonic River).

Table 3. Cumulative percent mortalities recorded during the 48-hour static acute toxicity test with *Daphnia pulex* exposed to General Electric Pittsfield Plant effluent, August 8 - 10, 2006.

Effluent Conc.			24-hou	ır					18_	hour		
(%)	A	В	C	D	E	Avg	Α	В	C	D	E	Avg
Dechi. Control	0	0	0	0	0	0	0	0	0	0	0	0
Lab Control	0	0	0	0	0	0	0	20	0	0	0	4
Rec. Control	0	0	0	0	0	0	0	0	0	0	0	0
5%	0	0	0	0	0	0	0	0	0	0	0	0
15%	0	0	0	20	0	4	0	0	0	20	0	4
35%	0	0	0	0	0	0	0	0	0	0	0	0
50%	0	0	0	0	0	0	0	0	0	0	0	0
75%	0	0	0	0	0	0	0	0	0	0	0	0
100%	0	0	0	0	0	0	0	0	0	0	0	0

Dechl. Control = laboratory water with sodium thiosulfate added (dechlorination control).

Lab Control = a mix of natural river water and moderately hard water. Dilution Control = receiving water (Housatonic River).

Percent mortality = (# dead/5) X 100

Appendix 1 Chain-of-Custody Documentation

16

									ũ	Page 1	of	2
			AGE	atec E		Aquatec Biological Sciences			273 C Willist TEL: (273 Commerce Street Williston, VT 05495 TEL. (802) 860-1638	Street 495 1638	
									FAX: (FAX: (802) 658-3189	3189	
COMPANY INFORMATION		COMPAN	Y'S PROJ	COMPANY'S PROJECT INFORMATION	MATION	SHIPPING INFORMATION		VOLUM	VOLUME/CONTAINER TYPE/	INER TY	′PE/	
Vame: General Electric Company		Project Name: GE PITTSFIELD	e: GE PITI	rsfield		Carrier:	0,	1		1	-	
Address: O'Brien & Gere		Outfall Composite	mposite				ر + ا	 ວ	7 4 50 H	7,7 0,00 4	0°4 ————————————————————————————————————	သ သ
1000 East Street, Gate 64		Project Number: 06004	ber: 06004			Airhill Nimber	_	1		<u> </u>	£ 	5 /
Sity/State/Zip: Pittsfield, MA 01201		Sampler Name(s): MARIC	me(s): ///	1 1	WASWEWSK		Plastic	Plastic	Plastic G	Glass An		Plastic
		NFDES Permit #; MA0003891	It #: MA00	03891		Date Shipped: 7-0 6				<u> </u>	class	
Contact Name: Mark Wasnewsky		Quote #:	10/05	Client Code	Code: GEPITTS	Hand Delivered: Yes No	<u> </u>	10 ca	 		•	1
SAMPLE IDENTIFICATION	COLL	COLLECTION DATE TIME	GRAB	COMPOSITE	MATRIX	ANAl VOIC (dottod) 2007 [ANA		300	-	1104	-	0.5 L
Sutfall Composite // C. 17 a	ą.	Ş			-	Daphnia pulay /8 h Statio Acuta Taricit	-	NUMB	NUMBER OF CONTAINERS	NTAINE	RS	Ī
# 148SC	2-7-0	11 AM		Ţ		(EPA Method 2021.0). Log in for A48DPS					······································	
Outfall Composite A 7483 C		1.05 25 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.0		7	Effluent	Total Residual Chlorine					-	
Housatonic River A7482R		70 172 172	7	THE PARTY OF THE P	Receiving	Dilution Water	_					
Housatonic River A 7 452R	>	7,4 124	7		Receiving	Total Residual Chlorine						
						-						
												T
Relinquished by: (signature)	DATE	TIME	Received by: (ad by: (signature)	ture)	NOTES TO SAMPLER(S): (1): Comp	Complete the labels (Date time initials) and account	S (Date #	imo initial			
	X-7-W	1312			nud.	labels with clear tape. Tape the caps of the sample bottles to ensure that they do not become dislodged during shipment. Nest the samples in sufficient ice to maintain 0°C	of the sam Nest the sa	ole bottles mples in s	s to ensure Sufficient i	that they ce to mail	ver the / do not ntain 0°C	ن
Monthly Myner of Constant of Selinquished by: (signature)	DATE	- 1		-	- Carre	6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the report.	temperatur	es exceed	ling 6°C wi	II be qual	lified in t	the
	; ;	**************************************) · (co possession) ·	od by. (signalaria	(aın	Notes to Lab: Ambient cooler temperature;		アイク	Dechlorinate the officent	and oter	officent	******
Relinquished by: (signature)	DATE	TIME	Receive	Received by: (signature)	ure)	sample if chlorine is detected.		6			5	
				AND THE PROPERTY OF THE PROPER								

Appendix 2 Summary of Test Conditions

18

Client: GENERAL ELECTRIC, PITTSFIELD, MA, MA0003891

Test Description: Daphnid, Daphnia pulex, acute toxicity test

ASSOCIATED PROTOCOL: EPA 2002, 5th ed. (EPA-821-R-02-012) Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Method 2002.0

Static, non-renewal 1. Test type: 2. Test temperature: 20 ± 1°C Ambient laboratory illumination 3. Light quality: 4. Photoperiod: 16 hr. light, 8 hr. dark 5. Test chamber size: 30 ml 6. Test solution volume: 15-20 ml / replicate 7. Renewal of test concentrations: None 8. Age of test organisms: Less than 24 h 5 9. No. organisms / test chamber: 10. No. of replicate chambers / concentration: 5 11. No. of organisms / concentration: 20 Feed 0.1 ml of YTC and algal suspension prior 12. Feeding regime: to testing. Not fed during test. None 13. Cleaning: 14. Aeration: None Receiving Water (Housatonic River) 15. Dilution water: 5, 15, 35, 50, 75, 100% 16. Test concentrations: 1:1 mix of reconstituted moderately hard water 17. Laboratory control: and Lamoille River water. Dechlorination control. 18. Test duration: 48 h Day 0: temperature, DO, pH, and conductivity. 19. Monitoring: Day 1: temperature, DO, pH, and conductivity. Day 2: temperature, DO, pH Hardness, alkalinity, salinity, TRC Biological monitoring daily (survival) Survival 19. End points: Sodium chloride 48-h LC50 20. Reference toxicant test: 21. Test acceptability 90% or greater Acute: 48 h LC50 (Point estimate by EPA 22. Data interpretation: statistical flowchart using TOXIS 2) and A-NOEC by hypothesis test statistics compared to the receiving water control (EPA statistical flowchart using TOXIS 2)

SDG: 9752

Appendix 3 U.S. EPA Region 1 Toxicity Test Summary and Statistical Flow Chart

SDG: 9752

TOXICITY TEST SUMMARY SHEET

Facility Name: Outfall Composite A7483C

Test Start Date 8/8/2006

NPDES Permit Number: MA0003891

Pipe Number: 001

Test Type Test Species Sample Type Sampling Method

Acute Daphnia pulex Effluent Composite

Dilution Water: Housatonic River Receiving Water: Housatonic River

Effluent Sampling Dates: 8/7/06

Concentrations Tested: 0 5 15 35 50 75 100 Control

Permit Limit: NA

Was Effluent Salinity Adjusted? NA

If yes, to what value?

With Sea Salts?

Hypersaline Brine Solution?

Actual effluent concentrations tested after salinity adjustment in percent: Same as above

Reference Toxicant Date: 8/8/06

PERMIT LIMITS and TEST RESULTS

Test Acceptability Criteria

Mean Control Survival: 100 (%)

	Limits (%)		Results (%)
LC50	NA	48-Hour LC50 Upper Value	>100
		Lower Value	
		Data Analysis Method	Direct Observation
A-NOEC		48-Hour A-NOEC	100
C-NOEC		C-NOEC	
		LOEC	
IC25		IC25	
IC50		IC50	

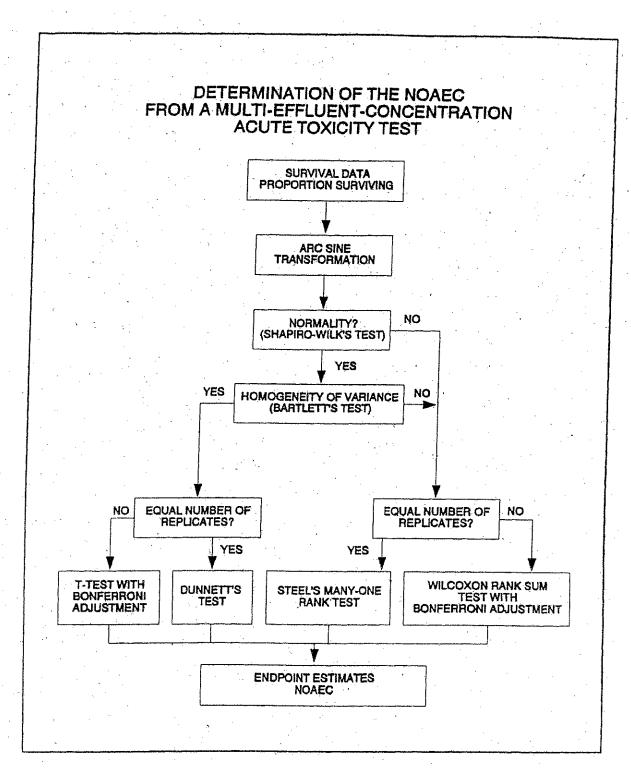


Figure 13. Flowchart for analysis of multi-effluent-concentration test data.

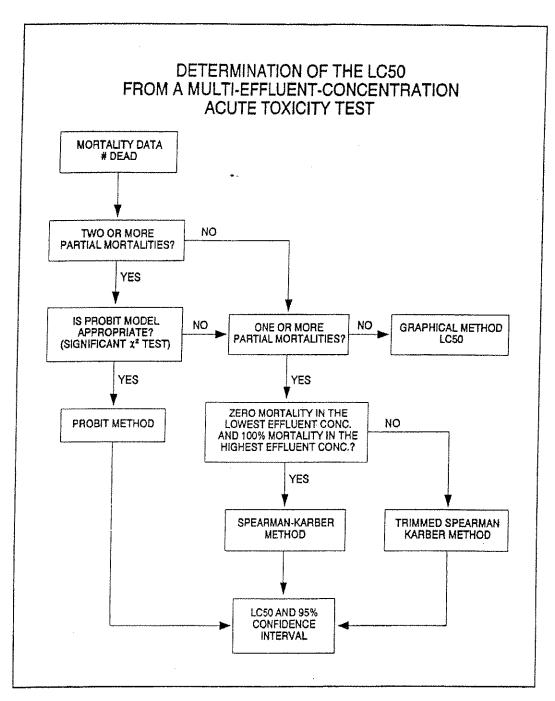


Figure 6. Flowchart for determination of the LC50 for multi-effluent-concentration acute toxicity tests.

NPDES Permit No. MA0003891 SDG: 9752 August 22 2006

Appendix 4 Bench Data, *Daphnia pulex* Acute Toxicity Test

Aquatec Biological Sciences, Inc.

Test Date: 8/08/06 Sample Date: 8/07/06

Species: Daphnia pulex Test Type: Acute - 48 hours Test Number: 48817

Test Material: Effluent - Industrial %

Source: MA0003891

General Electric Company

Pittsfield, MA

		SUM	MARY				
======================= End Point	Day	Transformation	Conc	#Reps	Mean	StDev	% Surv
Proportion Alive		Arc sine sqrt w/ adj.	***************************************			·····	
*			0.000 B	5	1.30	.106	
			0.000 D	5	1.35	0.000	
		2	5.000 D	5	1.35	0.000	
		2	15.000 D	5	1.30	.106	
		7	35.000 D	5	1.35	0.000	
		2	50.000 D	5	1.35	0.000	
		Y	75.000 D	5	1.35	0.000	
		3	100.000 D	5	1.35	0.000	
roportion Alive	2	No transformation					
_			0.000 B	5	.96	.089	
			0.000 D	5	1.00	0.000	
			5.000 D	5	1.00	0.000	
			15.000 D	5	. 96	.089	
			35.000 D	5	1.00	0.000	
			50.000 D	5	1.00	0.000	
			75.000 D	5	1.00	0.000	
			100.000 D	5	1.00	0.000	

X = indicates concentrations used in calculations

- HYPOTHESIS TEST -									
			~=======		****		****		
End Point	Day	Transformation/Analysis	NOEC	LOEC	TU	MSE	MSD	'	
Proportion Alive	2	Arc sine sqrt w/ adj. Steel many-one rank test	>100.000	>100.000	< 1.00	. 002	. 080		

48-h LC50: > 100% (DIVECT OBSERVEDON 8/22/06) J

Aquatec Biological Sciences, Inc.

WATER FLEA TEST DATA

Test Number: 48817

Test Date: 8-Aug-06

Source: MA0003891 Test Material: EFF2 (%)

() Chronic (x) Acute 48 hours

Cont. Daily Survival Prop Total Max

			COME.		Daray .	Juraran	LTOD.	HULGI	Max
С	onc	Rep	No. Sex	Start	1 2 3	4 5 6 End	Alive	Young	Young
0	.00 B	1	F	5	5		1.00		
0	.00 B	2	F	5	4		. 80		
0	.00 B	3	F	5	5		1.00		
0	.00 B	4	F	5	5		1.00		
0	.00 B	5	F	5	5		1.00		
	.00 D	1	F	5	5		1.00		
0	.00 D	2	F	5	5		1.00		
0	.00 D	3	F	5	5		1.00		
0	.00 D	4	F	5	5		1.00		
0	.00 D	5	F	5	5		1.00		
5	00 D	1	F	5	5		1.00		
5	00 D	2	F	5	5		1.00		
	00 D	3	F	5	5		1.00		
	00 D	4	F	5	5		1.00		
5.	00 D	5	F	5	5		1.00		
15.	00 D	1	F	5	5		1.00		
15.	00 D	2	F	5	5		1.00		
15.	00 D	3	F	5	5		1.00		
15.	D 00	4	F	5	4		.80		
15.	00 D	5	F	5	5		1.00		
35.	00 D	1	F	5	5		1.00		
35.	00 D	2	F	5	5		1.00		
35.	00 D	3	F	5	5		1.00		
35,	00 D	4	F	5	5		1.00		
35.	00 D	5	F	5	5		1.00		
50.	00 D	1	F	5	5		1.00		
50.	00 D	2	F	5	5		1.00		
50.	00 D	3	F	5	5		1.00		
50.	00 D	4	F	5	5		1.00		
50.	00 D	5	F	5	5		1.00		
75.	00 D	1	F	5	5		1.00		
75 . :	Q 00	2	F	5	5		1.00		
75.	00 D	3	F	5	5		1.00		
75.	0 D	4	F	5	5		1.00		
75.0	Q 00	5	F	5	5		1.00		
100.0	Q 00	1	F	5	5		1.00		
100.0	00 D	2	F	5	5		1.00		
100.0	0 D	3	F	5	5		1.00		
100.0	10 D	4	F	5	5		1.00		
100.0	0 D	5	F	5	5		1.00		

Client: GENERAL ELECTRIC, PITTSFIELD, MA Test #: 48817

MA0003891

Test Description: Daphnia pulex 48-h daily renewal acute toxicity test

SUR	/IVAL	DATA.	SAMPLE	E 32565

		AL DATA, SAMPLE	
Treatment (%)	0	Day 1 # Surviving	Day 2 # Surviving
	A 5	5	5
Water	B 5	5	5
Contr	c 5	5	5
	D 5	5	5
	E 5	5	-5
5.0	A 5		5
	B 5	5	5
	c 5	5	5
1	5	5	
I	E 5	5	5 5
	A 5	5	
l	3 5		5
	L	<u> </u>	5
ì		5 5 4	<u> </u>
	<u> </u>	7	
35 /			
35 A		<u>5</u>	5
		5	5 5
		5	<i>5</i>
E		5	5
50 A		5	
В		5	
C		5	5
D		5	5
E		5	5
75 A		5	5
В		<i>5</i>	5
С		5	5
D		5	5
E	5	5	5
100 A	5	5	5
В	5	5	5
С	5	5	5
D	5	5	5
E	5	5	5
Sample #	32565	<u>.</u>	
I/D/T	4588	KS 8/9 11:05 1	KS 8/10 10:55
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10:50		

SDG: 9752

Client: GENERAL ELECTRIC, PITTSFIELD, MA Test #: 48817 SDG: 9752

MA0003891

Test Description: Daphnia pulex 48-h daily renewal acute toxicity test

SURVIVAL DATA, LAB CONTROL AND DECHLORINATION CONTROL

	T		
Treatment	Day	Day 1 # Surviving	Day 2 # Surviving
(%)	0	1	-
Lab A	5	1 5	5
Contr E	5	5	4
	5	5	5
	5	5	5
E	5	45 KS	5
Dechlor. A	5	5	. 5
Control B	5	5	5
C	5	5	5
D	5	5	5
E	5	5	5
I/D/T	KS 8/8	KS 8/9 11:00	KS 8/10 10:50
	10:50		

Note: Residual chlorine was not detected in the effluent sample, therefore sodium thiosulfate was not added to the effluent before toxicity testing. Although chlorine was not detected, an additional dechlorination control (0.1 mL of 0.25 N sodium thiosulfate per liter of moderately hard / Lamoille River water) was included in the test array.

Client: GENERAL ELECTRIC, PITTSFIELD, MA Test #: 48817 SDG: 9752

MA0003891 OUTFALL 001

Test Description: Daphnia pulex 48-h daily renewal acute toxicity test

ı	Treatment (%)	Parameter	Day	Day	Day
	neaunent (70)	raiametei	Day 0	Day 1	2 2
	Lab	pН	7.4		774
	Contr	DO	8.0		8.2
		Temp	20.8	20,5	21.0
		Cond.	2360		241
	Dechlorination	pН	2.7		714
ı	Control	DO	8.1		8.2
ı		Temp	20.9	20,5	20.8
		Cond.	271	***	267
ſ	Rec.	рН	7.5		778
	Water	DO	8.9		8.3
	Contr	Temp	20.3	21.0	20.5
ı		Cond.	32)		287
ľ	5.0	рН	7.5		7,8
ı	•	DO	8.9		8.4
ı	Ī	Temp	20.4	20.4	20.4
l	ľ	Cond.	361		323
ľ	15	рН	2.5		739
İ	ľ	DO	8.9		8,3
l		Temp	20.4	20.4	20,5
l		Cond.	423	w-h	391
Γ	35	pН	7.5		8.0
l		DO	8.8		8.3
		Temp	20.4	20.6	20.7
		Cond.	599		53
Г	50	рН	7.5		8.1
	-	DO	8.7		8.3
	-	Temp	20.4	20.7	20.7
		Cond.	671	***	635
Г	75	рН	2.5		
		DO	8.60		8,2 8,3
Ī	r	Temp	20.4	20,5	20.5
	 	Cond.	844	**	811
_	100	рН	2.5		8.3
		DO	8.5		8.4
	 	Temp	20.4	70.4	20.4
	 	Cond.	1032		983
	Sample #		32565	32565	32565
	I/D (20 05)			KS 8-9-06	KS 8-10-06
	2006	NA.			

2006

Daphnia pulex Culture Log

CLEARED FED (MWF SellYCT Culture CULTURE WATER OF Temp. RENEWAL? **NEONATES?** Beakers (°C) DATE ID INIT. TuTh Sel) (TIME) Washed? (Lot#) 7/12A,B,C V71606MHW 20,90 7-21-06 $\Im G$ yc/sel 10:00 ture 7/22 MASS yc/Sel 20.9°C 7-22-06 rded. KK 7/12 A,B, C cultures ended, New cultures started from mass culture 7/22. KS 21.0 7-24-06 7/24 A,B,C Sel KS 7-25-06 7/22 YCSel KS 21.0 7-26-06 7/24AB,C Sel 7-27-06 7/22 7/24A,B,C yc/Sel. 208°C 728-06 JG Sel 7-29-06 KS 7/24 A,B,C KS sel 7-30-06 7122 YC/Sel Z1.0°C 7-31-06 7/24 A,B,C Sel 8-1-06 KS 7/22 YC/Sel KK 20.4°C 8-2-06 7/24ABIC Sel 8-3-66 KS 7/22 7/24 A,B,C YC/sel 20,9048-4-06 JG 7/22 Sel 8-6-06 KS 7/24 ABC 20,7 YC/Sel 18-7-06 KS 11:10) 722 20.5 8-8-06 10:30 KS Sel

Selenastrum Lot#: 71106 Sel /72506 Sel

YC or YCT Lot#: 713064C

Toxicology QA/Tox Forms

11-06

JG

Alkalinity and Hardness Worksheet

	Hardness		308.0)	108.0
	Analysis Date	1100000	8/8/06)))	8/8/06
ness	Analyst		X	!	X
Hardnes	Final Titrant (mi)	· · · · · · · · · · · · · · · · · · ·	37.5		43
	Initial Titrant (ml)	- ALVAN	22.1		37.7
	Sample Volume	TOTAL CONTRACTOR OF THE PARTY O	20	ļ	20
	Alkalinity		268.0	Ç	92.0
	Analysis Date	The state of the s	90/6/8	0000	8/8/00
inity	Analyst	444	爻	212	<u> </u>
Alkalinit	Final Titrant (ml)		10.8	4.0	
	Initial Titrant (ml)		4.1	ά (1)	2
	Sample Volume	Į.	52	25)
	Sampling Date	001010	8/8/06	8/8/06	5
	Sub ID Code				
	Sample LIMS Identifier Identifier	Outtoll Companies	Outall Composite	Housatonic River A	
	Sample Identifier	30565	0,000	32566	

Ja/22/06

Sample Preparation

Client: GENERAL ELECTRIC, PITTSFIELD, MA MA0003891 SDG: 9752

Test Description: Daphnia pulex acute toxicity test. Test #: 48817

Sample Identification:

Sample Description	Rec. Water (Housatonic River)	Effluent	
Sample #	32566	32565	

Sample Preparation:

Filtration	60 micr on	60 migron	60 micron	60 micron
Chlorine ¹	ND	ND		
Dechlorine ²		-		
Salinity ^(0/00)	0.60	0 6/02		
Prepared by (Init./date)	8-8-010 XX			

¹ Record vol. 0.025 N sodium thiosulfate to dechorinate 100 mL sample or record "ND" (not detected).

Dilution Plan for: Daphnia pulex static acute toxicity test

Receiving water is the dilution water

Lab Control = moderately hard water / Lamoille River 1:1 mix

Dechlorination Control = moderately hard water / Lamoille River 1:1 mix + sodium

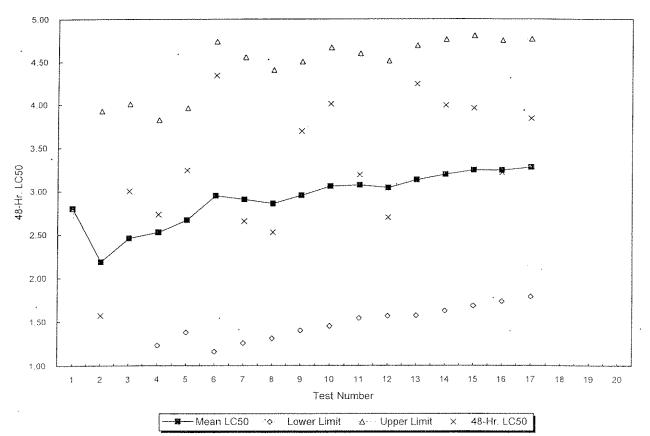
thiosulfate

Concentration	Volume Effluent	Volume Diluent	Total Volume
(%)	(mL)	(mL)	(mL)
Laboratory Control	0	400	400
Thiosulfate Control	0	400	400
Rec. Water Control	0	400	400
5.0	20	380	400
15	60	340	400
35	140	260	400
50	200	200	400
75	300	100	400
100	400	0	400
Total Volume	1120	1680	

Comments:

Collect alkalinity and hardness samples on each new effluent and receiving water sample.

Aquatec Biol	ogical Sciences, Inc. \	Willisto	n Vermont 🔎		
Reviewed by:		Date:	3/22/0(2	— 1


² Dechlorination required if detected. Record vol. 0.25 N sodium thiosulfate added per gallon effluent.

NPDES Permit No. MA0003891 SDG: 9752 August 22 2006

Appendix 5 Standard Reference Toxicant test Control Chart

Reference Toxicant Control Chart Daphnia pulex in Sodium chloride (g/L)

Test Number	Test Date	Organism Age (Days)	48-Hr. LC50	Mean LC50	Lower Limit	Upper Limit	Organism Source
1	06/10/98	1	2.801	2.80	2.80	2.80	Aquatec Biological Sciences
. 2	09/17/98	1 .	1.57	2.19	0.44	3.93	Aquatec Biological Sciences
3	12/15/98	1	3.002	2.46	0.44	4.01	Aquatec Biological Sciences
3 4	10/08/05	1	2.733	2.53	1.23	3.82	Aquatic BioSystems
5	10/06/05	1	3.241	2.53	1.23	3.96	Aquatic BioSystems Aquatic BioSystems
5 6	10/11/05	1	4.342	2.95	1.16	4.74	Aquatic BioSystems
7	11/02/05	1	2.655	2.93	1.26	4.74	Aquatic Biological Sciences
	11/02/05	1	2.527	2.86	1.31	4.41	Aquatec Biological Sciences
8	12/07/05	1	3.693	2.00	1.40	4.50	Aquatec Biological Science:
9 .		1	4.009	3.06	1.45	4.67	
10	01/05/06	1				4.60	Aquatec Biological Sciences
11	02/08/06	1	3.189	3.07	1.54		Aquatec Biological Sciences
12	03/11/06	1	2.698	3.04	1.57	4.51	Aquatec Biological Sciences
13	04/06/06	1	4.243	3.13	1.57	4.69	Aquatec Biological Sciences
14	05/10/06	1	3.992	3.19	1.62	4.76	Aquatec Biological Sciences
15	06/07/06	1	3.959	3.24	1.68	4.81	Aquatec Biological Sciences
16	07/11/06	1	3.215	3.24	1.73	4.75	Aquatec Biological Sciences
17	08/08/06	1	3.839	3.28	1.79	4.77	Aquatec Biological Sciences
18							
19							•
20							

NPDES Permit No. MA0003891 SDG: 9752 August 22 2006

Appendix 6 SOP TOX2-001, Standard Operating Procedure for Daphnid (*Ceriodaphnia dubia*, *Daphnia magna*, and *Daphnia pulex*) Acute Toxicity Test

TOX2-001 Revision 5 May 4, 2006 Page 1 of 8

Standard Operating Procedure for

Daphnid (Ceriodaphnia dubia, Daphnia magna and Daphnia pulex) Acute Toxicity Test NELAC METHODS / U.S. EPA METHODS 2002.0 AND 2021.0

1.0 IDENTIFICATION OF TEST METHOD

This SOP describes procedures for conducting an acute toxicity test with dapnids. This test is used to estimate the acute toxicity of whole effluents or other aqueous samples to the cladocerans, *Ceriodaphnia dubia*, *Daphnia magna* and *Daphnia pulex*. Aquatec Biological Sciences, Inc. holds NELAC accreditation for this method.

2.0 APPLICABLE MATRIX OR MATRICES

The described test is used to assess toxicity of wastewaters (effluents, influents), receiving waters, and other prepared aqueous solutions.

3.0 DETECTION LIMIT

Not applicable.

4.0 SCOPE AND APPLICATION

This SOP describes procedures for performing a static or static-renewal acute toxicity test with cladocerans, *Ceriodaphnia dubia*, *Daphnia magna* and *Daphnia pulex*.

5.0 SUMMARY OF TEST METHOD

A summary of the test method is attached (Table 1 of this SOP). This test is used to estimate the acute toxicity of whole effluents or other aqueous samples to the freshwater cladocerans. Organisms are exposed, for 24, 48 or 96 hours, typically to five concentrations of effluent (or aqueous sample) and the controls. Acute toxicity is estimated by calculating the lethal concentration 50 value (LC50) and/or the acute no-observed-effect-concentration (A-NOEC). This procedure is based on the guidelines of EPA-821-R-02-012 (Methods 2002.0 and 2021.0).

6.0 DEFINITIONS

<u>LC50</u>: The computed concentration that results in 50 percent mortality of the test organisms (may be computed from 48-h or 96-h data).

A-NOEC: The acute no-observed-effect-concentration; The highest concentration resulting in no statistically significant reduction in survival relative to the control (requires four test replicates for statistical analysis).

7.0 INTERFERENCES

Not applicable.

8.0 SAFETY

Samples acquired for toxicity testing may contain unknown toxicants or health hazards. Protective equipment (e.g., lab coats, disposable gloves) should be worn when handling samples.

