

GE 159 Plastics Avenue Pittsfield, MA 01201 USA

Transmitted via Overnight Courier

August 9, 2006

Mr. Dean Tagliaferro U.S. Environmental Protection Agency Region I – New England 10 Lyman Street, Suite 2 Pittsfield, MA 01201 Ms. Susan Steenstrup Bureau of Waste Site Cleanup Department of Environmental Protection 436 Dwight Street Springfield, MA 01103

Re: GE-Pittsfield/Housatonic River Site

Monthly Status Report Pursuant to Consent Decree for July 2006 (GECD900)

Dear Mr. Tagliaferro and Ms. Steenstrup:

Enclosed are copies of General Electric's (GE's) monthly progress report for July 2006 activities conducted by GE at the GE-Pittsfield/Housatonic River Site. This monthly report is submitted pursuant to Paragraph 67 of the Consent Decree (CD) for this Site, which was entered by the U.S. District Court on October 27, 2000.

The enclosed monthly report includes not only the activities conducted by GE under the CD, but also other activities conducted by GE at the GE-Pittsfield/Housatonic River Site (as defined in the CD). The report is formatted to apply to the various areas of the Site as defined in the CD, and to provide for each area, the information specified in Paragraph 67 of the CD. The activities conducted specifically pursuant to or in connection with the CD are marked with an asterisk. GE is submitting a separate monthly report to the Massachusetts Department of Environmental Protection (MDEP), with a copy to the United States Environmental Protection Agency (EPA), describing the activities conducted by GE at properties outside the CD Site pursuant to GE's November 2000 Administrative Consent Order from MDEP.

The enclosed monthly report includes, where applicable, tables that list the samples collected during the subject month, summarize the analytical results received during that month from sampling or other testing activities, and summarize other groundwater monitoring and oil recovery information obtained during that month. Also, enclosed for each of you (and for Weston) is a CD-ROM that contains these same tables of the analytical data and monitoring information in electronic form.

Please call Andrew Silfer or me if you have any questions.

Sincerely,

Richard W. Gates

Remediation Project Manager

Richard W. Hatet

Enclosure

V:\GE\_Pittsfield\_General\Reports and Presentations\Monthly Reports\2006\7-06 CD Monthly\Letter.doc

cc: Robert Cianciarulo, EPA (cover letter only)

Tim Conway, EPA (cover letter only)

Sharon Hayes, EPA

William Lovely, EPA (Items 7, 8, 9, 10, 11, 12, 16/17, 22, 23, and 25 only)

Rose Howell, EPA (cover letter and CD-ROM of report)

Holly Inglis, EPA (hard copy and CD-ROM of report)

Susan Svirsky, EPA (Items 7, 15, and 20 only)

K.C. Mitkevicius, USACE (CD-ROM of report)

Thomas Angus, MDEP (cover letter only)

Jane Rothchild, MDEP (cover letter only)

Anna Symington, MDEP (cover letter only)

Nancy E. Harper, MA AG

Susan Peterson, CT DEP

Field Supervisor, US FWS, DOI

Kenneth Finkelstein, Ph.D., NOAA (Items 13, 14, and 15 only)

Dale Young, MA EOEA

Mayor James Ruberto, City of Pittsfield

Thomas Hickey, Director, Pittsfield Economic Development Authority

Linda Palmieri, Weston

Richard Nasman, P.E., Berkshire Gas (CD-ROM of report)

Michael Carroll GE (CD-ROM of report)

Andrew Silfer, GE (cover letter only)

Rod McLaren, GE (CD-ROM of report)

James Nuss, BBL

James Bieke, Goodwin Procter

Jim Rhea, QEA (narrative only)

Teresa Bowers, Gradient

Public Information Repositories (1 hard copy, 5 copies of CD-ROM)

GE Internal Repository (1 hard copy)

(w/o separate CD-ROM, except where noted)

### July 2006

# MONTHLY STATUS REPORT PURSUANT TO CONSENT DECREE FOR GE-PITTSFIELD/HOUSATONIC RIVER SITE

GENERAL ELECTRIC COMPANY



PITTSFIELD, MASSACHUSETTS

#### **Background**

The General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and other governmental entities have entered into a Consent Decree (CD) for the GE-Pittsfield/Housatonic River Site, which was entered by the U.S. Court on October 27, 2000. In accordance with Paragraph 67 of the CD, GE is submitting this monthly report, prepared on GE's behalf by Blasland, Bouck & Lee, Inc. (BBL), which summarizes the status of activities conducted by GE at the GE-Pittsfield/Housatonic River Site ("Site") (as defined in the CD).

This report covers activities in the areas listed below (as defined in the CD and/or the accompanying Statement of Work for Removal Actions Outside the River [SOW]). Only those areas that have had work activities for the month subject to reporting are included. The specific activities conducted pursuant to or in connection with the CD are noted with an asterisk.

#### **General Activities (GECD900)**

#### **GE Plant Area (non-groundwater)**

- 1. 20s, 30s, 40s Complexes (GECD120)
- 2. East Street Area 2 South (GECD150)
- 3. East Street Area 2 North (GECD140)
- 4. East Street Area 1 North (GECD130)
- 5. Hill 78 and Building 71 Consolidation Areas (GECD210/220)
- 6. Hill 78 Area Remainder (GECD160)
- 7. Unkamet Brook Area (GECD170)

#### Former Oxbow Areas (non-groundwater)

- 8. Former Oxbow Areas A & C (GECD410)
- 9. Lyman Street Area (GECD430)
- 10. Newell Street Area I (GECD440)
- 11. Newell Street Area II (GECD450)
- 12. Former Oxbow Areas J & K (GECD420)

#### **Housatonic River**

- 13. Upper ½-Mile Reach (GECD800)
- 14. 1½-Mile Reach (only for activities, if any, conducted by GE) (GECD820)
- 15. Rest of the River (GECD850)

#### **Housatonic River Floodplain**

- 16. Current Residential Properties Adjacent to 1½-Mile Reach (Actual/Potential Lawns) (GECD710)
- 17. Non-Residential Properties Adjacent to 1½-Mile Reach (excluding banks) (GECD720)
- 18. Current Residential Properties Downstream of Confluence (Actual/Potential Lawns) (GECD730)

#### **Other Areas**

- 19. Allendale School Property (GECD500)
- 20. Silver Lake Area (GECD600)

#### **Groundwater Management Areas (GMAs)**

- 21. Plant Site 1 (GECD310)
- 22. Former Oxbows J & K (GECD320)
- 23. Plant Site 2 (GECD330)
- 24. Plant Site 3 (GECD340)
- 25. Former Oxbows A&C (GECD350)

## GENERAL ACTIVITIES GE-PITTSFIELD/HOUSATONIC RIVER SITE (GECD900) JULY 2006

#### a. Activities Undertaken/Completed

Continued GE-EPA electronic data exchanges for the Housatonic River Watershed and Areas Outside the River.\*

#### b. Sampling/Test Results Received

- Sample results were received for routine sampling conducted pursuant to GE's NPDES Permit for the GE facility. Sampling records and results are provided in Attachment A to this report.
- NPDES Discharge Monitoring Reports (DMRs) for the period of June 1 through June 30, 2006, are provided in Attachment B to this report.
- GE received a report from Columbia Analytical Services, Inc. (CAS) titled *NPDES Biomonitoring Report for July 2006*, which included analytical results for samples collected for NPDES-related whole effluent toxicity testing, as well as an attached report from Aquatec Biological Sciences providing the results of the whole effluent toxicity testing performed in July 2006. A copy of this document is provided in Attachment C.
- GE received a report from CAS titled *NPDES Chronic Biomonitoring Report for July 2006*, which included analytical results for samples collected for NPDES-related chronic whole effluent testing, as well as an attached report from Aquatec Biological Sciences providing the results of the chronic whole effluent toxicity testing performed in July 2006. A copy of that report is provided in Attachment D.

#### c. Work Plans/Reports/Documents Submitted

Submitted to EPA a letter presenting the results of a preliminary assessment of compensatory flood storage volumes for the portion of the Housatonic River floodplain between the Newell Street and Lyman Street bridges (July 13, 2006).\*

#### d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue NPDES sampling and monitoring activities.
- Attend public and Citizens Coordinating Council (CCC) meetings, as appropriate.
- Submit revised *Project Operations Plan* (POP) following receipt of EPA comments on February 2006 draft.\*
- Submit revised *Field Sampling Plan/Quality Assurance Project Plan* (FSP/QAPP) following receipt of EPA comments on February 2006 draft.\*
- Submit additional modification to FSP/QAPP regarding the cleaning procedure associated with the EPA TO-4 PUF analysis for air monitoring.\*

## GENERAL ACTIVITIES (cont'd) GE-PITTSFIELD/HOUSATONIC RIVER SITE (GECD900) JULY 2006

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

## ITEM 1 PLANT AREA 20s, 30s, 40s COMPLEXES (GECD120) JULY 2006

#### a. <u>Activities Undertaken/Completed</u>

- Continued processing and stockpiling of crushed materials, and continued site restoration activities associated with 40s Complex demolition activities.
- Conducted air monitoring for particulates and PCBs in connection with demolition activities in the 40s Complex, as identified in Table 1-1.
- Conducted building material characterization sampling at the Building 32 Substation in support of future demolition activities (July 19, 2006).\*
- With EPA approval, relocated Air Monitoring Station W3 approximately 100 feet east of its former location (as depicted on figure transmitted to EPA on July 21, 2006).
- Conducted a meeting with the Pittsfield Economic Development Authority (PEDA) to discuss items related to future development of the 20s and 30s Complexes, as well as future transfer of the 40s Complex (July 21, 2006).

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Complete site restoration activities (including utility modifications) associated with 40s Complex demolition activities.
- Complete construction of crushed material stockpile at 40s Complex.
- Initiate installation of erosion control measures (riprap, topsoil, seed, etc.) at the crushed material stockpile and the material wedge along Kellogg Street and Woodlawn Avenue.
- Submit building materials' characterization sampling report regarding Building 32 Substation to EPA.\*
- Initiate pre-demolition removal activities (e.g., asbestos abatement, equipment/liquids removal) at Building 32 Substation.

## ITEM 1 (cont'd) PLANT AREA 20s, 30s, 40s COMPLEXES (GECD120) JULY 2006

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

## 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                         |                          | Sample  |        |                         |                    | Date Received |
|-----------------------------------------|--------------------------|---------|--------|-------------------------|--------------------|---------------|
| Project Name                            | Field Sample ID          | Date    | Matrix | Laboratory              | Analyses           | by GE or BBL  |
| Building 32 Substation Sampling         | SUB32-EW-1               | 7/19/06 | Solid  | SGS                     | PCB                | 7/25/06       |
| Building 32 Substation Sampling         | SUB32-NW-1               | 7/19/06 | Solid  | SGS                     | PCB                | 7/25/06       |
| Building 32 Substation Sampling         | SUB32-SW-1               | 7/19/06 | Solid  | SGS                     | PCB                | 7/25/06       |
| Building 32 Substation Sampling         | SUB32-WC-1               | 7/19/06 | Solid  | SGS                     | TCLP               | 7/25/06       |
| Building 32 Substation Sampling         | SUB32-WW-1               | 7/19/06 | Solid  | SGS                     | PCB                | 7/25/06       |
| Building 32 Substation Sampling         | T31-4-OIL-1              | 7/19/06 | Oil    | SGS                     | PCB                | 7/25/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |

## 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                         |                          | Sample  |        |                         |                    | Date Received |
|-----------------------------------------|--------------------------|---------|--------|-------------------------|--------------------|---------------|
| Project Name                            | Field Sample ID          | Date    | Matrix | Laboratory              | Analyses           | by GE or BBL  |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/15/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/15/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/15/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/15/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/15/06 | Air    | Berkshire Environmental | Particulate Matter | 7/18/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/18/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/18/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/18/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/18/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/18/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/19/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/19/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/19/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/19/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/19/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/20/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/20/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/20/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/20/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/20/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |

2 of 4

## 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                         |                          | Sample  |        |                         |                    | Date Received |
|-----------------------------------------|--------------------------|---------|--------|-------------------------|--------------------|---------------|
| Project Name                            | Field Sample ID          | Date    | Matrix | Laboratory              | Analyses           | by GE or BBL  |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/21/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/21/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/21/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/21/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/21/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/24/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/24/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/24/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/24/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/24/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/25/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/25/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/25/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/25/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/25/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/26/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/26/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/26/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/26/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/26/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/27/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/27/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/27/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/27/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/27/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/28/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/28/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/28/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/28/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/28/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | W3 - West of 40s Complex | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | MC3 - Near Bldg. 16 & 19 | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | M2 - South of Bldg. 5    | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | S2 - Woodlawn Avenue     | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | Background Location      | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |

## 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                          |                                      | Sample         |        |                         |          | Date Received |
|--------------------------|--------------------------------------|----------------|--------|-------------------------|----------|---------------|
| Project Name             | Field Sample ID                      | Date           | Matrix | Laboratory              | Analyses | by GE or BBL  |
| PCB Ambient Air Sampling | Field Blank                          | 7/20 - 7/21/06 | 6 Air  | Berkshire Environmental | PCB      | 7/27/06       |
| PCB Ambient Air Sampling | W3 - West of 40s Complex             | 7/20 - 7/21/06 | 6 Air  | Berkshire Environmental | PCB      | 7/27/06       |
| PCB Ambient Air Sampling | S2 - Woodlawn Avenue                 | 7/20 - 7/21/06 | 6 Air  | Berkshire Environmental | PCB      | 7/27/06       |
| PCB Ambient Air Sampling | M2 - South of Bldg. 5                | 7/20 - 7/21/06 | 6 Air  | Berkshire Environmental | PCB      | 7/27/06       |
| PCB Ambient Air Sampling | M2-CO South of Bldg. 5               | 7/20 - 7/21/06 | 6 Air  | Berkshire Environmental | PCB      | 7/27/06       |
| PCB Ambient Air Sampling | MC3 - Near Bldg. 16 & 19             | 7/20 - 7/21/06 | 6 Air  | Berkshire Environmental | PCB      | 7/27/06       |
| PCB Ambient Air Sampling | BK3-Background - East of Building 9B | 7/20 - 7/21/06 | 6 Air  | Berkshire Environmental | PCB      | 7/27/06       |

#### TABLE 1-2 PCB DATA RECEIVED DURING JULY 2006

#### **BUILDING 32 SUBSTATION SAMPLING** 20s, 30s, 40s COMPLEX

#### GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

| Sample ID   | Matrix | Date<br>Collected | Aroclor-1016 | Aroclor -1221,<br>-1232, -1242, -1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|-------------|--------|-------------------|--------------|---------------------------------------|--------------|--------------|------------|
| SUB32-EW-1  | Solid  | 7/19/2006         | ND(0.030)    | ND(0.030)                             | 0.36         | 0.23         | 0.59       |
| SUB32-NW-1  | Solid  | 7/19/2006         | ND(0.030)    | ND(0.030)                             | 0.065        | 0.045        | 0.11       |
| SUB32-SW-1  | Solid  | 7/19/2006         | ND(0.031)    | ND(0.031)                             | 0.097        | 0.055        | 0.152      |
| SUB32-WW-1  | Solid  | 7/19/2006         | 0.039        | ND(0.030)                             | ND(0.030)    | 0.21         | 0.249      |
| T31-4-OIL-1 | Oil    | 7/19/2006         | ND(0.92)     | ND(0.92)                              | ND(0.92)     | ND(0.92)     | ND(0.92)   |

#### Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs
  2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Solid matrix samples are presented in dry weight.

### TABLE 1-3 TCLP DATA RECEIVED DURING JULY 2006

### BUILDING 32 SUBSTATION SAMPLING 20s, 30s, 40s COMPLEX

### GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

| Sample ID:<br>Parameter Date Collected: | TCLP<br>Regulatory<br>Limits | SUB32-WC-1<br>7/19/2006 |  |
|-----------------------------------------|------------------------------|-------------------------|--|
| Volatile Organics                       |                              |                         |  |
| 1,1-Dichloroethene                      | 0.7                          | ND(0.010)               |  |
| 1,2-Dichloroethane                      | 0.5                          | ND(0.010)               |  |
| 2-Butanone                              | 200                          | ND(0.25)                |  |
| Benzene                                 | 0.5                          | 0.026                   |  |
| Carbon Tetrachloride                    | 0.5                          | ND(0.010)               |  |
| Chlorobenzene                           | 100                          | ND(0.010)               |  |
| Chloroform                              | 6                            | ND(0.010)               |  |
| Tetrachloroethene                       | 0.7                          | ND(0.010)               |  |
| Trichloroethene                         | 0.5                          | 0.019                   |  |
| Vinyl Chloride                          | 0.2                          | ND(0.010)               |  |
| Semivolatile Organics                   |                              |                         |  |
| 1,4-Dichlorobenzene                     | 7.5                          | ND(0.010)               |  |
| 2,4,5-Trichlorophenol                   | 400                          | ND(0.010)               |  |
| 2,4,6-Trichlorophenol                   | 2                            | ND(0.010)               |  |
| 2,4-Dinitrotoluene                      | 0.13                         | ND(0.010)               |  |
| Cresol                                  | 200                          | ND(0.010)               |  |
| Hexachlorobenzene                       | 0.13                         | ND(0.010)               |  |
| Hexachlorobutadiene                     | 0.5                          | ND(0.010)               |  |
| Hexachloroethane                        | 3                            | ND(0.010)               |  |
| Nitrobenzene                            | 2                            | ND(0.010)               |  |
| Pentachlorophenol                       | 100                          | ND(0.050)               |  |
| Pyridine                                | 5                            | ND(0.010)               |  |
| Inorganics                              |                              |                         |  |
| Arsenic                                 | 5                            | ND(0.200)               |  |
| Barium                                  | 100                          | 2.04 B                  |  |
| Cadmium                                 | 1                            | ND(0.100)               |  |
| Chromium                                | 5                            | 0.0255 B                |  |
| Lead                                    | 5                            | ND(0.100)               |  |
| Mercury                                 | 0.2                          | ND(0.000570)            |  |
| Selenium                                | 1                            | 0.203                   |  |
| Silver                                  | 5                            | ND(0.100)               |  |

#### Notes:

- 1. Sample was collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of TCLP constituents.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

#### Data Qualifiers:

#### Inorganics

 ${\sf B}$  - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

### TABLE 1-4 AMBIENT AIR PCB DATA RECEIVED DURING JULY 2006

## 40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sampling<br>Event Period | Date Analytical<br>Results Received<br>by BEC, Inc. | Field Blank<br>(μg/PUF) | W3 - West of<br>40s Complex<br>(µg/m3) | S2 -<br>Woodlawn<br>Avenue<br>(µg/m3) | M2 - South<br>of Bldg. 5<br>(μg/m3) | M2-CO South<br>of Bldg. 5<br>(μg/m3) | MC3 - Near<br>Bldg. 16 & 19<br>(μg/m3) | BK3-Background -<br>East of Building 9B<br>(µg/m3) |
|--------------------------|-----------------------------------------------------|-------------------------|----------------------------------------|---------------------------------------|-------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------------|
| 7/20 - 7/21/06           | 7/27/06                                             | ND (<0.10) J            | 0.0273                                 | 0.0029                                | 0.0048                              | 0.0054                               | 0.0039                                 | 0.0021                                             |
|                          | Notification Level                                  |                         | 0.05                                   | 0.05                                  | 0.05                                | 0.05                                 | 0.05                                   | 0.05                                               |

#### Notes:

ND - Non-Detect

- J Detected sample results were qualified as estimated.
- 1. Preliminary data review was conducted based on the following data quality indicators associated with the tabulated data set above: sampling collection time, sampling calibration check, temperature receipt, associated blanks, laboratory control samples recoveries, and surrogate recoveries.

#### **Qualification Notes:**

- 1. All samples collected from 07/20/06 to 07/21/06 were greater than 4°C (PUF temperature was 20.2°C) upon laboratory receipt. The temperature of the temperature blank was recorded as less than 4°C. Following an investigation of the laboratory concerning the temperature receipt of PUF samples exhibiting a temperature greater than 6°C, the laboratory has discovered that the laboratory receipt technician was taking the temperature of the PUF while still wrapped in foil. The foil wrapped around the PUF caused an erroneous temperature reading from the IR thermometer. This was confirmed by: 1) the temperature blank exhibiting a temperature less than 4°C and; 2) the laboratory receipt technician peeled back the foil of the of PUF samples receipt on 8/1/06 and a temperature reading of less than 5°C was observed; therefore, none of the data were qualified due to the documented PUF temperature deviation.
- 2. The Field Blank was qualified as estimated due to both surrogate recoveries below the lower control limit.

### ${\small \textbf{TABLE 1-5}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DATA RECEIVED DURING JULY 2006}^{1}} \\ {\small \textbf{AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DATA REC$

#### 40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sampling Date <sup>2</sup> | Sampler Location                                     | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant Wind<br>Direction |
|----------------------------|------------------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|
| 7/5/06                     | W3 - West of 40s Complex                             | 0.019*                                   | 0.021*                                      | 10:00                         | WNW                           |
|                            | MC3 - Near Bldg. 16 & 19                             | 0.016**                                  |                                             | 11:15                         |                               |
|                            | M2 - South of Bldg. 5                                | 0.027*                                   |                                             | 10:45                         |                               |
|                            | S2 - Woodlawn Avenue                                 | 0.024**                                  |                                             | 11:15                         |                               |
| 7/6/06                     | W3 - West of 40s Complex                             | 0.007*                                   | 0.006*                                      | 10:15                         | WNW                           |
|                            | MC3 - Near Bldg. 16 & 19                             | 0.006**                                  |                                             | 11:15                         |                               |
|                            | M2 - South of Bldg. 5                                | 0.009*                                   |                                             | 10:45                         |                               |
| 7/7/00                     | S2 - Woodlawn Avenue                                 | 0.014**                                  | 0.000*                                      | 11:15                         | 14/4/14/                      |
| 7/7/06                     | W3 - West of 40s Complex<br>MC3 - Near Bldg, 16 & 19 | 0.012*                                   | 0.008*                                      | 11:45                         | WNW                           |
|                            | M2 - South of Bldg. 5                                | 0.009**<br>0.013*                        |                                             | 11:15<br>11:45                |                               |
|                            | S2 - Woodlawn Avenue                                 | 0.007**                                  |                                             | 11:15                         |                               |
| 7/10/06                    | W3 - West of 40s Complex                             | 0.043*                                   | 0.056*                                      | 10:45                         | Variable                      |
| 7710/00                    | MC3 - Near Bldg. 16 & 19                             | 0.025**                                  | 0.030                                       | 11:15                         | variable                      |
|                            | M2 - South of Bldg. 5                                | 0.046*                                   |                                             | 10:45                         |                               |
|                            | S2 - Woodlawn Avenue                                 | 0.028**                                  |                                             | 11:15                         |                               |
| 7/11/06                    | W3 - West of 40s Complex                             | 0.061*                                   | 0.070*                                      | 10:45                         | NNW, WNW                      |
| 1711700                    | MC3 - Near Bldg. 16 & 19                             | 0.043 <sup>3</sup>                       | 0.010                                       | 10:15                         | ,                             |
|                            | M2 - South of Bldg. 5                                | 0.085*                                   |                                             | 10:45                         |                               |
|                            | S2 - Woodlawn Avenue                                 | 0.041 <sup>3</sup>                       |                                             | 10:15                         |                               |
| 7/12/06                    | W3 - West of 40s Complex                             | 0.053*                                   | 0.040*                                      | 10:45                         | Calm                          |
|                            | MC3 - Near Bldg. 16 & 19                             | 0.072*                                   |                                             | 10:30                         |                               |
|                            | M2 - South of Bldg. 5                                | 0.057*                                   |                                             | 10:45                         |                               |
|                            | S2 - Woodlawn Avenue                                 | 0.061*                                   |                                             | 10:45                         |                               |
| 7/13/06                    | W3 - West of 40s Complex                             | 0.009*                                   | 0.007*                                      | 12:00                         | NNE, W                        |
|                            | MC3 - Near Bldg. 16 & 19                             | 0.008*                                   |                                             | 11:45                         |                               |
|                            | M2 - South of Bldg. 5                                | 0.002*                                   |                                             | 9:30 <sup>4</sup>             |                               |
|                            | S2 - Woodlawn Avenue                                 | 0.005*                                   |                                             | 11:45                         |                               |
| 7/14/06                    | W3 - West of 40s Complex                             | 0.022*                                   | 0.021*                                      | 11:00                         | WNW                           |
|                            | MC3 - Near Bldg. 16 & 19                             | 0.028*                                   |                                             | 10:45                         |                               |
|                            | M2 - South of Bldg. 5                                | 0.027*                                   |                                             | 10:45                         |                               |
|                            | S2 - Woodlawn Avenue                                 | 0.029*                                   |                                             | 10:45                         |                               |
| 7/15/06                    | W3 - West of 40s Complex                             | 0.036*                                   | 0.034*                                      | 11:30                         | SSW                           |
|                            | MC3 - Near Bldg. 16 & 19                             | 0.053*                                   |                                             | 11:30                         |                               |
|                            | M2 - South of Bldg. 5                                | 0.042*                                   |                                             | 11:30                         |                               |
|                            | S2 - Woodlawn Avenue                                 | 0.043*                                   |                                             | 11:30                         |                               |
| 7/17/06                    | W3 - West of 40s Complex                             | 0.017*                                   | 0.013*                                      | 10:15                         | Variable                      |
|                            | MC3 - Near Bldg. 16 & 19                             | 0.012*                                   |                                             | 10:15                         |                               |
|                            | M2 - South of Bldg. 5                                | 0.015*                                   |                                             | 10:30                         |                               |
|                            | S2 - Woodlawn Avenue                                 | 0.023*                                   |                                             | 10:30                         |                               |
| 7/18/06                    | W3 - West of 40s Complex                             | 0.021*                                   | 0.024*                                      | 11:00                         | WNW                           |
|                            | MC3 - Near Bldg. 16 & 19                             | 0.025*                                   |                                             | 10:15                         |                               |
|                            | M2 - South of Bldg. 5                                | 0.031*                                   |                                             | 10:15                         |                               |
| =/40/00                    | S2 - Woodlawn Avenue                                 | 0.032*                                   | 0.0404                                      | 10:15                         | 0.1                           |
| 7/19/06                    | W3 - West of 40s Complex                             | 0.017*                                   | 0.013*                                      | 10:30                         | Calm                          |
|                            | MC3 - Near Bldg. 16 & 19                             | 0.007*                                   |                                             | 10:30                         |                               |
|                            | M2 - South of Bldg. 5<br>S2 - Woodlawn Avenue        | 0.017*                                   |                                             | 10:45                         |                               |
| 7/20/06                    |                                                      | 0.018*                                   | 0.004*                                      | 10:45                         | Colm                          |
| 1/20/00                    | W3 - West of 40s Complex<br>MC3 - Near Bldg. 16 & 19 | 0.020*<br>0.009*                         | 0.004*                                      | 10:15<br>10:30                | Calm                          |
|                            | M2 - South of Bldg. 5                                | 0.009                                    |                                             | 10:30                         |                               |
|                            | S2 - Woodlawn Avenue                                 | 0.020*                                   |                                             | 10:30                         |                               |
| 7/21/06                    | W3 - West of 40s Complex                             | 0.020                                    | 0.056*                                      | 11:45                         | Variable                      |
| 7,21,00                    | MC3 - Near Bldg. 16 & 19                             | 0.057*                                   | 0.000                                       | 11:15                         | v allabic                     |
|                            | M2 - South of Bldg. 5                                | 0.040*                                   |                                             | 11:15                         |                               |
|                            | S2 - Woodlawn Avenue                                 | 0.040*                                   |                                             | 11:15                         |                               |
| 7/24/06                    | W3 - West of 40s Complex                             | 0.013*                                   | 0.009*                                      | 10:45                         | Variable                      |
| .,2-1/00                   | MC3 - Near Bldg. 16 & 19                             | 0.004*                                   | 0.000                                       | 10:30                         | variable                      |
|                            | M2 - South of Bldg. 5                                | 0.008*                                   |                                             | 10:30                         |                               |
|                            | S2 - Woodlawn Avenue                                 | 0.008*                                   |                                             | 10:30                         |                               |

#### TABLE 1-5 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY $2006^1$

## 40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sampling Date <sup>2</sup> | Sampler Location         | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant Wind<br>Direction |
|----------------------------|--------------------------|------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|
| 7/25/06                    | W3 - West of 40s Complex | 0.046*                                   | 0.038*                                      | 10:15                         | SSW                           |
|                            | MC3 - Near Bldg. 16 & 19 | 0.024*                                   |                                             | 10:15                         |                               |
|                            | M2 - South of Bldg. 5    | 0.041*                                   |                                             | 10:15                         |                               |
|                            | S2 - Woodlawn Avenue     | 0.031*                                   |                                             | 9:45                          |                               |
| 7/26/06                    | W3 - West of 40s Complex | 0.057*                                   | 0.045*                                      | 10:30                         | Variable                      |
|                            | MC3 - Near Bldg. 16 & 19 | 0.033*                                   |                                             | 10:30                         |                               |
|                            | M2 - South of Bldg. 5    | 0.061*                                   |                                             | 10:30                         |                               |
|                            | S2 - Woodlawn Avenue     | 0.043*                                   |                                             | 10:30                         |                               |
| 7/27/06                    | W3 - West of 40s Complex | 0.097*                                   | 0.082*                                      | 11:00                         | SSW                           |
|                            | MC3 - Near Bldg. 16 & 19 | 0.055*                                   |                                             | 7:15 <sup>4</sup>             |                               |
|                            | M2 - South of Bldg. 5    | 0.111*                                   |                                             | 10:45                         |                               |
|                            | S2 - Woodlawn Avenue     | 0.076*                                   |                                             | 11:00                         |                               |
| 7/28/06                    | W3 - West of 40s Complex | 0.048*                                   | 0.041*                                      | 10:30                         | SSW                           |
|                            | MC3 - Near Bldg. 16 & 19 | 0.074*                                   |                                             | 10:15                         |                               |
|                            | M2 - South of Bldg. 5    | 0.047*                                   |                                             | 10:15                         |                               |
|                            | S2 - Woodlawn Avenue     | 0.046*                                   |                                             | 10:15                         |                               |
| 7/31/06                    | W3 - West of 40s Complex | 0.017*                                   | 0.015*                                      | 10:00                         | Variable                      |
|                            | MC3 - Near Bldg. 16 & 19 | 0.026*                                   |                                             | 10:15                         |                               |
|                            | M2 - South of Bldg. 5    | 0.016*                                   |                                             | 10:00                         |                               |
|                            | S2 - Woodlawn Avenue     | 0.013*                                   |                                             | 10:00                         |                               |
| Notification Level         |                          | 0.120                                    |                                             |                               |                               |

#### Notes:

Background monitoring station is located east of Building 9B, between 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

<sup>\*</sup> Measured with a DR-2000 or DR-4000.

<sup>\*\*</sup> Measured with an EBAM.

<sup>&</sup>lt;sup>1</sup> Monitoring was performed only on days when site activities occurred.

 $<sup>^{2}</sup>$  The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.

<sup>&</sup>lt;sup>3</sup> Represents data from a DR-4000 and an EBAM.

<sup>&</sup>lt;sup>4</sup> Sampling period was shortened due to equipment malfunction.

## ITEM 2 PLANT AREA EAST STREET AREA 2-SOUTH (GECD150) JULY 2006

#### a. Activities Undertaken/Completed

Conducted Liquid-Phase Carbon Absorption (LPCA) sampling at Building 64G, as identified in Table 2-1.

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine process sampling at Buildings 64G and/or 64T.
- Submit to EPA and MDEP a revised draft Grant of Environmental Restriction and Easement (ERE) and survey plans for the City Recreational Area.\*

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

None

## EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                     |                 |             |        |            |              | Date Received by |
|-------------------------------------|-----------------|-------------|--------|------------|--------------|------------------|
| Project Name                        | Field Sample ID | Sample Date | Matrix | Laboratory | Analyses     | GE or BBL        |
| Building 64G LPCA Monitoring        | G6-64G-01       | 7/18/06     | Water  | Columbia   | VOC          | 7/26/06          |
| Building 64G LPCA Monitoring        | G6-64G-02       | 7/18/06     | Water  | Columbia   | SVOC         | Cancelled        |
| Building 64G LPCA Monitoring        | G6-64G-03       | 7/18/06     | Water  | Accutest   | PCB          | Cancelled        |
| Building 64G LPCA Monitoring        | G6-64G-04       | 7/18/06     | Water  | Columbia   | Oil & Grease | 7/26/06          |
| Building 64G LPCA Monitoring        | G6-64G-05       | 7/18/06     | Water  | Columbia   | VOC          | 7/26/06          |
| Building 64G LPCA Monitoring        | G6-64G-06       | 7/18/06     | Water  | Columbia   | SVOC         | 7/26/06          |
| Building 64G LPCA Monitoring        | G6-64G-07       | 7/18/06     | Water  | Accutest   | PCB          |                  |
| Building 64G LPCA Monitoring        | G6-64G-08       | 7/18/06     | Water  | Columbia   | Oil & Grease | 7/26/06          |
| Building 64G LPCA Monitoring        | G6-64G-09       | 7/18/06     | Water  | Columbia   | VOC          | 7/26/06          |
| Building 64G LPCA Monitoring        | G6-64G-10       | 7/18/06     | Water  | Columbia   | SVOC         | 7/26/06          |
| Building 64G LPCA Monitoring        | G6-64G-11       | 7/18/06     | Water  | Accutest   | PCB          |                  |
| Building 64G LPCA Monitoring        | G6-64G-12       | 7/18/06     | Water  | Columbia   | Oil & Grease | 7/26/06          |
| Building 64G LPCA Monitoring        | G6-64G-13       | 7/18/06     | Water  | Columbia   | VOC          | 7/26/06          |
| Building 64G LPCA Monitoring        | G6-64G-14       | 7/18/06     | Water  | Columbia   | SVOC         | 7/26/06          |
| Building 64G LPCA Monitoring        | G6-64G-15       | 7/18/06     | Water  | Accutest   | PCB          |                  |
| <b>Building 64G LPCA Monitoring</b> | G6-64G-16       | 7/18/06     | Water  | Columbia   | Oil & Grease | 7/26/06          |

#### TABLE 2-2 DATA RECEIVED DURING JULY 2006

#### **BUILDING 64G LPCA MONITORING** EAST STREET AREA 2 - SOUTH

## GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

|                  | Sample ID:      | G6-64G-01 | G6-64G-04 | G6-64G-05   | G6-64G-06 | G6-64G-08 | G6-64G-09   |
|------------------|-----------------|-----------|-----------|-------------|-----------|-----------|-------------|
| Parameter        | Date Collected: | 07/18/06  | 07/18/06  | 07/18/06    | 07/18/06  | 07/18/06  | 07/18/06    |
| Volatile Organ   | nics            |           |           |             |           |           |             |
| 1,1,1-Trichloroe | ethane          | 0.0026    | NA        | 0.0026      | NA        | NA        | 0.0026      |
| 1,1-Dichloroeth  | nane            | 0.0019    | NA        | 0.0022      | NA        | NA        | 0.0026      |
| Benzene          |                 | 0.049     | NA        | ND(0.00021) | NA        | NA        | ND(0.00021) |
| Chlorobenzene    | )               | 0.19      | NA        | 0.00065     | NA        | NA        | ND(0.00022) |
| Chloroethane     |                 | 0.00099   | NA        | 0.00096     | NA        | NA        | 0.0010      |
| Chloroform       |                 | 0.00026   | NA        | 0.00054     | NA        | NA        | 0.00081     |
| Ethylbenzene     |                 | 0.059     | NA        | ND(0.00035) | NA        | NA        | ND(0.00035) |
| Toluene          |                 | 0.0027    | NA        | ND(0.00028) | NA        | NA        | ND(0.00028) |
| trans-1,2-Dichle | oroethene       | 0.00032   | NA        | ND(0.00022) | NA        | NA        | ND(0.00022) |
| Trichloroethene  | Э               | 0.00045   | NA        | ND(0.00040) | NA        | NA        | ND(0.00040) |
| Vinyl Chloride   |                 | 0.0049    | NA        | 0.0026      | NA        | NA        | 0.0021      |
| Semivolatile C   | Organics        |           |           |             |           |           |             |
| Di-n-Butylphtha  | alate           | NA        | NA        | NA          | 0.0017 J  | NA        | NA          |
| Conventionals    | 3               |           |           |             |           |           |             |
| Oil & Grease     |                 | NA        | ND(5.3)   | NA          | NA        | ND(5.2)   | NA          |

#### TABLE 2-2 **DATA RECEIVED DURING JULY 2006**

#### **BUILDING 64G LPCA MONITORING EAST STREET AREA 2 - SOUTH**

#### GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

|                 | Sample ID:      | G6-64G-10 | G6-64G-12 | G6-64G-13   | G6-64G-14  | G6-64G-16 |
|-----------------|-----------------|-----------|-----------|-------------|------------|-----------|
| Parameter       | Date Collected: | 07/18/06  | 07/18/06  | 07/18/06    | 07/18/06   | 07/18/06  |
| Volatile Orga   | nics            |           |           |             |            |           |
| 1,1,1-Trichlord | oethane         | NA        | NA        | 0.0016      | NA         | NA        |
| 1,1-Dichloroet  | thane           | NA        | NA        | 0.0024      | NA         | NA        |
| Benzene         |                 | NA        | NA        | ND(0.00021) | NA         | NA        |
| Chlorobenzen    | ne              | NA        | NA        | ND(0.00022) | NA         | NA        |
| Chloroethane    |                 | NA        | NA        | 0.00096     | NA         | NA        |
| Chloroform      |                 | NA        | NA        | 0.00062     | NA         | NA        |
| Ethylbenzene    |                 | NA        | NA        | ND(0.00035) | NA         | NA        |
| Toluene         |                 | NA        | NA        | ND(0.00028) | NA         | NA        |
| trans-1,2-Dich  | nloroethene     | NA        | NA        | ND(0.00022) | NA         | NA        |
| Trichloroether  | ne              | NA        | NA        | ND(0.00040) | NA         | NA        |
| Vinyl Chloride  | )               | NA        | NA        | 0.0010      | NA         | NA        |
| Semivolatile    | Organics        |           |           |             |            |           |
| Di-n-Butylphth  | nalate          | 0.0021 J  | NA        | NA          | ND(0.0051) | NA        |
| Inorganics-U    | nfiltered       |           |           |             |            |           |
| Conventionals   | S               | NA        | ND(5.2)   | NA          | NA         | ND(5.3)   |

#### Notes:

- 1. Samples were collected by General Electric Company and submitted to Columbia Analytical Services, Inc. for analysis of volatiles, semivolatiles, and oil & grease.
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. With the exception of conventional parameters, only those constituents detected in one or more samples are summarized.

#### Data Qualifiers:

Organics (volatiles, PCBs, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

## ITEM 3 PLANT AREA EAST STREET AREA 2-NORTH (GECD140) JULY 2006

#### a. Activities Undertaken/Completed

- Continued site restoration and general housekeeping activities at former Buildings 1, 2, 3, and 3B, and associated annexes (Buildings 1A and 100 Annex).
- Provided verbal notification to EPA on July 6, 2006, of an exceedance of the PCB notification and action levels at one ambient air monitoring station during a June 20-21, 2006 air sampling event associated with the Buildings 1, 1A, 2, 3, 3B, and 100 Annex Demolition and Site Restoration Program, and provided preliminary data tables from that event to EPA by e-mail on July 7, 2006.
- Conducted an additional round of air monitoring for PCBs at the monitoring stations associated with the Buildings 1, 1A, 2, 3, 3B, and 100 Annex Demolition and Site Restoration Program (stations W3, M2, M6, and M6-CO, as well as a background station) on July 8-9, 2006, as identified in Table 3-1.
- Concurrently with the above sampling event, conducted a second round of pre-demolition baseline air monitoring for PCBs in support of future demolition program for Buildings 7, 17, 17C, and 19 (at stations MC3A, M7, M2A, and a background station) on July 8-9, 2006, as identified in Table 3-1.
- Collected and tankered approximately 30,000 gallons of water from Building 9 to Building 64G for treatment.
- Collected and tankered approximately 4,000 gallons of water from the Buildings 1, 2, and 3 demolition project to Building 64G for treatment.
- Conducted drum sampling at Building 78 of oil drained from equipment in Building 17C, as identified in Table 3-1.

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

Submitted letter to EPA regarding the June 28, 2006 notification of ambient air PCB results exceeding notification level during June 18-19, 2006 pre-demolition baseline air monitoring associated with the future demolition program for Buildings 7, 17, 17C, and 19 (July 6, 2006).

## ITEM 3 (cont'd) PLANT AREA EAST STREET AREA 2-NORTH (GECD140) JULY 2006

#### c. Work Plans/Reports/Documents Submitted (cont'd)

- Notified EPA by e-mail of intent to conduct additional air monitoring for PCBs on July 8-9, 2006 (July 7, 2006).
- Submitted the preliminary analytical data associated with the July 8-9, 2006 PCB air sampling event to EPA via e-mail (July 17, 2006).
- Submitted addendum to revised Pre-Excavation Notification letter to EPA regarding several anticipated utility-related excavations within East Street Area 2-North, addressing EPA's verbal comments received on June 26, 2006 (July 7, 2006).
- Submitted final disposition documentation, pursuant to the GE-EPA Consent Agreement and Order under the Toxic Substances Control Act, for select items removed from Buildings 1, 2, and 3 (and its Annex) (July 18, 2006).
- Submitted letter to EPA providing a written follow-up to an earlier verbal notification to EPA regarding pre-demolition sampling of oil from equipment in Buildings 7, 17, 17C, and 19 (July 28, 2006).

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Complete site restoration activities at former Buildings 1, 2, 3, and 3B, and associated former annexes (Buildings 1A and 100 Annex).
- Initiate pre-demolition activities associated with Buildings 7, 17, 17C, and 19.
- Submit Final Removal Design/Removal Action (RD/RA) Work Plan (due to EPA by August 29, 2006).\*

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

None

## EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                   |                 | Sample  |        |            |          | Date Received |
|-----------------------------------|-----------------|---------|--------|------------|----------|---------------|
| Project Name                      | Field Sample ID | Date    | Matrix | Laboratory | Analyses | by GE or BBL  |
| Building 78 Drum Sampling         | F2538-1         | 6/19/06 | Oil    | SGS        | PCB      | 7/13/06       |
| Building 78 Drum Sampling         | F2539-1         | 6/19/06 | Oil    | SGS        | PCB      | 7/13/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-10         | 6/26/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-11         | 6/26/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-12         | 6/26/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-13         | 6/26/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-14         | 6/26/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-15         | 6/26/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-16         | 6/26/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-17         | 6/28/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-18         | 6/28/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-19         | 6/28/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-20         | 6/28/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-21         | 6/28/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-22         | 6/28/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-23         | 6/28/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-24         | 6/28/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-25         | 6/28/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-26         | 6/28/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-27         | 6/28/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-5          | 6/26/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-6          | 6/26/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-7          | 6/26/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-8          | 6/26/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-1-9          | 6/26/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17C-1-1         | 6/29/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17C-1-2         | 6/29/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17C-1-3         | 7/10/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17C-1-4         | 7/10/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17C-1-5         | 7/10/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17C-1-6         | 7/10/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17C-1-7         | 7/10/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17C-1-8         | 7/10/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17C-2-1         | 6/29/06 | Oil    | SGS        | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17C-2-2         | 6/29/06 | Oil    | SGS        | PCB      | 7/19/06       |

 $V: GE\_Pittsfield\_General\ Reports\ and\ Presentations\ Monthly\ Reports\ 2006\ T-06\ CD\ Monthly\ Tracking\ Logs\ Tracking. xls\ TABLE\ 3-1$ 

## EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                   |                                        | Sample         |        |                         |          | Date Received |
|-----------------------------------|----------------------------------------|----------------|--------|-------------------------|----------|---------------|
| Project Name                      | Field Sample ID                        | Date           | Matrix | Laboratory              | Analyses | by GE or BBL  |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-10                              | 6/29/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-11                              | 6/29/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-12                              | 6/28/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-13                              | 6/28/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-14                              | 6/28/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-15                              | 6/28/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-21                              | 6/28/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-22                              | 6/28/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-23                              | 6/28/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-24                              | 6/28/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-25                              | 6/28/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-26                              | 6/28/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-7                               | 6/29/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-8                               | 6/29/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 17-mez-9                               | 6/29/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 19-1-10                                | 6/26/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 19-1-13                                | 6/22/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | 19-1-9                                 | 6/22/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| Buildings 7, 17 & 19 Oil Sampling | F1752-1                                | 6/28/06        | Oil    | SGS                     | PCB      | 7/19/06       |
| PCB Ambient Air Sampling          | Field Blank                            | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling          | MC3A                                   | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling          | M7                                     | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling          | M2A                                    | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling          | BK3 - Background - East of Building 9B | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling          | Field Blank                            | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling          | W3                                     | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling          | M2                                     | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling          | M6                                     | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling          | M6-CO (colocated)                      | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB      | 7/14/06       |

#### TABLE 3-2 PCB DATA RECEIVED DURING JULY 2006

#### **BUILDING 78 DRUM SAMPLING EAST STREET AREA 2 - NORTH**

#### GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

| Sample ID | Date<br>Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|-----------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|
| F2538-1   | 6/19/06           | ND(0.99)     | ND(0.99)   |
| F2539-1   | 6/19/06           | ND(0.94)     | ND(0.94)   |

#### Notes:

- Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
   ND Analyte was not detected. The number in parenthesis is the associated detection limit.

#### TABLE 3-3 PCB DATA RECEIVED DURING JULY 2006

#### **BUILDINGS 7, 17 AND 19 OIL SAMPLING** EAST STREET AREA 2 - NORTH

#### GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

| Sample ID | Date<br>Collected | Aroclor-1016, -1221,<br>-1232, -1242, -1248, -1254 | Aroclor-1260 | ) Total PCBs |  |  |
|-----------|-------------------|----------------------------------------------------|--------------|--------------|--|--|
| 17-1-5    | 6/26/2006         | ND(0.50)                                           | ND(0.50)     | ND(0.50)     |  |  |
| 17-1-6    | 6/26/2006         | ND(0.78)                                           | ND(0.78)     | ND(0.78)     |  |  |
| 17-1-7    | 6/26/2006         | ND(0.84)                                           | ND(0.84)     | ND(0.84)     |  |  |
| 17-1-8    | 6/26/2006         | ND(0.63)                                           | ND(0.63)     | ND(0.63)     |  |  |
| 17-1-9    | 6/26/2006         | ND(0.88)                                           | ND(0.88)     | ND(0.88)     |  |  |
| 17-1-10   | 6/26/2006         | ND(0.80)                                           | ND(0.80)     | ND(0.80)     |  |  |
| 17-1-11   | 6/26/2006         | ND(0.91)                                           | ND(0.91)     | ND(0.91)     |  |  |
| 17-1-12   | 6/26/2006         | ND(0.91)                                           | ND(0.91)     | ND(0.91)     |  |  |
| 17-1-13   | 6/26/2006         | ND(0.94)                                           | ND(0.94)     | ND(0.94)     |  |  |
| 17-1-14   | 6/26/2006         | ND(0.89)                                           | ND(0.89)     | ND(0.89)     |  |  |
| 17-1-15   | 6/26/2006         | ND(0.97)                                           | ND(0.97)     | ND(0.97)     |  |  |
| 17-1-16   | 6/26/2006         | ND(0.89)                                           | ND(0.89)     | ND(0.89)     |  |  |
| 17-1-17   | 6/28/2006         | ND(18)                                             | 130          | 130          |  |  |
| 17-1-18   | 6/28/2006         | ND(0.97)                                           | ND(0.97)     | ND(0.97)     |  |  |
| 17-1-19   | 6/28/2006         | ND(0.98)                                           | ND(0.98)     | ND(0.98)     |  |  |
| 17-1-20   | 6/28/2006         | ND(1.0)                                            | ND(1.0)      | ND(1.0)      |  |  |
| 17-1-21   | 6/28/2006         | ND(0.98)                                           | ND(0.98)     | ND(0.98)     |  |  |
| 17-1-22   | 6/28/2006         | ND(0.99)                                           | ND(0.99)     | ND(0.99)     |  |  |
| 17-1-23   | 6/28/2006         | ND(0.81)                                           | 5.5          | 5.5          |  |  |
| 17-1-24   | 6/28/2006         | ND(0.98)                                           | ND(0.98)     | ND(0.98)     |  |  |
| 17-1-25   | 6/28/2006         | ND(0.98)                                           | ND(0.98)     | ND(0.98)     |  |  |
| 17-1-26   | 6/28/2006         | ND(0.75)                                           | ND(0.75)     | ND(0.75)     |  |  |
| 17-1-27   | 6/28/2006         | ND(0.83)                                           | ND(0.83)     | ND(0.83)     |  |  |
| 17C-1-1   | 6/29/2006         | ND(0.98)                                           | 1.8          | 1.8          |  |  |
| 17C-1-2   | 6/29/2006         | ND(0.98)                                           | 2.0          | 2.0          |  |  |
| 17C-1-3   | 7/10/2006         | ND(0.95)                                           | 2.8          | 2.8          |  |  |
| 17C-1-4   | 7/10/2006         | ND(47)                                             | 460          | 460          |  |  |
| 17C-1-5   | 7/10/2006         | ND(0.96)                                           | ND(0.96)     | ND(0.96)     |  |  |
| 17C-1-6   | 7/10/2006         | ND(0.86)                                           | ND(0.86)     | ND(0.86)     |  |  |
| 17C-1-7   | 7/10/2006         | ND(0.88)                                           | ND(0.88)     | ND(0.88)     |  |  |
| 17C-1-8   | 7/10/2006         | ND(0.93)                                           | ND(0.93)     | ND(0.93)     |  |  |
| 17C-2-1   | 6/29/2006         | ND(0.95)                                           | ND(0.95)     | ND(0.95)     |  |  |
| 17C-2-2   | 6/29/2006         | ND(0.97)                                           | ND(0.97)     | ND(0.97)     |  |  |
| 17-mez-7  | 6/29/2006         | ND(0.94)                                           | ND(0.94)     | ND(0.94)     |  |  |
| 17-mez-8  | 6/29/2006         | ND(0.92)                                           | ND(0.92)     | ND(0.92)     |  |  |
| 17-mez-9  | 6/29/2006         | ND(0.96)                                           | ND(0.96)     | ND(0.96)     |  |  |
| 17-mez-10 | 6/29/2006         | ND(0.95)                                           | ND(0.95)     | ND(0.95)     |  |  |
| 17-mez-11 | 6/29/2006         | ND(0.94)                                           | ND(0.94)     | ND(0.94)     |  |  |
| 17-mez-12 | 6/28/2006         | ND(0.99)                                           | ND(0.99)     | ND(0.99)     |  |  |
| 17-mez-13 | 6/28/2006         | ND(1.0)                                            | ND(1.0)      | ND(1.0)      |  |  |
| 17-mez-14 | 6/28/2006         | ND(0.99)                                           | ND(0.99)     | ND(0.99)     |  |  |
| 17-mez-15 | 6/28/2006         | ND(4.8)                                            | 35           | 35           |  |  |
| 17-mez-21 | 6/28/2006         | ND(0.95)                                           | ND(0.95)     | ND(0.95)     |  |  |
| 17-mez-22 | 6/28/2006         | ND(0.95)                                           | ND(0.95)     | ND(0.95)     |  |  |
| 17-mez-23 | 6/28/2006         | ND(0.96)                                           | ND(0.96)     | ND(0.96)     |  |  |
| 17-mez-24 | 6/28/2006         | ND(0.96)                                           | ND(0.96)     | ND(0.96)     |  |  |
| 17-mez-25 | 6/28/2006         | ND(0.98)                                           | ND(0.98)     | ND(0.98)     |  |  |
| 17-mez-26 | 6/28/2006         | ND(0.99)                                           | ND(0.99)     | ND(0.99)     |  |  |
| 19-1-9    | 6/22/2006         | ND(0.86)                                           | ND(0.86)     | ND(0.86)     |  |  |
| 19-1-10   | 6/26/2006         | ND(0.80)                                           | ND(0.80)     | ND(0.80)     |  |  |
| 19-1-13   | 6/22/2006         | ND(0.98)                                           | ND(0.98)     | ND(0.98)     |  |  |
| F1752-1   | 6/28/2006         | ND(1.0)                                            | ND(1.0)      | ND(1.0)      |  |  |

- Notes:

  1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

#### TABLE 3-4 AMBIENT AIR PCB DATA RECEIVED DURING JULY 2006

#### **BUILDINGS 7, 17, 17C & 19 DEMOLITION ACTIVITIES EAST STREET AREA 2 - NORTH** GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sampling<br>Event Period | Date Analytical<br>Results<br>Received by<br>BEC, Inc. | Field Blank<br>(μg/PUF) | MC3A<br>(µg/m3) | M7<br>(μg/m3) | M2A<br>(μg/m3) | M2A-CO<br>(colocated)<br>(μg/m3) | BK3 - Background -<br>East of Building 9B<br>(µg/m3) |
|--------------------------|--------------------------------------------------------|-------------------------|-----------------|---------------|----------------|----------------------------------|------------------------------------------------------|
| 7/08 - 7/09/06           | 7/12/06                                                | ND (<0.10)              | 0.0031          | 0.0017        | 0.0162         | NA <sup>1</sup>                  | 0.0015                                               |
| Notifica                 | Notification Level                                     |                         | 0.05            | 0.05          | 0.05           | 0.05                             | 0.05                                                 |

#### Notes:

ND - Non Detect

NA - Not Available

<sup>&</sup>lt;sup>1</sup> The July background PCB event for the 17s Complex was run concurrently with a PCB event for Buildings 1, 1A, 2, 3, 3B, and 100 Annex Demolition and Site Restoration Program. One colocated site (M6) was used as a precision check for both projects.

- Preliminary data review was conducted based on the following data quality indicators associated with the tabulated dataset above:

sampling collection time, sampling calibration check, temperature receipt, associated blanks, laboratory control samples recoveries, and surrogate recoveries.

### TABLE 3-5 AMBIENT AIR PCB DATA RECEIVED DURING JULY 2006

## BUILDINGS 1, 1A, 2, 3, 3B & 100 ANNEX DEMOLITION AND SITE RESTORATION PROGRAM EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sampling Event<br>Period | Date Analytical<br>Results<br>Received by<br>BEC, Inc. | Field Blank<br>(μg/PUF) | W3<br>(µg/m3) | M2<br>(μg/m3) | M6<br>(μg/m3) | M6-CO<br>(colocated)<br>(μg/m3) | BK3 - Background -<br>East of Building 9B<br>(μg/m3) |
|--------------------------|--------------------------------------------------------|-------------------------|---------------|---------------|---------------|---------------------------------|------------------------------------------------------|
| 07/08 - 07/09/06         | 07/12/06                                               | ND (<0.10)              | 0.0087        | 0.0045        | 0.0162        | 0.0166                          | 0.0015                                               |
| N                        | Notification Level                                     |                         | 0.05          | 0.05          | 0.05          | 0.05                            | 0.05                                                 |

#### Notes:

#### ND - Non-Detect

- Preliminary data review was conducted based on the following data quality indicators associated with the tabulated dataset above: sampling collection time, sampling calibration check, temperature receipt, associated blanks, laboratory control sample recoveries, and surrogate recoveries.

## ITEM 5 PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) JULY 2006

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. Activities Undertaken/Completed

- Completed construction of mid-slope drainage swales at Building 71 OPCA.
- Initiated consolidation of excavated materials from Former Oxbow Areas A and C into the OPCAs (July 31, 2006).
- Completed consolidation at the OPCAs of certain building demolition materials from the 40s Complex demolition activities, materials excavated from Phase 4 floodplain properties, and materials excavated from Former Oxbow Areas J and K.
- Consolidated at the OPCAs certain building demolition materials from Former Oxbow Areas A and C, and materials from various facility-related activities.
- Conducted air monitoring for particulates and PCBs, as identified in Table 5-1.
- Continued transfer of leachate from Building 71 OPCA to Building 64G for treatment. The total amount transferred in July 2006 was 111,000 gallons (see Table 5-4).
- Encountered a blockage within the storm sewer located beneath the Hill 78 OPCA during pipe inspection and cleaning activities.

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Conduct semi-annual inspection of capped portion of Building 71 OPCA and submit report thereon.
- Complete consolidation of materials from Former Oxbow Areas A and C into the OPCAs.

## ITEM 5 (cont'd) PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) JULY 2006

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks) (cont'd)

- Consolidate excavated materials from the Lyman Street Area into the Building 71 OPCA, if available.
- Submit to EPA addendum to the Phase II final OPCA cover construction plan that was submitted in May 2006.
- Initiate Phase II final cover construction for Building 71 OPCA.
- Prepare and submit plan (for EPA approval) to remove the blockage within the storm sewer line located beneath the Hill 78 OPCA. Following EPA approval, mobilize Contractor to site and remove blockage. Conduct additional video inspection of the storm and sanitary sewer lines beneath the Hill 78 OPCA after the lines have been cleared.

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

None

## HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                         |                           | Sample  |        |                         |                    | Date Received |
|-----------------------------------------|---------------------------|---------|--------|-------------------------|--------------------|---------------|
| Project Name                            | Field Sample ID           | Date    | Matrix | Laboratory              | Analyses           | by GE or BBL  |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |

## HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                         |                           | Sample  |        |                         |                    | Date Received |
|-----------------------------------------|---------------------------|---------|--------|-------------------------|--------------------|---------------|
| Project Name                            | Field Sample ID           | Date    | Matrix | Laboratory              | Analyses           | by GE or BBL  |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/18/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/18/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/18/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/18/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/18/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/18/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/19/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/19/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/19/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/19/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/19/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/19/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/20/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/20/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/20/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/20/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/20/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/20/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/21/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/21/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/21/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/21/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |

## HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                         |                           | Sample  |        |                         |                    | Date Received |
|-----------------------------------------|---------------------------|---------|--------|-------------------------|--------------------|---------------|
| Project Name                            | Field Sample ID           | Date    | Matrix | Laboratory              | Analyses           | by GE or BBL  |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/21/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/21/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/24/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/24/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/24/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/24/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/24/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/24/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/25/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/25/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/25/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/25/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/25/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/25/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/26/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/26/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/26/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/26/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/26/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/26/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/27/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/27/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/27/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/27/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/27/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/27/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/28/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/28/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/28/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/28/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/28/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/28/06 | Air    | Berkshire Environmental | Particulate Matter | 7/31/06       |
| Ambient Air Particulate Matter Sampling | North of OPCAs            | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co. | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs        | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | Northwest of OPCAs        | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | West of OPCAs             | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | Background Location       | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |

## HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                          |                                | Sample         |        |                         |          | Date Received |
|--------------------------|--------------------------------|----------------|--------|-------------------------|----------|---------------|
| Project Name             | Field Sample ID                | Date           | Matrix | Laboratory              | Analyses | by GE or BBL  |
| PCB Ambient Air Sampling | Field Blank                    | 6/20 - 6/21/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | Northwest of OPCAs             | 6/20 - 6/21/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | West of OPCAs                  | 6/20 - 6/21/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | West of OPCAs colocated        | 6/20 - 6/21/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | North of OPCAs                 | 6/20 - 6/21/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | Southeast of OPCAs             | 6/20 - 6/21/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | Pittsfield Generating (PGE)    | 6/20 - 6/21/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | Background East of Building 9B | 6/20 - 6/21/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | Field Blank                    | 6/22 - 6/23/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | Northwest of OPCAs             | 6/22 - 6/23/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | West of OPCAs                  | 6/22 - 6/23/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | West of OPCAs colocated        | 6/22 - 6/23/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | North of OPCAs                 | 6/22 - 6/23/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | Southeast of OPCAs             | 6/22 - 6/23/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | Pittsfield Generating (PGE)    | 6/22 - 6/23/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | Background East of Building 9B | 6/22 - 6/23/06 | Air    | Berkshire Environmental | PCB      | 7/10/06       |
| PCB Ambient Air Sampling | Field Blank                    | 6/27 - 6/28/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | Northwest of OPCAs             | 6/27 - 6/28/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | West of OPCAs                  | 6/27 - 6/28/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | West of OPCAs colocated        | 6/27 - 6/28/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | North of OPCAs                 | 6/27 - 6/28/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | Southeast of OPCAs             | 6/27 - 6/28/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | Pittsfield Generating (PGE)    | 6/27 - 6/28/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | Background East of Building 9B | 6/27 - 6/28/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | Field Blank                    | 6/29 - 6/30/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | Northwest of OPCAs             | 6/29 - 6/30/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | West of OPCAs                  | 6/29 - 6/30/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | West of OPCAs colocated        | 6/29 - 6/30/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | North of OPCAs                 | 6/29 - 6/30/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | Southeast of OPCAs             | 6/29 - 6/30/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | Pittsfield Generating (PGE)    | 6/29 - 6/30/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | Background East of Building 9B | 6/29 - 6/30/06 | Air    | Berkshire Environmental | PCB      | 7/11/06       |
| PCB Ambient Air Sampling | Field Blank                    | 7/6 - 7/7/06   | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling | Northwest of OPCAs             | 7/6 - 7/7/06   | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling | West of OPCAs                  | 7/6 - 7/7/06   | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling | West of OPCAs colocated        | 7/6 - 7/7/06   | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling | North of OPCAs                 | 7/6 - 7/7/06   | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling | Southeast of OPCAs             | 7/6 - 7/7/06   | Air    | Berkshire Environmental | PCB      | 7/14/06       |

## TABLE 5-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                          |                                | Sample         |        |                         |          | Date Received |
|--------------------------|--------------------------------|----------------|--------|-------------------------|----------|---------------|
| Project Name             | Field Sample ID                | Date           | Matrix | Laboratory              | Analyses | by GE or BBL  |
| PCB Ambient Air Sampling | Pittsfield Generating (PGE)    | 7/6 - 7/7/06   | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling | Background East of Building 9B | 7/6 - 7/7/06   | Air    | Berkshire Environmental | PCB      | 7/14/06       |
| PCB Ambient Air Sampling | Field Blank                    | 7/11 - 7/12/06 | Air    | Berkshire Environmental | PCB      | 7/19/06       |
| PCB Ambient Air Sampling | Northwest of OPCAs             | 7/11 - 7/12/06 | Air    | Berkshire Environmental | PCB      | 7/19/06       |
| PCB Ambient Air Sampling | West of OPCAs                  | 7/11 - 7/12/06 | Air    | Berkshire Environmental | PCB      | 7/19/06       |
| PCB Ambient Air Sampling | West of OPCAs colocated        | 7/11 - 7/12/06 | Air    | Berkshire Environmental | PCB      | 7/19/06       |
| PCB Ambient Air Sampling | North of OPCAs                 | 7/11 - 7/12/06 | Air    | Berkshire Environmental | PCB      | 7/19/06       |
| PCB Ambient Air Sampling | Southeast of OPCAs             | 7/11 - 7/12/06 | Air    | Berkshire Environmental | PCB      | 7/19/06       |
| PCB Ambient Air Sampling | Pittsfield Generating (PGE)    | 7/11 - 7/12/06 | Air    | Berkshire Environmental | PCB      | 7/19/06       |
| PCB Ambient Air Sampling | Background East of Building 9B | 7/11 - 7/12/06 | Air    | Berkshire Environmental | PCB      | 7/19/06       |
| PCB Ambient Air Sampling | Field Blank                    | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB      | 7/20/06       |
| PCB Ambient Air Sampling | Northwest of OPCAs             | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB      | 7/20/06       |
| PCB Ambient Air Sampling | West of OPCAs                  | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB      | 7/20/06       |
| PCB Ambient Air Sampling | West of OPCAs colocated        | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB      | 7/20/06       |
| PCB Ambient Air Sampling | North of OPCAs                 | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB      | 7/20/06       |
| PCB Ambient Air Sampling | Southeast of OPCAs             | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB      | 7/20/06       |
| PCB Ambient Air Sampling | Pittsfield Generating (PGE)    | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB      | 7/20/06       |
| PCB Ambient Air Sampling | Background East of Building 9B | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB      | 7/20/06       |
| PCB Ambient Air Sampling | Field Blank                    | 7/18 - 7/19/06 | Air    | Berkshire Environmental | PCB      | 7/24/06       |
| PCB Ambient Air Sampling | Northwest of OPCAs             | 7/18 - 7/19/06 | Air    | Berkshire Environmental | PCB      | 7/24/06       |
| PCB Ambient Air Sampling | West of OPCAs                  | 7/18 - 7/19/06 | Air    | Berkshire Environmental | PCB      | 7/24/06       |
| PCB Ambient Air Sampling | West of OPCAs colocated        | 7/18 - 7/19/06 | Air    | Berkshire Environmental | PCB      | 7/24/06       |
| PCB Ambient Air Sampling | North of OPCAs                 | 7/18 - 7/19/06 | Air    | Berkshire Environmental | PCB      | 7/24/06       |
| PCB Ambient Air Sampling | Southeast of OPCAs             | 7/18 - 7/19/06 | Air    | Berkshire Environmental | PCB      | 7/24/06       |
| PCB Ambient Air Sampling | Pittsfield Generating (PGE)    | 7/18 - 7/19/06 | Air    | Berkshire Environmental | PCB      | 7/24/06       |
| PCB Ambient Air Sampling | Background East of Building 9B | 7/18 - 7/19/06 | Air    | Berkshire Environmental | PCB      | 7/24/06       |
| PCB Ambient Air Sampling | Field Blank                    | 7/20 - 7/21/06 | Air    | Berkshire Environmental | PCB      | 8/1/06        |
| PCB Ambient Air Sampling | Northwest of OPCAs             | 7/20 - 7/21/06 | Air    | Berkshire Environmental | PCB      | 8/1/06        |
| PCB Ambient Air Sampling | West of OPCAs                  | 7/20 - 7/21/06 | Air    | Berkshire Environmental | PCB      | 8/1/06        |
| PCB Ambient Air Sampling | West of OPCAs colocated        | 7/20 - 7/21/06 | Air    | Berkshire Environmental | PCB      | 8/1/06        |
| PCB Ambient Air Sampling | North of OPCAs                 | 7/20 - 7/21/06 | Air    | Berkshire Environmental | PCB      | 8/1/06        |
| PCB Ambient Air Sampling | Southeast of OPCAs             | 7/20 - 7/21/06 | Air    | Berkshire Environmental | PCB      | 8/1/06        |
| PCB Ambient Air Sampling | Pittsfield Generating (PGE)    | 7/20 - 7/21/06 | Air    | Berkshire Environmental | PCB      | 8/1/06        |
| PCB Ambient Air Sampling | Background East of Building 9B | 7/20 - 7/21/06 | Air    | Berkshire Environmental | PCB      | 8/1/06        |

#### TABLE 5-2 SUMMARY OF 2006 PCB AMBIENT AIR SAMPLING RESULTS

# HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS (all results are ug/m³)

| Date                                                 | Northwest of OPCAs  | Northwest<br>of OPCAs<br>colocated | West<br>of OPCAs | West<br>of OPCAs<br>colocated | North<br>of OPCAs | Southeast of OPCAs | Pittsfield<br>Generating (PGE) | Background Sample<br>Location - East of<br>Building 9B | Data Validated?  |
|------------------------------------------------------|---------------------|------------------------------------|------------------|-------------------------------|-------------------|--------------------|--------------------------------|--------------------------------------------------------|------------------|
| 01/10/06 - 01/11/06                                  | 0.0005              | ND                                 | 0.0020           |                               | 0.0005            | ND                 | 0.0005                         | 0.0003                                                 | No               |
| 02/07/06 - 02/08/06                                  | ND                  | 0.0002 J                           | ND               |                               | ND                | 0.0003             | 0.0003                         | 0.0002 J                                               | No               |
| 03/07/06 - 03/08/06                                  | ND                  | ND                                 | ND               |                               | ND                | 0.0006             | 0.0006                         | 0.0008                                                 | No               |
| 04/06/06 - 04/07/06                                  | 0.0006              |                                    | 0.0004           | 0.0005                        | 0.0005            | 0.0009             | 0.0014                         | 0.0005                                                 | No               |
| 04/18/06 - 04/19/06                                  | 0.0010              |                                    | 0.0011           | 0.0009                        | 0.0040            | 0.0019             | 0.0148                         | 0.0031                                                 | No               |
| 04/25/06 - 04/26/06                                  | 0.0009              |                                    | 0.0010           | 0.0009                        | 0.0007            | 0.0013             | 0.0019                         | 0.0007                                                 | No               |
| 04/27/06 - 04/28/06                                  | 0.0006              |                                    | 0.0006           | 0.0007                        | 0.0004            | 0.0009             | 0.0020                         | 0.0005                                                 | No               |
| 05/02/06 - 05/03/06 <sup>1</sup>                     | NA                  |                                    | NA               | NA                            | NA                | NA                 | NA                             | NA                                                     | NA               |
| 05/04/06 - 05/05/06                                  | 0.0019              |                                    | 0.0037           | 0.0030                        | 0.0017            | 0.0041             | 0.0069                         | 0.0026                                                 | No               |
| 05/09/06 - 05/10/06                                  | 0.0003              |                                    | 0.0004           | 0.0004                        | ND                | 0.0005             | 0.0004                         | 0.0050                                                 | No               |
| 05/11/06 - 05/12/06                                  | 0.0014              |                                    | 0.0024           | 0.0026                        | 0.0010            | 0.0005             | 0.0006                         | 0.0011                                                 | No               |
| 05/16/06 - 05/17/06                                  | 0.0004              |                                    | 0.0007           | 0.0011                        | 0.0006            | 0.0009             | 0.0014                         | 0.0009                                                 | No               |
| 05/18/06 - 05/19/06                                  | 0.0018              |                                    | 0.0015           | 0.0021                        | 0.0017            | 0.0015             | 0.0017                         | 0.0019                                                 | No               |
| 05/23/06 - 05/24/06                                  | 0.0003              |                                    | ND               | 0.0004                        | ND                | 0.0011             | 0.0017                         | 0.0005                                                 | No               |
| 05/25/06 - 05/26/06                                  | 0.0032 <sup>2</sup> |                                    | 0.0018           | 0.0056                        | 0.0041            | 0.0015             | 0.0044                         | 0.0010                                                 | No               |
| 05/31/06 - 06/01/06                                  | 0.0069              |                                    | 0.0056           | 0.0060                        | 0.0069            | 0.0030             | 0.0062                         | 0.0024                                                 | No               |
| 06/01/06 - 06/02/06                                  | 0.0031              |                                    | 0.0028           | 0.0043                        | 0.0034            | 0.0038             | 0.0087                         | 0.0030                                                 | No               |
| 06/06/06 - 06/07/06                                  | 0.0006              |                                    | ND               | ND                            | ND                | ND                 | ND                             | 0.0018                                                 | No               |
| 06/12/06 - 06/13/06                                  | 0.0017              |                                    | 0.0046           | 0.0037                        | 0.0041            | 0.0013             | 0.0388                         | 0.0009                                                 | No               |
| 06/13/06 - 06/14/06                                  | 0.0010              |                                    | 0.0010           | 0.0007                        | 0.0009            | 0.0022             | 0.0061                         | 0.0014                                                 | No               |
| 06/20/06 - 06/21/06                                  | 0.0027              |                                    | 0.0020           | 0.0030                        | 0.0031            | 0.0024             | 0.0047                         | 0.0012                                                 | No               |
| 06/22/06 - 06/23/06                                  | 0.0028              |                                    | 0.0029           | 0.0027                        | 0.0036            | 0.0022             | 0.0032                         | 0.0025                                                 | No               |
| 06/27/06 - 06/28/06                                  | 0.0036 J            |                                    | 0.0021 J         | 0.0019 J                      | 0.0026 J          | 0.0006 J           | 0.0018 J                       | 0.0019 J                                               | PDR <sup>3</sup> |
| 06/29/06 - 06/30/06                                  | 0.0013 J            |                                    | 0.0014 J         | 0.0010 J                      | 0.0020 J          | 0.0006 J           | 0.0021 J                       | 0.0036 J                                               | PDR <sup>3</sup> |
| 07/06/06 - 07/07/06                                  | 0.0008 J            |                                    | 0.0003 J         | 0.0007 J                      | 0.0006 J          | 0.0005 J           | 0.0029 J                       | 0.0004 J                                               | PDR <sup>3</sup> |
| 07/11/06 - 07/12/06                                  | 0.0024              |                                    | 0.0018           | 0.0018                        | 0.0016            | 0.0011             | 0.0045                         | 0.0017                                                 | PDR <sup>3</sup> |
| 07/13/06 - 07/14/06                                  | 0.0008 J            |                                    | 0.0014 J         | 0.0010 J                      | 0.0007 J          | 0.0008 J           | 0.0023 J                       | 0.0012 J                                               | PDR <sup>3</sup> |
| 07/18/06 - 07/19/06                                  | 0.0018 J            |                                    | 0.0026 J         | 0.0021 J                      | 0.0020 J          | 0.0033 J           | 0.0089 J                       | 0.0022 J                                               | PDR <sup>3</sup> |
| 07/20/06 - 07/21/06                                  | 0.0033              |                                    | 0.0024           | 0.0031                        | 0.0010            | 0.0008             | 0.0025                         | 0.0021                                                 | PDR <sup>3</sup> |
| Exceedances of<br>Notification<br>Level (0.05 µg/m³) | None                | None                               | None             | None                          | None              | None               | None                           | None                                                   |                  |

(See Notes on Page 2 of 2)

#### TABLE 5-2 SUMMARY OF 2006 PCB AMBIENT AIR SAMPLING RESULTS

# HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS (all results are ug/m³)

#### Notes:

All sampling and analytical activities performed and/or coordinated by Berkshire Environmental Consultants, Inc.

NA - Not Available

ND - Non Detect (<0.0003)

- J Sample results were qualified as estimated.
  - <sup>1</sup> No data available due to laboratory error.
  - <sup>2</sup> Data provided for information purposes only. Sampling period did not meet QA/QC criteria of 24 hours ± 60 minutes due to an interruption in street power.
  - <sup>3</sup> Preliminary data review (PDR) was conducted based on the following data quality indicators associated with the tabulated data set above: sampling collection time, sampling calibration check, temperature receipt, associated blanks, laboratory control samples recoveries, and surrogate recoveries.