9.0 EQUIPMENT AND SUPPLIES

Calibrated Instrumentation and Water Quality Apparatus:

pH meter

Dissolved Oxygen (DO) meter

Thermometer (accurate to 0.1°C)

Conductivity meter

Alkalinity titration apparatus

Hardness titration apparatus

Additional Equipment:

Test chambers (30-ml disposable cups), color coded

Test board with randomized scheme, glass cover

Light table

Waste collection bucket

Aquatec Biological Sciences, Inc. TOX2-001 Daphnid acute R5 050406

Forms and Paperwork:

Survival and chemistry data form
Alkalinity and hardness data form

10.0 REAGENTS AND STANDARDS

Laboratory reconstituted water (soft water, moderately hard water, or hard water) Deionized water Reference toxicant solutions

11.0 SAMPLE COLLECTION, PRESERVATION, SHIPMENT, AND STORAGE

Samples for acute toxicity tests are typically collected, cold-preserved, and shipped to Aquatec. Sample acceptance and log-in procedures are outlined in SOP TOX1-017. After receipt at Aquatec, samples should be refrigerated when not being prepared for use in toxicity tests. The holding time for effluent samples is 36 hours from the time of collection until the time of first use.

12.0 QUALITY CONTROL

The acute toxicity test is judged to be acceptable and to have met Quality Control standards if the associated dilution water and laboratory control meet the survival criterion of 90% or greater. Also, the test conditions must be within the guidelines described in the protocol (Table 1). Standard reference toxicant (SRT) tests (48-h acute with sodium chloride as the toxicant) should be performed with a representative sub-set of the test organisms and result in an LC50 within the boundaries of the control chart. Deviations from acceptance standards should be documented and may result in the test being viewed as "conditionally acceptable" or "unacceptable" (See Section 19.0 below).

13.0 CALIBRATION AND STANDARDIZATION

Not applicable for the toxicity test. Any instrumentation (e.g., water quality instrumentation) required for conducting the test must be calibrated on a daily basis following the relevant SOP or instrument guidelines.

14.0 PROCEDURE

14.1 Test System and Conditions

The test system and environmental conditions for the daphnid acute toxicity test are summarized in Table 1.

14.2 Test Organisms

Procurement and Documentation

Test organisms for the daphnid acute test are obtained from Aquatec's laboratory cultures or commercial supplier. Neonates less than 24-h old are used for testing. Neonates collected for testing may be held in individual culture cups until distributed to tests. Feed neonates approximately 2 hours prior to test initiation by pipeting 0.1 ml yeast-Cerophyll-trout chow (YCT) and Selenastrum capricornutum to all neonate holding cups. Store the culture cups, covered, at test temperature ($25 \pm 1^{\circ}$ C or $20 \pm 1^{\circ}$ C).

Evaluation of Daphnid Condition and Acclimation

If, during examination, it appears that more than 10 percent of the parent females or the neonates collected for the test have died during the holding period preceding the test, notify the Toxicity Laboratory Director immediately. A decision will be made regarding the possibility of collecting an alternate stock of neonates for testing. If the test is to be delayed, document the reason on the Project Documentation form. Also, it may be necessary to notify the client.

Ordinarily, C. dubia neonates are maintained in laboratory water (1:1 mix of Lamoille River water and moderately hard water) up until the time of test initiation. D. magna neonates are maintained in hard water while D. pulex neonates are maintained in moderately hard water. The temperature of the neonate stock must be maintained at 25 \pm 1°C or (20 \pm 1°C). Return parent stock females

TOX2-001 Revision 5 May 4, 2006 Page 1 of 8

Standard Operating Procedure for Daphnid (Ceriodaphnia dubia, Daphnia magna and Daphnia pulex) Acute Toxicity Test NELAC METHODS / U.S. EPA METHODS 2002.0 AND 2021.0

1.0 IDENTIFICATION OF TEST METHOD

This SOP describes procedures for conducting an acute toxicity test with dapnids. This test is used to estimate the acute toxicity of whole effluents or other aqueous samples to the cladocerans, *Ceriodaphnia dubia*, *Daphnia magna* and *Daphnia pulex*. Aquatec Biological Sciences, Inc. holds NELAC accreditation for this method.

2.0 APPLICABLE MATRIX OR MATRICES

The described test is used to assess toxicity of wastewaters (effluents, influents), receiving waters, and other prepared aqueous solutions.

3.0 DETECTION LIMIT

Not applicable.

4.0 SCOPE AND APPLICATION

This SOP describes procedures for performing a static or static-renewal acute toxicity test with cladocerans. Ceriodaphnia dubia, Daphnia magna and Daphnia pulex.

5.0 SUMMARY OF TEST METHOD

A summary of the test method is attached (Table 1 of this SOP). This test is used to estimate the acute toxicity of whole effluents or other aqueous samples to the freshwater cladocerans. Organisms are exposed, for 24, 48 or 96 hours, typically to five concentrations of effluent (or aqueous sample) and the controls. Acute toxicity is estimated by calculating the lethal concentration 50 value (LC50) and/or the acute no-observed-effect-concentration (A-NOEC). This procedure is based on the guidelines of EPA-821-R-02-012 (Methods 2002.0 and 2021.0).

6.0 DEFINITIONS

<u>LC50</u>: The computed concentration that results in 50 percent mortality of the test organisms (may be computed from 48-h or 96-h data).

A-NOEC: The acute no-observed-effect-concentration; The highest concentration resulting in no statistically significant reduction in survival relative to the control (requires four test replicates for statistical analysis).

7.0 INTERFERENCES

Not applicable.

8.0 SAFETY

Samples acquired for toxicity testing may contain unknown toxicants or health hazards. Protective equipment (e.g., lab coats, disposable gloves) should be worn when handling samples.

9.0 EQUIPMENT AND SUPPLIES

Calibrated Instrumentation and Water Quality Apparatus:

pH meter

Dissolved Oxygen (DO) meter

Thermometer (accurate to 0.1°C)

Conductivity meter

Alkalinity titration apparatus

Hardness titration apparatus

Additional Equipment:

Test chambers (30-ml disposable cups), color coded

Test board with randomized scheme, glass cover

Light table

Waste collection bucket

Aquatec Biological Sciences, Inc. TOX2-001 Daphnid acute R5 050406

Forms and Paperwork:

Survival and chemistry data form Alkalinity and hardness data form

10.0 REAGENTS AND STANDARDS

Laboratory reconstituted water (soft water, moderately hard water, or hard water) Deionized water Reference toxicant solutions

11.0 SAMPLE COLLECTION, PRESERVATION, SHIPMENT, AND STORAGE

Samples for acute toxicity tests are typically collected, cold-preserved, and shipped to Aquatec. Sample acceptance and log-in procedures are outlined in SOP TOX1-017. After receipt at Aquatec, samples should be refrigerated when not being prepared for use in toxicity tests. The holding time for effluent samples is 36 hours from the time of collection until the time of first use.

12.0 QUALITY CONTROL

The acute toxicity test is judged to be acceptable and to have met Quality Control standards if the associated dilution water and laboratory control meet the survival criterion of 90% or greater. Also, the test conditions must be within the guidelines described in the protocol (Table 1). Standard reference toxicant (SRT) tests (48-h acute with sodium chloride as the toxicant) should be performed with a representative sub-set of the test organisms and result in an LC50 within the boundaries of the control chart. Deviations from acceptance standards should be documented and may result in the test being viewed as "conditionally acceptable" or "unacceptable" (See Section 19.0 below).

13.0 CALIBRATION AND STANDARDIZATION

Not applicable for the toxicity test. Any instrumentation (e.g., water quality instrumentation) required for conducting the test must be calibrated on a daily basis following the relevant SOP or instrument quidelines.

14.0 PROCEDURE

14.1 Test System and Conditions

The test system and environmental conditions for the daphnid acute toxicity test are summarized in Table 1.

14.2 Test Organisms

Procurement and Documentation

Test organisms for the daphnid acute test are obtained from Aquatec's laboratory cultures or commercial supplier. Neonates less than 24-h old are used for testing. Neonates collected for testing may be held in individual culture cups until distributed to tests. Feed neonates approximately 2 hours prior to test initiation by pipeting 0.1 ml yeast-Cerophyll-trout chow (YCT) and Selenastrum capricornutum to all neonate holding cups. Store the culture cups, covered, at test temperature ($25 \pm 1^{\circ}$ C or $20 \pm 1^{\circ}$ C).

Evaluation of Daphnid Condition and Acclimation

If, during examination, it appears that more than 10 percent of the parent females or the neonates collected for the test have died during the holding period preceding the test, notify the Toxicity Laboratory Director immediately. A decision will be made regarding the possibility of collecting an alternate stock of neonates for testing. If the test is to be delayed, document the reason on the Project Documentation form. Also, it may be necessary to notify the client.

Ordinarily, *C. dubia* neonates are maintained in laboratory water (1:1 mix of Lamoille River water and moderately hard water) up until the time of test initiation. *D. magna* neonates are maintained in hard water while *D. pulex* neonates are maintained in moderately hard water. The temperature of the neonate stock must be maintained at $25 \pm 1^{\circ}$ C or $(20 \pm 1^{\circ}$ C). Return parent stock females

TOX2-001 Revision 5 May 4, 2006 Page 3 of 8

from the neonate cups to the source batch culture. *Ceriodaphnia dubia* are cultured in individual culture cups (one organism per cup) maintained at 25 ± 1°C.

If acclimation to a client's receiving water is required, gradual water changes should be made (eg., 25%-50% hourly) to the parent organisms to receiving water. Neonate release and collection should occur in 100 percent receiving water, if acclimation is required.

Food

At the time of neonate collection, or on the morning of a scheduled test, feed neonates in each cup 0.1 ml Selenastrum and 0.1 ml yeast-Cerophyll-trout chow (YCT).

Sample Preparation

Procedures for effluent and diluent sample preparation are described in a separate SOP TOX1-013 ("Preparation of Effluent, Aqueous Samples, and Receiving Water for Toxicity Tests". The typical dilution factors are 0.5, however, consult applicable client permits for the appropriate dilution factor and included permit-limit concentrations when required.

14.3 Initiate the Test Prepare Test Chambers

For a test where receiving water is used as the diluent, an additional laboratory control must be included in the test array. New 30-mL disposable plastic condiment cups are used as test chambers. Each test treatment will have four true replicates (no water connection); therefore, 28 test cups will be required. When laboratory water is used as the diluent, 24 test cups are required. Label as:

Client Code

Treatment Replicate (A, B, C, D)

Measure Initial Chemistries

Remove an aliquot (approximately 100 ml) from each test dilution and the controls. This aliquot is used to measure the following parameters: pH, DO, temperature, and conductivity. Record the data directly on the Toxicity Test Data Form for Day 0. The temperature of the solutions must be within a range of \pm 1°C of the selected test temperature (20 °C or 25°C). Temperature, DO, and pH are to be recorded daily for all test concentrations.

Recommended water chemistry at time of test initiation

If solutions are not within the ranges specified below, notify the Toxicity Laboratory Director.

pH - acceptable range, 6.0-9.0

DO - acceptable range, 8.0-8.9 mg/L (20°C); 7.4-8.1 (25°C)

Temperature - acceptable range, 19-21°C or 24-26°C

Conductivity - often has a pattern of increasing conductance with increasing sample strength.

Collect a sub-sample of the control and 100% effluent solutions subsequent analysis of hardness and alkalinity. Label and store in a refrigerator at 4° C.

If test solutions are to be stored temporarily prior to starting the test, store the test solutions at the target test temperature.

Decant test solutions to the appropriate test cups, 25 ml per cup. Place the test cups in randomized positions on the test board. Water chemistry measurements are recorded for one replicate of each treatment each day of the test.

Prepare and distribute test organisms

Aquatec Biological Sciences, Inc. TOX2-001 Daphnid acute R5 050406

TOX2-001 Revision 5 May 4, 2006 Page 4 of 8

Select approximately 20 brood cups (containing neonates collected for the test), each with 8 or more neonates. Pool neonates in a crystallizing dish prior to distribution to the test. Randomly distribute neonates to test containers (5 per test container) with a transfer pipet.

Record the date / time of test start along with initials on the data form.

Aeration

Do not aerate daphnid acute tests.

Feeding

Daphnids are not fed during acute toxicity test of 24-48 hours duration. If the test duration is 96 hours the test animals are fed 2 hours prior to the 48 hour water change.

14.4 Monitoring the test

Test solution renewal (if required) and biological monitoring

Test solutions in each test cup routinely are not renewed for 48 hour tests (unless the project protocol specifies daily renewal). If the test duration is 96 hours, renew test solutions at 48 hours (or daily, if specified in the project-specific protocol). During the renewal procedure, take care to avoid injuring neonates. Renew the controls first, then from low concentrations to higher test concentrations. This procedure will minimize the potential for back-contamination of a lower test concentration with a higher test concentration. The renewal procedure is conducted over a light table.

Remove the test board from the test rack and remove the glass cover. Carefully measure the temperature of one replicate of each test treatment. Record the data on the Final Chemistry Data form.

Fill four new cups coded for laboratory control with approximately 25 mL of laboratory control water. Remove laboratory control Replicate A test cup from the test board.

Transfer all surviving daphnids with a large-bore pipet to the new test cup containing new control solution. Record the number of survivors in the appropriate box for laboratory control, Replicate A.

Continue the water changes until all surviving animals in each treatment have been transferred to "new" water. Pool the "old test water" from the old test cups into a beaker. This must be saved for final chemistry analysis, when required. When renewals have been completed, record initials, date, and time for renewal in the remarks section of the daphnid acute data form. Replace all test cups in the assigned position on the test board.

Final Chemistry (daily during test, if required)

Measure the temperature, pH, and D.O., and conductivity of the pooled water sample decanted from the four replicates for each test treatment. It is preferable to do this immediately after completing the renewal to obtain an accurate representation of the test conditions. Discard the solution in the appropriate waste receptacle.

14.5 Termination of the Toxicity Test

The daphnid acute test may be ended at 24 hours, 48 hours, or 96 hours depending on permit requirements or the project-specific protocol. The guidelines for actual duration of the test are: 24-h test (± 15 minutes from time of test start); 48-h test (± 30 minutes from time of test start); and 96-h test (± 60 minutes from time of test start).

Daphnid survival (end of test)

For each replicate, determine the number of live daphnids remaining and record the results in the appropriate data box of the daphnid acute data form. A daphnid is scored as "alive" if any activity

TOX2-001 Revision 5 May 4, 2006 Page 5 of 8

or self-propelled movement is observed. If necessary, examine organisms under a dissecting microscope to determine the number surviving.

Record the time of test completion in remarks section of the daphnid acute data form.

Final Chemistry (end of test)

Measure and record temperature of one replicate from each test concentration. Combine the test solution from each replicate of each test concentration. Measure and record the final chemistry parameters (conductivity, pH and DO) as specified in 3.2.1 above.

15.0 CALCULATIONS

The 48-h LC50 (or 96-h) and A-NOEC (if required) are calculated using the TOXIS2 software program. Enter the test data into the TOXIS2 template prepared for each client. Run the statistical program for the EPA Acute Toxicity Test flow chart (EPA-821-R-02-012 Section 11 Figures 12 and 13) and print the entered test data and the statistical results. Check the entered data against the original hand-written test data and record the date and initials. Place the statistical printouts in the project folder (by SDG) and return the folder with all paperwork to the project holding file.

16.0 METHOD PERFORMANCE

Test conditions should be at or near the limits outlined in the Protocol (Table 1).

17.0 POLLUTION PREVENTION

Effluents and receiving waters used in toxicity tests are stored refrigerated until the test data have been reviewed and deemed acceptable by the Laboratory Manager or the Director. Contact the Laboratory Manager or Director prior to discarding any stored samples. Effluent and receiving water samples may be discarded following a period of chlorination (e.g., 30 minutes). Effluent samples that have exhibited high toxicity in low test concentrations should be discarded in the "Aqueous Waste" drum for disposal by a certified waste handler. Other samples containing unknown or suspected toxic contaminants should be discarded in the "Aqueous Waste" drum.

18.0 DATA ASSESSMENT AND ACCEPTANCE CRITERIA FOR QUALITY CONTROL MEASURES

The Laboratory Manager and/or the Laboratory Director will review test data to ensure that all elements of the data package are available and complete (Log-in work sheets, test IDs, Chain-of-Custody documentation, toxicity test benchsheets, organism records, and SRT data). The reviewer will check to package for transcription errors, clarity of observations and notations, initials, and completeness. The reviewer will also compare the test data to the Quality Control standards outlined in Section 12.0 above. Any deficiencies will be addressed and resolved (with appropriate notation) prior to assembling the package for the final report.

19.0 CORRECTIVE ACTIONS FOR OUT-OF-CONTROL DATA

Data that do not meet Quality Control standards will be assessed and a decision will be made whether to reject the test data and deemed "unacceptable" (requiring a repeated test) or "provisionally acceptable" (requiring a qualifier in the final report). An example of and unacceptable test could include one where the controls fail to meet the 90% survival requirement. A designation of a "provisionally acceptable" test might include one where samples were received outside of prescribed holding temperatures or times.

20.0 CONTINGENCIES FOR HANDLING OUT-OF-CONTROL OR UNACCEPTABLE DATA

Analysts experiencing and "out-of-control" event (e.g., test replicate spills, test solutions improperly prepared, test temperatures out of target range, etc.) should note the event on the bench sheet and also notify the Laboratory Manager or Laboratory Director. A decision will be made by the Laboratory Manager or Laboratory Director as to whether to continue the test (with the appropriate qualifier) or whether to terminate the test. If the test is terminated, the client should be notified so that re-sampling and re-testing can be scheduled as soon as possible.

CONTROLLED DOCUMENT TOX2-001 Revision 5 May 4, 2006 Page 6 of 8

21.0 WASTE MANAGEMENT

See 17.0 above.

22.0 REFERENCES

The test procedure is based upon the guidelines outlined in EPA-821-R-02-012, *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (5th Ed.). Regional guidelines may require in slight modifications of the test protocol (e.g., solution renewals, test duration, target test temperature).

23.0 TABLES, DIAGRAMS, FLOW CHARTS, AND VALIDATION DATA

Refer to Tables 12 and 13 (pp. 51 - 54 of EPA-821-R-02-012) and the EPA Statistical Flow Chart, Figures 12 and 13 of EPA-821-R-02-012 Section 11 and related discussions within that document.

24.0 TRAINING

Laboratory analysts performing this procedure must receive instruction from a previously trained analyst. Individual parts of the overall procedure may be performed under the guidance of a previously-trained analyst.

To be qualified for the overall procedure outlined in this SOP, the analyst must:

Read this SOP.
Receive verbal and visual instruction.
Be trained on pertinent associated SOPs.

Approvals:		
Laboratory Manager:	Date:	

Table 1. Test Protocol

PROTOCOL: EPA 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Methods 2002.0 (Ceriodaphnia dubia) and 2021.0 (Daphnia magna and Daphnia pulex) acute toxicity tests.

(Daphnia magna and Daphnia pulex) acute tox	
Test type:	Static, no renewal; or daily renewal
Test temperature:	25 ± 1°C (or 20 ± 1°C)
3. Light quality:	Ambient laboratory illumination
4. Photoperiod:	16 hr. light, 8 hr. dark
5. Test chamber size:	30 ml
6. Test solution volume:	25 ml / replicate
7. Renewal of test concentrations:	None if static test, daily if renewal test
8. Age of test organisms:	Less than 24 h
9. No. organisms / test chamber:	5
10. No. of replicate chambers / concentration:	4
11. No. of organisms / concentration:	20
12. Feeding regime:	Feed 0.1 ml of YTC and algal suspension prior to testing. Not fed during test for 48-h tests. Feed 2 hours prior to 48-h (before renewal) for 96-h tests
13. Cleaning:	None
14. Aeration:	None
15. Dilution water:	Receiving Water or laboratory water
16. Test concentrations:	6.25, 12.5, 25, 50, 100% (unless specified otherwise by permit)
17. Laboratory control:	Reconstituted water (soft, moderately hard, or hard)
18. Test duration:	48 h; 96 h
19. Monitoring:	Day 0: temperature, DO, pH, and conductivity. Day 1: temperature. Day 2 (or 4): temperature, DO, pH, and conductivity. Hardness, alkalinity on each new sample. Biological monitoring daily
19. End points:	Survival
20. Reference toxicant test:	Sodium chloride 48-h LC50
21. Test acceptability (Control performance):	90% or greater survival
22. Data interpretation:	LC50 / A-NOEC using TOXIS2 statistical program

DOCUMENT SIGNATURE PAGE

DOCUMENT NAME: SOP TOX2-001 Daphnid Acute Revision 5

Printed Name	I have read and I understand and I agree, to the best of my ability, to follow the procedures outlined in this SOP Signature	Initials	Date
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	
			· · · · · · · · · · · · · · · · · · ·
			······

APPENDIX 2

Laboratory Reports

Columbia Analytical Services, Inc. O'Brien & Gere, Inc.

NPDES Sampling GE Pittsfield Toxicity pH

· · · · · · · · · · · · · · · · ·	
Date: 8/7/06	Split Sample A.TOX/C.TOX#
Acute Dry	AUG. 2006
Acute Wet	AUG. 2006
Chronic/_(Day 1,2 or 3)	
Effluent Composite	
Sample # <u>A748</u> 3C	
Date $\sqrt{r-1-0}$	
Time 1100 AM	
pH <u>7.77</u> su	

River/Dilution Water
Sample # A7482 R
Date 8-7-06
Time 8'5 AM
pH 7.92 su

Much Wasnowsky 8-7-06 Signed & Dated

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7483C

Sample Matrix: WATER Order #: 923277

Date Sampled : 08/07/06 11:00 Date Received: 08/08/06 Submission #: R2632759

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED A	TIME	DILUTION
AMMONIA CHLORIDE TOTAL ALKALINITY TOTAL ORGANIC CARBON TOTAL PHOSPHORUS TOTAL SOLIDS	350.1 300.0 310.1 9060 365.1 160.3 160.2	0.0500 0.200 2.00 1.00 0.0500 10.0	0.567 152 277 6.99 0.0796 554 2.60	MG/L MG/L MG/L MG/L MG/L MG/L	08/15/06 08/10/06 08/15/06 08/12/06 08/14/06 08/11/06 08/09/06	21:43 09:30 00:56 14:56 14:15	1.0 40.0 1.0 1.0 1.0

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06 Client Sample ID: A7482R

Sample Matrix: WATER Date Sampled: 08/07/06 08:15 Order #: 923275
Date Received: 08/08/06 Submission #: R2632759

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
DAMACRIT A	350.1	0.0500	0.0500 U	MG/L	08/15/06	10:25	1.0
AMMONIA CHLORIDE	300.0	0.200	18.2	MG/L	08/10/06	21:26	10.0
TOTAL ALKALINITY	310.1	2.00	105	MG/L	08/15/06	09:30	1.0
TOTAL ABRABINITI TOTAL ORGANIC CARBON	9060	1.00	6.66	MG/L	08/12/06	00:18	1.0
TOTAL PHOSPHORUS	365.1	0.0500	0.0500 U	MG/L	08/14/06	14:56	1.0
	160.3	10.0	159	MG/L	08/11/06	14:15	1.0
TOTAL SOLIDS TOTAL SUSPENDED SOLIDS	160.3	1.00	2.70	MG/L	08/09/06	13:30	1.0

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7483CCN

Date Sampled: 08/07/06 11:00 Order #: 923289 Sample Matrix: WATER

Date Received: 08/08/06 Submission #: R2632759

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE TIME ANALYZED ANALYZED	DILUTION	-
TOTAL CYANIDE	335.4	0.0100	0.0279	MG/L	08/17/06 14:35	1.0	-

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7482RCN

Sample Matrix: WATER Date Sampled: 08/07/06 08:15 Date Received: 08/08/06 Order #: 923288

Submission #: R2632759

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
TOTAL CYANIDE	335.4	0.0100	0.0100 U	MG/L	08/15/06	14:57	1.0

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7483CTM

Sample Matrix: WATER

Date Sampled: 08/07/06 11:00 Order #: 923286
Date Received: 08/08/06 Submission #: R2632759

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
ALUMINUM	200.7	0.100	0.100 U	MG/L	08/14/06	1.0
CADMIUM		0.00500	0.00500 U	MG/L	08/14/06	1.0
CALCIUM	200.7	1.00	68.6	MG/L	08/14/06	1.0
CHROMIUM	200.7	0.0100	0.0100 U	MG/L	08/14/06	1.0
COPPER	200.7	0.0200	0.0200 U	MG/L	08/14/06	1.0
LEAD		0.00500	0.00500 U	MG/L	08/14/06	1.0
MAGNESIUM	200.7	1.00	28.5	MG/L	08/14/06	1.0
NICKEL	200.7	0.0400	0.0400 U	MG/L	08/14/06	1.0
SILVER	200.7	0.0100	0.0100 U	MG/L	08/14/06	1.0
ZINC	200.7	0.0200	0.0200 U	MG/L	08/14/06	1.0

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7483CDM

Sample Matrix: WATER

Date Sampled: 08/07/06 11:00 Order #: 923282
Date Received: 08/08/06 Submission #: R2632759 Date Received: 08/08/06

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
D. F. C. D. A. T. N. T. D. A.	200.7	0.100	0.100 U	MG/L	08/14/06	1.0
ALUMINUM	200.7	0.00500	0.00500 U	MG/L	08/14/06	1.0
CADMIUM	200.7	0.0100	0.0100 U	MG/L	08/14/06	1.0
CHROMIUM	200.7	0.0200	0.0200 U	MG/L	08/14/06	1.0
COPPER	=	0.00500	0.00500 U	MG/L	08/14/06	1.0
LEAD	200.7	0.0400	0.0400 U	MG/L	08/14/06	1.0
NICKEL	200.7	0.0100	0.0100 U	MG/L	08/14/06	1.0
SILVER ZINC	200.7	0.0200	0.0252	MG/L	08/14/06	1.0

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7482RTM

Sample Matrix: WATER

Date Sampled: 08/07/06 08:15 Order #: 923287
Date Received: 08/08/06 Submission #: R2632759

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
ALUMINUM	200.7	0.100	0.100 U	MG/L	08/14/06	1.0
CADMIUM	200.7	0.00500	0.00500 U	MG/L	08/14/06	1.0
CALCIUM	200.7	1.00	27.4	MG/L	08/14/06	1.0
CHROMIUM	200.7	0.0100	0.0100 U	MG/L	08/14/06	1.0
COPPER	200.7	0.0200	0.0200 U	MG/L	08/14/06	1.0
EAD	200.7	0.00500	0.00500 U	MG/L	08/14/06	1.0
JEAD NAGNESIUM	200.7	100	9.59	MG/L	08/14/06	1.0
	200.7	0.0400	0.0400 U	MG/L	08/14/06	1.0
IICKEL	200.7	0.0100	0.0100 U	MG/L	08/14/06	1.0
SILVER ZINC	200.7	0.0200	0.0200 U	MG/L	08/14/06	1.0

APPENDIX 3

Chain of Custody Forms

Analytical Services we.