#### **Qualification Notes:**

- 1. Samples collected from the NW and Background locations from 02/07/06 to 02/08/06 are estimated values detected between the MDL and the PQL.
- 2. Samples collected from 06/27/06 to 06/28/06 were qualified as estimated due to surrogate recovery and/or laboratory control sample recovery deviations.
- 3. Samples collected from 06/29/06 to 06/30/06 were qualified as estimated due to surrogate recovery and/or laboratory control sample recovery deviations.
- 4. Samples collected from 07/06/06 to 07/07/06 were qualified as estimated due to surrogate recovery deviations.
- 5. All samples collected from 07/11/06 to 07/12/06 were greater than 4°C (PUF temperature was 20.2°C) upon laboratory receipt. The temperature of the temperature blank was recorded as less than 4°C. Following an investigation of the laboratory concerning the temperature receipt of PUF samples exhibiting a temperature greater than 6°C, the laboratory has discovered that the laboratory receipt technician was taking the temperature of the PUF while still wrapped in foil. The foil wrapped around the PUF caused an erroneous temperature reading from the IR thermometer. This was confirmed by 1) the temperature blank exhibiting a temperature less than 4°C and 2) the laboratory receipt technician peeled back the foil of the of PUF samples receipt on 8/1/06 and a temperature reading of less than 5°C was observed; therefore, none of the data were qualified due to the documented PUF temperature deviation.
- 6. Samples collected from 07/13/06 to 07/14/06 were qualified as estimated due to the laboratory not recording the temperature of the PUF upon receipt and laboratory control sample recovery deviations. The temperature of the temperature blank was recorded as less than 4°C.
- 7. Samples collected from 07/18/06 to 07/19/06 were qualified as estimated due to the laboratory not recording the temperature of the PUF upon receipt.
- 8. All samples collected from 07/20/06 to 07/21/06 were greater than 4°C (PUF temperature was 20.2°C) upon laboratory receipt. The temperature of the temperature blank was recorded as less than 4°C. Following an investigation of the laboratory concerning the temperature receipt of PUF samples exhibiting a temperature greater than 6°C, the laboratory has discovered that the laboratory receipt technician was taking the temperature of the PUF while still wrapped in foil. The foil wrapped around the PUF caused an erroneous temperature reading from the IR thermometer. This was confirmed by 1) the temperature blank exhibiting a temperature less than 4°C and 2) the laboratory receipt technician peeled back the foil of the of PUF samples receipt on 8/1/06 and a temperature reading of less than 5°C was observed; therefore, none of the data were qualified due to the documented PUF temperature deviation.

| Sampling Date <sup>1</sup> | Sampler Location          | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant Wind<br>Direction |
|----------------------------|---------------------------|------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|
| 1/10/06                    | North of OPCAs            | 0.016*                                   | 0.010*                                      | 10:30                         | WNW                           |
|                            | Pittsfield Generating Co. | 0.023                                    |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.017                                    |                                             | 10:30                         |                               |
|                            | Northwest of OPCAs        | 0.023*                                   |                                             | 10:30                         |                               |
|                            | West of OPCAs             | 0.016*                                   |                                             | 10:30                         |                               |
| 2/7/06                     | North of OPCAs            | 0.006*                                   | 0.005*                                      | 10:30                         | WNW                           |
| 2/./00                     | Pittsfield Generating Co. | NA <sup>2</sup>                          | 0.000                                       | NA <sup>2</sup>               |                               |
|                            | Southeast of OPCAs        | 0.046 <sup>3</sup>                       |                                             | 13:45 <sup>4</sup>            |                               |
|                            | Northwest of OPCAs        | 0.012*                                   |                                             | 10:15                         |                               |
|                            |                           |                                          |                                             |                               |                               |
| 4/17/06                    | West of OPCAs             | 0.008*                                   | 0.004*                                      | 11:00                         | NINIVA/                       |
| 4/17/06                    | North of OPCAs            | 0.003*                                   | 0.004*                                      | 9:45                          | NNW                           |
|                            | Pittsfield Generating Co. | 0.005*                                   |                                             | 10:15                         |                               |
|                            | Southeast of OPCAs        | 0.004*                                   |                                             | 10:00                         |                               |
|                            | Northwest of OPCAs        | 0.002*                                   |                                             | 10:30                         |                               |
| 4/40/00                    | West of OPCAs             | 0.003*                                   | 0.000*                                      | 10:30                         | NIN DAY                       |
| 4/18/06                    | North of OPCAs            | 0.003*                                   | 0.003*                                      | 9:15 <sup>5</sup>             | NNW                           |
|                            | Pittsfield Generating Co. | 0.003*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.020*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.001*                                   |                                             | 10:30                         |                               |
|                            | West of OPCAs             | 0.003*                                   |                                             | 10:45                         |                               |
| 4/19/06                    | North of OPCAs            | 0.001*                                   | 0.003*                                      | 6:15 <sup>5</sup>             | NNW                           |
|                            | Pittsfield Generating Co. | 0.004*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.005*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.001*                                   |                                             | 11:00                         |                               |
|                            | West of OPCAs             | 0.004*                                   |                                             | 11:00                         |                               |
| 4/20/06                    | North of OPCAs            | 0.004*                                   | 0.005*                                      | 11:30                         | WNW, NNW                      |
|                            | Pittsfield Generating Co. | 0.008*                                   |                                             | 12:00                         |                               |
|                            | Southeast of OPCAs        | 0.006*                                   |                                             | 11:30                         |                               |
|                            | Northwest of OPCAs        | 0.003*                                   |                                             | 11:30                         |                               |
|                            | West of OPCAs             | 0.006*                                   |                                             | 11:30                         |                               |
| 4/21/06                    | North of OPCAs            | 0.004*                                   | 0.007*                                      | 10:30                         | Variable                      |
|                            | Pittsfield Generating Co. | 0.010*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.008*                                   |                                             | 10:30                         |                               |
|                            | Northwest of OPCAs        | 0.004*                                   |                                             | 10:30                         |                               |
|                            | West of OPCAs             | 0.006*                                   |                                             | 10:30                         |                               |
| 4/24/06                    | North of OPCAs            | 0.006*                                   | 0.007*                                      | 10:45                         | Calm                          |
|                            | Pittsfield Generating Co. | 0.008*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.011*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.005*                                   |                                             | 10:45                         |                               |
|                            | West of OPCAs             | 0.007*                                   |                                             | 10:45                         |                               |
| 4/25/06                    | North of OPCAs            | 0.015*                                   | 0.018*                                      | 10:45                         | WNW                           |
|                            | Pittsfield Generating Co. | 0.025*                                   |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.022*                                   |                                             | 10:30                         |                               |
|                            | Northwest of OPCAs        | 0.013*                                   |                                             | 10:45                         |                               |
|                            | West of OPCAs             | 0.019*                                   |                                             | 10:45                         |                               |
| 4/26/06                    | North of OPCAs            | 0.003*                                   | 0.005*                                      | 11:00                         | SSW                           |
|                            | Pittsfield Generating Co. | 0.005*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.004*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.002*                                   |                                             | 11:00                         |                               |
|                            | West of OPCAs             | 0.002                                    |                                             | 11:00                         |                               |

| Sampling Date <sup>1</sup> | (mg/m³)                   |        | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant Wind<br>Direction |
|----------------------------|---------------------------|--------|---------------------------------------------|-------------------------------|-------------------------------|
| 4/27/06                    | North of OPCAs            | 0.009* | 0.013*                                      | 10:30                         | WNW                           |
|                            | Pittsfield Generating Co. | 0.014* |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.014* |                                             | 10:30                         |                               |
|                            | Northwest of OPCAs        | 0.007* |                                             | 10:30                         |                               |
|                            | West of OPCAs             | 0.012* |                                             | 10:45                         |                               |
| 4/28/06                    | North of OPCAs            | 0.003* | 0.005*                                      | 10:45                         | NNW                           |
|                            | Pittsfield Generating Co. | 0.006* |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.006* |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.003* |                                             | 10:45                         |                               |
|                            | West of OPCAs             | 0.005* |                                             | 10:45                         |                               |
| 5/1/06                     | North of OPCAs            | 0.006* | 0.009*                                      | 10:30                         | ENE                           |
|                            | Pittsfield Generating Co. | 0.009* |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.010* |                                             | 10:30                         |                               |
|                            | Northwest of OPCAs        | 0.005* |                                             | 10:30                         |                               |
|                            | West of OPCAs             | 0.010* |                                             | 10:30                         |                               |
| 5/2/06                     | North of OPCAs            | 0.007* | 0.011*                                      | 11:00                         | NNW, NNE                      |
|                            | Pittsfield Generating Co. | 0.010* |                                             | 11:00                         |                               |
|                            | Southeast of OPCAs        | 0.014* |                                             | 11:00                         |                               |
|                            | Northwest of OPCAs        | 0.005* |                                             | 11:00                         |                               |
|                            | West of OPCAs             | 0.009* |                                             | 11:00                         |                               |
| 5/3/06                     | North of OPCAs            | 0.001* | 0.002*                                      | 10:00                         | NNW                           |
|                            | Pittsfield Generating Co. | 0.002* |                                             | 10:15                         |                               |
|                            | Southeast of OPCAs        | 0.001* |                                             | 5:30 <sup>5</sup>             |                               |
|                            | Northwest of OPCAs        | 0.001* |                                             | 10:15                         |                               |
|                            | West of OPCAs             | 0.002* |                                             | 10:30                         |                               |
| 5/4/06                     | North of OPCAs            | 0.003* | 0.006*                                      | 11:00                         | WNW                           |
|                            | Pittsfield Generating Co. | 0.011* |                                             | 11:00                         |                               |
|                            | Southeast of OPCAs        | 0.004* |                                             | 11:00                         |                               |
|                            | Northwest of OPCAs        | 0.001* |                                             | 11:30                         |                               |
|                            | West of OPCAs             | 0.006* |                                             | 11:30                         |                               |
| 5/5/06                     | North of OPCAs            | 0.004* | 0.007*                                      | 10:30                         | WNW                           |
|                            | Pittsfield Generating Co. | 0.007* |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.005* |                                             | 10:30                         |                               |
|                            | Northwest of OPCAs        | 0.005* |                                             | 10:30                         |                               |
|                            | West of OPCAs             | 0.006* |                                             | 10:30                         |                               |
| 5/8/06                     | North of OPCAs            | 0.006* | 0.010*                                      | 10:45                         | Variable                      |
|                            | Pittsfield Generating Co. | 0.010* |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.007* |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.007* |                                             | 10:45                         |                               |
|                            | West of OPCAs             | 0.009* |                                             | 10:45                         |                               |
| 5/9/06                     | North of OPCAs            | 0.005* | 0.013*                                      | 11:45                         | NNE                           |
|                            | Pittsfield Generating Co. | 0.009* | -                                           | 11:45                         |                               |
|                            | Southeast of OPCAs        | 0.008* |                                             | 11:45                         |                               |
|                            | Northwest of OPCAs        | 0.005* |                                             | 11:45                         |                               |
|                            | West of OPCAs             | 0.009* |                                             | 11:45                         |                               |
| 5/10/06                    | North of OPCAs            | 0.004* | 0.008*                                      | 10:45                         | ENE                           |
|                            | Pittsfield Generating Co. | 0.009* |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.005* |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.004* |                                             | 10:45                         |                               |
|                            | West of OPCAs             | 0.009* |                                             | 10:45                         |                               |

| Sampling Date <sup>1</sup> | Sampler Location          | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant Wind<br>Direction |
|----------------------------|---------------------------|------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|
| 5/11/06                    | North of OPCAs            | 0.002*                                   | 0.006*                                      | 11:15                         | Variable                      |
|                            | Pittsfield Generating Co. | 0.007*                                   |                                             | 11:15                         |                               |
|                            | Southeast of OPCAs        | 0.004*                                   |                                             | 11:15                         |                               |
|                            | Northwest of OPCAs        | 0.002*                                   |                                             | 11:15                         |                               |
|                            | West of OPCAs             | 0.007*                                   |                                             | 11:15                         |                               |
| 5/12/06                    | North of OPCAs            | 0.006*                                   | 0.008*                                      | 11:45                         | Variable                      |
|                            | Pittsfield Generating Co. | 0.001*                                   |                                             | 11:45                         |                               |
|                            | Southeast of OPCAs        | 0.004*                                   |                                             | 11:45                         |                               |
|                            | Northwest of OPCAs        | 0.010*                                   |                                             | 12:00                         |                               |
|                            | West of OPCAs             | 0.007*                                   |                                             | 12:00                         |                               |
| 5/15/06                    | North of OPCAs            | 0.002*                                   | 0.002*                                      | 10:45                         | Variable                      |
|                            | Pittsfield Generating Co. | 0.003*                                   |                                             | 9:30 <sup>5</sup>             |                               |
|                            | Southeast of OPCAs        | 0.001*                                   |                                             | 11:15                         |                               |
|                            | Northwest of OPCAs        | 0.001*                                   |                                             | 11:00                         |                               |
|                            | West of OPCAs             | 0.002*                                   |                                             | 11:15                         |                               |
| 5/16/06                    | North of OPCAs            | 0.007*                                   | 0.008*                                      | 11:30                         | W                             |
|                            | Pittsfield Generating Co. | 0.008*                                   |                                             | 11:00                         |                               |
|                            | Southeast of OPCAs        | 0.007*                                   |                                             | 11:00                         |                               |
|                            | Northwest of OPCAs        | 0.005*                                   |                                             | 10:15                         |                               |
|                            | West of OPCAs             | 0.005*                                   |                                             | 11:15                         |                               |
| 5/17/06                    | North of OPCAs            | 0.016*                                   | 0.015*                                      | 11:15                         | SSW                           |
|                            | Pittsfield Generating Co. | 0.025*                                   |                                             | 11:15                         |                               |
|                            | Southeast of OPCAs        | 0.014*                                   |                                             | 11:15                         |                               |
|                            | Northwest of OPCAs        | 0.013*                                   |                                             | 11:15                         |                               |
|                            | West of OPCAs             | 0.011*                                   |                                             | 11:15                         |                               |
| 5/18/06                    | North of OPCAs            | 0.022*                                   | 0.024*                                      | 11:00                         | SSW                           |
|                            | Pittsfield Generating Co. | 0.029*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.023*                                   |                                             | 11:00                         |                               |
|                            | Northwest of OPCAs        | 0.021*                                   |                                             | 11:15                         |                               |
|                            | West of OPCAs             | 0.018*                                   |                                             | 11:30                         |                               |
| 5/19/06                    | North of OPCAs            | 0.015*                                   | 0.022*                                      | 10:45                         | WSW                           |
|                            | Pittsfield Generating Co. | 0.019*                                   |                                             | 10:00                         |                               |
|                            | Southeast of OPCAs        | 0.014*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.016*                                   |                                             | 10:45                         |                               |
|                            | West of OPCAs             | 0.014*                                   |                                             | 10:45                         |                               |
| 5/22/06                    | North of OPCAs            | 0.001*                                   | 0.002*                                      | 8:15 <sup>6</sup>             | WNW                           |
|                            | Pittsfield Generating Co. | 0.014*                                   |                                             | 11:15                         |                               |
|                            | Southeast of OPCAs        | 0.002*                                   |                                             | 11:15                         |                               |
|                            | Northwest of OPCAs        | 0.001*                                   |                                             | 11:15                         |                               |
|                            | West of OPCAs             | 0.001*                                   |                                             | 11:15                         |                               |
| 5/23/06                    | North of OPCAs            | 0.005*                                   | 0.008*                                      | 11:45                         | WNW                           |
|                            | Pittsfield Generating Co. | 0.005*                                   |                                             | 11:30                         |                               |
|                            | Southeast of OPCAs        | 0.005*                                   |                                             | 11:45                         |                               |
|                            | Northwest of OPCAs        | 0.006*                                   |                                             | 11:45                         |                               |
|                            | West of OPCAs             | 0.002*                                   |                                             | 12:00                         |                               |
| 5/24/06                    | North of OPCAs            | 0.004*                                   | 0.006*                                      | 11:30                         | WNW                           |
|                            | Pittsfield Generating Co. | 0.006*                                   |                                             | 11:30                         |                               |
|                            | Southeast of OPCAs        | 0.004*                                   |                                             | 11:30                         |                               |
|                            | Northwest of OPCAs        | 0.004*                                   |                                             | 11:30                         |                               |
|                            | West of OPCAs             | 0.004*                                   |                                             | 11:30                         |                               |

| Sampling Date <sup>1</sup> | Sampler Location                             | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant Wind<br>Direction |
|----------------------------|----------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|
| 5/25/06                    | North of OPCAs                               | 0.014*                                   | 0.014*                                      | 10:15                         | SSW                           |
|                            | Pittsfield Generating Co.                    | 0.021*                                   |                                             | 10:00                         |                               |
|                            | Southeast of OPCAs                           | 0.016*                                   |                                             | 10:15                         |                               |
|                            | Northwest of OPCAs                           | 0.015*                                   |                                             | 10:30                         |                               |
|                            | West of OPCAs                                | 0.011*                                   |                                             | 10:45                         |                               |
| 5/26/06                    | North of OPCAs                               | 0.028*                                   | 0.030*                                      | 10:45                         | Calm                          |
|                            | Pittsfield Generating Co.                    | 0.035*                                   |                                             | 11:30                         |                               |
|                            | Southeast of OPCAs                           | 0.028*                                   |                                             | 11:30                         |                               |
|                            | Northwest of OPCAs                           | 0.031*                                   |                                             | 11:45                         |                               |
|                            | West of OPCAs                                | 0.027*                                   |                                             | 11:15                         |                               |
| 5/30/06                    | North of OPCAs                               | 0.023*                                   | 0.023*                                      | 11:00                         | Variable                      |
|                            | Pittsfield Generating Co.                    | 0.040*                                   |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs                           | 0.024*                                   |                                             | 9:00 <sup>5</sup>             |                               |
|                            | Northwest of OPCAs                           | 0.026*                                   |                                             | 11:00                         |                               |
|                            | West of OPCAs                                | 0.012*                                   |                                             | 11:00                         |                               |
| 5/31/06                    | North of OPCAs                               | 0.046*                                   | 0.053*                                      | 11:15                         | WSW                           |
|                            | Pittsfield Generating Co.                    | 0.057*                                   |                                             | 11:00                         |                               |
|                            | Southeast of OPCAs                           | 0.046*                                   |                                             | 11:15                         |                               |
|                            | Northwest of OPCAs                           | 0.049*                                   |                                             | 11:30                         |                               |
|                            | West of OPCAs                                | 0.035*                                   |                                             | 11:30                         |                               |
| 6/1/06                     | North of OPCAs                               | 0.057*                                   | 0.072*                                      | 11:15                         | WSW, SSW                      |
| G/ 1/00                    | Pittsfield Generating Co.                    | 0.078*                                   | 0.0.2                                       | 11:15                         | ,                             |
|                            | Southeast of OPCAs                           | 0.059*                                   |                                             | 11:15                         |                               |
|                            | Northwest of OPCAs                           | 0.058*                                   |                                             | 11:15                         |                               |
|                            | West of OPCAs                                | 0.042*                                   |                                             | 11:30                         |                               |
| 6/2/06                     | North of OPCAs                               | 0.014*                                   | 0.019*                                      | 10:30                         | WSW                           |
| 0/2/00                     | Pittsfield Generating Co.                    | 0.020*                                   | 0.010                                       | 10:30                         | ,,,,,,                        |
|                            | Southeast of OPCAs                           | 0.016*                                   |                                             | 10:30                         |                               |
|                            | Northwest of OPCAs                           | 0.016*                                   |                                             | 10:30                         |                               |
|                            | West of OPCAs                                | 0.013*                                   |                                             | 10:30                         |                               |
| 6/6/06                     | North of OPCAs                               | 0.008*                                   | 0.010*                                      | 11:30                         | Calm                          |
| 0/0/00                     | Pittsfield Generating Co.                    | 0.012*                                   | 0.010                                       | 11:30                         | Callii                        |
|                            | Southeast of OPCAs                           | 0.012                                    |                                             | 11:30                         |                               |
|                            | Northwest of OPCAs                           | 0.008*                                   |                                             | 11:45                         |                               |
|                            | West of OPCAs                                | 0.007*                                   |                                             | 11:45                         |                               |
| 6/12/06                    | North of OPCAs                               | 0.007                                    | 0.005*                                      | 10:15                         | WNW                           |
| 0/12/00                    | Pittsfield Generating Co.                    | 0.003                                    | 0.005                                       | 10:45                         | VVINVV                        |
|                            | -                                            | 0.009*                                   |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs Northwest of OPCAs        | 0.003*                                   |                                             |                               |                               |
|                            |                                              |                                          |                                             | 10:30                         |                               |
| 0/40/00                    | West of OPCAs                                | 0.003*                                   | 0.009*                                      | 11:15                         | WNW                           |
| 6/13/06                    | North of OPCAs                               | 0.009*                                   | 0.009                                       | 11:00                         | VVINVV                        |
|                            | Pittsfield Generating Co. Southeast of OPCAs | 0.026*                                   |                                             | 10:30                         |                               |
|                            |                                              | 0.011*                                   |                                             | 11:00                         |                               |
|                            | Northwest of OPCAs                           | 0.009*                                   |                                             | 11:00                         |                               |
| 0/44/00                    | West of OPCAs                                | 0.003*                                   | 0.040*                                      | 10:45                         | 0-1                           |
| 6/14/06                    | North of OPCAs                               | 0.013*                                   | 0.018*                                      | 10:45                         | Calm                          |
|                            | Pittsfield Generating Co.                    | 0.024*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs                           | 0.013*                                   |                                             | 11:00                         |                               |
|                            | Northwest of OPCAs                           | 0.014*                                   |                                             | 11:00                         |                               |
|                            | West of OPCAs                                | 0.011*                                   |                                             | 11:00                         |                               |

| Sampling Date <sup>1</sup> | Sampler Location          | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant Wind<br>Direction |
|----------------------------|---------------------------|------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|
| 6/15/06                    | North of OPCAs            | 0.009*                                   | 0.010*                                      | 10:30                         | NNW                           |
|                            | Pittsfield Generating Co. | 0.014*                                   |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.010*                                   |                                             | 10:30                         |                               |
|                            | Northwest of OPCAs        | 0.008*                                   |                                             | 10:30                         |                               |
|                            | West of OPCAs             | 0.011*                                   |                                             | 10:30                         |                               |
| 6/16/06                    | North of OPCAs            | 0.015*                                   | 0.017*                                      | 9:45 <sup>5</sup>             | WNW                           |
|                            | Pittsfield Generating Co. | 0.022*                                   |                                             | 11:45                         |                               |
|                            | Southeast of OPCAs        | 0.017*                                   |                                             | 11:45                         |                               |
|                            | Northwest of OPCAs        | 0.016*                                   |                                             | 11:45                         |                               |
|                            | West of OPCAs             | 0.026*                                   |                                             | 6:45 <sup>5</sup>             |                               |
| 6/19/06 <sup>7</sup>       | North of OPCAs            | 0.113*                                   | 0.136*                                      | 10:30                         | WSW, SSW                      |
|                            | Pittsfield Generating Co. | 0.153*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.119*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.119*                                   |                                             | 10:30                         |                               |
|                            | West of OPCAs             | 0.187*                                   |                                             | 10:30                         |                               |
| 6/20/06                    | North of OPCAs            | 0.022*                                   | 0.028*                                      | 10:30                         | WSW                           |
|                            | Pittsfield Generating Co. | 0.031*                                   |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.018*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.020*                                   |                                             | 10:45                         |                               |
|                            | West of OPCAs             | 0.038*                                   |                                             | 10:45                         |                               |
| 6/21/06                    | North of OPCAs            | 0.007*                                   | 0.007*                                      | 10:45                         | Variable                      |
|                            | Pittsfield Generating Co. | 0.012*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.009*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.007*                                   |                                             | 10:45                         |                               |
|                            | West of OPCAs             | 0.013*                                   |                                             | 10:45                         |                               |
| 6/22/06                    | North of OPCAs            | 0.029*                                   | 0.034*                                      | 11:30                         | SSW                           |
|                            | Pittsfield Generating Co. | 0.041*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.035*                                   |                                             | 11:30                         |                               |
|                            | Northwest of OPCAs        | 0.030*                                   |                                             | 11:30                         |                               |
|                            | West of OPCAs             | 0.051*                                   |                                             | 11:30                         |                               |
| 6/23/06                    | North of OPCAs            | 0.027*                                   | 0.037*                                      | 10:45                         | WNW                           |
|                            | Pittsfield Generating Co. | 0.046*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.036*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.029*                                   |                                             | 10:45                         |                               |
|                            | West of OPCAs             | 0.057*                                   |                                             | 10:45                         |                               |
| 6/26/06                    | North of OPCAs            | 0.012*                                   | 0.015*                                      | 8:45 <sup>8</sup>             | SSW                           |
|                            | Pittsfield Generating Co. | 0.020*                                   |                                             | 8:30 <sup>8</sup>             |                               |
|                            | Southeast of OPCAs        | 0.021*                                   |                                             | 8:30 <sup>8</sup>             |                               |
|                            | Northwest of OPCAs        | 0.014*                                   |                                             | 8:45 <sup>8</sup>             |                               |
|                            | West of OPCAs             | 0.018*                                   |                                             | 8:45 <sup>8</sup>             |                               |
| 6/27/06                    | North of OPCAs            | 0.012*                                   | 0.011*                                      | 10:45                         | SSW                           |
|                            | Pittsfield Generating Co. | 0.015*                                   |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.012*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.013*                                   |                                             | 10:45                         |                               |
|                            | West of OPCAs             | 0.022*                                   |                                             | 11:00                         |                               |
| 6/28/06                    | North of OPCAs            | 0.004*                                   | 0.008*                                      | 11:30                         | Variable                      |
| <del></del>                | Pittsfield Generating Co. | 0.007*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.003*                                   |                                             | 11:30                         |                               |
|                            | Northwest of OPCAs        | 0.007*                                   |                                             | 11:15                         |                               |
|                            | West of OPCAs             | 0.011*                                   |                                             | 11:30                         |                               |

| Sampling Date <sup>1</sup> | Sampler Location          | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant Wind<br>Direction |
|----------------------------|---------------------------|------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|
| 6/29/06                    | North of OPCAs            | 0.055*                                   | 0.057*                                      | 10:30                         | SSW                           |
|                            | Pittsfield Generating Co. | 0.074*                                   |                                             | 10:00                         |                               |
|                            | Southeast of OPCAs        | 0.047*                                   |                                             | 11:00                         |                               |
|                            | Northwest of OPCAs        | 0.064*                                   |                                             | 10:30                         |                               |
|                            | West of OPCAs             | 0.062*                                   |                                             | 11:00                         |                               |
| 6/30/06                    | North of OPCAs            | 0.030*                                   | 0.037*                                      | 11:00                         | WNW                           |
|                            | Pittsfield Generating Co. | 0.046*                                   |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.046*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.039*                                   |                                             | 11:00                         |                               |
|                            | West of OPCAs             | 0.055*                                   |                                             | 10:45                         |                               |
| 7/5/06                     | North of OPCAs            | 0.016*                                   | 0.021*                                      | 11:00                         | WNW                           |
|                            | Pittsfield Generating Co. | 0.024*                                   |                                             | 11:00                         |                               |
|                            | Southeast of OPCAs        | 0.026*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.022*                                   |                                             | 10:45                         |                               |
|                            | West of OPCAs             | 0.032*                                   |                                             | 11:00                         |                               |
| 7/6/06                     | North of OPCAs            | 0.002*                                   | 0.006*                                      | 11:00                         | WNW                           |
|                            | Pittsfield Generating Co. | 0.007*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.021*                                   |                                             | 11:00                         |                               |
|                            | Northwest of OPCAs        | 0.006*                                   |                                             | 11:00                         |                               |
|                            | West of OPCAs             | 0.010*                                   |                                             | 11:15                         |                               |
| 7/7/06                     | North of OPCAs            | 0.007*                                   | 0.008*                                      | 10:45                         | WNW                           |
|                            | Pittsfield Generating Co. | 0.012*                                   |                                             | 10:45                         |                               |
|                            | Southeast of OPCAs        | 0.019*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.010*                                   |                                             | 10:45                         |                               |
|                            | West of OPCAs             | 0.017*                                   |                                             | 10:45                         |                               |
| 7/10/06                    | North of OPCAs            | 0.030*                                   | 0.056*                                      | 10:45                         | Variable                      |
|                            | Pittsfield Generating Co. | 0.046*                                   |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.044*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.037*                                   |                                             | 10:30                         |                               |
|                            | West of OPCAs             | 0.056*                                   |                                             | 10:45                         |                               |
| 7/11/06                    | North of OPCAs            | 0.0489                                   | 0.070*                                      | 11:15                         | NNW, WNW                      |
|                            | Pittsfield Generating Co. | 0.088*                                   |                                             | 10:15                         | ,                             |
|                            | Southeast of OPCAs        | 0.085*                                   |                                             | 10:30                         |                               |
|                            | Northwest of OPCAs        | 0.071*                                   |                                             | 10:00                         |                               |
|                            | West of OPCAs             | 0.049 <sup>9</sup>                       |                                             | 11:15                         |                               |
| 7/12/06                    | North of OPCAs            | 0.026**                                  | 0.040*                                      | 11:15                         | Calm                          |
| .,                         | Pittsfield Generating Co. | 0.066*                                   |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.063*                                   |                                             | 10:45                         |                               |
|                            | Northwest of OPCAs        | 0.054*                                   |                                             | 10:30                         |                               |
|                            | West of OPCAs             | 0.022**                                  |                                             | 11:15                         |                               |
| 7/13/06                    | North of OPCAs            | 0.010**                                  | 0.007*                                      | 11:15                         | NNE, W                        |
| .,,                        | Pittsfield Generating Co. | 0.004*                                   |                                             | 11:00                         |                               |
|                            | Southeast of OPCAs        | 0.002*                                   |                                             | 10:30                         |                               |
|                            | Northwest of OPCAs        | 0.004*                                   |                                             | 11:00                         |                               |
|                            | West of OPCAs             | 0.013**                                  |                                             | 11:15                         |                               |
| 7/14/06                    | North of OPCAs            | 0.011**                                  | 0.021*                                      | 11:00                         | WNW                           |
| .,, 00                     | Pittsfield Generating Co. | 0.030*                                   | 3.021                                       | 10:30                         | ,                             |
|                            | Southeast of OPCAs        | 0.038*                                   |                                             | 10:30                         |                               |
|                            | Northwest of OPCAs        | 0.026*                                   |                                             | 10:30                         |                               |
|                            | West of OPCAs             | 0.011**                                  |                                             | 11:00                         |                               |

| Sampling Date <sup>1</sup> | Sampler Location          | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant Wind Direction |
|----------------------------|---------------------------|------------------------------------------|---------------------------------------------|-------------------------------|----------------------------|
| 7/17/06                    | North of OPCAs            | 0.022**                                  | 0.013*                                      | 11:15                         | Variable                   |
|                            | Pittsfield Generating Co. | 0.025*                                   |                                             | 10:30                         |                            |
|                            | Southeast of OPCAs        | 0.029*                                   |                                             | 11:00                         |                            |
|                            | Northwest of OPCAs        | 0.0219                                   |                                             | 10:45                         |                            |
|                            | West of OPCAs             | 0.018 <sup>9</sup>                       |                                             | 8:15 <sup>10</sup>            |                            |
| 7/18/06                    | North of OPCAs            | 0.018**                                  | 0.024*                                      | 11:15                         | WNW                        |
|                            | Pittsfield Generating Co. | 0.031*                                   |                                             | 10:15                         |                            |
|                            | Southeast of OPCAs        | 0.036*                                   |                                             | 11:00                         |                            |
|                            | Northwest of OPCAs        | 0.018**                                  |                                             | 11:15                         |                            |
|                            | West of OPCAs             | 0.037*                                   |                                             | 10:45                         |                            |
| 7/19/06                    | North of OPCAs            | 0.015**                                  | 0.013*                                      | 11:15                         | Calm                       |
|                            | Pittsfield Generating Co. | 0.017*                                   |                                             | 10:30                         |                            |
|                            | Southeast of OPCAs        | 0.019*                                   |                                             | 10:30                         |                            |
|                            | Northwest of OPCAs        | 0.009**                                  |                                             | 11:15                         |                            |
|                            | West of OPCAs             | 0.019*                                   |                                             | 10:30                         |                            |
| 7/20/06                    | North of OPCAs            | 0.011**                                  | 0.004*                                      | 11:15                         | Calm                       |
|                            | Pittsfield Generating Co. | 0.020*                                   |                                             | 11:15                         |                            |
|                            | Southeast of OPCAs        | 0.021*                                   |                                             | 11:15                         |                            |
|                            | Northwest of OPCAs        | 0.012**                                  |                                             | 11:15                         |                            |
|                            | West of OPCAs             | 0.019*                                   |                                             | 11:15                         |                            |
| 7/21/06                    | North of OPCAs            | 0.018**                                  | 0.056*                                      | 11:00                         | Variable                   |
| .,,                        | Pittsfield Generating Co. | 0.052*                                   | 0.000                                       | 11:30                         | T G.I.G.F.                 |
|                            | Southeast of OPCAs        | 0.052*                                   |                                             | 11:15                         |                            |
|                            | Northwest of OPCAs        | 0.018**                                  |                                             | 11:00                         |                            |
|                            | West of OPCAs             | 0.050*                                   |                                             | 11:30                         |                            |
| 7/24/06                    | North of OPCAs            | 0.009**                                  | 0.009*                                      | 11:15                         | Variable                   |
| 172 1700                   | Pittsfield Generating Co. | 0.010*                                   | 0.000                                       | 10:30                         | Variable                   |
|                            | Southeast of OPCAs        | 0.010*                                   |                                             | 10:30                         |                            |
|                            | Northwest of OPCAs        | 0.007**                                  |                                             | 11:15                         |                            |
|                            | West of OPCAs             | 0.007*                                   |                                             | 11:00                         |                            |
| 7/25/06                    | North of OPCAs            | 0.025**                                  | 0.038*                                      | 9:45 <sup>8</sup>             | SSW                        |
| 1/25/00                    | Pittsfield Generating Co. | 0.025                                    | 0.036                                       | 9:15 <sup>8</sup>             | 3300                       |
|                            | Southeast of OPCAs        |                                          |                                             | 9:00 <sup>8</sup>             |                            |
|                            | Northwest of OPCAs        | 0.046*<br>0.024**                        |                                             | 9:45 <sup>8</sup>             |                            |
|                            | West of OPCAs             |                                          |                                             | 9:45<br>9:15 <sup>8</sup>     |                            |
| 7/26/06                    |                           | 0.051*                                   | 0.045*                                      |                               | Variable                   |
| 1/20/00                    | North of OPCAs            | 0.025**                                  | 0.045*                                      | 11:15                         | Variable                   |
|                            | Pittsfield Generating Co. | 0.063*                                   |                                             | 10:30                         |                            |
|                            | Southeast of OPCAs        | 0.062*                                   |                                             | 10:30                         |                            |
|                            | Northwest of OPCAs        | 0.025**                                  |                                             | 11:15                         |                            |
| 7/07/00                    | West of OPCAs             | 0.064*                                   | 0.000+                                      | 10:30                         | 00111                      |
| 7/27/06                    | North of OPCAs            | 0.037**                                  | 0.082*                                      | 11:15                         | SSW                        |
|                            | Pittsfield Generating Co. | 0.108*                                   |                                             | 10:45                         |                            |
|                            | Southeast of OPCAs        | 0.101*                                   |                                             | 10:45                         |                            |
|                            | Northwest of OPCAs        | 0.035**                                  |                                             | 11:15                         |                            |
| = (0.0 /                   | West of OPCAs             | 0.113*                                   |                                             | 10:30                         | 0.5                        |
| 7/28/06                    | North of OPCAs            | 0.026**                                  | 0.041*                                      | 9:00 <sup>6</sup>             | SSW                        |
|                            | Pittsfield Generating Co. | 0.053*                                   |                                             | 10:30                         |                            |
|                            | Southeast of OPCAs        | 0.052*                                   |                                             | 10:30                         |                            |
|                            | Northwest of OPCAs        | 0.022**                                  |                                             | 11:15                         |                            |
|                            | West of OPCAs             | 0.060*                                   |                                             | 10:30                         |                            |

# PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sampling Date <sup>1</sup> | Sampler Location          | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant Wind<br>Direction |
|----------------------------|---------------------------|------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|
| 7/31/06                    | North of OPCAs            | 0.012*                                   | 0.015*                                      | 10:30                         | Variable                      |
|                            | Pittsfield Generating Co. | 0.020*                                   |                                             | 10:30                         |                               |
|                            | Southeast of OPCAs        | 0.021*                                   |                                             | 11:30                         |                               |
|                            | Northwest of OPCAs        | 0.010**                                  |                                             | 11:15                         |                               |
|                            | West of OPCAs             | 0.013*                                   |                                             | 10:45                         |                               |
| Notification Level         |                           | 0.120                                    | -                                           | -                             | _                             |
| Action Level               |                           | 0.150                                    |                                             |                               |                               |

#### Notes:

NA - Not Available

Concentrations with no asterisk measured with a pDR-1000.

- \* Measured with a DR-2000 or DR-4000
- \*\* Measured with an EBAM.

Background monitoring station is located east of Building 9B, between Building 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

- <sup>1</sup> The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.
- <sup>2</sup> Sampling data invalid interference from cooling tower.
- <sup>3</sup> Reading reflects average concentration manually recorded from the monitor at the end of the day.
- <sup>4</sup> Estimated logging period.
- <sup>5</sup> Sampling period was shortened due to instrument malfunction.
- <sup>6</sup> Sampling period was shortened due to a power failure.
- <sup>7</sup> The exceedances (bold concentrations) and overall high site values on this day are likely related to regional ambient pollutant and atmospheric conditions as reported by EPA and measured at several other sites in Pittsfield and other parts of New England. The relative difference between the background site concentration and the OPCAs site concentrations indicate that the OPCAs were not the significant contributor to these high values.
- 8 Sampling period was shortened due to mid-morning notification of monitors needed.
- <sup>9</sup> Represents data from a DR-4000 and an EBAM.
- $^{\rm 10}$  Sampling period was shortened due to relocation of DR and EBAM monitors.

# TABLE 5-4 BUILDING 71 CONSOLIDATION AREA LEACHATE TRANSFER SUMMARY PLANT AREA - HILL 78 & BUILDING 71 CONSOLIDATION AREAS

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Month / Year   | Total Volume of<br>Leachate Transferred<br>(Gallons) |
|----------------|------------------------------------------------------|
| July 2005      | 127,500                                              |
| August 2005    | 55,000                                               |
| September 2005 | 55,000                                               |
| October 2005   | 378,000                                              |
| November 2005  | 162,500                                              |
| December 2005  | 168,000                                              |
| January 2006   | 185,000                                              |
| February 2006  | 125,000                                              |
| March 2006     | 70,000                                               |
| April 2006     | 104,000                                              |
| May 2006       | 137,000                                              |
| June 2006      | 139,000                                              |
| July 2006      | 111,000                                              |

Leachate is transferred from the Building 71 On-Plant Consolidation Area to Building 64G for treatment.

# ITEM 6 PLANT AREA HILL 78 AREA - REMAINDER (GECD160) JULY 2006

#### a. Activities Undertaken/Completed

- City of Pittsfield began to clear obstructions from the sanitary sewer line between Hill 78 and Merrill Road.
- Conducted supplemental pre-design soil sampling, as identified in Table 6-1 (see Item 6.e below).\*
- Conducted drum sampling at Building 78 of acetone/hexane mixture, as well as distilled water, generated from tool and equipment decontamination, as identified in Table 6-1.
- Conducted sampling of Building 78 roof materials, as identified in Table 6-1.
- Submitted Pre-Excavation Notification letter for the relocation of Gate 25 within the Hill 78 Area-Remainder (July 11, 2006).

#### b. Sampling/Test Results Received

See attached tables

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue to coordinate with the City of Pittsfield for the clearing of the sanitary sewer line beneath the Hill 78 Area.
- Submit plan to remove blockage in the storm sewer line (see Item 6.e below) and install new piping in this area.
- Conduct additional video inspection of the storm and sanitary sewer lines within the Hill 78 Area after the lines have been cleared.
- Complete supplemental pre-design soil investigations (see Item 6.e below).\*
- Prepare and submit Supplemental Data Letter Report on supplemental pre-design soil investigations (due to EPA by September 11, 2006).\*

# ITEM 6 (cont'd) PLANT AREA HILL 78 AREA - REMAINDER (GECD160) JULY 2006

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

- The supplemental pre-design soil investigations were completed, with the exception of certain locations where GE was unable to sample due to probe refusal. In addition, several VOC samples were rejected by the laboratory due to temperature criteria. GE will recollect these samples and continue its attempt to obtain samples from locations where refusal was encountered.\*
- During cleaning of the 48-inch-diameter storm sewer line beneath Hill 78, a blockage in the pipe was encountered. After additional investigation activities, the blockage was determined to be approximately 42 feet long, located approximately 162 feet from the southern outlet of the pipe, and appeared to consist of construction and demolition debris.

#### f. Proposed/Approved Work Plan Modifications

None

## TABLE 6-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## HILL 78 AREA-REMAINDER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name                                        | Field Sample ID       | Sample<br>Date | Depth<br>(feet) | Matrix | Laboratory | Analyses                              | Date Received<br>by GE or BBL |
|-----------------------------------------------------|-----------------------|----------------|-----------------|--------|------------|---------------------------------------|-------------------------------|
| Building 78 - Decon Water Sampling                  | 78-070606-Decon-1     | 7/6/06         | NA              | Water  | SGS        | PCB                                   | 7/21/06                       |
| from On/Off Sites                                   | 70-070000-Decon-1     | 170/00         | INA             | water  | 303        | 1 OB                                  | 1/21/00                       |
| Building 78 - Roof Sampling                         | 78-Middle-Roof-1      | 7/6/06         | NA              | Solid  | SGS        | PCB                                   | 7/21/06                       |
| Building 78 - Roof Sampling Building 78 Sampling of | 78-North-Roof-1       | 7/5/06         | NA              | Solid  | SGS        | PCB                                   | 7/21/06                       |
| Acetone/Hexane Drum from On/Off Site Tool Decon     | F1692-1               | 7/7/06         | NA              | Liquid | SGS        | PCB                                   | 7/21/06                       |
| Supplemental Pre-Design Investigation               | RAA9-C10              | 6/21/06        | 6-8             | Soil   | SGS        | VOC                                   | 7/31/06                       |
| Supplemental Pre-Design Investigation               | RAA9-C10              | 6/21/06        | 0-1             | Soil   | SGS        | VOC, SVOC, Inorganics, PCDD/PCDF      | 7/31/06                       |
| Supplemental Pre-Design Investigation               | RAA9-D8               | 6/21/06        | 1-6             | Soil   | SGS        | SVOC, Inorganics, PCDD/PCDF           | 7/31/06                       |
| Supplemental Pre-Design Investigation               | RAA9-D8               | 6/21/06        | 1-3             | Soil   | SGS        | VOC                                   | 7/31/06                       |
| Supplemental Pre-Design Investigation               | RAA9-I19              | 6/16/06        | 4-6             | Soil   | SGS        | VOC                                   | 7/17/06                       |
| Supplemental Pre-Design Investigation               | RAA9-J20              | 6/16/06        | 10-12           | Soil   | SGS        | VOC                                   | 7/17/06                       |
| Supplemental Pre-Design Investigation               | RAA9-K19              | 6/16/06        | 8-10            | Soil   | SGS        | VOC                                   | 7/17/06                       |
| Supplemental Pre-Design Investigation               | RAA9-K20              | 6/16/06        | 3-4             | Soil   | SGS        | VOC                                   | 7/17/06                       |
| Supplemental Pre-Design Investigation               | RAA9-B12              | 6/21/06        | 1-6             | Soil   | SGS        | PCB                                   | 7/31/06                       |
| Supplemental Pre-Design Investigation               | RAA9-B12              | 6/21/06        | 6-15            | Soil   | SGS        | PCB                                   | 7/31/06                       |
| Supplemental Pre-Design Investigation               | RAA9-B12              | 6/21/06        | 0-1             | Soil   | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF | 7/31/06                       |
| Supplemental Pre-Design Investigation               | RAA9-C10              | 6/21/06        | 1-6             | Soil   | SGS        | PCB                                   | 7/31/06                       |
| Supplemental Pre-Design Investigation               | RAA9-C10              | 6/21/06        | 6-15            | Soil   | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF      | 7/31/06                       |
| Supplemental Pre-Design Investigation               | RAA9-D8               | 6/21/06        | 6-15            | Soil   | SGS        | PCB                                   | 7/31/06                       |
| Supplemental Pre-Design Investigation               | RAA9-DUP-1 (RAA9-J21) | 6/19/06        | 1-6             | Soil   | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF      | 7/26/06                       |
| Supplemental Pre-Design Investigation               | RAA9-DUP-3 (RAA9-J18) | 6/20/06        | 1-6             | Soil   | SGS        | PCB                                   | 7/26/06                       |
| Supplemental Pre-Design Investigation               | RAA9-DUP-4 (RAA9-E6)  | 6/22/06        | 0-1             | Soil   | SGS        | PCB                                   | 7/28/06                       |
| Supplemental Pre-Design Investigation               | RAA9-E6               | 6/22/06        | 0-1             | Soil   | SGS        | PCB                                   | 7/28/06                       |
| Supplemental Pre-Design Investigation               | RAA9-E6               | 6/22/06        | 1-6             | Soil   | SGS        | PCB                                   | 7/28/06                       |
| Supplemental Pre-Design Investigation               | RAA9-E6               | 6/22/06        | 6-15            | Soil   | SGS        | PCB                                   | 7/28/06                       |
| Supplemental Pre-Design Investigation               | RAA9-F4               | 6/23/06        | 0-1             | Soil   | SGS        | PCB                                   | 7/14/06                       |
| Supplemental Pre-Design Investigation               | RAA9-F4               | 6/23/06        | 1-6             | Soil   | SGS        | PCB                                   | 7/14/06                       |
| Supplemental Pre-Design Investigation               | RAA9-F4               | 6/23/06        | 6-15            | Soil   | SGS        | PCB                                   | 7/14/06                       |
| Supplemental Pre-Design Investigation               | RAA9-G2               | 6/22/06        | 1-6             | Soil   | SGS        | PCB                                   | 7/28/06                       |
| Supplemental Pre-Design Investigation               | RAA9-G2               | 6/22/06        | 6-15            | Soil   | SGS        | PCB                                   | 7/28/06                       |
| Supplemental Pre-Design Investigation               | RAA9-G2S              | 6/21/06        | 0-1             | Soil   | SGS        | PCB                                   | 7/31/06                       |
| Supplemental Pre-Design Investigation               | RAA9-H11W-SD          | 6/26/06        | 0-0.5           | Soil   | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF | 7/28/06                       |
| Supplemental Pre-Design Investigation               | RAA9-H21              | 6/20/06        | 0-1             | Soil   | SGS        | PCB                                   | 7/26/06                       |
| Supplemental Pre-Design Investigation               | RAA9-H21              | 6/20/06        | 1-6             | Soil   | SGS        | PCB                                   | 7/26/06                       |
| Supplemental Pre-Design Investigation               | RAA9-H21              | 6/20/06        | 6-15            | Soil   | SGS        | PCB                                   | 7/26/06                       |
| Supplemental Pre-Design Investigation               | RAA9-I18              | 6/20/06        | 6-15            | Soil   | SGS        | PCB                                   | 7/26/06                       |
| Supplemental Pre-Design Investigation               | RAA9-I19              | 6/16/06        | 6-15            | Soil   | SGS        | PCB                                   | 7/17/06                       |

## TABLE 6-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## HILL 78 AREA-REMAINDER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Butter                                | F1410                        | Sample  | Depth  | 88.4.1   | 1.1.       | A                                              | Date Received |
|---------------------------------------|------------------------------|---------|--------|----------|------------|------------------------------------------------|---------------|
| Project Name                          | Field Sample ID              | Date    | (feet) | Matrix   | Laboratory | Analyses                                       | by GE or BBL  |
| Supplemental Pre-Design Investigation | RAA9-I19                     | 6/16/06 | 1-6    | Soil     | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF               | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-I19                     | 6/16/06 | 0-1    | Soil     | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF          | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-I22                     | 6/19/06 | 1-6    | Soil     | SGS        | PCB                                            | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-I22                     | 6/19/06 | 6-15   | Soil     | SGS        | PCB                                            | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-I22                     | 6/19/06 | 0-1    | Soil     | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF               | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-J12S-SW                 | 6/13/06 | NA     | Water    | SGS        | PCB, VOC, SVOC, Metals, CN, Sulfide, PCDD/PCDF | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-J18                     | 6/20/06 | 1-6    | Soil     | SGS        | PCB                                            | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-J18                     | 6/20/06 | 6-15   | Soil     | SGS        | PCB                                            | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-J20                     | 6/16/06 | 1-6    | Soil     | SGS        | PCB                                            | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-J20                     | 6/16/06 | 6-15   | Soil     | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF               | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-J20                     | 6/16/06 | 0-1    | Soil     | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF          | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-J21                     | 6/19/06 | 0-1    | Soil     | SGS        | PCB                                            | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-J21                     | 6/19/06 | 6-15   | Soil     | SGS        | PCB                                            | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-J21                     | 6/19/06 | 1-6    | Soil     | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF               | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-J22                     | 6/19/06 | 0-1    | Soil     | SGS        | PCB                                            | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-J22                     | 6/19/06 | 1-6    | Soil     | SGS        | PCB                                            | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-J22                     | 6/19/06 | 6-15   | Soil     | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF               | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-K13W-SD                 | 6/15/06 | 0-0.5  | Sediment | SGS        | PCB                                            | 7/24/06       |
| Supplemental Pre-Design Investigation | RAA9-K16S-SD                 | 6/14/06 | 0-0.5  | Sediment | SGS        | PCB                                            | 7/24/06       |
| Supplemental Pre-Design Investigation | RAA9-K17-SW                  | 6/13/06 | NA     | Water    | SGS        | PCB, VOC, SVOC, Metals, CN, Sulfide, PCDD/PCDF | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-K19                     | 6/16/06 | 1-6    | Soil     | SGS        | PCB                                            | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-K19                     | 6/16/06 | 6-15   | Soil     | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF               | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-K19                     | 6/16/06 | 0-1    | Soil     | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF          | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-K20                     | 6/16/06 | 0-1    | Soil     | SGS        | PCB                                            | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-K20                     | 6/16/06 | 6-15   | Soil     | SGS        | PCB                                            | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-K20                     | 6/16/06 | 1-6    | Soil     | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF               | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-K4                      | 6/23/06 | 6-15   | Soil     | SGS        | PCB                                            | 7/14/06       |
| Supplemental Pre-Design Investigation | RAA9-L13E-SW                 | 6/13/06 | NA     | Water    | SGS        | PCB, VOC, SVOC, Metals, CN, Sulfide, PCDD/PCDF | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-L13N-SD                 | 6/15/06 | 0-0.5  | Sediment | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF          | 7/24/06       |
| Supplemental Pre-Design Investigation | RAA9-L14W-SD                 | 6/15/06 | 0-0.5  | Sediment | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF          | 7/24/06       |
| Supplemental Pre-Design Investigation | RAA9-M6                      | 6/23/06 | 6-15   | Soil     | SGS        | PCB                                            | 7/14/06       |
| Supplemental Pre-Design Investigation | RAA9-MHD2-SW                 | 6/14/06 | NA     | Water    | SGS        | PCB, VOC, SVOC, Metals, CN, Sulfide, PCDD/PCDF | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-N4.5                    | 6/23/06 | 6-15   | Soil     | SGS        | PCB                                            | 7/14/06       |
| Supplemental Pre-Design Investigation | RAA9-N8                      | 6/22/06 | 1-6    | Soil     | SGS        | PCB                                            | 7/28/06       |
| Supplemental Pre-Design Investigation | RAA9-N8                      | 6/22/06 | 6-15   | Soil     | SGS        | PCB                                            | 7/28/06       |
| Supplemental Pre-Design Investigation | RAA9-N8                      | 6/22/06 | 0-1    | Soil     | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF          | 7/28/06       |
| Supplemental Pre-Design Investigation | RAA9-NO5.5                   | 6/23/06 | 0-1    | Soil     | SGS        | PCB                                            | 7/14/06       |
| Supplemental Pre-Design Investigation | RAA9-NO5.5                   | 6/23/06 | 1-6    | Soil     | SGS        | PCB                                            | 7/14/06       |
| Supplemental Pre-Design Investigation | RAA9-SD-DUP-1 (RAA9-L13N-SD) | 6/15/06 | 0-0.5  | Sediment | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF          | 7/24/06       |

## TABLE 6-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## HILL 78 AREA-REMAINDER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                       |                              | Sample  | Depth  |        |            |                                                | Date Received |
|---------------------------------------|------------------------------|---------|--------|--------|------------|------------------------------------------------|---------------|
| Project Name                          | Field Sample ID              | Date    | (feet) | Matrix | Laboratory | Analyses                                       | by GE or BBL  |
| Supplemental Pre-Design Investigation | RAA9-SW-DUP-1 (RAA9-L13E-SW) | 6/13/06 | NA     | Water  | SGS        | PCB, VOC, SVOC, Metals, CN, Sulfide, PCDD/PCDF | 7/17/06       |
| Supplemental Pre-Design Investigation | RAA9-X1                      | 6/15/06 | 0-1    | Soil   | SGS        | PCB                                            | 7/24/06       |
| Supplemental Pre-Design Investigation | RAA9-X2                      | 6/20/06 | 0-1    | Soil   | SGS        | PCB                                            | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-X2                      | 6/20/06 | 1-6    | Soil   | SGS        | PCB                                            | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-X3                      | 6/20/06 | 0-1    | Soil   | SGS        | PCB                                            | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-X3                      | 6/20/06 | 1-6    | Soil   | SGS        | PCB                                            | 7/26/06       |
| Supplemental Pre-Design Investigation | RAA9-X4                      | 6/15/06 | 0-1    | Soil   | SGS        | PCB                                            | 7/24/06       |

#### Note:

1. Field duplicate sample locations are presented in parenthesis.

## TABLE 6-2 PCB DATA RECEIVED DURING JULY 2006

# BUILDING 78 SAMPLING OF ACETONE/HEXANE DRUM FROM ON/OFF SITE TOOL DECON HILL 78 AREA REMAINDER GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

| Sample ID | Date<br>Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|-----------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|
| F1692-1   | 7/7/2006          | ND(0.0010)   | ND(0.0015)   | ND(0.0015)   | ND(0.0010)   | ND(0.0010)   | ND(0.0015)   | ND(0.0015)   | ND(0.0015) |

#### Notes:

- 1. Sample was collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

## TABLE 6-3 PCB DATA RECEIVED DURING JULY 2006

#### BUILDING 78 ROOF SAMPLING HILL 78 AREA REMAINDER

#### **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS**

(Results are presented in dry weight parts per million, ppm)

| Sample ID        | Date<br>Collected | Aroclor-1016 | Aroclor-1221 | Aroclor-1232 | Aroclor-1242 | Aroclor-1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|------------------|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|
| 78-Middle-Roof-1 | 7/6/2006          | ND(0.18)     | ND(0.18)   |
| 78-North-Roof-1  | 7/5/2006          | ND(0.15)     | ND(0.15)   |

#### Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

## TABLE 6-4 PCB DATA RECEIVED DURING JULY 2006

## BUILDING 78 DECON WATER SAMPLING FROM ON/OFF SITES HILL 78 AREA REMAINDER

## GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

| Sample ID         | Date<br>Collected | Aroclor-1016, -1221,<br>-1232, -1242, -1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|-------------------|-------------------|---------------------------------------------|--------------|--------------|------------|
| 78-070606-Decon-1 | 7/6/2006          | ND(0.75)                                    | 1.3          | 0.75         | 2.05       |

#### Notes:

- 1. Sample was collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of
- 2. PCBs.

ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

## TABLE 6-5 APPENDIX IX+3 SURFACE WATER SAMPLE DATA RECEIVED DURING JULY 2006

# SUPPLEMENTAL PRE-DESIGN INVESTIGATION HILL 78 AREA REMAINDER GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

| Parameter       | Sample ID:<br>Date Collected: | RAA9-J12S-SW<br>06/13/06 | RAA9-K17-SW<br>06/13/06 | RAA9-L13E-SW<br>06/13/06             | RAA9-MHD2-SW<br>06/14/06 |
|-----------------|-------------------------------|--------------------------|-------------------------|--------------------------------------|--------------------------|
| Volatile Organ  |                               | 00,10,00                 | 00/10/00                | 00,10,00                             | 00,11,000                |
| None Detected   |                               |                          |                         |                                      |                          |
| PCBs-Unfilter   |                               |                          |                         |                                      |                          |
| None Detected   |                               |                          |                         |                                      |                          |
| Semivolatile C  | rganics                       |                          |                         |                                      |                          |
| None Detected   |                               |                          |                         |                                      |                          |
| Furans          | J.                            |                          |                         |                                      |                          |
| 2,3,7,8-TCDF    |                               | ND(0.0000000010)         | ND(0.0000000015)        | ND(0.0000000012) [ND(0.0000000013)]  | ND(0.00000000099)        |
| TCDFs (total)   |                               | ND(0.0000000010)         | 0.0000000076 J          | ND(0.0000000012) [ND(0.0000000013)]  | ND(0.00000000099)        |
| 1,2,3,7,8-PeCE  | )F                            | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.000000049) [ND(0.0000000048)]   | ND(0.000000050)          |
| 2,3,4,7,8-PeCE  |                               | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| PeCDFs (total)  |                               | ND(0.000000049)          | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| 1,2,3,4,7,8-Hx( | DF                            | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| 1,2,3,6,7,8-Hx( |                               | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.0000000050)         |
| 1,2,3,7,8,9-Hx( |                               | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| 2,3,4,6,7,8-Hx( |                               | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| HxCDFs (total)  |                               | ND(0.000000049)          | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| 1,2,3,4,6,7,8-H | pCDF                          | ND(0.000000049)          | ND(0.0000000049)        | 0.000000040 J [ND(0.0000000048)]     | ND(0.000000050)          |
| 1,2,3,4,7,8,9-H | pCDF                          | ND(0.000000049)          | ND(0.0000000049)        | 0.000000018 J [ND(0.0000000048)]     | ND(0.000000050)          |
| HpCDFs (total)  |                               | ND(0.0000000049)         | ND(0.0000000049)        | 0.00000011 [ND(0.000000048)]         | ND(0.000000050)          |
| OCDF            |                               | ND(0.0000000097)         | ND(0.0000000098)        | 0.00000070 [ND(0.0000000097)]        | ND(0.0000000099)         |
| Dioxins         |                               |                          |                         |                                      |                          |
| 2,3,7,8-TCDD    |                               | ND(0.00000000097)        | ND(0.00000000098)       | ND(0.00000000098) [ND(0.0000000010)] | ND(0.00000000099)        |
| TCDDs (total)   |                               | ND(0.00000000097)        | ND(0.00000000098)       | ND(0.0000000098) [ND(0.000000010)]   | ND(0.00000000099)        |
| 1,2,3,7,8-PeCE  | )D                            | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| PeCDDs (total)  |                               | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| 1,2,3,4,7,8-Hx0 | CDD                           | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.0000000050)         |
| 1,2,3,6,7,8-Hx0 | CDD                           | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| 1,2,3,7,8,9-Hx0 | CDD                           | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| HxCDDs (total)  |                               | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| 1,2,3,4,6,7,8-H | pCDD                          | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| HpCDDs (total)  |                               | ND(0.0000000049)         | ND(0.0000000049)        | ND(0.0000000049) [ND(0.0000000048)]  | ND(0.000000050)          |
| OCDD            |                               | ND(0.0000000097)         | ND(0.0000000098)        | 0.000000017 J [ND(0.0000000097)]     | ND(0.0000000099)         |
| Total TEQs (W   | HO TEFs)                      | 0.000000061              | 0.0000000061            | 0.0000000067 [0.0000000061]          | 0.0000000062             |

## TABLE 6-5 APPENDIX IX+3 SURFACE WATER SAMPLE DATA RECEIVED DURING JULY 2006

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION HILL 78 AREA REMAINDER

#### **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS**

(Results are presented in parts per million, ppm)

|              | Sample ID:      | RAA9-J12S-SW | RAA9-K17-SW  | RAA9-L13E-SW                | RAA9-MHD2-SW |
|--------------|-----------------|--------------|--------------|-----------------------------|--------------|
| Parameter    | Date Collected: | 06/13/06     | 06/13/06     | 06/13/06                    | 06/14/06     |
| Inorganics-U | nfiltered       |              |              |                             |              |
| Antimony     |                 | 0.00480 B    | ND(0.0400)   | ND(0.0400) [ND(0.0400)]     | ND(0.0400)   |
| Barium       |                 | 0.0458 B     | 0.0333 B     | 0.0410 B [0.0407 B]         | 0.0387 B     |
| Cadmium      |                 | 0.000220 B   | ND(0.00500)  | ND(0.00500) [0.000340 B]    | ND(0.00500)  |
| Chromium     |                 | 0.00163 B    | 0.00360 B    | ND(0.0100) [ND(0.0100)]     | ND(0.0100)   |
| Copper       |                 | 0.000960 B   | 0.0138 B     | ND(0.200) [ND(0.200)]       | ND(0.200)    |
| Lead         |                 | ND(0.0100)   | 0.00449 B    | ND(0.0100) [ND(0.0100)]     | ND(0.0100)   |
| Mercury      |                 | ND(0.000570) | ND(0.000570) | ND(0.000570) [ND(0.000570)] | 0.0000384 B  |
| Nickel       |                 | 0.00108 B    | 0.00279 B    | 0.00229 B [0.00185 B]       | ND(0.0500)   |
| Silver       |                 | 0.000770 B   | 0.000600 B   | 0.000670 B [0.000610 B]     | 0.000630 B   |
| Thallium     |                 | ND(0.0100)   | 0.00760 B    | ND(0.0100) [ND(0.0100)]     | ND(0.0100)   |
| Vanadium     |                 | 0.00498 B    | ND(0.0500)   | 0.00368 B [0.00430 B]       | ND(0.0500)   |
| Zinc         |                 | 0.00953 B    | 0.850        | 0.00661 B [0.00660 B]       | 0.00353 B    |

#### Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of Appendix IX+3 constituents.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998.
- 4. With the exception of dioxin/furans, only those constituents detected in one or more samples are summarized.
- 5. Field duplicate sample results are presented in brackets.
- 6. -- Indicates that all constituents for the parameter group were not detected.

#### Data Qualifiers:

#### Organics (volatiles, semivolatiles, dioxin/furans)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

#### Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

#### TABLE 6-6 PCB DATA RECEIVED DURING JULY 2006

#### SUPPLEMENTAL PRE-DESIGN INVESTIGATION HILL 78 AREA REMAINDER

#### GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

| Sample ID                | Depth<br>(Feet) | Date<br>Collected      | Aroclor-1016, -1221,<br>-1232, -1242, -1248 | Aroclor-1254           | Aroclor-1260           | Total PCBs             |
|--------------------------|-----------------|------------------------|---------------------------------------------|------------------------|------------------------|------------------------|
| RAA9-B12                 | 0-1             | 6/21/2006              | ND(0.035)                                   | ND(0.035)              | 0.030 J                | 0.030 J                |
| 10000 012                | 1-6             | 6/21/2006              | ND(0.035)                                   | ND(0.035)              | ND(0.035)              | ND(0.035)              |
|                          | 6-15            | 6/21/2006              | ND(0.035)                                   | ND(0.035)              | ND(0.035)              | ND(0.035)              |
| RAA9-C10                 | 1-6             | 6/21/2006              | ND(0.035)                                   | ND(0.035)              | 0.18                   | 0.18                   |
|                          | 6-15            | 6/21/2006              | ND(0.039)                                   | ND(0.039)              | ND(0.039)              | ND(0.039)              |
| RAA9-D8                  | 6-15            | 6/21/2006              | ND(0.034)                                   | ND(0.034)              | 0.23                   | 0.23                   |
| RAA9-E6                  | 0-1             | 6/22/2006              | ND(0.033) [ND(0.034)]                       | ND(0.033) [ND(0.034)]  | ND(0.033) [ND(0.034)]  | ND(0.033) [ND(0.034)]  |
|                          | 1-6             | 6/22/2006              | ND(0.032)                                   | ND(0.032)              | ND(0.032)              | ND(0.032)              |
|                          | 6-15            | 6/22/2006              | ND(0.035)                                   | ND(0.035)              | ND(0.035)              | ND(0.035)              |
| RAA9-F4                  | 0-1             | 6/23/2006              | ND(0.034)                                   | ND(0.034)              | ND(0.034)              | ND(0.034)              |
|                          | 1-6             | 6/23/2006              | ND(0.034)                                   | ND(0.034)              | ND(0.034)              | ND(0.034)              |
|                          | 6-15            | 6/23/2006              | ND(0.036)                                   | ND(0.036)              | ND(0.036)              | ND(0.036)              |
| RAA9-G2                  | 1-6             | 6/22/2006              | ND(0.035)                                   | ND(0.035)              | ND(0.035)              | ND(0.035)              |
| DAA0 000                 | 6-15            | 6/22/2006              | ND(0.033)                                   | ND(0.033)              | ND(0.033)              | ND(0.033)              |
| RAA9-G2S<br>RAA9-H11W-SD | 0-1<br>0-0.5    | 6/21/2006<br>6/26/2006 | ND(0.035)                                   | ND(0.035)<br>0.22      | 0.029 J<br>0.15        | 0.029 J<br>0.37        |
| RAA9-H11W-SD<br>RAA9-H21 | 0-0.5           | 6/20/2006              | ND(0.032)<br>ND(0.033)                      | ND(0.033)              | ND(0.033)              | ND(0.033)              |
| NAA9-1121                | 1-6             | 6/20/2006              | ND(0.033)<br>ND(0.031)                      | ND(0.033)<br>ND(0.031) | ND(0.033)<br>ND(0.031) | ND(0.033)<br>ND(0.031) |
|                          | 6-15            | 6/20/2006              | ND(0.034)                                   | ND(0.034)              | ND(0.034)              | ND(0.034)              |
| RAA9-I18                 | 6-15            | 6/20/2006              | ND(0.033)                                   | ND(0.033)              | ND(0.033)              | ND(0.033)              |
| RAA9-I19                 | 0-1             | 6/16/2006              | ND(0.67)                                    | 3.6                    | ND(0.67)               | 3.6                    |
|                          | 1-6             | 6/16/2006              | ND(0.034)                                   | ND(0.034)              | ND(0.034)              | ND(0.034)              |
|                          | 6-15            | 6/16/2006              | ND(0.034)                                   | ND(0.034)              | ND(0.034)              | ND(0.034)              |
| RAA9-I22                 | 0-1             | 6/19/2006              | ND(1.6)                                     | 11                     | 5.5                    | 16.5                   |
|                          | 1-6             | 6/19/2006              | ND(0.33)                                    | 2.1                    | ND(0.33)               | 2.1                    |
|                          | 6-15            | 6/19/2006              | ND(0.036)                                   | ND(0.036)              | ND(0.036)              | ND(0.036)              |
| RAA9-J18                 | 1-6             | 6/20/2006              | ND(0.033) [ND(0.034)]                       | ND(0.033) [ND(0.034)]  | ND(0.033) [ND(0.034)]  | ND(0.033) [ND(0.034)]  |
| RAA9-J20                 | 6-15<br>0-1     | 6/20/2006<br>6/16/2006 | ND(0.036)<br>ND(0.034)                      | ND(0.036)<br>0.11      | ND(0.036)<br>0.074     | ND(0.036)<br>0.184     |
| RAA9-J20                 | 1-6             | 6/16/2006              | ND(0.034)<br>ND(0.033)                      | 0.11<br>ND(0.033)      | ND(0.033)              | 0.184<br>ND(0.033)     |
|                          | 6-15            | 6/16/2006              | ND(0.034)                                   | ND(0.034)              | ND(0.034)              | ND(0.034)              |
| RAA9-J21                 | 0-1             | 6/19/2006              | ND(0.033)                                   | ND(0.033)              | 0.072                  | 0.072                  |
|                          | 1-6             | 6/19/2006              | ND(0.031) [ND(0.033)]                       | ND(0.031) [ND(0.033)]  | ND(0.031) [ND(0.033)]  | ND(0.031) [ND(0.033)]  |
|                          | 6-15            | 6/19/2006              | ND(0.034)                                   | ND(0.034)              | ND(0.034)              | ND(0.034)              |
| RAA9-J22                 | 0-1             | 6/19/2006              | ND(0.031)                                   | ND(0.031)              | ND(0.031)              | ND(0.031)              |
|                          | 1-6             | 6/19/2006              | ND(0.031)                                   | ND(0.031)              | ND(0.031)              | ND(0.031)              |
|                          | 6-15            | 6/19/2006              | ND(0.034)                                   | ND(0.034)              | ND(0.034)              | ND(0.034)              |
| RAA9-K4                  | 6-15            | 6/23/2006              | ND(0.036)                                   | 0.044                  | ND(0.036)              | 0.044                  |
| RAA9-K13W-SD             | 0-0.5           | 6/15/2006              | ND(0.034)                                   | 0.25                   | 0.13                   | 0.38                   |
| RAA9-K16S-SD<br>RAA9-K19 | 0-0.5<br>0-1    | 6/14/2006<br>6/16/2006 | ND(0.21)                                    | ND(0.21)<br>0.90       | 1.2<br>0.13            | 1.2<br>1.03            |
| KAA9-K19                 | 1-6             | 6/16/2006              | ND(0.033)<br>ND(0.034)                      | 0.90                   | ND(0.034)              | 0.12                   |
|                          | 6-15            | 6/16/2006              | ND(0.034)                                   | ND(0.034)              | ND(0.034)              | ND(0.034)              |
| RAA9-K20                 | 0-1             | 6/16/2006              | ND(0.033)                                   | 0.085                  | 0.10                   | 0.185                  |
|                          | 1-6             | 6/16/2006              | ND(0.032)                                   | ND(0.032)              | ND(0.032)              | ND(0.032)              |
|                          | 6-15            | 6/16/2006              | ND(0.035)                                   | ND(0.035)              | ND(0.035)              | ND(0.035)              |
| RAA9-L13N-SD             | 0-0.5           | 6/15/2006              | ND(0.037) [ND(0.038)]                       | ND(0.037) [ND(0.038)]  | 0.37 [0.29]            | 0.37 [0.29]            |
| RAA9-L14W-SD             | 0-0.5           | 6/15/2006              | ND(0.040)                                   | 0.39                   | 0.58                   | 0.97                   |
| RAA9-M6                  | 6-15            | 6/23/2006              | ND(0.35)                                    | ND(0.35)               | 2.1                    | 2.1                    |
| RAA9-N4.5                | 6-15            | 6/23/2006              | ND(0.039)                                   | ND(0.039)              | ND(0.039)              | ND(0.039)              |
| RAA9-N8                  | 0-1             | 6/22/2006              | ND(0.036)                                   | ND(0.036)              | 0.36                   | 0.36                   |
|                          | 1-6             | 6/22/2006              | ND(0.035)                                   | ND(0.035)              | ND(0.035)              | ND(0.035)              |
| RAA9-NO5.5               | 6-15<br>0-1     | 6/22/2006<br>6/23/2006 | ND(0.033)<br>ND(0.034)                      | ND(0.033)<br>0.38      | ND(0.033)<br>0.30      | ND(0.033)<br>0.68      |
| INAAS-INOU.U             | 1-6             | 6/23/2006              | ND(0.034)<br>ND(1.7)                        | 22                     | 12                     | 34                     |
| RAA9-X1                  | 0-1             | 6/15/2006              | ND(0.037)                                   | ND(0.037)              | 0.38                   | 0.38                   |
| RAA9-X2                  | 0-1             | 6/20/2006              | ND(0.20)                                    | ND(0.20)               | 0.56                   | 0.56                   |
|                          | 1-6             | 6/20/2006              | ND(0.037)                                   | 0.057                  | ND(0.037)              | 0.057                  |
| RAA9-X3                  | 0-1             | 6/20/2006              | ND(0.18)                                    | 1.4                    | 0.90                   | 2.3                    |
|                          | 1-6             | 6/20/2006              | ND(350)                                     | 960                    | 460                    | 1420                   |
| RAA9-X4                  | 0-1             | 6/15/2006              | ND(0.18)                                    | 1.4                    | 0.84                   | 2.24                   |

#### Notes:

- Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
   ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Field duplicate sample results are presented in brackets.

#### Data Qualifiers:

J - Indicates an estimated value less than the practical quantitation limit (PQL).

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION

| Sample ID:                        | RAA9-B12                   | RAA9-C10                      | RAA9-C10   | RAA9-C10                       | RAA9-D8    |
|-----------------------------------|----------------------------|-------------------------------|------------|--------------------------------|------------|
| Sample Depth(Feet):               | 0-1                        | 0-1                           | 6-8        | 6-15                           | 1-3        |
| Parameter Date Collected:         | 06/21/06                   | 06/21/06                      | 06/21/06   | 06/21/06                       | 06/21/06   |
| Volatile Organics                 |                            |                               |            |                                |            |
| 2-Butanone                        | ND(0.0058)                 | ND(0.0062)                    | ND(0.0058) | NA                             | ND(0.0054) |
| 4-Methyl-2-pentanone              | ND(0.0058)                 | 0.0034 J                      | ND(0.0058) | NA                             | ND(0.0054) |
| Acetone                           | 0.055                      | 0.083                         | 0.016      | NA                             | 0.0091     |
| Carbon Disulfide                  | ND(0.0058)                 | ND(0.0062)                    | ND(0.0058) | NA                             | ND(0.0054) |
| Trichloroethene                   | ND(0.0058)                 | ND(0.0062)                    | ND(0.0058) | NA                             | ND(0.0054) |
| Semivolatile Organics             |                            |                               |            |                                |            |
| 1,2,4-Trichlorobenzene            | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Acenaphthene                      | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Acenaphthylene                    | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Anthracene                        | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Benzo(a)anthracene                | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Benzo(a)pyrene                    | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Benzo(b)fluoranthene              | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Benzo(g,h,i)perylene              | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Benzo(k)fluoranthene              | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| bis(2-Ethylhexyl)phthalate        | ND(0.35)                   | 0.053 J                       | NA         | ND(0.38)                       | NA         |
| Chrysene                          | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Dibenzo(a,h)anthracene            | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Dibenzofuran                      | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Fluoranthene                      | ND(0.35)                   | 0.072 J                       | NA         | ND(0.38)                       | NA         |
| Fluorene                          | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Indeno(1,2,3-cd)pyrene            | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Naphthalene                       | ND(0.35)                   | ND(0.38)                      | NA         | ND(0.38)                       | NA         |
| Phenanthrene                      | ND(0.35)                   | 0.046 J                       | NA         | ND(0.38)                       | NA         |
| Pyrene                            | ND(0.35)                   | 0.099 J                       | NA         | ND(0.38)                       | NA         |
| Furans                            | 0.00000000.1               | 0.0000040                     | N/A        | 0.00000040.1                   | NIA        |
| 2,3,7,8-TCDF                      | 0.00000069 J               | 0.0000012                     | NA         | 0.00000042 J                   | NA<br>NA   |
| TCDFs (total)                     | 0.0000086<br>ND(0.0000048) | 0.0000061                     | NA<br>NA   | 0.0000015                      | NA<br>NA   |
| 1,2,3,7,8-PeCDF                   | 0.00000048)                | ND(0.00000050)<br>0.0000015 J | NA<br>NA   | ND(0.00000040)                 | NA<br>NA   |
| 2,3,4,7,8-PeCDF<br>PeCDFs (total) | 0.000050                   | 0.0000153                     | NA<br>NA   | ND(0.00000040)<br>0.00000045 J | NA<br>NA   |
| 1,2,3,4,7,8-HxCDF                 | 0.000030<br>0.0000021 J    | 0.000023<br>0.0000012 J       | NA<br>NA   | ND(0.0000045 5                 | NA<br>NA   |
| 1,2,3,6,7,8-HxCDF                 | 0.0000021 J                | ND(0.000011)                  | NA<br>NA   | ND(0.00000040)                 | NA<br>NA   |
| 1,2,3,7,8,9-HxCDF                 | ND(0.00000113              | ND(0.0000011)                 | NA<br>NA   | ND(0.00000040)                 | NA<br>NA   |
| 2,3,4,6,7,8-HxCDF                 | 0.0000024 J                | 0.0000012)                    | NA<br>NA   | ND(0.00000040)                 | NA<br>NA   |
| HxCDFs (total)                    | 0.000034                   | 0.000018                      | NA<br>NA   | ND(0.00000040)                 | NA<br>NA   |
| 1,2,3,4,6,7,8-HpCDF               | 0.0000053                  | 0.000016                      | NA<br>NA   | ND(0.00000040)                 | NA<br>NA   |
| 1,2,3,4,7,8,9-HpCDF               | ND(0.00000082)             | ND(0.0000027)                 | NA<br>NA   | ND(0.00000040)                 | NA<br>NA   |
| HpCDFs (total)                    | 0.000012                   | 0.000014                      | NA<br>NA   | ND(0.00000040)                 | NA<br>NA   |
| OCDF                              | 0.0000085 J                | 0.000013                      | NA         | ND(0.00000079)                 | NA         |
| Dioxins                           |                            |                               |            | (0.0000000)                    |            |
| 2,3,7,8-TCDD                      | ND(0.00000026)             | ND(0.00000045)                | NA         | ND(0.00000016)                 | NA         |
| TCDDs (total)                     | ND(0.00000026)             | ND(0.00000045)                | NA<br>NA   | ND(0.00000016)                 | NA<br>NA   |
| 1,2,3,7,8-PeCDD                   | ND(0.00000059) X           | ND(0.00000072) X              | NA         | ND(0.00000040)                 | NA<br>NA   |
| PeCDDs (total)                    | 0.0000020 J                | ND(0.00000050)                | NA         | ND(0.00000040)                 | NA         |
| 1,2,3,4,7,8-HxCDD                 | ND(0.0000011)              | ND(0.000052)                  | NA         | ND(0.00000040)                 | NA NA      |
| 1,2,3,6,7,8-HxCDD                 | ND(0.0000011)              | ND(0.000054)                  | NA         | ND(0.00000040)                 | NA NA      |
| 1,2,3,7,8,9-HxCDD                 | ND(0.0000011)              | ND(0.000053)                  | NA         | ND(0.00000040)                 | NA NA      |
| HxCDDs (total)                    | 0.0000077                  | ND(0.0000053)                 | NA         | ND(0.00000040)                 | NA         |
| 1,2,3,4,6,7,8-HpCDD               | 0.0000090                  | 0.000013                      | NA         | 0.00000045 J                   | NA         |
| HpCDDs (total)                    | 0.000018                   | 0.000025                      | NA         | 0.00000045 J                   | NA         |
| li ipodds (total)                 |                            |                               |            |                                |            |
| OCDD                              | 0.000065                   | 0.00011                       | NA         | 0.0000036 J                    | NA         |

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION

| Parameter  | Sample ID:<br>Sample Depth(Feet):<br>Date Collected: | RAA9-B12<br>0-1<br>06/21/06 | RAA9-C10<br>0-1<br>06/21/06 | RAA9-C10<br>6-8<br>06/21/06 | RAA9-C10<br>6-15<br>06/21/06 | RAA9-D8<br>1-3<br>06/21/06 |
|------------|------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|------------------------------|----------------------------|
| Inorganics |                                                      |                             |                             |                             |                              |                            |
| Antimony   |                                                      | 0.911 B                     | 1.13 B                      | NA                          | 0.826 B                      | NA                         |
| Arsenic    |                                                      | 2.71                        | 1.72                        | NA                          | 1.55                         | NA                         |
| Barium     |                                                      | 38.2 B                      | 28.1 B                      | NA                          | 17.0 B                       | NA                         |
| Beryllium  |                                                      | 0.247 B                     | 0.217 B                     | NA                          | 0.166 B                      | NA                         |
| Cadmium    |                                                      | 0.0327 B                    | 0.0468 B                    | NA                          | 0.0631 B                     | NA                         |
| Chromium   |                                                      | 9.56                        | 7.93                        | NA                          | 6.02                         | NA                         |
| Cobalt     |                                                      | 9.63                        | 6.77                        | NA                          | 4.74                         | NA                         |
| Copper     |                                                      | 32.5                        | 13.5 B                      | NA                          | 9.83 B                       | NA                         |
| Cyanide    |                                                      | ND(0.210)                   | ND(0.210)                   | NA                          | ND(0.210)                    | NA                         |
| Lead       |                                                      | 10.5                        | 11.2                        | NA                          | 5.91                         | NA                         |
| Mercury    |                                                      | 0.0173 B                    | 0.0309 B                    | NA                          | 0.0212 B                     | NA                         |
| Nickel     |                                                      | 17.3                        | 13.3                        | NA                          | 9.70                         | NA                         |
| Selenium   |                                                      | ND(2.33)                    | ND(2.46)                    | NA                          | ND(2.47)                     | NA                         |
| Thallium   |                                                      | ND(1.17)                    | ND(1.23)                    | NA                          | ND(1.24)                     | NA                         |
| Tin        |                                                      | ND(11.7)                    | ND(12.3)                    | NA                          | ND(12.4)                     | NA                         |
| Vanadium   |                                                      | 12.4                        | 10.3                        | NA                          | 5.56 B                       | NA                         |
| Zinc       |                                                      | 52.1                        | 48.5                        | NA                          | 34.4                         | NA                         |

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION

| Sample ID:                                  | RAA9-D8                          | RAA9-H11W-SD                 | RAA9-I19                         | RAA9-I19                         | RAA9-I19                 |
|---------------------------------------------|----------------------------------|------------------------------|----------------------------------|----------------------------------|--------------------------|
| Sample Depth(Feet):                         | 1-6                              | 0-0.5                        | 0-1                              | 1-6                              | 4-6                      |
| Parameter Date Collected: Volatile Organics | 06/21/06                         | 06/26/06                     | 06/16/06                         | 06/16/06                         | 06/16/06                 |
|                                             | NIA                              | ND(0.0040)                   | NID(0.0055)                      | NIA.                             | ND(0.0040)               |
| 2-Butanone<br>4-Methyl-2-pentanone          | NA<br>NA                         | ND(0.0049)<br>ND(0.0049)     | ND(0.0055)<br>ND(0.0055)         | NA<br>NA                         | ND(0.0046)<br>ND(0.0046) |
| Acetone                                     | NA<br>NA                         | 0.022                        | ND(0.0055)<br>ND(0.0055)         | NA<br>NA                         | 0.021                    |
| Carbon Disulfide                            | NA<br>NA                         | 0.022                        | ND(0.0055)<br>ND(0.0055)         | NA<br>NA                         | ND(0.0046)               |
| Trichloroethene                             | NA<br>NA                         | ND(0.0049)                   | ND(0.0055)                       | NA<br>NA                         | ND(0.0046)               |
| Semivolatile Organics                       | INA                              | ND(0.0049)                   | ND(0.0033)                       | INA                              | ND(0.0040)               |
| 1,2,4-Trichlorobenzene                      | ND(0.33)                         | ND(0.32)                     | ND(0.34)                         | ND(0.35)                         | NA                       |
| Acenaphthene                                | ND(0.33)                         | ND(0.32)                     | ND(0.34)                         | ND(0.35)                         | NA<br>NA                 |
| Acenaphthylene                              | ND(0.33)                         | 0.18 J                       | ND(0.34)                         | ND(0.35)                         | NA<br>NA                 |
| Anthracene                                  | ND(0.33)                         | 0.40                         | ND(0.34)                         | ND(0.35)                         | NA<br>NA                 |
| Benzo(a)anthracene                          | ND(0.33)                         | 1.6                          | ND(0.34)                         | ND(0.35)                         | NA<br>NA                 |
| Benzo(a)pyrene                              | ND(0.33)                         | 1.0                          | ND(0.34)                         | ND(0.35)                         | NA<br>NA                 |
| Benzo(b)fluoranthene                        | ND(0.33)                         | 0.72                         | ND(0.34)                         | ND(0.35)                         | NA<br>NA                 |
| Benzo(g,h,i)perylene                        | ND(0.33)                         | 0.74                         | ND(0.34)                         | ND(0.35)                         | NA<br>NA                 |
| Benzo(k)fluoranthene                        | ND(0.33)                         | 1.2                          | ND(0.34)                         | ND(0.35)                         | NA<br>NA                 |
| bis(2-Ethylhexyl)phthalate                  | ND(0.33)                         | 0.16 J                       | ND(0.34)                         | ND(0.35)                         | NA<br>NA                 |
| Chrysene                                    | ND(0.33)                         | 1.7                          | ND(0.34)                         | ND(0.35)                         | NA<br>NA                 |
| Dibenzo(a,h)anthracene                      | ND(0.33)                         | ND(0.32)                     | ND(0.34)                         | ND(0.35)                         | NA<br>NA                 |
| Dibenzofuran                                | ND(0.33)                         | 0.060 J                      | ND(0.34)                         | ND(0.35)                         | NA                       |
| Fluoranthene                                | ND(0.33)                         | 3.1                          | ND(0.34)                         | ND(0.35)                         | NA                       |
| Fluorene                                    | ND(0.33)                         | 0.11 J                       | ND(0.34)                         | ND(0.35)                         | NA                       |
| Indeno(1,2,3-cd)pyrene                      | ND(0.33)                         | 0.84                         | ND(0.34)                         | ND(0.35)                         | NA                       |
| Naphthalene                                 | ND(0.33)                         | 0.11 J                       | ND(0.34)                         | ND(0.35)                         | NA                       |
| Phenanthrene                                | ND(0.33)                         | 2.4                          | ND(0.34)                         | ND(0.35)                         | NA                       |
| Pyrene                                      | ND(0.33)                         | 4.1                          | ND(0.34)                         | ND(0.35)                         | NA                       |
| Furans                                      |                                  |                              |                                  |                                  |                          |
| 2,3,7,8-TCDF                                | 0.00000040 J                     | 0.0000023                    | 0.000018                         | 0.00000021 J                     | NA                       |
| TCDFs (total)                               | 0.0000010                        | 0.000022                     | 0.000031                         | 0.00000094                       | NA                       |
| 1,2,3,7,8-PeCDF                             | ND(0.00000038)                   | 0.00000084 J                 | 0.0000017 J                      | ND(0.00000046)                   | NA                       |
| 2,3,4,7,8-PeCDF                             | ND(0.00000038)                   | 0.0000032 J                  | 0.0000021 J                      | ND(0.00000046)                   | NA                       |
| PeCDFs (total)                              | ND(0.00000038)                   | 0.000063                     | 0.000026                         | 0.00000054 J                     | NA                       |
| 1,2,3,4,7,8-HxCDF                           | ND(0.00000038)                   | 0.0000025 J                  | 0.0000046                        | ND(0.00000046)                   | NA                       |
| 1,2,3,6,7,8-HxCDF                           | ND(0.00000038)                   | 0.0000021 J                  | 0.0000020 J                      | ND(0.00000046)                   | NA                       |
| 1,2,3,7,8,9-HxCDF                           | ND(0.00000038)                   | 0.00000073 IJ                | 0.0000013 J                      | ND(0.00000046)                   | NA                       |
| 2,3,4,6,7,8-HxCDF                           | ND(0.00000038)                   | 0.0000062 J                  | 0.0000014 J                      | ND(0.00000046)                   | NA                       |
| HxCDFs (total)                              | ND(0.00000038)                   | 0.000084                     | 0.000017                         | 0.00000052 J                     | NA                       |
| 1,2,3,4,6,7,8-HpCDF                         | ND(0.00000038)                   | 0.0000077 J                  | 0.0000027 J                      | 0.00000061 J                     | NA                       |
| 1,2,3,4,7,8,9-HpCDF                         | ND(0.00000038)                   | 0.00000092 J                 | 0.0000014 J                      | ND(0.00000046)                   | NA                       |
| HpCDFs (total)                              | ND(0.00000038)                   | 0.000021                     | 0.0000066                        | 0.00000061 J                     | NA                       |
| OCDF                                        | ND(0.00000077)                   | 0.0000047 J                  | 0.0000023 J                      | 0.00000097 J                     | NA                       |
| Dioxins                                     |                                  |                              |                                  |                                  | 1                        |
| 2,3,7,8-TCDD                                | ND(0.00000024)                   | ND(0.00000066)               | ND(0.000000077)                  | ND(0.000000099)                  | NA                       |
| TCDDs (total)                               | ND(0.00000024)                   | ND(0.00000066)               | 0.00000016 J                     | ND(0.000000099)                  | NA                       |
| 1,2,3,7,8-PeCDD                             | ND(0.00000038)                   | ND(0.00000039)               | ND(0.00000039)                   | ND(0.00000046)                   | NA                       |
| PeCDDs (total)                              | ND(0.00000038)                   | 0.0000016 J                  | ND(0.00000039)                   | ND(0.00000046)                   | NA<br>NA                 |
| 1,2,3,4,7,8-HxCDD                           | ND(0.00000038)                   | ND(0.00000039)               | ND(0.00000039)                   | ND(0.00000046)                   | NA<br>NA                 |
| 1,2,3,6,7,8-HxCDD                           | ND(0.00000038)<br>ND(0.00000038) | 0.00000058 J<br>0.0000056 IJ | ND(0.00000039)<br>ND(0.00000039) | ND(0.00000046)<br>ND(0.00000046) | NA<br>NA                 |
| 1,2,3,7,8,9-HxCDD                           |                                  |                              |                                  |                                  | NA<br>NA                 |
| HxCDDs (total)<br>1,2,3,4,6,7,8-HpCDD       | ND(0.00000038)<br>0.00000044 J   | 0.0000042 J<br>0.0000067 J   | ND(0.00000039)<br>0.0000014 J    | ND(0.00000046)<br>0.00000092 J   | NA<br>NA                 |
| 1,2,3,4,6,7,8-HpCDD<br>HpCDDs (total)       | 0.00000044 J                     | 0.0000067 J<br>0.000013      | 0.0000014 J<br>0.0000027 J       | 0.00000092 J<br>0.0000019 J      | NA<br>NA                 |
| OCDD (total)                                | 0.0000044 J                      | 0.000013<br>0.000059 B       | 0.0000027 3                      | 0.0000019 J<br>0.0000073 J       | NA<br>NA                 |
| Total TEQs (WHO TEFs)                       | 0.00000283                       | 0.000039 B                   | 0.000011                         | 0.00000733                       | NA<br>NA                 |
| TOTAL TEGS (VVITO TEFS)                     | 0.0000000                        | 0.0000036                    | 0.0000026                        | 0.0000001                        | INA                      |

### SUPPLEMENTAL PRE-DESIGN INVESTIGATION

|            | Sample ID:          | RAA9-D8   | RAA9-H11W-SD | RAA9-I19  | RAA9-I19  | RAA9-I19 |
|------------|---------------------|-----------|--------------|-----------|-----------|----------|
|            | Sample Depth(Feet): | 1-6       | 0-0.5        | 0-1       | 1-6       | 4-6      |
| Parameter  | Date Collected:     | 06/21/06  | 06/26/06     | 06/16/06  | 06/16/06  | 06/16/06 |
| Inorganics |                     |           |              |           |           |          |
| Antimony   |                     | 1.18 B    | 0.803 B      | 1.36 B    | 1.40 B    | NA       |
| Arsenic    |                     | 4.26      | 1.27         | 29.5      | 4.83      | NA       |
| Barium     |                     | 28.6 B    | 14.1 B       | 26.5 B    | 21.0 B    | NA       |
| Beryllium  |                     | 0.250 B   | 0.201 B      | 0.0858 B  | 0.143 B   | NA       |
| Cadmium    |                     | 0.0662 B  | 0.221 B      | ND(0.488) | ND(0.512) | NA       |
| Chromium   |                     | 8.65      | 9.78         | 6.18      | 8.12      | NA       |
| Cobalt     |                     | 11.4      | 5.26         | 4.09      | 3.65      | NA       |
| Copper     |                     | 24.7      | 224          | 20.2      | 11.1 B    | NA       |
| Cyanide    |                     | ND(0.190) | ND(0.131)    | ND(0.190) | ND(0.200) | NA       |
| Lead       |                     | 9.34      | 11.9         | 17.9      | 7.15      | NA       |
| Mercury    |                     | 0.0215 B  | 0.0117 B     | 0.0321 B  | 0.0205 B  | NA       |
| Nickel     |                     | 16.9      | 10.1         | 10.2      | 9.52      | NA       |
| Selenium   |                     | ND(2.17)  | ND(1.98)     | 0.900 B   | ND(2.05)  | NA       |
| Thallium   |                     | ND(1.09)  | ND(0.991)    | ND(0.975) | ND(1.02)  | NA       |
| Tin        |                     | ND(10.9)  | 2.01 B       | 1.39 B    | 1.09 B    | NA       |
| Vanadium   |                     | 9.04      | 13.7         | 10.1      | 8.56      | NA       |
| Zinc       |                     | 55.3      | 324          | 33.0      | 33.0      | NA       |

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION

|                                   | Sample ID:          | RAA9-I22                  | RAA9-J20                      | RAA9-J20                         | RAA9-J20   |
|-----------------------------------|---------------------|---------------------------|-------------------------------|----------------------------------|------------|
|                                   | Sample Depth(Feet): | 0-1                       | 0-1                           | 6-15                             | 10-12      |
| Parameter                         | Date Collected:     | 06/19/06                  | 06/16/06                      | 06/16/06                         | 06/16/06   |
| Volatile Organi                   | cs                  |                           |                               |                                  |            |
| 2-Butanone                        |                     | NA                        | ND(0.0049)                    | NA                               | ND(0.0046) |
| 4-Methyl-2-pent                   | anone               | NA                        | ND(0.0049)                    | NA                               | ND(0.0046) |
| Acetone                           |                     | NA                        | 0.059                         | NA                               | 0.0058     |
| Carbon Disulfide                  |                     | NA<br>NA                  | ND(0.0049)                    | NA<br>NA                         | ND(0.0046) |
| Trichloroethene                   |                     | NA                        | ND(0.0049)                    | NA                               | ND(0.0046) |
| Semivolatile O                    |                     | 0.075.1                   | NID (0.00)                    | NID(0.04)                        |            |
| 1,2,4-Trichlorob                  | enzene              | 0.075 J                   | ND(0.33)                      | ND(0.34)                         | NA         |
| Acenaphthene                      |                     | ND(0.32)                  | ND(0.33)                      | ND(0.34)                         | NA<br>NA   |
| Acenaphthylene<br>Anthracene      | )                   | 0.094 J<br>0.12 J         | ND(0.33)<br>ND(0.33)          | ND(0.34)<br>ND(0.34)             | NA<br>NA   |
|                                   | 2020                | 0.123                     | ND(0.33)<br>ND(0.33)          | ND(0.34)                         | NA<br>NA   |
| Benzo(a)anthrac                   |                     | 0.57                      | ND(0.33)<br>ND(0.33)          | ND(0.34)<br>ND(0.34)             | NA<br>NA   |
| Benzo(a)pyrene<br>Benzo(b)fluoran |                     | 0.59                      | ND(0.33)                      | ND(0.34)                         | NA<br>NA   |
| Benzo(g,h,i)per                   |                     | 0.79                      | ND(0.33)                      | ND(0.34)                         | NA<br>NA   |
| Benzo(k)fluoran                   |                     | 0.74<br>0.29 J            | ND(0.33)                      | ND(0.34)                         | NA<br>NA   |
| bis(2-Ethylhexyl                  |                     | ND(0.32)                  | ND(0.33)                      | ND(0.34)                         | NA<br>NA   |
| Chrysene                          | //                  | 0.62                      | 0.084 J                       | ND(0.34)                         | NA<br>NA   |
| Dibenzo(a,h)ant                   | thracene            | ND(0.32)                  | ND(0.33)                      | ND(0.34)                         | NA         |
| Dibenzofuran                      |                     | ND(0.32)                  | ND(0.33)                      | ND(0.34)                         | NA         |
| Fluoranthene                      |                     | 1.1                       | 0.077 J                       | ND(0.34)                         | NA         |
| Fluorene                          |                     | ND(0.32)                  | ND(0.33)                      | ND(0.34)                         | NA         |
| Indeno(1,2,3-cd                   | )pyrene             | 0.70                      | ND(0.33)                      | ND(0.34)                         | NA         |
| Naphthalene                       | 71 7                | 0.068 J                   | ND(0.33)                      | ND(0.34)                         | NA         |
| Phenanthrene                      |                     | 0.43                      | 0.067 J                       | ND(0.34)                         | NA         |
| Pyrene                            |                     | 0.94                      | 0.084 J                       | ND(0.34)                         | NA         |
| Furans                            |                     |                           |                               |                                  |            |
| 2,3,7,8-TCDF                      |                     | 0.0000055                 | 0.0000043                     | 0.00000011 J                     | NA         |
| TCDFs (total)                     |                     | 0.000067                  | 0.000047 I                    | 0.00000031 J                     | NA         |
| 1,2,3,7,8-PeCDI                   | F                   | 0.0000038 J               | 0.0000018 J                   | ND(0.00000037)                   | NA         |
| 2,3,4,7,8-PeCDI                   | F                   | 0.000013                  | 0.0000059                     | ND(0.00000037)                   | NA         |
| PeCDFs (total)                    |                     | 0.00016                   | 0.000061 I                    | ND(0.00000037)                   | NA         |
| 1,2,3,4,7,8-HxC                   |                     | 0.000017                  | 0.0000022 J                   | ND(0.00000037)                   | NA         |
| 1,2,3,6,7,8-HxC                   |                     | 0.0000094                 | 0.0000019 J                   | ND(0.00000037)                   | NA         |
| 1,2,3,7,8,9-HxC                   |                     | 0.0000043                 | 0.00000052 J                  | ND(0.00000037)                   | NA         |
| 2,3,4,6,7,8-HxC                   | DF                  | 0.000016                  | 0.0000032 J                   | ND(0.00000037)                   | NA         |
| HxCDFs (total)                    |                     | 0.00022                   | 0.000044                      | ND(0.00000037)                   | NA         |
| 1,2,3,4,6,7,8-Hp                  |                     | 0.000020                  | 0.0000066                     | ND(0.00000037)                   | NA<br>NA   |
| 1,2,3,4,7,8,9-Hp                  | CDF                 | 0.0000064                 | 0.00000082 J                  | ND(0.00000037)                   | NA         |
| HpCDFs (total)                    |                     | 0.000057                  | 0.000014                      | ND(0.00000037)                   | NA<br>NA   |
| OCDF                              |                     | 0.000016                  | 0.000024                      | 0.0000013 J                      | NA         |
| Dioxins                           | ı                   | 0.00000040.1              | ND/0 00000007\ \              | ND/0.00000074                    | N1A        |
| 2,3,7,8-TCDD                      |                     | 0.00000013 J              | ND(0.000000097) X             | ND(0.000000074)                  | NA<br>NA   |
| TCDDs (total)                     | D                   | 0.00000030 J              | 0.0000017<br>ND(0.00000030)   | ND(0.00000074)                   |            |
| 1,2,3,7,8-PeCDI<br>PeCDDs (total) | ט                   | 0.00000065 J<br>0.0000044 | ND(0.00000039)<br>0.0000012 J | ND(0.00000037)<br>ND(0.00000037) | NA<br>NA   |
| 1,2,3,4,7,8-HxC                   | חח                  | 0.0000044<br>0.00000046 J | ND(0.0000039)                 | ND(0.00000037)<br>ND(0.00000037) | NA<br>NA   |
| 1,2,3,4,7,8-HXC                   |                     | 0.00000046 J              | ND(0.00000039)                | ND(0.00000037)                   | NA<br>NA   |
| 1,2,3,6,7,6-HXC                   |                     | 0.00000085 J              | ND(0.00000039)                | ND(0.00000037)                   | NA<br>NA   |
| HxCDDs (total)                    | טט                  | 0.0000037 3               | 0.0000039)                    | ND(0.00000037)                   | NA<br>NA   |
| 1,2,3,4,6,7,8-Hp                  | CDD                 | 0.000011                  | 0.0000032 J                   | ND(0.00000037)                   | NA<br>NA   |
| HpCDDs (total)                    | ,000                | 0.0000030                 | 0.00000363                    | ND(0.00000037)                   | NA<br>NA   |
| OCDD (total)                      |                     | 0.000034                  | 0.0000077                     | 0.0000018 J                      | NA<br>NA   |
| Total TEQs (WF                    | HO TEFs)            | 0.000013                  | 0.000020                      | 0.00000100                       | NA<br>NA   |
| TOTAL TEGS (VII                   | 10 12/3/            | 0.000013                  | 0.0000047                     | 0.00000047                       | INA        |

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION

|            | Sample ID:                             | RAA9-I22        | RAA9-J20<br>0-1 | RAA9-J20         | RAA9-J20          |
|------------|----------------------------------------|-----------------|-----------------|------------------|-------------------|
| Parameter  | Sample Depth(Feet):<br>Date Collected: | 0-1<br>06/19/06 | 06/16/06        | 6-15<br>06/16/06 | 10-12<br>06/16/06 |
| Inorganics | <u> </u>                               |                 |                 | •                | •                 |
| Antimony   |                                        | 1.64 B          | 1.09 B          | 1.01 B           | NA                |
| Arsenic    |                                        | 9.25            | 4.47            | 1.78             | NA                |
| Barium     |                                        | 39.9 B          | 25.6 B          | 16.3 B           | NA                |
| Beryllium  |                                        | 0.161 B         | 0.444 B         | 0.172 B          | NA                |
| Cadmium    |                                        | ND(0.522)       | 0.157 B         | 0.0949 B         | NA                |
| Chromium   |                                        | 10.1            | 7.56            | 7.25             | NA                |
| Cobalt     |                                        | 10.1            | 10.8            | 5.75             | NA                |
| Copper     |                                        | 50.6            | 41.1            | 14.7 B           | NA                |
| Cyanide    |                                        | ND(0.190)       | ND(0.200)       | ND(0.190)        | NA                |
| Lead       |                                        | 23.8            | 14.0            | 6.30             | NA                |
| Mercury    |                                        | 0.435           | 0.0475          | 0.0100 B         | NA                |
| Nickel     |                                        | 18.3            | 17.3            | 12.0             | NA                |
| Selenium   |                                        | 1.53 B          | ND(2.20)        | ND(1.94)         | NA                |
| Thallium   |                                        | ND(1.04)        | ND(1.10)        | ND(0.968)        | NA                |
| Tin        |                                        | 1.93 B          | 1.36 B          | 1.24 B           | NA                |
| Vanadium   |                                        | 9.11            | 7.50            | 6.40             | NA                |
| Zinc       |                                        | 87.5            | 50.2            | 33.4             | NA                |

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION

| Sample ID:<br>Sample Depth(Feet): | RAA9-J21<br>1-6                   | RAA9-J22<br>6-15 | RAA9-K19<br>0-1  |
|-----------------------------------|-----------------------------------|------------------|------------------|
| Parameter Date Collected:         | 06/19/06                          | 06/19/06         | 06/16/06         |
| Volatile Organics                 | 00/13/00                          | 00/13/00         | 00/10/00         |
| 2-Butanone                        | NA                                | NA               | ND(0.0048)       |
| 4-Methyl-2-pentanone              | NA                                | NA NA            | ND(0.0048)       |
| Acetone                           | NA NA                             | NA NA            | 0.041            |
| Carbon Disulfide                  | NA NA                             | NA NA            | ND(0.0048)       |
| Trichloroethene                   | NA                                | NA NA            | 0.0052           |
| Semivolatile Organics             |                                   |                  |                  |
| 1,2,4-Trichlorobenzene            | ND(0.31) [ND(0.32)]               | ND(0.34)         | ND(0.33)         |
| Acenaphthene                      | ND(0.31) [ND(0.32)]               | ND(0.34)         | ND(0.33)         |
| Acenaphthylene                    | ND(0.31) [ND(0.32)]               | ND(0.34)         | ND(0.33)         |
| Anthracene                        | ND(0.31) [ND(0.32)]               | ND(0.34)         | ND(0.33)         |
| Benzo(a)anthracene                | ND(0.31) [ND(0.32)]               | ND(0.34)         | 0.090 J          |
| Benzo(a)pyrene                    | ND(0.31) [ND(0.32)]               | ND(0.34)         | 0.066 J          |
| Benzo(b)fluoranthene              | ND(0.31) [ND(0.32)]               | ND(0.34)         | 0.12 J           |
| Benzo(g,h,i)perylene              | ND(0.31) [ND(0.32)]               | ND(0.34)         | ND(0.33)         |
| Benzo(k)fluoranthene              | ND(0.31) [ND(0.32)]               | ND(0.34)         | ND(0.33)         |
| bis(2-Ethylhexyl)phthalate        | ND(0.31) [ND(0.32)]               | ND(0.34)         | ND(0.33)         |
| Chrysene                          | ND(0.31) [ND(0.32)]               | ND(0.34)         | 0.12 J           |
| Dibenzo(a,h)anthracene            | ND(0.31) [ND(0.32)]               | ND(0.34)         | ND(0.33)         |
| Dibenzofuran                      | ND(0.31) [ND(0.32)]               | ND(0.34)         | ND(0.33)         |
| Fluoranthene                      | ND(0.31) [ND(0.32)]               | 0.072 J          | 0.16 J           |
| Fluorene                          | ND(0.31) [ND(0.32)]               | ND(0.34)         | ND(0.33)         |
| Indeno(1,2,3-cd)pyrene            | ND(0.31) [ND(0.32)]               | ND(0.34)         | ND(0.33)         |
| Naphthalene                       | ND(0.31) [ND(0.32)]               | ND(0.34)         | ND(0.33)         |
| Phenanthrene                      | ND(0.31) [ND(0.32)]               | ND(0.34)         | 0.086 J          |
| Pyrene                            | ND(0.31) [ND(0.32)]               | ND(0.34)         | 0.15 J           |
| Furans                            |                                   | •                | •                |
| 2,3,7,8-TCDF                      | 0.00000056 J [0.00000053 J]       | 0.00000051 J     | 0.000011         |
| TCDFs (total)                     | 0.0000030 [0.0000030]             | 0.0000037        | 0.00011          |
| 1,2,3,7,8-PeCDF                   | ND(0.00000046) [ND(0.00000043)]   | ND(0.00000045)   | 0.0000043        |
| 2,3,4,7,8-PeCDF                   | ND(0.00000046) [ND(0.00000043)]   | 0.00000092 J     | 0.000014         |
| PeCDFs (total)                    | 0.0000011 J [0.0000012 J]         | 0.0000089        | 0.00018          |
| 1,2,3,4,7,8-HxCDF                 | ND(0.00000046) [ND(0.00000043)]   | ND(0.00000045)   | 0.0000088        |
| 1,2,3,6,7,8-HxCDF                 | ND(0.00000046) [ND(0.00000043)]   | ND(0.00000045)   | 0.000063         |
| 1,2,3,7,8,9-HxCDF                 | ND(0.00000046) [ND(0.00000043)]   | ND(0.00000045)   | 0.0000016 J      |
| 2,3,4,6,7,8-HxCDF                 | ND(0.00000046) [ND(0.00000043)]   | 0.00000057 J     | 0.000012         |
| HxCDFs (total)                    | 0.00000076 J [0.00000067 J]       | 0.0000072        | 0.00015          |
| 1,2,3,4,6,7,8-HpCDF               | ND(0.00000046) [ND(0.00000043)]   | 0.00000093 J     | 0.000020         |
| 1,2,3,4,7,8,9-HpCDF               | ND(0.00000046) [ND(0.00000043)]   | ND(0.00000045)   | 0.0000029 J      |
| HpCDFs (total)                    | ND(0.00000046) [ND(0.00000043)]   | 0.0000020 J      | 0.000044         |
| OCDF                              | ND(0.00000091) [ND(0.00000086)]   | ND(0.00000089)   | 0.000019         |
| Dioxins                           |                                   |                  |                  |
| 2,3,7,8-TCDD                      | ND(0.000000096) [ND(0.000000086)] | ND(0.000000089)  | ND(0.00000018) X |
| TCDDs (total)                     | ND(0.000000096) [ND(0.000000086)] | ND(0.000000089)  | 0.0000031        |
| 1,2,3,7,8-PeCDD                   | ND(0.00000046) [ND(0.00000043)]   | ND(0.00000045)   | 0.00000039 J     |
| PeCDDs (total)                    | ND(0.00000046) [ND(0.00000043)]   | ND(0.00000045)   | 0.0000042        |
| 1,2,3,4,7,8-HxCDD                 | ND(0.00000046) [ND(0.00000043)]   | ND(0.00000045)   | 0.00000028 J     |
| 1,2,3,6,7,8-HxCDD                 | ND(0.00000046) [ND(0.00000043)]   | ND(0.00000045)   | 0.00000074 J     |
| 1,2,3,7,8,9-HxCDD                 | ND(0.00000046) [ND(0.00000043)]   | ND(0.00000045)   | 0.00000057 J     |
| HxCDDs (total)                    | ND(0.00000046) [ND(0.00000043)]   | ND(0.00000045)   | 0.0000081        |
| 1,2,3,4,6,7,8-HpCDD               | ND(0.0000046) [ND(0.00000043)]    | 0.00000066 J     | 0.0000071        |
| HpCDDs (total)                    | ND(0.00000046) [ND(0.00000043)]   | 0.0000013 J      | 0.000015         |
| OCDD                              | 0.0000016 J [0.0000025 J]         | 0.0000038 J      | 0.000052         |
| Total TEQs (WHO TEFs)             | 0.00000062 [0.00000059]           | 0.0000010        | 0.000012         |

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION

|            | Sample ID:          | RAA9-J21              | RAA9-J22   | RAA9-K19  |
|------------|---------------------|-----------------------|------------|-----------|
|            | Sample Depth(Feet): | 1-6                   | 6-15       | 0-1       |
| Parameter  | Date Collected:     | 06/19/06              | 06/19/06   | 06/16/06  |
| Inorganics |                     |                       |            |           |
| Antimony   |                     | 0.814 B [1.16 B]      | 0.565 B    | 1.38 B    |
| Arsenic    |                     | 3.60 [3.26]           | 3.75       | 5.25      |
| Barium     |                     | 11.8 B [15.3 B]       | 17.2 B     | 17.3 B    |
| Beryllium  |                     | 0.193 B [0.196 B]     | 0.244 B    | 0.187 B   |
| Cadmium    |                     | ND(0.495) [0.0525 B]  | 0.115 B    | 0.0268 B  |
| Chromium   |                     | 7.50 [7.38]           | 7.70       | 7.76      |
| Cobalt     |                     | 6.74 [5.50]           | 11.0       | 7.42      |
| Copper     |                     | 12.6 B [18.5 B]       | 15.8 B     | 33.5      |
| Cyanide    |                     | ND(0.180) [ND(0.190)] | ND(0.200)  | ND(0.200) |
| Lead       |                     | 5.24 [6.32]           | 5.75       | 16.6      |
| Mercury    |                     | 0.0151 B [0.0133 B]   | ND(0.0441) | 0.0420    |
| Nickel     |                     | 12.9 [11.3]           | 15.0       | 19.2      |
| Selenium   |                     | 2.13 [2.38]           | 2.47       | ND(2.06)  |
| Thallium   |                     | ND(0.991) [ND(1.03)]  | ND(1.06)   | ND(1.03)  |
| Tin        |                     | ND(9.91) [1.60 B]     | ND(10.6)   | 2.14 B    |
| Vanadium   |                     | 7.20 [6.97]           | 7.06       | 9.71      |
| Zinc       |                     | 46.0 [36.3]           | 39.9       | 55.5      |

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION

| Sample ID:<br>Sample Depth(Feet): | RAA9-K19<br>6-15 | RAA9-K19<br>8-10 | RAA9-K20<br>1-6 | RAA9-K20<br>3-4 |
|-----------------------------------|------------------|------------------|-----------------|-----------------|
| Parameter Date Collected:         | 06/16/06         | 06/16/06         | 06/16/06        | 06/16/06        |
| Volatile Organics                 |                  |                  |                 |                 |
| 2-Butanone                        | NA               | ND(0.0065)       | NA              | ND(0.0047)      |
| 4-Methyl-2-pentanone              | NA               | ND(0.0065)       | NA              | ND(0.0047)      |
| Acetone                           | NA NA            | 0.021            | NA              | 0.018           |
| Carbon Disulfide                  | NA NA            | ND(0.0065)       | NA<br>NA        | ND(0.0047)      |
| Trichloroethene                   | NA               | ND(0.0065)       | NA              | ND(0.0047)      |
| Semivolatile Organics             |                  | 1                |                 | 1               |
| 1,2,4-Trichlorobenzene            | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Acenaphthene                      | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Acenaphthylene                    | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Anthracene                        | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Benzo(a)anthracene                | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Benzo(a)pyrene                    | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Benzo(b)fluoranthene              | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Benzo(g,h,i)perylene              | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Benzo(k)fluoranthene              | ND(0.34)         | NA               | ND(0.33)        | NA              |
| bis(2-Ethylhexyl)phthalate        | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Chrysene                          | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Dibenzo(a,h)anthracene            | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Dibenzofuran                      | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Fluoranthene                      | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Fluorene                          | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Indeno(1,2,3-cd)pyrene            | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Naphthalene                       | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Phenanthrene                      | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Pyrene                            | ND(0.34)         | NA               | ND(0.33)        | NA              |
| Furans                            |                  |                  |                 |                 |
| 2,3,7,8-TCDF                      | 0.00000014 J     | NA               | 0.00000013 J    | NA              |
| TCDFs (total)                     | 0.00000014 J     | NA               | 0.00000023 J    | NA              |
| 1,2,3,7,8-PeCDF                   | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| 2,3,4,7,8-PeCDF                   | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| PeCDFs (total)                    | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| 1,2,3,4,7,8-HxCDF                 | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| 1,2,3,6,7,8-HxCDF                 | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| 1,2,3,7,8,9-HxCDF                 | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| 2,3,4,6,7,8-HxCDF                 | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| HxCDFs (total)                    | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| 1,2,3,4,6,7,8-HpCDF               | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| 1,2,3,4,7,8,9-HpCDF               | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| HpCDFs (total)                    | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| OCDF                              | 0.0000034 J      | NA               | ND(0.00000073)  | NA              |
| Dioxins                           |                  |                  |                 |                 |
| 2,3,7,8-TCDD                      | ND(0.00000013)   | NA               | ND(0.000000073) | NA              |
| TCDDs (total)                     | ND(0.00000013)   | NA               | ND(0.000000073) | NA              |
| 1,2,3,7,8-PeCDD                   | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| PeCDDs (total)                    | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| 1,2,3,4,7,8-HxCDD                 | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| 1,2,3,6,7,8-HxCDD                 | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| 1,2,3,7,8,9-HxCDD                 | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| HxCDDs (total)                    | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| 1,2,3,4,6,7,8-HpCDD               | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| HpCDDs (total)                    | ND(0.00000040)   | NA               | ND(0.00000036)  | NA              |
| OCDD                              | 0.0000019 J      | NA               | 0.00000088 J    | NA              |
| Total TEQs (WHO TEFs)             | 0.0000054        | NA               | 0.00000046      | NA              |

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION

| Parameter  | Sample ID:<br>Sample Depth(Feet):<br>Date Collected: | RAA9-K19<br>6-15<br>06/16/06 | RAA9-K19<br>8-10<br>06/16/06 | RAA9-K20<br>1-6<br>06/16/06 | RAA9-K20<br>3-4<br>06/16/06 |
|------------|------------------------------------------------------|------------------------------|------------------------------|-----------------------------|-----------------------------|
| Inorganics |                                                      |                              |                              |                             |                             |
| Antimony   |                                                      | ND(4.42)                     | NA                           | 0.927 B                     | NA                          |
| Arsenic    |                                                      | 2.36                         | NA                           | 2.16                        | NA                          |
| Barium     |                                                      | 20.6 B                       | NA                           | 42.2 B                      | NA                          |
| Beryllium  |                                                      | 0.203 B                      | NA                           | 0.265 B                     | NA                          |
| Cadmium    |                                                      | 0.0398 B                     | NA                           | 0.0673 B                    | NA                          |
| Chromium   |                                                      | 7.11                         | NA                           | 7.21                        | NA                          |
| Cobalt     |                                                      | 6.78                         | NA                           | 45.2                        | NA                          |
| Copper     |                                                      | 14.5 B                       | NA                           | 19.9 B                      | NA                          |
| Cyanide    |                                                      | ND(0.200)                    | NA                           | ND(0.190)                   | NA                          |
| Lead       |                                                      | 5.39                         | NA                           | 7.42                        | NA                          |
| Mercury    |                                                      | 0.0126 B                     | NA                           | 0.0193 B                    | NA                          |
| Nickel     |                                                      | 12.8                         | NA                           | 74.1                        | NA                          |
| Selenium   |                                                      | ND(2.21)                     | NA                           | ND(2.01)                    | NA                          |
| Thallium   |                                                      | ND(1.11)                     | NA                           | ND(1.00)                    | NA                          |
| Tin        |                                                      | 1.24 B                       | NA                           | 1.28 B                      | NA                          |
| Vanadium   |                                                      | 6.79                         | NA                           | 7.26                        | NA                          |
| Zinc       |                                                      | 41.5                         | NA                           | 96.5                        | NA                          |

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION

| Sample ID:<br>Sample Depth(Feet): | RAA9-L13N-SD<br>0-0.5       | RAA9-L14W-SD<br>0-0.5 | RAA9-N8<br>0-1 |
|-----------------------------------|-----------------------------|-----------------------|----------------|
| Parameter Date Collected:         | 06/15/06                    | 06/15/06              | 06/22/06       |
| Volatile Organics                 |                             | 1                     | T              |
| 2-Butanone                        | ND(0.0051) [ND(0.0051)]     | 0.0092                | ND(0.0051)     |
| 4-Methyl-2-pentanone              | ND(0.0051) [ND(0.0051)]     | ND(0.0057)            | ND(0.0051)     |
| Acetone                           | 0.042 [0.046]               | 0.19                  | 0.065          |
| Carbon Disulfide                  | ND(0.0051) [ND(0.0051)]     | ND(0.0057)            | ND(0.0051)     |
| Trichloroethene                   | ND(0.0051) [ND(0.0051)]     | ND(0.0057)            | ND(0.0051)     |
| Semivolatile Organics             |                             | 1                     | T              |
| 1,2,4-Trichlorobenzene            | ND(1.5) [ND(3.7)]           | ND(0.39)              | ND(0.34)       |
| Acenaphthene                      | 0.27 J [0.63 J]             | 0.090 J               | ND(0.34)       |
| Acenaphthylene                    | 1.1 J [1.1 J]               | 0.13 J                | ND(0.34)       |
| Anthracene                        | 1.1 J [2.2 J]               | 0.33 J                | ND(0.34)       |
| Benzo(a)anthracene                | 4.3 [8.0]                   | 1.8                   | 0.14 J         |
| Benzo(a)pyrene                    | 4.8 [7.2]                   | 1.9                   | 0.10 J         |
| Benzo(b)fluoranthene              | 5.6 [8.1]                   | 2.5                   | 0.12 J         |
| Benzo(g,h,i)perylene              | 4.0 [5.7]                   | 1.5                   | ND(0.34)       |
| Benzo(k)fluoranthene              | 2.2 [3.5 J]                 | 0.85                  | 0.10 J         |
| bis(2-Ethylhexyl)phthalate        | ND(1.5) [ND(3.7)]           | ND(0.39)              | 0.075 J        |
| Chrysene                          | 5.7 [9.2]                   | 2.5                   | 0.16 J         |
| Dibenzo(a,h)anthracene            | 0.72 J [ND(3.7)]            | 0.36 J                | ND(0.34)       |
| Dibenzofuran                      | ND(1.5) [ND(3.7)]           | ND(0.39)              | ND(0.34)       |
| Fluoranthene                      | 12 [19]                     | 4.6                   | 0.34 J         |
| Fluorene                          | 0.62 J [1.2 J]              | 0.12 J                | ND(0.34)       |
| Indeno(1,2,3-cd)pyrene            | 3.8 [5.9]                   | 1.5                   | ND(0.34)       |
| Naphthalene                       | ND(1.5) [ND(3.7)]           | ND(0.39)              | ND(0.34)       |
| Phenanthrene                      | 7.7 [14]                    | 2.2                   | 0.17 J         |
| Pyrene                            | 12 [19]                     | 4.5                   | 0.40           |
| Furans                            |                             |                       |                |
| 2,3,7,8-TCDF                      | 0.0000069 [0.0000028]       | 0.0000068             | 0.0000088      |
| TCDFs (total)                     | 0.00011 [0.000051]          | 0.000090              | 0.000092       |
| 1,2,3,7,8-PeCDF                   | 0.0000027 J [0.0000012 J]   | 0.0000050             | 0.0000040 J    |
| 2,3,4,7,8-PeCDF                   | 0.000030 [0.000012 J]       | 0.000014              | 0.0000062      |
| PeCDFs (total)                    | 0.00032 [0.000086]          | 0.00014               | 0.000070 I     |
| 1,2,3,4,7,8-HxCDF                 | 0.0000064 J [0.0000026 J]   | 0.000014              | 0.0000037 J    |
| 1,2,3,6,7,8-HxCDF                 | 0.0000073 J [0.0000031 J]   | 0.000010              | 0.0000027 J    |
| 1,2,3,7,8,9-HxCDF                 | 0.0000023 J [ND(0.0000011)] | 0.0000024 J           | 0.00000058 J   |
| 2,3,4,6,7,8-HxCDF                 | 0.000017 [0.0000072 J]      | 0.000016              | 0.0000032 J    |
| HxCDFs (total)                    | 0.00025 [0.000099]          | 0.00024               | 0.000037       |
| 1,2,3,4,6,7,8-HpCDF               | 0.000028 [0.000012 J]       | 0.000069              | 0.000011       |
| 1,2,3,4,7,8,9-HpCDF               | 0.0000060 J [ND(0.0000011)] | 0.0000056             | 0.0000010 J    |
| HpCDFs (total)                    | 0.000070 [0.000028]         | 0.00015               | 0.000020       |
| OCDF                              | 0.000076 [0.000032 J]       | 0.00012               | 0.000013       |
| Dioxins                           |                             |                       | T              |
| 2,3,7,8-TCDD                      | 0.00000093 J [0.00000055 J] | 0.00000076 J          | 0.0000038      |
| TCDDs (total)                     | 0.0000039 [0.00000055 J]    | 0.0000087             | 0.0000060      |
| 1,2,3,7,8-PeCDD                   | 0.0000018 J [0.0000011 J]   | 0.00000048 J          | ND(0.00000042) |
| PeCDDs (total)                    | 0.000024 [0.0000063 J]      | 0.000015              | 0.0000024 J    |
| 1,2,3,4,7,8-HxCDD                 | 0.0000014 J [0.00000063 J]  | 0.0000030 J           | ND(0.00000042) |
| 1,2,3,6,7,8-HxCDD                 | 0.0000053 J [0.0000027 J]   | 0.0000082             | 0.00000073 J   |
| 1,2,3,7,8,9-HxCDD                 | 0.0000041 J [0.0000022 J]   | 0.0000073             | 0.00000061 J   |
| HxCDDs (total)                    | 0.000058 [0.000027]         | 0.000063              | 0.0000056      |
| 1,2,3,4,6,7,8-HpCDD               | 0.000051 [0.000027]         | 0.00014               | 0.000011       |
| HpCDDs (total)                    | 0.000097 [0.000049]         | 0.00025               | 0.000019       |
| OCDD                              | 0.00049 [0.00031]           | 0.00084               | 0.000069       |
| Total TEQs (WHO TEFs)             | 0.000024 [0.000011]         | 0.000017              | 0.0000096      |

## SUPPLEMENTAL PRE-DESIGN INVESTIGATION HILL 78 AREA REMAINDER

## GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

|            | Sample ID:          | RAA9-L13N-SD      | RAA9-L14W-SD | RAA9-N8   |
|------------|---------------------|-------------------|--------------|-----------|
|            | Sample Depth(Feet): | 0-0.5             | 0-0.5        | 0-1       |
| Parameter  | Date Collected:     | 06/15/06          | 06/15/06     | 06/22/06  |
| Inorganics |                     |                   |              |           |
| Antimony   |                     | 0.800 B [1.47 B]  | 1.38 B       | 2.08 B    |
| Arsenic    |                     | 1.64 [3.64]       | 1.28 B       | 3.54      |
| Barium     |                     | 25.5 B [145]      | 31.0 B       | 135       |
| Beryllium  |                     | 0.189 B [0.225 B] | 0.253 B      | 0.219 B   |
| Cadmium    |                     | 0.420 B [0.218 B] | 0.375 B      | 0.381 B   |
| Chromium   |                     | 9.12 [9.51]       | 12.9         | 31.5      |
| Cobalt     |                     | 6.72 [9.11]       | 7.75         | 7.44      |
| Copper     |                     | 24.1 [21.9 B]     | 31.1         | 30.2      |
| Cyanide    |                     | 1.90 [ND(0.210)]  | ND(0.210)    | ND(0.131) |
| Lead       |                     | 98.1 [82.9]       | 27.4         | 168       |
| Mercury    |                     | 0.0870 [0.0652]   | 0.0541       | 0.0955    |
| Nickel     |                     | 15.9 [11.7]       | 15.5         | 14.0      |
| Selenium   |                     | ND(2.09) [1.03 B] | 0.628 B      | ND(2.15)  |
| Thallium   |                     | ND(1.05) [4.20]   | ND(1.28)     | ND(1.08)  |
| Tin        |                     | 2.29 B [2.23 B]   | 3.24 B       | 157       |
| Vanadium   |                     | 30.3 [26.2]       | 19.4         | 11.9      |
| Zinc       |                     | 118 [103]         | 481          | 197       |

#### Notes:

- Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of Appendix IX+3 constituents.
- 2. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998.
- 4. With the exception of dioxin/furans, only those constituents detected in one or more samples are summarized.
- 5. Field duplicate sample results are presented in brackets.

#### Data Qualifiers:

#### Organics (volatiles, semivolatiles, dioxin/furans)

- J Indicates an estimated value less than the practical quantitation limit (PQL).
- I Polychlorinated Diphenyl Ether (PCDPE) Interference.
- X Estimated maximum possible concentration.

#### Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

# ITEM 7 PLANT AREA UNKAMET BROOK AREA (GECD170) JULY 2006

#### a. Activities Undertaken/Completed

- Continued activities related to the detailed surveys (including metes and bounds and topographic surveys) of the Unkamet Brook Area (being performed by Hill Engineers, Architects & Planners, Inc.).\*
- Attended technical meeting with EPA to discuss several issues (July 12, 2006).\*
- Conducted sampling of sand piles from interplant roadway sweepings within the Building 51/Building 59 area, as identified in Table 7-1.

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue performing detailed surveys of the Unkamet Brook Area and submit resulting survey information.\*
- Submit information addressing channel flow in Unkamet Brook following re-location of the brook.\*
- Following EPA approval of the Pre-Design Investigation Report (submitted on September 6, 2005), initiate the additional soil sampling activities proposed therein and proposed in the EPA-approved November 2005 Addendum (approval received in March 2006).\*

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

Several issues stemming from July 12, 2006 technical meeting are under discussion with EPA.\*

#### f. Proposed/Approved Work Plan Modifications

In a letter dated August 15, 2005, GE proposed to remove Parcel L12-1-2 from the Unkamet Brook Area RAA. That proposal is pending approval from EPA.\*

## TABLE 7-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name               | Field Sample ID | Sample Date | Matrix | Laboratory | Analyses | Date Received by GE or BBL |
|----------------------------|-----------------|-------------|--------|------------|----------|----------------------------|
| Sampling of Sand Sweepings | Bldg119-SP1-1   | 7/18/06     | Soil   | SGS        | PCB      | 7/26/06                    |
| Sampling of Sand Sweepings | Bldg119-SP2-1   | 7/18/06     | Soil   | SGS        | PCB      | 7/26/06                    |
| Sampling of Sand Sweepings | Bldg119-SP3-1   | 7/18/06     | Soil   | SGS        | PCB      | 7/26/06                    |
| Sampling of Sand Sweepings | Bldg119-SP4-1   | 7/18/06     | Soil   | SGS        | PCB      | 7/26/06                    |

## TABLE 7-2 PCB DATA RECEIVED DURING JULY 2006

## SAMPLING OF SAND SWEEPINGS UNKAMET BROOK AREA

#### GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

| Sample ID     | Date<br>Collected | Aroclor-1016, -1221,<br>-1232, -1242, -1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|---------------|-------------------|---------------------------------------------|--------------|--------------|------------|
| Bldg119-SP1-1 | 7/18/06           | ND(0.035)                                   | 0.074        | 0.074        | 0.148      |
| Bldg119-SP2-1 | 7/18/06           | ND(0.033)                                   | 0.039        | 0.069        | 0.108      |
| Bldg119-SP3-1 | 7/18/06           | ND(0.040)                                   | 0.074        | 0.22         | 0.294      |
| Bldg119-SP4-1 | 7/18/06           | ND(0.039)                                   | 0.060        | 0.056        | 0.116      |

#### Notes

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

## ITEM 8 FORMER OXBOW AREAS A & C (GECD410) JULY 2006

#### a. Activities Undertaken/Completed

- Obtained access agreement from owner of Parcels I8-23-6 and I9-5-1 for remediation.\*
- Initiated soil remediation actions.\*
- Conducted air monitoring for particulates in connection with remediation actions, as identified in Table 8-1.\*
- Conducted Toxicity Characteristic Leaching Procedure (TCLP) sampling of soil from loam pile located within Parcel I8-23-6, as identified in Table 8-1.

#### b. <u>Sampling/Test Results Received</u>

None

#### c. Work Plans/Reports/Documents Submitted

Submitted analytical results for proposed backfill and topsoil sources to EPA (July 10, 2006).\*

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue soil remediation actions.\*
- Submit Addendum to Supplemental Information Package showing modified vegetation restoration plans as agreed with property owners.\*

#### e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

#### f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval of GE's June 15, 2006 Supplemental Information Package for Former Oxbow Areas A and C, Former Oxbow Areas J and K, and Lyman Street Area – Properties West of Lyman Street (July 7, 2006).\*

## TABLE 8-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

### FORMER OXBOW AREAS A & C GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                         |                     | Sample  |        |                         |                                          | Date Received |
|-----------------------------------------|---------------------|---------|--------|-------------------------|------------------------------------------|---------------|
| Project Name                            | Field Sample ID     | Date    | Matrix | Laboratory              | Analyses                                 | by GE or BBL  |
| Loam Pile Sampling                      | LP1-Q1-C1           | 7/31/06 | Soil   | SGS                     | TCLP - VOC, SVOC, Metals, Hg, Pest, Herb |               |
| Loam Pile Sampling                      | LP1-Q2-C1           | 7/31/06 | Soil   | SGS                     | TCLP - VOC, SVOC, Metals, Hg, Pest, Herb |               |
| Loam Pile Sampling                      | LP1-Q3-C1           | 7/28/06 | Soil   | SGS                     | TCLP - VOC, SVOC, Metals, Hg, Pest, Herb |               |
| Loam Pile Sampling                      | LP1-Q4-C1           | 7/28/06 | Soil   | SGS                     | TCLP - VOC, SVOC, Metals, Hg, Pest, Herb |               |
| Ambient Air Particulate Matter Sampling | OX-1                | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter                       | 8/1/06        |
| Ambient Air Particulate Matter Sampling | OX-2A               | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter                       | 8/1/06        |
| Ambient Air Particulate Matter Sampling | OX-2B               | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter                       | 8/1/06        |
| Ambient Air Particulate Matter Sampling | Background Location | 7/31/06 | Air    | Berkshire Environmental | Particulate Matter                       | 8/1/06        |

## TABLE 8-2 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006

## PARTICULATE AMBIENT AIR CONCENTRATIONS FORMER OXBOW AREAS A & C GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sampling Date <sup>2</sup> | Sampler Location | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min)          | Predominant<br>Wind Direction |
|----------------------------|------------------|------------------------------------------|---------------------------------------------|----------------------------------------|-------------------------------|
| 7/31/06                    | OX-1             | 0.012*                                   | 0.015*                                      | 11:30                                  | Variable                      |
|                            | OX-2A<br>OX-2B   | 0.035*<br>0.015*                         |                                             | 8:30 <sup>3</sup><br>8:30 <sup>3</sup> |                               |
| Notification Lavel         | UΛ-2B            |                                          |                                             | 0.50                                   |                               |
| Notification Level         |                  | 0.120                                    |                                             |                                        |                               |

#### Notes:

Background monitoring station is located east of Building 9B, between 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

<sup>\*</sup> Measured with DR-2000 or DR-4000.

<sup>&</sup>lt;sup>1</sup> Monitoring was performed only on days when site activities occurred.

 $<sup>^{2}</sup>$  The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.

<sup>&</sup>lt;sup>3</sup> Sampling period was shortened due to relocation of monitors related to site activity.

#### ITEM 9 LYMAN STREET AREA (GECD430) JULY 2006

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. Activities Undertaken/Completed

None

#### b. Sampling/Test Results Received

None

#### c. Work Plans/Reports/Documents Submitted

Submitted analytical results for proposed backfill and topsoil sources to EPA (July 10, 2006).

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Initiate soil remediation actions at properties west of Lyman Street.
- Submit Addendum to Supplemental Information Package showing modified vegetation restoration plans as agreed with property owners.

#### e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

#### f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval of GE's June 15, 2006 Supplemental Information Package for Former Oxbow Areas A and C, Former Oxbow Areas J and K, and Lyman Street Area – Properties West of Lyman Street (July 7, 2006).

#### ITEM 10 NEWELL STREET AREA I (GECD440) JULY 2006

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. Activities Undertaken/Completed

None

#### b. Sampling/Test Results Received

None

#### c. Work Plans/Reports/Documents Submitted

Submitted report on May 2006 semi-annual inspection of engineered barriers and restored and revegetated areas (July 6, 2006).

#### d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Obtain survey of GE-owned strip of land adjacent to Housatonic River for use in connection with ERE.
- Submit revised drafts of EREs and associated survey plans for GE-owned properties to EPA and MDEP.
- Send letters to owners of properties with Conditional Solutions regarding the Conditional Solutions.
- Complete restoration activities at Parcels J9-23-19, -20, and -21.
- Work on Final Completion Report.

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

#### ITEM 11 NEWELL STREET AREA II (GECD450) JULY 2006

\* All activities described below for this item were conducted pursuant to or in connection with the Consent Decree.

#### a. <u>Activities Undertaken/Completed</u>

- Completed remaining soil remediation activities i.e., installation of engineered barriers.
- Conducted ambient air monitoring for particulates, as identified in Table 11-1.
- Continued shipment of soil excavated from Parcel J9-23-8 to the selected disposal facility located in Port Arthur, Texas.
- Conducted drum sampling at Building 78 of soil cuttings, decontamination water, and well development water produced during well installation activities, as identified in Table 11-1.

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

None

#### d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue shipments of soil excavated from Parcel J9-23-8 to the selected disposal facility located in Port Arthur, Texas.
- Complete paving work associated with installation of access road and turn-around area.

#### e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

#### f. Proposed/Approved Work Plan Modifications

## TABLE 11-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                         |                     | Sample  |        |                         |                              | Date Received by |
|-----------------------------------------|---------------------|---------|--------|-------------------------|------------------------------|------------------|
| Project Name                            | Field Sample ID     | Date    | Matrix | Laboratory              | Analyses                     | GE or BBL        |
| Newell Street Decon Water Sampling      | Newell-Decon-1      | 7/10/06 | Water  | SGS                     | PCB, VOC, SVOC, Total Metals |                  |
| Sampling Newell St. Well N2SC-01IR      | N2SC-01IR-1         | 7/13/06 | Water  | SGS                     | PCB, VOC, SVOC, Total Metals |                  |
| Sampling Newell St. Well N2SC-03IR      | N2SC-03IR-1         | 7/13/06 | Water  | SGS                     | PCB, VOC, SVOC, Total Metals |                  |
| Soil Sampling                           | A1906-1             | 7/7/06  | Soil   | SGS                     | PCB, TCLP                    | 7/27/06          |
| Soil Sampling                           | A3005-1             | 7/7/06  | Soil   | SGS                     | PCB, TCLP                    | 7/27/06          |
| Soil Sampling                           | NS-15R-Soil-1       | 7/6/06  | Soil   | SGS                     | PCB, TCLP                    |                  |
| Ambient Air Particulate Matter Sampling | NN1 - Northwest     | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | NN2 - Southwest     | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | NN3 - Southeast     | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | NN4 - Northeast     | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | Background Location | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | NN1 - Northwest     | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | NN2 - Southwest     | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | NN3 - Southeast     | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | NN4 - Northeast     | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | Background Location | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | NN1 - Northwest     | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | NN2 - Southwest     | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | NN3 - Southeast     | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | NN4 - Northeast     | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | Background Location | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter           | 7/10/06          |
| Ambient Air Particulate Matter Sampling | NN1 - Northwest     | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN2 - Southwest     | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN3 - Southeast     | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN4 - Northeast     | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | Background Location | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN1 - Northwest     | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN2 - Southwest     | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN3 - Southeast     | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN4 - Northeast     | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | Background Location | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN1 - Northwest     | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN2 - Southwest     | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN3 - Southeast     | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN4 - Northeast     | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter           | 7/17/06          |

V:\GE\_Pittsfield\_General\Reports and Presentations\Monthly Reports\2006\7-06 CD Monthly\Tracking Logs\Tracking.xls TABLE 11-1

## TABLE 11-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                         |                     | Sample  |        |                         |                    | Date Received by |
|-----------------------------------------|---------------------|---------|--------|-------------------------|--------------------|------------------|
| Project Name                            | Field Sample ID     | Date    | Matrix | Laboratory              | Analyses           | GE or BBL        |
| Ambient Air Particulate Matter Sampling | Background Location | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN1 - Northwest     | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN2 - Southwest     | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN3 - Southeast     | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN4 - Northeast     | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06          |
| Ambient Air Particulate Matter Sampling | Background Location | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN1 - Northwest     | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN2 - Southwest     | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN3 - Southeast     | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN4 - Northeast     | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06          |
| Ambient Air Particulate Matter Sampling | Background Location | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06          |
| Ambient Air Particulate Matter Sampling | NN1 - Northwest     | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06          |
| Ambient Air Particulate Matter Sampling | NN2 - Southwest     | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06          |
| Ambient Air Particulate Matter Sampling | NN3 - Southeast     | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06          |
| Ambient Air Particulate Matter Sampling | NN4 - Northeast     | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06          |
| Ambient Air Particulate Matter Sampling | Background Location | 7/17/06 | Air    | Berkshire Environmental | Particulate Matter | 7/24/06          |

## TABLE 11-2 PCB DATA RECEIVED DURING JULY 2006

### SOIL SAMPLING

#### **NEWELL STREET AREA II**

#### ${\tt GENERAL\ ELECTRIC\ COMPANY\ -\ PITTSFIELD,\ MASSACHUSETTS}$

(Results are presented in dry weight parts per million, ppm)

| Sample ID | Date<br>Collected | Aroclor-1016, -1221,<br>-1232, -1242, -1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|-----------|-------------------|---------------------------------------------|--------------|--------------|------------|
| A1906-1   | 7/7/06            | ND(0.035)                                   | 0.27         | ND(0.035)    | 0.27       |
| A3005-1   | 7/7/06            | ND(0.038)                                   | 0.25         | ND(0.038)    | 0.25       |

#### Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs and TCLP constituents.
- 2. Please refer to Table 11-3 for a summary of TCLP constituents.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

## TABLE 11-3 TCLP DATA RECEIVED DURING JULY 2006

### SOIL SAMPLING NEWELL STREET AREA II

#### GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

|                           | TCLP       |              |              |
|---------------------------|------------|--------------|--------------|
| Sample ID:                | Regulatory | A1906-1      | A3005-1      |
| Parameter Date Collected: | Limits     | 7/7/2006     | 7/7/2006     |
| Volatile Organics         |            |              | I            |
| 1,1-Dichloroethene        | 0.7        | ND(0.010)    | ND(0.010)    |
| 1,2-Dichloroethane        | 0.5        | ND(0.010)    | ND(0.010)    |
| 2-Butanone                | 200        | ND(0.25)     | 0.012 J      |
| Benzene                   | 0.5        | 0.011        | 0.35         |
| Carbon Tetrachloride      | 0.5        | ND(0.010)    | ND(0.010)    |
| Chlorobenzene             | 100        | ND(0.010)    | ND(0.010)    |
| Chloroform                | 6          | ND(0.010)    | ND(0.010)    |
| Tetrachloroethene         | 0.7        | ND(0.010)    | ND(0.010)    |
| Trichloroethene           | 0.5        | 0.012        | 0.077        |
| Vinyl Chloride            | 0.2        | ND(0.010)    | ND(0.010)    |
| Semivolatile Organics     |            |              |              |
| 1,4-Dichlorobenzene       | 7.5        | ND(0.010)    | ND(0.010)    |
| 2,4,5-Trichlorophenol     | 400        | ND(0.010)    | ND(0.010)    |
| 2,4,6-Trichlorophenol     | 2          | ND(0.010)    | ND(0.010)    |
| 2,4-Dinitrotoluene        | 0.13       | ND(0.010)    | ND(0.010)    |
| Cresol                    | 200        | ND(0.010)    | ND(0.010)    |
| Hexachlorobenzene         | 0.13       | ND(0.010)    | ND(0.010)    |
| Hexachlorobutadiene       | 0.5        | ND(0.010)    | ND(0.010)    |
| Hexachloroethane          | 3          | ND(0.010)    | ND(0.010)    |
| Nitrobenzene              | 2          | ND(0.010)    | ND(0.010)    |
| Pentachlorophenol         | 100        | ND(0.050)    | ND(0.050)    |
| Pyridine                  | 5          | ND(0.010)    | ND(0.010)    |
| Inorganics                |            |              |              |
| Arsenic                   | 5          | ND(0.200)    | ND(0.200)    |
| Barium                    | 100        | 0.723 B      | 0.604 B      |
| Cadmium                   | 1          | ND(0.100)    | ND(0.100)    |
| Chromium                  | 5          | 0.00340 B    | 0.00430 B    |
| Lead                      | 5          | 0.0351 B     | 0.0180 B     |
| Mercury                   | 0.2        | ND(0.000570) | ND(0.000570) |
| Selenium                  | 1          | ND(0.200)    | ND(0.200)    |
| Silver                    | 5          | ND(0.100)    | ND(0.100)    |

#### Notes:

- 1. Sample was collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs and TCLP constituents.
- 2. Please refer to Table 11-2 for a summary of PCBs.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

#### Data Qualifiers:

#### Organics (volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

#### **Inorganics**

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

## TABLE 11-4 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006

## PARTICULATE AMBIENT AIR CONCENTRATIONS NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sampling Date <sup>2</sup> | Sampler Location | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant Wind<br>Direction |
|----------------------------|------------------|------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|
| 7/5/06                     | NN1 - Northwest  | 0.021*                                   | 0.021*                                      | 10:30                         | WNW                           |
|                            | NN2 - Southwest  | 0.017*                                   |                                             | 10:30                         |                               |
|                            | NN3 - Southeast  | 0.020*                                   |                                             | 10:30                         |                               |
|                            | NN4 - Northeast  | 0.021*                                   |                                             | 10:30                         |                               |
| 7/6/06                     | NN1 - Northwest  | 0.010*                                   | 0.006*                                      | 11:45                         | WNW                           |
|                            | NN2 - Southwest  | 0.011*                                   |                                             | 11:45                         |                               |
|                            | NN3 - Southeast  | 0.009*                                   |                                             | 11:30                         |                               |
|                            | NN4 - Northeast  | 0.006*                                   |                                             | 11:30                         |                               |
| 7/7/06                     | NN1 - Northwest  | 0.012*                                   | 0.008*                                      | 11:45                         | WNW                           |
|                            | NN2 - Southwest  | 0.013*                                   |                                             | 11:30                         |                               |
|                            | NN3 - Southeast  | 0.013*                                   |                                             | 10:45                         |                               |
|                            | NN4 - Northeast  | 0.010*                                   |                                             | 11:00                         |                               |
| 7/10/06                    | NN1 - Northwest  | 0.033*                                   | 0.056*                                      | 11:15                         | Variable                      |
|                            | NN2 - Southwest  | 0.029*                                   |                                             | 11:15                         |                               |
|                            | NN3 - Southeast  | 0.038*                                   |                                             | 11:15                         |                               |
|                            | NN4 - Northeast  | 0.032*                                   |                                             | 11:15                         |                               |
| 7/11/06                    | NN1 - Northwest  | 0.071*                                   | 0.070*                                      | 10:30                         | NNW, WNW                      |
|                            | NN2 - Southwest  | 0.053*                                   |                                             | 10:45                         |                               |
|                            | NN3 - Southeast  | 0.065*                                   |                                             | 10:45                         |                               |
|                            | NN4 - Northeast  | 0.073*                                   |                                             | 11:00                         |                               |
| 7/12/06                    | NN1 - Northwest  | 0.054*                                   | 0.040*                                      | 11:15                         | Calm                          |
|                            | NN2 - Southwest  | 0.056*                                   |                                             | 11:15                         |                               |
|                            | NN3 - Southeast  | 0.055*                                   |                                             | 11:15                         |                               |
|                            | NN4 - Northeast  | 0.055*                                   |                                             | 11:15                         |                               |
| 7/13/06                    | NN1 - Northwest  | 0.002*                                   | 0.007*                                      | 10:45                         | NNE, W                        |
|                            | NN2 - Southwest  | 0.008*                                   |                                             | 10:45                         |                               |
|                            | NN3 - Southeast  | 0.004*                                   |                                             | 11:00                         |                               |
|                            | NN4 - Northeast  | 0.002*                                   |                                             | 11:15                         |                               |
| 7/14/06                    | NN1 - Northwest  | 0.023*                                   | 0.021*                                      | 11:30                         | WNW                           |
|                            | NN2 - Southwest  | 0.025*                                   |                                             | 11:30                         |                               |
|                            | NN3 - Southeast  | 0.025*                                   |                                             | 11:15                         |                               |
|                            | NN4 - Northeast  | 0.023*                                   |                                             | 11:15                         |                               |
| 7/17/06                    | NN1 - Northwest  | 0.020*                                   | 0.013*                                      | 10:45                         | Variable                      |
|                            | NN2 - Southwest  | 0.019*                                   |                                             | 10:30                         |                               |
|                            | NN3 - Southeast  | 0.022*                                   |                                             | 11:00                         |                               |
|                            | NN4 - Northeast  | 0.021*                                   |                                             | 10:45                         |                               |
| Notification Level         |                  | 0.120                                    |                                             |                               |                               |

#### Notes:

Newell Street Area II remediation completed July 17, 2006.

Background monitoring station is located east of Building 9B, between 9B and New York Avenue.

 $Predominant\ wind\ direction\ determined\ using\ hourly\ wind\ direction\ data\ from\ the\ Pittsfield\ Municipal\ Airport\ Weather\ Station.$ 

<sup>\*</sup> Measured with DR-2000 or DR-4000. All other measured with pDR-1000.

<sup>&</sup>lt;sup>1</sup> Monitoring was performed only on days when site activities occurred.

 $<sup>^{2}</sup>$  The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.

#### ITEM 12 FORMER OXBOW AREAS J & K (GECD420) JULY 2006

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. Activities Undertaken/Completed

- Initiated and completed soil remediation actions.
- Conducted air monitoring for particulates and PCBs in connection with remediation actions, as identified in Table 12-1.

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

- Submitted revision to Addendum to Final RD/RA Work Plan to EPA, which contained revised Figure 4 (Preliminary Soil-Related Response Actions) (July 6, 2006).
- Submitted analytical data for proposed backfill and topsoil sources to EPA (July 10, 2006).

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Submit Addendum to Supplemental Information Package showing modified vegetation restoration plans as agreed with property owners.

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval of GE's June 15, 2006 Supplemental Information Package for Former Oxbow Areas A and C, Former Oxbow Areas J and K, and Lyman Street Area – Properties West of Lyman Street (July 7, 2006).

## TABLE 12-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## FORMER OXBOW AREAS J & K GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                                                                  |                     | Sample             |        |                         |                    | Date Received |
|----------------------------------------------------------------------------------|---------------------|--------------------|--------|-------------------------|--------------------|---------------|
| Project Name                                                                     | Field Sample ID     | Date               | Matrix | Laboratory              | Analyses           | by GE or BBL  |
| Ambient Air Particulate Matter Sampling                                          | K1                  | 7/12/06            | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling                                          | K1                  | 7/13/06            | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling                                          | Background Location | 7/13/06            | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling                                          | K1                  | 7/14/06            | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling                                          | Background Location | 7/14/06            | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling                                          | K1                  | 7/17/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | J3                  | 7/17/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | Background Location | 7/17/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | K1                  | 7/18/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | J3                  | 7/18/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | Background Location | 7/18/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | K1                  | 7/19/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | J3                  | 7/19/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | J4                  | 7/19/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | J5                  | 7/19/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | Background Location | 7/19/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | J3                  | 7/20/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | J4                  | 7/20/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | J5                  | 7/20/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | Background Location | 7/20/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | J3                  | 7/21/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | J4                  | 7/21/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | J5                  | 7/21/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | Background Location | 7/21/06            | Air    | Berkshire Environmental | Particulate Matter | 7/24/06       |
| Ambient Air Particulate Matter Sampling                                          | J2                  | 7/24/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | J3                  | 7/24/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | J4                  | 7/24/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | J5                  | 7/24/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | Background Location | 7/24/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | J2                  | 7/25/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | J3                  | 7/25/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling  Ambient Air Particulate Matter Sampling | J4                  | 7/25/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| , ,                                                                              |                     | 7/25/06<br>7/25/06 |        | Berkshire Environmental |                    | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | Background Location |                    | Air    |                         | Particulate Matter |               |
| Ambient Air Particulate Matter Sampling                                          | J2                  | 7/26/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | J3                  | 7/26/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | J4                  | 7/26/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | Background Location | 7/26/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | J2                  | 7/27/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | J3                  | 7/27/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling                                          | J4                  | 7/27/06            | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |

V:\GE\_Pittsfield\_General\Reports and Presentations\Monthly Reports\2006\7-06 CD Monthly\Tracking Logs\Tracking.xls Table 12-1

## TABLE 12-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## FORMER OXBOW AREAS J & K GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                         |                                | Sample         |        |                         |                    | Date Received |
|-----------------------------------------|--------------------------------|----------------|--------|-------------------------|--------------------|---------------|
| Project Name                            | Field Sample ID                | Date           | Matrix | Laboratory              | Analyses           | by GE or BBL  |
| Ambient Air Particulate Matter Sampling | Background Location            | 7/27/06        | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | J2                             | 7/28/06        | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | J3                             | 7/28/06        | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | J4                             | 7/28/06        | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| Ambient Air Particulate Matter Sampling | Background Location            | 7/28/06        | Air    | Berkshire Environmental | Particulate Matter | 8/1/06        |
| PCB Ambient Air Sampling                | Field Blank                    | 7/06 - 7/07/06 | Air    | Berkshire Environmental | PCB                | 7/20/06       |
| PCB Ambient Air Sampling                | J3                             | 7/06 - 7/07/06 | Air    | Berkshire Environmental | PCB                | 7/20/06       |
| PCB Ambient Air Sampling                | J3-CO (colocated)              | 7/06 - 7/07/06 | Air    | Berkshire Environmental | PCB                | 7/20/06       |
| PCB Ambient Air Sampling                | J5                             | 7/06 - 7/07/06 | Air    | Berkshire Environmental | PCB                | 7/20/06       |
| PCB Ambient Air Sampling                | K1                             | 7/06 - 7/07/06 | Air    | Berkshire Environmental | PCB                | 7/20/06       |
| PCB Ambient Air Sampling                | Background - Longfellow Avenue | 7/06 - 7/07/06 | Air    | Berkshire Environmental | PCB                | 7/20/06       |
| PCB Ambient Air Sampling                | Field Blank                    | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB                | 7/20/06       |
| PCB Ambient Air Sampling                | J3                             | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB                | 7/20/06       |
| PCB Ambient Air Sampling                | J3-CO (colocated)              | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB                | 7/20/06       |
| PCB Ambient Air Sampling                | J5                             | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB                | 7/20/06       |
| PCB Ambient Air Sampling                | K1                             | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB                | 7/20/06       |
| PCB Ambient Air Sampling                | Background - Longfellow Avenue | 7/08 - 7/09/06 | Air    | Berkshire Environmental | PCB                | 7/20/06       |
| PCB Ambient Air Sampling                | Field Blank                    | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB                | 7/21/06       |
| PCB Ambient Air Sampling                | J3                             | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB                | 7/21/06       |
| PCB Ambient Air Sampling                | J3-CO (colocated)              | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB                | 7/21/06       |
| PCB Ambient Air Sampling                | J5                             | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB                | 7/21/06       |
| PCB Ambient Air Sampling                | K1                             | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB                | 7/21/06       |
| PCB Ambient Air Sampling                | Background - Longfellow Avenue | 7/13 - 7/14/06 | Air    | Berkshire Environmental | PCB                | 7/21/06       |

## TABLE 12-2 AMBIENT AIR PCB DATA RECEIVED DURING JULY 2006

#### BACKGROUND PCB AMBIENT AIR CONCENTRATIONS FORMER OXBOW AREAS J AND K GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sampling<br>Event Period | Date Analytical<br>Results<br>Received by<br>BEC, Inc. | Field Blank<br>(μg/PUF) | J3<br>(μg/m3) | J3-CO<br>(colocated)<br>(μg/m3) | J5<br>(μg/m3) | K1<br>(µg/m3) | Background -<br>Longfellow Avenue<br>(μg/m3) |
|--------------------------|--------------------------------------------------------|-------------------------|---------------|---------------------------------|---------------|---------------|----------------------------------------------|
| 7/06 - 7/07/06           | 7/17/06                                                | ND (<0.10)              | 0.0008 J      | 0.0010 J                        | 0.0013 J      | 0.0006 J      | 0.0029 J                                     |
| 7/08 - 7/09/06           | 7/18/06                                                | ND (<0.10)              | 0.0007 J      | 0.0016 J                        | 0.0022 J      | 0.0026 J      | 0.0006 J                                     |
| Notifica                 | tion Level                                             | 0.05                    | 0.05          | 0.05                            | 0.05          | 0.05          | 0.05                                         |

#### Notes:

#### ND - Non-Detect

- J Detected sample results were qualified as estimated.
- Preliminary data review was conducted based on the following data quality indicators associated with the tabulated dataset above: sampling collection time, sampling calibration check, temperature receipt, associated blanks, laboratory control samples recoveries, and surrogate recoveries.

#### **Qualification Notes:**

- 1. Samples collect from 07/06 to 07/07/06 were qualified as estimated due to laboratory not recording the temperature of the PUF upon receipt. The temperature of the temperature blank was recorded as less than 4°C.
- 2. Samples collect from 07/08 to 07/09/06 were qualified as estimated due to the PUF receipt temperature greater than 4 °C (PUF temperature 22.4°C). The temperature of the temperature blank was recorded as less than 4°C.

## TABLE 12-3 AMBIENT AIR PCB DATA RECEIVED DURING JULY 2006

## PCB AMBIENT AIR CONCENTRATIONS FORMER OXBOW AREAS J AND K GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sampling Event<br>Period | Date Analytical<br>Results<br>Received by<br>BEC, Inc. | Field Blank<br>(μg/PUF) | J3<br>(μg/m3) | J3-CO<br>(colocated)<br>(μg/m3) | J5<br>(μg/m3) | K1<br>(µg/m3) | Background -<br>Longfellow Avenue<br>(μg/m3) |
|--------------------------|--------------------------------------------------------|-------------------------|---------------|---------------------------------|---------------|---------------|----------------------------------------------|
| 7/13 - 7/14/06           | 7/21/06                                                | ND (<0.10) J            | 0.0013J       | 0.0012J                         | 0.0051J       | 0.0012J       | 0.0048J                                      |
| Notificat                | ion Level                                              | 0.05                    | 0.05          | 0.05                            | 0.05          | 0.05          | 0.05                                         |

#### Notes:

#### ND - Non-Detect

- J Detected sample results were qualified as estimated.
- Preliminary data review was conducted based on the following data quality indicators associated with the tabulated dataset above: sampling collection time, sampling calibration check, temperature receipt, associated blanks, laboratory control samples recoveries, and surrogate recoveries.

#### **Qualification Notes:**

1. Samples were qualified as estimated due to laboratory not recording the temperature of the PUF upon receipt.

### TABLE 12-4 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006

## PARTICULATE AMBIENT AIR CONCENTRATIONS FORMER OXBOW AREAS J & K GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sampling Date <sup>2</sup> | Sampler Location | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant<br>Wind Direction |
|----------------------------|------------------|------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|
| 7/12/06                    | K1               | 0.055*                                   | NA <sup>3</sup>                             | 6:00 <sup>4</sup>             | Calm                          |
| 7/13/06                    | K1               | 0.030*                                   | 0.015*                                      | 10:45                         | NNE, W                        |
| 7/14/06                    | K1               | 0.066*                                   | 0.019*                                      | 11:00                         | WNW                           |
| 7/17/06 <sup>5</sup>       | K1               | 0.071*                                   | 0.011*                                      | 11:30                         | Variable                      |
|                            | J3               | 0.035                                    |                                             | 11:00                         |                               |
| 7/18/06                    | K1               | 0.069*                                   | 0.011*                                      | 8:45 <sup>4</sup>             | WNW                           |
|                            | J3               | 0.026                                    |                                             | 10:30                         |                               |
| 7/19/06 <sup>5</sup>       | K1               | 0.023                                    | 0.011*                                      | 11:15                         | Calm                          |
|                            | J3               | 0.024*                                   |                                             | 11:00                         |                               |
|                            | J4               | 0.019*                                   |                                             | 11:00                         |                               |
|                            | J5               | 0.019*                                   |                                             | 11:00                         |                               |
| 7/20/06 <sup>5</sup>       | J3               | 0.014*                                   | 0.009*                                      | 5:45 <sup>4</sup>             | Calm                          |
|                            | J4               | 0.020*                                   |                                             | 10:30                         |                               |
|                            | J5               | 0.020*                                   |                                             | 10:15                         |                               |
| 7/21/06                    | J3               | 0.045*                                   | 0.033*                                      | 11:15                         | Variable                      |
|                            | J4               | 0.055*                                   |                                             | 11:15                         |                               |
|                            | J5               | 0.044*                                   |                                             | 11:15                         |                               |
| 7/24/06 <sup>5</sup>       | J2               | 0.011*                                   | 0.005*                                      | 5:45 <sup>6</sup>             | Variable                      |
|                            | J3               | 0.014*                                   |                                             | 11:30                         |                               |
|                            | J4               | 0.013*                                   |                                             | 11:30                         |                               |
|                            | J5               | 0.009*                                   |                                             | 5:15 <sup>6</sup>             |                               |
| 7/25/06                    | J2               | 0.031*                                   | 0.027*                                      | 10:30                         | SSW                           |
|                            | J3               | 0.035*                                   |                                             | 10:30                         |                               |
|                            | J4               | 0.042*                                   |                                             | 10:30                         |                               |
| 7/26/06                    | J2               | 0.049*                                   | 0.043*                                      | 11:30                         | Variable                      |
|                            | J3               | 0.050*                                   |                                             | 11:30                         |                               |
|                            | J4               | 0.064*                                   |                                             | 11:30                         |                               |
| 7/27/06                    | J2               | 0.088*                                   | 0.070*                                      | 12:00                         | SSW                           |
|                            | J3               | 0.086*                                   |                                             | 12:00                         |                               |
|                            | J4               | 0.101*                                   |                                             | 12:00                         |                               |
| 7/28/06                    | J2               | 0.040*                                   | 0.035*                                      | 11:15                         | SSW                           |
|                            | J3               | 0.041*                                   |                                             | 11:30                         |                               |
|                            | J4               | 0.041*                                   |                                             | 11:15                         |                               |
| Notification Level         |                  | 0.120                                    |                                             |                               |                               |

#### Notes:

Background monitoring location at 15 Longfellow Avenue in Pittsfield

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

<sup>\*</sup> Measured with DR-2000 or DR-4000. All other measured with pDR-1000.

<sup>&</sup>lt;sup>1</sup> Monitoring was performed only on days when site activities occurred.

<sup>&</sup>lt;sup>2</sup> The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.

 $<sup>^{\</sup>rm 3}$  Data not available due to equipment malfunction.

 $<sup>^{\</sup>rm 4}$  Sampling period was shortened due to equipment malfunction.

<sup>&</sup>lt;sup>5</sup> Monitoring locations changed due to progression of site activities.

 $<sup>^{\</sup>rm 6}$  Sampling period was shortened due to mid-day switch of sampling locations.

## ITEM 13 HOUSATONIC RIVER AREA UPPER ½ MILE REACH (GECD800) JULY 2006

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. Activities Undertaken/Completed

Installed three seepage meters in the river in support of upcoming total organic carbon (TOC) evaluation and report (July 19, 2006).