An Employee - Owned Company www.casiab.com

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

One Mustard St., Suite 250 • Hochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE

ES

CAS Contact

Preservative Key 0. NONE REMARKS/ ALTERNATE DESCRIPTION HNO3 H2SO4 NGOH Zn. Acetate MeOH NaHSO4 R2632759 INVOICE INFORMATION Other ANALYSIS REQUESTED (Include Method Number and Container Preservative) SUBMISSION # Printed Name Date/Time BILL 70: Signature Ē X IV. Data Velidalion Report with Raw Data V. Speicalized Forms / Cuslom Report ŝ REPORT REQUIREMENTS II. Results + OC Summaries (LCS, DUP, MS/MSD as required) III. Results + OC and Calibration RELINQUISHED BY tes 1. Results Only (4) Edata Printed Name Date/Time Signature E TURNAPOUND REQUIREMENTS **S** RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE 24 hr 46 hr REQUESTED FAX DATE Printed Name Date/Time Signature PRESERVATIVE CUSTODY SEALS: Y NUMBER OF CONTAINERS RELINQUISHED BY MATRIX い。 いいから ナナナ (のす) 1.02 A SAMPLING -706 7000 7.3.0.E. Printed Name Dele/Time SEAN C COLLE E DATE Ŋ PACICED IN ICE 130°E FOR OFFICE USE ONLY LAB ID 973289 25 47328 RECEIVED BY Project Number Report CC 0120 M7502 WARK WASNEWSKONDER SAMPLE RECEIPT: CONDITION/COOLER TEMP として PITTSFIELD MA NPOCS PERMIT 713) - 241 S PLASTICS SPECIAL INSTRUCTIONS/COMMENTS J. MICHOLSON 046-41170 CLIENT SAMPLE ID SATPIS LEAN S JISHED BY SE CRP 90-6-8 See OAPP mjeci Maneger 99B 205 Project Name 59 Metals

Distribution White - Return to Originator; Yellow - Lab Copy, Pink - Retained by Client

Columbia Analytical Services Mc.

in Employee - Owned Company www.casteb.com

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (565) 288-5380 • 800-695-7222 x11 • FAX (585) 289-8475 PAGE

Ю

CAS Contact

65

Filteral + Preserved SOUCE Spa C 112632759 Preservative Key ALTERNATE DESCRIPTION HNO3 H2SO4 NaOH Zn. Acetate MeOH NaHSO4 INVOICE INFORMATION Offier. ひしょうみょうらて ANALYSIS REQUESTED (Include Method Number and Container Preservalive) Printed Neme Signature Dale/Time BILL 70 E IV. Data Validation Report with Raw Data V. Spekralized Forms / Custom Report £ (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + OC and Calibration 0 yes RELINQUISHED BY II. Results + OC Summaries I. Results Only 0 Edata Printed Name Signature Date/Time E 5 day TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD Printed Name Signature Date/Tune PRESERVATIVE Z Sample bottle labels CUSTODY SEALS: Y NUMBER OF CONTAINERS RELINGUISHED BY 8-7-66 81541 H2O MATRIX MARK WASNEUSKY SE bs 2hh 21h 8 12 Jac Profession 27 27 27 100 Printed Name DATE 516 FOR OFFICE USE ONLY 92322 62327 923222 923275 823235 RECEIVED BY 92.32.82 C2227 25.12.75 982626 Project Number Report CC Date/Fung / ejou Find QS SAMPLE RECEIPT: CONDITION/COOLER TEMP: 2 200PM SPECIAL INSTRUCTIONS/COMMENTS/ MARIC WASDEDS CLIENT SAMPLE ID A7482 RTM - 415 JD-1-4 VPDES 155 See QAPP Metals

Distribution: White - Return to Originator; Yellow - Lab Copy; Pink - Retained by Client

	7
ý	
2 S	
<u> </u>	
==2	
Service	
= 50	
⇒ - C	
	1
-	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

An Employee - Owned Company One Mustard St., Sulle 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE

P

CAS Contact # US

Preservative Key
0. NONE
1. HOL
3. HOL
3. HSO4
4. NGOH
5. Z. Accelate
6. MeOH
7. NaHSO4 R263255 REMARKS/ ALTERNATE DESCRIPTION HNO3 H2SO4 NBOH Zn. Acelate MeOH NaHSO4 INVOICE INFORMATION ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name Signalure Date/Timo BILL 70 õ E IV. Data Validation Report with Raw Data V. Spaicafized Forms / Custom Report II. Results + QC Summanes (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Resulfs + OC and Catibration RELINQUISHED BY i. Results Only Edala Printed Name Date/Time Firm 5 day TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REGUESTED FAX DATE STANDARD Printed Name Date/Time Signature PRESERVATIVE E CUSTODY SEALS: Y 3 NUMBER OF CONTRINERS RELINGUISHED BY SAMPLING / ATE TIME | MATRIX MARK LIASUEWSKY Prinled Namo Dale/Time グーしん DATE OFFICE USE ONLY 92716 6232 RECEIVED BY 4132 Project Number 923 275 Report CC SAMPLE RECEIPT: CONDITION/COOLER TEMP: lash Chillegren SPECIAL INSTRUCTIONS/COMMENTS CLIENT SAMPLE ID 100 See OAPP

Distribution: White - Return to Originator, Yellow - Lab Obyy Pink - Retained by Cilent

Cooler Receipt And Preservation Check Form

		:	Sub	mission Nun	nber		*		
Project/ClientG	hierope	C	OURI	ER: CAS	UPS	FEDEX	VELOC	ITY CI	LENT
 Were custody Did all bottles Did any VOA 	seals on outside of papers properly fill arrive in good con vials have signific ce packs present?	coole led ou dition	r? t (ink, : (unbro	signed, etc.)? ken)? es?	,	E CASTR	NO NO NO NO O	N/A IENT	-
6. Where did the 7. Temperature	e bottles originate? of cooler(s) upon re	eceipt:	<u> </u>	3.			Yes	- Yes	
Is the temper	ature within 0° - 6°	C?:	¥	·	es)	Yes	No	No	
If No, Expla			N			No	110		
Date/Time T	emperatures Taken	i:		8/8/04		on Blank	or S	ample B	ottle
Thermomete	er ID: 161 or (IR GL		Reading Fron					
If out of Temperat PC Secondary Revi	ew				by:		NO		<u> </u>
1. Were all bo 2. Did all bott	ttle labels complete le labels and tags a	ing the	tecte ir	dicated?		YES	NO NO		***
. A :- Comple	c Cassettes / Tub	es mu	act	Canisters Pr	essuriz	ed Tedl	ar® Bags		
. A :- Comple	es: Cassettes / Tub pancies:	es mu	act	Canisters Pr	essuriz	ed Tedl Reagent		Inflated	N/A Final pH
4. Air Sample Explain any discre	c Cassettes / Tub	es mu	acı -	Camsions	essuriz				
. A :- Comple	es: Cassettes / Tub pancies:	es mu	acı -	Camsions	essuriz				
4. Air Sample Explain any discre	es: Cassettes / Tub pancies: Reagent	es mu	acı -	Camsions	essuriz				
4. Air Sample Explain any discre	Reagent NaOH	es mu	acı -	Camsions	essuriz				
4. Air Sample Explain any discre	Reagent NaOH HNO3 H ₂ SO ₄	es mu	acı -	Camsions	essuriz				
4. Air Sample Explain any discre pH 12 2 2 Residual Chlorine (+/	Reagent NaOH HNO3 H ₂ SO ₄ -) for TCN & Phenol P/PCBs (608 only)	YES	NO	Sample I.D.	essuriz	Reagent			
4. Air Sample Explain any discre pH 12 2 2 Residual Chlorine (+/ 5-9**	Reagent NaOH HNO3 H ₂ SO ₄ -) for TCN & Phenol P/PCBs (608 only)	YES Amples V Yor H2S	NO were pre-	Sample I.D.	essuriz	Reagent PC OK to	Vol		
4. Air Sample Explain any discre pH 12 2 2 Residual Chlorine (+/ 5-9**	Reagent NaOH HNO3 H ₂ SO ₄ -) for TCN & Phenol P/PCBs (608 only) K NO = So required, use NaOH and (Tested after Analysis Following Samples	YES Amples V Yor H2S	NO were pre-	Sample I.D.	essuriz	Reagent PC OK to	Vol		

100.000	27.03
	598
6-83	
10.3	
13.5	在 中发
	A-14
60.5	P. COM
经验	Trust, as
粉學	
是统	发现 书
136	聽線研
C-50.	建成學院
Basis.	老二十二
0.3	
P. Control	本版,并成本
200	Mark Market
2.5	A. 000
25.5	
3.37	李净
	Φ, Φ
	1
30	
排法 6	1
这:	
1	
0	松 1895
100	1
1972	4
医生	
20 6	Section .
2.5	為這不
医 建	
	(20) L (1)
1864 A) 学 等 後
	建产
577 67	3
100	
(A) 60	全型
of State of	1
200.00	10.45
La.	安全
	- 0
36 A 6	7
A 400'S	153
使 蒙	
Č	
6	屋
ئ 0	
Į Į	
o e to	を受ける
מלת	

					4 L	PAX (802) 858 8180	89
COMPANY INFORMATION	COMPANY'S PRO	COMPANY'S PROJECT INFORMATION	SHIPPING INFORMATION	NOTO,	ME/CONTAINER PRESERVATIVE	VOLUME/CONTAINER TYPE/ PRESERVATIVE	Ē
Name: General Electric Company	Project Name: GE PITTSFIELD	ITSFIELD	Carrier:	۷۵۲ م	မွ်	₩ J ₀ V	0,
Address: O'Brien & Gere	Outfall Composite	9			H ₂ SO ₄	4.C H ₂ SO ₄	<u>+</u>
1000 East Street, Gate 64	Project Number: 06004	94	Airbill Number:	<u> </u> 	<u>.</u> 	<u> </u> 	<u> </u>
City/State/Zip: Pittsfield, MA 01201 Tetenhone: (413) 494-6709	Sampler Name(s); /////////	MRKLUMSNEWSK		Plastic Plastic	Plastic	Glass Amber Glass	er Plastic
	Washington Washington	1805001	Date Shipped:	ı			
Contact Name: Mark Wasnewsky	Quote #: 10/05	Client Code: GEPITTS	S Hand Delivered: Ves No	1 gal 1/2 gal	=	40 ml 250 ml	1 E
SAMPLE IDENTIFICATION DA	COLLECTION DATE TIME GRAB	COMPOSITE MATRIX	RIX ANALYSIS (detection limits mol.)				
Outfall Composite # 748 80 15-7-06 11 60	7-04 11 60	Effluent	 	1		MONTH OF CONTINUENS	2
Outfall Composite A 7483 C	05/1	Effluent	(EPA Method 2021.0). Log in for A48DPS ent Total Residual Chlorine				
Housatonic River A7452R	PAN Y	Receiving	ving Dilution Water	-			
Hobsatonic River A 7 482R	8 Am	Receiving	ving Total Residual Chlorine				
Relinquished by: (signature) DA	DATE TIME Rece	Received by: (signature)	NOTES TO SAMPLER(5): (1): Complete the labels (Date, time, initials) and cover the	le the labels (Da	ite, time, ini	lials) and co	ver the
	13/2/	<i>**</i>	labels with clear tape. Tape the caps of the sample bottles to ensure that they do not become distodged during shipment. Nest the samples in sufficient ice to maintain 0°C –	f the sample bo lest the samples	tties to ensite in sufficier	are that they	do not ntain 0°C –
Relinquished by: (signature) DA	DATE TIME Rece	Received by: (signature)	report.	$D_a \delta T$		an ne dra	
			Notes to Lab: Ambient cooler temperature: 2.6° C. Dechlorinate the effluent sample if chlorine is detected.	erature: 2.6	ີ່ດ. Dechlr	orinate the e	əffluent
Relinquished by: (signature) DA	DATE TIME Rece	Received by: (signature))			

8/7/2006

CHRONIC AQUATIC TOXICITY COMPOSITE 8C1

Month: AUG Week: 2 Fiscal Wk: 32

Weather: Chronic Composite Sample #1

Split Sample Split Sample C. TOX I TOX AUG. AW TOX 2006

	Gallons/Day	MI in Composite	Percent of Composite
001 004 007 64T 64G 09A	84,010 0 0 31,530 151,180 0 12,791	4,508.41 1,692.06 8,113.10 686.43	30.06% 0.00% 0.00% 11.28% 54.09% 0.00% 4.58%
09B	279,511	15000	100.00%

The Chronic Toxicity Composite was made today by Mark Mosnewsky @ 11604an according to the table above, and given the sample ID# A7483C

Chain-of-Custody Form Number: 186060706

Analysis: 170x / C. Tax 2006

Lecation: 160AM Date: F-7-06

Sample Label Serial Number A 7483C

Malusmansky Signed 8-7-06

Attachment D

NPDES Chronic Biomonitoring Report August 2006

August 23, 2006

Mr. Jeffrey Nicholson GE Corporate Environmental Programs 159 Plastics Avenue Pittsfield, MA 01201

Re: NPDES Chronic Biomonitoring Report for August 2006 Submission #s: R2632759, R2632760 and R2632752

Dear Mr. Nicholson:

Enclosed is our report on the Chronic Whole Effluent Toxicity testing conducted in July 2006. The Outfall Composite samples were collected on 8/7/06 at 11:00 am, 8/9/06 at 11:00 am and 8/11/06 at 11:00 am. The Housatonic River samples were collected on 8/7/06 at 8:15 am, 8/9/06 at 8:15 am and 8/11/06 at 8:15 am. The Outfall Composite and Housatonic River samples were analyzed at Columbia Analytical Services for total cyanide, ammonia, total organic carbon, total phosphorus, chloride, total solids, total suspended solids, total residual chlorine, and total metals. Dissolved metals were analyzed for only on the Outfall Composite samples. Results are presented in Appendix 2. The Outfall Composite and Housatonic River samples were sent directly by General Electric to Aquatec Biological Services for the chronic aquatic toxicity testing including the analysis of alkalinity, hardness, specific conductance, and pH. Results are presented in Appendix 1.

Should you have any questions please contact me at (585)288-5380 x130.

Thank you for allowing us to provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Carlton Beechler Project Manager

enc.

CC: Jill Piskorz, Pat Fuse and Nicole Evans vial email.

NPDES BIOMONITORING REPORT

GENERAL ELECTRIC COMPANY Pittsfield, MA NPDES PERMIT MA 0003891

Reproductive Chronic Toxicity Monitoring August 2006

WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on		
	(Date)	(Authorized Signature)
		Michael T. Carroll
		General Electric Co. – Pittsfield, MA
		Permit MA0003891

Prepared by: Carlton R. Beechler August 23, 2006

TABLE OF CONTENTS

		<u>PAGE</u>
I.	Summary	1
II.	Review of Toxicity Analytical Results	2
III.	Review of Wastewater Sampling Procedures	3
IV.	Review of Individual Discharges	5

Table I – Summary of Analytical Test Results

Appendices:

- 1. Chemical and Acute Toxicity Data from Aquatec Biological Sciences
- 2. Laboratory Reports from Columbia Analytical Services, Inc. and O'Brien & Gere, Inc.
- 3. Chain of Custody Forms

I. Summary

On August 6-11, 2006 sampling of wastewater discharges from the General Electric Company facility in Pittsfield, MA was conducted in accordance with the chronic toxicity testing requirement of the GE NPDES Permit MA0003891. Three composite effluent samples were collected from GE outfalls 001, 005-64T, 005-64G and 09B over a 6-day period. Sampling dates were August 6-7, August 8-9 and August 10-11. If flow did not occur at an outfall during the 24 hour period, no sample was collected (see chain of custody records in Appendix 3 for details of the outfalls sampled during each period). Each set of samples were combined in a flow-proportioned manner to generate a single wastewater sample that was shipped via FedEx to Aquatec Biological Sciences in Williston, Vermont for chronic toxicity testing. Grab samples of Housatonic River water, to be used as dilution water in the toxicity test, were collected upstream of the GE discharges on August 7 - 9 - 11, 2006 and shipped to AquaTec along with the wastewater composite. AquaTec dechlorinated the composite sample prior to the acute toxicity test following the toxicity reduction procedures summarized in a letter dated November 11, 1993 to EPA Region I from JG Ruebesam of General Electric Company. The composite wastewater sample and the dilution water sample were tested for chemical constituents by O'Brien & Gere, Inc. and Columbia Analytical Services. The analytical results are summarized in Table I and the detailed laboratory test data are include as Appendices to this report. As a result of land transfer documents executed on April 27, 2005 and recorded in the Berkshire County Registry of Deeds on May 2, 2005, Outfalls 001 and 004 were transferred to the Pittsfield Economic Development Authority (PEDA). Outfalls 001 and 004 DMRs will no longer be submitted under the GE NPDES Permit No. MA0003891. However, GE's NPDES Permit requires that the metal and toxicity composites to be made by compositing samples from the following outfalls: 001, 004, 005, 007, and 009. These two composites will continue to include an aliquot of water from outfall 001 and outfall 004, and will be reported on GE's DMR until further actions by the Agencies.

The results from Aquatec Biological Sciences for the chronic toxicity test on the wastewater discharge sample indicated a No Observed Chronic Effect Level (NOCEL) of 100%. No Limit is established for NOCEL in the GE NPDES permit.

II. Review of Toxicity Test Results

The wastewater discharge sample collected on August 6-7, August 8-9 and August 10-11, 2006 were tested for 7 day chronic toxicity using *Ceriodaphnia dubia* organisms. The sample did not require dechlorination with sodium thiosulfate (Na₂S₂O₃) prior to toxicity testing. Aquatec Biological Sciences reported the results of this toxicity testing as follows:

Effluent toxicity as NOCEL =	100%
Effluent toxicity as $LC_{50} =$	>100%

No limit is established for NOCEL in the GE NPDES permit.

The following table summarizes the results of the control sample analyses performed by AquaTec during the chronic toxicity bioassay:

Control Analysis	<u>Result</u>	Acceptable Limit
Survival in 100% dilution water	100%	≥80%
Reproduction in 100% dilution water		
(average# of offspring/female/day)	32.8	≥15%
Reproduction in 100% dilution water		
(% of females having three broods)	100%	≥60%

The survival and reproduction rate of *Ceriodaphnia* in the upstream dilution water control samples was within acceptable limits, indicating that the results of the toxicity test are valid.

III. Review of Wastewater Sampling Procedures

Three composite effluent samples of the individual NPDES wastewater discharges were collected over a 24-hour period. Each composite effluent sample was generated by combining samples from the individual NPDES discharges. Each group of individual samples collected over the same 24 hour period were composited in a flow-weighted manner to generate a single combined discharge sample for toxicity testing and chemical analysis.

The 24-hour composite samples from the individual discharges were collected as follows:

Each automatic sampler (at outfall 001, 64T, 64G, and 09B) was programmed to collect approximately 7 liters of wastewater into a 10-liter glass container in a time-proportioned manner over a 24-hour period. Outfalls 004, 007, and 09A have been plugged and no longer flow.

All sample containers were packed in ice or refrigerated to keep the wastewater samples cold during the 24-hour collection period.

Flow meter readings were taken at the beginning and end of the 24-hour collection period to determine the total 24-hour flow for each wastewater discharge.

At the end of the 24-hour collection period, the discharge samples were taken to Building 64G where O'Brien & Gere personnel composited these samples, in a flow weighted manner, to generate a single combined sample for the chronic toxicity test and the chemical analyses, as follows:

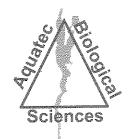
The proportions of each individual discharge sample needed to produce a single combined sample were calculated from the flow measurements. The calculated sample volumes were then transferred from their original collection containers to a 2.5 or 5 gallon mixing container. The combined discharge sample was then split into various containers for toxicity testing and chemical analyses. These containers were shipped by vendor courier to AquaTec for toxicity testing and by FedEx (overnight) to Columbia Analytical Services for chemical analyses. All samples were chilled with ice packs during shipment.

A grab sample of Housatonic River water was collected on the second day of each 24 hour period at the Lyman Road Bridge in Hinsdale, MA, upstream of the GE site. This sample was split for chemical analysis and toxicity testing in a similar manner as the combined effluent sample (see above).

Details of the times and dates of sample collection as well as the names of the individuals collecting and transporting the samples are provided on the chain of custody forms in Appendix 3 of this report.

IV. Review of Individual NPDES Discharges

The following is a brief description of each of the seven outfalls that are monitored for acute and chronic toxicity in accordance with NPDES Permit MA0003891 issued to the General Electric Company, Pittsfield, MA.


- 1. Outfall 001 is permitted to discharge storm water runoff from the oil/water separator in Building 31W to Silver Lake.
- 2. Outfall 004 is permitted to discharge storm water runoff to Silver Lake. (Outfall plugged)
- 3. Outfall 005 is permitted to discharge contact cooling water, non-contact cooling water, treated process water and storm water runoff from the Wastewater Treatment Plant in Building 64T, and treated groundwater from the Groundwater Treatment Plant in Building 64G to the Housatonic River. Monitoring samples are collected separately from the effluents of 64G and 64T. Both samples are included in the flow composite sample used for toxicity testing.
- 4. Outfall 007 is permitted to discharge stormwater runoff to the Housatonic River. (Outfall plugged)
- 5. Outfall 09A is permitted to discharge non-contact cooling water and stormwater runoff to Unkamet Brook. (Outfall plugged)
- 6. Outfall 09B is permitted to discharge non-contact cooling water, treated process water and stormwater runoff from the oil/water separator in Building 119W to Unkamet Brook.

Aquatic Toxicity Results:				Effect Level (NO			
						LC50 =	>100%
						7-7-7-7-5-7-5-7-5-7-5-7-5-7-5-7-5-7-5-7	
	Chemical Anal	yses: (all results a	re mg/L unless o	therwise indicate	<u>d)</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
					.,,,,,	4,1,4,1,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4	
		Aug 6-7	Aug 7	Aug 8-9	Aug 9	Aug 10-11	Aug 11
		Effluent	Housatonic	Effluent	Housatonic	Effluent	Housatonic
Parameter Tested	Laboratory	Composite	River	Composite	River	Composite	River
Ammonia	CAS	0.567	ND (0.0500)	0.531	0.179	0.523	ND (0.0500)
Chloride	CAS	152	18.2	191	13.2	196	18.5
Total Alkalinity	CAS	277	105	357	73.3	366	103
Total Organic Carbon	CAS	6.99	6.66	6.57	6.03	6.40	5.01
Total Phosphorus	CAS	0.0796	ND (0.0500)	ND (0.0500)	ND (0.0500)	ND (0.0500)	ND (0.0500)
Total Solids	CAS	554	159	683	122	694	147
Total Suspended Solids	CAS	2.60	2.70	ND (1.00)	2.20	ND (1.00)	1.00
Hardness	Aquatec	308	106	172	84	356	110
Spec. Conductance (umhos)	Aquatec	1027	276	1268	201	1303	274
oH (SU)	Aquatec	7.7	7.6	7.7	7.4	8. I	7.8
TRC (start of toxicity test)	Aquatec	ND	ND	ND	ND	ND	ND
Cyanide	CAS	0.0279	ND (0.0100)	0.0444	ND (0.0100)	0.0197	ND (0.0100)
Aluminum, total	CAS	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)	ND (0.100)
Aluminum, dissolved	CAS	ND (0.100)	NA	ND (0.100)	NA	ND (0.100)	NA
Cadmium, total	CAS	ND (0.00500)	ND (0.00500)	ND (0.00500)	ND (0.00500)		ND (0.00500)
Cadmium, dissolved	CAS	ND (0.00500)	NA	ND (0.00500)	NA	ND (0.00500)	NA
Chromium, total	CAS	ND (0.0100)	ND (0.0100)	ND (0.0100)	ND (0.0100)	ND (0.0100)	ND (0.0100)
Chromium, dissolved	CAS	ND (0.0100)	NA	ND (0.0100)	NA	ND (0.0100)	NA
Copper, total	CAS	ND (0.0200)	ND (0.0200)	ND (0.0200)	ND (0.0200)	ND (0.0200)	ND (0.0200)
Copper, dissolved	CAS	ND (0.0200)	NA	ND (0.0200)	NA	ND (0.0200)	NA
Lead, total	CAS	ND (0.00500)	ND (0.00500)	ND (0.00500)	ND (0.00500)	ND (0.00500)	ND (0.00500)
Lead, dissolved	CAS	ND (0.00500)	NA	ND (0.00500)	NA	ND (0.00500)	NA
Nickel, total	CAS	ND (0.0400)	ND (0.0400)	ND (0.0400)	ND (0.0400)	ND (0.0400)	ND (0.0400)
Nickel, dissolved	CAS	ND (0.0400)	NA	ND (0.0400)	NA	ND (0.0400)	NA
Silver, total	CAS	ND (0.0100)	ND (0.0100)	ND (0.0100)	ND (0.0100)	ND (0.0100)	ND (0.0100)
Silver, dissolved	CAS	ND (0.0100)	NA	ND (0.0100)	NA	ND (0.0100)	NA
Zinc, total	CAS	ND (0.0200)	ND (0.0200)	ND (0.0200)	ND (0.0200)	ND (0.0200)	ND (0.0200)
Linc, dissolved	CAS	0.0252	NA	0.0499	NA	ND (0.0200)	NA
oH (SU)	OB&G	7.77	7.92	7.82	7.17	7.85	7.79
Hardness	Aquatec	308	106	172	84	356	110
7,	1						
All results are mg/L unless oth	erwise indicated			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
NA – Not analyzed							
ND – Not detected (Number in	n parentheses is d	letection limit.)					

APPENDIX 1

Chemical and Acute Toxicity Data

Aquatec Biological Sciences

Aquatec Biological Sciences

August 22, 2006

Mr. Carl Beechler Columbia Analytical Services, 1 Mustard Street – Suite 250 Rochester, NY 14609

Dear Mr. Beechler:

Enclosed please find one bound and one unbound copies of our report of the results for chronic whole effluent toxicity testing of samples received from GE Pittsfield, Massachusetts on August 8 - 14, 2006.

According to the Chain-of-Custody documentation, samples for Whole Effluent Toxicity (WET) Testing were collected on August 7, 9, and 11, 2006. The samples were transported to Aquatec Biological Sciences, Inc. by courier and delivered on the same day. The initial effluent sample was logged in for the short-term chronic toxicity test with *Ceriodaphnia dubia* (EPA Method 1002.0). Subsequent effluent samples were used for toxicity test renewals. The receiving water samples were logged in for dilution water. A subsample of each sample was checked for residual chlorine (not detected) and for alkalinity and hardness measurements at Aquatec Biological Sciences, Inc. The toxicity test was started on August 8, 2006, within the specified holding time.

At the conclusion of the toxicity test on August 14, 2006, a final count of surviving organisms and offspring (neonates) was completed. The average survival was 90 - 100 percent in all test concentrations. Acute toxicity or chronic to *Ceriodaphnia dubia* was not detected, with the 48-hour LC50 reported as >100% effluent and the Chronic No-Observed-Effect Concentration (C-NOEC) reported as 100% (Section 4.1 of the report).

If you have any questions regarding the report, please call Dr. Philip C. Downey or me.

Sincerely

Jobo Williams

Manager, Environmental Toxicology

This report consists of the following numbered pages:

1-6/

Chonic Whole Effluent Toxicity Testing Of Wastewaters Discharged from The General Electric Plant Pittsfield, Massachusetts

Samples Collected in August 2006

Submitted to:

General Electric Area Environmental & Facility Programs 100 Woodlawn Avenue Pittsfield, Massachusetts 01201

SDG number: 9753

Effluent ID: Outfall Composite A7483C Aquatec sample number: 32567 Effluent ID: Outfall Composite A7485C Aquatec sample number: 32613 Effluent ID: Outfall Composite A7487C Aquatec sample number: 32771

Receiving water ID: Housatonic River A7482R Aquatec sample number: 32568 Receiving water ID: Housatonic River A7484R Aquatec sample number: 32614 Receiving water ID: Housatonic River A7486R Aquatec sample number: 32772

Study Director: John Williams

August 22, 2006

Submitted by:

Aquatec Biological Sciences, Inc. 273 Commerce Street Williston, Vermont 05454

Phone: (802) 860-1638 Fax: (802) 860-1638

Accreditation: NH Environmental Laboratory Accreditation Program NELAP / NELAC accredited for the requested analysis.

Signatures and Approval

Submitted by:

Aquatec Biological Sciences, Inc.

273 Commerce Street Williston, Vermont 05454 Phone: (802) 860-1638

Fax: (802) 860-1638

Study Director John Williams

Quality Assurance Officer Philip C. Downey, Ph. D.

24/06

Whole Effluent Toxicity Test Report Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on:	Date: 8/22/06
Authorized signatu	re
John Williams	
Name	
Manager, Enviro	onmental Toxicology
1150	
Aquatec Biologi	cal Sciences, Inc.
Laboratory	

Table of Contents

		Page
	and Approval	2
	ent Toxicity Test Report Certification	3
List of Table		5
Summary of	f Chronic Toxicity Test With <i>Ceriodaphnia dubia</i>	6
1.0 Introduc		
	1.1 Background	7
	1.2 Objective of the General Electric Study	7
2.0 Material	s and Methods	
	2.1 Protocol	7
	2.2 Effluent and receiving water samples	8
	2.3 Control water	8
	2.4 Test organism	8
	2.5 Test procedure	9
	2.6 Test monitoring	9
	2.7 Reference toxicant test	10
3.0 Statistic	s	
olo otationo	3.1 Statistical protocol	10
	F. C.	10
4.0 Results		
	4.1 Effluent toxicity test	10
	4.2 Reference toxicant test	11
5.0 Qualifier	s	
	5.1 Qualifiers and Special Conditions	11
		, ,
References		12
Appendix 1	Chain-of-Custody Documentation	
Appendix 2	Summary of Test Conditions	
Appendix 3	U.S. EPA Region 1 Toxicity Test Summary and	
A 11 A	Statistical Flow Chart	
Appendix 4	Bench Data, <i>Ceriodaphnia dubia</i> Chronic Toxicity Test	
Appendix 5	Standard Reference Toxicant test Control Chart	
Appendix 6	TOX2-002, Standard Operating Procedure for	
	Daphnid (Ceriodaphnia dubia) Survival and	
	Reproduction Toxicity Test	

List of Tables

		Page
Table 1a	Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution	
Table 1b	water (Housatonic River): Initial Samples Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution	13
Table 1c	water (Housatonic River): Renewal Samples Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution	13
	water (Housatonic River): Renewal Samples	13
Table 2	The water quality measurements recorded during the short-term chronic toxicity test for <i>Ceriodaphnia dubia</i> exposed to General Electric Pittsfield Plant effluent	14
Table 3	Summary of mean survival and reproduction recorded during the 7-day short-term chronic toxicity test for Ceriodaphnia dubia exposed to General Electric Pittsfield Plant effluent	15

Summary of

Chronic Survival and Reproduction Toxicity Test with Ceriodaphnia dubia

Sponsor: General Electric

Protocol title: US EPA-821-R-02-013. Methods for Measuring the

Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 4th Ed., October 2002.

Method 1002.0

Aquatec SDG: 9753

Test material: Composite effluent from the General Electric

Company located in Pittsfield, Massachusetts

GE sample ID: Outfall Composite A7483C

Outfall Composite A7485C Outfall Composite A7487C

Dilution water: Water from the Housatonic River (grab sample)

GE sample ID: Housatonic River A7482R

Housatonic River A7484R Housatonic River A7486R

Dates collected: August 7, 9, and 11, 2006

Date received: August 7, 9, and 11, 2006

Test dates: August 8-14, 2006

Test concentrations: 100%, 75%, 50%, 25%, 12.5%, 6.25% effluent.