#### b. Sampling/Test Results Received

None

#### c. Work Plans/Reports/Documents Submitted

Submitted draft report on June 2006 bank erosion inspection to EPA (July 14, 2006).

#### d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Perform 2006 restored banks vegetation inspection (August 23, 2006).
- Perform 2006 aquatic habitat enhancement structure inspection (August 24, 2006).

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

Issues relating to TOC content in isolation layer remain unresolved. EPA and GE have agreed that GE's report on those issues will be deferred until after the seepage meter data are available. The Final Completion Report for Upper ½ Mile Reach Removal Action will be submitted following resolution of those issues.

#### f. Proposed/Approved Work Plan Modifications

## ITEM 14 HOUSATONIC RIVER AREA 1½ MILE REACH (GECD820) JULY 2006

(Note: This item is limited to activities conducted by GE and does not include EPA's work on the 1½ Mile Reach Removal Action)

#### a. Activities Undertaken/Completed

On July 26, 2006, BBL (on GE's behalf) performed a round of water column monitoring at 10 locations along the Housatonic River between Coltsville, MA and Great Barrington, MA. Two of these locations are situated in the 1½ Mile Reach: Lyman Street Bridge (Location 4) and Pomeroy Avenue Bridge (Location 6A). A composite grab sample was collected at each location and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a, as identified in Table 14-1. (The other eight locations are discussed under Items 15 and 20 below.)

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue Housatonic River monthly water column monitoring.

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

## TABLE 14-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## HOUSATONIC RIVER - 1-1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                               |                 |             |        |            |                              | Date Received |
|-------------------------------|-----------------|-------------|--------|------------|------------------------------|---------------|
| Project Name                  | Field Sample ID | Sample Date | Matrix | Laboratory | Analyses                     | by GE or BBL  |
| Monthly Water Column Sampling | Location-4      | 7/26/06     | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A |               |
| Monthly Water Column Sampling | Location-4      | 6/27/06     | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A | 7/13/06       |
| Monthly Water Column Sampling | Location-6A     | 7/26/06     | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A |               |
| Monthly Water Column Sampling | Location-6A     | 6/27/06     | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A | 7/13/06       |

#### **TABLE 14-2 SAMPLE DATA RECEIVED DURING JULY 2006**

#### MONTHLY WATER COLUMN SAMPLING **HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS** (Results are presented in parts per million, ppm)

Date Aroclor-1016, -1221, Chlorophyll (a) Collected -1232, -1242 POC **TSS** Sample ID Location Aroclor 1248 Aroclor 1254 Aroclor 1260 **Total PCBs** ND(0.0000220) LOCATION-4 Lyman Street Bridge 6/27/06 ND(0.0000220) ND(0.0000220) ND(0.0000220) ND(0.0000220) 0.585 6.20 0.0016 LOCATION-6A Pomeroy Ave. Bridge 6/27/06 ND(0.0000220) ND(0.0000220) ND(0.0000220) ND(0.0000220) ND(0.0000220) 0.533 0.0012

#### Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).
- 2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

6.50

## ITEM 15 HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) JULY 2006

#### a. Activities Undertaken/Completed

- On July 26, 2006, BBL (on GE's behalf) performed a round of water column monitoring at 10 locations along the Housatonic River between Coltsville and Great Barrington, MA. Two locations are situated in the 1½ Mile Reach of the Housatonic River and were discussed in Item 14. One location is at the outlet of Silver Lake and is discussed in Item 20 below. Of the remaining seven locations, two are located upstream of the 1½ Mile Reach: Hubbard Avenue Bridge (Location 1) and Newell Street Bridge (Location 2). The five remaining locations are situated in the Rest of the River: Holmes Road Bridge (Location 7); New Lenox Road Bridge (Location 9); Woods Pond Headwaters (Location 10); Schweitzer Bridge (Location 12); and Division Street Bridge (Location 13). Sampling activities were performed at these locations on July 26, 2006 from downstream to upstream. Composite grab samples were collected at each location sampled and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a, as identified in Table 15-1.
- Attended meeting with EPA for transfer of its fate, transport, and bioaccumulation model to GE (July 6, 2006).\*

#### b. Sampling/Test Results

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

Submitted letter to Lead Administrative Trustee (LAT) providing notice of GE's intent to place riprap in an area adjacent to Woods Pond Dam in summer or fall 2006 (July 24, 2006).\*

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue Housatonic River monthly water column monitoring.
- Prepare design drawings for installation of replacement gate at Rising Pond Dam.\*
- Submit plan to EPA and LAT for placement of riprap in an area adjacent to Woods Pond Dam.\*

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

# ITEM 15 (cont'd) HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) JULY 2006

#### f. Proposed/Approved Work Plan Modifications

## TABLE 15-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                               |                     | Sample  |        |            |                              | Date Received |
|-------------------------------|---------------------|---------|--------|------------|------------------------------|---------------|
| Project Name                  | Field Sample ID     | Date    | Matrix | Laboratory | Analyses                     | by GE or BBL  |
| Monthly Water Column Sampling | HR-D1 (Location-12) | 6/27/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A | 7/13/06       |
| Monthly Water Column Sampling | HR-D1 (Location-12) | 7/26/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A |               |
| Monthly Water Column Sampling | Location-1          | 7/26/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A |               |
| Monthly Water Column Sampling | Location-1          | 6/27/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A | 7/13/06       |
| Monthly Water Column Sampling | Location-10         | 6/27/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A | 7/13/06       |
| Monthly Water Column Sampling | Location-10         | 7/26/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A |               |
| Monthly Water Column Sampling | Location-12         | 7/26/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A |               |
| Monthly Water Column Sampling | Location-12         | 6/27/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A | 7/13/06       |
| Monthly Water Column Sampling | Location-13         | 6/27/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A | 7/13/06       |
| Monthly Water Column Sampling | Location-13         | 7/26/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A |               |
| Monthly Water Column Sampling | Location-2          | 7/26/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A |               |
| Monthly Water Column Sampling | Location-2          | 6/27/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A | 7/13/06       |
| Monthly Water Column Sampling | Location-7          | 7/26/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A |               |
| Monthly Water Column Sampling | Location-7          | 6/27/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A | 7/13/06       |
| Monthly Water Column Sampling | Location-9          | 7/26/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A |               |
| Monthly Water Column Sampling | Location-9          | 6/27/06 | Water  | NEA        | PCB, TSS, POC, Chlorophyll-A | 7/13/06       |

#### Note:

1. Field duplicate sample locations are presented in parenthesis.

#### TABLE 15-2 SAMPLE DATA RECEIVED DURING JULY 2006

## MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

|             |                          | Date      | Aroclor-1016, -1221, |                |                |                |               |         |        |                 |
|-------------|--------------------------|-----------|----------------------|----------------|----------------|----------------|---------------|---------|--------|-----------------|
| Sample ID   | Location                 | Collected | -1232, -1242         | Aroclor 1248   | Aroclor 1254   | Aroclor 1260   | Total PCBs    | POC     | TSS    | Chlorophyll (a) |
| LOCATION-1  | Hubbard Avenue Bridge    | 6/27/06   | ND(0.0000220)        | ND(0.0000220)  | ND(0.0000220)  | ND(0.0000220)  | ND(0.0000220) | 0.426   | 2.90   | 0.0015          |
| LOCATION-2  | Newell Street Bridge     | 6/27/06   | ND(0.0000220)        | ND(0.0000220)  | ND(0.0000220)  | ND(0.0000220)  | ND(0.0000220) | 0.480   | 4.80   | 0.0011          |
| LOCATION-7  | Holmes Road Bridge       | 6/27/06   | ND(0.0000220)        | ND(0.0000220)  | ND(0.0000220)  | 0.0000500 AG   | 0.0000500     | 0.492   | 5.70   | 0.0016          |
| LOCATION-9  | New Lenox Road Bridge    | 6/27/06   | ND(0.0000220)        | 0.0000290 PE   | 0.0000290 AF   | 0.0000500 AG   | 0.000108      | 0.734   | 11.0   | 0.0032          |
| LOCATION-10 | Headwaters of Woods Pond | 6/27/06   | ND(0.0000220)        | 0.0000300 PE   | 0.0000320 AF   | 0.0000490 AG   | 0.000111      | 0.475   | 7.30   | 0.0020          |
| LOCATION-12 | Schweitzer Bridge        | 6/27/06   | ND(0.0000220)        | 0.0000300 PE   | 0.0000340 AF   | 0.0000580 AG   | 0.000122      | 0.517   | 4.20   | 0.0024          |
|             |                          | 6/27/06   | [ND(0.0000220)]      | [0.0000380 PE] | [0.0000430 AF] | [0.0000740 AG] | [0.000155]    | [0.648] | [5.70] | [0.0023]        |
| LOCATION-13 | Division Street Bridge   | 6/27/06   | ND(0.0000220)        | ND(0.0000220)  | ND(0.0000220)  | ND(0.0000220)  | ND(0.0000220) | 0.751   | 10.4   | 0.0028          |

#### Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon
- 2. (POC), and chlorophyll (a).
  - Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of
- 3. the total river depth at each station.
- 4. ND Analyte was not detected. The number in parenthesis is the associated detection limit. Field duplicate sample results are presented in brackets.

#### Data Qualifiers:

- AF Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- AG Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- PE Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

## ITEMS 16 & 17 HOUSATONIC RIVER FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1½-MILE REACH (GECD710 AND GECD720) JULY 2006

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. Activities Undertaken/Completed

- Continued final restoration activities at certain Phase 3 floodplain properties.
- Completed soil removal actions at the Phase 4 floodplain properties (except tree planting and final restoration, scheduled to be completed Fall 2006).
- Conducted ambient air monitoring for particulates at the Phase 4 floodplain properties, as identified in Table 16&17-1.

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

Submitted report on May 2006 inspection of backfilled/restored areas at Phase 3 floodplain properties (July 6, 2006).

#### d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Continue work on Final Completion Reports for Phase 1 and 2 floodplain properties and for Phase 3 floodplain properties.

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

## TABLE 16&17-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1-1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                                         |                     | Sample  |        |                         |                    | Date Received |
|-----------------------------------------|---------------------|---------|--------|-------------------------|--------------------|---------------|
| Project Name                            | Field Sample ID     | Date    | Matrix | Laboratory              | Analyses           | by GE or BBL  |
| Ambient Air Particulate Matter Sampling | 4A-1                | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Background Location | 7/5/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | 4A-1                | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Background Location | 7/6/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | 4A-1                | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | Background Location | 7/7/06  | Air    | Berkshire Environmental | Particulate Matter | 7/10/06       |
| Ambient Air Particulate Matter Sampling | 4A-1                | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Background Location | 7/10/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | 4A-1                | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Background Location | 7/11/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | 4A-1                | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Background Location | 7/12/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | 4A-1                | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Background Location | 7/13/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | 4A-1                | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |
| Ambient Air Particulate Matter Sampling | Background Location | 7/14/06 | Air    | Berkshire Environmental | Particulate Matter | 7/17/06       |

## TABLE 16&17-2 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING JULY 2006

## PARTICULATE AMBIENT AIR CONCENTRATIONS FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1-1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Sampling Date <sup>2</sup> | Sampler Location | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration<br>(mg/m³) | Average Period<br>(Hours:Min) | Predominant<br>Wind Direction |
|----------------------------|------------------|------------------------------------------|---------------------------------------------|-------------------------------|-------------------------------|
| 7/5/06                     | 4A-1             | 0.013*                                   | 0.022*                                      | 10:30                         | WNW                           |
| 7/6/06                     | 4A-1             | 0.005*                                   | 0.007*                                      | 11:15                         | WNW                           |
| 7/7/06                     | 4A-1             | 0.007*                                   | 0.010*                                      | 10:15                         | WNW                           |
| 7/10/06                    | 4A-1             | 0.026*                                   | 0.034*                                      | 11:15                         | Variable                      |
| 7/11/06                    | 4A-1             | 0.041*                                   | 0.074*                                      | 11:45                         | NNW, WNW                      |
| 7/12/06                    | 4A-1             | 0.047*                                   | NA <sup>3</sup>                             | 11:15                         | Calm                          |
| 7/13/06                    | 4A-1             | 0.006*                                   | 0.015*                                      | 10:15                         | NNE, W                        |
| 7/14/06                    | 4A-1             | 0.013*                                   | 0.019*                                      | 11:45                         | WNW                           |
| Notification Level         | -                | 0.120                                    | -                                           | _                             | -                             |

#### Notes:

Phase 4 Floodplain Properties remediation completed July 14, 2006.

Background monitoring location at 15 Longfellow Avenue in Pittsfield

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

 $<sup>^{\</sup>ast}$  Measured with DR-2000 or DR-4000. All other measured with pDR-1000.

<sup>&</sup>lt;sup>1</sup> Monitoring was performed only on days when site activities occurred.

 $<sup>^{2}</sup>$  The particulate monitors obtain real-time data. The sampling data were obtained by BEC on the sampling date.

<sup>&</sup>lt;sup>3</sup> Data not available due to equipment malfunction.

# ITEM 18 HOUSATONIC RIVER FLOODPLAIN CURRENT RESIDENTIAL PROPERTIES DOWNSTREAM OF CONFLUENCE (ACTUAL/POTENTIAL LAWNS) (GECD730) JULY 2006

#### a. Activities Undertaken/Completed

None

#### b. Sampling/Test Results Received

None

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

None

#### e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

Awaiting EPA approval of GE's Pre-Design Investigation Work Plan (submitted on February 26, 2002). (Based on discussions with EPA, this pre-design sampling will be deferred for some period of time.)\*

#### f. Proposed/Approved Work Plan Modifications

## ITEM 19 ALLENDALE SCHOOL PROPERTY (GECD500) JULY 2006

#### a. Activities Undertaken/Completed

None

#### b. Sampling/Test Results Received

None

#### c. Work Plans/Reports/Documents Submitted

None

#### d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Receive results from outdoor air monitoring conducted by EPA, as well as results from indoor sampling conducted by the Massachusetts Department of Public Health at Allendale School.

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

#### ITEM 20 OTHER AREAS SILVER LAKE AREA (GECD600) JULY 2006

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. Activities Undertaken/Completed

On July 26, 2006, BBL (on GE's behalf) performed a round of water column monitoring at 10 locations along the Housatonic River between Coltsville and Great Barrington, MA. One location was at the outlet of Silver Lake (Location 4A). A grab sample was collected and submitted to Northeast Analytical for analysis of PCBs (total) and TSS, as identified in Table 20-1. (The other nine locations were discussed under Items 14 and 15 above.)

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled Activities (next six weeks)

- Submit revised Pilot Study Work Plan for Silver Lake Sediments (due to EPA by August 17, 2006).
- Select Remediation Contractor for Pilot Study and initiate implementation of Pilot Study.
- Prepare and submit next Pre-Design Investigation Report for Soils at properties adjacent to Silver Lake (due to EPA by September 11, 2006).

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

Received EPA approval of GE's June 2006 Pilot Study Work Plan for Silver Lake Sediments (July 18, 2006).

## TABLE 20-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

## SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                               |                  | Sample  | Depth  |        |            |                              | Date Received |
|-------------------------------|------------------|---------|--------|--------|------------|------------------------------|---------------|
| Project Name                  | Field Sample ID  | Date    | (feet) | Matrix | Laboratory | Analyses                     | by GE or BBL  |
| Additional PDI Soil Sampling  | 19-9-24-SB-2-SES | 6/8/06  | 13-15  | Soil   | SGS        | Cadmium, Chromium and Copper | 7/12/06       |
| Additional PDI Soil Sampling  | 19-9-24-SB-2-SES | 6/8/06  | 9-11   | Soil   | SGS        | Cadmium, Chromium and Copper | 7/12/06       |
| Monthly Water Column Sampling | Location-4A      | 6/27/06 | NA     | Water  | NEA        | PCB, TSS                     | 7/7/06        |
| Monthly Water Column Sampling | Location-4A      | 7/26/06 | NA     | Water  | NEA        | PCB, TSS                     |               |

#### TABLE 20-2 SAMPLE DATA RECEIVED DURING JULY 2006

### MONTHLY WATER COLUMN SAMPLING SILVER LAKE AREA

#### **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS**

(Results are presented in parts per million, ppm)

| Sample ID   | Location           | Date<br>Collected | Aroclor-1016,<br>-1232, -1242 | Aroclor 1221 | Aroclor 1248 | Aroclor 1254 | Aroclor 1260  | Total PCBs | TSS  |
|-------------|--------------------|-------------------|-------------------------------|--------------|--------------|--------------|---------------|------------|------|
| LOCATION-4A | Silver Lake Outlet | 6/27/06           | ND(0.0000220)                 | 0.000230 PB  | 0.000096 PE  | 0.000035 AF  | ND(0.0000220) | 0.000361   | 2.94 |

#### Notes:

- 1. Sample was collected by BBL, an ARCADIS company (BBL), and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs and total suspended solids (TSS).
- 2. Sampling methods involved the collection of single grab 50 percent of the total river width, and 50 percent of the total river depth.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

#### **Data Qualifiers:**

- AF Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- PB Aroclor 1221 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1221 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.
- PE Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

## TABLE 20-3 DATA RECEIVED DURING JULY 2006

### ADDITIONAL PRE-DESIGN INVESTIGATION SOIL SAMPLING SILVER LAKE AREA

#### GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

| Parameter  | Sample ID:<br>Sample Depth (Feet):<br>Date Collected: | 19-9-24-SB-2-SES<br>9-11<br>06/08/06 | 19-9-24-SB-2-SES<br>13-15<br>06/08/06 |
|------------|-------------------------------------------------------|--------------------------------------|---------------------------------------|
| Inorganics |                                                       |                                      |                                       |
| Cadmium    |                                                       | 7.14                                 | ND(1.71)                              |
| Chromium   |                                                       | 423                                  | 9.42                                  |
| Copper     |                                                       | 260                                  | 236                                   |

#### Notes:

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of cadmium, chromium and copper,
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

# ITEM 21 GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) .IULY 2006

\* All activities described below for this item were conducted pursuant to the Consent Decree.

### a. <u>Activities Undertaken/Completed</u>

#### **General:**

- Conducted routine groundwater elevation and NAPL monitoring activities.
- Conducted wipe sampling of Parratt-Wolff augers from well installations, as identified in Table 21-1.

### **East Street Area 1-North and South:**

- Continued automated groundwater and NAPL pumping at North Side and South Side Caissons. Approximately 3.0 gallons of LNAPL were recovered from the North Side Caisson in July. No LNAPL was recovered from the South Side Caisson in July.
- Continued routine well monitoring and manual NAPL removal activities. No LNAPL was removed from this area during July.

#### **East Street Area 2-South:**

- Continued automated groundwater and LNAPL removal activities. A total of approximately 4,521,129 gallons of groundwater was recovered from pumping systems 64R, 64S, 64V, 64X, RW-1(S), RW-1(X), and RW-2(X). In addition, approximately 1,325 gallons of LNAPL were removed from pumping systems 64R, 64V, RW-1(S), RW-1(X), 64X, and 64S Caisson.
- Continued automated DNAPL removal activities. Approximately 28 gallons of DNAPL were removed from pumping system RW-3(X) during July.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 12.781 liters (3.372 gallons) of LNAPL were removed from wells in this area during July. Approximately 5.121 liters (1.351 gallons) of DNAPL were removed from wells in this area during July.
- Treated/discharged 4,980,104 gallons of water through 64G Groundwater Treatment Facility.
- Decommissioned wells 95-4 and 95-7 and installed/developed replacement wells 95-4R and 95-7R.

# ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) JULY 2006

### a. Activities Undertaken/Completed (cont'd)

### **East Street Area 2-North:**

- Continued well monitoring and NAPL removal activities. No LNAPL was recovered from this area during July.

### 20s, 30s, and 40s Complexes:

- Continued well monitoring and NAPL removal activities. No LNAPL was recovered from this area during July.

### **Lyman Street Area:**

- Abandoned 16 wells, as approved by EPA in its July 6, 2006 conditional approval letter to GE (referenced in Item 21.f below). Wells LS-11, LS-22, and LSSC-02 were not located and presumed to be destroyed. Well RW-1 contained pumping apparatus and will be decommissioned after it is removed.
- Continued automated groundwater and NAPL removal activities. A total of approximately 206,016 gallons of groundwater was recovered from pumping systems RW-1R, RW-2, and RW-3. No LNAPL was removed from the automated recovery systems during July.
- Continued routine well monitoring and NAPL removal activities. Approximately 2.179 liters (0.575 gallon) of DNAPL were removed from wells in this area during July. No LNAPL was removed from wells in this area during July.

### **Newell Street Area II:**

 Continued routine well monitoring and NAPL removal activities. Approximately 0.989 liter (0.261 gallon) of DNAPL was recovered from this area during July. No LNAPL was recovered from this area during July.

#### Silver Lake Area:

- Continued routine monitoring of staff gauge in lake.

### b. Sampling/Test Results Received

See attached tables.

# ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) JULY 2006

### c. Work Plans/Reports/Documents Submitted

Submitted Groundwater Quality Monitoring Interim Report for Spring 2006 (July 28, 2006).

### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine monitoring activities.
- Repair/replace wells that were damaged during Newell Street Area II Removal Action.
- Complete assembly of automated DNAPL recovery system for Newell Street Area II, and activate system.
- Conduct LNAPL bail-down test at well 25R.
- Remove/replace/modify selected wells on the 20s and 30s Complexes per GE's approved May 22, 2006 proposal.
- Submit NAPL Monitoring Report for Spring 2006 (due by August 31, 2006).
- Remove oil skimmer from well 40R and place it (or a new skimmer) in well GMA1-17W.

### e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

- The automated DNAPL recovery systems for Newell Street Area II were shut down on July 25, 2005 pursuant to EPA approval of GE's June 7 and 23, 2005 proposals. Each system was disconnected from the associated recovery wells and the System 1 control shed was removed. Pipelines scheduled for replacement have been drained and removed. Two replacement recovery wells (N2SC-1I(R) and N2SC-3I(R)) have been installed and developed. The upgraded recovery system is almost completed and is scheduled to be activated in August 2006.
- As discussed with EPA, GE will continue to monitor all remaining wells associated with the Newell Street Area II DNAPL recovery systems on a weekly basis and to remove DNAPL accumulations greater than 0.5 foot on a monthly basis until the upgraded recovery system is activated.

### f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval of GE's Spring 2005 and Fall 2005 NAPL Monitoring Reports (July 6, 2006).

### TABLE 21-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

### GROUNDWATER MANAGEMENT AREA 1 GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Sample                                              |                 |         |        |            |                 | Date Received |
|-----------------------------------------------------|-----------------|---------|--------|------------|-----------------|---------------|
| Project Name                                        | Field Sample ID | Date    | Matrix | Laboratory | <b>Analyses</b> | by GE or BBL  |
| Auger Wipe Sampling from Replacing Monitoring Wells | PW-AUGER-W1     | 7/12/06 | Wipe   | SGS        | PCB             | 7/14/06       |
| Auger Wipe Sampling from Replacing Monitoring Wells | PW-AUGER-W2     | 7/12/06 | Wipe   | SGS        | PCB             | 7/14/06       |
| Auger Wipe Sampling from Replacing Monitoring Wells | PW-AUGER-W3     | 7/12/06 | Wipe   | SGS        | PCB             | 7/14/06       |
| Auger Wipe Sampling from Replacing Monitoring Wells | PWA-W1-2        | 7/18/06 | Wipe   | SGS        | PCB             | 7/27/06       |
| Auger Wipe Sampling from Replacing Monitoring Wells | PWA-W2-2        | 7/18/06 | Wipe   | SGS        | PCB             | 7/27/06       |
| Auger Wipe Sampling from Replacing Monitoring Wells | PWA-W3-2        | 7/18/06 | Wipe   | SGS        | PCB             | 7/27/06       |
| Auger Wipe Sampling from Replacing Monitoring Wells | PWA-W4-2        | 7/18/06 | Wipe   | SGS        | PCB             | 7/27/06       |

### TABLE 21-2 PCB DATA RECEIVED DURING JULY 2006

# AUGER WIPE SAMPLING FROM REPLACING MONITORING WELLS GROUNDWATER MANAGEMENT AREA 1 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in $\mu g/100 cm^2$ )

| Sample ID   | Date<br>Collected | Aroclor-1016, -1221,<br>-1232, -1242, -1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|-------------|-------------------|---------------------------------------------|--------------|--------------|------------|
| PW-Auger-W1 | 7/12/2006         | ND(1.0)                                     | 14           | 7.8          | 21.8       |
| PW-Auger-W2 | 7/12/2006         | ND(5.0)                                     | 19           | 6.3          | 25.3       |
| PW-Auger-W3 | 7/12/2006         | ND(5.0)                                     | 28           | 18           | 46         |
| PWA-W1-2    | 7/18/2006         | ND(1.0)                                     | 14           | 4.9          | 18.9       |
| PWA-W2-2    | 7/18/2006         | ND(1.0)                                     | 2.1          | ND(1.0)      | 2.1        |
| PWA-W3-2    | 7/18/2006         | ND(1.0)                                     | ND(1.0)      | ND(1.0)      | ND(1.0)    |
| PWA-W4-2    | 7/18/2006         | ND(1.0)                                     | 1.1          | 2.6          | 3.7        |

- 1. Samples were collected by BBL, an ARCADIS company (BBL), and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

# TABLE 21-3 AUTOMATED LNAPL & GROUNDWATER RECOVERY SYSTEMS MONTHLY SUMMARY EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

### CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

|           | ı              | V-L LNADI               | Val Matan               |          |
|-----------|----------------|-------------------------|-------------------------|----------|
|           |                | Vol. LNAPL<br>Collected | Vol. Water<br>Recovered | Percent  |
| Caisson   | Month          | (gallon)                | (gallon)                | Downtime |
| Northside | July 2005      | 0.0                     | 16,600                  |          |
|           | August 2005    | 1.0                     | 16,000                  |          |
|           | September 2005 | 4.0                     | 10,400                  | 4.91     |
|           | October 2005   | 24.0                    | 8,900                   | 26.34    |
|           | November 2005  | 4.0                     | 52,000                  |          |
|           | December 2005  | 12.0                    | 33,900                  |          |
|           | January 2006   | 1.0                     | 44,300                  |          |
|           | February 2006  | 1.0                     | 27,700                  |          |
|           | March 2006     | 5.0                     | 26,800                  | 0.71     |
|           | April 2006     | 0.0                     | 17,500                  |          |
|           | May 2006       | 0.0                     | 20,500                  |          |
|           | June 2006      | 0.0                     | 51,700                  |          |
|           | July 2006      | 3.0                     | 18,500                  |          |
| Southside | July 2005      | 0.0                     | 45,800                  |          |
|           | August 2005    | 1.0                     | 37,100                  |          |
|           | September 2005 | 9.0                     | 56,300                  | 4.91     |
|           | October 2005   | 4.0                     | 71,000                  | 4.91     |
|           | November 2005  | 2.0                     | 96,600                  |          |
|           | December 2005  | 0.0                     | 112,800                 |          |
|           | January 2006   | 15.0                    | 98,400                  |          |
|           | February 2006  | 0.0                     | 98,500                  |          |
|           | March 2006     | 3.0                     | 121,500                 | 0.71     |
|           | April 2006     | 12.0                    | 76,200                  |          |
|           | May 2006       | 12.0                    | 73,500                  |          |
|           | June 2006      | 0.0                     | 160,900                 |          |
|           | July 2006      | 0.0                     | 58,900                  |          |

# TABLE 21-4 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Well<br>Name | Date      | Depth<br>to Water<br>(ft BMP) | Depth to<br>LNAPL<br>(ft BMP) | LNAPL<br>Thickness<br>(feet) | LNAPL<br>Removed<br>(liters) | July 2006<br>Removal<br>(liters) |
|--------------|-----------|-------------------------------|-------------------------------|------------------------------|------------------------------|----------------------------------|
| 131          | 7/18/2006 | 4.97                          | 4.92                          | 0.05                         | 0.008                        | 0.008                            |
| 34           | 7/18/2006 | 5.73                          | 5.70                          | 0.03                         | 0.019                        | 0.019                            |

Total Manual LNAPL Removal for July 2006: 0.026 liters 0.007 gallons

#### Note:

1. ft BMP - feet Below Measuring Point.

# TABLE 21-5 ROUTINE WELL MONITORING EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Well<br>Name   | Measuring<br>Point Elev.<br>(feet) | Date    | Depth<br>to Water<br>(ft BMP) | Depth to<br>LNAPL<br>(ft BMP) | LNAPL<br>Thickness<br>(feet) | Depth to<br>DNAPL<br>(ft BMP) | Total<br>Depth<br>(ft BMP) | DNAPL<br>Thickness<br>(feet) | Corrected<br>Water Elev.<br>(feet) |  |  |
|----------------|------------------------------------|---------|-------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------|------------------------------|------------------------------------|--|--|
| GMA 1 - East S | GMA 1 - East Street Area 1 - North |         |                               |                               |                              |                               |                            |                              |                                    |  |  |
| 52             | 999.26                             | 7/18/06 | 4.91                          |                               | 0.00                         |                               | 12.96                      | 0.00                         | 994.35                             |  |  |
| 131            | 1001.18                            | 7/18/06 | 4.97                          | 4.92                          | 0.05                         |                               | 6.70                       | 0.00                         | 996.26                             |  |  |
| 140            | 1000.30                            | 7/18/06 | 7.53                          |                               | 0.00                         |                               | 15.30                      | 0.00                         | 992.77                             |  |  |
| ES1-08         | 1000.85                            | 7/18/06 | 5.40                          |                               | 0.00                         |                               | 13.45                      | 0.00                         | 995.45                             |  |  |
| North Caisson  | 997.84                             | 7/5/06  | 19.90                         | 17.92                         | 1.98                         |                               | 19.80                      | 0.00                         | 979.78                             |  |  |
| North Caisson  | 997.84                             | 7/12/06 | 16.63                         | 16.61                         | 0.02                         |                               | 19.80                      | 0.00                         | 981.23                             |  |  |
| North Caisson  | 997.84                             | 7/19/06 | 17.02                         | 17.00                         | 0.02                         |                               | 19.80                      | 0.00                         | 980.84                             |  |  |
| North Caisson  | 997.84                             | 7/26/06 | 18.07                         | 18.05                         | 0.02                         |                               | 19.80                      | 0.00                         | 979.79                             |  |  |
| GMA 1 - East S | treet Area 1 -                     | South   |                               |                               |                              |                               |                            |                              |                                    |  |  |
| 31R            | 1,000.23                           | 7/18/06 | 9.30                          |                               | 0.00                         |                               | 15.05                      | 0.00                         | 990.93                             |  |  |
| 33             | 999.50                             | 7/18/06 | 6.28                          |                               | 0.00                         |                               | 21.30                      | 0.00                         | 993.22                             |  |  |
| 34             | 999.90                             | 7/18/06 | 5.73                          | 5.70                          | 0.03                         |                               | 21.05                      | 0.00                         | 994.20                             |  |  |
| 72             | 1000.62                            | 7/18/06 | 6.50                          |                               | 0.00                         |                               | 21.96                      | 0.00                         | 994.12                             |  |  |
| 72R            | 1000.92                            | 7/18/06 | 6.48                          |                               | 0.00                         |                               | 13.31                      | 0.00                         | 994.44                             |  |  |
| South Caisson  | 1001.11                            | 7/5/06  | 7.60                          | Р                             | < 0.01                       |                               | 15.00                      | 0.00                         | 993.51                             |  |  |
| South Caisson  | 1001.11                            | 7/12/06 | 10.40                         | Р                             | < 0.01                       |                               | 15.00                      | 0.00                         | 990.71                             |  |  |
| South Caisson  | 1001.11                            | 7/19/06 | 10.28                         | 10.26                         | 0.02                         |                               | 15.00                      | 0.00                         | 990.85                             |  |  |
| South Caisson  | 1001.11                            | 7/26/06 | 12.81                         | 12.78                         | 0.03                         |                               | 15.00                      | 0.00                         | 988.33                             |  |  |

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. P indicates that NAPL is present at a thickness < 0.01 feet, the corresponding thickness is recorded as such.

# TABLE 21-6 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

### CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS July 2006

| Recovery         |                                                                                                                                | Oil                                                       | Water                                                                                                      |                                       |
|------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------|
| System           |                                                                                                                                | Collected                                                 | Recovered                                                                                                  | Percent                               |
| Location         | Month                                                                                                                          | (gallon)                                                  | (gallon)                                                                                                   | Downtime                              |
| 40R              | July 2005 August 2005 September 2005 October 2005 November 2005 December 2005 January 2006 February 2006 March 2006            | 0<br>0<br>0<br>0<br>0<br>0                                |                                                                                                            |                                       |
|                  | April 2006<br>May 2006<br>June 2006<br>July 2006                                                                               | 0<br>0<br>0                                               |                                                                                                            |                                       |
| 64R              | July 2005 August 2005 September 2005 October 2005 November 2005 December 2005 January 2006 February 2006 March 2006 April 2006 | 225<br>250<br>50<br>75<br>125<br>400<br>400<br>375<br>150 | 260,800<br>73,300<br>10,200<br>492,200<br>988,100<br>1,062,900<br>896,700<br>899,800<br>170,611<br>375,609 | 4.91<br>10.71<br>0.71                 |
|                  | May 2006<br>June 2006<br>July 2006                                                                                             | 75<br>550<br>250                                          | 435,398<br>720,359<br>345,697                                                                              |                                       |
| 64S System       | July 2005 August 2005 September 2005 October 2005 November 2005 December 2005 January 2006                                     | 10<br>218<br>321<br>82<br>324<br>170<br>245               | 330,937<br>271,691<br>172,650<br>541,419<br>1,014,521<br>927,871<br>1,080,795                              | 13.73 - Maintenance<br>4.91<br>10.71  |
|                  | February 2006<br>March 2006<br>April 2006<br>May 2006<br>June 2006<br>July 2006                                                | 673<br>1,285<br>558<br>51<br>327<br>472                   | 1,304,005<br>1,078,733<br>696,282<br>668,110<br>1,061,071<br>732,853                                       | 2.14<br>5.36<br>1.79<br>0.93<br>22.00 |
| 64V <sup>1</sup> | July 2005 August 2005 September 2005 October 2005 November 2005 December 2005 January 2006                                     | 465<br>581<br>349<br>564<br>515<br>564<br>697             | 922,700<br>993,100<br>714,700<br>933,400<br>1,304,100<br>1,117,000<br>1,208,800                            | 4.91<br>4.91                          |
|                  | February 2006<br>March 2006<br>April 2006<br>May 2006<br>June 2006<br>July 2006                                                | 598<br>315<br>249<br>431<br>697<br>548                    | 1,177,900<br>1,251,800<br>901,800<br>911,700<br>1,228,300<br>885,300                                       | 0.71                                  |

# TABLE 21-6 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

### CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS July 2006

| Recovery             |                                | Oil       | Water              |                    |
|----------------------|--------------------------------|-----------|--------------------|--------------------|
| System               |                                | Collected | Recovered          | Percent            |
| Location             | Month                          | (gallon)  | (gallon)           | Downtime           |
| 64X                  | July 2005                      | 15        | 417,600            | 3.45 - Maintenance |
|                      | August 2005                    | 20        | 489,600            |                    |
|                      | September 2005                 | 25        | 403,200            |                    |
|                      | October 2005                   | 25        | 403,200            | 21.43              |
|                      | November 2005                  | 0         | 489,600            |                    |
|                      | December 2005                  | 6         | 417,600            |                    |
|                      | January 2006                   | 1         | 417,600            |                    |
|                      | February 2006                  | 1         | 388,800            |                    |
|                      | March 2006                     | 1         | 504,000            | 0.71               |
|                      | April 2006                     | 1         | 403,200            |                    |
|                      | May 2006                       | 83        | 403,200            |                    |
|                      | June 2006                      | 14        | 518,400            |                    |
|                      | July 2006                      | 28        | 388,800            |                    |
| RW-2(X)              | July 2005                      | 0         | 747,100            |                    |
|                      | August 2005                    | 0         | 982,100            |                    |
|                      | September 2005                 | 0         | 721,200            | 4.91               |
|                      | October 2005                   | 0         | 529,600            |                    |
|                      | November 2005                  | 0         | 573,600            |                    |
|                      | December 2005                  | 0         | 491,800            |                    |
|                      | January 2006                   | 0         | 710,700            |                    |
|                      | February 2006                  | 0         | 1,288,600          |                    |
|                      | March 2006                     | 0         | 1,081,726          | 0.71               |
|                      | April 2006                     | 10        | 408,494            |                    |
|                      | May 2006                       | 0         | 652,543            |                    |
|                      | June 2006                      | 0         | 1,463,805          |                    |
| 2                    | July 2006                      |           | 1,076,551          |                    |
| RW-1(S) <sup>2</sup> | July 2005                      | 17        | 813,490            |                    |
|                      | August 2005                    | 32        | 780,217            | 1.96 - Maintenance |
|                      | September 2005                 | 4         | 527,699            | 4.91               |
|                      | October 2005                   | 43        | 783,765            |                    |
|                      | November 2005                  | 42        | 1,103,548          |                    |
|                      | December 2005                  | 40        | 900,898            |                    |
|                      | January 2006                   | 30        | 270,228            |                    |
|                      | February 2006                  | 27        | 1,042,895          | 0.74               |
|                      | March 2006                     | 40        | 1,049,702          | 0.71               |
|                      | April 2006                     | 57<br>77  | 736,984<br>744,621 |                    |
|                      | May 2006<br>June 2006          | 59        | 935,039            | 4.63               |
|                      | July 2006                      | 28        | 722,887            | 4.03               |
| DW 4(V)              |                                |           |                    |                    |
| RW-1(X)              | July 2005<br>August 2005       | 0         | 109,800<br>142,000 |                    |
|                      |                                | _         |                    | 4.01               |
|                      | September 2005<br>October 2005 | 0         | 80,000<br>299,300  | 4.91               |
|                      | November 2005                  | 0         | 390,700            |                    |
|                      | December 2005                  | Ö         | 324,500            |                    |
|                      | January 2006                   | 0         | 417,500            |                    |
|                      | February 2006                  | 0         | 381,500            |                    |
|                      | March 2006                     | 0         | 119,720            | 0.71               |
|                      | April 2006                     | 0         | 403,940            |                    |
|                      | May 2006                       | 0         | 385,828            |                    |
|                      | July 2006                      | 0         | 561,633            |                    |
|                      | June 2006                      | 0         | 369,041            | 48.00              |

# TABLE 21-6 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

### CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS July 2006

| Recovery<br>System<br>Location | Month          | Oil<br>Collected<br>(gallon) | Water<br>Recovered<br>(gallon) | Percent<br>Downtime |
|--------------------------------|----------------|------------------------------|--------------------------------|---------------------|
| RW-3(X)                        | July 2005      | 44                           |                                |                     |
| ` '                            | August 2005    | 51                           |                                | 11.76 - Maintenance |
|                                | September 2005 | 40                           |                                |                     |
|                                | October 2005   | 19                           |                                | 35.71               |
|                                | November 2005  | 51                           |                                | 5.88                |
|                                | December 2005  | 31                           |                                |                     |
|                                | January 2006   | 27                           |                                |                     |
|                                | February 2006  | 20                           |                                |                     |
|                                | March 2006     | 36                           |                                |                     |
|                                | April 2006     | 29                           |                                |                     |
|                                | May 2006       | 29                           |                                |                     |
|                                | June 2006      | 42                           |                                |                     |
|                                | July 2006      | 28                           |                                |                     |

| Summary of Total Automated Removal |           |         |  |  |  |
|------------------------------------|-----------|---------|--|--|--|
| Water:                             | 4,521,129 | Gallons |  |  |  |
| LNAPL:                             | 1,325     | Gallons |  |  |  |
| DNAPL:                             | 28        | Gallons |  |  |  |

- 1. The flow meter at recovery well 64V was reset in December 2004.
- 2. The flow meter at recovery well RW-1(S) was reset in January 2006.
- 3. The flow meters at recovery wells RW-1(X), RW-2(X), 64X(W), and 64R were reset in March 2006.

# TABLE 21-7 WELL MONITORING AND RECOVERY OF LNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Well<br>Name | Date    | Depth<br>to Water<br>(ft BMP) | Depth to<br>LNAPL<br>(ft BMP) | LNAPL<br>Thickness<br>(feet) | LNAPL<br>Removed<br>(liters) | July 2006<br>Removal<br>(liters) |  |
|--------------|---------|-------------------------------|-------------------------------|------------------------------|------------------------------|----------------------------------|--|
| 13           | 7/13/06 | 17.71                         | 17.49                         | 0.22                         | 0.136                        | 0.136                            |  |
| 14           | 7/13/06 | 17.61                         | 17.59                         | 0.02                         | 0.012                        | 0.012                            |  |
| 25R          | 7/13/06 | 24.39                         | 19.46                         | 4.93                         | 3.045                        | 3.045                            |  |
| 26RR         | 7/14/06 | 21.00                         | 20.68                         | 0.32                         | 0.198                        | 0.198                            |  |
| 48           | 7/14/06 | 17.40                         | 15.32                         | 2.08                         | 1.285                        | 1.285                            |  |
| 50           | 7/14/06 | 10.70                         | 10.13                         | 0.57                         | 0.352                        | 0.352                            |  |
| 55           | 7/14/06 | 17.02                         | 16.24                         | 0.78                         | 0.482                        | 0.482                            |  |
| 95-04        | 7/12/06 | 16.29                         | 14.29                         | 2.00                         | 1.24                         | 1.240                            |  |
| 95-07        | 7/11/06 | 22.60                         | 18.95                         | 3.65                         | 2.26                         | 2.260                            |  |
| GMA1-15      | 7/13/06 | 15.84                         | 15.08                         | 0.76                         | 0.469                        | 0.469                            |  |
| GMA1-16      | 7/13/06 | 13.68                         | 13.03                         | 0.65                         | 0.401                        | 0.401                            |  |
| GMA1-17W     | 7/13/06 | 16.54                         | 14.50                         | 2.04                         | 1.260                        | 1.260                            |  |
|              | 7/5/06  | 11.14                         | 10.70                         | 0.44                         | 0.271                        |                                  |  |
| GMA1-19      | 7/12/06 | 11.85                         | 11.00                         | 0.85                         | 0.524                        | 1 625                            |  |
| GIVIA 1-19   | 7/19/06 | 12.05                         | 11.40                         | 0.65                         | 0.401                        | 1.635                            |  |
|              | 7/25/06 | 11.95                         | 11.24                         | 0.71                         | 0.438                        |                                  |  |
| GMA1-24      | 7/13/06 | 10.70                         | 10.69                         | 0.01                         | 0.006                        | 0.006                            |  |

Total LNAPL Removal East Street Area 2 - South for July 2006: 12.781 liters

3.372 gallons

Total LNAPL Removal for July 2006: 12.781 liters

3.372 gallons

#### Note:

1. ft BMP - feet Below Measuring Point.

# TABLE 21-8 WELL MONITORING AND RECOVERY OF DNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Well<br>Name | Date    | Depth<br>to Water<br>(ft BMP) | Depth to<br>DNAPL<br>(ft BMP) | DNAPL<br>Thickness<br>(feet) | DNAPL<br>Removed<br>(liters) | July 2006<br>Removal<br>(liters) |
|--------------|---------|-------------------------------|-------------------------------|------------------------------|------------------------------|----------------------------------|
| E2SC-03I     | 7/18/06 | 10.45                         | 34.10                         | 8.3                          | 5.121                        | 5.121                            |

Total DNAPL Removal East Street Area 2 - South for July 2006: 5.121 liters

1.351 gallons

Total DNAPL Removal for July 2006: 5.121 liters

1.351 gallons

#### Note:

1. ft BMP - feet Below Measuring Point

### TABLE 21-9 64G TREATMENT PLANT DISCHARGE DATA GROUNDWATER MANAGEMENT AREA 1

### CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Date           | Housatonic River<br>Discharge<br>(gallons) | Recharge Pond<br>Discharge<br>(gallons) | Total<br>Discharge<br>(gallons) |
|----------------|--------------------------------------------|-----------------------------------------|---------------------------------|
| July 2005      | 3,212,250                                  | 389,015                                 | 3,601,265                       |
| August 2005    | 2,778,090                                  | 356,961                                 | 3,135,051                       |
| September 2005 | 2,537,520                                  | 335,710                                 | 2,873,230                       |
| October 2005   | 5,156,510                                  | 177,795                                 | 5,334,305                       |
| November 2005  | 5,221,180                                  | 163,951                                 | 5,385,131                       |
| December 2005  | 5,678,290                                  | 104,185                                 | 5,782,475                       |
| January 2006   | 6,317,250                                  | 89,159                                  | 6,406,409                       |
| February 2006  | 8,371,400                                  | 114,659                                 | 8,486,059                       |
| March 2006     | 5,301,850                                  | 200,184                                 | 5,502,034                       |
| April 2006     | 4,830,590                                  | 255,870                                 | 5,086,460                       |
| May 2006       | 5,110,840                                  | 263,791                                 | 5,374,631                       |
| June 2006      | 5,067,810                                  | 293,825                                 | 5,361,635                       |
| July 2006      | 4,631,550                                  | 348,554                                 | 4,980,104                       |

After treatment, the majority of the water processed at GE's Building 64G groundwater treatment facility is discharged to the Housatonic River through NPDES permitted Outfall 005. However, as part of GE's overall efforts to contain NAPL within the site and to optimize NAPL recovery operations, a portion of the treated water discharged from the 64G facility is routed to GE's on-site recharge pond located in East Street Area 2-South.

# TABLE 21-10 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Well            | Measuring Point Elev. | Date               | Depth<br>to Water | Depth to LNAPL | LNAPL<br>Thickness | Depth to<br>DNAPL | Total<br>Depth | DNAPL<br>Thickness | Corrected<br>Water Elev. |
|-----------------|-----------------------|--------------------|-------------------|----------------|--------------------|-------------------|----------------|--------------------|--------------------------|
| Name            | (feet)                |                    | (ft BMP)          | (ft BMP)       | (feet)             | (ft BMP)          | (ft BMP)       | (feet)             | (feet)                   |
| East Street Are |                       | 7/44/00            | 4444              | ı              | 0.00               | 1                 | 40.00          | 0.00               | 007.45                   |
| ES1-20          | 1,001.56              | 7/11/06            | 14.11             |                | 0.00               |                   | 19.66          | 0.00               | 987.45                   |
| East Street Are |                       | 7/40/00            | 47.74             | 47.40          | 0.00               |                   | 00.00          | 0.00               | 070.07                   |
| 13              | 990.88                | 7/13/06            | 17.71             | 17.49          | 0.22               |                   | 22.63          | 0.00               | 973.37                   |
| 14              | 991.61                | 7/13/06            | 17.61             | 17.59          | 0.02               |                   | 25.66          | 0.00               | 974.02                   |
| 19              | 983.59                | 7/5/06             | 10.70             |                | 0.00               |                   | 18.30          | 0.00               | 972.89                   |
| 19              | 983.59                | 7/12/06            | 11.02             |                | 0.00               |                   | 18.30          | 0.00               | 972.57                   |
| 19              | 983.59                | 7/19/06            | 11.15             |                | 0.00               |                   | 18.28          | 0.00               | 972.44                   |
| 19              | 983.59                | 7/25/06            | 11.30             |                | 0.00               |                   | 18.30          | 0.00               | 972.29                   |
| 25R             | 998.31<br>1,000.58    | 7/13/06            | 24.39             | 19.46          | 4.93               |                   | 30.79          | 0.00               | 978.50                   |
| 26RR            |                       | 7/14/06            | 21.00             | 20.68          | 0.32               |                   | 28.50          | 0.00               | 979.88                   |
| 40R             | 991.60                | 7/5/06             | 16.60             |                | 0.00               |                   | NM             | 0.00               | 975.00                   |
| 40R             | 991.60                | 7/12/06            | 16.85             |                | 0.00               |                   | NM             | 0.00               | 974.75                   |
| 40R             | 991.60                | 7/19/06            | 17.05             |                | 0.00               |                   | NM             | 0.00               | 974.55                   |
| 40R             | 991.60                | 7/26/06            | 17.20             |                | 0.00               |                   | NM             | 0.00               | 974.40                   |
| 48              | 992.39                | 7/14/06            | 17.40             | 15.32          | 2.08               |                   | 22.69          | 0.00               | 976.92                   |
| 49R             | 988.71                | 7/14/06            | 15.14             | Р              | < 0.01             |                   | 24.88          | 0.00               | 973.57                   |
| 49RR            | 989.80                | 7/14/06            | 16.25             |                | 0.00               |                   | 23.05          | 0.00               | 973.55                   |
| 50              | 985.79                | 7/14/06            | 10.70             | 10.13          | 0.57               |                   | 23.37          | 0.00               | 975.62                   |
| 53              | 986.90                | 7/17/06            | 14.11             |                | 0.00               |                   | 25.58          | 0.00               | 972.79                   |
| 55              | 989.45                | 7/14/06            | 17.02             | 16.24          | 0.78               |                   | 30.05          | 0.00               | 973.16                   |
| 64R             | 993.37                | 7/5/06             | 15.54             | 15.50          | 0.04               |                   | 20.50          | 0.00               | 977.87                   |
| 64R             | 993.37                | 7/12/06            | 15.74             | 15.73          | 0.01               |                   | 20.50          | 0.00               | 977.64                   |
| 64R             | 993.37                | 7/19/06            | 15.65             | P<br>P         | < 0.01             |                   | 20.50          | 0.00               | 977.72                   |
| 64R             | 993.37                | 7/26/06            | 15.80             | P              | < 0.01             |                   | 20.50          | 0.00               | 977.57                   |
| 64S             | 984.48                | 7/5/06             | 19.15             |                | < 0.01             |                   | 28.70          | 0.00               | 965.33                   |
| 64S             | 984.48                | 7/12/06            | 19.14             | 19.13          | 0.01               |                   | 28.70          | 0.00               | 965.35                   |
| 64S             | 984.48                | 7/19/06            | 19.15             | P<br>P         | < 0.01             |                   | 28.70          | 0.00               | 965.33                   |
| 64S             | 984.48                | 7/26/06            | 19.25             |                | < 0.01             |                   | 28.70          | 0.00               | 965.23                   |
| 64S-Caisson     | NA                    | 7/5/06             | 10.56             | 10.55          | 0.01               |                   | 14.55          | 0.00               | NA                       |
| 64S-Caisson     | NA                    | 7/12/06            | 11.10             | 10.95          | 0.15               |                   | 14.55          | 0.00               | NA                       |
| 64S-Caisson     | NA                    | 7/19/06            | 10.77             | 10.75          | 0.02               |                   | 14.55          | 0.00               | NA                       |
| 64S-Caisson     | NA<br>007.00          | 7/26/06            | 10.65             | 10.63          | 0.02               |                   | 14.55          | 0.00               | NA                       |
| 64V             | 987.29                | 7/5/06             | 22.00             | 21.70          | 0.30               | <br>P             | 29.60          | 0.00               | 965.57                   |
| 64V             | 987.29                | 7/12/06<br>7/19/06 | 21.80             | 21.60          | 0.20               |                   | 29.60          | < 0.01             | 965.68                   |
| 64V<br>64V      | 987.29                |                    | 21.60<br>21.80    | 21.40          | 0.20               | <br>P             | 29.60          | 0.00               | 965.88                   |
|                 | 987.29                | 7/26/06            |                   | 21.50          | 0.30               | -                 | 29.60          | < 0.01             | 965.77                   |
| 64X(N)          | 984.83                | 7/5/06<br>7/12/06  | 12.05             | P 12.10        | < 0.01             |                   | 15.85          | 0.00               | 972.78                   |
| 64X(N)          | 984.83                |                    | 12.20             | 12.19          | 0.01               |                   | 15.85          | 0.00               | 972.64                   |
| 64X(N)          | 984.83                | 7/19/06            | 12.41             | 12.38          | 0.03               |                   | 15.85          | 0.00               | 972.45                   |
| 64X(N)          | 984.83                | 7/26/06            | 12.60             | 12.57          | 0.03               |                   | 15.85          | 0.00               | 972.26                   |
| 64X(S)          | 981.56                | 7/5/06             | 15.50             | 15.30          | 0.20               |                   | 23.82          | 0.00               | 966.25                   |
| 64X(S)          | 981.56                | 7/12/06            | 15.50             | 15.47          | 0.03               |                   | 23.82          | 0.00               | 966.09                   |
| 64X(S)          | 981.56                | 7/19/06            | 15.80             | 15.68          | 0.12               |                   | 23.82          | 0.00               | 965.87                   |
| 64X(S)          | 981.56                | 7/26/06            | 16.10             | 15.90          | 0.20               |                   | 23.82          | 0.00               | 965.65                   |
| 64X(W)          | 984.87                | 7/5/06             | 18.50             | 18.48          | 0.02               |                   | 24.35          | 0.00               | 966.39                   |
| 64X(W)          | 984.87                | 7/12/06            | 18.70             | 18.68          | 0.02               |                   | 24.35          | 0.00               | 966.19                   |
| 64X(W)          | 984.87                | 7/19/06            | 18.89             | 18.87          | 0.02               |                   | 24.35          | 0.00               | 966.00                   |
| 64X(W)          | 984.87                | 7/26/06            | 19.15             | 19.12          | 0.03               |                   | 24.35          | 0.00               | 965.75                   |

# TABLE 21-10 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

|                    | Measuring        |                    | Depth          | Depth to | LNAPL     | Depth to | Total          | DNAPL     | Corrected   |
|--------------------|------------------|--------------------|----------------|----------|-----------|----------|----------------|-----------|-------------|
| Well               | Point Elev.      | Date               | to Water       | LNAPL    | Thickness | DNAPL    | Depth          | Thickness | Water Elev. |
| Name               | (feet)           |                    | (ft BMP)       | (ft BMP) | (feet)    | (ft BMP) | (ft BMP)       | (feet)    | (feet)      |
| 95-01              | 983.77           | 7/13/06            | 10.26          |          | 0.00      |          | 17.23          | 0.00      | 973.51      |
| 95-04              | 988.70           | 7/11/06            | 16.42          | 14.29    | 2.13      |          | 21.62          | 0.00      | 974.26      |
| 95-04              | 988.70           | 7/12/06            | 16.29          | 14.29    | 2.00      |          | 21.62          | 0.00      | 974.27      |
| 95-07              | 994.91           | 7/11/06            | 22.60          | 18.95    | 3.65      |          | 29.25          | 0.00      | 975.70      |
| 3-6C-EB-22         | 986.94           | 7/13/06            | 13.72          |          | 0.00      |          | 20.02          | 0.00      | 973.22      |
| E2SC-03I           | 982.12           | 7/18/06            | 10.45          |          | 0.00      | 34.10    | 42.40          | 8.30      | 971.67      |
| E2SC-17            | 985.38           | 7/18/06            | 11.70          |          | 0.00      |          | 45.75          | 0.00      | 973.68      |
| E2SC-23            | 992.07           | 7/17/06            | 17.05          |          | 0.00      |          | 21.15          | 0.00      | 975.02      |
| E2SC-24            | 987.90           | 7/17/06            | 15.55          |          | 0.00      |          | 21.61          | 0.00      | 972.35      |
| ES2-06             | 986.00           | 7/17/06            | 13.35          |          | 0.00      |          | 34.56          | 0.00      | 972.65      |
| GMA1-14            | 997.43           | 7/13/06            | 18.02          |          | 0.00      |          | 23.28          | 0.00      | 979.41      |
| GMA1-15            | 988.59           | 7/13/06            | 15.84          | 15.08    | 0.76      |          | 17.89          | 0.00      | 973.46      |
| GMA1-16            | 986.82           | 7/13/06            | 13.68          | 13.03    | 0.65      |          | 20.02          | 0.00      | 973.74      |
| GMA1-17E           | 993.03           | 7/13/06            | 14.83          | 14.81    | 0.02      |          | 17.30          | 0.00      | 978.22      |
| GMA1-17W           | 992.63           | 7/13/06            | 16.54          | 14.50    | 2.04      |          | 23.26          | 0.00      | 977.99      |
| GMA1-19            | 984.28           | 7/5/06             | 11.14          | 10.70    | 0.44      |          | 17.14          | 0.00      | 973.55      |
| GMA1-19            | 984.28           | 7/12/06            | 11.85          | 11.00    | 0.85      |          | 17.14          | 0.00      | 973.22      |
| GMA1-19            | 984.28           | 7/19/06            | 12.05          | 11.40    | 0.65      |          | 17.14          | 0.00      | 972.83      |
| GMA1-19            | 984.28           | 7/25/06            | 11.95          | 11.24    | 0.71      |          | 17.14          | 0.00      | 972.99      |
| GMA1-20            | 983.49           | 7/5/06             | 10.32          |          | 0.00      |          | 17.30          | 0.00      | 973.17      |
| GMA1-20            | 983.49           | 7/12/06            | 10.60          |          | 0.00      |          | 17.30          | 0.00      | 972.89      |
| GMA1-20            | 983.49           | 7/19/06            | 10.70          |          | 0.00      |          | 17.24          | 0.00      | 972.79      |
| GMA1-20            | 983.49           | 7/25/06            | 10.90          |          | 0.00      |          | 17.29          | 0.00      | 972.59      |
| GMA1-21            | 985.68           | 7/5/06             | 12.42          |          | 0.00      |          | 19.46          | 0.00      | 973.26      |
| GMA1-21            | 985.68           | 7/12/06            | 12.80          |          | 0.00      |          | 19.48          | 0.00      | 972.88      |
| GMA1-21            | 985.68           | 7/19/06            | 12.43          |          | 0.00      |          | 19.48          | 0.00      | 973.25      |
| GMA1-21            | 985.68           | 7/25/06            | 13.02          |          | 0.00      |          | 19.48          | 0.00      | 972.66      |
| GMA1-22            | 988.45           | 7/14/06            | 14.82          |          | 0.00      |          | 19.25          | 0.00      | 973.63      |
| GMA1-23            | 986.16           | 7/14/06            | 12.55          |          | 0.00      |          | 17.30          | 0.00      | 973.61      |
| GMA1-24            | 983.81           | 7/13/06            | 10.70          | 10.69    | 0.01      |          | 16.10          | 0.00      | 973.12      |
| HR-G1-MW-1         | 982.42           | 7/17/06            | 10.50          |          | 0.00      |          | 20.30          | 0.00      | 971.92      |
| HR-G1-MW-2         | 980.23           | 7/17/06            | 8.05           |          | 0.00      |          | 28.40          | 0.00      | 972.18      |
| HR-G1-MW-3         | 980.21           | 7/17/06            | 8.48           |          | 0.00      |          | 17.88          | 0.00      | 971.73      |
| HR-G2-MW-1         | 982.60           | 7/17/06            | 10.86          |          | 0.00      |          | 18.25          | 0.00      | 971.74      |
| HR-G2-MW-2         | 981.39           | 7/17/06            | 8.85           |          | 0.00      |          | 17.68          | 0.00      | 972.54      |
| HR-G2-MW-3         | 987.14           | 7/17/06            | 14.75          |          | 0.00      |          | 22.00          | 0.00      | 972.39      |
| HR-G2-RW-1         | 976.88           | 7/17/06            | 6.58           |          | 0.00      |          | 18.73          | 0.00      | 971.97      |
| HR-G3-MW-1         | 982.45           | 7/17/06            | 14.92          |          | 0.00      |          | 17.73          | 0.00      | 967.53      |
| HR-G3-MW-2         | 987.88           | 7/17/06            | 15.50          |          | 0.00      |          | 17.72          | 0.00      | 972.38      |
| HR-G3-RW-1         | 977.78           | 7/17/06            | 5.56           |          | 0.00      |          | 8.30           | 0.00      | 972.22      |
| HR-J1-MW-1         |                  | 7/17/06            |                |          | 0.00      |          |                | 0.00      | 972.64      |
| HR-J1-MW-2         | 985.95<br>983.56 | 7/13/06            | 13.31<br>10.58 |          | 0.00      |          | 25.92<br>17.73 | 0.00      | 972.98      |
| HR-J1-MW-3         | 987.68           | 7/14/06            | 14.86          |          | 0.00      |          | 26.55          | 0.00      | 972.82      |
| HR-J1-RW-1         | 975.05           | 7/14/06            | 2.78           |          | 0.00      |          | 14.93          | 0.00      | 972.02      |
| RW-1(S)            | 987.23           | 7/14/06            | 19.20          | 19.00    | 0.00      |          | 28.60          | 0.00      | 968.22      |
| RW-1(S)            | 987.23           | 7/12/06            | 19.20          | 18.90    | 0.20      |          | 28.60          | 0.00      | 968.32      |
|                    |                  |                    |                |          |           |          | 28.60          |           |             |
| RW-1(S)            | 987.23<br>987.23 | 7/19/06<br>7/26/06 | 19.25          | 19.05    | 0.20      |          |                | 0.00      | 968.17      |
| RW-1(S)<br>RW-1(X) |                  | 7/26/06            | 18.90          | 18.85    | 0.05      |          | 28.60<br>20.80 |           | 968.38      |
|                    | 982.68           |                    | 14.20<br>14.25 |          | 0.00      |          | 20.80          | 0.00      | 968.48      |
| RW-1(X)            | 982.68           | 7/12/06            | 14.25          |          | 0.00      |          | ∠∪.Ծ∪          | 0.00      | 968.43      |

# TABLE 21-10 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

### CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Well           | Measuring Point Elev. | Date    | Depth<br>to Water | Depth to LNAPL                      | LNAPL<br>Thickness | Depth to DNAPL | Total<br>Depth | DNAPL<br>Thickness | Corrected Water Elev. |
|----------------|-----------------------|---------|-------------------|-------------------------------------|--------------------|----------------|----------------|--------------------|-----------------------|
| Name           | (feet)                |         | (ft BMP)          | (ft BMP)                            | (feet)             | (ft BMP)       | (ft BMP)       | (feet)             | (feet)                |
| RW-1(X)        | 982.68                | 7/19/06 | 14.25             |                                     | 0.00               |                | 20.80          | 0.00               | 968.43                |
| RW-1(X)        | 982.68                | 7/26/06 | 14.25             |                                     | 0.00               |                | 20.80          | 0.00               | 968.43                |
| RW-2(X)        | 985.96                | 7/5/06  | 15.50             |                                     | 0.00               |                | 15.30          | 0.00               | 970.46                |
| RW-2(X)        | 985.96                | 7/12/06 | 13.70             |                                     | 0.00               |                | 15.30          | 0.00               | 972.26                |
| RW-2(X)        | 985.96                | 7/19/06 | 14.05             |                                     | 0.00               |                | 15.30          | 0.00               | 971.91                |
| RW-2(X)        | 985.96                | 7/26/06 | 14.25             |                                     | 0.00               |                | 15.30          | 0.00               | 971.71                |
| RW-3(X)        | 980.28                | 7/5/06  | 8.70              |                                     | 0.00               | 42.90          | 44.40          | 1.50               | 971.58                |
| RW-3(X)        | 980.28                | 7/12/06 | 8.80              |                                     | 0.00               | 42.80          | 44.40          | 1.60               | 971.48                |
| RW-3(X)        | 980.28                | 7/19/06 | 8.10              |                                     | 0.00               | 42.10          | 44.40          | 2.30               | 972.18                |
| RW-3(X)        | 980.28                | 7/26/06 | 9.10              |                                     | 0.00               | 42.11          | 44.40          | 2.29               | 971.18                |
| TMP-1          | 992.74                | 7/14/06 | 19.32             |                                     | 0.00               |                | 21.91          | 0.00               | 973.42                |
| Housatonic Riv | ver                   |         |                   |                                     |                    |                |                |                    |                       |
| SG-HR-1        | 990.73                | 7/5/06  | 19.22             | See Note 7 regarding depth to water |                    |                |                |                    | 971.51                |
| SG-HR-1        | 990.73                | 7/12/06 | 19.35             | See Note 7                          | 971.38             |                |                |                    |                       |
| SG-HR-1        | 990.73                | 7/19/06 | 19.52             | See Note 7 regarding depth to water |                    |                |                |                    | 971.21                |
| SG-HR-1        | 990.73                | 7/25/06 | 19.68             | See Note 7                          | regarding dep      | th to water    |                | <u> </u>           | 971.05                |

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 6. Well HR-G2-RW-1 is constructed at an angle of 41.67 degrees from vertical. Depth to water data reflect measurements collected along the angled well casing. Groundwater elevations are corrected to account for the angle of the well casing.
- of the well casing.

  7. A survey reference point (SG-HR-1) was established on the Newell Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.
- 8. A weighted bailer has been installed at this location to remove accumulations of DNAPL. The DNAPL thickness reported is that measured within the bailer upon the initial retrieval.

#### **TABLE 21-11 ACTIVE RECOVERY SYSTEMS MONTHLY SUMMARY** LYMAN STREET AREA **GROUNDWATER MANAGEMENT AREA 1**

#### CONSENT DECREE MONTHLY STATUS REPORT **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS** July 2006

| Month / Year   | Volume Water<br>Pumped<br>(gallon) | RW-1 DNAPL<br>Recovered<br>(gallon) | RW-1R LNAPL<br>Recovered<br>(gallon) | RW-3 LNAPL<br>Recovered<br>(gallon) |
|----------------|------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|
| July 2004      | 328,363                            |                                     |                                      |                                     |
| August 2004    | 310,473                            |                                     |                                      |                                     |
| September 2004 | 499,209                            |                                     | 1                                    | 20                                  |
| October 2004   | 426,078                            |                                     |                                      |                                     |
| November 2004  | 421,409                            |                                     |                                      | 12                                  |
| December 2004  | 539,528                            |                                     |                                      | 10                                  |
| January 2005   | 443,634                            |                                     |                                      | 10                                  |
| February 2005  | 409,113                            |                                     |                                      | 5                                   |
| March 2005     | 455,192                            |                                     |                                      | 5                                   |
| April 2005     | 425,145                            |                                     |                                      | 5                                   |
| May 2005       | 357,497                            |                                     |                                      |                                     |
| June 2005      | 422,006                            |                                     |                                      | 10                                  |
| July 2005      | 310,647                            |                                     | 5                                    | 10                                  |
| August 2005    | 302,572                            |                                     |                                      |                                     |
| September 2005 | 198,753                            |                                     |                                      |                                     |
| October 2005   | 314,247                            |                                     |                                      |                                     |
| November 2005  | 412,936                            |                                     |                                      |                                     |
| December 2005  | 332,721                            |                                     |                                      |                                     |
| January 2006   | 342,548                            |                                     |                                      |                                     |
| February 2006  | 336,595                            |                                     |                                      |                                     |
| March 2006     | 322,169                            |                                     |                                      |                                     |
| April 2006     | 245,626                            |                                     |                                      |                                     |
| May 2006       | 253,821                            |                                     |                                      |                                     |
| June 2006      | 562,906                            |                                     |                                      |                                     |
| July 2006      | 206,016                            |                                     |                                      |                                     |

- Volume of water pumped is total from Wells RW-1R, RW-2, and RW-3.
   --- indicates LNAPL or DNAPL was not recovered by the system.
   There was no downtime for RW-1/1R, RW-2, and RW-3 during July 2006.

# TABLE 21-12 MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Well<br>Name | Date    | Depth<br>to Water<br>(ft BMP) | Depth to<br>DNAPL<br>(ft BMP) | DNAPL<br>Thickness<br>(feet) | DNAPL<br>Removed<br>(liters) | July 2006<br>Removal<br>(liters) |
|--------------|---------|-------------------------------|-------------------------------|------------------------------|------------------------------|----------------------------------|
| LS-30        | 7/11/06 | 13.87                         | 21.40                         | 0.80                         | 0.494                        | 0.494                            |
| LS-31        | 7/11/06 | 13.60                         | 22.84                         | 0.47                         | 0.290                        | 0.290                            |
| LS-34        | 7/11/06 | 13.94                         | 27.55                         | 0.98                         | 0.605                        | 0.605                            |
|              | 7/5/06  | 10.78                         | 24.70                         | 0.38                         | 0.234                        |                                  |
| LSSC-07      | 7/12/06 | 11.01                         | 24.76                         | 0.32                         | 0.197                        | 0.765                            |
| L33C-07      | 7/18/06 | 11.09                         | 24.82                         | 0.26                         | 0.160                        | 0.765                            |
|              | 7/25/06 | 11.30                         | 24.80                         | 0.28                         | 0.173                        |                                  |
|              | 7/5/06  | 12.40                         | 23.36                         | 0.02                         | 0.012                        |                                  |
| LSSC-08I     | 7/18/06 | 12.68                         | 23.37                         | 0.01                         | 0.006                        | 0.025                            |
|              | 7/25/06 | 12.90                         | 23.37                         | 0.01                         | 0.006                        |                                  |

Total Manual DNAPL Removal for July 2006: 2.179 liters 0.575 gallons

Note:

1. ft BMP - feet Below Measuring Point.

# TABLE 21-13 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

|          | Measuring   |         | Depth       | Depth to | LNAPL     | Depth to | Total    | DNAPL     | Corrected   |
|----------|-------------|---------|-------------|----------|-----------|----------|----------|-----------|-------------|
| Well     | Point Elev. | Date    | to Water    | LNAPL    | Thickness | DNAPL    | Depth    | Thickness | Water Elev. |
| Name     | (feet)      |         | (ft BMP)    | (ft BMP) | (feet)    | (ft BMP) | (ft BMP) | (feet)    | (feet)      |
| EPA-01   | 983.04      | 7/14/06 | 12.00       |          | 0.00      |          | 22.77    | 0.00      | 971.04      |
| LS-24    | 986.58      | 7/14/06 | Covered by  | Pallet   | 0.00      |          |          | 0.00      | NA          |
| LS-30    | 986.440     | 7/11/06 | 13.87       |          | 0.00      | 21.40    | 22.20    | 0.80      | 972.57      |
| LS-31    | 987.090     | 7/11/06 | 13.60       |          | 0.00      | 22.84    | 23.31    | 0.47      | 973.49      |
| LS-34    | 985.79      | 7/11/06 | 13.94       |          | 0.00      | 27.55    | 28.53    | 0.98      | 971.85      |
| LS-38    | 986.95      | 7/14/06 | 15.44       |          | 0.00      |          | 25.05    | 0.00      | 971.51      |
| LS-43    | 981.17      | 7/14/06 | 1.54        |          | 0.00      |          | 6.39     | 0.00      | 979.63      |
| LS-44    | 980.78      | 7/14/06 | 9.44        |          | 0.00      |          | 24.78    | 0.00      | 971.34      |
| LSSC-07  | 982.48      | 7/5/06  | 10.78       |          | 0.00      | 24.70    | 25.08    | 0.38      | 971.70      |
| LSSC-07  | 982.48      | 7/12/06 | 11.01       |          | 0.00      | 24.76    | 25.08    | 0.32      | 971.47      |
| LSSC-07  | 982.48      | 7/18/06 | 11.09       |          | 0.00      | 24.82    | 25.08    | 0.26      | 971.39      |
| LSSC-07  | 982.48      | 7/25/06 | 11.30       |          | 0.00      | 24.80    | 25.08    | 0.28      | 971.18      |
| LSSC-08I | 983.13      | 7/5/06  | 12.40       |          | 0.00      | 23.36    | 23.38    | 0.02      | 970.73      |
| LSSC-08I | 983.13      | 7/12/06 | 12.58       |          | 0.00      |          | 23.38    | 0.00      | 970.55      |
| LSSC-08I | 983.13      | 7/18/06 | 12.68       |          | 0.00      | 23.37    | 23.38    | 0.01      | 970.45      |
| LSSC-08I | 983.13      | 7/25/06 | 12.90       |          | 0.00      | 23.37    | 23.38    | 0.01      | 970.23      |
| LSSC-08S | 983.11      | 7/14/06 | 12.17       |          | 0.00      |          | 14.75    | 0.00      | 970.94      |
| LSSC-16I | 980.88      | 7/14/06 | 8.98        |          | 0.00      |          | 28.53    | 0.00      | 971.90      |
| LSSC-18  | 987.32      | 7/14/06 | 14.44       |          | 0.00      |          | 18.58    | 0.00      | 972.88      |
| LSSC-32  | 980.68      | 7/14/06 | Buried Unde | r Debris |           |          | 35.24    | 0.00      | NA          |
| LSSC-33  | 980.49      | 7/14/06 | 8.88        | Р        | < 0.01    |          | 29.76    | 0.00      | 971.61      |
| LSSC-34I | 984.74      | 7/14/06 | 13.08       |          | 0.00      | 28.25    | 28.48    | 0.23      | 971.66      |
| MW-4R    | 980.82      | 7/11/06 | 9.78        |          | 0.00      |          | 14.04    | 0.00      | 971.04      |
| RW-1     | 984.88      | 7/5/06  | 12.20       |          | 0.00      | Р        | 21.00    | < 0.01    | 972.68      |
| RW-1     | 984.88      | 7/12/06 | 12.40       |          | 0.00      | Р        | 21.00    | < 0.01    | 972.48      |
| RW-1     | 984.88      | 7/19/06 | 12.50       |          | 0.00      | Р        | 21.00    | < 0.01    | 972.38      |
| RW-1     | 984.88      | 7/26/06 | 12.70       |          | 0.00      | Р        | 21.00    | < 0.01    | 972.18      |
| RW-1 (R) | 985.07      | 7/5/06  | 15.00       |          | 0.00      | Р        | 20.42    | < 0.01    | 970.07      |
| RW-1 (R) | 985.07      | 7/12/06 | 15.05       |          | 0.00      | Р        | 20.42    | < 0.01    | 970.02      |
| RW-1 (R) | 985.07      | 7/19/06 | 15.00       |          | 0.00      | Р        | 20.42    | < 0.01    | 970.07      |
| RW-1 (R) | 985.07      | 7/26/06 | 15.10       |          | 0.00      | Р        | 20.42    | < 0.01    | 969.97      |
| RW-2     | 987.82      | 7/5/06  | 13.80       |          | 0.00      |          | 21.75    | 0.00      | 974.02      |
| RW-2     | 987.82      | 7/12/06 | 14.30       |          | 0.00      |          | 21.75    | 0.00      | 973.52      |
| RW-2     | 987.82      | 7/19/06 | 14.50       |          | 0.00      |          | 21.75    | 0.00      | 973.32      |
| RW-2     | 987.82      | 7/26/06 | 14.60       |          | 0.00      |          | 21.75    | 0.00      | 973.22      |
| RW-3     | 984.08      | 7/5/06  | 16.78       | 16.75    | 0.03      |          | 21.57    | 0.00      | 967.33      |
| RW-3     | 984.08      | 7/12/06 | 17.00       | 16.80    | 0.20      |          | 21.57    | 0.00      | 967.27      |
| RW-3     | 984.08      | 7/19/06 | 16.58       | 16.56    | 0.02      |          | 21.57    | 0.00      | 967.52      |
| RW-3     | 984.08      | 7/26/06 | 16.50       | 16.48    | 0.02      |          | 21.57    | 0.00      | 967.60      |

# TABLE 21-13 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

### CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Well<br>Name                           | Measuring<br>Point Elev.<br>(feet) | Date    | Depth<br>to Water<br>(ft BMP) | Depth to<br>LNAPL<br>(ft BMP)       | LNAPL<br>Thickness<br>(feet) | Depth to<br>DNAPL<br>(ft BMP) | Total<br>Depth<br>(ft BMP) | DNAPL<br>Thickness<br>(feet) | Corrected<br>Water Elev.<br>(feet) |
|----------------------------------------|------------------------------------|---------|-------------------------------|-------------------------------------|------------------------------|-------------------------------|----------------------------|------------------------------|------------------------------------|
| Housatonic River (Lyman Street Bridge) |                                    |         |                               |                                     |                              |                               |                            |                              |                                    |
| BM-2A                                  | 986.32                             | 7/5/06  | 16.10                         | See Note 5 r                        | egarding dept                | h to water                    |                            |                              | 970.22                             |
| BM-2A                                  | 986.32                             | 7/12/06 | 16.30                         | See Note 5 r                        | egarding dept                | h to water                    |                            |                              | 970.02                             |
| BM-2A                                  | 986.32                             | 7/19/06 | 16.35                         | See Note 5 regarding depth to water |                              |                               |                            |                              | 969.97                             |
| BM-2A                                  | 986.32                             | 7/25/06 | 16.40                         | See Note 5 r                        | egarding dept                | h to water                    |                            |                              | 969.92                             |

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 5. A survey reference point (BM-2A) was established on the Lyman Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

# TABLE 21-14 ACTIVE DNAPL RECOVERY SYSTEMS MONTHLY SUMMARY NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Recovery<br>System      | Date                      | Total Gallons<br>Recovered |
|-------------------------|---------------------------|----------------------------|
| System 1 <sup>(1)</sup> | July 2005                 | 14.3                       |
| •                       | August 2005               | (4)                        |
|                         | September 2005            | (4)                        |
|                         | October 2005              | (4)                        |
|                         | November 2005             | (4)                        |
|                         | December 2005             | (4)                        |
|                         | January 2006              | (4)                        |
|                         | February 2006             | (4)                        |
|                         | March 2006                | (4)                        |
|                         | April 2006                | (4)                        |
|                         | May 2006                  | (4)                        |
|                         | June 2006                 | (4)                        |
|                         | July 2006                 | (4)                        |
| System 2 <sup>(2)</sup> | July 2005                 | 48.6                       |
| •                       | August 2005               | (4)                        |
|                         | September 2005            | (4)                        |
|                         | October 2005              | (4)                        |
|                         | November 2005             | (4)                        |
|                         | December 2005             | (4)                        |
|                         | January 2006              | (4)                        |
|                         | February 2006             | (4)                        |
|                         | March 2006                | (4)                        |
|                         | April 2006                | (4)                        |
|                         | May 2006                  | (4)                        |
|                         | June 2006                 | (4)                        |
|                         | July 2006                 | (4)                        |
| Total Automated DNA     | PL Removal for July 2006: | 0.0 Gallons                |

- 1. System 1 wells are NS-15, NS-30, and NS-32.
- 2. System 2 wells are N2SC-01I, N2SC-03I, and N2SC-14.
- 3. In January 2005, System 2 malfunctioned during weeks 2 and 3, pumping mostly water. The volume reported for those two weeks is an estimated quantity that was included in the total volume removed.
- 4. The DNAPL recovery systems for the Newell Street Area II were shut down on July 25, 2005. The upgraded systems will be completed and activated approximately 2 to 3 months after completion of the EPA-approved soil remediation activities in this area.