Dilution water control (Housatonic River)

Laboratory control 1 (culture water)

Laboratory control 2 (culture water with sodium

thiosulfate)

NPDES Permit No. MA0003891 SDG: 9753

August 22, 2006

Acute Toxicity Values

Species	Exposure Period	48-hour LC50 (% effluent)	A-NOAC (% effluent)
Ceriodaphnia dubia	48 hours	>100%	>100%

Chronic Toxicity Values

Species	Endpoint	Exposure Period	C-NOEC (% effluent)	C-LOEC (% effluent)
Ceriodaphnia dubia	Survival	6 – 7 days	>100%	>100%
Ceriodaphnia dubia	Reproduction	6 – 7 days	>100%	>100%

1.0 Introduction

1.1 Background

In 1972, amendments were made to the Clean Water Act (CWA) prohibiting the discharge of any pollutant from a point source to waters of the United States, unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Since the passing of the 1972 amendments to the CWA, significant progress has been made in cleaning up industrial wastewater and municipal sewage point source discharges. EPA defines point sources as discrete discharges via pipes or man-made ditches.

In 1984, the U.S. Environmental Protection Agency (EPA) released a national policy statement and a supporting document that recommended, where appropriate, effluent permit limits should be based on effluent toxicity as measured in aquatic toxicity tests. Generally, permits require that no toxic discharge occur in toxic amounts. The routine use of dilution-series toxicity tests and/or biologically-based criteria (i.e., invertebrate and vertebrate community studies) have become increasingly utilized to calculate or estimate the potential toxicity of a discharge.

EPA has the authority to delegate primary responsibility for the implementation, permitting, and enforcement of NPDES regulations to appropriate State regulatory agencies. Even when EPA delegates this authority to the states, EPA still maintains oversight responsibility.

1.2 Objective of the General Electric Study

The objective of this study was to measure the chronic toxicity of the composite wastewater discharged by the General Electric facility located in Pittsfield, Massachusetts to the Housatonic River. The water flea, *Ceriodaphnia dubia*, is exposed to effluent and dilutions of effluent under static conditions with daily renewal of test solutions. *Ceriodaphnia dubia* is routinely used by regulatory agencies and by contract laboratories for toxicity testing and EPA has published guidance documents for the performance of this test (U.S. EPA, 2002).

A toxicity test was conducted from August 8-14, 2006 at Aquatec Biological Sciences, Inc. (Aquatec) located in Williston Vermont. Aquatec Biological Sciences, Inc. holds NELAC accreditation for the requested whole effluent toxicity test. All original raw data and the final report produced for this study are stored in Aquatec's archives in Williston, Vermont.

2.0 Materials and Methods

2.1 Protocol

Procedures used in this chronic toxicity test followed those described in the Aquatec Standard Operating Procedure (SOP) TOX2-002, Cladoceran, *Ceriodaphnia dubia* Survival and Reproduction Toxicity Test R4, May 4, 2006. This SOP generally follows the standard methodology presented in U.S. EPA. 2002 (EPA-821-R-02-013). *Methods for Measuring the Chronic Toxicity of*

SDG: 9753

August 22, 2006

Effluents and Receiving Waters to Freshwater Organisms, 4th Ed., October 2002, Method 1002.0 (as summarized in Appendix 2 of this report). A copy of the SOP is located in Appendix 6 (Controlled document, please do not copy or distribute.)

Additional SOPs used in this study are outlined below:

Title	SOP Number	Revision Date
Sample Acceptance	TOX1-017	Rev. 4, February, 2004
Hardness – total titrimetric method	TOX1-011	Rev. 3, May 2003
Alkalinity – total titrimetric method	TOX1-010	Rev. 6, April 2004
Thermo-Orion 145 A+ Conductivity Meter	TOX1-016	Rev. 1, April 2004
Dissolved oxygen	TOX1-006	Rev. 7, April 2004
pH measurement	TOX1-007	Rev. 2, April 2004
Salinity: refraction method	TOX1-008	Rev. 3, January, 2003

2.2 Effluent and Receiving Water Samples

Effluent samples were collected by GE personnel from August 6-7, 2006 (initial sample); August 8-9, 2006 (first renewal sample), and August 10-11, 2006 (second renewal sample). Receiving water samples were grab samples collected from the Housatonic River on August 7, 9, and 11, 2006. Samples were delivered to Aquatec on the same day as they were collected. Upon receipt at Aquatec on the temperature of the temperature blank contained within the cooler was within the range of 0.0°C to 6.0°C. The effluent and receiving water were prepared for testing and characterized (Table 1). The receiving water was the dilution water for preparing effluent concentrations and was also the reference control for statistical comparisons.

2.3 Control water

Laboratory control water for the toxicity test was a 1:1 mixture of laboratory reconstituted moderately hard water and 60-micron filtered river water collected from the Lamoille River, Vermont. This water was characterized for the following parameters: pH (7.6); dissolved oxygen (8.2 mg/L); conductivity (240 uS/cm). An additional dechlorination control (laboratory water with 0.2 N sodium thiosulfate added) was included in the test array, even though chlorine was not detected in the effluent sample.

2.4 Test Organism

Daphnids (*Ceriodaphnia dubia*), less than 24-hours old and collected within and eight-hour period were obtained from Aquatec laboratory cultures. The culture system consisted of brood boards with 1-oz cups containing approximately 20 mL of culture medium and one daphnid. The culture water was laboratory reconstituted moderately hard water mixed in a 1:1 ratio with filtered Lamoille River, VT water. Prior to use, the culture water was characterized:

Parameter	Result
Total hardness (mg/L)	Within range of 50-110 mg/L
Alkalinity (mg/L as CaCO ₃)	Within range of 60-70 mg/L
рН	Nominal 7.7 – 8.0

The culture area was maintained at a nominal temperature of 25°C (range 24 – 26°C) with a regulated photoperiod of 16 hours light and 8 hours of darkness.

Daphnid cultures were fed daily a combination of green algae (*Selenastrum capricornutum*) and YCT obtained from Aquatic BioSystems of Fort Collins, Colorado. Daphnids were transferred to new culture medium daily.

Beginning approximately 24 hours before toxicity test initiation neonates were removed from the culture cups. Offspring produced within eight hours were used for toxicity testing when the neonates were 24 hours old or less.

2.5 Test Procedures

Prior to initiating the toxicity test, a sub-sample of effluent and receiving water was decanted for subsequent alkalinity and hardness determination. A sub-sample was also check for presence of chlorine to determine whether dechlorination of effluent is required. Chlorine was not detected, therefore dechlorination of the effluent was not required. The sample was then aerated and warmed to test temperature.

The toxicity test was conducted at effluent concentrations of 100%, 75%, 50%, 25%, 12.5%, and 6.25% effluent. Test concentrations were prepared by diluting the appropriate volume of effluent with dilution water to a total volume of 300 mL. Test solutions were then decanted to ten replicate 30-mL cups per concentration, each containing approximately 20 mL of test solution. Three sets of control replicates were also included in the test array, set up as the effluent replicates. The controls included: Housatonic River water (dilution control), a laboratory control (a mix of moderately hard water and Lamoille River, VT water), and a laboratory control with sodium thiosulfate added (dechlorination control). The dechlorination control was included in the test array even though residual chlorine was not detected in the effluent.

Prior to testing, daphnids less than 24-hours old were collected from the cultures, pooled in Carolina bowl, and fed. The test was initiated when the daphnid neonates were transferred to the replicate test cups, one daphnid per cup. The toxicity test cups were incubated to maintain temperature in the range of 24°C to 26 °C. The lighting cycle was 16 hours light and eight hours dark and a luminance of approximately 80 ft-c.

NPDES Permit No. MA0003891

SDG: 9753 August 22, 2006

The criteria for ending the toxicity test was based upon the controls reaching an average of 15 neonates or more per female and at least 60 percent of surviving females having produced three broods during the test.

2.6 Test Monitoring

The number of surviving daphnids and the number of young produced was observed at approximately 24-hour intervals during the test, with the final count of surviving daphnids and young at the end of the test. Temperature was measured daily in one replicate of each test treatment. The parameters of pH, dissolved oxygen, and conductivity were measured daily on a composite of the test solutions before and after renewal.

Total hardness was measured by the EDTA titrimetric method and total alkalinity was measured by potentiometric titration to an endpoint of 4.5 on each new sample. The check for residual chlorine was performed with an acidified sample to which potassium iodide and starch indicator added. If chlorine was detected, the color was titrated away with 0.02 N sodium thiosulfate to determine the equivalent volume of 0.2 N sodium thiosulfate to add to effluent (if needed).

Dissolved oxygen was measured with a YSI Model 58 dissolved oxygen meter. A Beckman Phi 40 was used to measure pH. A Thermo-Orion Model 145 conductivity meter was used to measure conductivity.

2.7 Reference Toxicant Test

A acute / chronic standard reference toxicant (SRT) test was conducted monthly. The SRT test was conducted as a quality control procedure to establish the health and sensitivity of the test organisms. The SRT included four concentrations of reagent grade sodium chloride (NaCl) with nominal concentrations of 0.25, 0.5, 1.0, 2.0, and 3.0 g NaCl/L. Ten test replicates, each containing one daphnid were test at each concentration and the laboratory control.

3.0 Statistics

3.1 Statistical protocol

The concentration-response relationships observed were characterized by the median lethal concentration (LC50, based on survival data at 48-hours of the test), which was the calculated concentration lethal to 50 percent of the test organisms. If no concentrations resulted in 50% mortality, the LC50 was reported as greater than the highest concentration effluent (in this case >100% effluent), by direct observation. If greater than 50 percent mortality was observed in any effluent treatment, then a computer program (TOXIS2) was used to calculate the LC50 value, following the U.S. EPA statistical flowchart (Appendix 3).

NPDES Permit No. MA0003891 SDG: 9753

August 22, 2006

The Acute-No-Observable-Effect Concentration (A-NOEC) was determined statistically using multiple comparison tests (TOXIS2), with the receiving water control as the reference.

The Chronic-No-Observable-Effect Concentration (C-NOEC) was determined based on the end-of-test survival and reproduction data using multiple comparison tests (TOXIS2), with the receiving water control as the statistical reference.

4.0 Results

4.1 Effluent Toxicity Test

Results of effluent and receiving water characterizations performed at Aquatec as part of the toxicity test are presented in Table 1. Water quality parameters measured during the toxicity test are presented in Table 2. Measured temperatures during the test were within the range of 23.9°C to 26°C. The percent survival data and number of offspring produced during the exposure for the toxicity test are presented in Table 3.

By day six, at least 60 percent of the reference control (receiving water) organisms had produced at least three broods with a minimum of 15 young per surviving female.

Acute toxicity was not demonstrated during this evaluation. The 48-hour LC50 value was >100% effluent. The A-NOEC was 100% effluent. Chronic toxicity was not demonstrated during this evaluation. The C-NOEC value was 100% effluent. And the C-LOEC was >100% effluent.

4.2 Reference Toxicant Test

The most recent standard reference toxicant (SRT) test, conducted in August 2006, had a resulting 48-hour LC50 2.395 g NaCl/L and a chronic IC25 of 0.529 g NaCl/L. These values were within the Control Chart limits generated for SRT tests with *Ceriodaphnia dubia* in our laboratory.

5.0 Qualifiers

5.1 Qualifiers and Special Conditions

Qualifiers or special conditions were not applicable to the reported toxicity test.

NPDES Permit No. MA0003891 SDG: 9753 August 22, 2006

References

American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17th Edition

U.S. Environmental Protection Agency, 2002. 4th Edition. *Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms*. EPA-821-R-02-013.

August 22, 2006

Table 1. Results of the characterization of the General Electric Pittsfield Plant effluent and receiving water samples.

Parameter	OUTFALL COMPOSITE A7483C	OUTFALL COMPOSITE A7485C	OUTFALL COMPOSITE A7487C
Temperature	24.0	25.3	25.1
рН	7.7	7.7	8.1
Alkalinity (as CaCO ₃), mg/L	268	340	360
Hardness (as CaCO ₃), mg/L	308	172	356
Dissolved oxygen, mg/L	8.5	8.9	8.4
Specific conductivity, uS/cm	1027	1268	1303
Total residual chlorine (mg/L)	ND	ND	ND

Parameter	Housatonic River A7482R	Housatonic River A7484R	Housatonic River A7486R
Temperature	24.2	26.0	25.1
рН	7.6	7.4	7.8
Alkalinity (as CaCO ₃), mg/L	92	68	100
Hardness (as CaCO ₃), mg/L	106	84	110
Dissolved oxygen, mg/L	8.7	8.9	8.5
Specific conductivity, uS/cm	276	201	274
Total residual chlorine (mg/L)	ND	ND	ND

Note: Characterizations reflect conditions of sample after preparation for the toxicity test. ND = not detected

Table 2. Water quality measurements (ranges) recorded during the chronic toxicity test with *Ceriodaphnia dubia* exposed to General Electric Pittsfield Plant effluent, August 8 - 14, 2006.

Test Concentration (% effluent)	рН	Dissolved Oxygen (mg/L)	Temperature (°C)	Conductivity (umhos/cm)
Dechl. Control	7.1 - 7.8	7.8 - 8.5	24.4 – 25.5	217-324
Lab Control	7.2 - 7.6	7.6 - 8.5	24.2 – 25.1	197 - 251
Reference Control	7.4-7.8	7.5 – 9.1	24.2 – 26.0	200 - 282
6.25%	7.5 - 8.0	7.5 - 9.2	24.2 – 26.0	276 - 349
12.5%	7.5 - 8.0	7.2 - 9.2	24.1 – 26.0	346 - 419
25%	7.6 - 8.1	7.4 - 9.2	24.1 – 26.0	466 - 550
50%	7.6 - 8.3	7.4 – 9.1	24.0 – 26.0	645 - 807
75%	7.7 - 8.3	7.4 - 8.9	23.9 - 25.7	821 - 1057
100%	7.7 – 8.2	7.5 - 8.9	24.0 – 25.9	984 - 1306

Dechl. Control = laboratory water with sodium thiosulfate added (dechlorination control).

Lab Control = a mix of natural river water and moderately hard water.

Dilution Control = receiving water (Housatonic River).

Table 3 a. Summary of percent survival and reproduction data recorded during the chronic toxicity test with *Ceriodaphnia dubia* exposed to General Electric Pittsfield Plant effluent, August 8 - 14, 2006.

Test Concentration	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
(% effluent)					<u> </u>		
Dechl. Control	100	100	100	100	100	90	**
Lab Control	100	100	100	100	100	100	Pia
	400	400	100	100	90	90	
Reference Control	100	100	100	100	1 30	1 30	
6.25%	100	100	100	100	100	100	_
12.5%	100	100	100	100	100	100	-
25%	100	100	100	100	100	100	-
23 /8	1						
50%	100	100	100	100	100	90	=
							<u> </u>
75%	100	100	100	100	100	100	-
				100	<u> </u>	400	
100%	100	100	100	100	100	100	-

Table 3 b. Summary of reproduction data (number of offspring produced) recorded during the chronic toxicity test with *Ceriodaphnia dubia* exposed to General Electric Pittsfield Plant effluent, August 8 - 14, 2006.

to General Electric	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day	Mean
Test Concentration (% effluent)	Day	Day 2	Day 0	Duy	Day 0	,	7	
Dechl. Control	0	0	50	89	0	144	-	28.3
Lab Control	0	0	43	73	4	138	***************************************	25.8
Reference Control	0	0	43	84	0	151		27.8
		0	47	81	0	173	•••	30.1
6.25%	0	U	47	01	<u> </u>	170		00.1
12.5%	0	0	46	86	0	168	**	30.0
25%	0	0	47	88	0	183		31.8
50%	0	0	42	82	17	142	-	28.3
75%	0	0	51	100	19	155	-	32.5
100%	0	0	54	109	0	165	-	32.8

NPDES Permit No. MA0003891 SDG: 9753 August 22, 2006

Dechl. Control = laboratory water with sodium thiosulfate added (dechlorination control).

Lab Control = a mix of natural river water and moderately hard water.

Dilution Control = receiving water (Housatonic River).

NPDES Permit No. MA0003891 SDG: 9753 August 22, 2006

Appendix 1 Chain-of-Custody Documentation

))	5	
		Aqua	itec B	iolog	Aquatec Biological Sciences			273 MIII	273 Commerce Street Williston, VT 05495	se Street 05495	
			Chain-	of-Cust	Chain-of-Custody Record			型 A	TEL: (802) 860-1638 FAX: (802) 658-3189	0-1638 8-3189	
COMPANY INFORMATION	COMPANY	r's PROJE	COMPANY'S PROJECT INFORMATION	ATION	SHIPPING INFORMATION		VOLUM	VOLUME/CONTAINER TYPE/ PRESERVATIVE	AINER 7	rype/	
Name: General Electric Company	Project Name: GE PITTSFIELD	e: GE PITTS	SFIELD		Carrier:	J ₀ V	, OV	, O.	0,	<u> </u>	0
Address; O'Brien & Gere	Outfall Co	mposite -	Outfall Composite - INITIAL SAMPLE			r I	,)	4.7 H ₂ SO₄	4-C H ₂ SO ₄	م ب —	HNO.
1000 East Street, Gate 64	Project Number: 06004	ber: 06004			Airbill Number:		1		. 	<u>'</u> 	1
City/State/Zip: Pittsfield, MA 01201	Sampler Name(s): MARK	ne(s): ///	VRK WAS	WASWERD SH		- Plastic	Plastic	Plastic	Glass /	Amber F	Plastic
	NPDES Permit #: MA0003891	it #: MA000	3891		Date Shipped: 8-1-06					Sego	
Facsimile: Contact Name: Mark Wasnewsky	Ship these samples on Monday. Quote #: 10/05 Client C	10/05 (Monday. Client Code: GEPITTS		Hand Delivered: Lifes No	1 gal	1/2 gal	=	40 mil /	250 ml	0.5 L
ENTIFICATION	COLLECTION DATE TIME	GRAB (COMPOSITE	MATRIX	ANALYSIS		N ME	NIMBER OF	CONTAINEDS		
Outfall Composite	<u> </u>			Effluent	Ceriodaphnia dubia chronic suvival and	-					
A7483C 8-7	1 8 1 8 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2		1		reproduction (EPA Method 1002.0)	······································		· · · · · · · · · · · · · · · · · · ·			
Outfall Composite A7483C	= S₹		7	Effluent	Total Residual Chlorine					-	
Housatonic River A7482R	20/2 12/2	7		Receiving	Dilution Water	2					
Housatonic River Aフザ 8スR V	×. シシ	7		Receiving	Total Residual Chlorine					-	
								·			
Relinquished by: (signature) DATE TIME	TIME SOLV		Received by: (signature)	(e)	NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the labels with clear tape. Tape the caps of the sample bottles to ensure that they do not become dislodged during shipment. Next the samples in sufficient ice to maintain 0°C – 6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the	Complete the labels (Date, time, initials) and cover the caps of the sample bottles to ensure that they do not ment. Nest the samples in sufficient ice to maintain 0 ived at temperatures exceeding 6°C will be qualified in	als (Date, ple bottler in mples in	time, init s to ensu sufficien	ials) and ire that the tice to m	cover the second	ot 0°C –
Relinquished by: (signature) DATE	TIME	Received by:	d by: (signature)	(e)	report. Notes to Lab. Ambient cooler temperature: #70°C Dechloringto the officert	nerature.	40%	, oldool	t of our	#	÷
					-Ξ		j Ž				
Relinquished by: (signature) DATE	E	Received by:	d by: (signature)	ire)							

		Y	e no	tec E	3ioloc	H Cal	Aquatec Biological Sciences	ces			273 Willi	273 Commerce Street Williston, VT 05495		
				Chain	nain-of-Custody Record	tody F	ecord				TEL	TEL: (802) 860-1638 FAX: (802) 658-3189	0-1638 8-3189	
COMPANY INFORMATION	Ö	OMPANY'S	PROJE	COMPANY'S PROJECT INFORMATION	1ATION		SHIPPING INFORMATION	ORMATION		VOLUM	ME/CONTAINER PRESERVATIVE	VOLUME/CONTAINER TYPE/ PRESERVATIVE	ΓΥΡΕ/	
Name; General Electric Company	Proje	Project Name: GE PITTSFIELD	GE PITTS	FIELD		Carrier			4°C	4°C		4°C	4°C	4°C
Address: O'Brien & Gere	□	fall Com	posite -	Outfall Composite - RENEWAL SAMPLE	SAMPLE						H ₂ SO ₄	H ₂ SO ₄		HNO3
1000 East Street, Gate 64	Proje	Project Number: 06004				Airbill Number:	nber:				1	I	l	l
City/State/Zip: Pittsfield, MA 01201	Sam	Sampler Name(s):	1 C	RECUR	COUT SWEWS IN	5		7010	Plastic	Plastic	Plastic	Glass	Amber F Glass	Plastic
Facsimile:	Ship	Ship these samples on Wednesday	ples on W	/ednesday.		Date Shipped:	0	2000		1		1	<u> </u>	
Contact Name: Mark Wasnewsky	ŏ 	Quote #: 1	10/05	Client Code: GEPITTS		Hand Delivered:	ivered: [] Yes	es No	1 gal	1/2 gal	7	40 ml	250 mi	0.5 L
SAMPLE IDENTIFICATION	COLLECTION DATE TIME		GRAB (COMPOSITE	MATRIX		ANALYSIS	YSIS	_	NUMB	ER OF C	NUMBER OF CONTAINERS	FRS	
Outfall Composite		~			Effluent	Cerioda	hnia dubia ch	Ceriodaphnia dubia chronic suvival and	-) 			
A74856	30-68	<u> </u>		1		reproductiv	reproduction (EPA Method 1002.0) Renewal 1	hod 1002.0) –						
Outfall Composite A7485C		35		7	Effluent		Total Residual Chlorine	al Chlorine					-	
Housatonic River A 7484R		171	\		Receiving		Dilution Water	Water	2					
Housatonic River # 7484 R	<i>S</i> →	12/2 24	7		Receiving		Total Residual Chlorine	al Chlorine					-	
Relinquished by: (signature)	DATE TIME \$ 4-0(-1330)	TIME	Received by	1 by: (signature)	ture)	e, pr a	OTES TO SAMP bels with clear come dislodge C. Results for	NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the labels with clear tape. Tape the caps of the sample bottles to ensure that they do not become dislodged during shipment. Nest the samples in sufficient ice to maintain 0°C – 6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the	te the labe of the sam lest the sa	als (Date, ple bottle imples in es excee	time, init s to enst sufficier ding 6°C	tials) and ure that that the firm the them.	cover the new do	of 0°C – n the
Relinquished by: (signature)	DATE	TIME	Received by:	by: (signa	(are)	<u>e</u>	report.				•			
€	8/9/16/1755	755		1 Sold) Onno	N (AL)	Notes to Lab: Ambient coole sample if chlorine is detected.	Ambient cooler temperature: \vec{i} , \vec{j} °C. Dechlorinate the effluent is is detected.	erature: /	2 .	. Dechlo	orinate th	e effluer	nt
Relinquished by: (signature)	DATE	HWE.	Received by:	1 by: (signature)	ture)									

			Vque	itec E Chain	tec Biological Scion Chain-of-Custody Record	gical tody R	Aquatec Biological Sciences Chain-of-Custody Record			273 W≡ TE	273 Commerce Street Williston, VT 05495 TEL: (802) 860-1638 FAX: (802) 658-3189	merce Street VT 05495 2) 860-1638 2) 658-3189	8-11-3-33-33 8-11-3-5-12-13 5-30-13-30-13-
COMPANY INFORMATION		OMPANY'	S PROJE	COMPANY'S PROJECT INFORMATION	JATION		SHIPPING INFORMATION		VOLUI	ME/CON' PRESER	VOLUME/CONTAINER TYPE, PRESERVATIVE	TYPE/	
lame: General Electric Company	Proj	Project Name: GE PITTSFIELD	GE PITT	SFIELD		Carríer:		4°C	4°C	4°C	4 ₀ C	4°C.	4°C
ddress; O'Brien & Gere		tfall Com	posite.	Outfall Composite RENEWAL SAMPLE	SAMPLE			1	'	H ₂ SO ₄	H ₂ SO ₄		HNOS
1000 East Street, Gate 64	— Proj	Project Number: 06004	er: 06004			Airbill Number:	nber:		<u> </u>			 	
ity/State/Zip: Pittsfield, MA 01201	San	Sampler Name(s):		MARK W	SILEUS	Y		Plastic	ic Plastic	Plastic	Glass	Amber	Plastic
elephone: (413) 494-6709	遏	NPDES Permit #: MA0003891	#: MA00C	3891		Date Shipped:	ped: F-11-0 C					Glass	
acsimile:	Ship	Ship these samples on Friday	nbles on F	riday.			,	<u> </u> 	<u> </u>		1	1	
Contact Name: Mark Wasnewsky	On 	,	10/05	Client Code: GEPITTS	: GEPITTS	Hand Deli	Hand Delivered: X Yes	1 ga	1/2 gal	7	40 ml	250 mi	0.5 L
SAMPLE IDENTIFICATION	COLLECTION DATE TIME		GRAB	COMPOSITE	MATRIX		ANALYSIS		NO M	JER OF (NUMBER OF CONTAINERS	VERS	
Sutfall Composite		4			Effluent	Cerioa	Ceriodaphnia dubia chronic suvival and	ld 2					
8 2787CA	2	38		7	.,,,	repro	reproduction (EPA Method 1002.0) – Renewal 2						
26846		38		1	Effluent		Total Residual Chlorine					-	
Pousatonic River # 7456R		2 2 Z	7		Receiving		Dilution Water	2					
Housatonic River A7456R		8/3/			Receiving		Total Residual Chlorine					-	
Relinquished by: (signature)	DATE	TIME	Receive	Received by: (signature,	ature)	N E	NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the	plete the la	bels (Date	, time, in	itials) and	cover th	he
Mich Whenethy 8	8:10/12/	5.8	<u> 조</u>	SOOK SOOK	3	\$ 6° £ E	laders with clear tape. Tape the caps of the sample bottles to ensure that they do not become dislodged during shipment. Nest the samples in sufficient ice to maintain 0°C — 6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the	s or the sa . Nest the at temperat	mpie botti samples í ures exce	ies to ens n sufficie eding 6°C	ure that that it is it i	ney do n naintain pualified	or o°c – in the
Relinquished by: (signature)	DATE	TIME	Received by	d by: (signature)	ture)	P	alkali.		***				
To Las	S S S S S S S S S S S S S S S S S S S	8/ JQ	Popular	9~~6	1	z s	Notes to Lab: Ambient cooler temperature: $[\Lambda^{-1}]^{\circ}$ °C. Dechlorinate the effluent sample if chlorine is detected.	mperature	<u>.</u>	C. Dechl	orinate tl	e efflue	Ţ.
Relinquished by: (signature)	DATE	TIME	Receive	Received by: (signature)	ture)	1							
						-							

NPDES Permit No. MA0003891 SDG: 9753 August 22, 2006

Appendix 2 Summary of Test Conditions

Client: CAS / GE PITTSFIELD Test #: 48823 SDG: 9753

Test Description: Daphnid, Ceriodaphnia dubia acute / chronic survival and reproduction

ASSOCIATED PROTOCOL: EPA 1994. Short Term Methods for Estimating the Chronic Toxicity of

ASSOCIATED PROTOCOL: EPA 1994, Short Effluents and Receiving Waters to Freshwater C	
1. Test type:	Static, daily renewal
2. Test temperature:	25 <u>+</u> 1°C
3. Light quality:	Ambient laboratory illumination
4. Photoperiod:	16 hr. light, 8 hr. dark
5. Test chamber size:	30 ml
6. Test solution volume:	15-20 ml / replicate
7. Renewal of test concentrations:	Daily
8. Age of test organisms:	Less than 24 h, released within an 8 hr. period
9. No. organisms / test chamber:	1
10. No. of replicate chambers / concentration:	10
11. No. of organisms / concentration:	10
12. Feeding regime:	0.1 ml each of YTC and algal suspension daily
13. Cleaning:	Transfer to new test solution and test chamber daily
14. Aeration:	None
15. Dilution water:	Receiving water
16. Test concentrations:	6.25, 12.5, 25, 50, 75, 100% effluent
17. Laboratory control:	1:1 Lamoille R. / MHW as additional control. Sodium thiosulfate in MHW as additional control
18. Test duration:	Until 60% of control females have three broods
19. Monitoring:	Daily temperature, dissolved oxygen, pH, and conductivity. Hardness, alkalinity on each new sample. Biological monitoring daily
19. End points:	Survival (Days 2 and end of test) and reproduction (end of test)
20. Reference toxicant test:	Sodium chloride LC50 / IC25
21. Test acceptability (control performance):	80% or greater survival and an average of 15 or more young/female. At least 60% of surviving females must have produced third brood
22. Data interpretation:	Acute: 48-h LC50 (point estimate); A-NOEC Chronic: C-NOEC by hypothesis test statistics compared to the Lab Control using TOXIS2

Aquatec Biological Sciences Williston, Vermont

Appendix 3 U.S. EPA Region 1 Toxicity Test Summary and Statistical Flow Chart

SDG: 9753

TOXICITY TEST SUMMARY SHEET

Facility Name: Outfall Composite A7483C

Test Start Date 8/8/2006

NPDES Permit Number: MA0003891

Pipe Number: 001

Test Type Test Species Sample Type Sampling Method
Chronic Ceriodaphnia EFFLUENT Composite

Dilution Water: Housatonic River

Receiving Water: Housatonic River

Effluent Sampling Dates: 8/7/06 8/9/06 8/11/06

Concentrations Tested: 0 6.25 12.5 25 50 75 100 Control Permit Limit: NA

Was Effluent Salinity Adjusted? NA If yes, to what value?