### TABLE 21-15 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

# CONSENT DECREE MONTHLY STATUS REPORT GROUNDWATER MANAGEMENT AREA 1 - NEWELL STREET AREA II MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL July 2006

|       |         | Depth    | Depth to | LNAPL     | LNAPL    | July 2006 |
|-------|---------|----------|----------|-----------|----------|-----------|
| Well  | Date    | to Water | LNAPL    | Thickness | Removed  | Removal   |
| Name  |         | (ft BMP) | (ft BMP) | (feet)    | (liters) | (liters)  |
| NS-10 | 7/11/06 | 16.20    | 15.80    | 0.40      | 0.989    | 0.989     |

Total LNAPL Removal for July 2006: 0.989 liters 0.261 gallons

### Note:

1. ft BMP - feet Below Measuring Point.

### TABLE 21-16 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

# CONSENT DECREE MONTHLY STATUS REPORT GROUNDWATER MANAGEMENT AREA 1 - NEWELL STREET AREA II MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL July 2006

| Well<br>Name | Date    | Depth<br>to Water<br>(ft BMP) | Depth to<br>DNAPL<br>(ft BMP) | DNAPL<br>Thickness<br>(feet) | DNAPL<br>Removed<br>(liters) | July 2006<br>Removal<br>(liters) |
|--------------|---------|-------------------------------|-------------------------------|------------------------------|------------------------------|----------------------------------|
| N2SC-01I(R)  | 7/11/06 | 13.50                         | 39.20                         | 1.45                         | 8.062                        | 8.062                            |
| N2SC-02      | 7/11/06 | 12.25                         | 39.30                         | 0.04                         | 0.025                        | 0.025                            |

Total DNAPL Removal for July 2006: 8.087 liters 2.134 gallons

### Note:

1. ft BMP - feet Below Measuring Point.

# TABLE 21-17 ROUTINE WELL MONITORING NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| July 2006   |             |         |             |           |           |          |          |           |             |  |  |
|-------------|-------------|---------|-------------|-----------|-----------|----------|----------|-----------|-------------|--|--|
|             | Measuring   |         | Depth       | Depth to  | LNAPL     | Depth to | Total    | DNAPL     | Corrected   |  |  |
| Well        | Point Elev. | Date    | to Water    | LNAPL     | Thickness | DNAPL    | Depth    | Thickness | Water Elev. |  |  |
| Name        | (feet)      |         | (ft BMP)    | (ft BMP)  | (feet)    | (ft BMP) | (ft BMP) | (feet)    | (feet)      |  |  |
| GMA1-8      | 981.66      | 7/11/06 | 9.75        |           | 0.00      |          | 16.20    | 0.00      | 971.91      |  |  |
| GMA1-9      | 982.36      | 7/11/06 | 9.85        |           | 0.00      |          | 14.35    | 0.00      | 972.51      |  |  |
| GMA1-25     | NA          | 7/11/06 | 14.20       |           | 0.00      |          | 18.60    | 0.00      | NA          |  |  |
| GMA1-26     | NA          | 7/11/06 | 12.00       |           | 0.00      |          | 17.03    | 0.00      | NA          |  |  |
| GMA1-27     | NA          | 7/11/06 | 8.35        |           | 0.00      |          | 16.46    | 0.00      | NA          |  |  |
| GMA1-28     | NA          | 7/11/06 | 10.40       |           | 0.00      |          | 16.18    | 0.00      | NA          |  |  |
| MW-1D       | 987.20      | 7/11/06 | 14.35       |           | 0.00      | 39.30    | 39.45    | 0.15      | 972.85      |  |  |
| MW-1S       | 986.60      | 7/11/06 | 11.75       |           | 0.00      | 20.30    | 20.36    | 0.06      | 974.85      |  |  |
| N2SC-01I    | 984.99      | 7/5/06  | 12.98       |           | 0.00      | 37.60    | 41.60    | 4.00      | 972.01      |  |  |
| N2SC-01I    | 984.99      | 7/11/06 | 13.28       |           | 0.00      | 37.60    | 41.60    | 4.00      | 971.71      |  |  |
| N2SC-01I    | 984.99      | 7/19/06 | 12.21       |           | 0.00      | 36.70    | 40.40    | 3.70      | 972.78      |  |  |
| N2SC-01I    | 984.99      | 7/25/06 | 12.40       |           | 0.00      | 37.80    | 40.40    | 2.60      | 972.59      |  |  |
| N2SC-01I(R) | 986.01      | 7/5/06  | 13.26       |           | 0.00      | 39.35    | 40.60    | 1.25      | 972.75      |  |  |
| N2SC-01I(R) | 986.01      | 7/11/06 | 13.50       |           | 0.00      | 39.20    | 40.65    | 1.45      | 972.51      |  |  |
| N2SC-01I(R) | 986.01      | 7/19/06 | 13.67       |           | 0.00      | 39.10    | 40.54    | 1.44      | 972.34      |  |  |
| N2SC-01I(R) | 986.01      | 7/25/06 | 13.80       |           | 0.00      | 39.15    | 40.70    | 1.55      | 972.21      |  |  |
| N2SC-02     | 985.56      | 7/11/06 | 12.25       |           | 0.00      | 39.30    | 39.34    | 0.04      | 973.31      |  |  |
| N2SC-03I    | 986.24      | 7/5/06  | 11.35       |           | 0.00      | 36.75    | 38.88    | 2.13      | 974.89      |  |  |
| N2SC-03I    | 986.24      | 7/11/06 | 11.65       |           | 0.00      | 36.30    | 38.90    | 2.60      | 974.59      |  |  |
| N2SC-03I    | 986.24      | 7/19/06 | 10.75       |           | 0.00      | 35.80    | 37.80    | 2.00      | 975.49      |  |  |
| N2SC-03I    | 986.24      | 7/25/06 | 10.90       |           | 0.00      | 35.10    | 37.78    | 2.68      | 975.34      |  |  |
| N2SC-03I(R) | 985.86      | 7/5/06  | 12.94       |           | 0.00      | 38.05    | 40.55    | 2.50      | 972.92      |  |  |
| N2SC-03I(R) | 985.86      | 7/11/06 | 13.50       |           | 0.00      | 37.90    | 40.65    | 2.75      | 972.36      |  |  |
| N2SC-03I(R) | 985.86      | 7/19/06 | 13.35       |           | 0.00      | 37.95    | 40.56    | 2.61      | 972.51      |  |  |
| N2SC-03I(R) | 985.86      | 7/25/06 | 13.50       |           | 0.00      | 37.90    | 40.60    | 2.70      | 972.36      |  |  |
| N2SC-07     | 984.61      | 7/11/06 | 11.40       |           | 0.00      |          | 36.90    | 0.00      | 973.21      |  |  |
| N2SC-07S    | 982.93      | 7/11/06 | Buried Unde | er Gravel |           |          | 18.91    | 0.00      | NA          |  |  |
| N2SC-08     | 986.07      | 7/11/06 | 12.70       |           | 0.00      | 40.30    | 42.60    | 2.30      | 973.37      |  |  |
| N2SC-09S    | 987.84      | 7/11/06 | 9.80        |           | 0.00      |          | 14.20    | 0.00      | 978.04      |  |  |
| N2SC-14     | 985.06      | 7/5/06  | 14.20       |           | 0.00      | 38.50    | 40.30    | 1.80      | 970.86      |  |  |
| N2SC-14     | 985.06      | 7/11/06 | 14.50       |           | 0.00      | 38.25    | 40.30    | 2.05      | 970.56      |  |  |
| N2SC-14     | 985.06      | 7/19/06 | 14.65       |           | 0.00      | 38.50    | 40.30    | 1.80      | 970.41      |  |  |
| N2SC-14     | 985.06      | 7/25/06 | 14.80       |           | 0.00      | 38.50    | 40.30    | 1.80      | 970.26      |  |  |
| NS-9        | 982.51      | 7/11/06 | Buried Unde |           |           |          |          | 0.00      | NA          |  |  |
| NS-10       | 984.59      | 7/11/06 | 16.20       | 15.80     | 0.40      |          | 24.78    | 0.00      | 968.76      |  |  |
| NS-15R      | NA          | 7/5/06  | 12.00       |           | 0.00      |          | 20.48    | 0.00      | NA          |  |  |
| NS-15R      | NA          | 7/11/06 | 12.24       |           | 0.00      |          | 20.46    | 0.00      | NA          |  |  |
| NS-15R      | NA          | 7/19/06 | 11.00       |           | 0.00      |          | 19.05    | 0.00      | NA          |  |  |
| NS-15R      | NA          | 7/25/06 | 11.10       |           | 0.00      |          | 19.05    | 0.00      | NA          |  |  |
| NS-16       | 984.46      | 7/11/06 | Buried Unde | er Gravel |           |          | 19.75    | 0.00      | NA          |  |  |
| NS-17       | 984.64      | 7/11/06 | 12.78       |           | 0.00      |          | 18.71    | 0.00      | 971.86      |  |  |
| NS-20       | 985.29      | 7/11/06 | 5.95        |           | 0.00      |          | 14.95    | 0.00      | 979.34      |  |  |
| NS-30       | 985.99      | 7/5/06  | 11.40       |           | 0.00      | 35.90    | 36.35    | 0.45      | 974.59      |  |  |
| NS-30       | 985.99      | 7/11/06 | 11.60       |           | 0.00      | 35.80    | 36.35    | 0.55      | 974.39      |  |  |
| NS-30       | 985.99      | 7/19/06 | 10.45       |           | 0.00      | 34.48    | 35.14    | 0.66      | 975.54      |  |  |
| NS-30       | 985.99      | 7/25/06 | 10.70       |           | 0.00      | 34.80    | 35.12    | 0.32      | 975.29      |  |  |
| NS-32       | 986.20      | 7/5/06  | 12.20       |           | 0.00      | 39.00    | 39.20    | 0.20      | 974.00      |  |  |
| NS-32       | 986.20      | 7/11/06 | 12.45       |           | 0.00      | 39.10    | 39.25    | 0.15      | 973.75      |  |  |
| NS-32       | 986.20      | 7/19/06 | 11.47       |           | 0.00      | 37.90    | 38.05    | 0.15      | 974.73      |  |  |
| NS-32       | 986.20      | 7/25/06 | 11.60       |           | 0.00      | 37.75    | 38.05    | 0.30      | 974.60      |  |  |

# TABLE 21-17 ROUTINE WELL MONITORING NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.

# TABLE 21-18 ROUTINE WELL MONITORING SILVER LAKE AREA GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Well Name Staff Gauge w | Measuring Point Elev. (feet) | Date    | Depth<br>to Water<br>(ft BMP) | Depth to<br>LNAPL<br>(ft BMP)       | LNAPL<br>Thickness<br>(feet)        | Depth to<br>DNAPL<br>(ft BMP) | Total<br>Depth<br>(ft BMP) | DNAPL<br>Thickness<br>(feet) | Corrected<br>Water Elev.<br>(feet) |
|-------------------------|------------------------------|---------|-------------------------------|-------------------------------------|-------------------------------------|-------------------------------|----------------------------|------------------------------|------------------------------------|
| Silver Lake<br>Gauge    | 980.30                       | 7/5/06  | 4.50                          | See Note 4                          | 975.80                              |                               |                            |                              |                                    |
| Silver Lake<br>Gauge    | 980.30                       | 7/12/06 | 4.51                          | See Note 4                          | See Note 4 regarding depth to water |                               |                            |                              |                                    |
| Silver Lake<br>Gauge    | 980.30                       | 7/19/06 | 4.56                          | See Note 4 regarding depth to water |                                     |                               |                            |                              | 975.74                             |
| Silver Lake<br>Gauge    | 980.30                       | 7/25/06 | 4.51                          | See Note 4                          | regarding de                        | pth to water                  |                            |                              | 975.79                             |

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. A survey reference point was established on the Silver Lake staff gauge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.
- 5. Additional groundwater elevation data was collected from wells near Silver Lake that are located in the 30s Complex and at the Lyman Street Area. Those results are presented in the monitoring tables for those Removal Action Areas.

# ITEM 22 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS J & K (GMA 2) (GECD320) JULY 2006

\* All activities described below for this item were conducted pursuant to the Consent Decree.

### a. Activities Undertaken/Completed

Continued routine river elevation monitoring.

### b. Sampling/Test Results Received

See attached table.

### c. Work Plans/Reports/Documents Submitted

Submitted Groundwater Quality Monitoring Interim Report for Spring 2006 (July 28, 2006).

### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue routine river elevation monitoring.

### e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

### f. Proposed/Approved Work Plan Modifications

None

## TABLE 22-1 ROUTINE RIVER ELEVATION MONITORING GROUNDWATER MANAGEMENT AREA 2

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Well<br>Name                   | Measuring<br>Point Elev.<br>(feet) | Date    | Depth<br>to Water<br>(ft BMP) | Total<br>Depth<br>(ft BMP) | Corrected<br>Water Elev.<br>(feet) |  |  |  |  |
|--------------------------------|------------------------------------|---------|-------------------------------|----------------------------|------------------------------------|--|--|--|--|
| Housatonic River (Foot Bridge) |                                    |         |                               |                            |                                    |  |  |  |  |
| GMA2-SG-1                      | 989.82                             | 7/18/06 | 17.06                         |                            | 972.76                             |  |  |  |  |

- 1. ft BMP feet Below Measuring Point.
- 2. A survey reference point was established on the Oxbows J & K foot bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

# ITEM 23 GROUNDWATER MANAGEMENT AREAS PLANT SITE 2 (GMA 3) (GECD330) JULY 2006

\* All activities described below for this item were conducted pursuant to the Consent Decree.

### a. Activities Undertaken/Completed

Conducted routine groundwater elevation and NAPL monitoring activities. Approximately 20.470 liters (5.40 gallons) of LNAPL were removed by the automatic skimmer located in well 51-21 and an additional 3.747 liters (0.99 gallon) of LNAPL were manually removed from the wells in this area (see Table 23-1).

### b. Sampling/Test Results Received

See attached tables.

### c. Work Plans/Reports/Documents Submitted

None

### d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue ongoing groundwater and NAPL monitoring and recovery activities.
- Submit Groundwater Quality Monitoring Interim Report for Spring 2006 (due to EPA by August 31, 2006).
- Conduct soil gas investigation near Building 51.
- Submit report on soil gas investigation near Building 51 (due to EPA by September 11, 2006).

### e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

### f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval of GE's May 31, 2006 Soil Gas Investigation Work Plan (July 11, 2006).

## TABLE 23-1 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL GROUNDWATER MANAGEMENT AREA 3

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

| Well<br>Name | Date    | Depth<br>to Water<br>(ft BMP) | Depth to<br>LNAPL<br>(ft BMP) | LNAPL<br>Thickness<br>(feet) | LNAPL<br>Removed<br>(liters) | July 2006<br>Removal<br>(liters) |  |
|--------------|---------|-------------------------------|-------------------------------|------------------------------|------------------------------|----------------------------------|--|
| 51-08        | 7/12/06 | 11.85                         | 11.00                         | 0.85                         | 0.524                        | 0.999                            |  |
| 31-00        | 7/18/06 | 11.75                         | 10.98                         | 0.77                         | 0.475                        | 0.999                            |  |
| 51-16R       | 7/17/06 | 10.65                         | 10.31                         | 0.34                         | 0.210                        | 0.210                            |  |
| 51-17        | 7/17/06 | 11.73                         | 10.08                         | 1.65                         | 1.019                        | 1.019                            |  |
|              | 7/5/06  | 15.25                         | Р                             | < 0.01                       | 3.41                         |                                  |  |
| 51-21        | 7/12/06 | 15.45                         | 15.44                         | 0.01                         | 3.41                         | 20.470                           |  |
|              | 7/19/06 | 15.58                         | Р                             | < 0.01                       | 5.69                         | 20.470                           |  |
|              | 7/26/06 | 15.70                         |                               | 0.00                         | 7.96                         |                                  |  |
| 59-03R       | 7/17/06 | 12.30                         | 11.41                         | 0.89                         | 0.550                        | 0.550                            |  |
|              | 7/5/06  | 11.30                         | 11.00                         | 0.30                         | 0.185                        |                                  |  |
| GMA3-10      | 7/12/06 | 11.70                         | 11.12                         | 0.58                         | 0.358                        | 0.913                            |  |
|              | 7/18/06 | 11.80                         | 11.20                         | 0.60                         | 0.370                        |                                  |  |
| GMA3-12      | 7/5/06  | 11.60                         | 11.35                         | 0.25                         | 0.618                        | 0.618                            |  |
|              | 7/5/06  | 11.31                         | 11.20                         | 0.11                         | 0.068                        |                                  |  |
| GMA3-13      | 7/12/06 | 11.42                         | 11.30                         | 0.12                         | 0.074                        | 0.197                            |  |
|              | 7/18/06 | 11.49                         | 11.40                         | 0.09                         | 0.056                        |                                  |  |
| UB-PZ-3      | 7/17/06 | 12.30                         | 12.02                         | 0.28                         | 0.043                        | 0.043                            |  |

Total Automated LNAPL Removal at well 51-21 for July 2006: 20.470 liters

5.40 Gallons

Total Manual LNAPL Removal at all other wells for July 2006: 3.747 liters

0.99 Gallons

Total LNAPL Removed for July 2006: 24.217 liters

6.39 Gallons

- 1. ft BMP feet Below Measuring Point.
- 2. P indicates that LNAPL or DNAPL is present at a thickness that is < 0.01 feet. The corresponding thickness is recorded as such.

### TABLE 23-2 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 3

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

|          | Measuring   |         | Depth    | Depth to | LNAPL     | Depth to | Total    | DNAPL     | Corrected   |
|----------|-------------|---------|----------|----------|-----------|----------|----------|-----------|-------------|
| Well     | Point Elev. | Date    | to Water | LNAPL    | Thickness | DNAPL    | Depth    | Thickness | Water Elev. |
| Name     | (feet)      |         | (ft BMP) | (ft BMP) | (feet)    | (ft BMP) | (ft BMP) | (feet)    | (feet)      |
| 51-05    | 996.44      | 7/17/06 | 10.35    |          | 0.00      |          | 11.65    | 0.00      | 986.09      |
| 51-06    | 997.36      | 7/17/06 | 10.84    | 10.83    | 0.01      |          | 14.61    | 0.00      | 986.53      |
| 51-07    | 997.08      | 7/17/06 | 10.82    | Р        |           |          | 11.22    | 0.00      | NA          |
| 51-08    | 997.08      | 7/5/06  | 10.95    | 10.82    | 0.13      |          | 14.68    | 0.00      | 986.25      |
| 51-08    | 997.08      | 7/12/06 | 11.85    | 11.00    | 0.85      |          | 14.68    | 0.00      | 986.02      |
| 51-08    | 997.08      | 7/18/06 | 11.75    | 10.98    | 0.77      |          | 14.69    | 0.00      | 986.05      |
| 51-08    | 997.08      | 7/24/06 | 11.22    | 11.10    | 0.12      |          | 14.70    | 0.00      | 985.97      |
| 51-09    | 997.70      | 7/17/06 | 11.20    |          | 0.00      |          | 11.60    | 0.00      | 986.50      |
| 51-11    | 994.37      | 7/17/06 | 8.65     |          | 0.00      |          | 13.32    | 0.00      | 985.72      |
| 51-12    | 996.55      | 7/17/06 | 7.55     |          | 0.00      |          | 13.33    | 0.00      | 989.00      |
| 51-13    | 997.42      | 7/17/06 | Dry      |          | 0.00      |          | 9.73     | 0.00      | < 987.69    |
| 51-14    | 996.77      | 7/17/06 | 10.91    |          | 0.00      |          | 14.89    | 0.00      | 985.86      |
| 51-15    | 996.43      | 7/17/06 | 10.54    | 10.30    | 0.24      |          | 14.38    | 0.00      | 986.11      |
| 51-16R   | 996.39      | 7/17/06 | 10.65    | 10.31    | 0.34      |          | 14.55    | 0.00      | 986.06      |
| 51-17    | 996.43      | 7/17/06 | 11.73    | 10.08    | 1.65      |          | 14.50    | 0.00      | 986.23      |
| 51-18    | 997.12      | 7/17/06 | 11.03    |          | 0.00      |          | 12.60    | 0.00      | 986.09      |
| 51-19    | 996.43      | 7/17/06 | 10.52    | Р        | < 0.01    |          | 14.06    | 0.00      | 985.91      |
| 51-21    | 1001.49     | 7/5/06  | 15.25    | Р        | < 0.01    |          | NM       | 0.00      | 986.24      |
| 51-21    | 1001.49     | 7/12/06 | 15.45    | 15.44    | 0.01      |          | NM       | 0.00      | 986.05      |
| 51-21    | 1001.49     | 7/19/06 | 15.58    | Р        | < 0.01    |          | NM       | 0.00      | 985.91      |
| 51-21    | 1001.49     | 7/26/06 | 15.70    |          | 0.00      |          | NM       | 0.00      | 985.79      |
| 59-01    | 997.52      | 7/17/06 | 11.33    |          | 0.00      |          | 11.43    | 0.00      | 986.19      |
| 59-03R   | 997.64      | 7/17/06 | 12.30    | 11.41    | 0.89      |          | 17.04    | 0.00      | 986.17      |
| 59-07    | 997.96      | 7/17/06 | 11.72    | 11.70    | 0.02      |          | 23.55    | 0.00      | 986.26      |
| GMA3-7   | 1000.17     | 7/17/06 | 13.68    |          | 0.00      |          | 19.61    | 0.00      | 986.49      |
| GMA3-10  | 997.54      | 7/5/06  | 11.30    | 11.00    | 0.30      |          | 17.95    | 0.00      | 986.52      |
| GMA3-10  | 997.54      | 7/12/06 | 11.70    | 11.12    | 0.58      |          | 17.95    | 0.00      | 986.38      |
| GMA3-10  | 997.54      | 7/18/06 | 11.80    | 11.20    | 0.60      |          | 17.95    | 0.00      | 986.30      |
| GMA3-10  | 997.54      | 7/24/06 | 11.97    | 11.35    | 0.62      |          | 17.95    | 0.00      | 986.15      |
| GMA3-11  | 997.25      | 7/17/06 | 10.49    |          | 0.00      |          | 18.30    | 0.00      | 986.76      |
| GMA3-12  | 997.84      | 7/5/06  | 11.60    | 11.35    | 0.25      |          | 21.24    | 0.00      | 986.47      |
| GMA3-12  | 997.84      | 7/12/06 | 11.64    | 11.50    | 0.14      |          | 21.24    | 0.00      | 986.33      |
| GMA3-12  | 997.84      | 7/18/06 | 11.79    | 11.60    | 0.19      |          | 21.24    | 0.00      | 986.23      |
| GMA3-12  | 997.84      | 7/24/06 | 11.99    | 11.73    | 0.26      |          | 21.24    | 0.00      | 986.09      |
| GMA3-13  | 997.73      | 7/5/06  | 11.31    | 11.20    | 0.11      |          | 17.70    | 0.00      | 986.52      |
| GMA3-13  | 997.73      | 7/12/06 | 11.42    | 11.30    | 0.12      |          | 17.70    | 0.00      | 986.42      |
| GMA3-13  | 997.73      | 7/18/06 | 11.49    | 11.40    | 0.09      |          | 17.68    | 0.00      | 986.32      |
| GMA3-13  | 997.73      | 7/24/06 | 11.55    |          | 0.00      |          | 17.70    | 0.00      | 986.18      |
| GMA3-14  | 997.42      | 7/17/06 | 10.99    |          | 0.00      |          | 17.03    | 0.00      | 986.43      |
| GMA3-15  | 996.74      | 7/17/06 | 11.65    |          | 0.00      |          | 17.03    | 0.00      | 985.09      |
| UB-MW-10 | 995.99      | 7/17/06 | 9.75     |          | 0.00      |          | 15.02    | 0.00      | 986.24      |
| UB-PZ-3  | 998.15      | 7/17/06 | 12.30    | 12.02    | 0.28      |          | 13.40    | 0.00      | 986.11      |

### TABLE 23-2 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 3

### CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as
- 6. This table also includes groundwater data collected from certain wells during sampling activities conducted in April 2006 that was not compiled in time to include in the previous monthly report.

# ITEM 24 GROUNDWATER MANAGEMENT AREAS PLANT SITE 3 (GMA 4) (GECD340) JULY 2006

\* All activities described below for this item were conducted pursuant to the Consent Decree.

### a. Activities Undertaken/Completed

Conducted routine groundwater elevation monitoring, including quarterly monitoring at 17 wells along the northern boundary of GMA 4.

### b. Sampling/Test Results Received

See attached table.

### c. Work Plans/Reports/Documents Submitted

None

### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine monitoring at well GMA4-3.
- Submit Groundwater Quality Monitoring Interim Report for Spring 2006 (due to EPA by August 31, 2006).

### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

### f. Proposed/Approved Work Plan Modifications

None

### TABLE 24-1 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 4

### CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS July 2006

|            | Measuring   |         | Depth    | Depth to | LNAPL     | Depth to | Total    | DNAPL     | Corrected   |
|------------|-------------|---------|----------|----------|-----------|----------|----------|-----------|-------------|
| Well       | Point Elev. | Date    | to Water | LNAPL    | Thickness | DNAPL    | Depth    | Thickness | Water Elev. |
| Name       | (feet)      |         | (ft BMP) | (ft BMP) | (feet)    | (ft BMP) | (ft BMP) | (feet)    | (feet)      |
| 78-1       | 1,026.32    | 7/11/06 | 9.54     |          | 0.00      |          | 22.40    | 0.00      | 1,016.78    |
| 78-2       | 1,033.96    | 7/11/06 | 8.02     |          | 0.00      |          | 20.62    | 0.00      | 1,025.94    |
| 78-6       | 1,012.00    | 7/11/06 | 8.10     |          | 0.00      |          | 17.54    | 0.00      | 1,003.90    |
| GMA4-3     | 1,003.95    | 7/11/06 | 17.48    |          | 0.00      |          | 26.26    | 0.00      | 986.47      |
| GMA4-4     | 999.64      | 7/11/06 | 12.55    |          | 0.00      |          | 23.15    | 0.00      | 987.09      |
| GMA4-6     | 1,009.12    | 7/11/06 | 8.54     |          | 0.00      |          | 12.61    | 0.00      | 1,000.58    |
| NY-3       | 1,005.49    | 7/11/06 | 15.31    |          | 0.00      |          | 24.70    | 0.00      | 990.18      |
| NY-4       | 1,024.24    | 7/11/06 | 9.40     |          | 0.00      |          | 31.32    | 0.00      | 1,014.84    |
| OPCA-MW-1R | NA          | 7/11/06 | 5.09     |          | 0.00      |          | 24.62    | 0.00      | NA          |
| OPCA-MW-2  | 1,019.58    | 7/11/06 | 17.55    |          | 0.00      |          | 25.30    | 0.00      | 1,002.03    |
| OPCA-MW-3  | 1,014.83    | 7/11/06 | 18.92    |          | 0.00      |          | 27.41    | 0.00      | 995.91      |
| OPCA-MW-4  | 1,018.67    | 7/11/06 | 11.85    |          | 0.00      |          | 21.48    | 0.00      | 1,006.82    |
| OPCA-MW-5R | 1,016.34    | 7/11/06 | 10.52    |          | 0.00      |          | 21.61    | 0.00      | 1,005.82    |
| OPCA-MW-6  | 1,022.31    | 7/11/06 | 17.08    |          | 0.00      |          | 23.87    | 0.00      | 1,005.23    |
| OPCA-MW-7  | 1,026.57    | 7/11/06 | 14.11    |          | 0.00      |          | 23.64    | 0.00      | 1,012.46    |
| OPCA-MW-8  | 1,027.40    | 7/11/06 | 10.19    |          | 0.00      |          | 21.78    | 0.00      | 1,017.21    |
| SCH-4      | 1,014.05    | 7/11/06 | 8.98     |          | 0.00      |          | 16.28    | 0.00      | 1,005.07    |

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. This table also includes groundwater data collected from certain wells during sampling activities conducted in April 2006 that was not compiled in time to include in the previous monthly report.

# ITEM 25 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS A & C (GMA 5) (GECD350) JULY 2006

\* All activities described below for this item were conducted pursuant to the Consent Decree.

|  | a. | Activities Undertaken/Completed |  |
|--|----|---------------------------------|--|
|--|----|---------------------------------|--|

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

Submitted Groundwater Quality Monitoring Interim Report for Spring 2006 (July 28, 2006).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

None

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

# Attachment A

NPDES Sampling Records and Results
July 2006



# TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

# NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name   | Field Sample ID | Sample Date | Matrix | Laboratory | Analyses     | Date Received by GE or BBL |
|----------------|-----------------|-------------|--------|------------|--------------|----------------------------|
| NPDES Sampling | 001-A7393       | 7/4/06      | Water  | Columbia   | Oil & Grease | 7/14/06                    |
| NPDES Sampling | 001-A7400       | 7/4/06      | Water  | Accutest   | PCB          | 7/27/06                    |
| NPDES Sampling | 001-A7401       | 7/5/06      | Water  | Columbia   | TSS          | 7/14/06                    |
| NPDES Sampling | 005-A7380/A7381 | 6/20/06     | Water  | SGS        | PCB          | 7/11/06                    |
| NPDES Sampling | 005-A7390/A7391 | 6/27/06     | Water  | SGS        | PCB          | 7/11/06                    |
| NPDES Sampling | 005-A7402/A7403 | 7/5/06      | Water  | Accutest   | PCB          | 7/27/06                    |
| NPDES Sampling | 005-A7402/A7403 | 7/5/06      | Water  | Columbia   | TSS, BOD     | 7/14/06                    |
| NPDES Sampling | 005-A7419/A7422 | 7/10/06     | Water  | Accutest   | PCB          | 7/27/06                    |
| NPDES Sampling | 005-A7447/A7448 | 7/18/06     | Water  | Accutest   | PCB          | 7/31/06                    |
| NPDES Sampling | 005-A7460/A7461 | 7/25/06     | Water  | Accutest   | PCB          |                            |
| NPDES Sampling | 006-A7429       | 7/11/06     | Water  | Columbia   | Oil & Grease | 7/19/06                    |
| NPDES Sampling | 006-A7431       | 7/11/06     | Water  | Accutest   | PCB          | 7/25/06                    |
| NPDES Sampling | 01A-A7412       | 7/11/06     | Water  | Columbia   | Oil & Grease | 7/19/06                    |
| NPDES Sampling | 01A-A7414       | 7/11/06     | Water  | Accutest   | PCB          | 7/27/06                    |
| NPDES Sampling | 05A-A7426       | 7/11/06     | Water  | Columbia   | Oil & Grease | 7/19/06                    |
| NPDES Sampling | 05A-A7428       | 7/11/06     | Water  | Accutest   | PCB          | 7/25/06                    |
| NPDES Sampling | 05B-A7463       | 7/28/06     | Water  | Columbia   | Oil & Grease |                            |
| NPDES Sampling | 05B-A7465       | 7/28/06     | Water  | Accutest   | PCB          |                            |
| NPDES Sampling | 06A-A7466       | 7/28/06     | Water  | Columbia   | Oil & Grease |                            |
| NPDES Sampling | 06A-A7468       | 7/28/06     | Water  | Accutest   | PCB          |                            |
| NPDES Sampling | 09B-A7392       | 6/27/06     | Water  | Columbia   | TSS, BOD     | 7/7/06                     |
| NPDES Sampling | 09B-A7415       | 7/11/06     | Water  | Columbia   | TSS, BOD     | 7/19/06                    |
| NPDES Sampling | 09B-A7449       | 7/20/06     | Water  | Columbia   | TSS, BOD     | 7/28/06                    |
| NPDES Sampling | 09B-A7458       | 7/24/06     | Water  | Columbia   | TSS, BOD     |                            |
| NPDES Sampling | 09B-A7489       | 7/31/06     | Water  | Columbia   | TSS, BOD     |                            |
| NPDES Sampling | 09C-A7383       | 6/25/06     | Water  | Columbia   | Oil & Grease | 7/7/06                     |
| NPDES Sampling | 09C-A7423       | 7/11/06     | Water  | Columbia   | Oil & Grease | 7/19/06                    |
| NPDES Sampling | 09C-A7425       | 7/11/06     | Water  | Accutest   | PCB          | 7/25/06                    |
| NPDES Sampling | 09C-A7450       | 7/22/06     | Water  | Columbia   | Oil & Grease |                            |
| NPDES Sampling | 09C-A7452       | 7/23/06     | Water  | Columbia   | Oil & Grease |                            |
| NPDES Sampling | 64G-A7388       | 6/26/06     | Water  | Columbia   | Oil & Grease | 7/7/06                     |
| NPDES Sampling | 64G-A7398       | 7/4/06      | Water  | Columbia   | Oil & Grease | 7/14/06                    |
| NPDES Sampling | 64G-A7404       | 7/5/06      | Water  | Columbia   | SVOC         | 7/14/06                    |
| NPDES Sampling | 64G-A7405       | 7/5/06      | Water  | Columbia   | VOC          | 7/14/06                    |
| NPDES Sampling | 64G-A7420       | 7/10/06     | Water  | Columbia   | Oil & Grease | 7/19/06                    |

 $V: GE\_Pittsfield\_General\ Reports\ and\ Presentations\ Monthly\ Reports\ 2006\ T-06\ CD\ Monthly\ Tracking\ Logs\ Tracking. xls\ TABLE\ A-1$ 

# TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

# NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name   | Field Sample ID | Sample Date | Matrix | Laboratory | Analyses              | Date Received by GE or BBL |
|----------------|-----------------|-------------|--------|------------|-----------------------|----------------------------|
| NPDES Sampling | 64G-A7444       | 7/17/06     | Water  | Columbia   | Oil & Grease          | 7/25/06                    |
| NPDES Sampling | 64G-A7456       | 7/24/06     | Water  | Columbia   | Oil & Grease          | 1720/00                    |
| NPDES Sampling | 64G-A7471       | 7/31/06     | Water  | Columbia   | Oil & Grease          |                            |
| NPDES Sampling | 64T-A7385       | 6/26/06     | Water  | Columbia   | Oil & Grease          | 7/7/06                     |
| NPDES Sampling | 64T-A7396       | 7/4/06      | Water  | Columbia   | Oil & Grease          | 7/14/06                    |
| NPDES Sampling | 64T-A7417       | 7/10/06     | Water  | Columbia   | Oil & Grease          | 7/19/06                    |
| NPDES Sampling | 64T-A7442       | 7/17/06     | Water  | Columbia   | Oil & Grease          | 7/25/06                    |
| NPDES Sampling | 64T-A7454       | 7/24/06     | Water  | Columbia   | Oil & Grease          |                            |
| NPDES Sampling | 64T-A7469       | 7/31/06     | Water  | Columbia   | Oil & Grease          |                            |
| NPDES Sampling | A7354R          | 6/6/06      | Water  | Aquatec    | Acute Toxicity Test   | 7/5/06                     |
| NPDES Sampling | A7355C          | 6/6/06      | Water  | Aquatec    | Acute Toxicity Test   | 7/5/06                     |
| NPDES Sampling | A7406R          | 7/10/06     | Water  | Aquatec    | Acute Toxicity Test   | 7/31/06                    |
| NPDES Sampling | A7406R          | 7/10/06     | Water  | Aquatec    | Chronic Toxicity Test |                            |
| NPDES Sampling | A7406RCN        | 7/10/06     | Water  | Columbia   | CN                    | 7/21/06                    |
| NPDES Sampling | A7406RTM        | 7/10/06     | Water  | Columbia   | Metals (10)           | 7/21/06                    |
| NPDES Sampling | A7407C          | 7/10/06     | Water  | Aquatec    | Acute Toxicity Test   | 7/31/06                    |
| NPDES Sampling | A7407C          | 7/10/06     | Water  | Aquatec    | Chronic Toxicity Test |                            |
| NPDES Sampling | A7407CCN        | 7/10/06     | Water  | Columbia   | CN                    | 7/21/06                    |
| NPDES Sampling | A7407CDM        | 7/10/06     | Water  | Columbia   | Filtered Metals (8)   | 7/21/06                    |
| NPDES Sampling | A7407CTM        | 7/10/06     | Water  | Columbia   | Metals (10)           | 7/21/06                    |
| NPDES Sampling | A7408R          | 7/12/06     | Water  | Aquatec    | Chronic Toxicity Test |                            |
| NPDES Sampling | A7408RCN        | 7/12/06     | Water  | Columbia   | CN                    | 7/21/06                    |
| NPDES Sampling | A7408RTM        | 7/12/06     | Water  | Columbia   | Metals (10)           | 7/21/06                    |
| NPDES Sampling | A7409C          | 7/12/06     | Water  | Aquatec    | Chronic Toxicity Test |                            |
| NPDES Sampling | A7409CCN        | 7/12/06     | Water  | Columbia   | CN                    | 7/21/06                    |
| NPDES Sampling | A7409CDM        | 7/12/06     | Water  | Columbia   | Filtered Metals (8)   | 7/21/06                    |
| NPDES Sampling | A7409CTM        | 7/12/06     | Water  | Columbia   | Metals (10)           | 7/21/06                    |
| NPDES Sampling | A7410R          | 7/14/06     | Water  | Aquatec    | Chronic Toxicity Test |                            |
| NPDES Sampling | A7410RCN        | 7/14/06     | Water  | Columbia   | CN                    | 7/25/06                    |
| NPDES Sampling | A7410RTM        | 7/14/06     | Water  | Columbia   | Metals (10)           | 7/25/06                    |
| NPDES Sampling | A7411C          | 7/14/06     | Water  | Aquatec    | Chronic Toxicity Test |                            |
| NPDES Sampling | A7411CCN        | 7/14/06     | Water  | Columbia   | CN                    | 7/25/06                    |
| NPDES Sampling | A7411CDM        | 7/14/06     | Water  | Columbia   | Filtered Metals (8)   | 7/25/06                    |
| NPDES Sampling | A7411CTM        | 7/14/06     | Water  | Columbia   | Metals (10)           | 7/25/06                    |
| NPDES Sampling | JUL06WK1        | 6/27/06     | Water  | Columbia   | Cu, Pb, Zn            | 7/7/06                     |

 $V: GE\_Pittsfield\_General\ Reports\ and\ Presentations\ Monthly\ Reports\ 2006\ T-06\ CD\ Monthly\ Tracking\ Logs\ Tracking. xls\ TABLE\ A-1$ 

# TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING JULY 2006

# NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

|                |                 |             |        |            |            | Date Received |
|----------------|-----------------|-------------|--------|------------|------------|---------------|
| Project Name   | Field Sample ID | Sample Date | Matrix | Laboratory | Analyses   | by GE or BBL  |
| NPDES Sampling | JUL06WK2        | 7/5/06      | Water  | Columbia   | Cu, Pb, Zn | 7/14/06       |
| NPDES Sampling | JUL06WK4        | 7/18/06     | Water  | Columbia   | Cu, Pb, Zn | 7/25/06       |
| NPDES Sampling | JUL06WK5        | 7/25/06     | Water  | Columbia   | Cu, Pb, Zn |               |

## NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

| Sample ID: Parameter Date Collected: | 001-A7393<br>07/04/06 | 001-A7400<br>07/04/06 | 001-A7401<br>07/05/06 | 01A-A7412<br>07/11/06 | 01A-A7414<br>07/11/06 | 005-A7380/A7381<br>06/20/06 | 005-A7390/A7391<br>06/27/06 |
|--------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------------|-----------------------------|
| Volatile Organics                    | 2170 1100             | 0110 3100             |                       |                       |                       | V.01-01-01                  | 00/=1/00                    |
| 1,1,1-Trichloroethane                | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| 1,1-Dichloroethane                   | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Chloroethane                         | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Vinyl Chloride                       | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| PCBs-Unfiltered                      |                       |                       |                       |                       |                       |                             |                             |
| Aroclor-1260                         | NA                    | ND(0.000050)          | NA                    | NA                    | ND(0.000051)          | ND(0.000065)                | ND(0.000065)                |
| Total PCBs                           | NA                    | ND(0.000050)          | NA                    | NA                    | ND(0.000051)          | ND(0.000065)                | ND(0.000065)                |
| Semivolatile Organics                |                       |                       | •                     | •                     |                       | •                           | •                           |
| None Detected                        | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Inorganics-Unfiltered                |                       | •                     | •                     | •                     | •                     |                             |                             |
| Aluminum                             | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Cadmium                              | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Calcium                              | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Chromium                             | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Copper                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Cyanide                              | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Lead                                 | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Magnesium                            | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Nickel                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Silver                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Zinc                                 | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Inorganics-Filtered                  |                       |                       |                       |                       |                       |                             |                             |
| Aluminum                             | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Cadmium                              | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Chromium                             | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Copper                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Lead                                 | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Nickel                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Silver                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Zinc                                 | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Conventionals                        |                       |                       |                       |                       |                       |                             | •                           |
| Biological Oxygen Demand (5-day)     | NA                    | NA                    | NA                    | NA                    | NA                    | NA                          | NA                          |
| Total Suspended Solids               | NA                    | NA                    | 4.00                  | NA                    | NA                    | NA                          | NA                          |
| Oil & Grease                         | ND(5.2)               | NA                    | NA                    | ND(5.0)               | NA                    | NA                          | NA                          |

## NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

| Sample ID: Parameter Date Collected: | 005-A7402/A7403<br>07/05/06             | 005-A7419/A7422<br>07/10/06           | 005-A7447/A7448<br>07/18/06             | 05A-A7426<br>07/11/06 | 05A-A7428<br>07/11/06 | 006-A7429<br>07/11/06 | 006-A7431<br>07/11/06 |
|--------------------------------------|-----------------------------------------|---------------------------------------|-----------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Volatile Organics                    |                                         | 0.1.10.00                             | *************************************** | 2777772               |                       |                       |                       |
| 1,1,1-Trichloroethane                | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| 1,1-Dichloroethane                   | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Chloroethane                         | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Vinyl Chloride                       | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| PCBs-Unfiltered                      |                                         |                                       |                                         | •                     |                       | •                     |                       |
| Aroclor-1260                         | ND(0.000050)                            | ND(0.00050)                           | ND(0.000050)                            | NA                    | 0.0070                | NA                    | 0.0020                |
| Total PCBs                           | ND(0.000050)                            | ND(0.00050)                           | ND(0.000050)                            | NA                    | 0.0070                | NA                    | 0.0020                |
| Semivolatile Organics                | , , , , , , , , , , , , , , , , , , , , | , , , , , , , , , , , , , , , , , , , | , , , , , , , , , , , , , , , , , , , , | <u> </u>              |                       | <u>'</u>              |                       |
| None Detected                        | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Inorganics-Unfiltered                |                                         |                                       | <u> </u>                                | <u>'</u>              |                       | <u>'</u>              |                       |
| Aluminum                             | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Cadmium                              | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Calcium                              | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Chromium                             | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Copper                               | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Cyanide                              | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Lead                                 | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Magnesium                            | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Nickel                               | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Silver                               | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Zinc                                 | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Inorganics-Filtered                  |                                         |                                       |                                         |                       |                       |                       |                       |
| Aluminum                             | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Cadmium                              | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Chromium                             | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Copper                               | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Lead                                 | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Nickel                               | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Silver                               | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Zinc                                 | NA                                      | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Conventionals                        | ·                                       |                                       |                                         |                       |                       |                       | ·                     |
| Biological Oxygen Demand (5-day)     | ND(2.0)                                 | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Total Suspended Solids               | ND(1.00)                                | NA                                    | NA                                      | NA                    | NA                    | NA                    | NA                    |
| Oil & Grease                         | NA                                      | NA                                    | NA                                      | ND(5.0)               | NA                    | ND(5.0)               | NA                    |

Page 2 of 6

## NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

| Sample ID: Parameter Date Collected: | 09B-A7392<br>06/27/06 | 09B-A7415<br>07/11/06 | 09B-A7449<br>07/20/06 | 09C-A7383<br>06/25/06 | 09C-A7423<br>07/11/06 | 09C-A7425<br>07/11/06 | 64G-A7388<br>06/26/06 | 64G-A7398<br>07/04/06 | 64G-A7404<br>07/05/06 |
|--------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Volatile Organics                    |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| 1,1,1-Trichloroethane                | NA                    |
| 1,1-Dichloroethane                   | NA                    |
| Chloroethane                         | NA                    |
| Vinyl Chloride                       | NA                    |
| PCBs-Unfiltered                      |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Aroclor-1260                         | NA                    | NA                    | NA                    | NA                    | NA                    | ND(0.000050)          | NA                    | NA                    | NA                    |
| Total PCBs                           | NA                    | NA                    | NA                    | NA                    | NA                    | ND(0.000050)          | NA                    | NA                    | NA                    |
| Semivolatile Organics                |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| None Detected                        | NA                    |                       |
| Inorganics-Unfiltered                |                       | •                     | •                     | •                     | •                     |                       |                       | •                     | •                     |
| Aluminum                             | NA                    |
| Cadmium                              | NA                    |
| Calcium                              | NA                    |
| Chromium                             | NA                    |
| Copper                               | NA                    |
| Cyanide                              | NA                    |
| Lead                                 | NA                    |
| Magnesium                            | NA                    |
| Nickel                               | NA                    |
| Silver                               | NA                    |
| Zinc                                 | NA                    |
| Inorganics-Filtered                  |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Aluminum                             | NA                    |
| Cadmium                              | NA                    |
| Chromium                             | NA                    |
| Copper                               | NA                    |
| Lead                                 | NA                    |
| Nickel                               | NA                    |
| Silver                               | NA                    |
| Zinc                                 | NA                    |
| Conventionals                        |                       |                       |                       |                       |                       |                       |                       |                       |                       |
| Biological Oxygen Demand (5-day)     | ND(2.0)               | ND(2.0)               | ND(2.0)               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                    |
| Total Suspended Solids               | 8.30                  | 3.63                  | 5.38                  | NA                    | NA                    | NA                    | NA                    | NA                    | NA                    |
| Oil & Grease                         | NA                    | NA                    | NA                    | ND(5.0)               | ND(5.0)               | NA                    | ND(5.0)               | ND(5.2)               | NA                    |

Page 3 of 6

## NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

| Sample ID: Parameter Date Collected: | 64G-A7405<br>07/05/06 | 64G-A7420<br>07/10/06 | 64G-A7444<br>07/17/06 | 64T-A7385<br>06/26/06 | 64T-A7396<br>07/04/06 | 64T-A7417<br>07/10/06 | 64T-A7442<br>07/17/06 | A7406RCN<br>07/10/06 | A7406RTM<br>07/10/06 |
|--------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|
| Volatile Organics                    |                       |                       |                       |                       |                       |                       |                       |                      |                      |
| 1,1,1-Trichloroethane                | 0.00030 J             | NA                    | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   |
| 1,1-Dichloroethane                   | 0.00039 J             | NA                    | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   |
| Chloroethane                         | 0.00070 J             | NA                    | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   |
| Vinyl Chloride                       | 0.00023 J             | NA                    | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   |
| PCBs-Unfiltered                      |                       |                       | •                     | •                     | •                     | •                     | •                     | •                    | •                    |
| Aroclor-1260                         | NA                    | NA                   | NA                   |
| Total PCBs                           | NA                    | NA                   | NA                   |
| Semivolatile Organics                |                       |                       | •                     | •                     | •                     | •                     |                       | •                    | •                    |
| None Detected                        | NA                    | NA                   | NA                   |
| Inorganics-Unfiltered                |                       |                       |                       |                       |                       |                       |                       |                      |                      |
| Aluminum                             | NA                    | NA                   | ND(0.100)            |
| Cadmium                              | NA                    | NA                   | ND(0.00500)          |
| Calcium                              | NA                    | NA                   | 24.4                 |
| Chromium                             | NA                    | NA                   | ND(0.0100)           |
| Copper                               | NA                    | NA                   | ND(0.0200)           |
| Cyanide                              | NA                    | ND(0.0100)           | NA                   |
| Lead                                 | NA                    | NA                   | ND(0.00500)          |
| Magnesium                            | NA                    | NA                   | 8.72                 |
| Nickel                               | NA                    | NA                   | ND(0.0400)           |
| Silver                               | NA                    | NA                   | ND(0.0100)           |
| Zinc                                 | NA                    | NA                   | ND(0.0200)           |
| Inorganics-Filtered                  |                       |                       |                       |                       |                       |                       |                       |                      |                      |
| Aluminum                             | NA                    | NA                   | NA                   |
| Cadmium                              | NA                    | NA                   | NA                   |
| Chromium                             | NA                    | NA                   | NA                   |
| Copper                               | NA                    | NA                   | NA                   |
| Lead                                 | NA                    | NA                   | NA                   |
| Nickel                               | NA                    | NA                   | NA                   |
| Silver                               | NA                    | NA                   | NA                   |
| Zinc                                 | NA                    | NA                   | NA                   |
| Conventionals                        |                       |                       |                       |                       |                       |                       |                       |                      |                      |
| Biological Oxygen Demand (5-day)     | NA                    | NA                   | NA                   |
| Total Suspended Solids               | NA                    | NA                   | NA                   |
| Oil & Grease                         | NA                    | ND(5.0)               | ND(5.2)               | ND(5.0)               | ND(5.2)               | ND(5.0)               | ND(5.2)               | NA                   | NA                   |

## NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

| Sample ID: Parameter Date Collected: | A7407CCN<br>07/10/06 | A7407CDM<br>07/10/06 | A7407CTM<br>07/10/06 | A7408RCN<br>07/12/06 | A7408RTM<br>07/12/06 | A7409CCN<br>07/12/06 | A7409CDM<br>07/12/06 | A7409CTM<br>07/12/06 |
|--------------------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| Volatile Organics                    |                      |                      |                      |                      |                      |                      |                      |                      |
| 1,1,1-Trichloroethane                | NA                   |
| 1,1-Dichloroethane                   | NA                   |
| Chloroethane                         | NA                   |
| Vinyl Chloride                       | NA                   |
| PCBs-Unfiltered                      |                      | •                    |                      |                      | •                    | •                    | •                    | •                    |
| Aroclor-1260                         | NA                   |
| Total PCBs                           | NA                   |
| Semivolatile Organics                |                      |                      |                      |                      | •                    | •                    | •                    |                      |
| None Detected                        | NA                   |
| Inorganics-Unfiltered                |                      | •                    |                      |                      | •                    | •                    | •                    | •                    |
| Aluminum                             | NA                   | NA                   | ND(0.100)            | NA                   | ND(0.100)            | NA                   | NA                   | 0.222                |
| Cadmium                              | NA                   | NA                   | ND(0.00500)          | NA                   | ND(0.00500)          | NA                   | NA                   | ND(0.00500)          |
| Calcium                              | NA                   | NA                   | 93.9                 | NA                   | 26.8                 | NA                   | NA                   | 67.7                 |
| Chromium                             | NA                   | NA                   | ND(0.0100)           | NA                   | ND(0.0100)           | NA                   | NA                   | ND(0.0100)           |
| Copper                               | NA                   | NA                   | ND(0.0200)           | NA                   | ND(0.0200)           | NA                   | NA                   | ND(0.0200)           |
| Cyanide                              | 0.0500               | NA                   | NA                   | ND(0.0100)           | NA                   | 0.0258               | NA                   | NA                   |
| Lead                                 | NA                   | NA                   | ND(0.00500)          | NA                   | ND(0.00500)          | NA                   | NA                   | 0.00620              |
| Magnesium                            | NA                   | NA                   | 38.0                 | NA                   | 9.74                 | NA                   | NA                   | 26.9                 |
| Nickel                               | NA                   | NA                   | ND(0.0400)           | NA                   | ND(0.0400)           | NA                   | NA                   | ND(0.0400)           |
| Silver                               | NA                   | NA                   | ND(0.0100)           | NA                   | ND(0.0100)           | NA                   | NA                   | ND(0.0100)           |
| Zinc                                 | NA                   | NA                   | ND(0.0200)           | NA                   | ND(0.0200)           | NA                   | NA                   | 0.0589               |
| Inorganics-Filtered                  |                      |                      |                      |                      |                      |                      |                      |                      |
| Aluminum                             | NA                   | ND(0.100)            | NA                   | NA                   | NA                   | NA                   | ND(0.100)            | NA                   |
| Cadmium                              | NA                   | ND(0.00500)          | NA                   | NA                   | NA                   | NA                   | ND(0.00500)          | NA                   |
| Chromium                             | NA                   | ND(0.0100)           | NA                   | NA                   | NA                   | NA                   | ND(0.0100)           | NA                   |
| Copper                               | NA                   | ND(0.0200)           | NA                   | NA                   | NA                   | NA                   | ND(0.0200)           | NA                   |
| Lead                                 | NA                   | ND(0.00500)          | NA                   | NA                   | NA                   | NA                   | ND(0.00500)          | NA                   |
| Nickel                               | NA                   | ND(0.0400)           | NA                   | NA                   | NA                   | NA                   | ND(0.0400)           | NA                   |
| Silver                               | NA                   | ND(0.0100)           | NA                   | NA                   | NA                   | NA                   | ND(0.0100)           | NA                   |
| Zinc                                 | NA                   | ND(0.0200)           | NA                   | NA                   | NA                   | NA                   | 0.0499               | NA                   |
| Conventionals                        |                      |                      |                      |                      |                      |                      |                      |                      |
| Biological Oxygen Demand (5-day)     | NA                   |
| Total Suspended Solids               | NA                   |
| Oil & Grease                         | NA                   |

#### NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD. MASSACHUSETTS

(Results are presented in parts per million, ppm)

| Sample ID:                       |            | A7410RTM    | A7411CCN | A7411CDM    | A7411CTM    | JUL06WK1    | JUL06WK2    | JUL06WK4    |
|----------------------------------|------------|-------------|----------|-------------|-------------|-------------|-------------|-------------|
| Parameter Date Collected:        | 07/14/06   | 07/14/06    | 07/14/06 | 07/14/06    | 07/14/06    | 06/27/06    | 07/05/06    | 07/18/06    |
| Volatile Organics                |            |             |          |             |             |             |             |             |
| 1,1,1-Trichloroethane            | NA         | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| 1,1-Dichloroethane               | NA         | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| Chloroethane                     | NA         | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| Vinyl Chloride                   | NA         | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| PCBs-Unfiltered                  |            |             |          |             |             |             |             |             |
| Aroclor-1260                     | NA         | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| Total PCBs                       | NA         | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| Semivolatile Organics            |            |             |          |             |             |             |             |             |
| None Detected                    | NA         | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| Inorganics-Unfiltered            |            |             |          |             |             |             |             |             |
| Aluminum                         | NA         | 0.123       | NA       | NA          | ND(0.100)   | NA          | NA          | NA          |
| Cadmium                          | NA         | ND(0.00500) | NA       | NA          | ND(0.00500) | NA          | NA          | NA          |
| Calcium                          | NA         | 15.8        | NA       | NA          | 59.8        | NA          | NA          | NA          |
| Chromium                         | NA         | ND(0.0100)  | NA       | NA          | ND(0.0100)  | NA          | NA          | NA          |
| Copper                           | NA         | ND(0.0200)  | NA       | NA          | ND(0.0200)  | ND(0.0200)  | ND(0.0200)  | ND(0.0200)  |
| Cyanide                          | ND(0.0100) | NA          | 0.0314   | NA          | NA          | NA          | NA          | NA          |
| Lead                             | NA         | ND(0.00500) | NA       | NA          | ND(0.00500) | ND(0.00500) | ND(0.00500) | ND(0.00500) |
| Magnesium                        | NA         | 5.46        | NA       | NA          | 23.5        | NA          | NA          | NA          |
| Nickel                           | NA         | ND(0.0400)  | NA       | NA          | ND(0.0400)  | NA          | NA          | NA          |
| Silver                           | NA         | ND(0.0100)  | NA       | NA          | ND(0.0100)  | NA          | NA          | NA          |
| Zinc                             | NA         | ND(0.0200)  | NA       | NA          | 0.0294      | 0.0205      | ND(0.0200)  | ND(0.0200)  |
| Inorganics-Filtered              |            |             |          |             |             |             |             |             |
| Aluminum                         | NA         | NA          | NA       | ND(0.100)   | NA          | NA          | NA          | NA          |
| Cadmium                          | NA         | NA          | NA       | ND(0.00500) | NA          | NA          | NA          | NA          |
| Chromium                         | NA         | NA          | NA       | ND(0.0100)  | NA          | NA          | NA          | NA          |
| Copper                           | NA         | NA          | NA       | ND(0.0200)  | NA          | NA          | NA          | NA          |
| Lead                             | NA         | NA          | NA       | ND(0.00500) | NA          | NA          | NA          | NA          |
| Nickel                           | NA         | NA          | NA       | ND(0.0400)  | NA          | NA          | NA          | NA          |
| Silver                           | NA         | NA          | NA       | ND(0.0100)  | NA          | NA          | NA          | NA          |
| Zinc                             | NA         | NA          | NA       | 0.0364      | NA          | NA          | NA          | NA          |
| Conventionals                    |            |             |          |             |             |             |             |             |
| Biological Oxygen Demand (5-day) | NA         | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| Total Suspended Solids           | NA         | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| Oil & Grease                     | NA         | NA          | NA       | NA          | NA          | NA          | NA          | NA          |

#### Notes:

1. Samples were collected by General Electric Company and submitted to Accutest Laboratories, Columbia Analytical Services, Inc., and SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, cyanide, TSS, BOD, oil & grease, and metals (filtered and unfiltered).

Page 6 of 6

- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. With the exception of inorganics and conventional parameters, only those constituents detected in one or more samples are summarized.
- 5. -- Indicates that all constituents for the parameter group were not detected.

#### Data Qualifiers:

#### Organics

J - Indicates an estimated value less than the practical quantitation limit (PQL).

# Attachment B

NPDES Discharge Monitoring Reports
June 2006



FACILITY

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WODDLAWN AVENUE

PITTSFIELD

MA 01201

LOCATION PITTSFIELD NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

005 DISCHARGE NUMBER

MAJOR

(SUBR W ) F - FINAL

WATERS TO HOUSATONIC RIVER

\*\*\* NO DISCHARGE ! | \*\*\* NOTE: Read Instructions before completing this form.

Form Approved.

OMB No. 2040-0004

MONITORING PERIOD GENERAL ELECTRIC COMPANY MO DAY YEAR MO DAY FROM MA 01201 01 TO 06

| PARAMETER                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QUAN                                                                                                                           | TITY OR LOADING                                                                                                                                    |                                                                                  | Q            | UALITY OR CONCE                 | ENTRATION   |              | NO. | FREQUENCY<br>OF | SAMPLE |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------|---------------------------------|-------------|--------------|-----|-----------------|--------|
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVERAGE                                                                                                                        | MAXIMUM                                                                                                                                            | UNITS                                                                            | MINIMUM      | AVERAGE                         | MAXIMUM     | UNITS        | EX  | ANALYSIS        | 11172  |
| BCD, S-DAY<br>(EO DEG. C)                         | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                              | 0                                                                                                                                                  | ( 26)                                                                            | ******       | 传播棒棒棒                           | 茶种养养养       |              | 0   | 01/30           | СР     |
| 00310 T O C<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90<br>MD AVG                                                                                                                   | 135<br>DAILY MX                                                                                                                                    |                                                                                  | *****        | *****                           | *****       | ****         |     | ONCE/<br>MONTH  | COMPO  |
| SOLIDS, TOTAL<br>SUSPENDED                        | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                                                                                                                              | 0                                                                                                                                                  | ( 26)<br>LBS/DY                                                                  | ***          | 计算标准标件                          | *****       |              | 0   | 01/30           | CP     |
| 00530 T 0 0<br>BEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 188<br>MD AVG                                                                                                                  | 270<br>DAILY MX                                                                                                                                    |                                                                                  | *****        | 李宗宗奉命                           | 拉拉卡拉拉拉      | ****         |     | ONCE/<br>MONTI  | COMPO  |
| OIL % GREASE                                      | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *****                                                                                                                          | 23.3                                                                                                                                               | ( 26)<br>LBS/DY                                                                  | 存在本本本本       | 상상상상상                           | 5.2         | ( 19<br>MG/L | 0   | 01/07           | GR     |
| 00556 T 0 0<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                            | 135<br>DAILY MX                                                                                                                                    |                                                                                  | <b>经长长条款</b> | 朴长安长春长                          | DAILY MO    |              |     | MEEKT,          | 'GRAB  |
| POLYCHLORINATED<br>BIPHENYLS (PCBS)               | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00002                                                                                                                        | 0.00006                                                                                                                                            | ( 26)<br>LBS/DY                                                                  | ***          | ***                             | ***         |              | 0   | 01/07           | CP     |
| 39516 T 0 0<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.01<br>MD AVG                                                                                                                 | DAILY MX                                                                                                                                           | LBS/D                                                                            | · 特殊特殊特.     | ** 各条条件条                        | 特特特特特基      | <b>松林松林</b>  |     | MEEKL.          | YCOMPO |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLAN        | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.228                                                                                                                          | 0.409                                                                                                                                              | ((,03)<br>MGD                                                                    | <b>长长长长长</b> | ***                             | <b>兴华兴兴</b> |              | 0   | 99/99           | RC     |
| SOOSO T O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.09<br>MD AVG                                                                                                                 | 2.09 TAILY MX                                                                                                                                      | MGD                                                                              | 长茶件茶茶        | ****                            | <b>长谷谷谷</b> | <b>安安安安</b>  |     | CONTI           | IRCORD |
| Real States to                                    | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                |                                                                                                                                                    |                                                                                  |              |                                 | •           |              |     |                 |        |
|                                                   | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                |                                                                                                                                                    |                                                                                  |              |                                 |             |              |     |                 |        |
|                                                   | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                |                                                                                                                                                    |                                                                                  |              | 20 1 1                          |             |              |     |                 |        |
|                                                   | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                |                                                                                                                                                    |                                                                                  |              |                                 |             |              |     |                 |        |
| NAME/TITLE PRINCIPAL EXECUTIVE                    | PRINCIPAL EXECUTIVE OFFICER  I certify under penalty of law that this document and all attachments we prepared under my direction or supervision in accordance with a system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                |                                                                                                                                                    |                                                                                  |              |                                 | TELEPHON    | IE.          | DA  | TE              |        |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | on Prog. to assure submitted or those submitted to assure the submitted to assure the submitted to assure the assure | e that qualified personnel pr<br>ed. Based on my inquiry of t<br>persons directly responsible<br>ed is, to the best of my know | operly gather and evaluate t<br>he person or persons who ma<br>for gathering the informati-<br>ledge and belief, true, accura-                     | he information<br>anage the system,<br>on, the information<br>ate, and complete. |              | URE OF PRINCIPAL E              | EXECUTIVE   | 3 448-59     | 02  | 2006            | 7 24   |
| TYPED OR PRINTED                                  | TYPED OR PRINTED Include                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                | ware that there are significant penalties for submitting false information,<br>ng the possibility of fine and imprisonment for knowing violations. |                                                                                  |              | OFFICER OR AUTHORIZED AGENT ARE |             |              | R   | YEAR N          | O DAY  |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

BEE PAGE 8 + 9 OF PERMIT FOR SAMPLING REQUIREMENTS.

SEE DMR(S) 064G + 064T FOR FURTHER PARAMETERS.

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN. MEFFREY G. RUEBESAM ...

- ZOQ ROODLAWN AVENUE

PATTERIELD GINERAL ELECTRIC COMPANY

\_OCATION PETTELD

**-ACILITY** 

MA 01201

MA 01201

FROM

PERMIT NUMBER

DISCHARGE NUMBER

054 G

MONITORING PERIOD YEAR MO DAY YEAR MO DAY 0.6

MAJOR (SUBR W.) F - FINAL:

GROUNDWATER TREATMENT (005)

\*\*\* NO DISCHARGE | | \*\*\*

NOTE: Read Instructions before completing this form.

| PARAMETER CAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                    | TY OR LOADING                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | QUALITY OR CONC  | ENTRATION      | 4            | NO.    | FREQUENCY | SAMPLE |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------|----------------|--------------|--------|-----------|--------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | AVERAGE                                                            | MAXIMUM                                 | UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MINIMUM        | AVERAGE          | MAXIMUM        | UNITS        | EX     | ANALYSIS  | TYPE   |
| K Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SAMPLE<br>MEASUREMENT | 於於於於於於                                                             | 长井谷谷谷县                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.4            | 特拉安特特            | 7.6            | SU           | 0      | 99/99     | RCDR   |
| MODO T O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PERMIT<br>REQUIREMENT | 长松谷谷长长                                                             | 李林春春春春                                  | 4. 经存款的 4. 经济的 4. 是济的 | 6.0<br>MINIMUM | 体操标准条件           | 9.0<br>MAXIMU  |              |        | MEEKL     | RANG-  |
| SE NEUTRALS & ACI<br>METHOD (25) TOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SAMPLE<br>MEASUREMENT | 特拉特特特技                                                             | 长春茶茶杯茶                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 华林长长长春         | 0                | 0              | MG/L         | 0      | 01/90     | GR     |
| OBO T O O<br>E CCHMENTS BELOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PERMIT<br>REQUIREMENT | 茶茶粉香茶茶                                                             | 特种特殊特                                   | 水水水水                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 特特格特拉特         | REPORT<br>MD AVG | REPOR<br>DAILY | T            |        | QTRLY     | GRAB   |
| LATILE COMPOUNDS,<br>C/MS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SAMPLE<br>MEASUREMENT | 各套套套套                                                              | 特殊条件条件                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>华茶杯杯茶</b> 茶 | 0                | 0              | ( 19<br>MG/L | 0      | 01/90     | GR     |
| TTR T 0 0<br>E COMMENTS BELOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PERMIT<br>REQUIREMENT | 各种按按价类                                                             | <b>新教育教育教</b>                           | 安安安安<br>安安安安                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 安装整套长枪         | REPORT<br>MD AVG | REPOR<br>DAILY | T            |        | GTRLY     | GRAB   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLE<br>MEASUREMENT |                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                |              |        |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PERMIT<br>REQUIREMENT |                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                |              |        |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLE<br>MEASUREMENT |                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                |              |        |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PERMIT<br>REQUIREMENT |                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                |              |        |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SAMPLE<br>MEASUREMENT |                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                |              |        |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PERMIT<br>REQUIREMENT |                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                |              | 7      |           |        |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SAMPLE<br>MEASUREMENT |                                                                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                |              |        |           |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PERMIT<br>REQUIREMENT |                                                                    | 150 51                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  |                |              |        |           |        |
| ME/TITLE PRINCIPAL EXECUTIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | y under penalty of law that this document and all attachments were |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                  | TELEPHOI       | NE           | D/     | TE        |        |
| Michael T. Carroll  Mgr. Pittsfield Remediation Prog.  Mgr. by the person of persons who manage the system or those persons directly responsible for gathering the information, the information about the information, the information or the person or persons who manage the system or those persons directly responsible for gathering the information, the information is submitted is, to the best of my knowledge and belief, true, accurate, and complete the person or persons who manage the system of the person or persons who manage the system or those persons directly responsible for gathering the information, the information or supervision in accordance with a system design to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information or supervision in accordance with a system design to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information or supervision in accordance with a system design to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system. |                       | Mus                                                                | had T. C                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 413 448-59     |                  |                | 7 24         |        |           |        |
| TYPED OR PRINTED  I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                                                                    | stion, SIGNATURE OF PRINCIPAL EXECUTIVE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | AREA NUMBE       | R              | YEAR N       | IO DAY |           |        |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SHE COMMENTS FOR COS1. SEE PAGE 8 + 9 OF PERMIT NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (INPUES)
DISCHARGE MONITORING REPORT (DMR)

OMB No. 2040-0004

GENERAL ELECTRIC CORPORATION ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WODDLAWN AVENUE

PITTSFIELD

FACILITY

MA 01201

GENERAL ELECTRIC COMPANY

LOCATION PITTSFIELD

MA 01201

MA0003891 PERMIT NUMBER

064 T DISCHARGE NUMBER

MAJOR (SUBR W )

F - FINAL WASTEWATER TREATMENT (005)

\*\*\* NO DISCHARGE NOTE: Read Instructions before completing this form

MONITORING PERIOD MO DAY YEAR MO DAY YEAR 06 FROM

| PARAMETER                                       |                                                  | QUANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TTY OR LOADING |             | a                           | UALITY OR CONC   | ENTRATION         |             | NO.  | FREQUENCY<br>OF | SAMPLE     |
|-------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|-----------------------------|------------------|-------------------|-------------|------|-----------------|------------|
|                                                 |                                                  | AVERAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAXIMUM        | UNITS       | MINIMUM                     | AVERAGE          | MAXIMUM           | UNITS       | EX   | ANALYSIS        | ITPE       |
| PH                                              | SAMPLE<br>MEASUREMENT                            | 计计算计计                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ****           |             | 6.5                         | 经本本本本本           | 8.3               | ( 12)<br>SU | 0    | 99/99           | RCDR       |
| 00400 T O O<br>SEE COMMENTS BELLOW              | PERMIT<br>REQUIREMENT                            | 华林春春春春                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***            | ****        | 6.0<br>MINIMUM              | ***              | 9.0<br>MAXIMUM    | SU          |      | WEEKL           | RANG-      |
| DIBENZOFURAN                                    | SAMPLE<br>MEASUREMENT                            | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 林林林林林林         |             | ***                         | NODI [6]         | NODI [6]          | ( 22)       |      |                 |            |
| 81302 T O O<br>SEE COMMENTS BELOW               | PERMIT<br>REQUIREMENT                            | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 在非法共享等         | ***         | ****                        | REPORT<br>MO AVG | REPORT<br>DAILY M | PPT         |      | ONCE/<br>MONTH  | COMPO<br>I |
|                                                 | SAMPLE<br>MEASUREMENT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                             |                  |                   |             |      |                 |            |
|                                                 | PERMIT<br>REQUIREMENT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                             |                  |                   |             |      |                 |            |
|                                                 | SAMPLE<br>MEASUREMENT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                             |                  |                   |             |      |                 |            |
|                                                 | PERMIT<br>REQUIREMENT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                             |                  |                   |             |      |                 |            |
|                                                 | SAMPLE<br>MEASUREMENT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                             |                  |                   |             |      |                 |            |
|                                                 | PERMIT<br>REQUIREMENT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                             |                  |                   |             |      |                 |            |
|                                                 | SAMPLE<br>MEASUREMENT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                             |                  |                   |             |      |                 |            |
|                                                 | PERMIT<br>REQUIREMENT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                             |                  |                   |             |      |                 |            |
|                                                 | SAMPLE<br>MEASUREMENT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                             |                  |                   |             |      |                 |            |
| 200                                             | PERMIT<br>REQUIREMENT                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                |             |                             |                  |                   |             |      |                 |            |
| NAME/TITLE PRINCIPAL EXECUTIVE                  |                                                  | rtify under penalty of law that this document and all attachments were<br>pared under my direction or supervision in accordance with a system designed                                                                                                                                                                                                                                                                                                                                                    |                |             |                             |                  | TELEPHON          | VE.         | D/   | ATE             |            |
| Michael T. Carroll<br>Mgr. Pittsfield Remediati | on Prog. to assure submittee or those properties | prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, uccurate, and complete. I am aware that there are significant penalties for submitting false information, |                | W. V. Cawel |                             | EXECUTIVE 41     | 3 448-59          | 02          | 2006 | 7 24            |            |
| TYPED OR PRINTED                                | including                                        | I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.  (IOLATIONS (Reference all attachments here)                                                                                                                                                                                                                                                                                                 |                |             | OFFICER OR AUTHORIZED AGENT |                  |                   | A NUMBER    | R    | YEAR N          | 10 DAY     |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE COMMENTS FOR 0051. SEE PAGE 8 + 9 OF PERMIT. NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

OMB No. 2040-0004

SEMERAL ELECTRIC CORPORATION NAME ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

MA 01201 PITTSFIELD GENERAL ELECTRIC C

LOCATION PITTSFIELD

FACILITY

MA0003891 PERMIT NUMBER DISCHARGE NUMBER

MAJOR (SUBR W ) F - FINAL

DISCHARGE TO HOUSATONIC RIVER

\*\*\*

|         | 01201 |      |      | M  | ONITO | RING | PERIO | )  |     | DIS  | CHA    | RGE     | TO F    | HOUS  |
|---------|-------|------|------|----|-------|------|-------|----|-----|------|--------|---------|---------|-------|
| COMPANY |       |      | YEAR | MO | DAY   |      | YEAR  | MO | DAY |      |        |         |         |       |
| MA      | 01201 | FROM | 06   | 06 | 01    | то   | 06    | 06 | 30  |      |        |         | CHAP    |       |
| EHSRE   |       |      |      |    |       | •    |       |    |     | NOTE | :: Rea | d Instr | uctions | befor |

| PARAMETER                                        |                                                       | QUANT                                                                                                                                                                 | TITY OR LOADING                                                                                                                |                                                                                   | C              | QUALITY OR CONC   | ENTRATION                          |          | NO.             | FREQUENCY<br>OF | SAMIFEE                     |
|--------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------|-------------------|------------------------------------|----------|-----------------|-----------------|-----------------------------|
|                                                  |                                                       | AVERAGE                                                                                                                                                               | MAXIMUM                                                                                                                        | UNITS                                                                             | мимим          | AVERAGE           | MAXIMUM                            | UNITS    | EX              | ANALYSIS        | TYPE                        |
| TEMPERATURE, WATER DEG FAHRENHEIT                | SAMPLE<br>MEASUREMENT                                 | 华林林林林                                                                                                                                                                 | 长谷谷水谷林                                                                                                                         |                                                                                   | 茶妆妆妆茶          |                   |                                    | ( 15     |                 | ;               |                             |
| DOOLL W C C<br>SEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT                                 | *****                                                                                                                                                                 | 存存存款存存                                                                                                                         | ****                                                                              | 林林林林林林         | 70<br>MD AVG      | 75<br>DAILY MX                     | DEG. I   |                 | ONCE/<br>MONTH  | GRAB                        |
| ) <del>-</del>                                   | SAMPLE<br>MEASUREMENT                                 | ****                                                                                                                                                                  | 本字字字字                                                                                                                          |                                                                                   |                | 计分音音音             |                                    | ( 12     |                 |                 |                             |
| 00400 W O C<br>SEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT                                 | 非非体验特殊                                                                                                                                                                | ***                                                                                                                            | ***                                                                               | 5.0<br>MINIMUM | 茶茶茶茶茶             | 9.0<br>MAXIMUM                     | SU       |                 | WEEKL'          | RANG-                       |
| GLYCHLORINATED<br>BIPHENYLS (PCBS)               | SAMPLE<br>MEASUREMENT                                 | ***                                                                                                                                                                   | ****                                                                                                                           |                                                                                   | ****           |                   |                                    | ( 21     |                 |                 |                             |
| 39516 W O O<br>BEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT                                 | ***                                                                                                                                                                   | 计计计计计计                                                                                                                         | ***                                                                               | 松林林林林          | REPORT<br>MO AVO  | REPORT<br>DAILY M                  | PPB      |                 | GTRLY           | GRAB                        |
| FLOW: IN CONDUIT OR<br>THRU TREATMENT PLAN       | SAMPLE<br>MEASUREMENT                                 |                                                                                                                                                                       |                                                                                                                                | ( 03)                                                                             | ****           | 传传桥桥桥             |                                    |          | No. 10 100      |                 | 12.00.10.1.00.00.00.00.00   |
| 50050 W . O O<br>SEE COMMENTS BELOW              | PERMIT<br>REQUIREMENT                                 | REPORT<br>MD AVG                                                                                                                                                      | REPORT<br>DAILY MX                                                                                                             | MGD                                                                               | 安安特特安安         | . 计传统转移分          | 各种各种各种                             | ***      |                 | ONCE/           | CALCT                       |
|                                                  | SAMPLE<br>MEASUREMENT                                 |                                                                                                                                                                       |                                                                                                                                |                                                                                   |                |                   |                                    |          | 7.200.000       | 7,127,57,       | 2000,000,000                |
| FI                                               | PERMIT<br>REQUIREMENT                                 |                                                                                                                                                                       |                                                                                                                                |                                                                                   |                |                   |                                    |          |                 | 170             |                             |
|                                                  | SAMPLE<br>MEASUREMENT                                 |                                                                                                                                                                       | 1.                                                                                                                             |                                                                                   |                |                   |                                    |          | Version         |                 | Company of the Com-         |
|                                                  | PERMIT<br>REQUIREMENT                                 |                                                                                                                                                                       |                                                                                                                                |                                                                                   |                |                   |                                    |          |                 |                 |                             |
| \$1 \(\frac{1}{2}\)                              | SAMPLE<br>MEASUREMENT                                 |                                                                                                                                                                       |                                                                                                                                |                                                                                   | ,              |                   |                                    |          | Control and the |                 | The Designation of the Land |
|                                                  | PERMIT<br>REQUIREMENT                                 |                                                                                                                                                                       | ger se                                                                                                                         |                                                                                   |                |                   |                                    |          |                 |                 |                             |
| NAME/TITLE PRINCIPAL EXECUTIVE                   | OFFICER I certify                                     | under penalty of law that the<br>d under my direction or supe                                                                                                         | is document and all attache                                                                                                    | nents were<br>a system designed                                                   |                |                   | 2010/10/10 1011/10/9/2010 10/20/20 | TELEPHON | E               | DA              | TE                          |
| Michael T. Carroll<br>Mgr. Pittsfield Remediatio | on Prog. to assur<br>submitte<br>or those<br>submitte | e that qualified personnel pro<br>ed. Based on my inquiry of the<br>persons directly responsible<br>ed is, to the best of my knowle<br>are that there are significant | operly gather and evaluate to<br>be person or persons who no<br>for gathering the informati-<br>edge and belief, true, accura- | the information<br>anage the system,<br>on, the information<br>ste, and complete. | . M.           | T. Carro          | 410                                | 3 448-59 | 02              | 2006            | , ay                        |
| TYPED OR PRINTED OMMENTS AND EXPLANATION OF      | includin                                              | g the possibility of fine and in                                                                                                                                      | mprisonment for knowing v                                                                                                      | iolations.                                                                        |                | ICER OR AUTHORIZE |                                    | A NUMBER | 3               | YEAR M          | O DAY                       |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE AT MANHOLE PRIOR TO CITY STORM DRAIN.

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

GENERAL ELECTRIC COMPANY

LOCATION PITTSFIELD

FACILITY

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

009 A DISCHARGE NUMBER

MAJOR (SUBR W )

F - FINAL 09A SAMPLE POINT BEFORE 009

OMB No. 2040-0004

\*\*\* NO DISCHARGE NOTE: Read Instructions before completing this form.