With Sea Salts? Hypersaline Brine Solution?

Actual effluent concentrations tested after salinity adjustment in percent: Same as above

Reference Toxicant Date: 8/14/06

PERMIT LIMITS and TEST RESULTS

Test Acceptability Criteria

Mean Control Survival: 90 (%) Mean Control Reproduction: 27.8 (neonates)

	Limits (%)		Results (%)
LC50	NA	48-Hour LC50	>100
		Upper Value	
		Lower Value	
		Data Analysis Method	Steel
A-NOEC		48-Hour A-NOEC	100
C-NOEC		C-NOEC	>100
		LOEC	>100
IC25		IC25	
IC50		IC50	

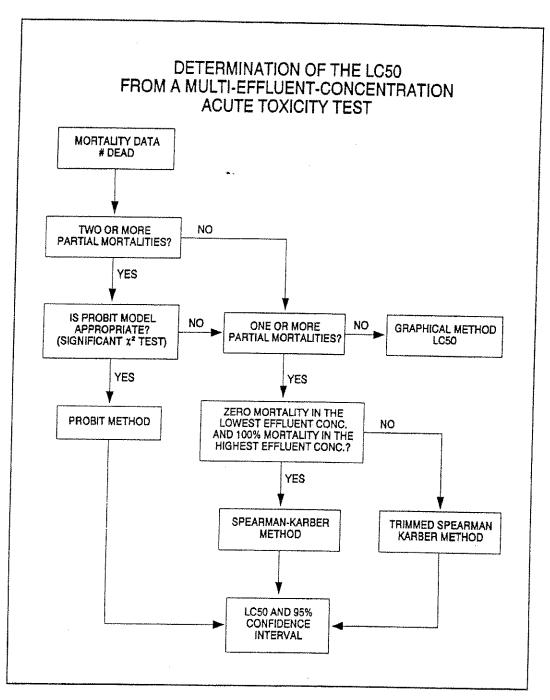


Figure 6. Flowchart for determination of the LC50 for multi-effluent-concentration acute toxicity tests.

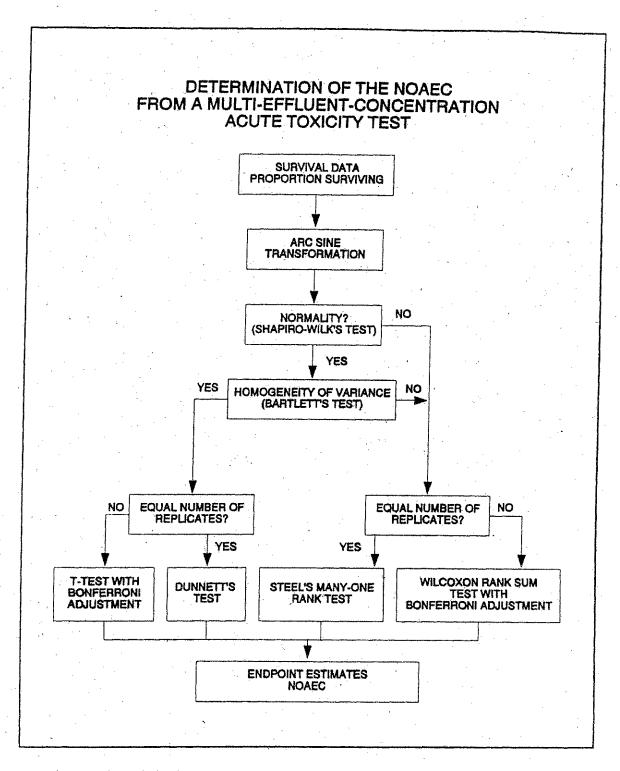


Figure 13. Flowchart for analysis of multi-effluent-concentration test data.

STATISTICAL ANALYSIS OF CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

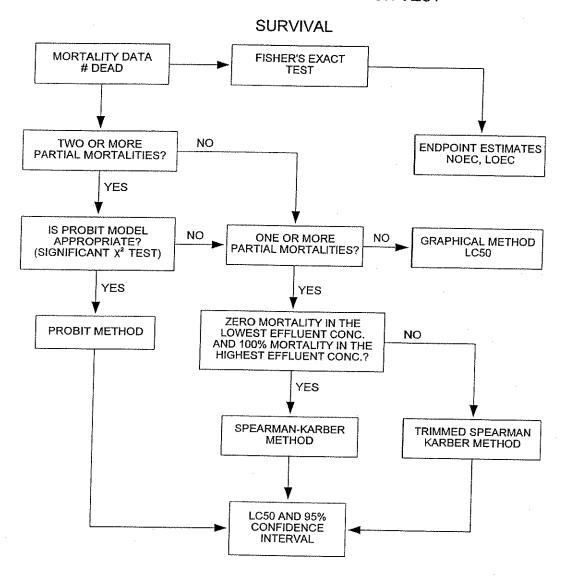


Figure 4. Flowchart for statistical analysis of the daphnid, Ceriodaphnia dubia, survival data.

STATISTICAL ANALYSIS OF CERIODAPHNIA

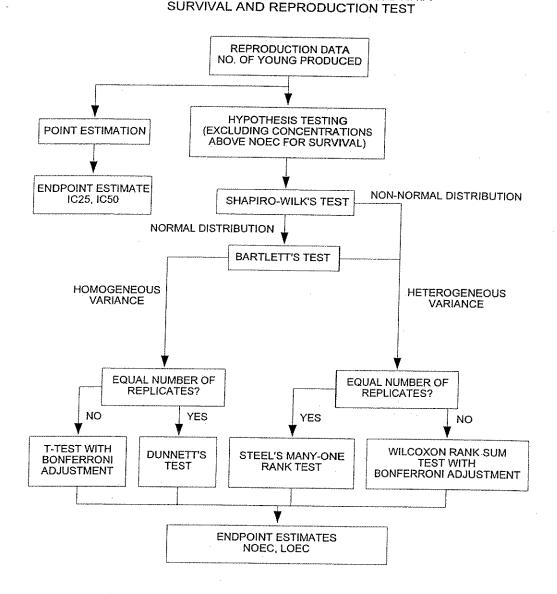


Figure 6. Flowchart for the statistical analysis of the daphnid, *Ceriodaphnia dubia*, reproduction data.

NPDES Permit No. MA0003891 SDG: 9753 August 22, 2006

Appendix 4 Bench Data, *Ceriodaphnia dubia* Chronic Toxicity Test

Aquatec Biological Sciences, Inc.

Test Number: Test Date: 8/08/06 Sample Date: 8/07/06 Species: Ceriodaphnia dubia Test Type: Chronic 48823

Test Material: Effluent - POTW

Source: MA0003891

General Electric Company Pittsfield, MA

	. m		SUMMA	ARY		~~=======		***=====
End Point	Day	Transformation	-===	Conc	#Reps	Mean	StDev	% Surv
Proportion Alive	2	No transformation						
~ · · · · · · · · · · · · · · · · · · ·				0.000 B	10	1.00	0.000	
			Х	0.000 D	10	1.00	0.000	
			Х	6.250 D	10	1.00	0.000	
			Х	12.500 D	10	1.00	0.000	
			Х	25.000 D	1.0	1.00	0.000	
			Х	50.000 D	10	1.00	0.000	
			Х	75.000 D	10	1,00	0.000	
			Х	100.000 D	10	1.00	0.000	
Proportion Alive	7	No transformation						
				0.000 B	10	1.00	0.000	
			Х	0.000 D	10	.90	.316	
			X	6.250 D	10	1.00	0.000	
			Х	12.500 D	10	1.00	0.000	
			Х	25.000 D	10	1.00	0.000	
			х	50.000 D	10	.90	.316	
			Х	75.000 D	10	1.00	0.000	
			Х	100.000 D	10	1.00	0.000	
Reproduction		No transformation						
*				0.000 B	10	25.80	7.465	
			Х	0.000 D	10	27.80	7.345	
			Х	6.250 D	10	30.10	1.729	
			Х	12.500 D	10	30.00	4.082	
			Х	25.000 D	10	31.80	2.936	
			Х	50.000 D	10	28.30	10.199	
			Х	75.000 D	10	32.50	2.550	
			х	100.000 D	10	32.80	3.293	

X = indicates concentrations used in calculations

			SIS TEST -			=======		:== = ==::
		antoin -	PIS IESI -		***			
End Point	Day	Transformation/Analysis	NOEC	LOEC	TU	MSE	MSD	
Proportion Alive		No transformation Fisher Exact	>100.000	>100.000 <	1.00		ACCORDANGE	
Proportion Alive	7	No transformation Fisher Exact	>100.000	>100.000 <	1.00			
Reproduction		No transformation Steel many-one rank test	>100.000	>100.000 <	1.00	29.084	5.664	

====== Water		====		: = = = = = = :		: == == == == == == == == == == == == ==	========	=======================================
===== Lab	====== Spec				======= Material		Protocol	Test Number
ABS	— CD		8/08/2006	EFF1	(%)	MA0003891	EPAF 94	48823
* = = = = = =			_ # = = = = = = = =	Stat	istics Par	ameters		
		_ = = =					: == == == == == == == == == == == == ==	=======================================
				PI	ROPORTION			
A Tr	nalysis ansform Tail	: Fi : No : On	Proportion sher Exact transforma e-tailed, d	tion 1	Auto growt	h select Variance:		
C	onstant Root	1	01 0.00		Alpha	Normality: NOEC:		
EC/LC	Method	: F	(P,S,G,L,	N)		Superdunnet	: 4000	
					GROWTH			
A Tr	nalysis ansform	: EPA : No : One	Reproducti A Flowchart transforma e-tailed, d 01 0.00	I tion	sing	h select Variance: Normality: NOEC:	1 control .01 .01 .05	
	ate IC?		(Y,N)			C resamples		
w aldes dever very which make sever with the control of the contro				Er	rors/Warn	ings		
ATTENDED TO A STATE AND A STATE OF THE STATE	=======			THE PARTY SHAPE SALES SALES SALES SALES				=======================================
Type	Number							
EC/LC	71	of t	linear inte the group roonse me	rpolat espons	ion estim se means <	ate can be 100-p % of	calculated the contr	- none ol
IC	71	No i	linear inte			ate can be 100-p % of		
PROP	0		ponse me lysis compl	eted w	with no er	rors		
GROW	0	Ana.	lysis compl	eted w	ith no er	rors		

Cerioda	====== phnia		Proporti	===== ion Al	======== ive		== == == == == ==	Day 7
Lab	Species	Date	Test Mat	cerial	Permit	Prote	col Te	est Number
ABS	CD	8/08/200	EFF1 (%)		MA00038	B91 EPAF	94 48	823
Fisher	Exact	Auto gr	owth sele	===== ect	1 contro	=======================================		
Transfo	rmation				Prop. Conc	Alive	P	======
No tran	sformatio	a		-	0.00B	1.00		
				Х	0.00D	.90		
				X	6.25D	1.00	1.000	
				X	12.50D	1.00	1.000	
				X	25.00D	1.00	1.000	
				X	50.00D	.90	1.000	
				X	75.00D		1.000	
				X	100.00D	1.00	1.000	
NOEC	LOEC	TU	Alpha	Та	ail	Based o	n	
>100	>100	<1	.05	One-s	sided	Fisher Ex	act	and the state of t

Cerioda	-		Reproductio				
Lab	Species	Date	======== Test Materi		======= Permit	Protocol	======== Test Number
ABS	CD	8/08/200	EFF1 (%)	Ī	MA0003891	EPAF 94	48823
====== EPA Flor =======		Auto gro	======================================	1 (control		
	Conc	Mean	SD	N	T	Sum of Ranks	=======================================
Data ti	ransformat 0.00B 0.00D 6.25D 12.50D 25.00D 50.00D 75.00D 100.00D	25.80 27.80 27.80 30.10 30.00 31.80 28.30 32.50 32.80	7.465 7.345 1.729 4.082 2.936 10.199 2.550 3.293	10 10 10 10 10 10 10	954 912 -1.659 207 -1.949 -2.073	111.000 113.000 124.500 115.500 131.000 132.000	
NOEC	LOEC	TU Alp	ha Tail		Based on	Criti	.cal Sum of Ra
>100	>100	<105	One-sided	. St	eel	74	

Dunnett Test:	MSE	MSI Reduc from C		Critical T
	29.084	20.3	745	2.3485
Kolmogorov Test for Normality:	Alpha	D	Cutoff	D Normal?
	.01	.16842	.124	No
Bartlett Test for Equal Variance:	Alpha	В	P(B)	Equal Var?
	.01	40.069	0	No

WATER FLEA TEST DATA

Test Number: 48823 (x) Chronic () Acute hours

Test Date: 8-Aug-06
Source: MA0003891 Test Material: EFF1 (%)

		Cont.		Da	ily	Sur	viv	al	Prop	Total	Max
Conc	Rep	No. Sex	Start	1 2	3	4	5	6 End	Alive	Young	Young
0.00 B	1	F	1	1				1	1.00	30	17
0.00 B	2	F	1	1				1	1.00	35	20
0.00 B	3	F	1	1				1	1.00	25	15
0.00 B	4	F	1	1				1	1.00	12	7
0.00 B	5	F	1	1				1	1.00	13	6
0.00 B	6	F	1	1				1	1.00	29	16
0.00 B	7	F	1	1				1	1.00	30	16
0.00 B	8	F	1	1				1	1.00	29	17
0.00 B	9	F	1	1				1	1.00	28	17
0.00 B	10	F	1	1				1	1.00	27	14
0.00 D	1	F	1	1				1	1.00	35	21
0.00 D	2	F	1	1				1	1.00	32	20
0.00 D	3	F	1	1				1	1.00	29	17
0.00 D	4	F	1	1				1	1.00	28	16
0.00 D	5	F	1	1				1	1.00	29	16
0.00 D	6	F	1	1				1	1.00	21	9
0.00 D	7	F	1	1				0	0.00	10	7
0.00 D	8	F	1	1				1	1.00	29	16
0.00 D	9	F	1	1				1	1.00	34	20
0.00 D	10	F	1	1				1	1.00	31	17
6.25 D	1	F	1	1				1	1.00	32	17
6.25 D	2	F	1	1				1	1.00	31	19
6.25 D	3	F	1	1				1	1.00	30	16
6.25 D	4	F	1	1				1	1.00	27	16
6.25 D	5	F	1	1				1	1.00	32	19
6.25 D	6	F	1	1				1	1.00	30	18
6.25 D	7	F	1	1				1	1.00	30	15
6.25 D	8	F	1	1				1	1.00	29	18
6.25 D	9	F	1	1				1	1.00	32	19
6.25 D	10	F	1	1				1	1.00	28	16
12.50 D	1	F	1	1				1	1.00	32	19
12.50 D	2	F	1	1				1	1.00	33	1.9
12.50 D	3	F	1	1				1	1.00	32	20
12.50 D	4	F	1	1				1	1.00	21	9
12.50 D	5	F	1	1				1	1.00	33	19
12.50 D	6	F	1	1				1	1.00	27	14
12.50 D	7	F	1	1				1	1.00	31	17
12.50 D	8	F	1	1				1	1.00	34	19
12.50 D	9	F	1	1				1	1.00	31	18
12.50 D	10	F	1	1				1	1.00	26	15
25.00 D	1	F	1	1				1	1.00	33	20
25.00 D	2	F	1	1				1	1.00	36	22
25.00 D	3	F	1	1				1	1.00	31	19
25.00 D 25.00 D	ے 4	F	1	1				1	1.00	30	19
25.00 D 25.00 D	5	F	1	1				1	1.00	35	20
		r	-	4.				1	2,00		20
25.00 D	6	F	1	1				1	1.00	29	16

WATER FLEA TEST DATA

Test Number: 48823

(x) Chronic () Acute hours

Test Date: 8-Aug-06
Source: MA0003891 Test Material: EFF1 (%)

			Cont.				Dai	ly	Sur	viv	al	Prop	Total	Max
Cone	2	Rep	No.	Sex	Start	1	2	3	4	5	6 End	Alive	Young	Young
25.00	D D	8		F	1	***************************************	1	••••			1	1.00	27	15
25.00	D	9		F	1		1				1	1.00	35	19
25.00	D	10		F	1		1				1	1.00	30	15
50.00	D	1		F	1		1				1	1.00	31	17
50.00	D	2		F	1		1				1	1.00	34	20
50.00	D	3		F	1		1				1	1.00	27	15
50.00	D	4		F	1		1				1	1.00	32	17
50.00	D	5		F	1		1				0	0.00	0	0
50.00	D	6		F	1		1				1	1.00	30	17
50.00	D	7		F	1		1				1	1.00	31	17
50.00	D	8		F	1		1				1	1.00	35	20
50.00	D	9		F	1		1				1	1.00	30	18
50.00	D	10		F	1		1				1	1.00	33	18
75.00	D	1		F	1		1				1	1.00	30	17
75.00	D	2		F	1		1				1	1.00	35	19
75.00	D	3		F	1		1				1	1.00	33	18
75.00	D	4		F	1		1				1	1.00	30	13
75.00	D	5		F	1		1				1	1.00	34	19
75.00	D	6		F	1		1				1	1.00	36	20
75.00	D	7		F	1		1				1	1.00	33	18
75.00	D	8		F	1		1				1	1.00	35	19
75.00	D	9		F	1		1				1	1.00	30	16
75.00	D	10		F	1		1				1	1.00	29	15
100.00	D	1		F	1		1				1	1.00	30	13
100.00	D	2		F	1		1				1	1.00	26	12
100.00	D	3		F	1		1				1	1.00	36	22
100.00	D	4		F	1		1				1	1.00	36	20
100.00	D	5		F	1		1				1	1.00	34	17
100.00	D	6		F	1		1				1	1.00	36	18
100.00	D	7		F	1		1				1	1.00	33	16
100.00	D	8		F	1		1				1	1.00	31	15
100.00	D	9		F	1		1				1	1.00	31	15
100.00	Đ	10		F	1		1				1	1.00	35	19

Qc V 8/22/06
Sabilor

WATER FLEA DAILY REPORT

TEST NUMBER:	48823	(**)	
TEST DATE:		(x) Chronic () Acute TEST MATERIAL: EFF1 (%	·-
Conc Ctrl Rep	Cont.	Daily Reproduction	9 10
0.00 B 0.00 B 0.00 B 0.00 B 0.00 B 0.00 B 0.00 B 0.00 B 0.00 B 0.00 B 0.00 B 0.00 D 0.		5 8 0 17 6 9 0 20 4 6 0 15 5 7 0 0 3 0 4 6 4 9 0 16 5 9 0 16 5 9 0 16 4 8 0 17 3 8 0 17 4 9 0 14 5 9 0 21 4 8 0 20 5 7 0 17 4 8 0 16 3 10 0 16 3 10 0 16 3 10 0 17 5 8 0 16 5 9 0 20 5 9 0 17 5 10 0 17 5 7 0 19 6 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 4 8 0 16 5 8 0 19 5 7 0 20 6 8 0 19 6 8 0 19 7 0 20 7 0 20 8 0 16 8 0 19 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18 9 0 19 9 0 18 9 0 18 9 0 19 9 0 18 9 0 18 9 0 19 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18 9 0 18	

Aquatec Biological Sciences, Inc.

WATER FLEA DAILY REPORT

	ST NUM TEST D SOU	ATE:	48823 8-Aug- MA00038				(x) (TEST		nic ERIAL:		Acu FF1		hours
Conc	Ctrl	Rep	Cont. #	1	2	Dai:	Ly R∈ 4	eproc 5	ductio 6	on 7	8	9	10
25.00 25.00 25.00 50.00 50.00 50.00 50.00 50.00 50.00 50.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 75.00 100.00 100.00 100.00 100.00		8 9 1 1 2 3 4 5 6 7 8 9 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 6 7 8 9 1 9 1 1 1 1 2 3 1 3 1 1 2 3 1 1 1 1 1 1 1 1				455562604464555655754456456675654	8 11 10 9 8 10 9 10 9 10 9 10 12 10 9 10 11 11 12 10 11 11 12	0 0 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 19 15 0 20 15 17 0 17 17 20 18 13 19 20 18 19 16 15 11 12 22 20 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19				

QCV KS 8/22/06

End-of-Test Average Number	or neonates per remate	28.3	25.8	27.8	; , , , , , , , , , , , , , , , , , , ,		30	31.8	28.3	: u	32.8						•		•																													
ğ		<u> </u>	43	43	47	. 4	ţ.	4	42	rC.	54		(SEE.	83	73	8 8	įά	0 0	000	88	82	100	109			Sum	0	4	С	· C	· C	o C	,	- C	<u> </u>		and S	144	7 0	2 .	ָהַ בַּילָ	5	99	183	142	155	165
Ren 10		Ω,	4	5	4	ď	י כ	Ω.	5	5	4			Kep 10	9	0	σ	000	o	o é	2	9	ග	12			Kep 10	0	0	0		· C	· C	· C	o c	0		Ren 10	. ~	2 7	1 1	- (Ω.	35	2	13	15	9
Ren 9		n c	n	5	r.C	7	† W	ο ·	4	4	5			e day	ത	00	O.	ο α) σ	, ,		∞ ;	9			c c	Kep a	0	0	0	0		· C	· C	o C	0		Ren 9	17	. 1.	- 6	λ 4 Ο C	<u> </u>	<u> </u>	<u></u>	<u>∞</u>	16	15
Rep 8		0 •	4	വ	4	ur.	* (4 0	Φ	4	ဖ		0	o day	50	∞	00		. 5	2 0	0 0	ָ כ	12	10		C	o day	0	0	0	0		0	· C	· C	0		Rep 8	17	17		- -	- -	20 f	. .	20	<u>ර</u> ා	£
Rep 7) L	0 (r	ιΩ	C	ı,	∵	4	S.	Ω		7	2				10								4		0	0	0	0	0	0	0	C	0		Rep 7	-	ć.		, , ,	 	~ ;	i G	- :	€	9
Rep 6) <	1,	4	4	4	· tr	> 4	4	7	7		Ron) P	ဘ	တ	တ	ĊΟ	O)) C(0 0	o	3 0 ;	*		9		-	0	0	0	0	0	0	0	0		Rep 6.	7	8	α	Σ		<u>+</u> •	<u>0</u> 1	<u> </u>	20	, 50
Rep 5	4	t (°) (7)	വ	9	LC.) C	יכ	ഗ	φ		10 0 0 0 0 0) }	XO ·	0	10	œ	∞	, Ç	2 0	2 6	⊇ :	-		Don 5		Э·	4	0	0	0	0	0	0	0		Rep 5	17	Q	ć	<u> </u>	. ć	2 6	. A) 	<u> </u>) [
Rep 4	T.) LC	7	4	4	4	ď) (C	jι	10	9		Ren 4		ו כי	_	∞	7	တ	òc	o	o ć	7 9	10		Ren 4)	>	0	0	0	0	0	0	0		Rep 4	17	0	8	5	. o	, t	7 0	~ (77
Rep 3	тC	7	† L	n +	9	5	4		1 (œ.	ιΩ		Rep 3		0 (Q	7	∞		00	, 5	2 0	n (מכ		Ren 3		> 0		0	0	0	0	0	0	0		Rep 3	9	5	17	16	200	2 4	. t		× (77
Rep 2	ιΩ	ı Ç	7 (1 1	Ω	4	τÜ	ď) L	Ω.	4		Rep 2	•	D (י מכ	∞	~	9	ഗ	œ	, -	- 4	2		Ren 2		> C	> •	o	0	0	0	0	9	0		Rep 2	10	20	20	0	σ	200	2.5 C.C) C) (7
Rep 1	4	. ru) rt	י נ	Ω	S	ဖ	ιC) [1	ဂ (œ		Rep 1	, Ç	<u> </u>	φ (ກ	9	∞	7	σ.	α	, ,	5		Rep 1	•) C) C	>	0	0	0	17	0	0		Rep 1	9	17	21	17	6	200	3 0	7 0	~ *	
Effluent %	Na Thio	Lab Ctrl	Dec Ott		C7.0	12.5	25	20	75	, <u>,</u>	001	Day 4	Effluent %	Na Thio	245 45 T	Lab Cul.	Ľ.	6.25	12.5	25	20	75	100	0	Day 5	Effluent %	Na Thio	- ta	Lab CE.	Rec. CIT.	6.25	12.5	25	20	75	100	Day 6	Effluent %	Na Thio	Lab Ctrl.	Rec. Ctrl.	6.25	12.5	25) \ \ \ \	5 5	22

Ceriodaphnia dubia Survival and Reproduction Data (Page 1 of 4)

Client: CAS / GE PITTSFIELD Test #: 48823 SDG: 9753

Test Description: Ceriodaphnia dubia acute / chronic toxicity tests

Effluent (%)	Repl 1	Repl 2	Repl 3	Repl 4	Repl 5	Repl 6	Repl 7	Repl 8	Repl 9	Repl 10	Remarks
Lab Ctrl	0	0	0	0	0	0	0	0	0	0	Day 0
Rec. Ctrl.	0	0	0	0	0	0	0	0	0	0	Sample: 32567
6.25	0	0	0	0	0	0	0	0	0	0	Fed Sel / YCT
12.5	0	0	0	0	0	0	0	0	0	0	Sel Lot #: 8806Se
25	0	0	0	0	0	0	0	0	0	0	YCT Lot #: 830610
50	0	0	0	0	0	0	0	0	0	0	Date/time/Init.
75	0	0	0	0	0	0	0	0	0	0	KS 8-8-06
100	0	0	0	0	0	0	0	0	0	0	11:45
Lab Ctrl	0	0	0	0	0	0	0	0	0	0	Day 1
Rec. Ctrl.	0	0	0	0	0	0	0	0	0	0	Sample: 32567
6.25	0	0	0	Ó	0	0	0	0	0	0	Fed Sel / YCT
12.5	0	0	0	0	0	0	0	0	0	0	Sel Lot #: schove
25	0	0	0	0	0	0	0	0	0	0	YCT Lot #: above
50	0	0	0	0	0	0	0	0	0	0	Date/time/Init.
75	0	0	0	0	0	0	0	0	0	0	KS 8-87-06
100	0	0	0	0	0	0	0	0	0	0	12:05
Lab Ctrl	0	0	0	0	O	0	0	0	0	0	Day 2
Rec. Ctrl.	0	0	0	0	0	0	0	0	0	0	Sample: 32613
6.25	0	0	0	0	\circ	0	0	0	0	0	Fed Sel / YCT
12.5	0	0	0	0	0	0	0	0	0	0	Sel Lot#: above
25	0	0	\circ	0	0	0	0	\bigcirc	0	0	YCT Lot#:above
50	0	0	0	0	0	0	0	0	0	0	Date/time/Init.
75	0	0	0	0	0	0	0	0	0	0	KS 8-10-06
100	\circ	0	0	0	O	0	0	0	0	0	13:40

0=original organism surviving, no young; D=original organism dead; #=# young released; *=lab-induced mortality. Receiving water is dilution water; Lab water is additional control.

Aquatec Biol	ogical Sciences	Williston, V	/ermont	
Reviewed by:		Date:	8/22	106

Ceriodaphnia dubia Survival and Reproduction Data (Page 2 of 4)

Client: CAS / GE PITTSFIELD Test #: 48823 SDG: 9753

Test Description: Ceriodaphnia dubia acute / chronic toxicity tests

Effluent (%)	Repl 1	Repl 2	Repl 3	Repl 4	Repl 5	Repl 6	Repl 7	Repl 8	Repi 9	Repl 10	Remarks
Lab Ctrl	5	6	4	5	3	2/	5	4	3	4	Day 3
Rec. Ctrl.	5	4	5	4	3	4	3	5	5	5	Sample: 3z6l3
6.25	5	5	6	4	5	4	dη	Ч	5	4	Fed Sel / YCT
12.5	5	4	5	4	6	4	6	5	니	3	Sel Lot #:88065el
25	6	5	4	3	5	5	ÚŢ	4	5	5	YCT Lot #:8306 YC
50	5	6	2	6	0	4	4	0	4	Û	Date/time/Init.
75	5	5	6	5	5	7	5	4	Ч	5	8-11-06
100	6	4	5)	6	6	7	5	6	5	4	15:30 JG
									_		David
Lab Ctrl	8	9	6	7	0	9	9	8	8	9	Day 4
Rec. Ctrl.	9	8	7	8	10	9	7	প্ত	9	9	Sample: 32771
6.25	10	7	8	7	8	8	10	7	8	8	Fed Sel / YCT
12.5	8	10	7	9	8	9	8	10	9	જ	Sel Lot #: \$ 806S el
25	7	9	8	8	10	8	9	8	Ü	10	YCT Lot #: 713064c
50	9	8	10	9	0	9	10	q	8	10	Date/time/Init.
75	8	11	9	12	10	9	10	12	10	9	8-12-06
100	13	10	9	10	[]	11	12_	10		12	1230 JG
											D = E
Lab Ctrl	0	0	0	0	L	0	0	0	0	0	Day 5
Rec. Ctrl.	\mathcal{O}	Ø	0	0	0	0	\mathbb{D}	0	0	0	Sample: 3777
6.25	0	0	0	0	0	0	0	0	0	0	Fed Sel/YCT
12.5	0	0	0	0	0	0	0	0	0	\circ	Sel Lot#: above
25	0	0	0	0	0	0	0	0	0	0	YCT Lot#: above
50	17	0	0	0	0	0	0	0	0	0	Date/time/Init.
75	0	19	0	0	0	0	0	0	0	0	KS 8-13-06
100	0	0	0	0	0	0	0	0	0	O	13:20

0=original organism surviving, no young; D=original organism dead; #=# young released; *=lab-induced mortality. Receiving water is dilution water; Lab water is additional control.

Aquatec Biologica	i Sciences vvi	mston, ve	IMONU
		Date:	3/22/06
Daviound hv:	\ 1	11316.	1 1 1 5 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Ceriodaphnia dubia Survival and Reproduction Data (Page 3 of 4)

Client: CAS / GE PITTSFIELD Test #: 48823 SDG: 9753

Test Description: Ceriodaphnia dubia acute / chronic toxicity tests

Effluent	Repl 1	Repl 2	Repl 3	Repl 4	Repl 5	Repl 6	Repl 7	Repl 8	Repl 9	Repl 10	Remarks
(%) Lab Ctrl	17	20	J5	0	6	lle	16	17	17	14	Day 6
Rec. Ctrl.	21	20	17	16	16	8	F)	16	20	17	Sample: 3777
6.25	17	19	16	16	19	18	15	18	19	16	Fed Sel / YCT
12.5	19	19	20	8	19	14	17	19	18	15	Sel Lot #:
25	20	22	19	19	20	16	18	15	19	15	YCT Lot #: -
50	Ö	20	15	17	0/D	17	17	20	18	18	Date/time/Init.
75	17	0	8	13		20/9KS	18	19	16	15	KS 8-14-06
100	11	12	22	20	17	18	16	15	15	19	14:10
Lab Ctrl		l									Day 7
Rec. Ctrl.											Sample:
6.25											Fed Sel / YCT
12.5											Sel Lot #:
25											YCT Lot #:
50											Date/time/Init.
75											
100											
Lab Ctrl		<u> </u>						1			Day 8
Rec. Ctrl.				-A							Sample:
6.25			- 	$\overline{}$							Fed Sel / YCT
12.5			-4								Sel Lot #:
25		\rightarrow	\leftarrow								YCT Lot #:
50		$\overline{}$									Date/time/Init.
75											
100											

0=original organism surviving, no young; D=original organism dead; #=# young released; *=lab-induced mortality. Receiving water is dilution water; Lab water is additional control .

Aquatec Biole	ogical Sciences	Williston, V	/ermont
Reviewed by:		Date:	8/22/06

Ceriodaphnia dubia Survival and Reproduction Data (Page 4 of 4)

Test #: 48823 SDG: 9753 Client: CAS / GE PITTSFIELD

Test Description: Ceriodaphnia dubia acute / chronic toxicity tests

Sodium thiosulfate control

Effluent	Repl	Repl	Repl	Repl	Repl	Repl	Repl	Repl	Repl	Repl	Domorko
(%)	1	2	3	4	5	6	ſ	8	9	10	Remarks
Na thio	0	0	0	0	0	0	0	0	0	0	Day 0 Fed ks V 8-8-06 1:30
Na thio	0	O	0	0	0	()	0	0	0	0	Day 1 Fed KS V 8-9-06 11:45
Na thio	0	0	0	0	0	0	0	0	0	0	Day 2 Fed KS V
Na thio	4	5	5	61	4	Ы	6	6	5	(کا	Day 3 Fed 56
Na thio	10	q	8	8	8	9	10	8	9	10	Day 4 Fed \$1230 JG√
Na thio	0	0	0	0	0	ପ	00	0	0	0	Day 5 Fed K5 V
Na thio	16	(0	19	17	17	15	1/D	17	17	15	Day 6 Fed 15:50
Na thio											Day 7 Fed
Na thio											Day 8 Fed

0=original organism surviving, no young; D=original organism dead; #=# young released; *=lab-induced mortality. Receiving water is dilution water; Lab water is additional control.

Omay be dead. U.S. 8-13-06

Documentation of Collection of Ceriodaphnia dubia for Toxicity Testing

	Date / Time Init. when cleared of	Date / Time Init. when neonates	No. Cups with 8 or more	Fed YCT / Selenastrum
Brood Board	Neonates	collected	neonates	(Lot #s)
731A	KS 8 7 11:40	_		V 72506Sel
7/31B	KS 8/7 11:55			V
7/31A	KS 8/7/06 -	→ 16:45	(16)	V
7/318	KS 817/06-	-> 16:45	ō	
4/3/A	K2 8/8	→ 00:00	<u> </u>	
7/318	ks 8/8	→ 00:00	42	V
1 11 11 11 11 11 11 11 11 11 11 11 11 1				
			7-7-7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	

Project Description / Test Use:	GE PHEFIELD

cdcoll.doc

Test #: 48823	
Test Description: C. dubia acute / chronic toxicity *	
Client: CAS / GE PITTSFIELD	

SDG: 9753

			INITIAL WAT	WATER CH	ER CHEMISTRY DATA	DATA				FINAL	FINAL WATER CHEMISTRY DATA	HEMISTR'	Y DATA	
	Day:	0	~	2	3	4	5	9	7	2	3	4	2	9
Na thio	Hd	17.8	6.6	28	7.6	4,5	772		راد ا	大士	37	7.6	2.5	¥.
Control	2	8.0	&:Q	8,2	8,0	8.5	8,3		kö	718	T	8.2	0,8	70
re decention	Temp.	125.4	25.0	24.7	24,8	24.9	74.4		24.8	1,2	25.5 25.0	25,0	747	24.0
	Conduct.	308	310	320	308	218	4		3 10	334		37	727	U R
	Init./Date KK 8/8/04/pc 8/9/04/KS 8	KK 8/8)c	मान्।अह त्रत्रा	01/2	JG 8/11	JG 8/11 JG 8/12 KS 8/13	KS 8/13		6/85x	KS 81/10	KS 810 JG8/11 JG81, 1 KS 813 VS 81	JG-81,7	15813	18.8

7					
9	7-	49	24.9	3437	h1/8 S7
5	7.5	0,8	74.7	237	K58/13
4	7.6	8.2	25,0	312	Z18815
3	34	7.9	25.5	309	JG-8/ 11
2	1-1-	7.8	25.2	324	KS 8/10
-	5E	8.	8/1/2	316	ks 8/9

Aquatec Biological Sciences Williston, Vermont

Reviewed by: _

Date: 8/22/06

45

Data	
mistry	
er Che	
Wat	

Client: (CAS / GE PITTSFIELD	TSFIELD	Test	Test Description:	1	ia acute /	Water Chemistr C. dubia acute / chronic toxicity *	Water Chemistry Data chronic toxicity *		Test #: 48823	23	**************************************	c Suc	0720	
anny Ada A unit front in consequent	***************************************	***************************************	INITIAL	INITIAL WATER CHE	≥	DATA				EINA	MATER	EINAL WATED CHEMISTRY	900	3	
ana Principalities	Day:	0	1	2	3	4	5	9		2	3 3	A TEIWIS I K	Y DATA	9	ľ
Lab	Hd	9,6	7.5	772	7.4	7.4	43		4	73	7 7	η 1	43	, C.T.	
Contr	8	8:5	9.6	2.8	8.4	8 \$	8,3		194	8:	8 7	(%)	40	777	
3.70 3.00	Temp.	24.2	24.3	25.0	24.4	上'15	8.42	14 des	549	24.9	25.1	24.8	727	7.11.7	
	Conduct.	37.0	7.7	198	200	198	197		25	210	211	28	204	2	
Kec. W	H C	9.0	7.0	74.00	75	7.8	74		74	44	7.5	7.6	77	788	
Ē	Temp	1.01.6	20.5	5 2	200	1000 1010 1010 1010 1010 1010 1010 101	2,0		4	7.8	7.6	8,2	240	204	
Water	Conduct	20.6	2000	76.7	143 135	75.	15,4	100	25.1	24.9	24.9	24.9	h'b2	24,5	
6.25%	H	300	50	יון אינו	23,0	20	170		487	188	2/2	208	282	282	
	DO) (X		000	91,0	1.00	240		727	48	++	7.8	719	8,0	
	Temn		5,75	300	200	8,5	1,10	7	カー サープ -	200	7.6	8,2	7.8	45	
	Conduct	77.74	500g	これの	74.6	0.00	9,57	1 ts	5	755	24.9	24.8	51/2	24.7	
12 50%	DE L		770	170	2/10	100 T	345		328	329	787	283	349	349	
		5),0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	5¢	21.0	7.3	25		728	749	7.8	7.9	0'8	0'8	
	S Lamb	9 =	ر ا ا	700	ا ا ا	8,5 (5	475		45	76	せら	8.2	77	745	
	- GIID.	250		76.0	7.4.7	25.c	75.7		25,0	25.7	25.0	24.8	£'h2	24.8	
250/	Conduct.	3/7	5/3	547	396	412	4 4		375	377	352	352	415	419	
% 4 6	E C	9.6) 140	7 8	7,9	346		9K	8,0	5-5	0'8	8.1	-18	
Š	2	0,8	O,	8,9	œ 4	85	4,5		7	JE 1	5:2	S. (44	740	
	lemb.		000	01-37	24.6	189	25.5		75.	75.7	1'57	24.9	8'h2	8'h2	
ì	Conduct.		1. B	484	482	1243	547		4(06	九上九	b8 H	6817	アニナ	550	
%0s	H C	97.0	200	77	7.9	8,0	44		8	8.1	8,2	s Š	8,3	8.3	
·	2	χ, Σ ,	, , ,	2,5	4.4	8.57	9		44	<u> 45</u>	7.4	2'8	44	35	
	lemp.	0.75	0.55	26.0	24.6	25,1	75.2		75.	25,6	2'52	24.9	4h2	8 42	
750/	Conduct.	900	(6525 (252	おり	749	802	+08		645	850)	750	bht	±8£	865	
?) 10	o &	100	7.7	S, C	48.		2,5	8.2	3.1	8,7	8,2	8.3	
			Ø i Ø	7.00	7.00	52	2,7		44	45	4.5	8.2	78	75	
	Condition	25.7	C) 2	125.t	7.4.4	25.0	25.1		25.	25.8	25,0	8.42	8'12	24.9	
4000	Coridaci.	F	- 1 .	1014	100 A	10 55 15	1057		83	834	948	260	976	484	
%00L	Hd	12/	هر ۲۰	77	7.4.	8,1	348		8,2	2.8	8.1	8,2	2.8	8.2	İ
	2	X Cin	2	8c	8	8,4	8,8		J.S	9.E	7.5	2,8	34	45	
	lemp.	(F)	25.3	25.3	24.3	25.1	25.0		15,0	25.9	25.1	24.9	8 12	976	
	Conduct.	1027	1023		1265	1303	1306		985	484	1131	16-		1911	
	Sample #	32567	32567	32613	T	32771		T	W-86	1	1	1	-	-	'
	Init./Date	KK 8/8/06	8/8/10/ KK 8/9/06 KS 8/10	5 % (10	O & hicke	568/12	KS 8/13	15 8 X	KS 8/9	KS 8/10	きるむし	Tr. 81.2	15012	KC\$/1.11	
Aquatec E	Aquatec Biological Sciences Williston, Vermont	nces Willis	ton, Vermor	1ŧ		1	ı						-	7.07.7	

Aquatec Biological Sciences Williston, Vermont

Date:

Reviewed by:

GE TOX FORMS Cd

						Alka	Alkalinity					Hard	Hardness		
Sample Identifier	Sample LIMS Identifier Identifier	Sub ID Code	Sampling Date		Initial Titrant (ml)	Final Titrant (ml)	Analyst	Analysis Date	Alkalinity	Sample Volume	Initial Titrant (ml)	Final Titrant (ml)	Analyst	Analysis Date	Hardness
32567	Outfall Composite		90/8/8	25	4.1	10.8	¥	90/6/8	268.0	50	22.1	37.5	KS	8/8/06	308.0
32568	Housatonic River A		8/8/06	25	10.8	<u>13</u>	춪	90/6/8	92.0	20	37.7	43	ΚS	8/8/06	106.0
32613	Outfall Composite		8/10/06	25	32.2	40.7	类	8/10/06	340.0	20	21.5	30.1	ž	8/10/06	172.0
32614	Housatonic River		8/10/06	25	40.7	42.4	폿	8/10/06	68.0	50	30.1	34.3	奏	8/10/06	84.0
32771	Outfall Composite		8/12/06	25	19	28	KS	8/13/06	360.0	25	17.1	26	ഉ	8/12/06	356.0
32772	Housatonic River		8/12/06	25	28	30.5	ΚS	8/13/06	100.0	20	26	31.5	9	8/12/06	110.0

Tuesday, August 22, 2006 11:54:20 AM

Page 1

Sample Preparation

Client: CAS / GE PITTSFIELD Test #: 48823 (C. dubia) SDG: 9753
Test Description: Ceriodaphnia dubia acute / chronic toxicity tests

Sample Identification:

Sample Description	Effluent	Receiving Water	Effluent	Receiving Water	Effluent	Receiving Water
Sample #	32567	00=00	32613		32771	110101

Sample Preparation:

Filtration	60 micron	60 micron	60 micrøn	60 micron	60 micron	60 mieron
Chlorine 1	M	ND	ND	ND	ND	ND
Dechlorine ²	No	No	No	No	No	No
Prepared by (Init./date)	8-8-06-		KS 8-10-06-		18-12-06-	<u> </u>

¹ Record vol. 0.025 N sodium thiosulfate to dechorinate 100 mL sample or record "ND" (not detected).

Daily Dilution Plan for: Ceriodaphnia dubia chronic toxicity test

Concentration (%)	Volume Effluent (mL)	Volume Diluent (mL)	Total Volume (mL)
Lab Water	0	300	300
(Additional Control) Na thiosulfate control	0	300	300
Receiving water			
(Dilution Water)	0	300	300
6.25	18.8	281.2	300
12.5	37.5	262.5	300
25	75	225	300
50	150	150	300
75	225	75	300
100	300	0	300
Total Volume	806.3	1893.7	

Comments:

Collect alkalinity and hardness samples on each new effluent and receiving water sample.

Aquatec Biol	ogical Sciences	Williston,	Vermont
Reviewed by:		Date	: 8/22/06

² Dechlorination not required per instructions from client.

NPDES Permit No. MA0003891 SDG: 9753 August 22, 2006

Appendix 5 Standard Reference Toxicant test Control Chart

Ceriodaphnia dubia Reference Control Chart for NaCl Acute Toxicity

IC-25	(g/L)	1.063	0.171	0.375	0.49	0.192	0.178	0.25	0.587	0.837	0.305	0.352	0.573	0.333	0,339	0.78	0,693	0.313	0.155	0.488	0.529
Test	Date	01/04/05	02/03/05	03/02/05	04/01/05	05/03/05	06/02/05	07/05/05	08/02/05	20/90/60	10/07/05	11/08/05	12/06/05	01/03/06	02/02/06	03/02/06	04/18/06	05/02/06	06/13/06	07/25/06	08/14/06
Test	Number	-	.2	က	4	5	9	7	œ	Ø	10	Ţ	12	5	4	50	16	17	8	19	20
Organism	Source	•	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences	Aquatec Biological Sciences
limits	Lower		1.21	1.47	1.59	1.68	1.67	1.71	1.51	1.56	1.59	1.62	1.56	1.59	1.42	1.43	1.46	1.33	1.32	1.34	1.37
Calculated limits	Upper		2.86	2.77	2.79	2.77	2.71	2.74	2.79	2.81	2.84	2.85	2.84	2.82	2.88	2.94	2.94	2.98	2.95	2.96	2.96
Mean	LC50	2.33	2.04	2.12	2.19	2.23	2.19	2.23	2.15	2.18	2.22	2.24	2.20	2.21	2.15	2.19	2.20	2.15	2.13	2.15	2.16
LC50	(a/L)	2.328	1.744.	2.289	2.395	2.375	2.000	2.450	1.625	2.422	2.522	2.450	1.782	2.328	1.414	2.672	2.450	1.361	1.782	2.450	2.395
Test	Date	01/04/05	02/03/05	3/2/2005	4/1/2005	5/3/2005	6/2/2005	7/5/2005	8/2/2005	9/6/2005	10/7/2005	11/8/2005	12/6/2005	1/3/2006	2/2/2006	3/2/2006	4/18/2006	5/2/2006	6/13/2006	7/25/2006	8/14/2006
Test	Number	1	2	ы	4	ເກ	9	7	ω	න	10		12	13	14	5	16	17	6	19	20
•		٠																			ĺ

Aquatec Biological Sciences

Aquatec Biological Sciences Aquatec Biological Sciences

-0.06

1.00

0.46

Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences

-0.06 -0.08 -0.06 -0.06

Aquatec Biological Sciences Aquatec Biological Sciences

-0.09

0.95

-0.10

Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences

-0.18

1.05 .02 0.98

0.46 0.44 0.44 0.44 0.43

-0.14 -0.11

0

0.45

Aquatec Biological Sciences Aquatec Biological Sciences

0.64 0.24 0.27 0.28 0.28 -0.25 -0.25

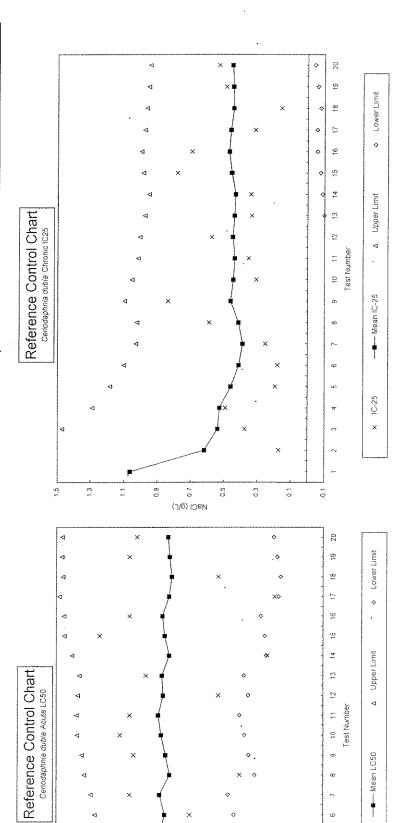
1,06 0,54 0,54 0,52 0,46 0,41 0,39

Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences

03

Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences

Organism Source


Lower

Calculated limits

Mean IC-25

Reference Control Chart for NaCl Chronic Toxicity

Ceriodaphnía dubía

\qaqc\srts\Cd acute chronic SRT

LC50

m

n CA

1.000

3.250

1.750

1,550

NaCI (g/L)

3.000

2.750

2.500

2.250

NPDES Permit No. MA0003891 SDG: 9753 August 22, 2006

Appendix 6 SOP TOX2-002, Standard Operating Procedure for Cladoceran, Ceriodaphnia dubia, Survival and Reproduction Toxicity Test

Standard Operating Procedure for Cladoceran, Ceriodaphnia dubia Survival and Reproduction Toxicity Test U.S. EPA Method 1002.0 (NELAC ACCREDITED METHOD)

1.0 IDENTIFICATION OF TEST METHOD

This SOP describes procedures for conducting a chronic toxicity test with the cladoceran, *Ceriodaphnia dubia*. This test is used to estimate the chronic toxicity of whole effluents or other aqueous samples with this test species.

2.0 APPLICABLE MATRIX OR MATRICES

The described test is used to assess toxicity of wastewaters (effluents, influents), receiving waters, and other prepared aqueous solutions.

3.0 DETECTION LIMIT

Not applicable.

4.0 SCOPE AND APPLICATION

This SOP describes procedures for performing a static-renewal chronic toxicity test with cladoceran, *Ceriodaphnia dubia*.

5.0 SUMMARY OF TEST METHOD

A summary of the test method is attached (Table 1). Organisms are exposed, for 6 – 8 days, typically to five concentrations of effluent (or aqueous sample) and the controls. Chronic toxicity is estimated by calculating the chronic no-observed-effect-concentration (C-NOEC). The IC25 is an additional chronic value that may be used to estimate chronic toxicity to *Ceriodaphnia dubia*. This procedure is based on the guidelines of EPA-821-R-02-013 (Method 1002.0). In some US EPA regions, NPDES permits require calculation of acute values from the 48-h survival data within the chronic test. The A-NOEC and 48-h LC50 are calculated from the 48-h data using TOXIS2.

6.0 DEFINITIONS

<u>LC50</u>: The computed concentration that results in 50 percent mortality of the test organisms (may be computed from 48-h data).

<u>A-NOEC</u>: The acute no-observed-effect-concentration. The highest concentration resulting in no statistically significant reduction in survival or reproduction relative to the control.

<u>C-NOEC</u>: The chronic no-observed-effect-concentration. The highest concentration resulting in no statistically significant reduction in survival relative to the control.

IC25: A value calculated by linear interpolation to provide a point-estimate of effluent (or other aqueous samples) that causes a 25% reduction in reproduction relative to the control. Initial chemistry: Water chemistry parameters (temperature, pH, dissolved oxygen, and conductivity) measured from a sub-sample of all test concentrations and controls before the time of test start and daily before test solution renewals.

<u>Final chemistry</u>: Water chemistry parameters (temperature, pH, dissolved oxygen, and conductivity) measured in all test concentrations and controls daily after test solution renewals (old water from the test cups) and at the end of the test.

7.0 INTERFERENCES

Not applicable.

8.0 SAFETY

Samples acquired for toxicity testing may contain unknown toxicants or health hazards. Protective equipment (e.g., lab coats, disposable gloves) should be worn when handling samples.

9.0 EQUIPMENT AND SUPPLIES

Calibrated Instrumentation and Water Quality Apparatus:

Aquatec Biological Sciences, Inc. TOX2-002 Cd chronic R4 050406

Controlled Document TOX2-002 Cd chronic Revision 4 (NELAC) May 4, 2006 Page 2 of 10

pH meter

Dissolved Oxygen (DO) meter

Thermometer (accurate to 0.1°C)

Conductivity meter

Alkalinity titration apparatus

Hardness titration apparatus

Additional Equipment:

Test chambers (30-ml disposable cups), color coded Test board with randomized scheme, glass cover

Light table

Waste collection bucket

Forms and Paperwork:

Survival and reproduction data form Initial and final chemistry data form Alkalinity and hardness data form

10.0 REAGENTS AND STANDARDS

Laboratory reconstituted water (soft water, moderately hard water) or culture water Deionized water

Reference toxicant solutions

11.0 SAMPLE COLLECTION, PRESERVATION, SHIPMENT, AND STORAGE

Samples for chronic toxicity tests are typically collected, cold-preserved, and shipped to Aquatec. Sample acceptance and log-in procedures are outlined in SOP TOX1-017. After receipt at Aquatec, samples should be refrigerated when not being prepared for use in toxicity tests. The holding time for effluent samples is 36 hours from the time of collection until the time of first use. Typically a series of three samples (effluent and receiving water) are shipped and received for testing. The first samples are used for Days 0 (test start) and renewal on Day 1; the second samples are used for renewal on Days 2 and 3; the third samples are used for renewal on Days 4, 5, and 6 (and 7 and 8, if required).

12.0 QUALITY CONTROL

For the test to be acceptable, survival in the controls must equal or exceed 80 percent. Also, the control females must have produced an average of 15 or more young per female and at least 60% of the surviving females in the controls must have produced a third brood. Also, the test conditions must be within the guidelines described in the protocol (Table 1).

Standard reference toxicant (SRT) tests (monthly 48-h acute tests with sodium chloride as the toxicant and quarterly chronic SRT tests with sodium chloride as the toxicant) are performed with a representative sub-set of the test organisms and result in an LC50 (for acute SRTs) or IC25 (for chronic SRTs) within the boundaries of the control chart. Deviations from acceptance standards should be documented and may result in the test being viewed as "conditionally acceptable" or "unacceptable" (See Section 19.0 below).

13.0 CALIBRATION AND STANDARDIZATION

Not applicable for the toxicity test. Any instrumentation (e.g., water quality instrumentation) required for conducting the test must be calibrated on a daily basis following the relevant SOP or instrument guidelines.

14.0 PROCEDURE

14.1 Test System and Conditions

The test system and environmental conditions for the chronic toxicity test are summarized in Table 1.

14.2 Test Organisms

Procurement and Documentation

Test organisms for the *Ceriodaphnia* chronic test are obtained from Aquatec Biological Sciences, Inc. laboratory cultures. Neonates less than 24-h old and all collected within an 8-h period are used for testing. Documentation of brood board source and date and time must be included in the project data package. *Ceriodaphnia dubia* are cultured in individual culture cups (one organism per cup) maintained at $25 \pm 1^{\circ}$ C. Neonates collected for testing may be held in individual culture cups until distributed to tests.

Evaluation of Ceriodaphnia Condition and Acclimation

If, during examination, it appears that more than 10 percent of the parent females or the neonates collected for the test have died during the 24-h period preceding the test, notify the Toxicity Laboratory Manager immediately. A decision will be made regarding the possibility of collecting an alternate stock of neonates for testing. If the test is to be delayed, document the reason on the Project Documentation form. Also, it may be necessary to notify the client.

NOTE: Brood boards for a test are started 7-10 days prior to the test. These brood boards must be carefully monitored for general health and reproductive condition. Documented tracking of parent organisms for survival and reproduction must be performed daily prior to collecting neonates for a chronic toxicity test. Any problems with brood board *Ceriodaphnia dubia* stocks should be reported to the Laboratory Manager immediately.

Ordinarily, *C. dubia* neonates are cultured in laboratory water (1:1 mix of Lamoille River water and moderately hard water amended with selenium and vitamin B12) up until the time of test initiation. The temperature of the parent and neonate stocks should be maintained at $25 \pm 1^{\circ}$ C. Return parent stock females from the neonate cups to the source batch culture.

If acclimation to a client's receiving water is required, gradual water changes should be made (eg., 25%-50% hourly) to the test organisms to receiving water.

Food

At the time of neonate collection, or on the morning of a scheduled test, feed neonates in each cup 0.1 ml Selenastrum and 0.1 ml yeast-Cerophyll-trout chow (YCT).

Sample Preparation

Procedures for effluent and diluent sample preparation are described in a SOP TOX1-013. The typical dilution factors are 0.5, however, consult applicable client permits for the appropriate dilution factor and included permit-limit concentrations when required.

14.3 Initiate the Test

Prepare the test chambers

For a test where receiving water is used as the diluent, an additional laboratory control (e.g., soft water, moderately hard water, or culture water) must be included in the test array. New 30-mL disposable plastic condiment cups are used as test chambers. Each test treatment will have ten true replicates (no water connection), therefore, 70 test cups will be required. Test cups should be color coded with stick-on dots as follows:

Color Code	Test Treatment
Green	Laboratory Control
Dark Blue	Receiving water Control
Light Blue	Lowest test concentration
Orange	Next lowest test concentration
Yellow	Middle test concentration
Red	Next highest test concentration
Star	Highest test concentration

Typically the receiving water is the dilution water and statistical control for a toxicity test, however, there are cases where a client's permit requires that laboratory water be used as dilution water (and statistical control) and the receiving water is used as an additional (non-statistical) control.

Measure Initial Chemistries

Remove an aliquot (approximately 100 ml) from each test dilution and the controls. This aliquot is used to measure the following parameters: pH, DO, temperature, and conductivity. Record the data directly on the Toxicity Test Data Form for Day 0. The temperature of the solutions must be within a range of \pm 1°C of the selected test temperature (25°C).

Recommended water chemistry ranges at time of test initiation

If solutions are not within the ranges specified below, notify the Toxicity Laboratory Director.

pH - acceptable range, 6.0-9.0

DO - acceptable range, 4.0 - 8.5 mg/L

Temperature - acceptable range, 24-26°C

Conductivity - often has a pattern of increasing conductance with increasing sample strength.

Collect a sub-sample of each new sample of the controls and 100% effluent for subsequent analysis of hardness and alkalinity. Label and store in a refrigerator at 4^oC.

If prepared solutions are to be stored temporarily prior to starting the test, store the test solutions at the target test temperature (24-26°C).

Decant test solutions to the appropriate test cups, approximately 20 mL per cup. Place the test cups in randomized positions on the test board.