MONITORING PERIOD DAY YEAR MO DAY 01 TO FROM 06 30 06 06 0.6

| PARAMETER CARE                                    |                                          |                                                                                                                             | ITITY OR LOADING                                                                                                                                                                                          |                                                                                    | Q           | UALITY OR CONCE    | NTRATION  |              | NO. | FREQUENCY | SAMPLE |
|---------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------|--------------------|-----------|--------------|-----|-----------|--------|
|                                                   | $\times$                                 | AVERAGE                                                                                                                     | MAXIMUM                                                                                                                                                                                                   | UNITS                                                                              | MINIMUM     | AVERAGE            | MAXIMUM   | UNITS        | EX  | ANALYSIS  | TYPE   |
| BOD, 5-DAY<br>(20 DEG. C)                         | SAMPLE<br>MEASUREMENT                    |                                                                                                                             |                                                                                                                                                                                                           | ( 25)                                                                              | <b>经验检验</b> | 安安安安安安             | 林林林林林     | 8            |     |           |        |
| OCBIO V O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                    | 106<br>MD AVG                                                                                                               | DAILY MX                                                                                                                                                                                                  | LBS/DY                                                                             | ***         | ****               | ****      | ***          |     | WEEKL)    | COMPO  |
| SOLIDS, TOTAL<br>SUSPENDED                        | SAMPLE<br>MEASUREMENT                    |                                                                                                                             | -                                                                                                                                                                                                         | ( 26)                                                                              | ****        | ***                | ***       | \$           |     |           |        |
| 00530 V O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                    | 213<br>MD AVG                                                                                                               | B76<br>DAILY MX                                                                                                                                                                                           | LBS/DY                                                                             | ***         | ***                | ****      | ***          |     | WEEKL     | COMPO  |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLAN        | SAMPLE<br>MEASUREMENT                    | * * * * * * * * * * * * * * * * * * * *                                                                                     |                                                                                                                                                                                                           | ( 03)                                                                              | ***         | ***                | ***       | *            |     |           |        |
| 50050 V 0 0<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                    | REPORT<br>MD AVG                                                                                                            | REPORT<br>DAILY MX                                                                                                                                                                                        | MGD                                                                                | ***         | <b>会长长谷谷</b>       | 长谷谷谷谷谷    | 安安安安<br>安安安安 |     | CONTI     | RCORD  |
|                                                   | SAMPLE<br>MEASUREMENT                    |                                                                                                                             |                                                                                                                                                                                                           |                                                                                    |             |                    |           |              |     |           |        |
|                                                   | PERMIT<br>REQUIREMENT                    |                                                                                                                             |                                                                                                                                                                                                           |                                                                                    |             | <b>新教</b>          |           |              |     |           |        |
|                                                   | SAMPLE<br>MEASUREMENT                    |                                                                                                                             |                                                                                                                                                                                                           |                                                                                    |             | 4                  |           |              |     |           |        |
| £                                                 | PERMIT<br>REQUIREMENT                    |                                                                                                                             |                                                                                                                                                                                                           |                                                                                    |             |                    |           |              |     |           |        |
| 7.                                                | SAMPLE<br>MEASUREMENT                    |                                                                                                                             |                                                                                                                                                                                                           | 10                                                                                 | <u> </u>    |                    |           |              |     |           |        |
|                                                   | PERMIT<br>REQUIREMENT                    |                                                                                                                             |                                                                                                                                                                                                           |                                                                                    |             |                    |           |              |     |           |        |
|                                                   | SAMPLE<br>MEASUREMENT                    |                                                                                                                             |                                                                                                                                                                                                           |                                                                                    |             |                    |           |              |     |           |        |
|                                                   | PERMIT<br>REQUIREMENT                    |                                                                                                                             |                                                                                                                                                                                                           |                                                                                    |             |                    |           |              |     |           |        |
| NAME/TITLE PRINCIPAL EXECUTIVE                    |                                          |                                                                                                                             | this document and all attachn<br>spervision in accordance with                                                                                                                                            |                                                                                    |             |                    |           | TELEPHON     | VE. | D/        | ATE    |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | on Prog. to assuse submit or thos submit | re that qualified personnel<br>ted. Based on my inquiry of<br>e persons directly responsit<br>ted is, to the best of my kno | pervision in accordance with<br>properly gather and evaluate t<br>f the person or persons who m<br>ble for gathering the informati<br>wiedge and belief, true, accur-<br>unt penalties for submitting fal | the information<br>anage the system,<br>ion, the information<br>ate, and complete. | -           | 7. Caro            | XECUTIVE  | 3 448-59     | 02  | 2006      | 7 24   |
| TYPED OR PRINTED                                  | includi                                  | ng the possibility of fine and                                                                                              | d imprisonment for knowing v                                                                                                                                                                              |                                                                                    | OFF         | ICER OR AUTHORIZED | AGENT ARI | NUMBER       | R   | YEAR N    | O DAY  |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE DMR 0091. SEE PAGE 11 OF PERMIT. SAMPLE AT 09A.

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

GENERAL ELECTRIC COMPANY

LOCATION

**FACILITY** 

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

009 B DISCHARGE NUMBER

(SUBR W )

MAJOR

F - FINAL 09B SAMPLE POINT PRIOR TO 009

OMB No. 2040-0004

\*\*\* NO DISCHARGE ! | \*\*\*

MONITORING PERIOD 
 YEAR
 MO
 DAY
 YEAR
 MO
 DAY

 0.6
 0.6
 0.1
 TO
 0.6
 0.6
 30

| PARAMETER                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        | ITITY OR LOADING                                                                                                                       |                                                                                   | QI                          | JALITY OR CONCE | NTRATION     |             | NO. | FREQUENCY | SAMPLE<br>TYPE |
|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------|-----------------|--------------|-------------|-----|-----------|----------------|
|                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVERAGE                                                                                                                | MAXIMUM                                                                                                                                | UNITS                                                                             | MINIMUM                     | AVERAGE         | MAXIMUM      | UNITS       | EA  | ANALYSIS  | TIPE           |
| CD, S-DAY<br>(20 DEG. C)                        | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                    | 10.1                                                                                                                                   | ( 26)                                                                             | ****                        | 保保保保保           | 转移转移转移       | 8           | 0   | 01/07     | СР             |
| 0310 V 0 0                                      | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 106<br>MD AVG                                                                                                          | DAILY MX                                                                                                                               |                                                                                   | 李爷林林爷                       | 华春特特格           | <b>林林林林林</b> | ***         |     | WEEKLY    | COMPO          |
| OLIDS, TOTAL<br>USPENDED                        | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32.6                                                                                                                   | 128.0                                                                                                                                  | ( 26)<br>LBS/DY                                                                   | 特特特特特特                      | 茶茶茶茶茶           | <b>特特特特特</b> |             | 0   | 01/07     | СР             |
| 0530 V O O<br>BE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 213<br>MD AVG                                                                                                          | B76<br>DAILY MX                                                                                                                        |                                                                                   | 特格特殊特殊                      | 经营业等等           | <b>长爷长长爷</b> | *****       |     | WEEKLY    | COMPO          |
| LOW, IN CONDUIT OR<br>HRU TREATMENT PLAN        | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.051                                                                                                                  | 0.247                                                                                                                                  | ( 03)                                                                             | ***                         | 安长谷林长长          | ***          | 8           | 0   | 99/99     | RC             |
| SEE COMMENTS BELOW                              | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REPORT<br>MO AVG                                                                                                       | REPORT<br>DAILY MX                                                                                                                     |                                                                                   | 转旋棒棒长椅                      | 教育教育教           | ***          | <b>松松松松</b> |     | CONTI     | IRCORD         |
| 1 1 No. 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1   | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                        |                                                                                   | 7/                          |                 |              |             |     |           |                |
|                                                 | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                        |                                                                                   |                             |                 |              |             |     |           |                |
|                                                 | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                        |                                                                                   |                             |                 |              |             |     |           |                |
|                                                 | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                        |                                                                                   |                             |                 |              |             |     |           |                |
|                                                 | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                        |                                                                                   |                             |                 |              |             |     |           |                |
|                                                 | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                        |                                                                                   |                             |                 |              |             |     |           |                |
|                                                 | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                        |                                                                                   |                             |                 |              |             |     |           |                |
|                                                 | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                        |                                                                                   |                             |                 |              |             |     |           |                |
| IAME/TITLE PRINCIPAL EXECUTIVE                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                        | this document and all attachn<br>pervision in accordance with                                                                          |                                                                                   |                             |                 |              | TELEPHON    | 1E  | D/        | ATE            |
| Michael T. Carroll  Mgr. Pittsfield Remediation | on Prog. to assure submitted or those submitted submitted to the submitted submitted to assure submitted t | e that qualified personnel<br>ed. Based on my inquiry of<br>persons directly responsil<br>ed is, to the best of my kno | properly gather and evaluate t<br>the person or persons who make<br>the for gathering the informati<br>wledge and belief, true, accura | the information<br>anage the system,<br>on, the information<br>ate, and complete. |                             | T- Carrol       | 41           | 3 448-59    | 02  | 2006      | 7 24           |
| TYPED OR PRINTED                                | I am av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rare that there are significantly and the possibility of fine and                                                      | int penalties for submitting ful<br>d imprisonment for knowing v<br>tachments here)                                                    | se information,<br>iolations.                                                     | OFFICER OR AUTHORIZED AGENT |                 |              | A NUMBER    | R . | YEAR M    | 10 DAY         |

SEE PAGE 11 OF PERMIT. SEE DMR 0091; SAMPLE AT 098.

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

009 1 DISCHARGE NUMBER

MAJOR (SUBR W ) F - FINAL

PROCESSES TO UNKAMET BROOK

\*\*\* NO DISCHARGE | | \*\*\* NOTE: Read Instructions before completing this form.

OMB No. 2040-0004

|          | bliletiern         |         | DISOI | 3 4  |      | M  | ONITO | RING | PERIOR     | )  |      |
|----------|--------------------|---------|-------|------|------|----|-------|------|------------|----|------|
| FACILITY | GENERAL ELECTRIC ( | COMPANY |       |      | YEAR | MO | DAY   |      | YEAR       | MO | DAY  |
| LOCATION | PITTSFIELD         | MA      | 01201 | FROM | 06   | 06 | 01    | то   | YEAR<br>U6 | 08 | - 30 |
| ATTAL    | MICHAEL T CARROLL  | . FHS&F |       |      |      |    |       |      |            |    |      |

| PARAMETER                                         |                       | QUAN'                                                                                         | TITY OR LOADING                                                                                                                                                         | ,                                                              | QI             | UALITY OR CONCE  | ENTRATION         |              | NO.   | FREQUENCY | SAMPLE |
|---------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------|------------------|-------------------|--------------|-------|-----------|--------|
|                                                   |                       | AVERAGE                                                                                       | MAXIMUM                                                                                                                                                                 | UNITS                                                          | мимим          | AVERAGE          | MAXIMUM           | UNITS        | EX    | ANALYSIS  | TYPE   |
| ROD, S-DAY<br>(20 DEG. C)                         | SAMPLE<br>MEASUREMENT | 2.5                                                                                           | 10.1                                                                                                                                                                    | ( 26)                                                          | *****          | 计算标准操作           | ***               |              | 0     | 01/07     | СР     |
| OC310 V O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | 106<br>MD AVG                                                                                 | 438<br>DAILY MX                                                                                                                                                         | LBS/DY                                                         | *****          | ****             | 林林林林林             | <b>松松林松</b>  |       | MEEKLY    | COMPO  |
| P la                                              | SAMPLE<br>MEASUREMENT | *****                                                                                         | 本本本本本本                                                                                                                                                                  |                                                                | 7.0            | 告诉你你我            | 7.8               | ( 12)        | 0     | 01/07     | GR     |
| 00400 V 0 0<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | 并长长谷谷谷                                                                                        | *****                                                                                                                                                                   | 条款条件<br>条款条件                                                   | 6.0<br>MINIMUM | ***              | 9.0<br>MAXIMUM    | SU           |       | WEEKL     | YRANG- |
| SOLIDS, TOTAL<br>SUSPENDED                        | SAMPLE<br>MEASUREMENT | 32.6                                                                                          | 128.0                                                                                                                                                                   | ( 26)                                                          | ***            | ***              | ***               | K-           | 0     | 01/07     | СР     |
| 00530 V 0 0<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | MD AVG                                                                                        | B76<br>DAILY MX                                                                                                                                                         | LBS/DY                                                         | ****           | 长桥桥桥桥            | ***               | ***          |       | MEEKL     | YCOMPO |
| DIL & GREASE                                      | SAMPLE<br>MEASUREMENT | ***                                                                                           | 0.7                                                                                                                                                                     | ( 26)                                                          | ***            | 茶粉粉粉粉            | 5.2               | ( 19         | 0     | 01/07     | GR     |
| 00556 V 0 0<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | 李林林林林                                                                                         | I BC/DV                                                                                                                                                                 | ****                                                           | *****          | DAILY M          | MG/L              |              | WEEKL | GRAB      |        |
| POLYCHLORINATED<br>BIPHENYLS (PCBS)               | SAMPLE<br>MEASUREMENT | ****                                                                                          | ****                                                                                                                                                                    |                                                                | ***            | 0.00004          | 0.00004           | ( 19         | 0     | 01/90     | GR     |
| 37516 V O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | ******                                                                                        | <b>华华长华</b> 华                                                                                                                                                           | ****<br>****                                                   | 林林林林林林         | REPORT<br>MO AVG | REPORT<br>DAILY M | MG/L<br>MG/L |       | QTRLY     | GRAB   |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLAN        | SAMPLE<br>MEASUREMENT | 0.051                                                                                         | 0.247                                                                                                                                                                   | ( 03)                                                          | 共体长长长          | 长林林林林            | 法非法法法             | ii.          | 0     | 99/99     | RC     |
| SCOSO V O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | REPORT<br>MO AVG                                                                              | REPORT<br>DAILY MX                                                                                                                                                      | MGD<br>MGD                                                     | ******         | ******           | 非非非特殊             | ****         |       | CONTI     | NRCORD |
|                                                   | SAMPLE<br>MEASUREMENT |                                                                                               |                                                                                                                                                                         |                                                                |                |                  |                   |              |       |           |        |
|                                                   | PERMIT<br>REQUIREMENT |                                                                                               |                                                                                                                                                                         |                                                                |                |                  |                   |              |       |           |        |
| NAME/TITLE PRINCIPAL EXECUTIVE                    | prepare               | d under my direction or sup                                                                   | nis document and all attachm<br>ervision in accordance with a<br>roperly gather and evaluate t                                                                          | a system designed                                              |                | 10               |                   | TELEPHON     | ΙE    | DA        | ATE    |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | on Prog. submitte     | ed. Based on my inquiry of a<br>persons directly responsible<br>ed is, to the best of my know | roperry gather and evaluate to<br>the person or persons who ma-<br>e for gathering the informati-<br>ledge and belief, true, accura-<br>t penalties for submitting fal- | anage the system,<br>on, the information<br>ite, and complete. |                | T. Carro         | 41                | 3 448-59     | 02    | 2006      | 7 24   |
| TYPED OR PRINTED                                  | includio              | ng the possibility of fine and                                                                | imprisonment for knowing v                                                                                                                                              |                                                                |                | CER OR AUTHORIZE |                   | NUMBER       | 3     | YEAR M    | 10 DAY |

REPORT SUM OF LOAD 09A + 09B, FOR BOD, TSS, FLOW. SEE DMRS 009A + 009B. SEE PAGE 11 OF PERMIT. SAMPLE AT DISCHARGE POINT TO BROOK FOR PH, OIL & GREASE, AND PCB.

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

FACILITY

GENERAL ELECTRIC CORPORATION

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

OMB No. 2040-0004

MA0003891

SUM A DISCHARGE NUMBER

04

30

08

MAJOR (SUBR W ) F - FINAL

METALS: 001, 004, 005, 007, 009, 011

\*\*\* NO DISCHARGE | | \*\*\* NOTE: Read Instructions before completing this form.

PERMIT NUMBER MONITORING PERIOD

GENERAL ELECTRIC COMPANY YEAR MO DAY YEAR MO DAY LOCATION FROM MA 01201 06 01

MA 01201

| ATTN: MICHAEL T CAR                               | ROLL, EHS&                                                  | F                                                                                                                                                                |                                                                                                                                                                |                                                                                                  |         | NC                | OTE: Read Instr | uctions befor | e com | pleting this   | form.   |
|---------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------|-------------------|-----------------|---------------|-------|----------------|---------|
| PARAMETER                                         |                                                             | QUANT                                                                                                                                                            | ITY OR LOADING                                                                                                                                                 |                                                                                                  | Q       | UALITY OR CONCE   | NTRATION        |               | NO.   | FREQUENCY      | SAMPLE  |
|                                                   |                                                             | AVERAGE                                                                                                                                                          | MAXIMUM                                                                                                                                                        | UNITS                                                                                            | MINIMUM | AVERAGE           | MAXIMUM         | UNITS         | EX    | ANALYSIS       | TYPE    |
| PHOSPHORUS, TOTAL<br>(AS P)                       | SAMPLE<br>MEASUREMENT                                       | ****                                                                                                                                                             | 0                                                                                                                                                              | ( 26)<br>LBS/DY =                                                                                | ****    | 经保存保存             | 林林林林林           | -36           | 0     | 01/30          | СР      |
| 00665 1 0 0<br>EFFLUENT GROSS VALU                | PERMIT<br>REQUIREMENT                                       | *****                                                                                                                                                            | REPORT<br>DAILY MX                                                                                                                                             |                                                                                                  | ****    | 长长长长长             | ****            | ****          |       | ONCE/          | COMPOS  |
| NICKEL<br>TOTAL RECOVERABLE                       | SAMPLE<br>MEASUREMENT                                       | ****                                                                                                                                                             | 0                                                                                                                                                              | ( 26)<br>LBS/DY _                                                                                | ***     | ****              | ****            | -36           | 0     | 01/30          |         |
| 01074 1 0 0<br>EFFLUENT GROSS VALU                | PERMIT<br>EREQUIREMENT                                      | ****                                                                                                                                                             | REPORT<br>DAILY MX                                                                                                                                             |                                                                                                  | ****    | *****             | ****            | ****          |       | ONCE/<br>MONT  | COMPOS  |
| SILVER<br>TOTAL RECOVERABLE                       | SAMPLE<br>MEASUREMENT                                       | ****                                                                                                                                                             | 0                                                                                                                                                              | ( 24)<br>LBS/DY                                                                                  | 安安安安安   | ****              | ***             | *             | 0     | 01/30          |         |
| 01079 1 0 0<br>EFFLUENT GROSS VALU                | PERMIT<br>EREQUIREMENT                                      | *****                                                                                                                                                            | REPORT<br>DAILY MX                                                                                                                                             |                                                                                                  | ***     | *****             | ****            | ****          |       | ONCE/<br>MONTI | COMPOS  |
| ZING<br>TOTAL RECOVERABLE                         | SAMPLE<br>MEASUREMENT                                       | ****                                                                                                                                                             | 0.4                                                                                                                                                            | ( 26)<br>LBS/DY                                                                                  | ***     | 计计计计计             | ***             | *             | 0     | 01/07          | СР      |
| 01094 1 0 0<br>EFFLUENT GROSS VALU                | PERMIT<br>EREQUIREMENT                                      | <b>经按技术</b> 经                                                                                                                                                    | REPORT<br>DAILY MX                                                                                                                                             |                                                                                                  | ******* | ****              | ****            | ****          |       | MEEKL          | COMPOS  |
| ALUMINUM, TOTAL<br>(AS AL)                        | SAMPLE<br>MEASUREMENT                                       | ****                                                                                                                                                             | 0                                                                                                                                                              | ( 26)<br>LBS/DY                                                                                  | ***     | ****              | ****            | 100           | 0     | 01/30          | СР      |
| 01105 1 0 0<br>EFFLUENT GROSS VALU                | PERMIT<br>EREQUIREMENT                                      | *****                                                                                                                                                            | REPORT<br>DAILY MX                                                                                                                                             |                                                                                                  | 松林林林林林  | ****              | ****            | ****          |       | ONCE/          | COMPOS  |
| CADMIUM<br>TOTAL RECOVERABLE                      | SAMPLE<br>MEASUREMENT                                       | ****                                                                                                                                                             | 0.001                                                                                                                                                          | ( 26)<br>LBS/DY                                                                                  | ****    | ****              | ***             | 100           | 0     | 01/30          |         |
| 01113 1 0 0<br>EFFLUENT GROSS VALU                | PERMIT<br>EREQUIREMENT                                      | ****                                                                                                                                                             | REPORT<br>DAILY MX                                                                                                                                             | LBS/DY                                                                                           | ****    | ****              | *****           | ****          |       | ONCE/<br>MONTI | COMPOS  |
| LEAD<br>TOTAL RECOVERABLE                         | SAMPLE<br>MEASUREMENT                                       | ****                                                                                                                                                             | 0.09                                                                                                                                                           | ( 26)<br>LBS/DY                                                                                  | ****    | ****              | ***             | 190           | 0     | 01/07          | СР      |
| 01114 1 0 0<br>EFFLUENT GROSS VALU                | PERMIT<br>REQUIREMENT                                       | *****                                                                                                                                                            | REPORT<br>DAILY MX                                                                                                                                             |                                                                                                  | *****   | ****              | *****           | ****          |       | MEEKL,         | YCOMPOS |
| NAME/TITLE PRINCIPAL EXECUTIVE                    | OFFICER I certify u                                         | nder penalty of law that this<br>under my direction or super                                                                                                     | document and all attachme                                                                                                                                      | ents were                                                                                        |         |                   |                 | TELEPHON      | E     | DA             | ATE     |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | on Prog. to assure submitted or those p submitted I am awar | that qualified personnel pro<br>. Based on my inquiry of the<br>ersons directly responsible f<br>is, to the best of my knowle<br>re that there are significant p | perly gather and evaluate the<br>person or persons who man<br>for gathering the information<br>dge and belief, true, accurate<br>penalties for submitting fais | ne information<br>mage the system,<br>on, the information<br>te, and complete.<br>e information, | SIGNATI | T. Carro          | ECUTIVE 4       | 13 448-59     |       |                | 7 24    |
| TYPED OR PRINTED                                  | including                                                   | the possibility of fine and in                                                                                                                                   | prisonment for knowing vi                                                                                                                                      | olations.                                                                                        |         | CER OR AUTHORIZED | AGENT AF        | EA NUMBER     | 1     | YEAR M         | IO DAY  |

AREA NUMBER YEAR MO DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

COMPOSITE PROPORTIONATE TO FLOW.

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

GENERAL ELECTRIC COMPANY

LOCATION PITTSFIELD MICHAEL T CARROLL, EHS&F

FACILITY

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (INPUES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

YEAR

06

FROM

MO DAY

01

06

SUM A DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY

06

30

06

MAJOR (SUBR W ) F - FINAL

METALS: 001, 004, 005, 007, 009, 011

\*\*\* NO DISCHARGE | \_ | \*\*\* NOTE: Read Instructions before completing this form.

| PARAMETER                                         |                                                 | QUANT                                                                                                                    | ITY OR LOADING                                                                                                              |                                                                                   | QL                                      | JALITY OR CONCE     | NTRATION |          | NO. | FREQUENCY<br>OF | SAMPLE  |
|---------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|---------------------|----------|----------|-----|-----------------|---------|
|                                                   |                                                 | AVERAGE                                                                                                                  | MAXIMUM                                                                                                                     | UNITS                                                                             | MINIMUM                                 | AVERAGE             | MAXIMUM  | UNITS    | EX  | ANALYSIS        | ITPE    |
| CHROMIUM<br>TOTAL RECOVERABLE                     | SAMPLE<br>MEASUREMENT                           | ****                                                                                                                     | 0.003                                                                                                                       | ( 26)<br>LBS/DY                                                                   | ****                                    | 非本本本本               | ****     |          | 0   | 01/30           | СР      |
| 01118 1 0 0<br>EFFLUENT GROSS VALU                | PERMIT<br>EREQUIREMENT                          | 本本共作本本                                                                                                                   | REPORT<br>DAILY MX                                                                                                          |                                                                                   | 长枝枝枝枝枝                                  | *****               | ****     | ****     |     | ONCE/<br>MONTH  | COMPO   |
| COPPER<br>TOTAL RECOVERABLE                       | SAMPLE<br>MEASUREMENT                           | ****                                                                                                                     | 0                                                                                                                           | ( 26)<br>LBS/DY                                                                   | *****                                   | 计计计计计               | ***      |          | 0   | 01/07           | CP      |
| 01119 1 0 0<br>EFFLUENT GROSS VALU                | PERMIT<br>EREQUIREMENT                          | *****                                                                                                                    | REPORT<br>DAILY MX                                                                                                          |                                                                                   | *****                                   | 本本本本本本              | 李本本本本    | ****     |     | MEEKL,          | YCOMPO: |
| CYANIDE, TOTAL<br>RECOVERABLE                     | SAMPLE<br>MEASUREMENT                           | ****                                                                                                                     | 0.08                                                                                                                        | ( 26)<br>LBS/DY                                                                   | ****                                    | ****                | ***      |          | 0   | 01/30           | CP,     |
| 78248 1 0 0<br>EFFLUENT GROSS VALU                | PERMIT<br>EREQUIREMENT                          | ****                                                                                                                     | REPORT<br>DAILY MX                                                                                                          | LBS/DY                                                                            | *****                                   | <b>长长长长长</b>        | 长谷谷谷谷    | ****     |     | ONCE/<br>MONTH  | GRAB    |
|                                                   | SAMPLE<br>MEASUREMENT                           |                                                                                                                          |                                                                                                                             |                                                                                   |                                         |                     |          |          |     |                 |         |
|                                                   | PERMIT<br>REQUIREMENT                           |                                                                                                                          |                                                                                                                             |                                                                                   |                                         |                     |          |          |     |                 |         |
|                                                   | SAMPLE<br>MEASUREMENT                           |                                                                                                                          |                                                                                                                             |                                                                                   |                                         |                     |          |          |     |                 |         |
|                                                   | PERMIT<br>REQUIREMENT                           |                                                                                                                          |                                                                                                                             |                                                                                   |                                         |                     |          |          |     | in the same     |         |
|                                                   | SAMPLE<br>MEASUREMENT                           |                                                                                                                          |                                                                                                                             |                                                                                   |                                         |                     |          |          |     |                 |         |
|                                                   | PERMIT<br>REQUIREMENT                           |                                                                                                                          |                                                                                                                             |                                                                                   |                                         |                     |          |          |     |                 |         |
|                                                   | SAMPLE<br>MEASUREMENT                           |                                                                                                                          |                                                                                                                             | - 1                                                                               |                                         |                     |          |          |     |                 |         |
|                                                   | PERMIT<br>REQUIREMENT                           |                                                                                                                          |                                                                                                                             |                                                                                   |                                         |                     |          |          |     |                 |         |
| NAME/TITLE PRINCIPAL EXECUTIVE                    |                                                 | under penalty of law that the<br>d under my direction or sup-                                                            |                                                                                                                             |                                                                                   |                                         |                     |          | TELEPHON | NE. | D/              | ATE     |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | on Prog. to assure submittee or those submittee | e that qualified personnel prod. Based on my inquiry of the persons directly responsible of is, to the best of my knowle | operly gather and evaluate t<br>be person or persons who ma<br>for gathering the informati<br>edge and belief, true, accura | the information<br>anage the system,<br>on, the information<br>ate, and complete. | -                                       | Ture of Principal E | 71       | 3 448-59 | 02  | 2006            | 7 24    |
| TYPED OR PRINTED                                  |                                                 | are that there are significant<br>g the possibility of fine and i                                                        |                                                                                                                             |                                                                                   | 0.0000000000000000000000000000000000000 | CER OR AUTHORIZED   |          | A NUMBE  | R   | YEAR N          | 10 DAY  |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

COMPOSITE PROPORTIONATE TO FLOW.

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

GENERAL ELECTRIC COMPANY

PITTSFIELD

FACILITY

GENERAL ELECTRIC CORPORATION

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (INPUES) DISCHARGE MONITORING REPORT (DMR)

SUM B DISCHARGE NUMBER MAJOR (SUBR W ) F - FINAL

TOXICS: 001, 004, 005, 007, 009, 011

\*\*\* NO DISCHARGE | | \*\*\*

MA0003891 PERMIT NUMBER

MONITORING PERIOD YEAR MO DAY YEAR 06 04 TO 06 06 01

LOCATION PITTSFIELD MA 01201 FROM NOTE: Read Instructions before completing this form. ATTN: MICHAEL T CARROLL, EHS&F FREQUENCY NO. SAMPLE QUALITY OR CONCENTRATION QUANTITY OR LOADING PARAMETER EX TYPE **ANALYSIS** MAXIMUM UNITS AVERAGE MAXIMUM UNITS MINIMUM **AVERAGE** ( 23 \*\*\*\* \*\*\* 华乔乔乔乔长 **特特特特特** STATRE 48HR AC SAMPLE 01/30 CP 100 MEASUREMENT U D. PULEX PER-长长长长长长 ONCE/ COMPOS 35 经验特殊转换 长条件件条件 \*\*\* **特长长长长** TDM3D 1 0 0 PERMIT EFFLUENT GROSS VALUEREQUIREMENT CENT MONTH \*\*\* DAILY MN SAMPLE MEASUREMENT PERMIT REQUIREMENT NAME/TITLE PRINCIPAL EXECUTIVE OFFICER I certify under penalty of law that this document and all attachments were TELEPHONE DATE prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information

Michael T. Carroll Mgr. Pittsfield Remediation Prog.

TYPED OR PRINTED

submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE

OFFICER OR AUTHORIZED AGENT

413 448-5902 2006 7 29 NUMBER YEAR MO DAY

PAGE

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

MONTHLY DRY WEATHER TESTING. COMPOSITE PROPORTIONATE TO FLOW. FOR JULY, AUG., SEPT. REPORT ACUTE AND SUBMIT THIS DMR WITH A NODI '9' WHEN SUBMITTING SEE DMR SUMC FOR QUARTERLY WET WEATHER ACUTE.

WET WEATHER RESULTS ON DMR SUMC.

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

GENERAL ELECTRIC COMPANY

100 WOODLAWN AVENUE

ATTN: MICHAEL T CARROLL, EHS&F

PITTSFIELD

LOCATION PITTSFIELD

NAME

FACILITY

MA 01201

MA 01201

005 A PERMIT NUMBER DISCHARGE NUMBER

MAJOR (SUBR W ) F - FINAL

NON PROCESS/STORMWATER BYPASS

\*\*\* NO DISCHARGE | | \*\*\* NOTE: Read Instructions before completing this form.

|           |      | М  | ONITO | RING | PERIO | )  |     |
|-----------|------|----|-------|------|-------|----|-----|
| 100700000 | YEAR | MO | DAY   |      | YEAR  | MO | DAY |
| FROM      | 06   | 04 | 01    | то   | -06   | 08 | 30  |

MA0003891

| PARAMETER                                         |                       | QUANT                                                                                                                      | ITY OR LOADING                                                                          |                                                  | QI             | UALITY OR CONC | ENTRATION          |              | NO.       | FREQUENCY                              | SAMPLE                  |
|---------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|----------------|----------------|--------------------|--------------|-----------|----------------------------------------|-------------------------|
|                                                   |                       | AVERAGE                                                                                                                    | MAXIMUM                                                                                 | UNITS                                            | MINIMUM        | AVERAGE        | MAXIMUM            | UNITS        | EX        | ANALYSIS                               | TYPE                    |
| PH                                                | SAMPLE<br>MEASUREMENT | ****                                                                                                                       | ****                                                                                    |                                                  | 7.6            | ***            | 7.6                | ( 12)<br>SU  | 0         | 01/90                                  | GR                      |
| 00400 S 0 0<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | 计计计计计                                                                                                                      | ****                                                                                    | ****<br>****                                     | 6.0<br>MINIMUM | 长术长术长          | 9.0<br>MAXIMUM     | SU           |           | GTRLY                                  | RANG-                   |
| PH                                                | SAMPLE<br>MEASUREMENT | ****                                                                                                                       | ****                                                                                    |                                                  | NODI C         | 禁食体体体质         | NODI C             | ( 12)        |           | -                                      |                         |
| 00400 U O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | ****                                                                                                                       | *****                                                                                   | ****<br>****                                     | 6.0<br>MINIMUM | ***            | 9.0<br>MAXIMUM     | SU           |           | GTRLY                                  | RANG-                   |
| OIL & GREASE                                      | SAMPLE<br>MEASUREMENT | ***                                                                                                                        | ****                                                                                    |                                                  | ***            | ***            | 5.2                | ( 20)        | 0         | 01/90                                  | GR                      |
| 00556 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | *****                                                                                                                      | ****                                                                                    | ****<br>****                                     | ****           | ******         | 15<br>DAILY MX     |              |           | GTRLY                                  | GRAB                    |
| DIL & GREASE                                      | SAMPLE<br>MEASUREMENT | ****                                                                                                                       | ****                                                                                    |                                                  | ****           | 计计计计计          | NODI C             | ( 50)        |           |                                        | CLASSICS THEM IN ACTION |
| 00556 U O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | ***                                                                                                                        | ***                                                                                     | ***                                              | ****           | ****           | 15<br>DAILY MX     | PPM          |           | QTRLY                                  | GRAB                    |
| POLYCHLORINATED<br>BIPHENYLS (PCBS)               | SAMPLE<br>MEASUREMENT | *****                                                                                                                      | ****                                                                                    |                                                  | ****           | ****           | 0.7                | ( 21)<br>PPB | 0         | 01/90                                  | GR                      |
| 39516 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | ****                                                                                                                       | ***                                                                                     | ***                                              | ****           | ****           | REPORT<br>DAILY MX |              |           | QTRLY                                  | GRAB                    |
| POLYCHLORINATED<br>BIPHENYLS (PCBS)               | SAMPLE<br>MEASUREMENT | ***                                                                                                                        | ***                                                                                     |                                                  | ****           | ****           | NODI C             | ( 21)        | 0.8903030 | ************************************** |                         |
| 39516 U O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | ****                                                                                                                       | ****                                                                                    | ***                                              | ***            | ****           | REPORT<br>DAILY MX | РРВ          |           | QTRLY                                  | GRAB                    |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLAN        | OAMII EE              | ***                                                                                                                        | 1.05                                                                                    | ( Q3)<br>MGD                                     | ****           | ****           | ****               |              | 0         | 01/90                                  | ES                      |
| 50050 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | ***                                                                                                                        | REPORT<br>DAILY MX                                                                      | MGD                                              | ****           | ***            | ****               | ***          |           | QTRLY                                  | ESTIM                   |
| NAME/TITLE PRINCIPAL EXECUTIVE Michael T. Carroll | prepared to assure t  | nder penalty of law that this<br>under my direction or super<br>hat qualified personnel proj<br>Based on my inquiry of the | document and all attachm<br>vision in accordance with a<br>perly gather and evaluate ti | ents were<br>a system designed<br>he information | 4              | 10             |                    | TELEPHON     | E         | DA                                     | TE                      |

Mgr. Pittsfield Remediation Prog.

or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

413 494-3500 AREA NUMBER YEAR MO DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGES 16-17 FOR WET WEATHER REQUIREMENTS FOR LIMITS WITH QUARTERLY. SAMPLE AT POINT OF DISCHARGE. SEE PAGE 18 FOR DRY WEATHER REQUIREMENTS FOR LIMITS WITH MONITORING MONITORING LOCATION OF 'S'. LOCATION OF 'U', IF NO DISCHARGE USE '9'

EPA Form 3320-1 (Rev. 3/99) Previous editions may be used.

TYPED OR PRINTED

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

OI TO

MA0003891 PERMIT NUMBER

YEAR MO DAY

04

06

005 A DISCHARGE NUMBER

08

YEAR MO DAY

06

MAJOR (SUBR W ) F - FINAL

NON PROCESS/STORMWATER BYPASS

OMB No. 2040-0004

\*\*\* NO DISCHARGE | | \*\*\*

NOTE: Read Instructions before completing this form.

| PARAMETER T CAR                                |                                                  |                                                                                                                                | ITY OR LOADING                                                                                                                                                                                 |                                                                                | (       | QUALITY OR CONCE  | NTRATION  |          | NO.    | FREQUENCY | SAMPLE |
|------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------|-------------------|-----------|----------|--------|-----------|--------|
|                                                |                                                  | AVERAGE                                                                                                                        | MAXIMUM                                                                                                                                                                                        | UNITS                                                                          | MINIMUM | AVERAGE           | MAXIMUM   | UNITS    | EX     | ANALYSIS  | TYPE   |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLAN     |                                                  | ****                                                                                                                           | NODI [C]                                                                                                                                                                                       | ( 03)                                                                          | ****    | <b>计计计计计</b>      | *****     |          |        |           |        |
| 50050 U O O<br>SEE COMMENTS BELOW              | PERMIT<br>REQUIREMENT                            | 作标标标表                                                                                                                          | REPORT<br>DAILY MX                                                                                                                                                                             | MGD                                                                            | 在存在存在   | 长林林林林林            | *****     | ****     |        | GTRLY     | ESTIM  |
|                                                | SAMPLE<br>MEASUREMENT                            |                                                                                                                                |                                                                                                                                                                                                |                                                                                |         |                   |           |          |        |           |        |
|                                                | PERMIT<br>REQUIREMENT                            |                                                                                                                                |                                                                                                                                                                                                |                                                                                |         |                   |           |          |        |           |        |
|                                                | SAMPLE<br>MEASUREMENT                            |                                                                                                                                |                                                                                                                                                                                                |                                                                                |         | 1                 |           |          |        |           |        |
|                                                | PERMIT<br>REQUIREMENT                            |                                                                                                                                |                                                                                                                                                                                                |                                                                                |         |                   |           |          |        |           |        |
|                                                | SAMPLE<br>MEASUREMENT                            |                                                                                                                                |                                                                                                                                                                                                |                                                                                |         |                   |           |          |        |           |        |
|                                                | PERMIT<br>REQUIREMENT                            |                                                                                                                                |                                                                                                                                                                                                |                                                                                |         |                   |           |          |        |           |        |
|                                                | SAMPLE<br>MEASUREMENT                            |                                                                                                                                |                                                                                                                                                                                                |                                                                                |         |                   |           |          |        |           |        |
|                                                | PERMIT<br>REQUIREMENT                            |                                                                                                                                |                                                                                                                                                                                                |                                                                                |         |                   |           |          |        |           |        |
|                                                | SAMPLE<br>MEASUREMENT                            |                                                                                                                                |                                                                                                                                                                                                |                                                                                |         |                   |           |          |        |           |        |
|                                                | PERMIT<br>REQUIREMENT                            |                                                                                                                                |                                                                                                                                                                                                |                                                                                |         |                   |           |          |        |           |        |
|                                                | SAMPLE<br>MEASUREMENT                            |                                                                                                                                |                                                                                                                                                                                                |                                                                                |         |                   |           |          |        |           |        |
|                                                | PERMIT<br>REQUIREMENT                            |                                                                                                                                |                                                                                                                                                                                                |                                                                                |         |                   |           |          |        |           |        |
| NAME/TITLE PRINCIPAL EXECUTIVE                 |                                                  |                                                                                                                                | is document and all attachn<br>ryision in accordance with:                                                                                                                                     |                                                                                |         | - 0               |           | TELEPHO  | NE     | DA        | ATE    |
| Michael T. Carroll Mgr. Pittsfield Remediation | on Prog. to assure submitted or those properties | that qualified personnel pro<br>I. Based on my inquiry of the<br>persons directly responsible<br>I is, to the best of my knowl | rysion in accordance with a<br>operly gather and evaluate to<br>be person or persons who man<br>for gathering the informati-<br>edge and belief, true, accura-<br>penalties for submitting ful | the information<br>anage the system,<br>on, the informati<br>ate, and complete |         | Ture of Principal | EXECUTIVE | 3 494-35 | 600    | 2006      | 7 24   |
| TYPED OR PRINTED                               | including                                        | the possibility of fine and it                                                                                                 | mprisonment for knowing v                                                                                                                                                                      |                                                                                | OF      | AGENT ARE         | A NUMBE   | R        | YEAR N | O DAY     |        |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE AT POINT OF DISCHARGE. SEE PAGES 16-17 FOR WET WEATHER REQUIREMENTS FOR LIMITS WITH QUARTERLY. SEE PAGE 18 FOR DRY WEATHER REQUIREMENTS FOR LIMITS WITH MONITORING MONITORING LOCATION OF 'S'.

LOCATION OF 'U'. IF NO DISCHARGE USE '9'

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (INPUES)
DISCHARGE MONITORING REPORT (DMR)

01

OMB No. 2040-0004

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

MA 01201 PITTSFIELD GENERAL ELECTRIC COMPANY

LOCATION PITTSFIELD

FACILITY

MA 01201

MA0003891 PERMIT NUMBER

YEAR MO DAY

04

06

FROM

005 B DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY 06 30 TO 06

MAJOR (SUBR W ) F - FINAL

NON PROCESS/STORMWATER BYPASS

\*\*\* NO DISCHARGE | | \*\*\* NOTE: Read Instructions before completing this form.

| ATTN: MICHAEL T CARI PARAMETER                    |                                                                                                                                                               |                                                                                                                       | ITY OR LOADING                                                                     |                                 | Q                 | UALITY OR CONCE   | ENTRATION         |             | NO.  | FREQUENCY<br>OF | SAMPLE<br>TYPE |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------|-------------------|-------------------|-------------------|-------------|------|-----------------|----------------|
|                                                   |                                                                                                                                                               | AVERAGE                                                                                                               | MAXIMUM                                                                            | UNITS                           | MINIMUM           | AVERAGE           | MAXIMUM           | UNITS       | E^   | ANALYSIS        | ITPE           |
| PH                                                | SAMPLE<br>MEASUREMENT                                                                                                                                         | ***                                                                                                                   | 特特特特特                                                                              |                                 | 8.6               | ***               | 8.6               | ( 12:       | 0    | 01/90           | GR             |
| 00400 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                                                                                                                                         | ***                                                                                                                   | ****                                                                               | ****                            | 6.0<br>MINIMUM    | 经存在条件             | 9.0<br>MAXIMUM    | su          |      | GTRLY           | RANG-          |
| OIL & GREASE                                      | SAMPLE<br>MEASUREMENT                                                                                                                                         | ****                                                                                                                  | ****                                                                               |                                 | ****              | ****              | 0                 | ( 20)       | 0    | 01/90           | GR             |
| 00556 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                                                                                                                                         | ***                                                                                                                   | ***                                                                                | ****<br>****                    | ****              | ***               | 15<br>DAILY M     | X PPM       |      | QTRLY           | GRAB           |
| POLYCHLORINATED<br>BIPHENYLS (PCBS)               | SAMPLE<br>MEASUREMENT                                                                                                                                         | ****                                                                                                                  | ***                                                                                |                                 | ****              | ****              | 5.4               | ( 21<br>PPB | 0    | 01/90           | GR             |
| 39516 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                                                                                                                                         | ****                                                                                                                  | ****                                                                               | ****                            | ****              | ***               | REPORT<br>DAILY M | X PPB       |      | QTRLY           | GRAB           |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLAN        | SAMPLE<br>MEASUREMENT                                                                                                                                         | ****                                                                                                                  | 0.029                                                                              | ( 03)<br>MGD                    | ****              | ***               | ***               | ii.         | 0    | 01/90           | ES             |
| 50050 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                                                                                                                                         | ***                                                                                                                   | REPORT<br>DAILY MX                                                                 |                                 | ****              | ***               | ***               | ****        |      | OTRLY           | ESTIM          |
|                                                   | SAMPLE<br>MEASUREMENT                                                                                                                                         |                                                                                                                       |                                                                                    |                                 |                   |                   |                   |             |      |                 |                |
|                                                   | PERMIT<br>REQUIREMENT                                                                                                                                         |                                                                                                                       |                                                                                    |                                 |                   |                   |                   |             |      |                 |                |
|                                                   | SAMPLE<br>MEASUREMENT                                                                                                                                         |                                                                                                                       |                                                                                    |                                 |                   | 1                 |                   |             |      |                 |                |
|                                                   | PERMIT<br>REQUIREMENT                                                                                                                                         |                                                                                                                       |                                                                                    |                                 |                   |                   |                   |             |      |                 |                |
|                                                   | SAMPLE<br>MEASUREMENT                                                                                                                                         |                                                                                                                       |                                                                                    |                                 |                   |                   |                   |             |      |                 |                |
|                                                   | PERMIT<br>REQUIREMENT                                                                                                                                         |                                                                                                                       |                                                                                    |                                 |                   |                   |                   |             |      |                 |                |
| NAME/TITLE PRINCIPAL EXECUTIVE                    | under penalty of law that thi                                                                                                                                 |                                                                                                                       |                                                                                    |                                 |                   |                   | TELEPHON          | VE.         | D/   | TE              |                |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | d under my direction or supe<br>that qualified personnel prod.<br>Based on my inquiry of th<br>persons directly responsible<br>d is, to the best of my knowle | perly gather and evaluate<br>e person or persons who m<br>for gathering the informati<br>edge and belief, true, accur | the information<br>anage the system,<br>ion, the information<br>ate, and complete. | m :                             | TURE OF PRINCIPAL |                   | 3 494-35          | 00          | 2006 | 7 24            |                |
| TYPED OR PRINTED                                  | I am a                                                                                                                                                        |                                                                                                                       |                                                                                    | lse information,<br>violations. |                   | ICER OR AUTHORIZE | 4.00              | EA NUMBER   | R    | YEAR N          | IO DAY         |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE AT POINT OF DISCHARGE. QUARTERLY.

OMB No. 2040-0004

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WODDLAWN AVENUE

MA 01201 PITTSFIELD

**FACILITY** GENERAL ELECTRIC COMPANY

LOCATION MA 01201 PITTSFIELD

DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

006 1 DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY FROM 06 04 06 04 01 30 MAJOR (SUBR W ) F - FINAL

NON PROCESS/STORMWATER BYPASS

\*\*\* NO DISCHARGE | | \*\*\*

| PARAMETER T CAR                                                 |                                                        |                                                                                                                                                                                                       | ITY OR LOADING                                                                                                                                          |                                                                                                    | Q              | UALITY OR CONCI                     | ENTRATION      |               | NO. | FREQUENCY      | SAMPLE         |
|-----------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------|-------------------------------------|----------------|---------------|-----|----------------|----------------|
|                                                                 |                                                        | AVERAGE                                                                                                                                                                                               | MAXIMUM                                                                                                                                                 | UNITS                                                                                              | MINIMUM        | AVERAGE                             | MAXIMUM        | UNITS         | EX  | ANALYSIS       | TYPE           |
| PH                                                              | SAMPLE<br>MEASUREMENT                                  | 计计长分计计                                                                                                                                                                                                | 计计计计计                                                                                                                                                   |                                                                                                    | 7.4            | 非非体体的                               | 7.4            | ( 12          | 0   | 01/90          | GR             |
| DO400 S O O                                                     | PERMIT<br>REQUIREMENT                                  | ****                                                                                                                                                                                                  | 於林林林林春                                                                                                                                                  | ****                                                                                               | 6.0<br>MINIMUM | 各条件件条件                              | 9. 0<br>MAXIMU | SU<br>M SU    |     | GTRLY          | RANG-          |
| P)                                                              | SAMPLE<br>MEASUREMENT                                  | ***                                                                                                                                                                                                   | ****                                                                                                                                                    |                                                                                                    | NODI [C]       | ***                                 | NODI [C        | 1 ( 12        |     |                |                |
| 00400 U O O<br>SEE COMMENTS BELOW                               | PERMIT<br>REQUIREMENT                                  | *****                                                                                                                                                                                                 | ****                                                                                                                                                    | ****                                                                                               | 6.0<br>MINIMUM | 安全安全安全                              | 9. 0<br>MAXIMU | M SU          |     | QTRLY          | RANG-          |
| DIL & GREASE                                                    | SAMPLE<br>MEASUREMENT                                  | 特特特特特                                                                                                                                                                                                 | *******                                                                                                                                                 |                                                                                                    | ****           | 经本法法律                               | 5.2            | ( 20          | 0   | 01/90          | GR             |
| 00556 S O O<br>SEE COMMENTS BELOW                               | PERMIT<br>REQUIREMENT                                  | ********                                                                                                                                                                                              | ****                                                                                                                                                    | <b>长长长长</b>                                                                                        | 长松谷松谷谷         | ***                                 | 15<br>DAILY    | PPM<br>MX PPM |     | GTRLY          | GRAB           |
| DIL & GREASE                                                    | SAMPLE<br>MEASUREMENT                                  | ****                                                                                                                                                                                                  | ****                                                                                                                                                    |                                                                                                    | ****           | ***                                 | NODI [C        | 1 (20         |     |                |                |
| 00556 U O O<br>SEE COMMENTS BELOW                               | PERMIT<br>REQUIREMENT                                  | ******                                                                                                                                                                                                | 安安安安安安                                                                                                                                                  | ***                                                                                                | 林林林林林林         | *****                               | 15<br>DAILY    | MX PPM        |     | GTRLY          | GRAB           |
| POLYCHLORINATED<br>BIPHENYLS (PCBS)                             | SAMPLE<br>MEASUREMENT                                  | ***                                                                                                                                                                                                   | *****                                                                                                                                                   |                                                                                                    | 法法法法法          | 计计计计计                               | 0.11           | ( 21          | 0   | 01/90          | GR             |
| 37516 S O O<br>SEE COMMENTS BELOW                               | PERMIT<br>REQUIREMENT                                  | *****                                                                                                                                                                                                 | ******                                                                                                                                                  | ****                                                                                               | *****          | 水水水水水水                              | REPOR<br>DAILY | 10000         |     | GTRLY          | GRAB           |
| POLYCHLORINATED<br>BIPHENYLS (PCBS)                             | SAMPLE<br>MEASUREMENT                                  | ***                                                                                                                                                                                                   | 长术林林林林                                                                                                                                                  |                                                                                                    | *****          | <b>经验证</b>                          | NODI [C        | 1 (21         |     |                |                |
| 39516 U O O<br>SEE COMMENTS BELOW                               | PERMIT<br>REQUIREMENT                                  | 水水水水水                                                                                                                                                                                                 | ******                                                                                                                                                  | ****                                                                                               | *****          | *****                               | REPOR          | 03500         |     | GTRLY          | GRAB           |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLAN                      | C                                                      | 计格林特特                                                                                                                                                                                                 | 0.203                                                                                                                                                   | ( 03)                                                                                              | 经济技术经          | 计计计计计                               | 林林林林           |               | 0   | 01/90          | ES             |
| 50050 S O O<br>SEE COMMENTS BELOW                               | PERMIT<br>REQUIREMENT                                  | ****                                                                                                                                                                                                  | REPORT<br>DAILY MX                                                                                                                                      | MGD                                                                                                | *****          | 本本本本本                               | ****           | · 茶茶茶茶        |     | GTRLY          | ESTIM          |
| NAME/TITLE PRINCIPAL EXECUTIVE                                  |                                                        | under penalty of law that thi<br>l under my direction or supe                                                                                                                                         |                                                                                                                                                         |                                                                                                    |                |                                     |                | TELEPHON      | VE. | D/             | ATE            |
| Michael T. Carroll  Mgr. Pittsfield Remediati  TYPED OR PRINTED | on Prog. to assure submitte or those submitte I am awa | that qualified personnel pro<br>d. Based on my inquiry of the<br>persons directly responsible i<br>d is, to the best of my knowle<br>are that there are significant<br>the possibility of fine and in | perly gather and evaluate t<br>e person or persons who m<br>for gathering the informati<br>dge and belief, true, accura<br>penalties for submitting fal | the information<br>amage the system<br>ion, the informati<br>ate, and complete<br>ise information, | SIGNA          | TURE OF PRINCIPAL ICER OR AUTHORIZE |                | 413 494-35    |     | 2006<br>YEAR M | 7 24<br>10 DAY |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE AT POINT OF DISCHARGE. SEE PAGES 16-17 FOR WET WEATHER REQUIREMENTS. QUARTERLY. FOR LIMITS WITH MONITORING LOCATION OF 'S'. SEE PAGE 18 FOR DRY WEATHER REQUIREMENTS FOR LIMITS WITH MONITORING LOCATION OF 'U'. IF NO DISCHARGE USE '9'

EPA Form 3320-1 (Rev. 3/99) Previous editions may be used.

00237/This is 11/4-part form.

PAGE

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

DAY

OI TO

OMB No. 2040-0004

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

GENERAL ELECTRIC COMPANY

LOCATION PITTSFIELD

FACILITY

MA 01201

MA0003891 PERMIT NUMBER

FROM

006 1 DISCHARGE NUMBER

MONITORING PERIOD YEAR

06

MAJOR (SUBR W ) F - FINAL NON PROCESS/STORMWATER BYPASS

\*\*\* NO DISCHARGE | | \*\*\* NOTE: Read Instructions before completing this form.

| PARAMETER T CARI                                  |                       |                                                                                                                                                                                                                                     | TTY OR LOADING                                                                                                           |                                                                                   | QI       | UALITY OR CONCE | NTRATION    |          |    | FREQUENCY<br>OF | SAMPLE |
|---------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------|-----------------|-------------|----------|----|-----------------|--------|
|                                                   | $\times$              | AVERAGE                                                                                                                                                                                                                             | MAXIMUM                                                                                                                  | UNITS                                                                             | MINIMUM  | AVERAGE         | MAXIMUM     | UNITS    | EX | ANALYSIS        | TYPE   |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLAN        | SAMPLE<br>MEASUREMEN  | *************************************                                                                                                                                                                                               | NODI C                                                                                                                   | ( 03)                                                                             | 计计计计计    | 计计计计计           | 全体非体体的      | i i      |    |                 |        |
| 50050 U O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMEN  | 分价价价价                                                                                                                                                                                                                               | REPORT<br>DAILY MX                                                                                                       | MGD                                                                               | ****     | 计设计计计           | 华华安安安       | ******   |    | GTRLY           | ESTIM  |
|                                                   | SAMPLE<br>MEASUREMEN  | NT                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                   |          |                 |             |          |    |                 |        |
|                                                   | PERMIT<br>REQUIREMEN  | (T                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                   |          |                 |             |          |    |                 |        |
|                                                   | SAMPLE<br>MEASUREME   | NT                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                   |          | -               |             |          |    |                 |        |
|                                                   | PERMIT<br>REQUIREMEN  | TV                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                   |          |                 |             |          |    |                 |        |
|                                                   | SAMPLE<br>MEASUREME   | NT                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                   |          |                 |             |          |    |                 |        |
|                                                   | PERMIT<br>REQUIREMENT | TV                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                   |          |                 |             |          |    |                 |        |
|                                                   | SAMPLE<br>MEASUREME   | NT                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                   |          |                 | 1 -         |          |    |                 |        |
|                                                   | PERMIT<br>REQUIREMENT | NT                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                   |          |                 |             |          |    |                 |        |
|                                                   | SAMPLE<br>MEASUREME   | NT                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                   |          |                 |             |          |    |                 |        |
|                                                   | PERMIT<br>REQUIREMEN  | NT                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                   |          |                 |             |          |    |                 |        |
|                                                   | SAMPLE<br>MEASUREME   | NT                                                                                                                                                                                                                                  |                                                                                                                          |                                                                                   |          |                 |             |          |    |                 |        |
|                                                   | PERMIT<br>REQUIREMEN  | NT T                                                                                                                                                                                                                                |                                                                                                                          |                                                                                   |          |                 |             |          |    |                 |        |
| NAME/TITLE PRINCIPAL EXECUTIVE                    |                       | ertify under penalty of law that th                                                                                                                                                                                                 |                                                                                                                          |                                                                                   |          |                 |             | TELEPHO  | NE | DA              | TE     |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | on Prog.              | epared under my direction or sup-<br>assure that qualified personnel pro-<br>bmitted. Based on my inquiry of the<br>those persons directly responsible<br>bmitted is, to the best of my knowl<br>may are that there are significant | operly gather and evaluate<br>to person or persons who m<br>for gathering the informati<br>edge and belief, true, accur- | the information<br>anage the system,<br>on, the information<br>ate, and complete. |          | T. Carro        | XECUTIVE 41 | 3 494-35 |    |                 | 7 24   |
| TYPED OR PRINTED                                  | inc                   | am aware that there are significant penalties for submitting false information,<br>ncluding the possibility of fine and imprisonment for knowing violations.                                                                        |                                                                                                                          |                                                                                   | A 10 H A |                 |             | A NUMBE  | R  | YEAR M          | O DAY  |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE AT POINT OF DISCHARGE. SEE PAGES 16-17 FOR WET WEATHER REQUIREMENTS. QUARTERLY. FOR LIMITS WITH MONITORING LOCATION OF 'S'. SEE PAGE 18 FOR DRY WEATHER REQUIREMENTS FOR LIMITS WITH MONITORING LOCATION

'U'. IF NO DISCHARGE USE '9'

PAGE

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

OMB No. 2040-0004

GENERAL ELECTRIC CORPORATION ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTEFIELD

NAME

MA 01201

MA0003891 PERMIT NUMBER

DISCHARGE NUMBER

006 A

MAJOR (SUBR W ) F - FINAL

NON PROCESS/STORMWATER BYPASS

\*\*\* NO DISCHARGE | | \*\*\*

| EAGII ITY | LYSIGLIE  |         |      |       | 021102 | 1    |      | M  | ONITO | ring | PERIO      | )  |     |
|-----------|-----------|---------|------|-------|--------|------|------|----|-------|------|------------|----|-----|
| FACILITY  | GENERAL E | ELECTRI | CCD  | MPANY |        |      | YEAR | MO | DAY   |      | YEAR       | MO | DAY |
| LOCATION  | PITTSFIEL | _D      |      | MA    | 01201  | FROM | 06   | 04 | 01    | то   | YEAR<br>O6 | 08 | 30  |
| ATTN:     | MICHAEL   | T CARR  | OLL, | EHS&F |        |      |      |    |       |      |            |    |     |

| PARAMETER                                         |                                               | QUANT                                                                                     | TITY OR LOADING                                                                                                                  |                                                                | Q              | UALITY OR CONC    | ENTRATION          |               | NO.         | FREQUENCY         | SAMPLE            |
|---------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------|-------------------|--------------------|---------------|-------------|-------------------|-------------------|
|                                                   |                                               | AVERAGE                                                                                   | MAXIMUM                                                                                                                          | UNITS                                                          | MINIMUM        | AVERAGE           | MAXIMUM            | UNITS         | EX          | ANALYSIS          | TYPE              |
| 3 (-1                                             | SAMPLE<br>MEASUREMENT                         | 长长谷谷长长                                                                                    | ***                                                                                                                              |                                                                | 7.3            | ****              | 7.3                | ( 12)<br>SU   | 0           | 01/90             | GR                |
| 00400 5 0 0<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                         | *****                                                                                     | ****                                                                                                                             | ****                                                           | 6.0<br>MINIMUM | *****             | 9.0<br>MAXIMUM     | su            |             | QTRLY             | RANG-             |
| DIL & GREASE                                      | SAMPLE<br>MEASUREMENT                         | 华华林林林林                                                                                    | *****                                                                                                                            |                                                                | *****          | ****              | 0                  | ( 20 :<br>PPM | 0           | 01/90             | GR                |
| 00556 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                         | 林长长秋林长                                                                                    | ***                                                                                                                              | ****<br>****                                                   | 经营业条件          | 长长长长长             | DAILY M            | PPM           |             | GTRLY             | GRAB              |
| OLYCHLORINATED                                    | SAMPLE<br>MEASUREMENT                         | ***                                                                                       | ***                                                                                                                              |                                                                | ***            | ****              | 0.6                | PPB 211       | 0           | 01/90             | GR                |
| 39515 S O O<br>BEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                         | ****                                                                                      | 李林林林林                                                                                                                            | ***                                                            | <b>华华华华</b>    | 长长长长长             | REPORT<br>DAILY MO | PPB           |             | GTRLY             | GRAB              |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLAN        | SAMPLE<br>MEASUREMENT                         | ***                                                                                       | 0.576                                                                                                                            | ( 03)<br>MGD                                                   | ****           | ****              | ****               |               | 0           | 01/90             | ES                |
| 50050 S O O<br>BEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                         | ***                                                                                       | REPORT<br>DAILY MX                                                                                                               | MGD                                                            | <b>拉特特特特</b>   | 林林林林林             | <b>技术技术条件</b>      | ***           | 7           | GTRLY             | ESTIM             |
|                                                   | SAMPLE<br>MEASUREMENT                         |                                                                                           |                                                                                                                                  |                                                                |                |                   |                    |               | are en prom |                   | N1512111011002500 |
|                                                   | PERMIT<br>REQUIREMENT                         |                                                                                           |                                                                                                                                  |                                                                |                |                   |                    |               |             |                   |                   |
| 77                                                | SAMPLE<br>MEASUREMENT                         |                                                                                           |                                                                                                                                  |                                                                |                |                   |                    |               | SOMETHINGS. | 1110 W. 75-11-111 |                   |
|                                                   | PERMIT<br>REQUIREMENT                         |                                                                                           |                                                                                                                                  |                                                                |                |                   |                    |               |             | 1 15              |                   |
|                                                   | SAMPLE<br>MEASUREMENT                         |                                                                                           |                                                                                                                                  | 1                                                              |                |                   |                    |               |             |                   | 2420016005005     |
|                                                   | PERMIT<br>REQUIREMENT                         |                                                                                           | 10 E 6 12 1                                                                                                                      |                                                                |                |                   |                    |               |             |                   |                   |
| NAME/TITLE PRINCIPAL EXECUTIVE                    | OFFICER I certify us<br>prepared i            |                                                                                           | is document and all attachm<br>rvision in accordance with :                                                                      |                                                                |                | 10                |                    | TELEPHON      | E           | DA                | TE                |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | on Prog. submitted.<br>or those possibilitied | Based on my inquiry of the<br>ersons directly responsible<br>is, to the best of my knowle | operly gather and evaluate to<br>be person or persons who ma-<br>for gathering the information<br>edge and belief, true, accura- | anage the system,<br>on, the information<br>ate, and complete. | n //C          | T. Cour           | , ,                | 3 448-59      | 02          | 2006              | 7 24              |
| TYPED OR PRINTED OMMENTS AND EXPLANATION OF       | including t                                   | he possibility of fine and in                                                             | penalties for submitting fal-<br>aprisonment for knowing v                                                                       |                                                                |                | CER OR AUTHORIZED |                    | A NUMBER      |             | YEAR M            | O DAY             |

QUARTERLY. SAMPLE AT POINT OF DISCHARGE.

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM 100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

009 D DISCHARGE NUMBER

MAJOR (SUBR W ) F - FINAL

NON PROCESS/STORMWATER BYPASS

OMB No. 2040-0004

\*\*\* NO DISCHARGE

MONITORING PERIOD 

| PARAMETER                                         |                       |                                                                                                                                                                  | TTY OR LOADING                                                                            |                                                                | Q                 | UALITY OR CONC    | ENTRATION      |          | NO.    | FREQUENCY | OVINILEE |
|---------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|-------------------|----------------|----------|--------|-----------|----------|
|                                                   |                       | AVERAGE                                                                                                                                                          | MAXIMUM                                                                                   | UNITS                                                          | MINIMUM           | AVERAGE           | MAXIMUM        | UNITS    | EX     | ANALYSIS  | TYPE     |
| PH                                                | SAMPLE<br>MEASUREMENT | 长长长长长                                                                                                                                                            | 特殊格特特特                                                                                    |                                                                | NODI [E]          | 禁禁禁禁禁             | NODI [E]       | ( 12)    |        |           |          |
| 00400 5 0 0<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | 本本本本本                                                                                                                                                            | ****                                                                                      | ****<br>****                                                   | 6.0<br>MINIMUM    | *******           | 9.0<br>MAXIMUM | su       |        | QTRLY     | RANG-    |
| DIL & GREASE                                      | SAMPLE<br>MEASUREMENT | ***                                                                                                                                                              | 长长长长长                                                                                     |                                                                | 长锋徐安林             | 计计计计划             | NODI [E]       | ( 20)    |        |           |          |
| DO556 S O O<br>BEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | ****                                                                                                                                                             | 安林林林林                                                                                     | 安安格格<br>安安格格                                                   | ****              | 华华华华华             | DAILY M        | PPM      |        | GTRLY     | GRAB     |
| POLYCHLORINATED<br>BIPHENYLS (PCBS)               | SAMPLE<br>MEASUREMENT | 长谷谷谷谷谷                                                                                                                                                           | ***                                                                                       |                                                                | 特特特特特特            | ***               | NODI [E]       | ( 21     |        |           |          |
| 39516 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | ***                                                                                                                                                              | 格特特特特                                                                                     | ****<br>****                                                   | ****              | ****              | DAILY M        | PPB      |        | GTRLY     | GRAB     |
| FLOW, IN CONDUIT OR                               | SAMPLE<br>MEASUREMENT | ***                                                                                                                                                              | NODI [E]                                                                                  | ( 03)                                                          | 科林林林林             | ***               | ***            | 1        |        |           |          |
| 50050 S C O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT | ***                                                                                                                                                              | REPORT<br>DAILY MX                                                                        | MGD                                                            | ***               | 特格格特特             | ******         | ***      |        | GTRLY     | ESTIM    |
|                                                   | SAMPLE<br>MEASUREMENT |                                                                                                                                                                  |                                                                                           |                                                                |                   |                   |                |          |        |           |          |
|                                                   | PERMIT<br>REQUIREMENT |                                                                                                                                                                  |                                                                                           |                                                                |                   |                   |                |          |        |           |          |
|                                                   | SAMPLE<br>MEASUREMENT |                                                                                                                                                                  |                                                                                           |                                                                |                   |                   |                |          |        |           |          |
|                                                   | PERMIT<br>REQUIREMENT |                                                                                                                                                                  |                                                                                           |                                                                |                   |                   |                |          |        |           |          |
|                                                   | SAMPLE<br>MEASUREMENT |                                                                                                                                                                  |                                                                                           |                                                                |                   |                   |                |          |        |           |          |
|                                                   | PERMIT<br>REQUIREMENT | 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                     |                                                                                           |                                                                |                   |                   |                |          |        |           |          |
| NAME/TITLE PRINCIPAL EXECUTIVE                    | prepared              | ander penalty of law that th<br>under my direction or sup-                                                                                                       | rvision in accordance with                                                                | a system designed                                              |                   | 10                |                | TELEPHON | 1E     | DA        | ATE      |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | on Prog. submitte     | that qualified personnel pro<br>d. Based on my inquiry of the<br>persons directly responsible<br>d is, to the best of my knowle<br>contact there are significant | ne person or persons who m<br>for gathering the informati<br>edge and belief, true, accur | anage the system,<br>on, the information<br>ate, and complete. |                   | TURE OF PRINCIPAL |                | 3 494-35 | 00     | 2006      | 7 24     |
| TYPED OR PRINTED                                  |                       |                                                                                                                                                                  |                                                                                           |                                                                | ICER OR AUTHORIZE | 4 40 4            | A NUMBER       | R        | YEAR M | IO DAY    |          |

QUARTERLY. SAMPLE AT POINT OF DISCHARGE.

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

OMB No. 2040-0004

NAME

FACILITY

LOCATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

GENERAL ELECTRIC CORPORATION

100 WOODLAWN AVENUE PITTSFIELD

MA 01201

GENERAL ELECTRIC COMPANY

PITTSFIELD MA 01201 MA0003891 PERMIT NUMBER

SRO 1 DISCHARGE NUMBER

MAJOR (SUBR W )

F - FINAL NON PROCESS/STORMWATER BYPASS

\*\*\* NO DISCHARGE | | \*\*\*
NOTE: Read Instructions before completing this

|           |      | MONITORING PERIOD |     |         |      |    |     |  |  |  |  |  |
|-----------|------|-------------------|-----|---------|------|----|-----|--|--|--|--|--|
| market in | YEAR | MO                | DAY | la sala | YEAR | MO | DAY |  |  |  |  |  |
| FROM      | 06   | 04                | 01  | TO      | 06   | 06 | 30  |  |  |  |  |  |

| PARAMETER                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QUANT                                                                                                                               | ITY OR LOADING                                                                                                             |                                                                            | QI                                 | UALITY OR CONCI                         | ENTRATION          |          | 110.        | FREQUENCY<br>OF | SHIMIT LL         |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------|-----------------------------------------|--------------------|----------|-------------|-----------------|-------------------|
|                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AVERAGE                                                                                                                             | MAXIMUM                                                                                                                    | UNITS                                                                      | MINIMUM                            | AVERAGE                                 | MAXIMUM            | UNITS    | EX          | ANALYSIS        | TYPE              |
| o ř-ž                                            | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                 | ***                                                                                                                        |                                                                            | NODI [E]                           | ***                                     | NODI [E]           | ( 12)    |             |                 |                   |
| 00400 S O O<br>SEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                 | ****                                                                                                                       | ****<br>****                                                               | 6.0<br>MINIMUM                     | *******                                 | 9. 0<br>MAXIMUM    | su       |             | GTRLY           | RANG-             |
| DIL % GREASE                                     | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 华华林林林                                                                                                                               | ****                                                                                                                       |                                                                            | ***                                | *****                                   | NODI [E]           | ( 20)    |             |                 |                   |
| 00556 S O O<br>BEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                 | ****                                                                                                                       | ****<br>****                                                               | ****                               | 转移转移移                                   | 15<br>DAILY MX     | PPM      |             | GTRLY           | GRAB              |
| POLYCHLORINATED<br>BIPHENYLS (PCBS)              | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                 | ***                                                                                                                        |                                                                            | ****                               | ****                                    | NODI [E]           | ( 21)    |             |                 |                   |
| 39516 S O O<br>SEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                 | ****                                                                                                                       | ****<br>****                                                               | 长格林泰安桥                             | 林林林林林林                                  | REPORT<br>DAILY MX | PPB      |             | QTRLY           | GRAB              |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLAN       | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***                                                                                                                                 | NODI [E]                                                                                                                   | ( 03)                                                                      | ****                               | 茶茶茶茶茶                                   | ****               |          |             |                 |                   |
| SCOSO S O O<br>SEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 各条条条条件                                                                                                                              | REPORT<br>DAILY MX                                                                                                         | MGD                                                                        | ****                               | ***                                     | ****               | ****     |             | QTRLY           | ESTIM             |
|                                                  | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                     |                                                                                                                            | 7.9                                                                        |                                    |                                         |                    |          |             |                 | No the paper will |
|                                                  | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                     |                                                                                                                            |                                                                            |                                    |                                         |                    |          |             |                 |                   |
|                                                  | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                     |                                                                                                                            |                                                                            |                                    |                                         |                    |          | 15.00010880 |                 |                   |
|                                                  | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                     |                                                                                                                            |                                                                            |                                    |                                         |                    |          |             |                 |                   |
|                                                  | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                   |                                                                                                                            |                                                                            |                                    |                                         |                    |          | enstancias  |                 | MODERN STATE      |
|                                                  | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                     |                                                                                                                            |                                                                            |                                    |                                         |                    |          |             |                 |                   |
| NAME/TITLE PRINCIPAL EXECUTIVE                   | OFFICER I certify                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | under penalty of law that thi<br>d under my direction or supe                                                                       |                                                                                                                            |                                                                            | CONTRACTOR OF CONTRACTOR OF STREET |                                         |                    | TELEPHON | E           | DA              | TE                |
| Michael T. Carroll<br>Mgr. Pittsfield Remediatio | on Prog. to assure submitted or those submitted submitted to the submitted to assure s | e that qualified personnel pro<br>ed. Based on my inquiry of the<br>persons directly responsible<br>ed is, to the best of my knowle | perly gather and evaluate t<br>e person or persons who ma<br>for gathering the informati-<br>dge and belief, true, accura- | he information<br>image the system,<br>on, the informations, and complete. | . M.T                              | Canol                                   | 41:                | 3 448-59 |             | 1 .             | 7 24              |
| TYPED OR PRINTED OMMENTS AND EXPLANATION OF      | includir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | are that there are significant<br>g the possibility of fine and in                                                                  | nprisonment for knowing v                                                                                                  | se information,<br>iolations.                                              |                                    | URE OF PRINCIPAL E<br>CER OR AUTHORIZED |                    | NUMBER   |             | YEAR M          | O DAY             |

SAMPLE AT POINT OF DISCHARGE.

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

FACILITY

LOCATION

MA 01201

GENERAL ELECTRIC COMPANY PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

01 TO

MA0003891

06

FROM

PERMIT NUMBER

YEAR MO DAY

04

SRO 2

06

DISCHARGE NUMBER

YEAR MO DAY

06

MAJOR (SUBR W ) F - FINAL

NON PROCESS/STORMWATER BYPASS

OMB No. 2040-0004

\*\*\* NO DISCHARGE | | \*\*\* NOTE: Read Instructions before completing this form.

MICHAEL T CARROLL, EHS&F ATTN: FREQUENCY NO. SAMPLE QUALITY OR CONCENTRATION QUANTITY OR LOADING PARAMETER EX TYPE ANALYSIS UNITS MINIMUM **AVERAGE** MAXIMUM UNITS MAXIMUM **AVERAGE** ( 12 长长长长长长 \*\*\* \*\*\* SAMPLE PH NODI [E] NODI (E) MEASUREMENT 9.0 GTRLY RANG-6.0 计计计计计计 经存在保险 计计计计计计 非计计计 PERMIT 00400 S 0 SU REQUIREMENT MINIMUM MUMIXAM \*\*\* COMMENTS BELOW ( 50 \*\*\*\* **设计设计计** \*\*\*\* \*\*\*\*\* DIL & GREASE SAMPLE NODI [E] MEASUREMENT 15 QTRLY GRAB 长春花茶茶茶 格格格格格格 \*\*\* PERMIT \*\*\* 经经验经验 S 0 0 00556 PPM DAILY MX REQUIREMENT \*\*\* SEE COMMENTS BELOW ( 21 \*\*\* **脊脊脊脊脊**脊 \*\*\* 祭祭祭祭祭祭 POLYCHLORINATED SAMPLE NODI [E] MEASUREMENT BIPHENYLS (PCBS) GTRLY GRAB 经外种条款件 \*\*\* 长光光光光光 长长长长长长 REPORT **特林特特特特** 39516 S 0 0 PERMIT PPB REQUIREMENT \*\*\* DAILY MX SEE COMMENTS BELOW ( 03) \*\*\* \*\*\* \*\*\*\* \*\*\*\* FLOW, IN CONDUIT OR SAMPLE NODI [E] TREATMENT PLANTMEASUREMENT GTRLY ESTIMA \*\*\*\* REPORT \*\*\* \*\*\* \*\*\*\* \*\*\* 50050 5 0 -0 PERMIT DAILY MX MGD REQUIREMENT 经验检验 SEE COMMENTS BELOW SAMPLE **MEASUREMENT** PERMIT REQUIREMENT SAMPLE MEASUREMENT PERMIT REQUIREMENT SAMPLE MEASUREMENT

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER

Michael T. Carroll Mgr. Pittsfield Remediation Prog.

TYPED OR PRINTED

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE

OFFICER OR AUTHORIZED AGENT

24 413 448-5902 2006 NUMBER YEAR MO DAY

TELEPHONE

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

PERMIT REQUIREMENT

SAMPLE AT POINT OF DISCHARGE.

DATE

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WODDLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

OI TO

MA0003891 PERMIT NUMBER

YEAR MO DAY

06

FROM

SRO 3 DISCHARGE NUMBER

MONITORING PERIOD YEAR

06

MAJOR (SUBR W ) F - FINAL

NON PROCESS/STORMWATER BYPASS

OMB No. 2040-0004

\*\*\* NO DISCHARGE | | \*\*\* NOTE: Read Instructions before completing this form.

| PARAMETER PARAMETER                                                                                                                                                            |                       |                                                                                                                                          | TTY OR LOADING                                                                                                          |                                                                                  | Q              | UALITY OR CONC    | ENTRATION      |          | NO.    | FREQUENCY | OAIIII EE  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------|-------------------|----------------|----------|--------|-----------|------------|
| 0.000                                                                                                                                                                          |                       | AVERAGE                                                                                                                                  | MAXIMUM                                                                                                                 | UNITS                                                                            | MINIMUM        | AVERAGE           | MAXIMUM        | UNITS    | EX     | ANALYSIS  | TYPE       |
| PH                                                                                                                                                                             | SAMPLE<br>MEASUREMENT | ****                                                                                                                                     | ****                                                                                                                    |                                                                                  | NODI [E]       | ****              | NODI [E]       | ( 12)    |        |           |            |
| 00400 S O O<br>SEE COMMENTS BELOW                                                                                                                                              | PERMIT<br>REQUIREMENT | 华林林林林                                                                                                                                    | <b>长谷朴朴朴</b>                                                                                                            | ****                                                                             | 6.0<br>MINIMUM | 特格林林林             | 9.0<br>MAXIMUM | SU       |        | GTRLY     | RANG       |
| DIL % GREASE                                                                                                                                                                   | SAMPLE<br>MEASUREMENT | ***                                                                                                                                      | ****                                                                                                                    |                                                                                  | ****           | ****              | NODI [E]       | ( 20:    |        |           |            |
| 00556 S O O<br>SEE COMMENTS BELOW                                                                                                                                              | PERMIT<br>REQUIREMENT | ****                                                                                                                                     | **********                                                                                                              | ****                                                                             | ****           | ***               | DAILY M        | PPM      |        | GTRLY     | GRAB       |
| POLYCHLORINATED<br>BIPHENYLS (PCBS)                                                                                                                                            | SAMPLE<br>MEASUREMENT | ****                                                                                                                                     | ****                                                                                                                    |                                                                                  | ****           | ****              | NODI [E]       | ( 21     |        |           |            |
| 39516 S O O<br>SEE COMMENTS BELOW                                                                                                                                              | PERMIT<br>REQUIREMENT | ****                                                                                                                                     | ****                                                                                                                    | ***                                                                              | *****          | *****             | DAILY M        | PPB      |        | QTRLY     | GRAB       |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLAN                                                                                                                                     | SAMPLE<br>MEASUREMENT | 计操作操作                                                                                                                                    | NODI [E]                                                                                                                | ( 03)                                                                            | ****           | 非非非非非             | ****           | H        |        |           |            |
| SOOSO S O O<br>SEE COMMENTS BELOW                                                                                                                                              | PERMIT<br>REQUIREMENT | 长术专作作品                                                                                                                                   | REPORT<br>DAILY MX                                                                                                      | MGD                                                                              | ******         | *****             | ****           | ****     |        | GTRLY     | ESTIM      |
|                                                                                                                                                                                | SAMPLE<br>MEASUREMENT |                                                                                                                                          |                                                                                                                         |                                                                                  |                |                   |                |          |        |           |            |
|                                                                                                                                                                                | PERMIT<br>REQUIREMENT |                                                                                                                                          |                                                                                                                         |                                                                                  |                |                   |                |          |        |           |            |
|                                                                                                                                                                                | SAMPLE<br>MEASUREMENT |                                                                                                                                          |                                                                                                                         |                                                                                  |                |                   |                |          |        |           |            |
|                                                                                                                                                                                | PERMIT<br>REQUIREMENT |                                                                                                                                          |                                                                                                                         |                                                                                  |                |                   |                |          |        |           |            |
|                                                                                                                                                                                | SAMPLE<br>MEASUREMENT |                                                                                                                                          |                                                                                                                         | 3                                                                                |                |                   |                |          |        |           |            |
|                                                                                                                                                                                | PERMIT<br>REQUIREMENT |                                                                                                                                          |                                                                                                                         |                                                                                  |                |                   |                |          |        |           | 4-11-11-11 |
| NAME/TITLE PRINCIPAL EXECUTIVE                                                                                                                                                 |                       | y under penalty of law that the                                                                                                          |                                                                                                                         |                                                                                  |                |                   |                | TELEPHO  | NE     | D         | ATE        |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation                                                                                                                              | on Prog. to assu      | re that qualified personnel pro<br>ted. Based on my inquiry of the<br>se persons directly responsible<br>ted is, to the best of my knowl | operly gather and evaluate<br>ne person or persons who m<br>for gathering the informati<br>edge and belief, true, accur | the information<br>anage the system,<br>ion, the informati-<br>ute, and complete | on M.          | TURE OF PRINCIPAL | EXECUTIVE 41   | 3 448-59 | 02     | 2006      | 7 24       |
| TYPED OR PRINTED  I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. |                       |                                                                                                                                          |                                                                                                                         | ICER OR AUTHORIZE                                                                |                | A NUMBE           | R              | YEAR N   | NO DAY |           |            |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE AT POINT OF DISCHARGE.