Prepare and distribute test organisms

Select approximately 20 brood cups (containing neonates collected for the test), each with 8 or more neonates. Pool neonates in a crystallizing dish prior to distribution to the test. Randomly distribute neonates to test containers (5 per test container) with a transfer pipet.

Distribution of test organisms and test initiation

Neonates are distributed to the test board following the blocking procedure outlined in EPA-600-4-91/002. This blocking procedure allows the performance of each parent female to be tracked. If a particular female produces one weak offspring or male for use in the test, the likelihood of producing all weak offspring or all males is greater. By using the known parentage technique, poor performance of young from a given female can be omitted from all concentrations. The procedure is as follows:

 Select 10 brood cups (containing neonates collected for the test), each with 8 or more neonates. From a single cup, distribute (with a transfer pipet) one neonate to the

Controlled Document TOX2-002 Cd chronic Revision 4 (NELAC) May 4, 2006 Page 5 of 10

laboratory control cup, then one to the diluent control, one to the low test concentration, etc., working from low to high test concentration in test column 1.

- · Rinse the pipet with deionized water.
- Select a second neonate up and distribute neonates to column 2 in the same manner as in Step a.
- Continue distributing neonates from a single neonate cup the the remaining test columns as in Step a. until all test chambers contain a single neonate.
- Record the date and time of test initiation on the Ceriodaphnia Survival and Reproduction Data form.

Aeration

Do not aerate Ceriodaphnia dubia chronic tests.

Feed the test organisms

Add 0.1 mL of Selenastrum and 0.1 mL of YCT solution to each test cup. Record the feeding time on the Survival and Reproduction Data form.

14.4 Monitoring the test

Daily Monitoring and Test Solution Renewal

The procedures described below pertain to Days 1-8 of the test (The test starts Day 0).

Sample preparation

Generally, samples collected on three separate occasions are used for the chronic test (e.g., samples are delivered on Day 0, Day 2 and Day 4). Samples are prepared according to the procedures outlined in SOP TOX1-013. Use the most recently collected samples (effluent and dilution water) for the renewal procedure. The initial chemistry parameters of temperature, pH, dissolved oxygen, and conductivity should be measured daily and recorded on each test concentration prior to completing the test solution renewal.

Test solution renewal and biological monitoring

Test solutions in each test cup are renewed daily. During the renewal procedure, take care to avoid injuring neonates. The controls should be renewed first, then the low concentrations and then the higher test concentrations. This procedure will minimize the potential for back-contamination of a lower test concentration with a higher test concentration. Conduct the renewal procedure over a light table.

- Remove the test board from the test rack and remove the glass cover.
 Measure the temperature of one replicate of each test treatment
 Record the data on the Final Chemistry Data form.
- Fill ten new cups coded for laboratory control with approximately 15-20 mL of laboratory control water. Remove laboratory control Replicate 1 test cup from the test board.
- If the parent organism in this replicate is alive, transfer the organism with a large-bore pipet to the new test cup containing new control solution. Record a zero (if no neonates are present) in the data box for Laboratory Control, Replicate 1.
- If the organism is dead, record a "D" in the data box for this replicate. (It is helpful at this point to record "D" in the box for this replicate for subsequent test days to prevent that data box from being used in the future.)
- Examine the original test cup carefully to see whether any neonates were released by the parent organism in the prior 24-hour period. (Neonate production does not normally start until Day 3 or Day 4 of the test.) If live neonates are present in the cup, the exact neonate count must be

Controlled Document TOX2-002 Cd chronic Revision 4 (NELAC) May 4, 2006 Page 6 of 10

recorded in the data box for the replicate. If the parent organism has died record: D / # of neonates released. If a parent organism is accidentally injured and dies, designate as "*" and footnote the occurrence of the accidental mortality. This organism will be deleted from the data analysis. Place marble to fill any location that is empty due to mortality. If the parent organism is missing, it should be scored as "D" (unless a known and documented laboratory error resulted in the loss of the organism.

 Continue the procedure outlined above for Control Replicates 2-10. Pool the "old test water" from the old test cups into a beaker or cup.
 This must be saved for final chemistry analysis.

The decanted water ("old water") from the ten replicates must be pooled and saved for final chemistry determinations. Continue renewals for all test solutions working from low to high test concentrations.

When renewals have been completed, record your initials, date, and time of renewal in the remarks section of the Survival and Reproduction Data form. Also, indicate the sample number used for renewal. Replace all test cups in the assigned position on the test board.

Final Chemistry

Measure the pH, D.O., and conductivity (Temperature has already been measured in "a." above.) of the pooled water sample decanted from the ten replicates for each test treatment. It is preferable to do this immediately after completing the renewal to obtain an accurate representation of the test conditions. Discard the solution in the appropriate waste receptacle.

Feeding

As soon as the renewal procedure has been completed, add 0.1 ml of *Selenastrum* and 0.1 ml of YCT to each test cup. Record the time fed in the Remarks section of the Survival and Reproduction Data form. Replace the glass cover on the test board and return the test board to the testing area.

14.5 Termination of the Toxicity Test

The Ceriodaphnia dubia chronic test may be ended on Day 6, 7, or 8. The test should be ended when 60% or more of the surviving females in the controls have produced their third brood and have released an average of at least 15 neonates per female during the test. If this requirement has not been reached on Day 8, the final test data (survival and reproduction) should be recorded and the test should be ended.

Final Biological Monitoring (Survival and Reproduction)

- Measure and record temperatures from the test.
- For each replicate, determine whether the parent female is alive or dead and record
 the results in the appropriate data box of the Survival and Reproduction Data form.
 Also, count the number of neonates released by the parent female in the prior 24
 hours and record the data in the appropriate box.

Because of the rapid rate of development of *Ceriodaphnia*, all observations of organism survival and neonate production should be completed within two hours. Record the time of test completion in remarks section.

Final Chemistry (end of test)

Combine the test solution from each replicate of a test treatment. Measure and record the final chemistry parameters (pH, DO, and conductivity) as specified above.

15.0 CALCULATIONS

The C-NOEC is calculated using the TOXIS2 software program. The IC25 can also be computed automatically using the TOXIS2 program. Enter the test data into the TOXIS2 template prepared for each client. The dilution water control should be entered as the "D" control and is used for statistical comparisons. The additional control is entered as the "B" control. Run the statistical program for the EPA chronic Toxicity Test flow chart (Figures 4 and 6, pages 168 and 173 of EPA-821-02-013) and print the entered test data and the statistical results. Check the entered data against the original hand-written test data and record the date and initials. Place the statistical printouts in the project folder (by SDG) and return the folder with all paperwork to the project holding file.

16.0 METHOD PERFORMANCE

Test conditions should be at or near the limits outlined in the Protocol (Table 1).

17.0 POLLUTION PREVENTION

Effluents and receiving waters used in toxicity tests are stored refrigerated until the test data have been reviewed and deemed acceptable by the Laboratory Manager or the Director. Contact the Laboratory Manager or Director prior to discarding any stored samples. Effluent and receiving water samples may be discarded following a period of chlorination (e.g., 30 minutes). Effluent samples that have exhibited high toxicity in low test concentrations should be discarded in the "Aqueous Waste" drum for disposal by a certified waste handler. Other samples containing unknown or suspected toxic contaminants should be discarded in the "Aqueous Waste" drum.

18.0 DATA ASSESSMENT AND ACCEPTANCE CRITERIA FOR QUALITY CONTROL MEASURES

The Laboratory Manager and/or the Laboratory Director will review test data to ensure that all elements of the data package are available and complete (Log-in work sheets, test IDs, Chain-of-Custody documentation, toxicity test bench sheets, organism records, and SRT data). The reviewer will check to package for transcription errors, clarity of observations and notations, initials, and completeness. The reviewer will also compare the test data to the Quality Control standards outlined in Section 12.0 above. Any deficiencies will be addressed and resolved (with appropriate notation) prior to assembling the package for the final report.

19.0 CORRECTIVE ACTIONS FOR OUT-OF-CONTROL DATA

Data that do not meet Quality Control standards will be assessed and a decision will be made whether to reject the test data and deemed "unacceptable" (requiring a repeated test) or "provisionally acceptable" (requiring a qualifier in the final report). An example of and unacceptable test could include one where the controls fail to meet the 80% survival requirement. A designation of a "provisionally acceptable" test might include one where samples were received outside of prescribed holding temperatures or times.

20.0 CONTINGENCIES FOR HANDLING OUT-OF-CONTROL OR UNACCEPTABLE DATA

Analysts experiencing and "out-of-control" event (e.g., test replicate spills, test solutions improperly prepared, test temperatures out of target range, etc.) should note the event on the bench sheet and also notify the Laboratory Manager or Laboratory Director. A decision will be made by the Laboratory Manager or Laboratory Director as to whether to continue the test (with the appropriate qualifier) or whether to terminate the test. If the test is terminated, the client should be notified so that re-sampling and re-testing can be scheduled as soon as possible.

21.0 WASTE MANAGEMENT

See 17.0 above.

22.0 REFERENCES

The test procedure is based upon the guidelines outlined in EPA-821-R-02-013, Short-term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Water to Freshwater

Aquatec Biological Sciences, Inc. TOX2-002 Cd chronic R4 050406

Controlled Document TOX2-002 Cd chronic Revision 4 (NELAC) May 4, 2006 Page 8 of 10

Organisms (4rd Ed.). Regional guidelines may require in slight modifications of the test protocol (e.g., solution renewals, test duration, target test temperature).

23.0 TABLES, DIAGRAMS, FLOW CHARTS, AND VALIDATION DATA

Refer to Table 3 (pp. 164 of EPA-821-R-02-013) and the EPA Statistical Flow Chart (Figure 4 page 168 of EPA-821-R-02-013 and related discussions within that document.

24.0 TRAINING

Laboratory analysts performing this procedure must receive instruction from a previously trained analyst. Individual parts of the overall procedure may be performed under the guidance of a previously-trained analyst.

To be qualified for the overall procedure outlined in this SOP, the analyst must:

Read this SOP.

Receive verbal and visual instruction.

Achieve a daily neonate count that agrees (± 5%) with the count of an experienced analyst.

Be trained on pertinent associated SOPs.

Table 1. Test Protocol for Ceriodaphnia dubia survival and reproduction test ASSOCIATED PROTOCOL: EPA 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. (EPA-821-R-02-013), Method 1002.0

Method 1002.0	
1. Test type:	Static, daily renewal
2. Test temperature:	25 <u>+</u> 1°C
3. Light quality:	Ambient laboratory illumination
4. Photoperiod:	16 hr. light, 8 hr. dark
5. Test chamber size:	30 ml
6. Test solution volume:	15 - 25 ml / replicate
7. Renewal of test concentrations:	Daily using most recent samples collected
8. Age of test organisms:	Less than 24 h (released within 8-h period)
9. No. organisms / test chamber:	1
10. No. of replicate chambers / concentration:	10
11. No. of organisms / concentration:	10
12. Feeding regime:	Feed 0.1 ml of YTC and algal suspension daily
13. Cleaning:	None, new color-coded cups daily with renewal
14. Aeration:	None
15. Dilution water:	Receiving water or laboratory water
16. Test concentrations:	6.25, 12.5, 25, 50, 100% (unless specified otherwise by permit)
17. Laboratory control:	Reconstituted water (soft, or moderately hard) or culture water
18. Test duration:	6 – 8 days
19. Monitoring:	Daily: temperature, DO, pH, and conductivity before and after renewal. Hardness, alkalinity on each new sample. Biological monitoring (survival and neonate counts) daily
19. End points:	Survival and reproduction
20. Reference toxicant test:	Sodium chloride 48-h LC50 and IC25
21. Test acceptability (Control performance):	80% or greater survival and an average of 15 neonates per surviving female. 60% of the control organisms must have produced three broods.
22. Data interpretation:	C-NOEC and IC25 (if client or permit requires) using Toxis2 statistical software.

DOCUMENT SIGNATURE PAGE

DOCUMENT NAME: SOP TOX2-002 Ceriodaphnia dubia chronic Revision 4

	I have read and I understand and I agree, to the best of my ability, to follow the procedures outlined in this SOP		
Printed Name	Signature	Initials	Date
		, 4, 4	

			Market 1

APPENDIX 2

Laboratory Reports

Columbia Analytical Services, Inc. O'Brien & Gere, Inc.

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7483C

Date Sampled: 08/07/06 11:00 Order #: 923277
Date Received: 08/08/06 Submission #: R2632759 Sample Matrix: WATER

Submission #: R2632759

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
AMMONIA	350.1	0.0500	0.567	MG/L	08/15/06	10:25	1.0
CHLORIDE	300.0	0.200	152	${ t MG/L}$	08/10/06	21:43	40.0
TOTAL ALKALINITY	310.1	2.00	277	${ t MG/L}$	08/15/06	09:30	1.0
TOTAL ORGANIC CARBON	9060	1.00	6.99	MG/L	08/12/06	00:56	1.0
TOTAL PHOSPHORUS	365.1	0.0500	0.0796	MG/L	08/14/06	14:56	1.0
TOTAL SOLIDS	160.3	10.0	554	MG/L	08/11/06	14:15	1.0
TOTAL SUSPENDED SOLIDS	160.2	1.00	2.60	MG/L	08/09/06	13:30	1.0

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7482R

Sample Matrix: WATER

Date Sampled: 08/07/06 08:15
Date Received: 08/08/06

Order #: 923275
Submission #: R2632759

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
- 1/2/2/27 T. 7	350.1	0.0500	0.0500 U	MG/L	08/15/06	10:25	1.0
AMMONIA	300.0	0.200	18.2	MG/L	08/10/06	21:26	10.0
CHLORIDE	310.1	2.00	105	MG/L	08/15/06	09:30	1.0
TOTAL ALKALINITY	9060	1.00	6.66	MG/L	08/12/06	00:18	1.0
OTAL ORGANIC CARBON	365.1	0.0500	0.0500 U	MG/L	08/14/06	14:56	1.0
TOTAL PHOSPHORUS	160.3	10.0	159	MG/L	08/11/06	14:15	1.0
OTAL SOLIDS	160.3	1.00	2.70	MG/L	08/09/06	13:30	1.0

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7483CTM

Sample Matrix: WATER Order #: 923286

Date Sampled : 08/07/06 11:00 Date Received: 08/08/06 Submission #: R2632759

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
ALUMINUM	200.7	0.100	0.100 U	MG/L	08/14/06	1.0
CADMIUM	200.7	0.00500	0.00500 U	MG/L	08/14/06	1.0
CALCIUM	200.7	1.00	68.6	MG/L	08/14/06	1.0
CHROMIUM	200.7	0.0100	0.0100 U	MG/L	08/14/06	1.0
COPPER	200.7	0.0200	0.0200 U	MG/L	08/14/06	1.0
EAD	200.7	0.00500	0.00500 U	MG/L	08/14/06	1.0
IAGNESIUM	200.7	1.00	28.5	MG/L	08/14/06	1.0
IICKEL	200.7	0.0400	0.0400 U	MG/L	08/14/06	1.0
SILVER	200.7	0.0100	0.0100 U	MG/L	08/14/06	1.0
ZINC	200.7	0.0200	0.0200 U	MG/L	08/14/06	1.0

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06 Client Sample ID: A7483CCN

Date Sampled: 08/07/06 11:00 Order #: 923289
Date Received: 08/08/06 Submission #: R2632759 Sample Matrix: WATER

				rmi Tibel	DATE	TIME	DILUTION
ANALYTE	METHOD	PQL	RESULT	UNITS	ANALYZED	ANALIZED	DIROTION
TOTAL CYANIDE	335.4	0.0100	0.0279	MG/L	08/17/06	14:35	1.0

Reported: 08/18/06

Sample Matrix: WATER

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7482RCN

Date Sampled: 08/07/06 08:15 Order #: 923288

Date Received: 08/08/06 Submission #: R2632759

Date Received: 0	8/08/00	DODMIDDIO	AL W. REOSE, S.				
ANALYTE	METH	OD PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
TOTAL CYANIDE	335.	4 0.0100	0.0100 U	MG/L	08/15/06	14:57	1.0

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7483CDM

Sample Matrix: WATER

Date Sampled: 08/07/06 11:00 Order #: 923282
Date Received: 08/08/06 Submission #: R2632759

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
ALUMINUM	200.7	0.100	0.100 U	MG/L	08/14/06	1.0
CADMIUM	200.7	0.00500	0.00500 U	$\mathtt{MG/L}$	08/14/06	1.0
CHROMIUM	200.7	0.0100	0.0100 ប	MG/L	08/14/06	1.0
COPPER	200.7	0.0200	0.0200 U	MG/L	08/14/06	1,0
LEAD	200.7	0.00500	0.00500 U	MG/L	08/14/06	1.0
NICKEL	200.7	0.0400	0.0400 U	MG/L	08/14/06	1.0
SILVER	200.7	0.0100	0.0100 U	MG/L	08/14/06	1.0
ZINC	200.7	0.0200	0.0252	MG/L	08/14/06	1.0

Reported: 08/18/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7482RTM

Sample Matrix: WATER Order #: 923287

Date Sampled: 08/07/06 08:15 Date Received: 08/08/06 Submission #: R2632759

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
ALUMINUM	200.7	0.100	0.100 U	MG/L	08/14/06	1.0
CADMIUM	200.7	0.00500	0.00500 U	${ m MG/L}$	08/14/06	1.0
CALCIUM	200.7	1.00	27.4	MG/L	08/14/06	1.0
CHROMIUM	200.7	0.0100	0.0100 U	MG/L	08/14/06	1.0
COPPER	200.7	0.0200	0.0200 U	MG/L	08/14/06	1.0
LEAD	200.7	0.00500	0.00500 U	MG/L	08/14/06	1.0
LEAD MAGNESIUM	200.7	1.00	9.59	MG/L	08/14/06	1.0
	200.7	0.0400	0.0400 U	MG/L	08/14/06	1.0
NICKEL	200.7	0.0100	0.0100 U	MG/L	08/14/06	1.0
SILVER ZINC	200.7	0.0200	0.0200 U	MG/L	08/14/06	1.0

NPDES Sampling GE Pittsfield Toxicity pH

TOMOTO PAR	
Date: 8/7/06	Split Sample A.TOX/C.TOX#
Acute Dry	
Acute Wet	AUG. 2006
7000 1 or 3	
Chronic(Day 1,2 or 3)	
Effluent Composite Sample # A7483 Date & F-7-0 6 Time 1100 AM pH 7.77 su	

River/Dilution Water
Sample # A7482 R
Date \$-7-06
Time \$15 AM
pH 7.92 su

Muh Masnowsky 8-7-06 Signed & Dated

Reported: 08/17/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7485C

Sample Matrix: WATER

Date Sampled: 08/09/06 11:00 Order #: 923292
Date Received: 08/10/06 Submission #: R2632760

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
AIRONNA	350.1	0.0500	0.531	MG/L	08/15/06	10:25	1.0
CHLORIDE	300.0	0.200	191	MG/L	08/11/06	17:41	40.0
TOTAL ALKALINITY	310.1	2.00	357	MG/L	08/17/06		1.0
TOTAL ORGANIC CARBON	9060	1.00	6.57	MG/L	08/12/06	02:12	1.0
TOTAL PHOSPHORUS	365.1	0.0500	0.0500 U	${ m MG/L}$	08/14/06	14:56	1.0
TOTAL SOLIDS	160.3	10.0	683	MG/L	08/11/06	14:15	1.0
TOTAL SUSPENDED SOLIDS	160.2	1.00	1.00 U	MG/L	08/11/06	16:20	1.0

Reported: 08/17/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7484R

Sample Matrix: WATER

Date Sampled: 08/09/06 08:15 Order #: 923291 Submission #: R2632760

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
AMMONIA	350.1	0.0500	0.179	MG/L	08/15/06	10:25	1.0
CHLORIDE	300.0	0.200	13.2	MG/L	08/11/06	17:24	10.0
TOTAL ALKALINITY	310.1	2.00	73.3	MG/L	08/17/06		1.0
TOTAL ORGANIC CARBON	9060	1.00	6.03	${ t MG/L}$	08/12/06	01:34	1.0
TOTAL PHOSPHORUS	365.1	0.0500	0.0500 U	MG/L	08/14/06	14:56	1.0
TOTAL SOLIDS	160.3	10.0	122	MG/L	08/11/06	14:15	1.0
TOTAL SUSPENDED SOLIDS	160.2	1.00	2.20	MG/L	08/11/06	16:20	1.0

Reported: 08/17/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7485CCN

Sample Matrix: WATER **Order #:** 923300

Date Sampled: 08/09/06 11:00 Date Received: 08/10/06 **Submission #:** R2632760

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION	
TOTAL CYANIDE	335.4	0.0100	0.0444	MG/L	08/15/06	14:57	1.0	_

Reported: 08/17/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7484RCN

Sample Matrix: WATER Order #: 923299

Date Sampled: 08/09/06 08:15 Date Received: 08/10/06 Submission #: R2632760

Date Received: 00/1							
ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
TOTAL CYANIDE	335.4	0.0100	0.0100 U	MG/L	08/15/06	14:57	1.0

Reported: 08/17/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06 Client Sample ID: A7485CTM

Sample Matrix: WATER Date Sampled: 08/09/06 11:00 Date Received: 08/10/06 Order #: 923296

Submission #: R2632760

Date Received: 08/10/06		Submission #: R2632760					
ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION	
D. T. LIDS T. DIT TO	200.7	0.100	0.100 Ŭ	MG/L	08/16/06	1.0	
ALUMINUM	200.7	0.00500	0.00500 U	MG/L	08/16/06	1.0	
CADMIUM	200.7	1.00	86.8	MG/L	08/16/06	1.0	
CALCIUM	200.7	0.0100	0.0100 U	MG/L	08/16/06	1.0	
CHROMIUM	200.7	0.0200	0.0200 U	MG/L	08/16/06	1.0	
COPPER	200.7	0.00500	0.00500 U	MG/L	08/16/06	1.0	
LEAD	200.7	1.00	37.8	MG/L	08/16/06	1.0	
MAGNESIUM	200.7	0.0400	0.0400 U	MG/L	08/16/06	1.0	
NICKEL		0.0400	0.0100 U	MG/L	08/16/06	1.0	
SILVER ZINC	200.7 200.7	0.0100	0.0200 U	MG/L	08/16/06	1.0	

Reported: 08/17/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7485CDM

Sample Matrix: WATER

Order #: 923293 Submission #: R2632760 Date Sampled: 08/09/06 11:00 Date Received: 08/10/06

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
ALUMINUM	200.7	0.100	0.100 U	MG/L	08/16/06	1.0
CADMIUM	200.7	0.00500	០.00500 ប	MG/L	08/16/06	1.0
CHROMIUM	200.7	0.0100	0.0100 U	MG/L	08/16/06	1.0
COPPER	200.7	0.0200	0.0200 U	MG/L	08/16/06	1.0
LEAD	200.7	0.00500	0.00500 U	MG/L	08/16/06	1.0
NICKEL	200.7	0.0400	0.0400 U	MG/L	08/16/06	1.0
SILVER	200.7	0.0100	0.0100 U	\mathtt{MG}/\mathtt{L}	08/16/06	1.0
ZINC	200.7	0.0200	0.0200 U	MG/L	08/16/06	1.0

Reported: 08/17/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7484RTM

Date Sampled: 08/09/06 08:15 Order #: 923297 Date Received: 08/10/06 Submission #: R2632760 Sample Matrix: WATER

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
ALUMINUM	200.7	0.100	0.100 U	MG/L	08/16/06	1.0
CADMIUM	200.7	0.00500	0.00500 U	MG/L	08/16/06	1.0
CALCIUM	200.7	1.00	20.7	MG/L	08/16/06	1.0
CHROMIUM	200.7	0.0100	0.0100 U	MG/L	08/16/06	1.0
COPPER	200.7	0.0200	0.0200 U	MG/L	08/16/06	1.0
LEAD	200.7	0.00500	0.00500 U	MG/L	08/16/06	1.0
MAGNESIUM	200.7	1.00	7.31	MG/L	08/16/06	1.0
MAGNESIOM NICKEL	200.7	0.0400	0.0400 U	MG/L	08/16/06	1.0
NICKEL SILVER	200.7	0.0100	0.0100 U	MG/L	08/16/06	1.0
ZINC	200.7	0.0200	0.0200 U	MG/L	08/16/06	1.0

NPDES Sampling GE Pittsfield Toxicity pH

Date: 8/9/06
Acute Dry Acute Wet Chronic (Day 1,2 or 3)
Effluent Composite Sample # A7485 Date 8-9-06 Time 1100 AM pH 7.82 su
River/Dilution Water Sample # A7484R Date 8-9-06 Time 8'5AM pH 7.17 su
Mark Wusnewsky 8-9-06 Signed & Dated

Reported: 08/22/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7487C

Sample Matrix: WATER

Date Sampled: 08/11/06 11:00 Order #: 923304
Date Received: 08/12/06 Submission #: R2632762

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
AMMONIA	350.1	0.0500	0.523	MG/L	08/15/06	10:25	1.0
CHLORIDE	300.0	0.200	196	MG/L	08/16/06	21:00	40.0
TOTAL ALKALINITY	310.1	2.00	366	MG/L	08/17/06	10:00	1.0
TOTAL ORGANIC CARBON	9060	1.00	6.40	MG/L	08/17/06	20:35	1.0
TOTAL PHOSPHORUS	365.1	0.0500	0.0500 U	${ t MG/L}$	08/21/06	15:26	1.0
TOTAL SOLIDS	160.3	10.0	694	MG/L	08/18/06	16:20	1.0
TOTAL SUSPENDED SOLIDS	160.2	1.00	1.00 U	MG/L	08/15/06	15:50	1.0

Reported: 08/22/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7486R

Sample Matrix: WATER

Date Sampled: 08/11/06 08:15 Order #: 923303
Date Received: 08/12/06 Submission #: R2632762

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
AMMONIA	350.1	0.0500	0.0500 U	MG/L	08/15/06	10:25	1.0
CHLORIDE	300.0	0.200	18.5	MG/L	08/15/06	12:15	10.0
TOTAL ALKALINITY	310.1	2.00	103	MG/L	08/17/06	10:00	1.0
TOTAL ORGANIC CARBON	9060	1.00	5.01	MG/L	08/17/06	18:41	1.0
TOTAL PHOSPHORUS	365.1	0.0500	0.0500 U	MG/L	08/21/06	15:26	1.0
TOTAL SOLIDS	160.3	10.0	147	MG/L	08/18/06	16:20	1.0
TOTAL SUSPENDED SOLIDS	160.2	1.00	1.00	MG/L	08/15/06	15:50	1.0

Reported: 08/22/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7487CCN

Sample Matrix: WATER

Date Sampled: 08/11/06 11:00 Order #: 923310
Date Received: 08/12/06 Submission #: R2632762

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE TIME ANALYZED ANALYZ	ED DILUTION
TOTAL CYANIDE	335.4	0.0100	0.0197	MG/L	08/17/06 14:35	1.0

Reported: 08/22/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7486RCN

Date Sampled: 08/11/06 08:15 Order #: 923309
Date Received: 08/12/06 Submission #: R2632762 Sample Matrix: WATER

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	TIME ANALYZED	DILUTION
TOTAL CYANIDE	335.4	0.0100	0.0100 U	MG/L	08/15/06	14:57	1.0

Reported: 08/22/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7487CTM

Sample Matrix: WATER

Date Sampled: 08/11/06 11:00 Order #: 923307
Date Received: 08/12/06 Submission #: R2632762

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
ALUMINUM	200.7	0.100	0.100 U	MG/L	08/16/06	1.0
CADMIUM	200.7	0.00500	0.00500 U	MG/L	08/16/06	1.0
CALCIUM	200.7	1.00	87.2	MG/L	08/16/06	1.0
CHROMIUM	200.7	0.0100	0.0100 U	MG/L	08/16/06	1.0
COPPER	200.7	0.0200	0.0200 U	MG/L	08/16/06	1.0
LEAD	200.7	0.00500	0.00500 U	MG/L	08/16/06	1.0
MAGNESIUM	200.7	1.00	37.4	MG/L	08/16/06	1.0
IICKEL	200.7	0.0400	0.0400 U	MG/L	08/16/06	1.0
SILVER	200.7	0.0100	0.0100 U	MG/L	08/16/06	1.0
ZINC	200.7	0.0200	0.0200 U	MG/L	08/16/06	1.0

Reported: 08/22/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7487CDM

Sample Matrix: WATER

Date Sampled: 08/11/06 11:00 Order #: 923305
Date Received: 08/12/06 Submission #: R2632762

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
ALUMINUM	200.7	0.100	0.100 U	MG/L	08/16/06	1.0
CADMIUM	200.7	0.00500	0.00500 U	MG/L	08/16/06	1.0
CHROMIUM	200.7	0.0100	0.0100 U	MG/L	08/16/06	1.0
COPPER	200.7	0.0200	0.0200 U	MG/L	08/16/06	1.0
LEAD	200.7	0.00500	0.00500 U	MG/L	08/16/06	1.0
NICKEL	200.7	0.0400	0.0400 U	MG/L	08/16/06	1.0
SILVER	200.7	0.0100	0.0100 U	MG/L	08/16/06	1.0
ZINC	200.7	0.0200	0,0200 U	MG/L	08/16/06	1.0

Reported: 08/22/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 8/06

Client Sample ID : A7486RTM

Sample Matrix: WATER Order #: 923308

Date Sampled: 08/11/06 08:15 Date Received: 08/12/06 Submission #: R2632762

ANALYTE	METHOD	PQL	RESULT	UNITS	DATE ANALYZED	DILUTION
D. T. TYRET DITTEM	200.7	0.100	0.100 U	MG/L	08/16/06	1.0
ALUMINUM	200.7	0.00500	0.00500 U	MG/L	08/16/06	1.0
CADMIUM	200.7	1.00	27.8	MG/L	08/16/06	1.0
ALCIUM	200.7	0.0100	0.0100 U	MG/L	08/16/06	1.0
HROMIUM	200.7	0.0200	0.0200 U	MG/L	08/16/06	1.0
OPPER	200.7	0.00500	0.00500 U	MG/L	08/16/06	1.0
EAD	200.7	1.00	10.2	MG/L	08/16/06	1.0
AGNESIUM	200.7	0.0400	0.0400 U	MG/L	08/16/06	1.0
ICKEL	200.7	0.0100	0.0100 U	MG/L	08/16/06	1.0
ILVER INC	200.7	0.0200	0.0200 U	MG/L	08/16/06	1.0

NPDES Sampling GE Pittsfield Toxicity pH

Date: 8/11/06
Acute Dry Acute Wet Chronic (Day 1,2 or 3)
Effluent Composite Sample # A7487 Date &-11-06 Time 1100AM pH 7.85 su
River/Dilution Water Sample # 147486 R Date 8-11-06 Time 8'544 pH 7,79 su
Manh Wasner Sty 8-11-06 Signed & Dated

APPENDIX 3

Chain of Custody Forms

1	
Aralylical Services No.	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

An Emphyses - Owned Company One Mustard St., Sulte 250 • Rochester, NY 14609-0859 • (585) 286-5390 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE

Ь

CAS Contact # HS

Preservative Key 0. NONE 1. HCL 2. HNO3 3. HSO4 4. NãOH 6. MeOH 7. NaHSO4 ALTERNATE DESCRIPTION SUBMISSION # 729 INVOICE INFORMATION ANALYSIS REQUESTED (Include Method Number and Container Preservalive) Printed Name Signature BILL 70: Ē ₫ X IV. Data Vakidation Report with Raw Defe V. Speicalized Forms / Custom Report II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + OC and Calibration RELINQUISHED BY Yes I. Results Only Summaries Edala Printed Name E TURNAROUND REQUIREMENTS 5 day **RUSH (SURCHARGES APPLY)** RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD 24 hr Printed Name PRESERVATIVE E z CUSTODY SEALS: Y
RELINQUISHED BY NUMBER OF CONTAINERS びがり MATRIX (43) 447-5935 8-7-06 7000 Printed Name SAMPLING Sampler's Printed Name
SEANG GOLCE DATE PACKED IN 196 13CDC FOR OFFICE USE ONLY LAB ID 92229 77 328 Project Number Report CC PITTSFIELD MA 01201 47502 SAMPLE RECEIPT: CONDITION/COOLER TEMP; とうく アドアスト ik whoveward 59 PLASTICS SPECIAL INSTRUCTIONS/COMMENTS J. NICHOLSON 173)112 - 591 046-47470 A7492 CLIENT SAMPLE ID DATPRA SHED BY NPORS SA CAP See OAPP 09B S 20 Metals

Distribution: While - Return to Originator; Yellow - Lab Copy, Pink - Retained by Client

SCOC-1102-0

Date/Time

Cate/Time

Date/Time

Date/Time

9 15

CHAIN OF CUSTUDY/LABORATORY ANALYSIS REQUEST FORM Analylical Services wd.

One Mustard St., Surie 250 • Rochester, NY 14609-0859 • (565) 288-5380 • 600-695-7222 x11 • FAX (585) 288-8475 PAGE

in Employee - Owned Company www.caslab.com

Q H

SR#

CAS Contact

Filteral + Reserved servative Key HCL HNO3 H2SO4 NaOH Zn. Acetate MeOH NaHSO4 ALTERNATE DESCRIPTION 12 C INVOICE INFORMATION Oher 12632 ひしよみみならで ANALYSIS REQUESTED (Include Method Number and Container Preservative) SUBMISSION # Printed Name Signature Dale/Time BIL 70 File V. Date Validation Report with Aaw Date V. Speicalized Forms / Custom Report 2 REPORT REQUIREMENTS II. Results + OC Summaries (LCS, DUP, MS/MSD as required) III, Results + QC and Calibration , Yes HELINQUISHED BY f. Results Only Edala Printed Name Signature Date/Time E TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) RECEIVED BY REGUESTED REPORT DATE 24 hr 48 hr REQUESTED FAX DATE Printed Name Date/Time PRESERVATIVE z Sample bottle labels CUSTODY SEALS: Y NUMBER OF CONTAINERS RELINOUISHED BY MATRIX 8-26 81/24 H20 MARK WASNERSKY SE 25 244 514 F. 14 SAMPLING DATE TIME Pro Mal 27° Printed Name Dale/fime DATE Distribution: While - Refurn to Originator; Yellow - Lab Copy; Pink - Retained by Client 516 FOR OFFICE USE ONLY LAB ID 92327 92.32PL 923277 923275 62327 923275 21.32 Project Number C22679 923286 RECEIVED BY Report CC SAMPLE RECEIPT: CONDITION/COOLER TEMP; 2 SPECIAL INSTRUCTIONS/COMMENTS/ Metals - 1.15 ted NJOO'S CLIENT SAMPLE ID A7482 RTM NOU[SHED BY 7836 72 FF - 7-06 See OAPP

ف	
S S S	
星玉茅	
Anal	
M	
-	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

An Employee - Owined Company One Mustard St., Sulle 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE

Project Number

CAS Contact

9

SH #

2621929 Preservative Key REMARKS/ ALTERNATE DESCRIPTION MeOH NaHSO₄ INVOICE INFORMATION Offher ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name Date/Time Signalure BILL TO IV. Data Velidation Report with Raw Data V. Spaicelized Forms / Custom Report II. Results + QC Summanes (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + OC and Catibration HELINQUISHED BY . Results Only Edala Printed Name Dale/Time TURNAROUND REQUIREMENTS _ 5 day RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD Printed Name Date/Time Signalure PRESERVATIVE Ē CUSTODY SEALS: Y 3 NUMBER OF CONTAINERS RELINGUISHED BY 4 JASU TUSICH MATRIX SAMPLING DATE TIME 8-7-66 89m Prinled Name Dale/Tane FOR OFFICE USE ONLY 2/6 357676 92300 923 275 **Верон СС** SAMPLE RECEIPT: CONDITION/COOLER TEMP: lash Megres SPECIAL INSTRUCTIONS/COMMENTS **アイン イン**ション **CLIENT SAMPLE ID** 100 6 See QAPP

Distribution: White - Return to Originator, Yellow - Lab Obpyf Pink - Retained by Client

Cooler Receipt And Preservation Check Form

	C		Sub	mission Number_		*		
Project/ClientC						VELOC	ITY CL	IENT
 Were custody s Were custody j Did all bottles Did any VOA Were Ice or Ice 	seals on outside of papers properly fil arrive in good convials have significate packs present?	coole: led ou dition ant air	r? t (ink, (unbro : bubbl	signed, etc.)? oken)? es?	YES YES YES	NO NO NO NO NO	N/A ENT	
7 Temperature	of cooler(s) upon i	coerbe.	<u>.</u>	3.8	Yes	Yes	Yes	
Is the tempera	ture within 0° - 6°	°C?:	¥	(es) (es)	No	No	No	
If No, Explai	n Below		N	lo No	950			-
Date/Time Te	emperatures Taker	ı:				or S	ample Bo	ottle
Thermometer	D: 161 or	IR GU		Reading From: 1	Citty Diame			
2. Did all bottle 3. Were correct	Date:	e (i.e. a gree w for the	malysicith custests in	by:by:	e.)? YES YES YES	NO NO NO ar® Bags	Inflated	N/A
Explain any discrep	ancies:				i —	Vol	Added	Final pH
		YES	NO	Sample LD.	Reagent			
pH	Reagent							
12	NaOH		<u> </u>					
2	HNO ₃							
2	H₂SO₄		1					
Residual Chlorine (+/-)	for TCN & Phenol		-					
5-9**	P/PCBs (608 only)	<u> </u>		and at lab as listed	PC OK to	adjust pH_		
YES = All samples OK **If pH adjustment is re	NO = Stequired, use NaOH and And And And And And And And And And A	l∕or H ₂ S ion	O ₄	Other Con	aments:			

8/7/2006

CHRONIC AQUATIC TOXICITY COMPOSITE 8C1

Month: AUG Week: 2 Fiscal Wk: 32

Weather: Chronic Composite Sample #1

Split Sample Split Sample C. TOX I + Aug. 2006

	Gallons/Day	MI in Composite	Percent of Composite
001 004 007 64T 64G 09A	84,010 0 0 31,530 151,180 0 12,791	4,508.41 - 1,692.06 8,113.10 - 686.43	30.06% 0.00% 0.00% 11.28% 54.09% 0.00% 4.58%
09B	279,511	15000	100.00%

The Chronic Toxicity Composite was made today by Mark (Absnewsky @ 1160 + as according to the table above, and given the sample ID# A7483C*)

Chain-of-Custody Form Number: 186060706

Analysis: 4.70×/C.70× 2006

Location: 160Am Date: F-7-06

Sample Label Serial Number A 7483C

Malusanasky Signed 8-7-06

Date

				tec Ghain	tec Biological Scie Chain-of-Custody Record		Aquatec Biological Sciences Chain-of-Custody Record				A PAGE	273 Conniero Street F. Wilsien VI. 05495 TEL (802) 886:189 FAX. (802) 656:3189	3 Street 5495 14638 3-3189	
COMPANY INFORMATION	8	MPANY"	PROJE	COMPANY'S PROJECT INFORMATION	MATION	Y	SHIPPING INFORMATION	ATION	\	VOLUME/CONTAINER TYPE/ PRESERVATIVE	ME/CONTAINER PRESERVATIVE	INER T	YPE/	
Name: General Electric Company	Proje	Project Name: GE PITTSFIELD	GE PITT	FIELD		Carrier			4°C	0°C	ا ا	, o	- J ₀ V	J ₀ V
Address: O'Brien & Gere	<u>a</u>	Outfall Composite - IN	posite.	· INITIAL S	ITIAL SAMPLE	J			· .		H ₂ SO ₂ H	H ₂ SO ₄		Z Š
1000 East Street, Gate 64	- Proje	Project Number: 06004	r: 06004			Airbill Number:	iber:			<u>'</u> 	<u>'</u> 	<u>.</u> 	<u>.</u> T	Ī
City/State/Zip: Pittsfield, MA 01201	Sam	pler Name	(s): M	Sampler Name(s): MARK WASWEW	505ms	1			Plastic P	Plastic P	Plastic 0	Glass		Plastic
Telephone: (413) 494-5709	요 	NPDES Permit #: MA0003891	#: MA000	3891		Date Shipped:	ped: 8-7-0(90					See	
Facsimile:	Shp	Ship these samples on Monday.	l uo səldi	fonday.	`		***************************************		. 1	<u>.</u> 1	İ	<u> </u>	<u>.</u> 	1
Contact Name: Mark Wasnewsky	Quo		10/05	Client Code; GEPITTS	GEPITTS	Hand Delivered:	vered: [Lifes	<u>8</u>	1 ga	1/2 gal	7	40 ml	250 ml	0.5 L
INTIFICATION	COLLECTION DATE TIME		GRAB	COMPOSITE	MATRIX		ANALYSIS			NI IMBER OF CONTAINEDS	1 0 d	NIATA	000	
Outfall Composite					Effluent	Cerioda	Ceriodaphnia dubia chronic suvival and	suvival and	}		}		2	
A7483C 8	W/ 1-80-2-8	<u>₹</u>		7		reproduc	reproduction (EPA Method 1002.0)	002.0)						
Outfall Composite A7483C		= 8₹		1	Effluent		Total Residual Chlorine	lorine					 -	
Housatonic River A7482R	-	25 25 25 25 25 25 25 25 25 25 25 25 25 2	7		Receiving		Dilution Water	*	2					
Housatonic River A7482R	<u>د</u> اج	Sist	1		Receiving		Total Residual Chlorine	lorine					-	
		•												
											·			
Relinquished by: (signature)	DATE TIME 8-7-66 5312	TIME 7/2/2	Receive	Received by: (signature)	ature)	2 2 2 6 5	NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the labels with clear tape. Tape the caps of the sample bottles to ensure that they do not become dislodged during shipment. Nest the samples in sufficient ice to maintain 0°C – 6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the	S): (1): Complete to Tape the caps of the ing shipment. Nest les received at term	he labels ne sample t the sam peratures	(Date, tiles bottles in significant ples in si	me, initiato ensuration ensuration in the ensura	als) and e that th ice to m	cover the second	of 0°C – in the
Relinquished by: (signature)	DATE	TIME	Receive	Received by: (signature)	ature)		Notes to Lab: Ambient cook sample if chlorine is detected.	Ambient cooler temperature: $ ot\!$	ature: 7	0°c.	Dechlor	inate th	e efflue	ť
Relinquished by: (signature)	DATE	TIME	Receive	Received by: (signature)	ature)		,							

tical	
Amaly	7
M	
	į

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

An Employee - Owned Company One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE

<u>Р</u>

CAS Contact

SR#

C253276 HEMARKS/ ALTERNATE DESCRIPTION Preservative Key Zn. Acelate MeOH NaHSO₄ INVOICE INFORMATION Other, RECEIVED SUBMISSION #: Printed Name ANALYSIS REQUESTED (Include Method Number and Container Preservative) Signature BILL TO: E PO IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + OC and Calibration RELINCUISHED BY , Results Only Pinted Name Signature TURNAROUND REQUIREMENTS 5 Gay RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE Printed Name GC/MS WOA'S TO 8260 D 624 D CLP GC/MS WOA'S Signature Firm PRESERVATIVE CUSTODY SEALS: HELINQUISHED BY NUMBER OF CONTRINERS MATRIX 140 sample botthe labe WASWERS ninled Name SAMPLING アクタの DATE 923292 92342 FOR OFFICE USE ONLY LAB ID 92 3300 RECEIVED BY 92329 923296 823297 162876 Project Number 22333 12279 Report CC SAMPLE RECEIPT. CONDITION/COOLER TEMP. 700 CM 0 MARKUMSNEWS CLIENT SAMPLE ID 1517 ダアダイフサ See OAPP

mander after a Datem to Orbinator Vallow - I sh Conv. Pink - Retained by Client

Dalle Miles

Date/Time

Date/Time

Date/Time

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

One Mustard St., Sulie 250 • Rochester, NY 14609-0859 • (585) 288-5360 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE

P

CAS Contact

Preservative Key
0. NONE
2. HNO.
3. H-SO.
4. NāOH
6. MeOH
7. NaHSO. R265,220 ALTERNATE DESCRIPTION INVOICE INFORMATION B. Other SUBMISSION #: ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name Date/Time Signeture Ē Ž 1V. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report ŝ II. Results + OC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration RELINQUISHED BY Yes N I. Results Only Edala Printed Name Date/ Ime Signature Firm O 808 O SOS O METALS, DOTAL (List in comments of List in comments TURNAROUND REQUIREMENTS 7 RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD Printed Name GC/MS VOA'S D 8260 D 624 GC/MS SVOA'S D 8270 D 625 Date/Time Signature PRESERVATIVE CUSTODY SEALS: 3 NUMBER OF CONTAINERS RELINQUISHED BY MATRIX MARK WASNEWSKY 13 448 5433 118h 102m SAMPLING DATE TIME Pinied Name Date/Time 16 Smertan 9:30 92329 43232 FOR OFFICE USE ONLY LAB ID 92322 RECEIVED BY 92327 162576 123271 Project Number Report CC SAMPLE RECEIPT: CONDITION/COOLER TEMP: SPECIAL INSTRUCTIONS/COMMENTS サイダンタ MIAN CLIENT SAMPLE ID See OAPP

Cooler Receipt And Preservation Check Form GE- Pittsfield Submission Number Ka-3976 0 Cooler received on 6-10-06 by: KE COURIER: CAS UPS FEDEX VELOCITY CLIENT NO Were custody seals on outside of cooler? 1. Were custody papers properly filled out (ink, signed, etc.)? NO 2. NO Did all bottles arrive in good condition (unbroken)? 3. NO N/A Did any VOA vials have significant air bubbles? 4. NO Were Ice or Ice packs present? 5. CAS/ROC CLIENT Where did the bottles originate? 6. Temperature of cooler(s) upon receipt: 7. Yes Is the temperature within 0° - 6° C?: Yes Yes Yes No No No If No, Explain Below No. Date/Time Temperatures Taken: Sample Bottl Reading From: Temp Blank IR GUN Thermometer ID: 161 or/ If out of Temperature, Client Approval to Run Samples PC Secondary Review: bv: Cooler Breakdown: Date: Were all bottle labels complete (i.e. analysis, preservation, etc.)? NO 1. Did all bottle labels and tags agree with custody papers? NO 2. Were correct containers used for the tests indicated? NO 3. Tedlar® Bags Inflated Air Samples: 'Cassettes / Tubes Intact Canisters Pressurized 4. Explain any discrepancies: Vol. Added Final pH Reagent NO Sample I.D. YES Reagent pΗ NaOH 12 HNO₃ 2 H₂SO₄ Residual Chlorine (+/-) for TCN & Phenol P/PCBs (608 only) 5-9** PC OK to adjust pH NO = Samples were preserved at lab as listed YES = All samples OK **If pH adjustment is required, use NaOH and/or H2SO4 VOC Vial pH Verification Other Comments: (Tested after Analysis) Following Samples Exhibited pH > 2 Co 8:11-06 PC Secondary Review: _

H:\SMODOCS\Cooler Receipt v 2.doc

8/9/06

CHRONIC AQUATIC TOXICITY COMPOSITE 8C2

Month: AUG Week: 2 Fiscal Wk: 32

Weather: Chronic Composite Sample #2

	Gallons/Day	MI in Composite	Percent of Composite
001 004 007 64T 64G 09A	8,160 0 0 7,230 122,660 0	762.15 12,930.18	5.73% 0.00% 0.00% 5.08% 86.20% 0.00% 2.98%
09B	4,245	447.49	2.90 /6
	142,295	15000	100.00%

Chain-of-Custody Form Number: OBG080906

Analysis: CITOX 2 AVG 2006

Location: 1100AM Date: 8-9-06

Time
Sample Label Serial Number A 7485C

Marhwasnershy Signed 8-9-06

273 Cornigera Street 273 Cornigera Street THE 1802 B60 1638 FAX (802) F68 1189	VOLUME/CONTAINER TYPE/ PRESERVATIVE	4°C 4°C	H ₂ SO ₄ H ₂ SO ₄ HNO ₃		Piastic Plastic Glass Amber Plastic Glass Glass		1 gai 1/2 gai 1 L 40 mi 250 mi 0.5 L	NUMBER OF CONTAINERS	_		-	2				NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the labels with clear tape. Tape the caps of the sample bottles to ensure that they do not become dislodged during shipment. Nest the samples in sufficient ice to maintain 0°C ~ 6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the report.	Ambient cooler temperature: $\mathring{I} \not \bigvee$ °C. Dechlorinate the effluent ne is detected.	
suces	SHIPPING INFORMATION	Carrier		Airbill Number:	70-67	Date Stripped.	Hand Delivered: Ves	ANALYSIS	Ceriodaphnia dubia chronic suvival and	reproduction (EPA Method 1002.0) – Renewal 1	Total Residual Chlorine	Dilution Water	Total Residual Chlorine			NOTES TO SAMPLER(S): (1): Comple labels with clear tape. Tape the caps of become dislodged during shipment. I 6°C. Results for samples received at 1 report.	Notes to Lab: sample if chlori	
tec Biological Scie chain-of-custody Record	ST INFORMATION		- RENEWAL SAMPLE		KLUA SWEWSK		a: GEPITTS	COMPOSITE MATRIX	Effluent	7	Effluent	Receiving	Receiving			Received by: (signature)	Seived by: (signature)	Received by: (signature)
Aqua	COMPANY'S PROJECT	Project Name: GE PITTSFIELD	Outfall Composite	Project Number: 06004	Sampler Name(s): MADDISSON	Ship these samples on Wednesday.	Quote #: 10/05 (ECTION GRAB		30 N	100	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	818			TIME ()		TIME
	COMPANY INFORMATION	Name: General Electric Company	Address; O'Brien & Gere	1000 East Street, Gate 64	City/State/Zip: Pittsfield, MA 01201	Facsimile:	Contact Name: Mark Wasnewsky	SAMPLE IDENTIFICATION DATE	Outfall Composite	47485 G 84-28	Outfall Composite A7485C	Housatonic River A 7484R	Housatonic River A 7454 N			Relinquished by: (signature) DATE Signature) S-4-0	Relinquished by: (signature)	Relinquished by: (signature) DATE

Columbia Analytical Services Inc. płoyae - Owned Company www.casieb.com

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE

HS

CAS Conlact

P

iltired & Mrsonles 19628927 Preservative Key 0. NONE ALTERNATE DESCRIPTION HNO3 H2SO4 NaOH Zn. Acetate MeOH NaHSO4 INVOICE INFORMATION Other æ, ひれたまれたらで SUBMISSION #: ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Namo Signature Dale/Time BILTO Ē V. Data Validation Report with Raw Data V. Spekalized Forms / Custom Report ž REPORT REQUIREMENTS II. Results + OC Summaries (LCS, DUP, MS/MSD as required) III. Results + OC and Calibration RELINQUISHED BY Yes . Results Only Edata Printed Name Signature Date/Time First TURNAROUND REQUIREMENTS 24 hr 48 hr 6 day RUSH (SURCHARGES APPLY) REQUESTED REPORT DATE **REQUESTED FAX DATE** STANDARD GCM/S VOA'S GCM/S SVOA'S GCM/S SVOA'S GCM/S SVOA'S GGS/OA'S GCM/S SVOA'S Printed Name **Лате/Т**ипе E PRESERVATIVE CUSTODY SEALS: NUMBER OF CONTAINERS MATHIX LITENEUS W 8-11-06 8 PM HO 4425935 Mool/ अ 815AM W 510 20/1 SAMPLING DATE TIME Printed Name Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Date/Time Distribution: White - Return to Originator, 'Vellow - Lab Dopy, Pink - Retained by Client FOR OFFICE USE ONLY LAB ID 97.3310 923303 923304 RECEIVED BY 802876 92 3203 923305 923309 923307 Report CC SAMPLE RECEIPT: CONDITION/COOLER TEMP. 0 Marraly 10/20 /SON 10 200M SPECIAL INSTRUCTIONS/COMMENTS lan humana MAKWASWEWS CLIENT SAMPLE ID See CIAPP Metals

SCOC-1102-06

Imbia alviical	Services Inc
Colu	

CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

An Employes - Owned Company One Muslard St., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE

P.

SR #

CAS Contact

Preservative Key
O. NONE
1. HCL
2. HNCL
3. H2SO₄
4. NaOH
6. MeOH
7. NaHSO₄ ALTERNATE DESCRIPTION INVOICE INFORMATION SUBMISSION ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name Date/Time Signature BILL TO: Fitt ë IV. Data Validation Report with Raw Data V. Spelcalized Forms / Custom Report £ II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration **HELINQUISHED BY** χ. 1. Results Only Edata Printed Name Date/Time Signature Firm TURNAROUND REQUIREMENTS Ž RUSH (SURCHARGES APPLY) 24 hr 48 hr REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD GCANS VOA'S GCANS SVOA'S GCANS SVOA'S GCANS VOA'S GCANS VOA'S GCANS VOA'S Printed Name Date/Time Signature E. PHESERVATIVE CUSTODY SEALS: Y
RELINQUISHED BY Bu NUMBER OF CONTAINERS MATRIX Sangoler's Printed Name
MARK WAS NEWSKY 2-11-068 BM SAMPLING DATE TIME Printed Name Date/Time Distribution: White - Return to Originator; Yellow - Lab Copy, Pink - Retained by Client FINE OFFICE USE ONLY LAB ID 92.3303 200 923303 RECEIVED BY 923304 Hichery (110) Project Number Report CC 923107 CONDITION/COOLER TEMP B Manon SPECIAL INSTRUCTIONS/COMMENTS CLIENT SAMPLE ID SAMPLE RECEIPT: See OAPP Metals

Cooler Receipt And Preservation Check Form

Project/Client	<u>G</u> E		St	ıbmission Numbe	or	•	
Cooler received on_8		OV-	COUF	NER: CAS U	PS FEDEX	VELOCITY	CLIENT
 Were custody Were custody Did all bottle Did any VOA Were Ice or I Where did th 	y seals on outside of papers properly for arrive in good control vials have signifulate packs present? The bottles originate of cooler(s) upon	of cool illed o ndition cant a	er? ut (ink n (unbi ir bubb	, signed, etc.)?	YES YES YES YES CAS/R	NO NO NO NO NO OC, CLIENT	Q
	ature within 0° - 6			Yes Yes	Yes		es
If No, Expla]	No No	No	No N	lo ·
Thermometer ID: 161 or IR GUN Reading From: Temp Blank or Sample Bottle If out of Temperature, Client Approval to Run Samples PC Secondary Review:							
Cooler Breakdown: Date:							
		YES	МО	Sample I.D.	Reagent	Vol. Added	Tinerpii
рН	Reagent						, s
12	NaOH						
2	HNO ₃						
2	H₂SO₄						
Residual Chlorine (+/-)							
5-9** YES = All samples OK **If pH adjustment is re	P/PCBs (608 only) NO = Sa equired, use NaOH and OC Vial pH Verificatio (Tested after Analysis) Following Samples Exhibited pH > 2	or H ₂ SC on	rere pres	Other Com	PC OK to a	djust pH	

8/11/2006

CHRONIC AQUATIC TOXICITY COMPOSITE 8C3

Month: AUG Week: 2 Fiscal Wk: 32

Weather: Chronic Composite Sample #3

	Gallons/Day	MI in Composite	Percent of Composite
001 004 007 64T	7,750 0 0 7,820 107,930	941.02 - - 949.52 13,105.09	6.27% 0.00% 0.00% 6.33% 87.37%
64G 09A 09B	107,936 0 36 123,536	4.37 15000	0.00% 0.03% 100.00%

The Chronic Toxicity Composite was made today by Mark Washe according to the table above, and given the sample ID#_

Chain-of-Custody Form Number: OBGOF1101 Analysis: C.TOX 3 AUG 2006

Location: 100 AM Date: 6-11-06

Time Sample Label Serial Number

become dislodged during shipment. Nest the samples in sufficient ice to maintain 0°C – 6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the Plastic ီ နှ 0.5 L Notes to Lab: Ambient cooler temperature: [1 °C. Dechlorinate the effluent NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the labels with clear tape. Tape the caps of the sample bottles to ensure that they do not TEL*(802) 860, 1638 FAX*(802) 860, 1638 Amber Glass 250 ml VOLUME/CONTAINER TYPE/ NUMBER OF CONTAINERS PRESERVATIVE Glass 40 ml 4⁹င H₂SQ4 4°C H₂SO₄ Plastic _ 1/2 gai Plastic S C Plastic 1 gal ပ္ N Ceriodaphnia dubia chronic suvival and reproduction (EPA Method 1002.0) -ê O Date Shipped: 7-11-0 6 sample if chlorine is detected. SHIPPING INFORMATION Total Residual Chlorine **Fotal Residual Chlorine** Aquatec Biological Sciences Dilution Water ANALYSIS Renewal 2 Hand Delivered: X Yes Chain-of-Custody Record Airbill Number. Carrier: Receiving Effluent Receiving Effluent COMPOSITE | MATRIX Sampler Name(s): INARK (UPS/VETUS) Client Code; GEPITTS Outfall Composite - RENEWAL SAMPLE COMPANY'S PROJECT INFORMATION Received by: (signature) Received by: (signature) Received by: (signature) Marganest Project Name: GE PITTSFIELD Ship these samples on Friday NPDES Permit #: MA0003891 Project Number: 08004 GRAB 10/05 8:3 2:3 e/; je (3) TIME 100 HO-11-2 公务 Quote #; COLLECTION S WAS DATE DATE Outfall Composite A7487C Housatonic River A748R Housatonic River 1474 SK The to Programme COMPANY INFORMATION SAMPLE IDENTIFICATION Mark Wasnewsky City/State/Zip: Pittsfield, MA 01201 Vame: General Electric Company しつみたこと Relinquished by: (signature) Relinquished by: (signature) Relinquished by: (signature) Telephone: (413) 494-6709 1000 East Street, Gate 64 Address: O'Brien & Gere Outfall Composite Contact Name: Facsimile: 0