MONITORING PERIOD

01 TO

06

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WODDLAWN AVENUE

PITTSFIELD **FACILITY** 

MA 01201

GENERAL ELECTRIC COMPANY

LOCATION PITTSFIELD

MA 01201

MA0003891 PERMIT NUMBER

FROM

MO DAY

04

SRO 4 DISCHARGE NUMBER

06

YEAR MO DAY

30

MAJOR

(SUBR W ) F - FINAL

NON PROCESS/STORMWATER BYPASS

\*\*\* NO DISCHARGE | | \*\*\*

| PARAMETER                                         |                       |                                                                                                                                                                                             | TITY OR LOADING                                                                                                         |                                                                                 | Q              | UALITY OR CONC    | ENTRATION         |            | NO. | FREQUENCY | SAMPLE |
|---------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------|-------------------|-------------------|------------|-----|-----------|--------|
|                                                   |                       | AVERAGE                                                                                                                                                                                     | MAXIMUM                                                                                                                 | UNITS                                                                           | MINIMUM        | AVERAGE           | MAXIMUM           | UNITS      | 1 5 | ANALYSIS  | ITPE   |
| `H                                                | SAMPLE<br>MEASUREMEN  | *****                                                                                                                                                                                       | <b>传传传传传</b>                                                                                                            |                                                                                 | NODI [E]       | 经存在条件             | NODI [E]          | ( 12       |     |           |        |
| 00400 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMEN  | 技术技术技术<br>TI                                                                                                                                                                                | ***                                                                                                                     | ****<br>****                                                                    | 6.0<br>MINIMUM | 经保持转移             | 9.0<br>MAXIMUM    | SU         |     | QTRLY     | RANG-  |
| IL & GREASE                                       | SAMPLE<br>MEASUREMEN  | *****                                                                                                                                                                                       | ****                                                                                                                    |                                                                                 | <b>长林林林林</b>   | ***               | NODI [E]          | ( 20       |     |           |        |
| 00556 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMEN  | ******                                                                                                                                                                                      | ****                                                                                                                    | ****<br>****                                                                    | ***            | 计计计计计             | 15<br>DAILY M     | X PPM      |     | QTRLY     | GRAB   |
| OLYCHLORINATED                                    | SAMPLE<br>MEASUREME   | *******                                                                                                                                                                                     | *****                                                                                                                   |                                                                                 | ****           | 法法法法法             | NODI [E]          | ( 21       |     |           |        |
| SEE COMMENTS BELOW                                | PERMIT<br>REQUIREMEN  | *****                                                                                                                                                                                       | ****                                                                                                                    | ****                                                                            | 体体体体体体         | *****             | REPORT<br>DAILY M | 10         |     | QTRLY     | GRAB   |
| IN CONDUIT OR                                     |                       | ******                                                                                                                                                                                      | NODI [E]                                                                                                                | ( 03)                                                                           | *****          | ****              | ***               | ÷6         |     |           |        |
| SEE COMMENTS BELOW                                | PERMIT<br>REQUIREMEN  | ****                                                                                                                                                                                        | REPORT<br>DAILY MX                                                                                                      | MGD                                                                             | *******        | ******            | ****              | ****       |     | QTRLY     | ESTIM  |
|                                                   | SAMPLE<br>MEASUREME   | NT                                                                                                                                                                                          |                                                                                                                         |                                                                                 |                |                   |                   |            |     |           |        |
|                                                   | PERMIT<br>REQUIREMEN  | NT                                                                                                                                                                                          |                                                                                                                         |                                                                                 |                |                   |                   |            |     |           |        |
|                                                   | SAMPLE<br>MEASUREME   | NT                                                                                                                                                                                          |                                                                                                                         |                                                                                 |                |                   |                   |            |     |           |        |
|                                                   | PERMIT<br>REQUIREMENT | NT                                                                                                                                                                                          |                                                                                                                         |                                                                                 |                |                   |                   |            |     |           |        |
|                                                   | SAMPLE<br>MEASUREME   | NT                                                                                                                                                                                          |                                                                                                                         | 1.0                                                                             |                |                   |                   |            |     |           |        |
|                                                   | PERMIT<br>REQUIREMENT | NT                                                                                                                                                                                          |                                                                                                                         |                                                                                 |                |                   |                   |            |     |           | 12000  |
| NAME/TITLE PRINCIPAL EXECUTIVE                    |                       | ertify under penalty of law that th                                                                                                                                                         |                                                                                                                         |                                                                                 |                |                   |                   | TELEPHO    | NE  | D         | ATE    |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | on Prog. sub          | pared under my direction or sup-<br>assure that qualified personnel pro-<br>mitted. Based on my inquiry of the<br>those persons directly responsible<br>mitted is, to the best of my knowle | operly gather and evaluate<br>he person or persons who m<br>for gathering the informat<br>ledge and belief, true, accur | the information<br>sanage the system<br>ion, the informati<br>ate, and complete | m.             | TURE OF PRINCIPAL | 4                 | 13  448-59 |     | 2006      | 7 24   |
| TYPED OR PRINTED                                  | inc                   | m aware that there are significant<br>luding the possibility of fine and i                                                                                                                  | mprisonment for knowing                                                                                                 |                                                                                 |                | ICER OR AUTHORIZE |                   | EA NUMBE   | R   | YEAR I    | 10 DAY |
|                                                   | AAIM MOLATIC          | NO /D-/                                                                                                                                                                                     | -to                                                                                                                     |                                                                                 |                |                   | 1.23              |            |     |           |        |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE AT POINT OF DISCHARGE

ADDRESS ATTN: JEFFREY G. RUEBESAM

GENERAL ELECTRIC CORPORATION

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

SRO 5 DISCHARGE NUMBER

YEAR MO DAY

06

30

MAJOR (SUBR W ) F - FINAL

NON PROCESS/STORMWATER BYPASS

\*\*\* NO DISCHARGE | | \*\*\* NOTE: Read Instructions before completing this form.

MA0003891 PERMIT NUMBER

| 100 WOODLAWN                                                          | AVENUE                |         | PERI          | NIT NUMBE | R       | DISC       | HA |
|-----------------------------------------------------------------------|-----------------------|---------|---------------|-----------|---------|------------|----|
| PITTSFIELD                                                            |                       | 01201   |               | MOM       | ITORING | PERIOD     | ,  |
| FACILITY GENERAL ELECTI<br>LOCATION PITTSFIELD<br>ATTN: MICHAEL T CAN | MA                    |         | FROM 06       |           | O1 TO   | YEAR<br>06 | D  |
| PARAMETER                                                             |                       |         | TY OR LOADING |           |         |            | Q  |
|                                                                       |                       | AVERAGE | MAXIMUM       | UNITS     | MIN     | IMUM       | I  |
| PH                                                                    | SAMPLE<br>MEASUREMENT | ***     | ****          |           | NC      | DI [E]     |    |
| 00400 S 0 0                                                           | PERMIT                | ******  | ****          | ****      | 6.0     |            |    |

| PARAMETER                                         |                                               | QUANT                                                                                                                                                      | TTY OR LOADING                                                                                                          |                                                                                | QI             | UALITY OR CONCI   | ENTRATION         |           | NO.<br>EX | FREQUENCY<br>OF | SAMPLE |
|---------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------|-------------------|-------------------|-----------|-----------|-----------------|--------|
|                                                   |                                               | AVERAGE                                                                                                                                                    | MAXIMUM                                                                                                                 | UNITS                                                                          | MINIMUM        | AVERAGE           | MAXIMUM           | UNITS     | EX        | ANALYSIS        | TIPE   |
| 914                                               | SAMPLE<br>MEASUREMENT                         | ***                                                                                                                                                        | ***                                                                                                                     |                                                                                | NODI [E]       | ***               | NODI [E]          | ( 12)     | -         |                 |        |
| 00400 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                         | ******                                                                                                                                                     | ****                                                                                                                    | ****                                                                           | 6.0<br>MINIMUM | 本体体标本             | 9.0<br>MAXIMUM    | su        |           | QTRLY           | RANG-  |
| IL & GREASE                                       | SAMPLE<br>MEASUREMENT                         | ****                                                                                                                                                       | *****                                                                                                                   |                                                                                | ***            | ****              | NODI [E]          | ( 20)     |           |                 |        |
| 00556 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                         | ***                                                                                                                                                        | ****                                                                                                                    | ****                                                                           | ****           | ****              | DAILY M           | PPM       |           | GTRLY           | GRAB   |
| OLYCHLORINATED<br>BIPHENYLS (PCBS)                | SAMPLE<br>MEASUREMENT                         | ***                                                                                                                                                        | ****                                                                                                                    |                                                                                | ****           | ***               | NODI [E]          | ( 21      |           |                 |        |
| 39516 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                         | ****                                                                                                                                                       | ***                                                                                                                     | ***                                                                            | ****           | ***               | REPORT<br>DAILY M | PPB       |           | GTRLY           | GRAB   |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLAN        | SAMPLE<br>MEASUREMENT                         | ***                                                                                                                                                        | NODI [E]                                                                                                                | ( 03)                                                                          | ***            | ***               | ***               | ¥.        |           |                 |        |
| 50050 S O O<br>SEE COMMENTS BELOW                 | PERMIT<br>REQUIREMENT                         | ***                                                                                                                                                        | REPORT<br>DAILY MX                                                                                                      | MGD                                                                            | *****          | ***               | ****              | ****      |           | GTRLY           | ESTIM  |
|                                                   | SAMPLE<br>MEASUREMENT                         |                                                                                                                                                            |                                                                                                                         |                                                                                |                |                   |                   |           |           |                 |        |
|                                                   | PERMIT<br>REQUIREMENT                         | 14 1 3 5                                                                                                                                                   |                                                                                                                         |                                                                                |                |                   |                   |           |           |                 |        |
|                                                   | SAMPLE<br>MEASUREMENT                         |                                                                                                                                                            |                                                                                                                         |                                                                                |                |                   | 75                |           |           |                 |        |
|                                                   | PERMIT<br>REQUIREMENT                         |                                                                                                                                                            |                                                                                                                         |                                                                                |                |                   |                   |           |           |                 |        |
|                                                   | SAMPLE<br>MEASUREMENT                         |                                                                                                                                                            |                                                                                                                         |                                                                                |                |                   |                   |           | 0.450000  |                 |        |
|                                                   | PERMIT<br>REQUIREMENT                         |                                                                                                                                                            |                                                                                                                         |                                                                                |                |                   |                   |           |           |                 |        |
| NAME/TITLE PRINCIPAL EXECUTIVE                    |                                               | under penalty of law that th                                                                                                                               |                                                                                                                         |                                                                                |                |                   |                   | TELEPHON  | NE.       | D/              | ATE    |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | to assure<br>submitte<br>or those<br>submitte | l under my direction or supe<br>that qualified personnel prod. Based on my inquiry of the<br>persons directly responsible<br>d is, to the best of my knowl | operly gather and evaluate<br>ne person or persons who m<br>for gathering the informati<br>edge and belief, true, accur | the information<br>amage the system<br>ion, the informati<br>ate, and complete | m.             | TURE OF PRINCIPAL | 41                | 3 ,448-59 |           |                 | 7 24   |
| TYPED OR PRINTED                                  |                                               | re that there are significant<br>the possibility of fine and i                                                                                             |                                                                                                                         |                                                                                |                | CER OR AUTHORIZE  |                   | A NUMBER  | R         | YEAR N          | O DAY  |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE AT POINT OF DISCHARGE.

# Attachment C

# NPDES Biomonitoring Report July 2006





July 31, 2006

Mr. Jeffrey Nicholson GE Corporate Environmental Programs 159 Plastics Avenue Pittsfield, MA 01201

Re: NPDES Biomonitoring Report for July 2006

Submission #: R2632318

Dear Mr. Nicholson:

Enclosed is our report on the Whole Effluent Toxicity testing conducted in July 2006. The Outfall Composite samples were collected on 7/10/06 at 11:00 am. The Housatonic River samples were collected on 7/10/06 at 8:15 am. The Outfall Composite and Housatonic River samples were analyzed at Columbia Analytical Services for total cyanide, ammonia, total organic carbon, total phosphorus, chloride, total solids, total suspended solids, total residual chlorine, and total metals. Dissolved metals were analyzed for only on the Outfall Composite samples. Results are presented in Appendix 2. The Outfall Composite and Housatonic River samples were sent directly by General Electric to Aquatec Biological Services for the acute aquatic toxicity testing including the analysis of alkalinity, hardness, specific conductance, and pH. Results are presented in Appendix 1.

Should you have any questions please contact me at (585)288-5380 x130.

Thank you for allowing us to provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Carlton Beechler Project Manager

enc.

CC: Jill Piskorz, Pat Fuse and Nicole Evans vial email.

## NPDES BIOMONITORING REPORT

# GENERAL ELECTRIC COMPANY Pittsfield, MA NPDES PERMIT MA 0003891

Monthly Acute Toxicity Monitoring
Dry Weather Conditions
July 2006

#### WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

| Executed on | (Date) | (Authorized Signature)                                    |
|-------------|--------|-----------------------------------------------------------|
|             |        | Michael T. Carroll                                        |
|             |        | General Electric Co. – Pittsfield, MA<br>Permit MA0003891 |

Prepared by: Carlton R. Beechler

July 31, 2006

#### TABLE OF CONTENTS

|      |                                          | <u>PAGE</u> |
|------|------------------------------------------|-------------|
| I.   | Summary                                  | 1           |
| II.  | Review of Toxicity Analytical Results    | 2           |
| III. | Review of Wastewater Sampling Procedures | 3           |
| IV.  | Review of Individual Discharges          | 5           |

## Table I – Summary of Analytical Test Results

#### Appendices:

- 1. Chemical and Acute Toxicity Data from Aquatec Biological Sciences
- 2. Laboratory Reports from Columbia Analytical Services, Inc. and O'Brien & Gere, Inc.
- 3. Chain of Custody Forms

#### I. Summary

On July 9-10, 2006 sampling of wastewater discharges from the General Electric Company facility in Pittsfield MA was conducted in accordance with the dry weather toxicity testing requirement of the GE NPDES Permit MA0003891. Composite samples were collected from GE outfalls 001, 005-64T, 005-64G and 09B over a 24-hour period. These composite samples were combined in a flow-proportioned manner to generate a single wastewater sample that was shipped to Aquatec Biological Sciences in Williston, Vermont. A grab sample of Housatonic River water, to be used as dilution water in the toxicity test, was collected upstream of the GE discharges on July 10, 2006 and shipped to AquaTec along with the wastewater composite. AquaTec dechlorinated the composite sample prior to the acute toxicity test following the toxicity reduction procedures summarized in a letter dated November 11, 1993 to EPA Region I from JG Ruebesam of General Electric Company. The composite wastewater sample and the dilution water sample were tested for chemical constituents by Aquatec Biological Sciences and Columbia Analytical Services. The analytical results are summarized in Table I and the detailed laboratory test data are include as Appendices to this report. As a result of land transfer documents executed on April 27, 2005 and recorded in the Berkshire County Registry of Deeds on May 2, 2005, Outfalls 001 and 004 were transferred to the Pittsfield Economic Development Authority (PEDA). Outfalls 001 and 004 DMRs will no longer be submitted under the GE NPDES Permit No. MA0003891. However, GE's NPDES Permit requires that the metal and toxicity composites to be made by compositing samples from the following outfalls: 001, 004, 005, 007, and 009. These two composites will continue to include an aliquot of water from outfall 001 and outfall 004, and will be reported on GE's DMR until further actions by the Agencies.

The results from Aquatec Biological Sciences for the acute toxicity test on the wastewater discharge sample indicated a No Observed Acute Effect Level (NOAEL) of 100%.

#### II. Review of Toxicity Test Results

The wastewater discharge sample collected on July 9-10, 2006 was tested for 48-hour acute toxicity using Daphnia pulex organisms. The sample did not require dechlorination with sodium thiosulfate ( $Na_2S_2O_3$ ) prior to toxicity testing. Aquatec Biological Sciences reported the results of this toxicity testing as follows:

| Effluent toxicity as NOAEL =     | 100%  |
|----------------------------------|-------|
| Effluent toxicity as $LC_{50} =$ | >100% |

No limit is established for wet weather NOAEL in the GE NPDES permit.

The following table summarizes the results of the control sample analyses performed by AquaTec during the acute toxicity bioassay:

| Control Analysis                             | Result                      |
|----------------------------------------------|-----------------------------|
| Survival in 100% dilution water              | 96%                         |
| Survival in laboratory water                 | 96%                         |
| Survival in laboratory water                 |                             |
| with 100 mg/L sodium thiosulfate             | 96%                         |
| LC <sub>50</sub> for Daphnia pulex in sodium |                             |
| chloride reference toxicant solution         | 3.215g NaCl/L July 11, 2006 |

The Daphnia survival rates in control solutions of upstream dilution water, laboratory water and reference toxicant solution were within acceptable limits, indicating that the results of the toxicity test are valid.

#### III. Review of Wastewater Sampling Procedures

Composite samples of the individual NPDES wastewater discharges were collected over a 24-hour period. These samples were composited in a flow-weighted manner to generate a single combined discharge sample for toxicity testing and chemical analysis.

The 24-hour composite samples from the individual discharges were collected as follows:

Each automatic sampler (at outfall 001, 64T, 64G, and 09B) was programmed to collect approximately 7 liters of wastewater into a 10-liter glass container in a time-proportioned manner over a 24-hour period. Outfalls 004, 007, and 09A have been plugged and no longer flow.

All sample containers were packed in ice or refrigerated to keep the wastewater samples cold during the 24-hour collection period.

Flow meter readings were taken at the beginning and end of the 24-hour collection period to determine the total 24-hour flow for each wastewater discharge.

At the end of the 24-hour collection period, the discharge samples were taken to Building 64G where OB&G personnel composited these samples, in a flow weighted manner, to generate a single combined sample for the acute toxicity test and the chemical analyses, as follows:

The proportions of each individual discharge sample needed to produce a single combined sample were calculated from the flow measurements. The calculated sample volumes were then transferred from their original collection containers to a 2.5 or 5 gallon mixing container. The combined discharge sample was then split into various containers for toxicity testing and chemical analyses. These containers were shipped by vendor courier to AquaTec for toxicity testing and by FedEx (overnight) to Columbia Analytical Services for chemical analyses. All samples were chilled with ice packs during shipment.

A grab sample of Housatonic River water was collected on the second day of sampling at the Lyman Road Bridge in Hinsdale, MA, upstream of the GE site. This sample was split for chemical analysis and toxicity testing in a similar manner as the combined effluent sample (see above).

Details of the times and dates of sample collection as well as the names of the individuals collecting and transporting the samples are provided on the chain of custody forms in Appendix 3 of this report.

#### IV. Review of Individual NPDES Discharges

The following is a brief description of each of the seven outfalls that are monitored for acute and chronic toxicity in accordance with NPDES Permit MA0003891 issued to the General Electric Company, Pittsfield, MA.

- 1. Outfall 001 is permitted to discharge storm water runoff from the oil/water separator in Building 31W to Silver Lake.
- 2. Outfall 004 is permitted to discharge storm water runoff to Silver Lake. (Outfall plugged)
- 3. Outfall 005 is permitted to discharge contact cooling water, non-contact cooling water, treated process water and storm water runoff from the Wastewater Treatment Plant in Building 64T, and treated groundwater from the Groundwater Treatment Plant in Building 64G to the Housatonic River. Monitoring samples are collected separately from the effluents of 64G and 64T. Both samples are included in the flow composite sample used for toxicity testing.
- 4. Outfall 007 is permitted to discharge stormwater runoff to the Housatonic River. (Outfall plugged)
- 5. Outfall 09A is permitted to discharge non-contact cooling water and stormwater runoff to Unkamet Brook. (Outfall plugged)
- 6. Outfall 09B is permitted to discharge non-contact cooling water, treated process water and stormwater runoff from the oil/water separator in Building 119W to Unkamet Brook.

Table I – Summary of Analytical results for

# NPDES Outfall Composite Sample and Housatonic River Dilution Water July 9-10, 2006

Aquatic Toxicity Results:

No Observed Effect Level (NOAEL) =

100%

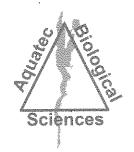
LC50 =

>100%

Chemical Analyses: (all results are mg/L unless otherwise indicated)

|                              |            | Effluent     | Housatonic   |
|------------------------------|------------|--------------|--------------|
| Parameter Tested             | Laboratory | Composite    | River        |
| Ammonia                      | CAS        | 0.487        | ND (0.0500)  |
| Chloride                     | CAS        | 210          | 18.0         |
| Total Alkalinity             | CAS        | 371          | 94.3         |
| Total Organic Carbon         | CAS        | 6.10         | 7.01         |
| Total Phosphorus             | CAS        | ND (0.0500)  | 2.14         |
| Total Solids                 | CAS        | 739          | 148          |
| Total Suspended Solids       | CAS        | ND(1.00)     | 2.50         |
| Hardness                     | Aquatec    | 374          | 102          |
| Spec. Conductance (umhos)    | Aquatec    | 1360         | 257          |
| pH (SU)                      | Aquatec    | 7.9          | 7.6          |
| TRC (start of toxicity test) | Aquatec    | ND           | ND           |
|                              |            |              |              |
| Cyanide                      | CAS        | 0.0500       | ND (0.0100)  |
| Aluminum, total              | CAS        | ND(0.100)    | ND (0.100)   |
| Aluminum, dissolved          | CAS        | ND (0.100)   | NA           |
| Cadmium, total               | CAS        | ND (0.00500) | ND (0.00500) |
| Cadmium, dissolved           | CAS        | ND (0.00500) | NA           |
| Chromium, total              | CAS        | ND (0.0100)  | ND (0.0100)  |
| Chromium, dissolved          | CAS        | ND (0.0100)  | NA           |
| Copper, total                | CAS        | ND (0.0200)  | ND (0.0200)  |
| Copper, dissolved            | CAS        | ND (0.0200)  | NA           |
| Lead, total                  | CAS        | ND (0.00500) | ND (0.00500) |
| Lead, dissolved              | CAS        | ND (0.00500) | NA           |
| Nickel, total                | CAS        | ND (0.0400)  | ND (0.0400)  |
| Nickel, dissolved            | CAS        | ND (0.0400)  | NA           |
| Silver, total                | CAS        | ND (0.0100)  | ND (0.0100)  |
| Silver, dissolved            | CAS        | ND (0.0100)  | NA           |
| Zinc, total                  | CAS        | ND (0.0200)  | ND (0.0200)  |
| Zinc, dissolved              | CAS        | ND (0.0200)  | NA           |
| pH (SU)                      | OB&G       | 7.81         | 7.78         |
| Hardness                     | Aquatec    | 374          | 102          |

All results are mg/L unless otherwise indicated.


ND-Not detected (Number in parentheses is detection limit.)

NA – Not analyzed

# APPENDIX 1

Chemical and Acute Toxicity Data

Aquatec Biological Sciences



# **Aquatec Biological Sciences**









July 17, 2006

Mr. Carl Beechler Columbia Analytical Services, 1 Mustard Street – Suite 250 Rochester, NY 14609

Dear Mr. Beechler:

Enclosed please find one bound and one unbound copies of our report of the results for whole effluent toxicity testing of samples received from GE Pittsfield, Massachusetts on July 10, 2006.

According to the Chain-of-Custody documentation the samples for Whole Effluent Toxicity (WET) Testing were collected on July 10, 2006. The samples were transported to Aquatec Biological Sciences, Inc. by courier and delivered on the same day. The effluent sample (Sample 32272) was logged in for the acute 48-hour static toxicity test with *Daphnia pulex*. The receiving water sample (Sample 32273) was logged in for dilution water. A subsample of each sample was checked for residual chlorine (not detected) and for alkalinity and hardness measurements at Aquatec Biological Sciences, Inc. The toxicity test was started on July 11, 2006, within the specified holding time.

At the conclusion of the toxicity test on July 13, 2006, a final count of surviving organisms was completed. The average survival was 92 - 100 percent in all test concentrations. Acute toxicity to *Daphnia pulex* was not detected, and the 48-hour LC50 reported as >100% effluent (Section 4.1 of the report).

If you have any questions regarding the report, please call Dr. Philip C. Downey or me.

Sincerely

John Williams

Manager, Environmental Toxicology

This report consists of the following numbered pages:

1-43

Whole Effluent Toxicity Testing
Of Wastewaters Discharged from
The General Electric Plant
Pittsfield, Massachusetts

Samples Collected in July 2006

Submitted to:
General Electric
Area Environmental & Facility Programs
100 Woodlawn Avenue
Pittsfield, Massachusetts 01201

SDG number: 9665

Effluent ID: Outfall Composite A7407C Aquatec sample number: 32272

Receiving water ID: Housatonic River A7406R Aquatec sample number: 32273

Study Director: John Williams

July 17, 2006

Submitted by:

Aquatec Biological Sciences, Inc. 273 Commerce Street Williston, Vermont 05454

Phone: (802) 860-1638 Fax: (802) 860-1638

Accreditation: NH Environmental Laboratory Accreditation Program NELAP / NELAC accredited for the requested analysis.

#### Signatures and Approval

#### Submitted by:

Aquatec Biological Sciences, Inc.

273 Commerce Street Williston, Vermont 05454 Phone: (802) 860-1638 Fax: (802) 860-1638

Study Director John Williams

Quality Assurance Officer Philip C. Downey, Ph. D.

7/18/06

Date

# **Whole Effluent Toxicity Test Report Certification**

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

| Executed on: Date: 7/18/06        |
|-----------------------------------|
|                                   |
|                                   |
| Authorized signature              |
|                                   |
| John Williams<br>Name             |
| Name                              |
| ,                                 |
| Manager, Environmental Toxicology |
| Title                             |
|                                   |
| Aquatec Biological Sciences, Inc. |
| Laboratory                        |

# **Table of Contents**

|               |                                                 | Page    |
|---------------|-------------------------------------------------|---------|
| Signatures a  | and Approval                                    | 2       |
|               | ent Toxicity Test Report Certification          | 3       |
| List of Table | · · · · · · · · · · · · · · · · · · ·           | 3<br>5  |
| Summary of    | Static Acute Toxicity Test With Daphnia pulex   | 6       |
| <b>,</b>      | , ,                                             |         |
| 1.0 Introduc  | ction                                           |         |
|               | 1.1 Background                                  | 7       |
|               | 1.2 Objective of the General Electric Study     | 7       |
|               | The objective of the contrat Lieuthe stady      | ,       |
| 2 0 Material  | s and Methods                                   |         |
| Zio matoriar  | 2.1 Protocol                                    | 7       |
|               | 2.2 Effluent and receiving water samples        | 8       |
|               | 2.3 Control water                               | 8       |
|               | 2.4 Test organism                               | 8       |
|               | 2.5 Test procedure                              | 9       |
|               | ·                                               | 9       |
|               | 2.6 Test monitoring 2.7 Reference toxicant test | 9<br>10 |
|               | 2.7 Reference toxicant test                     | 10      |
|               |                                                 |         |
| 0.0.04-4:-4:- | _                                               |         |
| 3.0 Statistic | -                                               | 40      |
|               | 3.1 Statistical protocol                        | 10      |
|               |                                                 |         |
| 4.0 Results   | A A process of the total                        | 40      |
|               | 4.1 Effluent toxicity test                      | 10      |
|               | 4.2 Reference toxicant test                     | 11      |
|               |                                                 |         |
| 5.0 Qualifier |                                                 |         |
|               | 5.1 Qualifiers and Special Conditions           | 11      |
|               |                                                 |         |
| References    |                                                 | 12      |
|               |                                                 |         |
|               |                                                 |         |
| Appendix 1    | Chain-of-Custody Documentation                  |         |
| Appendix 2    | Summary of Test Conditions                      |         |
| Appendix 3    | U.S. EPA Region 1 Toxicity Test Summary and     |         |
|               | Statistical Flow Chart                          |         |
| Appendix 4    | Bench Data, Daphnia pulex Acute Toxicity Test   |         |
| Appendix 5    | Standard Reference Toxicant test Control Chart  |         |
| Appendix 6    | SOP TOX2-001, Standard Operating Procedure for  |         |
| 1-1           | Daphnid (Ceriodaphnia dubia, Daphnia magna,     |         |
|               | and <i>Daphnia pulex</i> ) Acute Toxicity Test  |         |
|               |                                                 |         |

## **List of Tables**

|         |                                                                                                                                                                | Page |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 1 | Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)                       | 13   |
| Table 2 | The water quality measurements recorded during the 48-hour static toxicity test for <i>Daphnia pulex</i> exposed to General Electric Pittsfield Plant effluent | 14   |
| Table 3 | Cumulative percent mortalities recorded during the 48-hour static toxicity test for <i>Daphnia pulex</i> exposed to General Electric Pittsfield Plant effluent | 15   |

## Summary of Static Acute Toxicity Test with Daphnia pulex

General Electric Sponsor:

US EPA-821-R-02-012. Methods for Measuring the Protocol title:

> Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, 5th Ed., October

2002. Method 2021.0

Aquatec SDG: 9665

Composite effluent from the General Electric Test material:

Company located in Pittsfield, Massachusetts

**OUTFALL COMPOSITE A7407C** GE sample ID:

Water from the Housatonic River (grab sample) Dilution water:

**HOUSATONIC RIVER A7406R** GE sample ID:

Dates collected: July 10, 2006

July 10, 2006 Date received:

July 11-13, 2006 Test dates:

100%, 75%, 50%, 35%, 15%, 5% effluent. Test concentrations:

Dilution water control (Housatonic River)

Laboratory control 1 (culture water)

Laboratory control 2 (culture water with sodium

thiosulfate)

Results: The 48-hour LC50 value was determined to be

>100% effluent. The Acute No-Observed-Effect-

Concentration (A-NOEC) was 100% effluent.

July 17, 2006

#### 1.0 Introduction

#### 1.1 Background

In 1972, amendments were made to the Clean Water Act (CWA) prohibiting the discharge of any pollutant from a point source to waters of the United States, unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Since the passing of the 1972 amendments to the CWA, significant progress has been made in cleaning up industrial wastewater and municipal sewage point source discharges. EPA defines point sources as discrete discharges via pipes or man-made ditches.

In 1984, the U.S. Environmental Protection Agency (EPA) released a national policy statement and a supporting document that recommended, where appropriate, effluent permit limits should be based on effluent toxicity as measured in aquatic toxicity tests. Generally, permits require that no toxic discharge occur in toxic amounts. The routine use of dilution-series toxicity tests and/or biologically-based criteria (i.e., invertebrate and vertebrate community studies) have become increasingly utilized to calculate or estimate the potential toxicity of a discharge.

EPA has the authority to delegate primary responsibility for the implementation, permitting, and enforcement of NPDES regulations to appropriate State regulatory agencies. Even when EPA delegates this authority to the states, EPA still maintains oversight responsibility.

#### 1.2 Objective of the General Electric Study

The objective of this study was to measure the acute toxicity of the composite wastewater discharged by the General Electric facility located in Pittsfield, Massachusetts to the Housatonic River. The water flea, *Daphnia pulex*, is exposed to effluent and dilutions of effluent under static conditions. *Daphnia pulex* is routinely used by regulatory agencies and by contract laboratories for toxicity testing and EPA has published guidance documents for the performance of this test (U.S. EPA, 2002).

A toxicity test was conducted from July 11-13, 2006 at Aquatec Biological Sciences, Inc. (Aquatec) located in Williston Vermont. Aquatec Biological Sciences, Inc. holds NELAC accreditation for the requested whole effluent toxicity test. All original raw data and the final report produced for this study are stored in Aquatec's archives in Williston, Vermont.

#### 2.0 Materials and Methods

#### 2.1 Protocol

Procedures used in this acute toxicity test followed those described in the Aquatec Standard Operating Procedure (SOP) TOX2-001, Daphnid Acute R5, May 4, 2006. This SOP generally follows the standard methodology presented in U.S. EPA. 2002 (EPA-821-R-02-012). *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*, 5<sup>th</sup> Ed.,

October 2002, Method 2021.0 (as summarized in Appendix 2 of this report). A copy of the SOP is located in Appendix 6 (Controlled document, please do not copy or distribute.)

Additional SOPs used in this study are outlined below:

| Title                                  | SOP Number | Revision Date          |
|----------------------------------------|------------|------------------------|
| Sample Acceptance                      | TOX1-017   | Rev. 4, February, 2004 |
| Hardness – total titrimetric method    | TOX1-011   | Rev. 3, May 2003       |
| Alkalinity – total titrimetric method  | TOX1-010   | Rev. 6, April 2004     |
| Thermo-Orion 145 A+ Conductivity Meter | TOX1-016   | Rev. 1, April 2004     |
| Dissolved oxygen                       | TOX1-006   | Rev. 7, April 2004     |
| pH measurement                         | TOX1-007   | Rev. 2, April 2004     |
| Salinity: refraction method            | TOX1-008   | Rev. 3, January, 2003  |

#### 2.2 Effluent and Receiving Water Samples

The effluent sample (Outfall Composite A7407C) was collected by GE personnel from July 9 - 10, 2006. The receiving water sample (Housatonic River A7406R) was a grab collected from the Housatonic River on July 10, 2006. Samples were delivered to Aquatec on the same day. Upon receipt at Aquatec on July 10, 2006, the temperature of the temperature blank contained within the cooler was 0.6°C. The effluent and receiving water were prepared for testing and characterized (Table 1). The receiving water was the dilution water for preparing effluent concentrations and was also the reference control for statistical comparisons.

#### 2.3 Control water

Laboratory control water for the toxicity test was a 1:1 mixture of laboratory reconstituted moderately hard water and 60-micron filtered river water collected from the Lamoille River, Vermont. This water was characterized for the following parameters: pH (7.2); dissolved oxygen (8.0 mg/L); conductivity (199 uS/cm). An additional dechlorination control (laboratory water with 0.2 N sodium thiosulfate added) was included in the test array, even though chlorine was not detected in the effluent sample.

#### 2.4 Test Organism

Daphnids (*Daphnia pulex*), less than 24-hours old were obtained from Aquatec laboratory cultures. The culture system consisted of several 1-liter glass beakers containing approximately 1-liter of culture medium and up to approximately 100 daphnids. The culture water was laboratory reconstituted moderately hard water. Prior to use, the culture water was characterized:

| Parameter                  | Result                      |
|----------------------------|-----------------------------|
| Total hardness (mg/L)      | Within range of 80-110 mg/L |
| Alkalinity (mg/L as CaCO₃) | Within range of 60-70 mg/L  |
| рН                         | Nominal 7.7 – 8.0           |

The culture area was maintained at a nominal temperature of 20°C (range 19 – 21°C) with a regulated photoperiod of 16 hours light and 8 hours of darkness.

Daphnid cultures were fed a combination of green algae (Selenastrum capricornutum) and YCT obtained from Aquatic BioSystems of Fort Collins, Colorado. The cultures were fed a ration of Selenastrum and YCT daily Monday through Friday. Daphnids were transferred to new culture medium weekly.

Approximately 24 hours before toxicity test initiation, all daphnid neonates were removed from the culture beakers. Offspring produced within 24 hours were used for toxicity testing.

#### 2.5 Test Procedures

Prior to initiating the toxicity test, a sub-sample of effluent and receiving water was decanted for subsequent alkalinity and hardness determination. A sub-sample was also check for presence of chlorine to determine whether dechlorination of effluent is required. Chlorine was not detected, therefore dechlorination of the effluent was not required. The sample was then aerated and warmed to test temperature.

The toxicity test was conducted at effluent concentrations of 100%, 75%, 50%, 35%, 15%, and 5% effluent. Test concentrations were prepared by diluting the appropriate volume of effluent with dilution water to a total volume of 400 mL. Test solutions were then decanted to five replicate 30-mL cups per concentration, each containing approximately 20 mL of test solution. Three sets of control replicates were also included in the test array, set up as the effluent replicates. The controls included: Housatonic River water (dilution control), a laboratory control (a mix of moderately hard water and Lamoille River, VT water), and a laboratory control with sodium thiosulfate added (dechlorination control). The dechlorination control was included in the test array even though residual chlorine was not detected in the effluent.

Prior to testing, daphnids less than 24-hours old were collected from the cultures, pooled in Carolina bowl, and fed. The test was initiated when the daphnid neonates were transferred to the replicate test cups, five daphnids per cup. The toxicity test cups were incubated to maintain temperature in the range of 19°C to 21 °C. The lighting cycle was 16 hours light and eight hours dark and a luminance of approximately 80 ft-c.

#### 2.6 Test Monitoring

The number of surviving daphnids was observed at approximately 24-hour intervals during the test, with the final count of surviving daphnids at approximately 48 hours. Temperature was measured daily in one replicate of each test treatment. The parameters of pH, dissolved oxygen, and conductivity were measured at the beginning and the end of the test.

Total hardness was measured by the EDTA titrimetric method and total alkalinity was measured by potentiometric titration to an endpoint of 4.5. The check for residual chlorine was performed with an acidified sample to which potassium iodide and starch indicator added. If chlorine was detected, the color was titrated away with 0.02 N sodium thiosulfate to determine the equivalent volume of 0.2 N sodium thiosulfate to add to effluent (if needed).

Dissolved oxygen was measured with a YSI Model 58 dissolved oxygen meter. A Beckman Phi 40 was used to measure pH. A Thermo-Orion Model 145 conductivity meter was used to measure conductivity. Salinity was measured with an Atago salinity refractometer.

#### 2.7 Reference Toxicant Test

A 48-hour standard reference toxicant (SRT) test was conducted concurrently with the effluent toxicity test. The SRT test was conducted as a quality control procedure to establish the health and sensitivity of the test organisms. The SRT included four concentrations of reagent grade sodium chloride (NaCl) with nominal concentrations of 0.75, 1.5, 3.0, 6.0, and 12 g NaCl/L. Four test replicates, each containing five daphnid neonates were tested at each concentration and the laboratory control.

#### 3.0 Statistics

#### 3.1 Statistical protocol

The concentration-response relationships observed were characterized by the median lethal concentration (LC50), which was the calculated concentration lethal to 50 percent of the test organisms. If no concentrations resulted in 50% mortality, the LC50 was reported as greater than the highest concentration effluent (in this case >100% effluent), by direct observation. If greater than 50 percent mortality was observed in any effluent treatment, then a computer program (TOXIS2) was used to calculate the LC50 value, following the U.S. EPA statistical flowchart (Appendix 3).

The Acute-No-Observable-Effect Concentration (A-NOEC) was determined statistically using multiple comparison tests (TOXIS2), with the receiving water control as the reference.

#### 4.0 Results

#### 4.1 Effluent Toxicity Test

Results of effluent and receiving water characterizations performed at Aquatec as part of the toxicity test are presented in Table 1. Water quality parameters measured during the toxicity test are presented in Table 2. Measured temperatures during the test were within the range of 19°C to 21°C. The percent mortality data for the toxicity test are presented in Table 3. Acute toxicity was not

NPDES Permit No. MA0003891

SDG: 9665 July 17, 2006

demonstrated during this evaluation. The 48-hour LC50 value was >100% effluent. The A-NOEC was 100% effluent.

#### **4.2 Reference Toxicant Test**

A standard reference toxicant (SRT) test was performed concurrently with the effluent toxicity test, using the same batch of daphnid neonates. The resulting 48-hour LC50, calculated by the Spearman-Karber method, was 3.215 g NaCl/L with 95% confidence intervals of 2.76 – 3.74 g/L. This LC50 value was within the Control Chart limits generated for tests in our laboratory.

#### 5.0 Qualifiers

#### 5.1 Qualifiers and Special Conditions

Qualifiers or special conditions were not applicable to the reported toxicity test.

NPDES Permit No. MA0003891 SDG: 9665

July 17, 2006

#### References

American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17<sup>th</sup> Edition

U.S. Environmental Protection Agency, 2002. 5<sup>th</sup> Edition. *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*. EPA-821-R-02-012.

July 17, 2006

Table 1. Results of the characterization of the General Electric Pittsfield Plant effluent and receiving water (Housatonic River).

| Parameter                                | Effluent<br>OUTFALL<br>COMPOSITE<br>A7407C | Receiving<br>Water<br>HOUSATONIC RIVER<br>A7406R |  |  |
|------------------------------------------|--------------------------------------------|--------------------------------------------------|--|--|
| Temperature                              | 21.0                                       | 21.0                                             |  |  |
| рН                                       | 7.9                                        | 7.6                                              |  |  |
| Alkalinity (as CaCO <sub>3</sub> ), mg/L | 340                                        | 88                                               |  |  |
| Hardness (as CaCO <sub>3</sub> ), mg/L   | 374                                        | 102                                              |  |  |
| Dissolved oxygen, mg/L                   | 8.4                                        | 8.2                                              |  |  |
| Specific conductivity, uS/cm             | 1360                                       | 257                                              |  |  |
| Salinity (°/ <sub>oo</sub> )             | 0                                          | 0                                                |  |  |
| Total residual chlorine (mg/L)           | ND                                         | ND                                               |  |  |

Note: Characterizations reflect conditions of sample after preparation for the toxicity test. ND = not detected

Table 2. Water quality measurements recorded during the 48-hour static toxicity test with *Daphnia pulex* exposed to General Electric Pittsfield Plant effluent, July 11-13, 2006.

| Test Concentration (% effluent) | Dissolved<br>Oxygen<br>pH (mg/L) |         |     |     |    |     |      |      |      |  |  |
|---------------------------------|----------------------------------|---------|-----|-----|----|-----|------|------|------|--|--|
|                                 | 0                                | 24      | 48  | 0   | 24 | 48  | 0    | 24   | 48   |  |  |
| Dechl. Control                  | 7.3                              | ••••    | 7.3 | 7.9 |    | 8.2 | 21.0 | 20.7 | 21.0 |  |  |
| Lab Control                     | 7.2                              | -       | 7.2 | 8.0 | -  | 8.2 | 21.0 | 20.9 | 21.0 |  |  |
| Dilution Control                | 7.6                              | <u></u> | 7.7 | 8.2 | -  | 8.2 | 21.0 | 20.6 | 20.8 |  |  |
| 5%                              | 7.7                              | **      | 7.8 | 8.4 | -  | 8.3 | 21.0 | 20.6 | 20.7 |  |  |
| 15%                             | 7.8                              | -       | 7.9 | 8.4 | -  | 8.3 | 21.0 | 20.6 | 20.7 |  |  |
| 35%                             | 7.9                              | -       | 8.1 | 8.4 | -  | 8.3 | 21.0 | 20.6 | 20.7 |  |  |
| 50%                             | 7.9                              | -       | 8.2 | 8.4 | -  | 8.3 | 21.0 | 20.7 | 20.7 |  |  |
| 75%                             | 7.9                              | -       | 8.3 | 8.4 | -  | 8.3 | 21.0 | 20.6 | 20.6 |  |  |
| 100%                            | 7.9                              | -       | 8.2 | 8.4 |    | 8.3 | 21.0 | 20.5 | 20.6 |  |  |

Measurements at time 0 were from a sub-sample of the prepared treatment. Measurements at time 48 were from the combined water from all replicates for each treatment.

Dechl. Control = laboratory water with sodium thiosulfate added (dechlorination control).

Lab Control = a mix of natural river water and moderately hard water. Dilution Control = receiving water (Housatonic River).

Table 3. Cumulative percent mortalities recorded during the 48-hour static acute toxicity test with *Daphnia pulex* exposed to General Electric Pittsfield Plant effluent, July 11-13, 2006.

| Effluent          | - Property of the Property of |   | 04 5        |          | *************************************** |     |    |          | 40        | L         | ******* |     |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------|----------|-----------------------------------------|-----|----|----------|-----------|-----------|---------|-----|
| Conc.             | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | В | 24-hou<br>C | ır<br>D  | E                                       | Avg | A  | В        | 48-1<br>C | hour<br>D | E       | Λ   |
| (%)               | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |             | <u> </u> | <u> </u>                                | Avg |    | <u>D</u> |           | <u> </u>  |         | Avg |
| Dechl.<br>Control | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 | 0           | 0        | 0                                       | 0   | 0  | 0        | 0         | 20        | 0       | 4   |
| Lab<br>Control    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 | 0           | 0        | 0                                       | 0   | 0  | 0        | 20        | 0         | 0       | 4   |
| Rec.<br>Control   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 | 0           | 0        | 0                                       | 0   | 0  | 0        | 0         | 0         | 0       | 0   |
| 5%                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 | 0           | 0        | 0                                       | 0   | 0  | 0        | 0         | 0         | 0       | 0   |
| 15%               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 | 0           | 0        | 0                                       | 0   | 0  | 0        | 0         | 0         | 0       | 0   |
| 35%               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 | 0           | 0        | 0                                       | 0   | 20 | 0        | 0         | 0         | 20      | 8   |
| 50%               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 | 0           | 0        | 0                                       | 0   | 0  | 0        | 0         | 20        | 0       | 4   |
| 75%               | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 | 0           | 0        | 0                                       | 0   | 20 | 0        | 0         | 0         | 0       | 4   |
| 100%              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 | 0           | 0        | 0                                       | 0   | 0  | 0        | 0         | 20        | 0       | 4   |

Dechl. Control = laboratory water with sodium thiosulfate added (dechlorination control).

Lab Control = a mix of natural river water and moderately hard water. Dilution Control = receiving water (Housatonic River).

Percent mortality = (# dead/5) X 100

# Appendix 1 Chain-of-Custody Documentation

A. TOX

Page 1 of 2

| Relinquished by: (signature) D/ |                                                                                                                |                          | Mach 1 Manusky 3-10                                                                                                                                                                                                                                                  | Relinquished by: (signature) DA                                                    |   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Housatonic River A 7406 K | A              | Outfall Composite A7407C | 1,2                                                                             | ENTIFICATION                        | Contact Name: Mark Wasnewsky | Telephone: (413) 494-6709 | City/State/Zip: Pittsfield, MA 01201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000 East Street, Gate 64 | Address: O'Brien & Gere        | Name: General Electric Company | COMPANY INFORMATION                   |                                            |                             |
|---------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|--------------------------|---------------------------------------------------------------------------------|-------------------------------------|------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------|--------------------------------|---------------------------------------|--------------------------------------------|-----------------------------|
| DATE TIME                       |                                                                                                                | DATE TIME                | -10-06 1135                                                                                                                                                                                                                                                          | DATE TIME                                                                          |   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 812                       | 815<br>AM      | II AM                    | 7-10-06 11 0M                                                                   |                                     | Quote #:                     | NPDES Permit #: MA0003891 | Sampler Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Project Number: 06004     | Outfall Composite              | Project Name:                  | COMPANY                               | 3                                          | _                           |
| Received by: (signature)        | (orginalure)                                                                                                   | Received by: (signature) | Stewed Planshall                                                                                                                                                                                                                                                     | Received by: (signature)                                                           |   |                                         | and the second s | Receiving                 | Receiving      | ✓ Effluent               | € Effluent                                                                      | GRAB COMPOSITE MATRIX               | 10/05 Client Code: GEPITTS   | #: MA0003891              | Sampler Name(s): Markulasacsk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er: 06004                 | posite                         | Project Name: GE PITTSFIELD    | COMPANY'S PROJECT INFORMATION         | Chain-of-Cu                                | \auatec Biolo               |
|                                 | Notes to Lab: Ambient cooler temperature: (), (c °C. Dechlorinate the effluent sample if chlorine is detected. | report.                  | become dislodged during shipment. Nest the sample bottles to ensure that they do not become dislodged during shipment. Nest the samples in sufficient ice to maintain 0°C – 6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the | NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the | • |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Residual Chlorine   | Dilution Water | Total Residual Chlorine  | Daphnia pulex 48-h Static Acute Toxicity (EPA Method 2021.0). Log in for A48DPS | . ANALYSIS (detection limits, mg/L) | Hand Delivered: Yes No       | Date Shipped: 7-10-06     | Advanced in the control of the contr | Airbill Number:           |                                | Carrier:                       | SHIPPING INFORMATION                  | Chain-of-Custody Record                    | Aquatec Biological Sciences |
|                                 | ature: 0 %                                                                                                     |                          | he sample bo<br>it the sample:<br>iperatures ex                                                                                                                                                                                                                      | the labels (Da                                                                     |   | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                |                          |                                                                                 | NC                                  | 1 gal 1/2 gal                |                           | Plastic Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                | 7°C 7°C                        | VOI                                   |                                            |                             |
|                                 | °C. Dechl                                                                                                      | 1                        | ottles to ens<br>s in sufficier<br>ceeding 6°C                                                                                                                                                                                                                       | ate, time, ini                                                                     |   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                |                          |                                                                                 | NUMBER OF (                         | gal 1L                       |                           | stic Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | ·                              |                                | VOLUME/CONTAINER TYPE<br>PRESERVATIVE | TA W                                       | 27.<br>VA/i                 |
|                                 | orinate the                                                                                                    |                          | ure that then<br>it ice to mai<br>will be qua                                                                                                                                                                                                                        | tials) and co                                                                      | 6 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                |                          |                                                                                 | CONTAINERS                          | 40 ml 25                     | G                         | Glass An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                  | H <sub>2</sub> SO <sub>4</sub> | - 1                            | ME/CONTAINER TO                       | TEL: (802) 860-1638<br>FAX: (802) 658-3189 | 273 Commerce Street         |
|                                 | effluent                                                                                                       | 9                        | / do not<br>ntain 0°C –<br>lifted in the                                                                                                                                                                                                                             | )ver the                                                                           |   |                                         | Withdraw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           |                | <u> </u>                 |                                                                                 | RS                                  | 250 ml 0.5 L                 | Gass                      | Amber   Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u><br>              | HNO <sub>3</sub>               |                                | PE/                                   | -1638<br>-3189                             | Street                      |

# Appendix 2 Summary of Test Conditions

Client: GENERAL ELECTRIC, PITTSFIELD, MA, MA0003891 SDG: 9665

Test Description: Daphnid, Daphnia pulex, acute toxicity test

ASSOCIATED PROTOCOL: EPA 2002, 5th ed. (EPA-821-R-02-012) Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Method 2002.0 Static, non-renewal 1. Test type:  $20 + 10^{\circ}$ C 2. Test temperature: Ambient laboratory illumination 3. Light quality: 16 hr. light, 8 hr. dark 4. Photoperiod: 30 ml 5. Test chamber size: 15-20 ml / replicate 6. Test solution volume: None 7. Renewal of test concentrations: Less than 24 h 8. Age of test organisms: 5 9. No. organisms / test chamber: 5

10. No. of replicate chambers / concentration:

11. No. of organisms / concentration: 20

Feed 0.1 ml of YTC and algal suspension prior 12. Feeding regime:

to testing. Not fed during test.

None 13. Cleaning:

None 14. Aeration:

Receiving Water (Housatonic River) 15. Dilution water:

5, 15, 35, 50, 75, 100% 16. Test concentrations:

1:1 mix of reconstituted moderately hard water 17. Laboratory control:

and Lamoille River water. Dechlorination

control.

48 h 18. Test duration:

Day 0: temperature, DO, pH, and conductivity. 19. Monitoring: Day 1: temperature, DO, pH, and conductivity.

Day 2: temperature, DO, pH Hardness, alkalinity, salinity, TRC

Biological monitoring daily (survival)

Survival 19. End points:

Sodium chloride 48-h LC50 20. Reference toxicant test:

90% or greater 21. Test acceptability

Acute: 48 h LC50 (Point estimate by EPA 22. Data interpretation:

statistical flowchart using TOXIS 2) and A-NOEC by hypothesis test statistics compared to the receiving water control (EPA statistical

flowchart using TOXIS 2)

# Appendix 3 U.S. EPA Region 1 Toxicity Test Summary and Statistical Flow Chart

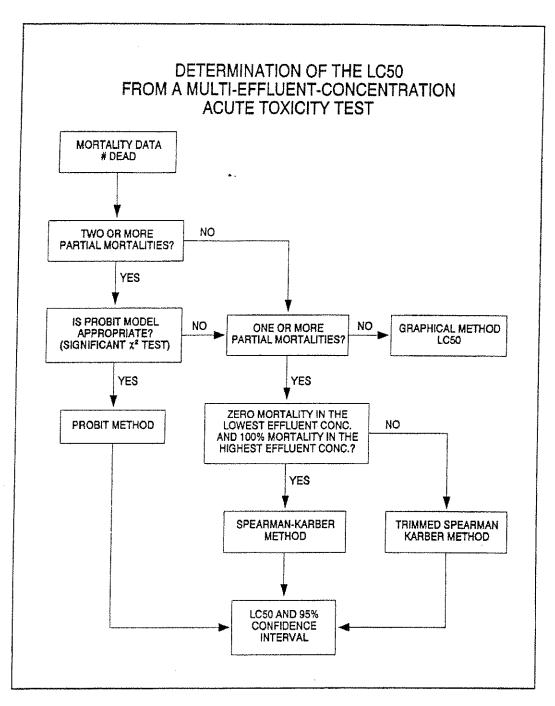



Figure 6. Flowchart for determination of the LC50 for multi-effluent-concentration acute toxicity tests.

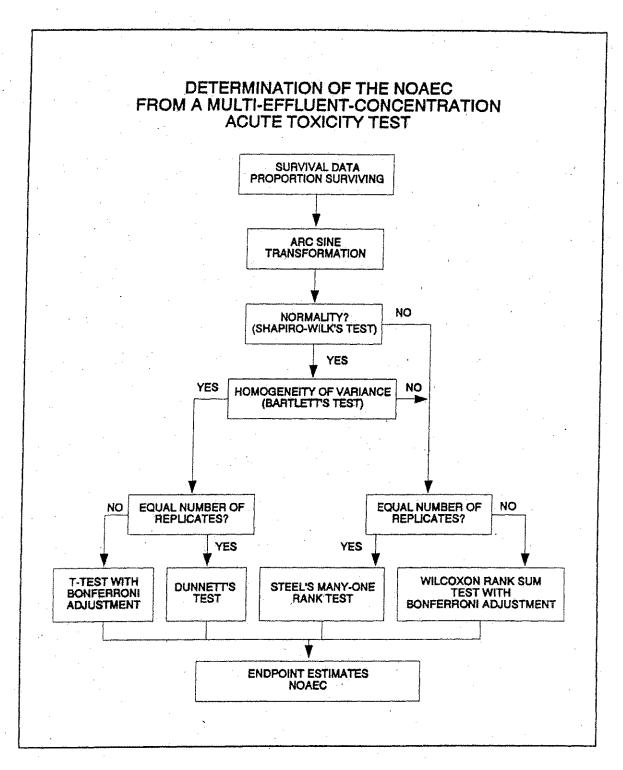



Figure 13. Flowchart for analysis of multi-effluent-concentration test data.

# Appendix 4 Bench Data, *Daphnia pulex* Acute Toxicity Test

Aquatec Biological Sciences, Inc.

Test Number: 48295

Test Date: 7/11/06 Sample Date: 7/10/06 Species: Daphnia pulex
Test Type: Acute - 48 hours

Test Material: Effluent - Industrial

Source: MA003891

General Electric Company
Pittsfield, MA

|                 |                | SUMM                  | IARY      |       |      |                    |        |
|-----------------|----------------|-----------------------|-----------|-------|------|--------------------|--------|
| end Point       | =======<br>Day | Transformation        | Conc      | #Reps | Mean | =========<br>StDev | * Surv |
|                 |                |                       |           | -     |      |                    |        |
| roportion Alive | 2              | Arc sine sqrt w/ adj. |           |       |      |                    |        |
| •               |                |                       | 0.000 B   | 5     | 1.30 | .106               |        |
|                 |                | Х                     | 0.000 D   | 5     | 1.35 | 0.000              |        |
|                 |                | X                     | 5.000 D   | 5     | 1.35 | 0.000              |        |
|                 |                | X                     | 15.000 D  | 5     | 1.35 | 0.000              |        |
|                 |                | X                     | 35.000 D  | 5     | 1.25 | .130               |        |
|                 |                | X                     | 50.000 D  | 5     | 1.30 | .106               |        |
|                 |                | X                     | 75.000 D  | 5     | 1.30 | .106               |        |
|                 |                | x                     | 100.000 D | 5     | 1.30 | .106               |        |
| roportion Alive | 2              | No transformation     |           |       |      |                    |        |
| *               |                |                       | 0.000 B   | 5     | . 96 | .089               |        |
|                 |                |                       | 0.000 D   | 5     | 1.00 | 0.000              |        |
|                 |                |                       | 5.000 D   | 5     | 1.00 | 0.000              |        |
|                 |                |                       | 15.000 D  | 5     | 1.00 | 0.000              |        |
|                 |                |                       | 35.000 D  | 5     | . 92 | .110               |        |
|                 |                |                       | 50.000 D  | 5     | . 96 | .089               |        |
|                 |                |                       | 75.000 D  | 5     | . 96 | .089               |        |
|                 |                |                       | 100.000 D | 5     | .96  | .089               |        |

#### X = indicates concentrations used in calculations

| ************************************** | ****  |                                         |             |          |        |      |             | ***** |
|----------------------------------------|-------|-----------------------------------------|-------------|----------|--------|------|-------------|-------|
| 1                                      |       | - HYPOTHES                              | SIS TEST -  |          |        |      |             | ļ     |
|                                        | ===== | ======================================= |             |          |        |      | *========   |       |
| End Point                              | Day   | Transformation/Analysis                 | NOEC        | LOEC     | TU     | MSE  | MSD         | ,     |
| Proportion Alive                       | 2     | Arc sine sqrt w/ adj.                   | <del></del> |          |        |      | <del></del> |       |
|                                        |       | Steel many-one rank test                | >100.000    | >100.000 | < 1.00 | .007 | .121        |       |

| *********          | =====  |        |              |           | ***====== |        | *====================================== |                 |
|--------------------|--------|--------|--------------|-----------|-----------|--------|-----------------------------------------|-----------------|
| 1                  |        |        | - PROPORTION | POINT EST | IMATE ~   |        |                                         | 1               |
|                    | ====== |        |              | *****     |           |        |                                         | ## 200 100 ±= = |
| End Point          | Day    | Method |              | P         | Conc      | 95% CI | TU                                      |                 |
| Describion 33 into |        | Probit |              |           |           |        | <del></del>                             |                 |
| Proportion Alive   | 2      | FIGDIC |              | LC 50     | > 100.000 | -      | < 1.00                                  |                 |

WATER FLEA TEST DATA

## 

Test Number: 48295

Test Number: 48295 ( ) Chronic (x) Acute 48 hours
Test Date: 11-Jul-06
Source: MA0003891 Test Material: EFF2 (%)

|          |     | Cont.   |       | Dai | ily | Sur | viv | al | Prop | Total | Max   |
|----------|-----|---------|-------|-----|-----|-----|-----|----|------|-------|-------|
| Conc     | Rep | No. Sex | Start |     |     |     |     |    | _    | Young | Young |
|          |     |         |       |     |     |     |     |    |      |       |       |
| 0.00 B   | 1   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 0.00 B   | 2   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 0.00 B   | 3   | F       | 5     | 4   |     |     |     |    | .80  |       |       |
| 0.00 B   | 4   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 0.00 B   | 5   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 0.00 D   | 1   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 0.00 D   | 2   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 0.00 D   | 3   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 0.00 D   | 4   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 0.00 D   | 5   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 5.00 D   | 1   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 5.00 D   | 2   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 5.00 D   | 3   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 5.00 D   | 4   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 5.00 D   | 5   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 15.00 D  | 1   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 15.00 D  | 2   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 15.00 D  | 3   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 15.00 D  | 4   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 15.00 D  | 5   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 35.00 D  | 1   | F       | 5     | 4   |     |     |     |    | .80  |       |       |
| 35.00 D  | 2   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 35.00 D  | 3   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 35.00 D  | 4   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 35.00 D  | 5   | F       | 5     | 4   |     |     |     |    | .80  |       |       |
| 50.00 D  | 1   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 50.00 D  | 2   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 50.00 D  | 3   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 50.00 D  | 4   | F       | 5     | 4   |     |     |     |    | .80  |       |       |
| 50.00 D  | 5   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 75.00 D  | 1   | P       | 5     | 4   |     |     |     |    | .80  |       |       |
| 75.00 D  | 2   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 75.00 D  | 3   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 75.00 D  | 4   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 75.00 D  | 5   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 100.00 D | 1   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 100.00 D | 2   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 100.00 D | 3   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |
| 100.00 D | 4   | F       | 5     | 4   |     |     |     |    | . 80 |       |       |
| 100.00 D | 5   | F       | 5     | 5   |     |     |     |    | 1.00 |       |       |

J1118/01

Client: GENERAL ELECTRIC, PITTSFIELD, MA SDG: 9665 Test #: 48295

MA0003891

Test Description: Daphnia pulex 48-h daily renewal acute toxicity test

SURVIVAL DATA, SAMPLE 32272

| Treatment | - | Day   | Day 1 # Surviving | Day 2 # Surviving |  |  |  |
|-----------|---|-------|-------------------|-------------------|--|--|--|
| (%)       |   | 0     | _                 |                   |  |  |  |
| Rec.      | Α | 5     | 5                 |                   |  |  |  |
| Water     | В | 5     | 5                 | 5                 |  |  |  |
| Contr     | С | 5     | 5                 | 5                 |  |  |  |
|           | D | 5     | 5                 | 5                 |  |  |  |
|           | Ε | 5     | 5<br>5            | 5                 |  |  |  |
| 5.0       | A | 5     | 5                 | 5                 |  |  |  |
|           | В | 5     | 5                 | 5<br>5<br>5       |  |  |  |
|           | С | 5     | 5                 | 5                 |  |  |  |
|           | D | 5     | 5                 | 5<br>5            |  |  |  |
|           | Е | 5     | 5                 |                   |  |  |  |
| 15        | A | 5     | 5                 | 5                 |  |  |  |
|           | В | 5     |                   | 5                 |  |  |  |
|           | С | 5     | 5                 | 5                 |  |  |  |
|           | D | 5     | 5                 | 5                 |  |  |  |
|           | Е | 5     | 5                 | 5                 |  |  |  |
| 35        | Α | 5     | 5                 | 4                 |  |  |  |
|           | В | 5     | 5                 | 5                 |  |  |  |
|           | С | 5     | 5                 | 5                 |  |  |  |
|           | D | 5     | 5                 | 5                 |  |  |  |
|           | E | 5     | 5                 | 4                 |  |  |  |
| 50        | Α | 5     | 5                 | 5                 |  |  |  |
|           | В | 5     | 5<br>5<br>5       | 5                 |  |  |  |
|           | С | 5     | 5                 | 5                 |  |  |  |
|           | D | 5     | 5                 | 4                 |  |  |  |
|           | E | 5     | 5                 | 5                 |  |  |  |
| 75        | Α | 5     | 4                 | 4                 |  |  |  |
|           | В | 5     | 5                 | 5                 |  |  |  |
|           | С | 5     | 5                 | 5                 |  |  |  |
|           | D | 5     | 5                 | 5                 |  |  |  |
|           | Е | 5     | 5                 | 5                 |  |  |  |
| 100       | Α | 5     | 5                 | 5                 |  |  |  |
|           | В | 5     | 5                 | 5                 |  |  |  |
|           | С | 5     | 5                 | 5                 |  |  |  |
|           | D | 5     | 5                 | 4                 |  |  |  |
|           | E | 5     | 5                 | 5                 |  |  |  |
| Sample #  |   | 32272 | 372 - 12 22       | VC 5/15 101/5     |  |  |  |
| I/D/T     |   | 11:50 | KS 7/12 11:50     | KS 7/13 11:40     |  |  |  |

Client: GENERAL ELECTRIC, PITTSFIELD, MA Test #: 48295 SDG: 9665

MA0003891

Test Description: Daphnia pulex 48-h daily renewal acute toxicity test

# SURVIVAL DATA, LAB CONTROL AND DECHLORINATION CONTROL

| Treatment<br>(%) |   | Day<br>0 | Day 1 # Surviving | Day 2 # Surviving |
|------------------|---|----------|-------------------|-------------------|
| Lab              | Α | 5        | 5                 | 5                 |
| Contr            | В | 5        | 5                 | 5                 |
|                  | С | 5        | 5                 | 4                 |
|                  | D | 5        | 5                 | 5                 |
|                  | Ε | 5        | 5                 | 5                 |
| Dechlor.         | Α | 5        | 5                 | 5                 |
| Control          | В | 5        | 5                 | 5                 |
|                  | С | 5        | 5                 | 5                 |
|                  | D | 5        | 5                 | 4                 |
|                  | Ε | 5        | 5                 | 5                 |
|                  |   |          |                   | 2/2/22            |
| I/D/T            |   | KS 7/11  | KS 7/12 11:45     | KS 7/13 11:30     |

Note: Residual chlorine was not detected in the effluent sample, therefore sodium thiosulfate was not added to the effluent before toxicity testing. Although chlorine was not detected, an additional dechlorination control (0.1 mL of 0.25 N sodium thiosulfate per liter of moderately hard / Lamoille River water) was included in the test array.

### Daphnia pulex Culture Log

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CULTURE<br>ID       | WATER<br>RENEWAL?<br>(Lot#) | FED<br>(MWF<br>Sel/YCT<br>TuTh Sel) | CLEARED<br>OF<br>NEONATES?<br>(TIME) | Culture<br>Beakers<br>Washed? | Temp.         | DATE                                   | INIT.           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------|-------------------------------------|--------------------------------------|-------------------------------|---------------|----------------------------------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/8C<br>6/22A,B,C   | 62706mHW                    | yc/sel/                             |                                      |                               | 19.5°C        | 6-30-06                                | ゴG              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                             | Sel                                 |                                      |                               |               | 72-06                                  | KS              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/22 A,B,C<br>6/8 C | <b>V</b>                    | Yc/sel                              | /                                    |                               | 20,4          | 7-3-06                                 | KS              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | ******                      | Sel                                 | Certification                        |                               | , <del></del> | 7-4-06                                 | KK              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/22 A,BC           | /                           | Xc/Sel                              |                                      | <u> </u>                      | 20.4          | 2.5.06                                 | KK              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6/22A,B,C           |                             | yc/sel                              |                                      | 45                            |               | 7-6-06                                 | JG              |
| 3C ->                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 -                 | 7606 MHW                    | xc/5e1                              | ¥10130                               |                               | 20.9°c        | 7-7-06                                 | JG              |
| carded.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6/22 A.B.C.         |                             | <u>Sel</u>                          |                                      |                               |               | 7-8-06                                 | JG              |
| Sture<br>7-7 mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/22 A1B1C          |                             | sel                                 |                                      |                               |               | 7-9-06                                 | ĶS              |
| started                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                   |                             | YC/Sel                              | V 12:10                              |                               | 20.9          | 7-10-06                                |                 |
| ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6 22<br>A,B,C       |                             | Sel                                 | V 11:20                              |                               | 20,9          | 7-11-06                                | KS              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/7                 |                             | <u> </u>                            |                                      | / ·                           | 1             | ا ــــــــــــــــــــــــــــــــــــ |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                             |                                     |                                      |                               |               |                                        |                 |
| A. A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     | <u> </u>                    |                                     |                                      |                               |               |                                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                             |                                     |                                      |                               |               |                                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                             |                                     |                                      | -                             |               |                                        |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                             |                                     |                                      |                               |               |                                        | , in the second |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                             |                                     |                                      |                               |               |                                        |                 |
| The state of the s |                     |                             |                                     |                                      |                               |               |                                        |                 |
| 100 Aug.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                             |                                     |                                      |                               |               |                                        |                 |

Selenastrum Lot#: 629065el/711065el YC or YCT Lot#: 62206YC

Toxicology QA/Tox Forms

Client: GENERAL ELECTRIC, PITTSFIELD, MA Test #: 48295 SDG: 9665

MA0003891 OUTFALL 001

Test Description: Daphnia pulex 48-h daily renewal acute toxicity test

| Treatment (%)  | Parameter | Day<br>0 | Day<br>1 | Day<br>2     |
|----------------|-----------|----------|----------|--------------|
| Lab            | рН        | 7,2      |          | 7.2          |
| Contr          | DO        | 8.0      |          | 8.2          |
| <b>ي</b> ٠     | Temp      | 21.0     | 20.9     | 21.0         |
| 1:1            | Cond.     | 199      |          | 212          |
| Dechlorination | рН        | 7.3      |          | 7.3          |
| Control        | DO DO     | 7.9      |          | 8.2          |
|                | Temp      | 21.0     | 20,7     |              |
|                | Cond.     | 206      |          | 21.0<br>220  |
| Rec.           | рН        | 716      |          | 7,7          |
| Water          | DO        | 8.2      |          | 8.2          |
| Contr          | Temp      | 21.0     | 70/0     | 20.8         |
| John           | Cond.     | 257      | 20.6     | 269          |
| 5.0            | pH        |          |          |              |
| 5.0            | DO        | 7,7      |          | 7.8          |
|                | Temp      | 8,4      | 20 /     | 8.3          |
|                | Cond.     | 21.0     | 20.6     | 20.7         |
| 4.5            |           | 317      |          | 329<br>-2    |
| 15             | pН        | 718      |          | 79           |
|                | DO        | 8,4      | -        | 8.3          |
|                | Temp      | 21.0     | 20,6     | 20.7         |
|                | Cond.     | 433      |          | 433          |
| 35             | рН        | 719      |          | 8.1          |
|                | DO        | 8,4      |          | 8.3          |
|                | Temp      | 21.0     | 20,6     | 20.7         |
|                | Cond.     | 660      | ***      | 646          |
| 50             | рН        | 7,9      |          | 8,2          |
|                | DO        | 8.4      |          | 8.3          |
|                | Temp      | 21.0     | 20.7     | 20.7         |
|                | Cond.     | 828      | *-       | 793          |
| 75             | рН        | 739      |          | 8.3          |
|                | DO        | 8.4      |          | 8.3          |
|                | Temp      | 21.0     | 20.6     | 20.6         |
|                | Cond.     | 1098     |          | 1025         |
| 100            | рН        | 7,9      |          | 8.2          |
|                | DO        | 8.4      |          | 8.3          |
|                | Temp      | 21.0     | 20.5     | 20.6<br>1202 |
|                | Cond.     | 1360     |          | 1202         |
| Sample #       |           | 32272    | 32272    | 32272        |
| I/D (2005)     |           | KS 7/11  | KS7/12   | KS 7/12      |

|            | Hardness                                                    | 374.0               | 102.0              |
|------------|-------------------------------------------------------------|---------------------|--------------------|
|            | Analysis<br>Date                                            | 7/11/06             | 7/11/06            |
| Hardness   | Analyst                                                     | X                   | · 첫                |
| Harc       | Final<br>Titrant<br>(ml)                                    | 23                  | 28.1               |
|            | Initial<br>Titrant<br>(ml)                                  | 4.3                 | 23                 |
|            | Sample<br>Volume                                            | 50                  | 20                 |
|            | Alkalinity                                                  | 340.0               | 88.0               |
|            | Analysis<br>Date                                            | 7/12/06             | 7/12/06            |
| Alkalinity | Analyst                                                     | X                   | 춪                  |
| Alkal      | Final<br>Titrant<br>(ml)                                    | 9.4                 | 11.6               |
|            | Initial<br>Titrant<br>(ml)                                  | 6.0                 | 9.4                |
|            | Sample<br>Volume                                            | 25                  | 25                 |
|            |                                                             | 7/11/06             | 7/11/06            |
|            | Sub ID<br>Code                                              |                     |                    |
|            | Sample LIMS Identifier Sub ID Sampling Identifier Code Date | Outfall composite - | Housatonic River - |
|            | Sample<br>Identifier                                        | 32272               | 32273              |

10/21/1 So/21/1

Page 1

**Total Residual Chlorine Analysis** 

| rotal Itoolaan ollivillis mid- |      |
|--------------------------------|------|
| Client                         | SDG  |
| GE Pittsfield, MA              | 9665 |

| Sample # | Sample ID                      | Collection<br>Date / Time | Analysis<br>Date / Time /<br>Analyst | Result<br>(TRC mg/L) | Method              |
|----------|--------------------------------|---------------------------|--------------------------------------|----------------------|---------------------|
| 32272    | Outfall<br>Composite<br>A7407C | 7/10/06,<br>11:00         | 7/11/06,<br>12:40<br>JWW             | <0.1                 | DPD<br>Colorimetric |
| 32273    | Housatonic<br>River<br>A7406R  | 7/10/06,<br>08:15         | 7/11/06,<br>12:40<br>JWW             | <0.1                 | DPD<br>Colorimetric |

### **Sample Preparation**

Client: GENERAL ELECTRIC, PITTSFIELD, MA MA0003891 SDG: 9665 Test Description: Daphnia pulex acute toxicity test. Test #: 48295

### Sample Identification:

| Sample   | Rec. Water<br>(Housatonic River) | Effluent |  |
|----------|----------------------------------|----------|--|
| Sample # | 32273                            | 32272    |  |

### Sample Preparation:

| Filtration                  | 60 micr on | 60 micron | 60 micron | 60 micron |
|-----------------------------|------------|-----------|-----------|-----------|
| Chlorine 1                  | ND         | ND        |           |           |
| Dechlorine <sup>2</sup>     |            |           |           |           |
| Salinity (0/00)             | 0 %        | 0 %       |           |           |
| Prepared by<br>(Init./date) | 7-11-06    |           |           |           |

<sup>&</sup>lt;sup>1</sup> Record vol. 0.025 N sodium thiosulfate to dechorinate 100 mL sample or record "ND" (not detected).

Dilution Plan for: <u>Daphnia pulex</u> static acute toxicity test

Receiving water is the dilution water

<u>Lab Control</u> = moderately hard water / Lamoille River 1:1 mix

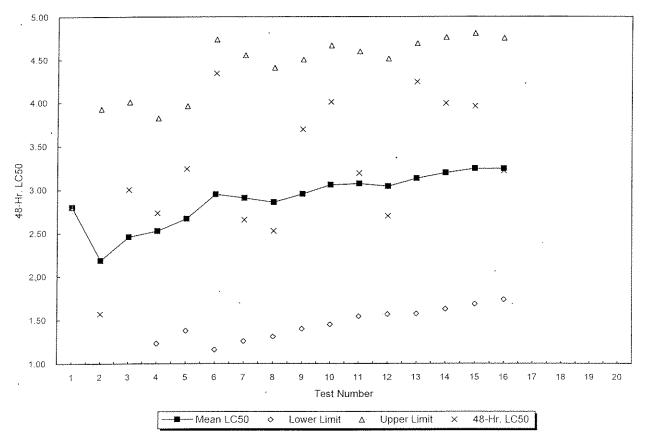
<u>Dechlorination Control</u> = moderately hard water / Lamoille River 1:1 mix + sodium

thiosulfate

| ulfate              |                         | The state of the s | Total Volume |
|---------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| Concentration (%)   | Volume Effluent<br>(mL) | Volume Diluent<br>(mL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mL)         |
| Laboratory Control  | 0                       | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400          |
| Thiosulfate Control | Ō                       | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400          |
| Rec. Water Control  | 0                       | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400          |
| 5.0                 | 20                      | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400          |
| 15                  | 60                      | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400          |
| 35                  | 140                     | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400          |
| 50                  | 200                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400          |
| 75                  | 300                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400          |
| 100                 | 400                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 400          |
| Total Volume        | 1120                    | 1680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |

### Comments:

Collect alkalinity and hardness samples on each new effluent and receiving water sample.


| Aguatec Biolo | gical Sciences, Inc. \ | Williston | Vermont , |     |
|---------------|------------------------|-----------|-----------|-----|
| Reviewed by:  | Jegicar Sciences, inc. | Date: _   | 7/17/06   | -32 |

<sup>&</sup>lt;sup>2</sup> Dechlorination required if detected. Record vol. 0.25 N sodium thiosulfate added per gallon effluent.

## Appendix 5 Standard Reference Toxicant test Control Chart

# Reference Toxicant Control Chart Daphnia pulex in Sodium chloride (g/L)

| Test<br>Number | Test<br>Date | Organism<br>Age<br>(Days) | 48-Hr.<br>LC50 | Mean<br>LC50 | Lower<br>Limit | Upper<br>Limit | Organism<br>Source          |
|----------------|--------------|---------------------------|----------------|--------------|----------------|----------------|-----------------------------|
| 1              | 06/10/98     | 1                         | 2.801          | 2.80         | 2.80           | 2.80           | Aquatec Biological Sciences |
| 2              | 09/17/98     | 1                         | 1.57           | 2.19         | 0.44           | 3,93           | Aquatec Biological Sciences |
| 3              | 12/15/98     | 1                         | 3.002          | 2.46         | 0.91           | 4.01           | Aquatec Biological Sciences |
| 4              | 10/08/05     | 1                         | 2,733          | 2.53         | 1.23           | 3.82           | Aquatic BioSystems          |
| 5              | 10/11/05     | 1                         | 3,241          | 2.67         | 1.38           | 3.96           | Aquatic BioSystems          |
| 6              | 10/11/05     | i                         | 4.342          | 2.95         | 1.16           | 4.74           | Aquatic BioSystems          |
| 7              | 11/02/05     | 1                         | 2.655          | 2.91         | 1.26           | 4.55           | Aquatec Biological Sciences |
| 8 .            | 11/08/05     | 1                         | 2.527          | 2.86         | 1.31           | 4.41           | Aquatec Biological Sciences |
| 9              | 12/07/05     | 1                         | 3.693          | 2.95         | 1.40           | 4.50           | Aquatec Biological Sciences |
| 10             | 01/05/06     | 1                         | 4.009          | 3.06         | 1.45           | 4.67           | Aquatec Biological Sciences |
| 11             | 02/08/06     | 1                         | 3.189          | 3.07         | 1.54           | 4.60           | Aquatec Biological Sciences |
| 12             | 03/11/06     | 1                         | 2.698          | 3.04         | 1.57           | 4.51           | Aquatec Biological Sciences |
| 13             | 04/06/06     | 1                         | 4,243          | 3.13         | 1.57           | 4.69           | Aquatec Biological Sciences |
| 14             | 05/10/06     | 1                         | 3.992          | 3.19         | 1.62           | 4.76           | Aquatec Biological Sciences |
| 15             | 06/07/06     | 1                         | 3.959          | 3.24         | 1.68           | 4.81           | Aquatec Biological Sciences |
| 16             | 07/11/06     | 1                         | 3.215          | 3.24         | 1.73           | 4.75           | Aquatec Biological Sciences |
| 17             |              |                           |                |              |                |                |                             |
| 18             |              |                           |                |              |                |                |                             |
| 19             |              |                           | •              |              |                |                |                             |
| 20             |              |                           |                |              |                |                |                             |



NPDES Permit No. MA0003891 SDG: 9665 July 17, 2006

# Appendix 6 SOP TOX2-001, Standard Operating Procedure for Daphnid (*Ceriodaphnia dubia*, *Daphnia magna*, and *Daphnia pulex*) Acute Toxicity Test

Page 1 of 8

### Standard Operating Procedure for

### Daphnid (Ceriodaphnia dubia, Daphnia magna and Daphnia pulex) Acute Toxicity Test NELAC METHODS / U.S. EPA METHODS 2002.0 AND 2021.0

### 1.0 IDENTIFICATION OF TEST METHOD

This SOP describes procedures for conducting an acute toxicity test with dapnids. This test is used to estimate the acute toxicity of whole effluents or other aqueous samples to the cladocerans, *Ceriodaphnia dubia*, *Daphnia magna* and *Daphnia pulex*. Aquatec Biological Sciences, Inc. holds NELAC accreditation for this method.

### 2.0 APPLICABLE MATRIX OR MATRICES

The described test is used to assess toxicity of wastewaters (effluents, influents), receiving waters, and other prepared aqueous solutions.

### 3.0 DETECTION LIMIT

Not applicable.

### 4.0 SCOPE AND APPLICATION

This SOP describes procedures for performing a static or static-renewal acute toxicity test with cladocerans, *Ceriodaphnia dubia*, *Daphnia magna* and *Daphnia pulex*.

### 5.0 SUMMARY OF TEST METHOD

A summary of the test method is attached (Table 1 of this SOP). This test is used to estimate the acute toxicity of whole effluents or other aqueous samples to the freshwater cladocerans. Organisms are exposed, for 24, 48 or 96 hours, typically to five concentrations of effluent (or aqueous sample) and the controls. Acute toxicity is estimated by calculating the lethal concentration 50 value (LC50) and/or the acute no-observed-effect-concentration (A-NOEC). This procedure is based on the guidelines of EPA-821-R-02-012 (Methods 2002.0 and 2021.0).

### 6.0 DEFINITIONS

LC50: The computed concentration that results in 50 percent mortality of the test organisms (may be computed from 48-h or 96-h data).

A-NOEC: The acute no-observed-effect-concentration; The highest concentration resulting in no statistically significant reduction in survival relative to the control (requires four test replicates for statistical analysis).

### 7.0 INTERFERENCES

Not applicable.

### 8.0 SAFETY

Samples acquired for toxicity testing may contain unknown toxicants or health hazards. Protective equipment (e.g., lab coats, disposable gloves) should be worn when handling samples.

### 9.0 EQUIPMENT AND SUPPLIES

Calibrated Instrumentation and Water Quality Apparatus:

pH meter

Dissolved Oxygen (DO) meter

Thermometer (accurate to 0.1°C)

Conductivity meter

Alkalinity titration apparatus

Hardness titration apparatus

Additional Equipment:

Test chambers (30-ml disposable cups), color coded.

Test board with randomized scheme, glass cover

Light table

Waste collection bucket

Aquatec Biological Sciences, Inc.

TOX2-001 Daphnid acute R5 050406

Page 2 of 8

Forms and Paperwork:

Survival and chemistry data form Alkalinity and hardness data form

### 10.0 REAGENTS AND STANDARDS

Laboratory reconstituted water (soft water, moderately hard water, or hard water) Deionized water Reference toxicant solutions

### . 11.0 SAMPLE COLLECTION, PRESERVATION, SHIPMENT, AND STORAGE

Samples for acute toxicity tests are typically collected, cold-preserved, and shipped to Aquatec. Sample acceptance and log-in procedures are outlined in SOP TOX1-017. After receipt at Aquatec, samples should be refrigerated when not being prepared for use in toxicity tests. The holding time for effluent samples is 36 hours from the time of collection until the time of first use.

### 12.0 QUALITY CONTROL

The acute toxicity test is judged to be acceptable and to have met Quality Control standards if the associated dilution water and laboratory control meet the survival criterion of 90% or greater. Also, the test conditions must be within the guidelines described in the protocol (Table 1). Standard reference toxicant (SRT) tests (48-h acute with sodium chloride as the toxicant) should be performed with a representative sub-set of the test organisms and result in an LC50 within the boundaries of the control chart. Deviations from acceptance standards should be documented and may result in the test being viewed as "conditionally acceptable" or "unacceptable" (See Section 19.0 below).

### 13.0 CALIBRATION AND STANDARDIZATION

Not applicable for the toxicity test. Any instrumentation (e.g., water quality instrumentation) required for conducting the test must be calibrated on a daily basis following the relevant SOP or instrument quidelines.

### 14.0 PROCEDURE

### 14.1 Test System and Conditions

The test system and environmental conditions for the daphnid acute toxicity test are summarized in Table 1.

### 14.2 Test Organisms

### Procurement and Documentation

Test organisms for the daphnid acute test are obtained from Aquatec's laboratory cultures or commercial supplier. Neonates less than 24-h old are used for testing. Neonates collected for testing may be held in individual culture cups until distributed to tests. Feed neonates approximately 2 hours prior to test initiation by pipeting 0.1 ml yeast-Cerophyll-trout chow (YCT) and Selenastrum capricornutum to all neonate holding cups. Store the culture cups, covered, at test temperature (25  $\pm$  1°C or 20  $\pm$  1°C).

### **Evaluation of Daphnid Condition and Acclimation**

If, during examination, it appears that more than 10 percent of the parent females or the neonates collected for the test have died during the holding period preceding the test, notify the Toxicity Laboratory Director immediately. A decision will be made regarding the possibility of collecting an alternate stock of neonates for testing. If the test is to be delayed, document the reason on the Project Documentation form. Also, it may be necessary to notify the client.

Ordinarily, *C. dubia* neonates are maintained in laboratory water (1:1 mix of Lambille River water and moderately hard water) up until the time of test initiation. *D. magna* neonates are maintained in hard water while *D. pulex* neonates are maintained in moderately hard water. The temperature of the neonate stock must be maintained at  $25 \pm 1^{\circ}$ C or ( $20 \pm 1^{\circ}$ C). Return parent stock females

TOX2-001 Revision 5 May 4, 2006 Page 3 of 8

from the neonate cups to the source batch culture. *Ceriodaphnia dubia* are cultured in individual culture cups (one organism per cup) maintained at 25 ± 1°C.

If acclimation to a client's receiving water is required, gradual water changes should be made (eg., 25%-50% hourly) to the parent organisms to receiving water. Neonate release and collection should occur in 100 percent receiving water, if acclimation is required.

### Food

At the time of neonate collection, or on the morning of a scheduled test, feed neonates in each cup 0.1 ml Selenastrum and 0.1 ml yeast-Cerophyll-trout chow (YCT).

### Sample Preparation

Procedures for effluent and diluent sample preparation are described in a separate SOP TOX1-013 ("Preparation of Effluent, Aqueous Samples, and Receiving Water for Toxicity Tests". The typical dilution factors are 0.5, however, consult applicable client permits for the appropriate dilution factor and included permit-limit concentrations when required.

### 14.3 Initiate the Test Prepare Test Chambers

For a test where receiving water is used as the diluent, an additional laboratory control must be included in the test array. New 30-mL disposable plastic condiment cups are used as test chambers. Each test treatment will have four true replicates (no water connection); therefore, 28 test cups will be required. When laboratory water is used as the diluent, 24 test cups are required. Label as: Client Code

Treatment Replicate (A, B, C, D)

### Measure Initial Chemistries

Remove an aliquot (approximately 100 ml) from each test dilution and the controls. This aliquot is used to measure the following parameters: pH, DO, temperature, and conductivity. Record the data directly on the Toxicity Test Data Form for Day 0. The temperature of the solutions must be within a range of  $\pm$  1°C of the selected test temperature (20 °C or 25°C). Temperature, DO, and pH are to be recorded daily for all test concentrations.

### Recommended water chemistry at time of test initiation

If solutions are not within the ranges specified below, notify the Toxicity Laboratory Director.

pH - acceptable range, 6.0-9.0

DO - acceptable range, 8.0-8.9 mg/L (20°C); 7.4-8.1 (25°C)

Temperature - acceptable range, 19-21°C or 24-26°C

Conductivity - often has a pattern of increasing conductance with increasing sample strength.

Collect a sub-sample of the control and 100% effluent solutions subsequent analysis of hardness and alkalinity. Label and store in a refrigerator at  $4^{\circ}$ C.

If test solutions are to be stored temporarily prior to starting the test, store the test solutions at the target test temperature.

Decant test solutions to the appropriate test cups, 25 ml per cup. Place the test cups in randomized positions on the test board. Water chemistry measurements are recorded for one replicate of each treatment each day of the test.

### Prepare and distribute test organisms

TOX2-001 Revision 5 May 4, 2006 Page 4 of 8

Select approximately 20 brood cups (containing neonates collected for the test), each with  $\bar{8}$  or more neonates. Pool neonates in a crystallizing dish prior to distribution to the test. Randomly distribute neonates to test containers (5 per test container) with a transfer pipet.

Record the date / time of test start along with initials on the data form.

### Aeration

Do not aerate daphnid acute tests.

### Feeding

Daphnids are not fed during acute toxicity test of 24-48 hours duration. If the test duration is 96 hours the test animals are fed 2 hours prior to the 48 hour water change.

### 14.4 Monitoring the test

### Test solution renewal (if required) and biological monitoring

Test solutions in each test cup routinely are not renewed for 48 hour tests (unless the project protocol specifies daily renewal). If the test duration is 96 hours, renew test solutions at 48 hours (or daily, if specified in the project-specific protocol). During the renewal procedure, take care to avoid injuring neonates. Renew the controls first, then from low concentrations to higher test concentrations. This procedure will minimize the potential for back-contamination of a lower test concentration with a higher test concentration. The renewal procedure is conducted over a light table.

Remove the test board from the test rack and remove the glass cover. Carefully measure the temperature of one replicate of each test treatment. Record the data on the Final Chemistry Data form.

Fill four new cups coded for laboratory control with approximately 25 mL of laboratory control water. Remove laboratory control Replicate A test cup from the test board.

Transfer all surviving daphnids with a large-bore pipet to the new test cup containing new control solution. Record the number of survivors in the appropriate box for laboratory control, Replicate A.

Continue the water changes until all surviving animals in each treatment have been transferred to "new" water. Pool the "old test water" from the old test cups into a beaker. This must be saved for final chemistry analysis, when required. When renewals have been completed, record initials, date, and time for renewal in the remarks section of the daphnid acute data form. Replace all test cups in the assigned position on the test board.

### Final Chemistry (daily during test, if required)

Measure the temperature, pH, and D.O., and conductivity of the pooled water sample decanted from the four replicates for each test treatment. It is preferable to do this immediately after completing the renewal to obtain an accurate representation of the test conditions. Discard the solution in the appropriate waste receptacle.

### 14.5 Termination of the Toxicity Test

The daphnid acute test may be ended at 24 hours, 48 hours, or 96 hours depending on permit requirements or the project-specific protocol. The guidelines for actual duration of the test are: 24-h test ( $\pm$  15 minutes from time of test start); 48-h test ( $\pm$  30 minutes from time of test start); and 96-h test ( $\pm$  60 minutes from time of test start).

### Daphnid survival (end of test)

For each replicate, determine the number of live daphnids remaining and record the results in the appropriate data box of the daphnid acute data form. A daphnid is scored as "alive" if any activity

or self-propelled movement is observed: If necessary, examine organisms under a dissecting microscope to determine the number surviving.

Record the time of test completion in remarks section of the daphnid acute data form.

### Final Chemistry (end of test)

Measure and record temperature of one replicate from each test concentration. Combine the test solution from each replicate of each test concentration. Measure and record the final chemistry parameters (conductivity, pH and DO) as specified in 3.2.1 above.

### 15.0 CALCULATIONS

The 48-h LC50 (or 96-h) and A-NOEC (if required) are calculated using the TOXIS2 software program. Enter the test data into the TOXIS2 template prepared for each client. Run the statistical program for the EPA Acute Toxicity Test flow chart (EPA-821-R-02-012 Section 11 Figures 12 and 13) and print the entered test data and the statistical results. Check the entered data against the original hand-written test data and record the date and initials. Place the statistical printouts in the project folder (by SDG) and return the folder with all paperwork to the project holding file.

### 16.0 METHOD PERFORMANCE

Test conditions should be at or near the limits outlined in the Protocol (Table 1).

### 17.0 POLLUTION PREVENTION

Effluents and receiving waters used in toxicity tests are stored refrigerated until the test data have been reviewed and deemed acceptable by the Laboratory Manager or the Director. Contact the Laboratory Manager or Director prior to discarding any stored samples. Effluent and receiving water samples may be discarded following a period of chlorination (e.g., 30 minutes). Effluent samples that have exhibited high toxicity in low test concentrations should be discarded in the "Aqueous Waste" drum for disposal by a certified waste handler. Other samples containing unknown or suspected toxic contaminants should be discarded in the "Aqueous Waste" drum.

### 18.0 DATA ASSESSMENT AND ACCEPTANCE CRITERIA FOR QUALITY CONTROL MEASURES

The Laboratory Manager and/or the Laboratory Director will review test data to ensure that all elements of the data package are available and complete (Log-in work sheets, test IDs, Chain-of-Custody documentation, toxicity test benchsheets, organism records, and SRT data). The reviewer will check to package for transcription errors, clarity of observations and notations, initials, and completeness. The reviewer will also compare the test data to the Quality Control standards outlined in Section 12.0 above. Any deficiencies will be addressed and resolved (with appropriate notation) prior to assembling the package for the final report.

### 19.0 CORRECTIVE ACTIONS FOR OUT-OF-CONTROL DATA

Data that do not meet Quality Control standards will be assessed and a decision will be made whether to reject the test data and deemed "unacceptable" (requiring a repeated test) or "provisionally acceptable" (requiring a qualifier in the final report). An example of and unacceptable test could include one where the controls fail to meet the 90% survival requirement. A designation of a "provisionally acceptable" test might include one where samples were received outside of prescribed holding temperatures or times.

### 20.0 CONTINGENCIES FOR HANDLING OUT-OF-CONTROL OR UNACCEPTABLE DATA

Analysts experiencing and "out-of-control" event (e.g., test replicate spills, test solutions improperly prepared, test temperatures out of target range, etc.) should note the event on the bench sheet and also notify the Laboratory Manager or Laboratory Director. A decision will be made by the Laboratory Manager or Laboratory Director as to whether to continue the test (with the appropriate qualifier) or whether to terminate the test. If the test is terminated, the client should be notified so that re-sampling and re-testing can be scheduled as soon as possible.

### 21.0 WASTE MANAGEMENT

See 17.0 above.

### 22.0 REFERENCES

The test procedure is based upon the guidelines outlined in EPA-821-R-02-012, *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (5<sup>th</sup> Ed.). Regional guidelines may require in slight modifications of the test protocol (e.g., solution renewals, test duration, target test temperature).

### 23.0 TABLES, DIAGRAMS, FLOW CHARTS, AND VALIDATION DATA

Refer to Tables 12 and 13 (pp. 51 – 54 of EPA-821-R-02-012) and the EPA Statistical Flow Chart, Figures 12 and 13 of EPA-821-R-02-012 Section 11 and related discussions within that document.

### 24.0 TRAINING

Laboratory analysts performing this procedure must receive instruction from a previously trained analyst. Individual parts of the overall procedure may be performed under the guidance of a previously-trained analyst.

To be qualified for the overall procedure outlined in this SOP, the analyst must:

Read this SOP.

Receive verbal and visual instruction. Be trained on pertinent associated SOPs.

| Approvals:          |       |
|---------------------|-------|
| Laboratory Manager: | Date: |

### Table 1. Test Protocol

PROTOCOL: EPA 2002. Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Methods 2002.0 (Ceriodaphnia dubia) and 2021.0 (Daphnia magna and Daphnia pulex) acute toxicity tests.

| (Daphnia magna and Daphnia pulex) acute toxic  | , , ,                                                                                                                                                                                       |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Test type:                                  | Static, no renewal; or daily renewal                                                                                                                                                        |
| 2. Test temperature:                           | 25 ± 1°C (or 20 ± 1°C)                                                                                                                                                                      |
| 3. Light quality:                              | Ambient laboratory illumination                                                                                                                                                             |
| 4. Photoperiod:                                | 16 hr. light, 8 hr. dark                                                                                                                                                                    |
| 5. Test chamber size:                          | 30 ml                                                                                                                                                                                       |
| 6. Test solution volume:                       | 25 ml / replicate                                                                                                                                                                           |
| 7. Renewal of test concentrations:             | None if static test, daily if renewal test                                                                                                                                                  |
| 8. Age of test organisms:                      | Less than 24 h                                                                                                                                                                              |
| 9. No. organisms / test chamber:               | 5                                                                                                                                                                                           |
| 10. No. of replicate chambers / concentration: | 4                                                                                                                                                                                           |
| 11. No. of organisms / concentration:          | 20                                                                                                                                                                                          |
| 12. Feeding regime:                            | Feed 0.1 ml of YTC and algal suspension prior to testing. Not fed during test for 48-h tests. Feed 2 hours prior to 48-h (before renewal) for 96-h tests                                    |
| 13. Cleaning:                                  | None                                                                                                                                                                                        |
| 14. Aeration:                                  | None .                                                                                                                                                                                      |
| 15. Dilution water:                            | Receiving Water or laboratory water                                                                                                                                                         |
| 16. Test concentrations:                       | 6.25, 12.5, 25, 50, 100% (unless specified otherwise by permit)                                                                                                                             |
| 17. Laboratory control:                        | Reconstituted water (soft, moderately hard, or hard)                                                                                                                                        |
| 18. Test duration:                             | 48 h; 96 h                                                                                                                                                                                  |
| 19. Monitoring:                                | Day 0: temperature, DO, pH, and conductivity. Day 1: temperature. Day 2 (or 4): temperature, DO, pH, and conductivity. Hardness, alkalinity on each new sample. Biological monitoring daily |
| 19. End points:                                | Survival                                                                                                                                                                                    |
| 20. Reference toxicant test:                   | Sodium chloride 48-h LC50                                                                                                                                                                   |
| 21. Test acceptability (Control performance):  | 90% or greater survival                                                                                                                                                                     |
| 22. Data interpretation:                       | LC50 / A-NOEC using TOXIS2 statistical program                                                                                                                                              |

### **DOCUMENT SIGNATURE PAGE**

DOCUMENT NAME: SOP TOX2-001 Daphnid Acute Revision 5

| Printed Name | I have read and I understand and I agree, to the best of my ability, to follow the procedures outlined in this SOP Signature | Initials | Date |
|--------------|------------------------------------------------------------------------------------------------------------------------------|----------|------|
|              |                                                                                                                              |          |      |
|              |                                                                                                                              |          |      |
|              |                                                                                                                              | •        |      |
| ,            | •                                                                                                                            |          |      |
|              |                                                                                                                              |          |      |
|              |                                                                                                                              |          |      |
|              |                                                                                                                              |          |      |
|              |                                                                                                                              |          |      |
|              | ·                                                                                                                            |          |      |
|              |                                                                                                                              | •        |      |
| •            |                                                                                                                              |          |      |
|              |                                                                                                                              |          |      |
|              |                                                                                                                              |          |      |
|              |                                                                                                                              |          | -    |

### **APPENDIX 2**

**Laboratory Reports** 

Columbia Analytical Services, Inc. O'Brien & Gere, Inc.

### NPDES Sampling GE Pittsfield Toxicity pH

|                                                                             | ,                                              |
|-----------------------------------------------------------------------------|------------------------------------------------|
| Date: 7/10/06                                                               | c it Sample                                    |
| Acute Dry                                                                   | Split Sample<br>C. TOX 1 / A. TOX<br>July 2006 |
| Effluent Composite  Sample # A7407 C  Date 7-10-0%  Time 1100AM  pH 7.81 su | July 200                                       |
| River/Dilution Water Sample # A 7406 R  Date 7-10-06 Time 8'5 AM pH 778 su  |                                                |
| Mach Islames<br>Signed & Date                                               | sky 7-10-06                                    |

Reported: 07/31/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06 Client Sample ID : A7407CDM

Order #: 915983 Sample Matrix: WATER

Date Sampled : 07/10/06 11:00 Date Received: 07/11/06 Submission #: R2632318

| ANALYTE  | METHOD | PQL     | RESULT    | UNITS                    | DATE<br>ANALYZED | DILUTION |
|----------|--------|---------|-----------|--------------------------|------------------|----------|
| ALUMINUM | 200.7  | 0.100   | 0.100 U   | MG/L                     | 07/14/06         | 1.0      |
| CADMIUM  | 200.7  | 0.00500 | 0.00500 U | $\mathtt{MG/L}$          | 07/14/06         | 1.0      |
| CHROMIUM | 200.7  | 0.0100  | 0.0100 U  | MG/L                     | 07/14/06         | 1.0      |
| COPPER   | 200.7  | 0.0200  | 0.0200 U  | $\mathtt{MG}/\mathtt{L}$ | 07/14/06         | 1.0      |
| LEAD     | 200.7  | 0.00500 | 0.00500 U | $\mathtt{MG}/\mathtt{L}$ | 07/14/06         | 1.0      |
| NICKEL   | 200.7  | 0.0400  | 0.0400 U  | ${	t MG/L}$              | 07/14/06         | 1.0      |
| SILVER   | 200.7  | 0.0100  | 0.0100 U  | MG/L                     | 07/14/06         | 1.0      |
| ZINC     | 200.7  | 0.0200  | 0.0200 U  | MG/L                     | 07/14/06         | 1.0      |

Reported: 07/31/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06 Client Sample ID: A7407CTM

Sample Matrix: WATER

Date Sampled: 07/10/06 11:00 Order #: 915984
Date Received: 07/11/06 Submission #: R2632318

| ANALYTE   | METHOD | PQL     | RESULT    | UNITS       | DATE<br>ANALYZED | DILUTION |
|-----------|--------|---------|-----------|-------------|------------------|----------|
| ALUMINUM  | 200.7  | 0.100   | 0.100 U   | MG/L        | 07/14/06         | 1.0      |
| CADMIUM   | 200.7  | 0.00500 | 0.00500 U | ${	t MG/L}$ | 07/14/06         | 1.0      |
| CALCIUM   | 200.7  | 1,00    | 93.9      | MG/L        | 07/14/06         | 1.0      |
| CHROMIUM  | 200.7  | 0.0100  | 0.0100 U  | MG/L        | 07/14/06         | 1.0      |
| COPPER    | 200.7  | 0.0200  | 0.0200 U  | MG/L        | 07/14/06         | 1.0      |
| LEAD      | 200.7  | 0.00500 | 0.00500 U | MG/L        | 07/14/06         | 1.0      |
| MAGNESIUM | 200.7  | 1.00    | 38.0      | MG/L        | 07/14/06         | 1.0      |
| MICKEL    | 200.7  | 0.0400  | 0.0400 U  | MG/L        | 07/14/06         | 1.0      |
| SILVER    | 200.7  | 0.0100  | 0.0100 U  | MG/L        | 07/14/06         | 1.0      |
| ZINC      | 200.7  | 0.0200  | 0.0200 U  | MG/L        | 07/14/06         | 1.0      |

Reported: 07/31/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06

Client Sample ID : A7406RTM

Sample Matrix: WATER

Date Sampled: 07/10/06 08:15 Order #: 915985
Date Received: 07/11/06 Submission #: R2632318

| ANALYTE           | METHOD | PQL     | RESULT    | UNITS | DATE<br>ANALYZED | DILUTION |
|-------------------|--------|---------|-----------|-------|------------------|----------|
| ALUMINUM          | 200.7  | 0.100   | 0.100 U   | MG/L  | 07/14/06         | 1.0      |
| CADMIUM           | 200.7  | 0.00500 | 0.00500 U | MG/L  | 07/14/06         | 1.0      |
| CALCIUM           | 200.7  | 1.00    | 24.4      | MG/L  | 07/14/06         | 1.0      |
| HROMIUM           | 200.7  | 0.0100  | 0.0100 U  | MG/L  | 07/14/06         | 1.0      |
| OPPER             | 200.7  | 0.0200  | 0.0200 U  | MG/L  | 07/14/06         | 1.0      |
| EAD               | 200.7  | 0.00500 | 0.00500 U | MG/L  | 07/14/06         | 1.0      |
| idad<br>Iagnesium | 200.7  | 1.00    | 8.72      | MG/L  | 07/14/06         | 1.0      |
| <del></del>       | 200.7  | 0.0400  | 0.0400 U  | MG/L  | 07/14/06         | 1.0      |
| IICKEL            | 200.7  | 0.0100  | 0.0100 U  | MG/L  | 07/14/06         | 1.0      |
| SILVER<br>SINC    | 200.7  | 0.0200  | 0.0200 U  | MG/L  | 07/14/06         | 1.0      |

Reported: 07/31/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06 Client Sample ID : A7406R

Sample Matrix: WATER

Date Sampled: 07/10/06 08:15 Order #: 915981 Submission #: R2632318

| ANALYTE                | METHOD | PQL    | RESULT   | UNITS                    | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |
|------------------------|--------|--------|----------|--------------------------|------------------|------------------|----------|
| AMMONIA                | 350.1  | 0.0500 | 0.0500 ប | MG/L                     | 07/17/06         | 10:52            | 1.0      |
| CHLORIDE               | 300.0  | 0.200  | 18.0     | $\mathtt{MG}/\mathtt{L}$ | 07/13/06         | 17:40            | 10.0     |
| TOTAL ALKALINITY       | 310.1  | 2.00   | 94.3     | ${ m MG/L}$              | 07/17/06         | 09:30            | 1.0      |
| TOTAL ORGANIC CARBON   | 9060   | 1.00   | 7.01     | MG/L                     | 07/20/06         | 17:10            | 1.0      |
| TOTAL PHOSPHORUS       | 365.1  | 0.0500 | 2.14     | ${	t MG/L}$              | 07/17/06         | 12:34            | 1.0      |
| TOTAL SOLIDS           | 160.3  | 10.0   | 148      | MG/L                     | 07/14/06         | 10:00            | 1.0      |
| TOTAL SUSPENDED SOLIDS | 160.2  | 1.00   | 2.50     | MG/L                     | 07/12/06         | 12:00            | 1.0      |

Reported: 07/31/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06 Client Sample ID: A7407C

Date Sampled: 07/10/06 11:00 Order #: 915982
Date Received: 07/11/06 Submission #: R2632318 Sample Matrix: WATER

| ANALYTE              | METHOD | PQL    | RESULT   | UNITS       | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |
|----------------------|--------|--------|----------|-------------|------------------|------------------|----------|
| AMMONIA              | 350.1  | 0.0500 | 0.487    | MG/L        | 07/17/06         | 10:52            | 1.0      |
| CHLORIDE             | 300.0  | 0.200  | 210      | MG/L        | 07/16/06         | 01:20            | 40.0     |
| COTAL ALKALINITY     | 310.1  | 2.00   | 371      | MG/L        | 07/17/06         | 09:30            | 1.0      |
| TOTAL ORGANIC CARBON | 9060   | 1.00   | 6.10     | ${	t MG/L}$ | 07/20/06         | 17:48            | 1.0      |
| COTAL PHOSPHORUS     | 365.1  | 0.0500 | 0.0500 U | MG/L        | 07/17/06         | 12:34            | 1.0      |
|                      | 160.3  | 10.0   | 739      | MG/L        | 07/14/06         | 10:00            | 1.0      |
| COTAL SOLIDS         | 160.2  | 1.00   | 1.00 U   | MG/L        | 07/12/06         | 12:00            | 1.0      |

Reported: 07/31/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06

Client Sample ID : A7407CCN

Date Sampled: 07/10/06 11:00 Order #: 915986
Date Received: 07/11/06 Submission #: R2632318

Sample Matrix: WATER

| ANALYTE       | METHOD | PQL    | RESULT | UNITS | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |
|---------------|--------|--------|--------|-------|------------------|------------------|----------|
| TOTAL CYANIDE | 335.4  | 0.0100 | 0.0500 | MG/L  | 07/18/06         | 11:45            | 1.0      |

Reported: 07/31/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06

Client Sample ID : A7406RCN

Date Sampled: 07/10/06 08:15 Order #: 915987
Date Received: 07/11/06 Submission #: R2632318 Sample Matrix: WATER

| METHOD | PQL    | RESULT   | UNITS | DATE<br>ANALYZED                                 | TIME<br>ANALYZED                 | DILUTION                                  |
|--------|--------|----------|-------|--------------------------------------------------|----------------------------------|-------------------------------------------|
| 335.4  | 0.0100 | 0.0100 U | MG/L  | 07/18/06                                         | 11:45                            | 1.0                                       |
|        |        |          |       | METHOD TQL XZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ | METHOD PQL RESULT UNITS ANALYZED | METHOD PQL RESULT UNITS ANALYZED ANALYZED |

### APPENDIX 3

**Chain of Custody Forms** 

CHAIN OF CI

# CHAIN OF CUSTODY/LABORATORY ANALYSIS HEGUES! FUNIV P

CAS Contact

One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5390 • 800-695-7222 ×11 • FAX (585) 288-8475 PAGE

ALTERNATE DESCHIPTION INVOICE INFORMATION **はなれるなればらて** SUBMISSION Printed Name Dale/Tune Signature ANALYSIS REQUESTED (Include Method Number and Conlainer Preservalive) E CAN, Date Velication Report with Rew Deta V. Speicelized Forms / Custom Report Yes No N. Resulfis + OC Summelies (LCS, DUP, MS/MSD as required) III. Restults 4 OC and Calibration REPORT REQUIREMENTS RELINQUISHED BY I. Results Only Edate Plinled Name Date/Tene TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE Printed Name Dale/Time Signature E PRESERVATIVE CUSTODY SEALS: Y N N N RELINQUISHED BY NUMBER OF CONTAINERS 子,0 100 hay 7.10-06 7 gan 100 Printed Name exp Environmenta 7 PISAN Madre DaleTime SAMPLING ATE TIME DATE できるのでき 28516 RECEIVED BY FOR OFFICE USE ONLY 16516 136516 26516 The 115% 285% 136516 136516 Proped Number Report CC SAMPLE RECEIPT: CONDITION/COOLER TEMP: Marke Broke ASUCUS H 159 Plastics Pyttsfield 3165 Ah 2415 NPDES Form T Moo? SPECIAL INSTRUCTIONS/COMMENTS JN11/10/1501 CLIENT SAMPLE ID T-A7417 0246-47420 50 7.10 - 06 / Desirime 47407 C In Implayee - Owned Company 7 YOUR ロイヤフ ROYOFR 47406R See CAPP

| Columbia<br>Analytical<br>Services                             | _                                  |  |
|----------------------------------------------------------------|------------------------------------|--|
| Columbia<br>Analylical <sup>M.</sup><br>Services <sup>M.</sup> |                                    |  |
|                                                                | Columbia<br>Analytical<br>Services |  |

in Employee - Owned Company www.zeeleb.com

# CHAIN OF CUSTODY/LABORATORY ANALYSIS REGUES! FURIN

PAGE One Mustard Sl., Sulte 250 • Rochester, NY 14609-0859 • (585) 288-5360 • 600-695-7222 x11 • FAX (585) 288-8475

CAS Contact

Р

SPIKE F. I Toredt Fresord MATRIKSAKE REMARKS/ ALTERNATE DESCRIPTION HND3 H2SO4 N3OH Zn. Acel ale MeOH NaHSO4 INVOICE INFORMATION RECEIVED BY Office -MATRIX Printed Name ANALYSIS REQUESTED (Include Method Number and Confainer Preservative) Signalute Date/Tene BILTIG E IV, Dala Validalian Report with Haw Data V. Spalcalized Forms / Custorn Report Yes No (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results 4 QC and Celbration RELINQUISHED BY A. Results 4 OC Summaries 1, Results Only Printed Name DateTime 7 TURNAROUND REQUIREMENTS SAM ABIN CSday RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD VOA'S SVOA'S SSVOA'S SSVOA'S Printed Name Date/Ime Signature E PRESERVATIVE CUSTODY SEALS: Y RELINQUISHED BY NUMBER OF CONTAINERS + D. METALS P. LISTED SAMPLING ATRIX **サラ8** P. ISA HO MARK WASHENSICY 413 4485435 5/3 <u>ئ</u> د ي Printed Name を 3 001 1100 1100 31 Date/I mre PACKED IN I CE R Comerian ゆんじ ENVICON MEN OR OFFICE USE ONLY RECEIVED BY 236516 BOTTLE h.86516 911516 18216 18651b 36516 Project Number 15987 Heport CC SAMPLE RECEIPT: CONDITION/COOLER TEMP: なな Metals T. METALS 10 SAMPLE Chagana Mo2 90-01-1 SPECIAL INSTRUCTIONIS/COMMENTS SANDIES Rtts feld 413 44r 5915 CLIENT SAMPLE ID AT S LOHLA ATHOTCDM ATUBBRCN NOUISHED BY A7406RTM チンといったろ NPOES Secondr | 454 20

Disablution: While - Return to Ottomalor; Yellow - Lab Copy, Pink - Retained by Client

Cooler Receipt And Preservation Check Form

|                                                                                            |                                                                                       | Cooler Recei                                                                                                                                                                                                              | pt An                                  | d Pres                              | ervation Check 1.                     | g                 |                                | -               |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|-------------------|--------------------------------|-----------------|
|                                                                                            | CGP                                                                                   | HSfield                                                                                                                                                                                                                   |                                        | Sub                                 | mission Number_<br>ER: CAS UPS        |                   | *                              |                 |
| Project/Client_                                                                            | ~ 7 17                                                                                | N K                                                                                                                                                                                                                       | 4 0                                    | OTIRT                               | ER: CAS UPS                           | FEDEX             | VELOCITY CI                    | LIENT           |
| Cooler receive                                                                             | d on /-//                                                                             | -06 by: 14                                                                                                                                                                                                                |                                        | OOM                                 |                                       | YES               | NO                             |                 |
| <ol> <li>Were 0</li> <li>Were 0</li> <li>Did al</li> <li>Did ar</li> <li>Were 0</li> </ol> | custody so<br>custody p<br>l bottles a<br>ny VOA v<br>Ice or Ice                      | eals on outside of apers properly fill arrive in good con vials have signific packs present?                                                                                                                              | cooler<br>led out<br>dition<br>ant air | ??<br>t (ink, ;<br>(unbro<br>bubble | signed, etc.)?<br>ken)?               | YES<br>YES        | NO<br>NO<br>NO<br>NO<br>CLIENT | )               |
| 7 Temp                                                                                     | erature o                                                                             | L coolet(2) afron 10                                                                                                                                                                                                      | cccth                                  | <u>ال</u><br>بر                     |                                       | Yes               | Yes Yes                        | 5               |
| Is the                                                                                     | temperat                                                                              | ure within 0° - 6°                                                                                                                                                                                                        | C?:                                    | /Y                                  | es No                                 |                   | No No                          |                 |
| If No                                                                                      | , Explair                                                                             | Below .                                                                                                                                                                                                                   |                                        | 7                                   | 1-06 @ 10;                            | 06                |                                |                 |
| Date/                                                                                      | /Time Te                                                                              | mperatures Taken                                                                                                                                                                                                          | i:                                     |                                     | Reading From: Te                      | mp Blank          | or Sample B                    | ottle           |
| Ther                                                                                       | mometer                                                                               | ID: 161 or                                                                                                                                                                                                                |                                        | 77                                  | Samples .                             |                   |                                |                 |
| If out of Te                                                                               | mperatu                                                                               | re, Client Appro                                                                                                                                                                                                          | val to                                 | Kun :                               | Sambres                               |                   |                                |                 |
| PC Seconda                                                                                 | ry Reviev                                                                             | Date:                                                                                                                                                                                                                     |                                        |                                     | <b>by:</b> _                          |                   | NO                             |                 |
| 1. Wel                                                                                     |                                                                                       | 1 1 1 - 1 - hand took 20                                                                                                                                                                                                  | OTPP W                                 | ith cus                             | s, preservation, etc.<br>tody papers? | 3.77763           | NO                             |                 |
| 3. We                                                                                      | re correct                                                                            | containers used f                                                                                                                                                                                                         | or the<br>es Int                       | tests in<br>act                     | ndicated?<br>Canisters Pressuriz      | YES<br>zed Tedla  | r® Bags Inflated               | N/A             |
| 3. We                                                                                      | re correct                                                                            | laners and cags of                                                                                                                                                                                                        | or the                                 | tests in                            | Canisters Pressuria                   |                   |                                | N/A<br>Final pH |
| 3. We                                                                                      | re correct                                                                            | containers used f Cassettes / Tub ancies:                                                                                                                                                                                 | or the<br>es Int                       | tests in<br>act                     | Canisters Pressuriz                   | zed Tedla         | r® Bags Inflated               |                 |
| 3. We<br>4. Air<br>Explain an                                                              | re correct                                                                            | containers used f Cassettes / Tub ancies:                                                                                                                                                                                 | or the                                 | tests in                            | Canisters Pressuria                   | zed Tedla         | r® Bags Inflated               |                 |
| 3. We 4. Air Explain an                                                                    | re correct<br>Samples<br>y discrept                                                   | containers used f Cassettes / Tub ancies: Reagent NaOH                                                                                                                                                                    | or the                                 | tests in                            | Canisters Pressuria                   | zed Tedla         | r® Bags Inflated               |                 |
| 3. We<br>4. Air<br>Explain an                                                              | re correct<br>Samples<br>y discrepa                                                   | containers used for Cassettes / Tubers ancies:  Reagent NaOH HNO3                                                                                                                                                         | or the                                 | tests in                            | Canisters Pressuria                   | zed Tedla         | r® Bags Inflated               |                 |
| 3. We<br>4. Air<br>Explain an                                                              | re correct<br>Samples<br>y discrepa                                                   | containers used for Cassettes / Tubers ancies:  Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub>                                                                                                                          | or the                                 | tests in                            | Canisters Pressuria                   | zed Tedla         | r® Bags Inflated               |                 |
| 3. We<br>4. Air<br>Explain an                                                              | re correct<br>Samples<br>y discrepa                                                   | containers used for Cassettes / Tubers ancies:  Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol                                                                                                         | or the                                 | tests in                            | Canisters Pressuria                   | zed Tedla         | r® Bags Inflated               |                 |
| 3. Wei 4. Air Explain any                                                                  | re correct<br>Samples<br>y discrepa                                                   | containers used for Cassettes / Tubers ancies:  Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol                                                                                                         | or the ses Into                        | NO NO                               | Canisters Pressuria  Sample LD.       | zed Tedla Reagent | Vol. Added                     |                 |
| 3. Wei 4. Air Explain any  P  Residual Ch                                                  | re correct Samples y discrept  OH  12 2 2 dorine (+/-)                                | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only)                                                                                                                                       | YES YES                                | NO NO                               | Canisters Pressuria                   | zed Tedla         | Vol. Added                     |                 |
| 3. Wei 4. Air Explain any  P  Residual Ch                                                  | re correct Samples y discrept  oH  12  2  dorine (+/-) i-9** samples OK ustment is re | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only)                                                                                                                                       | YES  Wor H.S  ion  ion                 | NO NO                               | Canisters Pressuria  Sample LD.       | Reagent PC OK to  | Vol. Added                     |                 |
| 3. Wei 4. Air Explain any  P  Residual Ch                                                  | re correct Samples y discrept  oH  12  2  dorine (+/-) i-9** samples OK ustment is re | containers used for Cassettes / Tubers ancies:  Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only)  Squired, use NaOH and (Co Vial pH Verificat (Tested after Analysis Following Samples | YES  Wor H.S  ion  ion                 | NO NO                               | Sample LD.  served at lab as listed   | Reagent PC OK to  | Vol. Added                     |                 |
| 3. Wei 4. Air Explain any  P  Residual Ch                                                  | re correct Samples y discrept  oH  12  2  dorine (+/-) i-9** samples OK ustment is re | containers used for Cassettes / Tubers ancies:  Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only)  Squired, use NaOH and (Co Vial pH Verificat (Tested after Analysis Following Samples | YES  Wor H.S  ion  ion                 | NO NO                               | Sample LD.  served at lab as listed   | Reagent PC OK to  | Vol. Added                     |                 |
| 3. Wei 4. Air Explain any  P  Residual Ch                                                  | re correct Samples y discrept  oH  12  2  dorine (+/-) i-9** samples OK ustment is re | containers used for Cassettes / Tubers ancies:  Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only)  Squired, use NaOH and (Co Vial pH Verificat (Tested after Analysis Following Samples | YES  Wor H.S  ion  ion                 | NO NO                               | Sample LD.  served at lab as listed   | Reagent PC OK to  | Vol. Added                     |                 |
| 3. Wei 4. Air Explain any  P  Residual Ch  5  YES = All: **If pH adj:                      | re correct Samples y discrept  old  12 2 dorine (+/-) samples OK ustraent is re       | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) Sequired, use NaOH and (Tested after Analysis Following Samples Exhibited pH > 2                                                      | YES  Wor H.S  ion  ion                 | NO NO                               | Sample LD.  served at lab as listed   | Reagent PC OK to  | Vol. Added                     |                 |
| A. Air Explain any  Residual Ch  YES = All  **If pH adj  PC Second                         | ondary Re                                                                             | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) Sequired, use NaOH and (Tested after Analysis Following Samples Exhibited pH > 2                                                      | YES  Wor H.S  ion  ion                 | NO NO                               | Sample LD.  served at lab as listed   | Reagent PC OK to  | Vol. Added                     |                 |

# Aquatec Biological Sciences Chain-of-Custody Record

273 Commerce Street Williston, VT 05495 TEL: (802) 860-1638 FAX: (802) 658-3189

|                                                        |            |                               |               |                          | lall-Ul-Custouy | ody Incoole                                                                                                                                                                     |                        |                         |                          |                                        |                  |         |
|--------------------------------------------------------|------------|-------------------------------|---------------|--------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|--------------------------|----------------------------------------|------------------|---------|
| NOITANGO DINI VINAGNOO                                 | i c        | COMPANY'S PROJECT INFORMATION | ROJEC         | T INFORMA                | NOL             | SHIPPING INFORMATION                                                                                                                                                            |                        | VOLUM                   | E/CONT<br>RESER          | VOLUME/CONTAINER TYPE/<br>PRESERVATIVE | TYPE/            |         |
| Nome: General Electric Company                         | Proje      | Project Name: GE PITTSFIEL    | PITTSF        | ELD                      |                 | Carrier.                                                                                                                                                                        | 4°C                    | ္မ္မင္                  | ္ <sup>4</sup> ၀         | ည်<br>(၁                               | 2 <sub>4</sub> 0 | 4°C     |
|                                                        |            | Outfall Composite             | site          |                          | -               |                                                                                                                                                                                 |                        | 1                       |                          | 120C4                                  | 1                |         |
| 1000 East Street, Gate 64                              | Project    | Project Number: 06004         | 06004         |                          |                 | Airbill Number:                                                                                                                                                                 | į                      | :                       | î                        | ,                                      |                  | :       |
| City/State/Zip: Pittsfield, MA 01201                   | Sam        | Sampler Name(s): Work         | ): War        | KINGShew                 | N               | Data Chinned: 7-16                                                                                                                                                              | Plastic                | Plastic                 | Plastic                  | Selection                              | Amber   F        | Plastic |
| Telephone: (413) 494-6709                              | ]<br>=<br> | 10 7 GITE #.                  | Scoonwial     | 1 00                     | -               | rate Sulphan:                                                                                                                                                                   | 1                      | 1                       | 1                        | 1                                      | İ                | 1       |
| Facsimile: Mark Wasnewsky Contact Name: Mark Wasnewsky | ĕ          | Quote #: 10/                  | 10/05 CI      | Client Code: GEPITTS     |                 | Hand Delivered: Yes No                                                                                                                                                          | 1 gal                  | 1/2 gal                 | <u></u>                  | 40 mí                                  | 250 ml           | 0.5 L   |
| · FACTOR                                               | COLLECTION | $\vdash$                      | GRAB C        | COMPOSITE                | MATRIX          | ANALYSIS (detection limits, mg/L)                                                                                                                                               |                        | NUMB                    | FER OF                   |                                        | )<br>NERS        |         |
|                                                        | 5          | ╁                             | ╅             |                          | Effluent        | Daphnia pulex 48-h Static Acute Toxicity                                                                                                                                        | <b>-</b>               |                         |                          |                                        |                  |         |
| Outrail Composite                                      | 7-10-08    | ₹<br>=                        | <del></del> _ | Z                        |                 | (EPA Method 2021.0). Log in for A48DPS                                                                                                                                          | ٠                      |                         |                          |                                        |                  |         |
| Outfall Composite 474076                               |            | 00 T                          |               | 7                        | Effluent        | Total Residual Chlorine                                                                                                                                                         |                        |                         |                          |                                        | -                |         |
| Housatonic River 47406.R                               |            | 2 WW C                        |               |                          | Receiving       | Dilution Water                                                                                                                                                                  | -                      |                         |                          |                                        |                  |         |
| Housatonic River an 7U/16R                             | >          | 7 17                          |               |                          | Receiving       | Total Residual Chlorine                                                                                                                                                         |                        |                         |                          |                                        | -                |         |
| VACION TO                                              |            |                               |               |                          |                 |                                                                                                                                                                                 |                        |                         |                          |                                        |                  |         |
|                                                        |            |                               |               |                          | 3               | •                                                                                                                                                                               |                        |                         |                          |                                        |                  |         |
|                                                        |            |                               |               |                          |                 |                                                                                                                                                                                 |                        |                         |                          |                                        |                  |         |
|                                                        |            |                               |               |                          |                 |                                                                                                                                                                                 |                        |                         |                          |                                        |                  |         |
|                                                        |            |                               |               |                          |                 |                                                                                                                                                                                 |                        |                         |                          |                                        |                  |         |
| •                                                      |            |                               |               |                          |                 |                                                                                                                                                                                 |                        |                         |                          |                                        |                  |         |
| Relinquished by: (signature)                           | DATE       | T SE                          | Receive.      | Received by: (signature) | (aure           | NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, mitals) and cover time labels with clear tape. Tape the caps of the sample bottles to ensure that they do not        | te the lan             | els (Date<br>iple bottl | e, time, it<br>les to en | sure thal                              | they do          | o t     |
| · · · · · · · · · · · · · · · · · · ·                  | •          | 144                           | \$            | 10                       | 1               | become dislodged during shipment. Nest the samples in sufricient ice to maintain u C = 6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the | lest the s<br>emperatu | ampies i<br>res exce    | in suffici<br>aeding 6°  | ent ice to<br>'C will be               | qualified        | in the  |
| Mak approved to                                        | 90-01-0    | 7/2                           | 3             | Cercial III.             | 1.110           | report.                                                                                                                                                                         |                        |                         |                          |                                        |                  |         |
| Relinquished by: (signature)                           | DATE       | TIME                          | Receive       | Received by: (signature) | ture)           | Notes to Lab: Ambient cooler temperature: 💍 , 🎖 °C. Dechlorinate the effluent                                                                                                   | erature;               | ,<br>3,<br>0            | C. Dect                  | nlorinate                              | the efflur       | <u></u> |
|                                                        |            |                               |               |                          |                 | sample if chlorine is detected.                                                                                                                                                 |                        |                         |                          |                                        |                  |         |
| Relinquished by: (signature)                           | DATE       | TIME                          | Received      | ed by: (signature)       | (ture)          |                                                                                                                                                                                 |                        |                         |                          |                                        |                  |         |
|                                                        |            |                               |               |                          |                 |                                                                                                                                                                                 |                        |                         |                          |                                        |                  |         |

7/10/2006

### CHRONIC AQUATIC TOXICITY COMPOSITE 7C1

Month: JUL Week: 3

Fiscal Wk: 28
Weather: Chronic Composite Sample #1

| - lit  | Surple X<br>July 2006 |
|--------|-----------------------|
| Spirox | TULY 2008             |
| •      | J                     |

|                                               | Gallons/Day                               | MI in Composite                           | Percent of Composite                                          |
|-----------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------------------------|
| 001<br>004<br>007<br>64T<br>64G<br>09A<br>09B | 41,690<br>0<br>0<br>8,440<br>159,900<br>0 | 2,977.43<br>-<br>602.77<br>11,419.80<br>- | 19.85%<br>0.00%<br>0.00%<br>4.02%<br>76.13%<br>0.00%<br>0.00% |
| •••                                           | 210,030                                   | 15000                                     | 100.00%                                                       |

COC 8BG071006

7-10-06

### Attachment D

NPDES Chronic Biomonitoring Report July 2006





July 31, 2006

Mr. Jeffrey Nicholson GE Corporate Environmental Programs 159 Plastics Avenue Pittsfield, MA 01201

Re: NPDES Chronic Biomonitoring Report for July 2006 Submission #s: R2632318, R2632624 and R2632654

Dear Mr. Nicholson:

Enclosed is our report on the Chronic Whole Effluent Toxicity testing conducted in July 2006. The Outfall Composite samples were collected on 7/10/06 at 11:00 am, 7/12/06 at 11:00 am and 7/14/06 at 11:00 am. The Housatonic River samples were collected on 7/10/06 at 8:15 am, 7/12/06 at 8:15 am and 7/14/06 at 8:15 am. The Outfall Composite and Housatonic River samples were analyzed at Columbia Analytical Services for total cyanide, ammonia, total organic carbon, total phosphorus, chloride, total solids, total suspended solids, total residual chlorine, and total metals. Dissolved metals were analyzed for only on the Outfall Composite samples. Results are presented in Appendix 2. The Outfall Composite and Housatonic River samples were sent directly by General Electric to Aquatec Biological Services for the chronic aquatic toxicity testing including the analysis of alkalinity, hardness, specific conductance, and pH. Results are presented in Appendix 1.

Should you have any questions please contact me at (585)288-5380 x130.

Thank you for allowing us to provide this service.

Sincerely,

COLUMBIA ANALYTICAL SERVICES

Carlton Beechler Project Manager

enc.

CC: Jill Piskorz, Pat Fuse and Nicole Evans vial email.

### NPDES BIOMONITORING REPORT

# GENERAL ELECTRIC COMPANY Pittsfield, MA NPDES PERMIT MA 0003891

Reproductive Chronic Toxicity Monitoring July 2006

### WHOLE EFFLUENT TOXICITY TEST REPORT CERTIFICATION

I certify under penalty of law that this document and all ATTACHMENTS were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

| Executed on | (Date) | (Authorized Signature)             |  |
|-------------|--------|------------------------------------|--|
|             |        | Michael T. Carroll                 |  |
|             |        | General Electric Co Pittsfield, MA |  |
|             |        | Permit MA0003891                   |  |

Prepared by: Carlton R. Beechler

July 31, 2006

### TABLE OF CONTENTS

|      |                                          | <u>PAGE</u> |
|------|------------------------------------------|-------------|
| I.   | Summary                                  | 1           |
| II.  | Review of Toxicity Analytical Results    | 2           |
| III. | Review of Wastewater Sampling Procedures | 3           |
| IV.  | Review of Individual Discharges          | 5           |

### Table I – Summary of Analytical Test Results

### Appendices:

- 1. Chemical and Acute Toxicity Data from Aquatec Biological Sciences
- 2. Laboratory Reports from Columbia Analytical Services, Inc. and O'Brien & Gere, Inc.
- 3. Chain of Custody Forms

### I. Summary

On July 9-14, 2006 sampling of wastewater discharges from the General Electric Company facility in Pittsfield, MA was conducted in accordance with the chronic toxicity testing requirement of the GE NPDES Permit MA0003891. Three composite effluent samples were collected from GE outfalls 001, 005-64T, 005-64G and 09B over a 6-day period. Sampling dates were July 9-10, July 11-12 and July 13-14. If flow did not occur at an outfall during the 24 hour period, no sample was collected (see chain of custody records in Appendix 3 for details of the outfalls sampled during each period). Each set of samples were combined in a flow-proportioned manner to generate a single wastewater sample that was shipped via FedEx to Aquatec Biological Sciences in Williston, Vermont for chronic toxicity testing. Grab samples of Housatonic River water, to be used as dilution water in the toxicity test, were collected upstream of the GE discharges on July 10, 12, 14 2006 and shipped to AquaTec along with the wastewater composite. AquaTec dechlorinated the composite sample prior to the acute toxicity test following the toxicity reduction procedures summarized in a letter dated November 11, 1993 to EPA Region I from JG Ruebesam of General Electric Company. The composite wastewater sample and the dilution water sample were tested for chemical constituents by O'Brien & Gere, Inc. and Columbia Analytical Services. The analytical results are summarized in Table I and the detailed laboratory test data are include as Appendices to this report. As a result of land transfer documents executed on April 27, 2005 and recorded in the Berkshire County Registry of Deeds on May 2, 2005, Outfalls 001 and 004 were transferred to the Pittsfield Economic Development Authority (PEDA). Outfalls 001 and 004 DMRs will no longer be submitted under the GE NPDES Permit No. MA0003891. However, GE's NPDES Permit requires that the metal and toxicity composites to be made by compositing samples from the following outfalls: 001, 004, 005, 007, and 009. These two composites will continue to include an aliquot of water from outfall 001 and outfall 004, and will be reported on GE's DMR until further actions by the Agencies.

The results from Aquatec Biological Sciences for the chronic toxicity test on the wastewater discharge sample indicated a No Observed Chronic Effect Level (NOCEL) of 100%. No Limit is established for NOCEL in the GE NPDES permit.

### II. Review of Toxicity Test Results

The wastewater discharge sample collected on July 9-10, July 11-12 and July 13-14, 2006 were tested for 7 day chronic toxicity using *Ceriodaphnia dubia* organisms. The sample did not require dechlorination with sodium thiosulfate (Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>) prior to toxicity testing. Aquatec Biological Sciences reported the results of this toxicity testing as follows:

| Effluent toxicity as | NOCEL = | 100%  |
|----------------------|---------|-------|
| Effluent toxicity as |         | >100% |

No limit is established for NOCEL in the GE NPDES permit.

The following table summarizes the results of the control sample analyses performed by AquaTec during the chronic toxicity bioassay:

| Control Analysis Survival in 100% dilution water                       | <u>Result</u><br>100% | Acceptable Limit ≥80% |
|------------------------------------------------------------------------|-----------------------|-----------------------|
| Reproduction in 100% dilution water (average# of offspring/female/day) | 30.9                  | ≥ ± 5%                |
| Reproduction in 100% dilution water (% of females having three broods) | 100%                  | ≥60%                  |

The survival and reproduction rate of *Ceriodaphnia* in the upstream dilution water control samples was within acceptable limits, indicating that the results of the toxicity test are valid.

#### III. Review of Wastewater Sampling Procedures

Three composite effluent samples of the individual NPDES wastewater discharges were collected over a 24-hour period. Each composite effluent sample was generated by combining samples from the individual NPDES discharges. Each group of individual samples collected over the same 24 hour period were composited in a flow-weighted manner to generate a single combined discharge sample for toxicity testing and chemical analysis.

The 24-hour composite samples from the individual discharges were collected as follows:

Each automatic sampler (at outfall 001, 64T, 64G, and 09B) was programmed to collect approximately 7 liters of wastewater into a 10-liter glass container in a time-proportioned manner over a 24-hour period. Outfalls 004, 007, and 09A have been plugged and no longer flow.

All sample containers were packed in ice or refrigerated to keep the wastewater samples cold during the 24-hour collection period.

Flow meter readings were taken at the beginning and end of the 24-hour collection period to determine the total 24-hour flow for each wastewater discharge.

At the end of the 24-hour collection period, the discharge samples were taken to Building 64G where O'Brien & Gere personnel composited these samples, in a flow weighted manner, to generate a single combined sample for the chronic toxicity test and the chemical analyses, as follows:

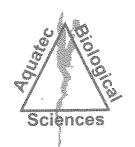
The proportions of each individual discharge sample needed to produce a single combined sample were calculated from the flow measurements. The calculated sample volumes were then transferred from their original collection containers to a 2.5 or 5 gallon mixing container. The combined discharge sample was then split into various containers for toxicity testing and chemical analyses. These containers were shipped by vendor courier to AquaTec for toxicity testing and by FedEx (overnight) to Columbia Analytical Services for chemical analyses. All samples were chilled with ice packs during shipment.

A grab sample of Housatonic River water was collected on the second day of each 24 hour period at the Lyman Road Bridge in Hinsdale, MA, upstream of the GE site. This sample was split for chemical analysis and toxicity testing in a similar manner as the combined effluent sample (see above).

Details of the times and dates of sample collection as well as the names of the individuals collecting and transporting the samples are provided on the chain of custody forms in Appendix 3 of this report.

#### IV. Review of Individual NPDES Discharges

The following is a brief description of each of the seven outfalls that are monitored for acute and chronic toxicity in accordance with NPDES Permit MA0003891 issued to the General Electric Company, Pittsfield, MA.


- 1. Outfall 001 is permitted to discharge storm water runoff from the oil/water separator in Building 31W to Silver Lake.
- 2. Outfall 004 is permitted to discharge storm water runoff to Silver Lake. (Outfall plugged)
- 3. Outfall 005 is permitted to discharge contact cooling water, non-contact cooling water, treated process water and storm water runoff from the Wastewater Treatment Plant in Building 64T, and treated groundwater from the Groundwater Treatment Plant in Building 64G to the Housatonic River. Monitoring samples are collected separately from the effluents of 64G and 64T. Both samples are included in the flow composite sample used for toxicity testing.
- 4. Outfall 007 is permitted to discharge stormwater runoff to the Housatonic River. (Outfall plugged)
- 5. Outfall 09A is permitted to discharge non-contact cooling water and stormwater runoff to Unkamet Brook. (Outfall plugged)
- 6. Outfall 09B is permitted to discharge non-contact cooling water, treated process water and stormwater runoff from the oil/water separator in Building 119W to Unkamet Brook.

| Aguatic Toxicity Results:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                      | No Observed E     | ffect Level (NO                         | CEL) =       |              | 100%         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-------------------|-----------------------------------------|--------------|--------------|--------------|
| Aquado Toxiony Rooms.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                      |                   |                                         |              | LC50 =       | >100%        |
| AND THE RESERVE THE PARTY OF TH |                    |                      |                   |                                         |              |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chemical Anal      | yses: (all results a | re mg/L unless ot | herwise indicate                        | <u>d)</u>    |              |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |                   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |              |              | T 4 10 14    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | July 9-10            | July 9-10         | July 11-12                              | July 11-12   | July 13-14   | July 13-14   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Effluent             | Housatonic        | Effluent                                | Housatonic   | Effluent     | Housatonic   |
| Parameter Tested                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Laboratory         | <u>Composite</u>     | River             | Composite                               | River        | Composite    | River        |
| Ammonia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAS                | 0.487                | ND (0.0500)       | 0.443                                   | ND (0.0500)  | 0.269        | ND (0.100)   |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CAS                | 210                  | 18                | 151                                     | 18.9         | 129          | 12.5         |
| Total Alkalinity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAS                | 371                  | 94.3              | 265                                     | 107          | 241          | 59.5         |
| Total Organic Carbon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAS                | 6.1                  | 7.01              | 9.73                                    | 5.82         | 6.28         | 6.39         |
| Total Phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CAS                | ND (0.0500)          | 2.14              | 0.0917                                  | ND (0.0500)  | ND (0.0500)  | ND (0.0500)  |
| Total Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CAS                | 739                  | 148               | 5.79                                    | 170          | 492          | 108          |
| Total Suspended Solids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAS                | ND (1.00)            | 2.50              | 6,90                                    | 1.30         | 2.60         | 5.30         |
| Hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aquatec            | 374                  | 102               | 280                                     | 114          | 242          | 70           |
| Spec. Conductance (umhos)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aquatec            | 1361                 | 259               | 1022                                    | 289          | 904          | 172          |
| pH (SU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Aquatec            | 7.8                  | 7.5               | 7.6                                     | 7.4          | 7.7          | 7.2          |
| TRC (start of toxicity test)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Aquatec            | ND                   | ND                | ND                                      | ND           | ND           | ND           |
| Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAS                | 0.0500               | ND (0.0100)       | 0.0258                                  | ND (0.0100)  | 0.0314       | ND (0.0100)  |
| Aluminum, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAS                | ND (0.100)           | ND (0.100)        | 0.222                                   | ND (0.100)   | ND (0.100)   | 0.123        |
| Aluminum, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CAS                | ND (0.100)           | NA                | ND (0.100)                              | NA           | ND (0.100)   | NA           |
| Cadmium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CAS                | ND (0.00500)         | ND (0.00500)      | ND (0.00500)                            | ND (0.00500) | ND (0.00500) | ND (0.00500) |
| Cadmium, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAS                | ND (0.00500)         | NA                | ND (0.00500)                            | NA           | ND (0.00500) | NA           |
| Chromium, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAS                | ND (0.0100)          | ND (0.0100)       | ND (0.0100)                             | ND (0.0100)  | ND (0.0100)  | ND (0.0100)  |
| Chromium, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CAS                | ND (0.0100)          | NA                | ND (0.0100)                             | NA           | ND (0.0100)  | NA           |
| Copper, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CAS                | ND (0.0200)          | ND (0.0200)       | ND (0.0200)                             | ND (0.0200)  | ND (0.0200)  | ND (0.0200)  |
| Copper, total Copper, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAS                | ND (0.0200)          | NA                | ND (0.0200)                             | NA           | ND (0.0200)  | NA           |
| Lead, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAS                | ND (0.00500)         |                   | 0.0062                                  | ND (0.00500) | ND (0.00500) | ND (0.00500) |
| Lead, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAS                | ND (0.00500)         | NA                | ND (0.00500)                            | NA           | ND (0.00500) | NA           |
| Nickel, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CAS                | ND (0.0400)          | ND (0.0400)       | ND (0.0400)                             | ND (0.0400)  | ND (0.0400)  | ND (0.0400)  |
| Nickel, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CAS                | ND (0.0400)          | NA                | ND (0.0400)                             | NA           | ND (0.0400)  | NA           |
| Silver, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CAS                | ND (0.0100)          | ND (0.0100)       | ND (0.0100)                             | ND (0.0100)  | ND (0.0100)  | ND (0.0100)  |
| Silver, total Silver, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAS                | ND (0.0100)          | NA                | ND (0.0100)                             | NA           | ND (0.0100)  | NA           |
| Zinc, total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAS                | ND (0.0200)          | ND (0.0200)       | 0.0589                                  | ND (0.0200)  | 0.0294       | ND (0.0200)  |
| Zinc, total Zinc, dissolved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAS                | ND (0.0200)          | NA (USA)          | 0.0499                                  | NA           | 0.0364       | NA           |
| oH (SU)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OB&G               | 7.81                 | 7.78              | 7.78                                    | 7.84         | 7.75         | 7.73         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Aquatec            | 374                  | 102               | 280                                     | 114          | 242          | 70           |
| Hardness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Aquaico            | 7.4                  | 1.72              |                                         |              |              |              |
| All results are mg/L unless of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | erwise indicated   | 1.                   |                   |                                         |              |              |              |
| All results are ing/L unless on<br>NA – Not analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ioi wase indicates | **                   |                   | 4                                       |              |              |              |

# APPENDIX 1

Chemical and Acute Toxicity Data

Aquatec Biological Sciences



# **Aquatec Biological Sciences**









July 28, 2006

Mr. Carl Beechler Columbia Analytical Services, 1 Mustard Street – Suite 250 Rochester, NY 14609

Dear Mr. Beechler:

Enclosed please find one bound and one unbound copies of our report of the results for chronic whole effluent toxicity testing of samples received from GE Pittsfield, Massachusetts on July 10 - 14, 2006.

According to the Chain-of-Custody documentation, samples for Whole Effluent Toxicity (WET) Testing were collected on July 10, 12, and 14, 2006. The samples were transported to Aquatec Biological Sciences, Inc. by courier and delivered on the same day. The initial effluent sample was logged in for the short-term chronic toxicity test with *Ceriodaphnia dubia* (EPA Method 1002.0). Subsequent effluent samples were used for toxicity test renewals. The receiving water samples were logged in for dilution water. A subsample of each sample was checked for residual chlorine (not detected) and for alkalinity and hardness measurements at Aquatec Biological Sciences, Inc. The toxicity test was started on July 11, 2006, within the specified holding time.

At the conclusion of the toxicity test on July 17, 2006, a final count of surviving organisms and offspring (neonates) was completed. The average survival was 90 - 100 percent in all test concentrations. Acute toxicity or chronic to *Ceriodaphnia dubia* was not detected, with the 48-hour LC50 reported as >100% effluent and the Chronic No-Observed-Effect Concentration (C-NOEC) reported as 100% (Section 4.1 of the report).

If you have any questions regarding the report, please call Dr. Philip C. Downey or me.

Sincerely,

John Williams

Manager, Environmental Toxicology

This report consists of the following numbered pages:

1-59

# Chronic Whole Effluent Toxicity Testing Of Wastewaters Discharged from The General Electric Plant Pittsfield, Massachusetts

Samples Collected in July 2006

Submitted to:

General Electric
Area Environmental & Facility Programs
100 Woodlawn Avenue
Pittsfield, Massachusetts 01201

SDG number: 9664

Effluent ID: Outfall Composite A7407C Aquatec sample number: 32270 Effluent ID: Outfall Composite A7409C Aquatec sample number: 32284 Effluent ID: Outfall Composite A7411C Aquatec sample number: 32341

Receiving water ID: Housatonic River A7406R Aquatec sample number: 32271 Receiving water ID: Housatonic River A7408R Aquatec sample number: 32285 Receiving water ID: Housatonic River A7410R Aquatec sample number: 32342 Study Director: John Williams

July 27, 2006

Submitted by:
Aquatec Biological Sciences, Inc.
273 Commerce Street
Williston, Vermont 05454

Phone: (802) 860-1638 Fax: (802) 860-1638

Accreditation: NH Environmental Laboratory Accreditation Program NELAP / NELAC accredited for the requested analysis.

1

#### Signatures and Approval

UK

#### Submitted by:

Aquatec Biological Sciences, Inc.

273 Commerce Street Williston, Vermont 05454 Phone: (802) 860-1638

Fax: (802) 860-1638

Study Director

John Williams

Quality Assurance Officer

Philip C. Downey, Ph. D.

7 / 20/00 Date

1128106

Date

## Whole Effluent Toxicity Test Report Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

| Executed on:         | Date:     | 7/23/66                               |
|----------------------|-----------|---------------------------------------|
|                      |           |                                       |
| Authorized signatu   | (B)       | · · · · · · · · · · · · · · · · · · · |
| John Willams<br>Name |           |                                       |
| Manager, Enviro      | onmenta   | l Toxicology                          |
| Title                |           |                                       |
| Aquatec Biologi      | cal Scier | nces, Inc.                            |
| Laboratory           |           |                                       |

# **Table of Contents**

|                |                                                    | rage   |
|----------------|----------------------------------------------------|--------|
|                | ind Approval                                       | 2      |
|                | ent Toxicity Test Report Certification             | 3<br>5 |
| List of Table  |                                                    | 5<br>6 |
| Summary of     | Chronic Toxicity Test With Ceriodaphnia dubia      | ь      |
| 1.0 Introduc   | tion                                               |        |
| 1.0 miliodae   | 1.1 Background                                     | 8      |
|                | 1.2 Objective of the General Electric Study        | 8      |
|                | •                                                  |        |
| 2.0 Materials  | s and Methods                                      | _      |
|                | 2.1 Protocol                                       | 8      |
|                | 2.2 Effluent and receiving water samples           | 9      |
|                | 2.3 Control water                                  | 9      |
|                | 2.4 Test organism                                  | 9      |
|                | 2.5 Test procedure                                 | 10     |
|                | 2.6 Test monitoring                                | 11     |
|                | 2.7 Reference toxicant test                        | 11     |
|                |                                                    |        |
| 3.0 Statistics | 5                                                  |        |
| O.O Otationo   | 3.1 Statistical protocol                           | 11     |
|                |                                                    |        |
| 4.0 Results    |                                                    |        |
|                | 4.1 Effluent toxicity test                         | 12     |
|                | 4.2 Reference toxicant test                        | 12     |
|                |                                                    |        |
| 5.0 Qualifier  |                                                    | 40     |
|                | 5.1 Qualifiers and Special Conditions              | 12     |
| References     |                                                    | 13     |
| Keleielices    |                                                    | 10     |
|                |                                                    |        |
| Appendix 1     | Chain-of-Custody Documentation                     |        |
| Appendix 2     | Summary of Test Conditions                         |        |
| Appendix 3     | U.S. EPA Region 1 Toxicity Test Summary and        |        |
|                | Statistical Flow Chart                             |        |
| Appendix 4     | Bench Data, Ceriodaphnia dubia Chronic Toxicity    |        |
| •              | Test                                               |        |
| Appendix 5     | Standard Reference Toxicant Test Control Chart     |        |
| Appendix 6     | TOX2-002, Standard Operating Procedure for         |        |
| - <del>-</del> | Daphnid ( <i>Ceriodaphnia dubia</i> ) Survival and |        |
|                | Reproduction Toxicity Test                         |        |

SDG: 9664 July 27, 2006

## **List of Tables**

|           |                                                                                                                                                                                    | Page |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 1   | Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)                                           | 14   |
| Table 2   | The water quality measurements recorded during the short-term chronic toxicity test for <i>Ceriodaphnia dubia</i> exposed to General Electric Pittsfield Plant effluent            | 15   |
| Table 3 a | Summary of percent survival data for the short-term chronic toxicity test with <i>Ceriodaphnia dubia</i> exposed to General Electric Pittsfield Plant effluent                     | 16   |
| Table 3 b | Summary of reproduction data (number of offspring produced) for the short-term chronic toxicity test with Ceriodaphnia dubia exposed to General Electric Pittsfield Plant effluent | 17   |
|           |                                                                                                                                                                                    |      |

July 27, 2006

# Summary Chronic Survival and Reproduction Toxicity Test with Ceriodaphnia dubia

Sponsor: General Electric

Protocol title: US EPA-821-R-02-013. Methods for Measuring the

Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 4<sup>th</sup> Ed., October 2002.

Method 1002.0

Aquatec SDG: 9664

Test material: Composite effluent from the General Electric

Company located in Pittsfield, Massachusetts

GE sample ID: Outfall Composite A7407C

Outfall Composite A7409C Outfall Composite A7411C

Dilution water: Water from the Housatonic River (grab sample)

GE sample ID: Housatonic River A7406R

Housatonic River A7408R Housatonic River A7410R

Dates collected: July 10, 12, and 14, 2006

Date received: July 10, 12, and 14, 2006

Test dates: July 11-17, 2006

Test concentrations: 100%, 75%, 50%, 25%, 12.5%, 6.25% effluent.

Dilution water control (Housatonic River)

Laboratory control 1 (culture water)

Laboratory control 2 (culture water with sodium

thiosulfate)

**Acute Toxicity Values** 

| Species            | Exposure Period | 48-hour LC50<br>(% effluent) | A-NOAC<br>(% effluent) |
|--------------------|-----------------|------------------------------|------------------------|
| Ceriodaphnia dubia | 48 hours        | >100%                        | 100%                   |

**Chronic Toxicity Values** 

| Species               | Endpoint     | Exposure<br>Period | C-NOEC<br>(% effluent) | C-LOEC<br>(% effluent) |
|-----------------------|--------------|--------------------|------------------------|------------------------|
| Ceriodaphnia<br>dubia | Survival     | 6 – 7 days         | 100%                   | >100%                  |
| Ceriodaphnia<br>dubia | Reproduction | 6 – 7 days         | 100%                   | >100%                  |

July 27, 2006

#### 1.0 Introduction

#### 1.1 Background

In 1972, amendments were made to the Clean Water Act (CWA) prohibiting the discharge of any pollutant from a point source to waters of the United States, unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Since the passing of the 1972 amendments to the CWA, significant progress has been made in cleaning up industrial wastewater and municipal sewage point source discharges. EPA defines point sources as discrete discharges via pipes or man-made ditches.

In 1984, the U.S. Environmental Protection Agency (EPA) released a national policy statement and a supporting document that recommended, where appropriate, effluent permit limits should be based on effluent toxicity as measured in aquatic toxicity tests. Generally, permits require that no toxic discharge occur in toxic amounts. The routine use of dilution-series toxicity tests and/or biologically-based criteria (i.e., invertebrate and vertebrate community studies) have become increasingly utilized to calculate or estimate the potential toxicity of a discharge.

EPA has the authority to delegate primary responsibility for the implementation, permitting, and enforcement of NPDES regulations to appropriate State regulatory agencies. Even when EPA delegates this authority to the states, EPA still maintains oversight responsibility.

#### 1.2 Objective of the General Electric Study

The objective of this study was to measure the chronic toxicity of the composite wastewater discharged by the General Electric facility located in Pittsfield, Massachusetts to the Housatonic River. The water flea, *Ceriodaphnia dubia*, is exposed to effluent and dilutions of effluent under static conditions with daily renewal of test solutions. *Ceriodaphnia dubia* is routinely used by regulatory agencies and by contract laboratories for toxicity testing and EPA has published quidance documents for the performance of this test (U.S. EPA, 2002).

A toxicity test was conducted from July 11-17, 2006 at Aquatec Biological Sciences, Inc. (Aquatec) located in Williston Vermont. Aquatec Biological Sciences, Inc. holds NELAC accreditation for the requested whole effluent toxicity test. All original raw data and the final report produced for this study are stored in Aquatec's archives in Williston, Vermont.

#### 2.0 Materials and Methods

#### 2.1 Protocol

Procedures used in this chronic toxicity test followed those described in the Aquatec Standard Operating Procedure (SOP) TOX2-002, Cladoceran, *Ceriodaphnia dubia* Survival and Reproduction Toxicity Test R4, May 4, 2006. This SOP generally follows the standard methodology presented in U.S. EPA. 2002 (EPA-821-R-02-013). *Methods for Measuring the Chronic Toxicity of* 

SDG: 9664

July 27, 2006

Effluents and Receiving Waters to Freshwater Organisms, 4<sup>th</sup> Ed., October 2002, Method 1002.0 (as summarized in Appendix 2 of this report). A copy of the SOP is located in Appendix 6 (Controlled document, please do not copy or distribute.)

Additional SOPs used in this study are outlined below:

| Title                                  | SOP Number | Revision Date          |
|----------------------------------------|------------|------------------------|
| Sample Acceptance                      | TOX1-017   | Rev. 4, February, 2004 |
| Hardness – total titrimetric method    | TOX1-011   | Rev. 3, May 2003       |
| Alkalinity – total titrimetric method  | TOX1-010   | Rev. 6, April 2004     |
| Thermo-Orion 145 A+ Conductivity Meter | TOX1-016   | Rev. 1, April 2004     |
| Dissolved oxygen                       | TOX1-006   | Rev. 7, April 2004     |
| pH measurement                         | TOX1-007   | Rev. 2, April 2004     |
| Salinity: refraction method            | TOX1-008   | Rev. 3, January, 2003  |

#### 2.2 Effluent and Receiving Water Samples

Effluent samples were collected by GE personnel from July 9-10, 2006 (initial sample); July 11-12, 2006 (first renewal sample), and July 13-14, 2006 (second renewal sample). Receiving water samples were grab samples collected from the Housatonic River on July 10, 12, and 14, 2006. Samples were delivered to Aquatec on the same day as they were collected. Upon receipt at Aquatec on the temperature of the temperature blank contained within the cooler was within the range of 0.0°C to 6.0°C. The effluent and receiving water were prepared for testing and characterized (Table 1). The receiving water was the dilution water for preparing effluent concentrations and was also the reference control for statistical comparisons.

#### 2.3 Control water

Laboratory control water for the toxicity test was a 1:1 mixture of laboratory reconstituted moderately hard water and 60-micron filtered river water collected from the Lamoille River, Vermont. This water was characterized for the following parameters: pH (7.6); dissolved oxygen (8.2 mg/L); conductivity (207 uS/cm). An additional dechlorination control (laboratory water with 0.2 N sodium thiosulfate added) was included in the test array, even though chlorine was not detected in the effluent sample.

#### 2.4 Test Organism

Daphnids (*Ceriodaphnia dubia*), less than 24-hours old and collected within and eight-hour period were obtained from Aquatec laboratory cultures. The culture system consisted of brood boards with 1-oz cups containing approximately 20 mL of culture medium and one daphnid. The culture water was laboratory reconstituted moderately hard water mixed in a 1:1 ratio with filtered Lamoille River, VT water. Prior to use, the culture water was characterized:

| Parameter                               | Result                      |
|-----------------------------------------|-----------------------------|
| Total hardness (mg/L)                   | Within range of 50-110 mg/L |
| Alkalinity (mg/L as CaCO <sub>3</sub> ) | Within range of 50-100 mg/L |
| pH                                      | Nominal 7.0 – 8.0           |

The culture area was maintained at a nominal temperature of 25°C (range 24 – 26°C) with a regulated photoperiod of 16 hours light and 8 hours of darkness.

Daphnid cultures were fed daily a combination of green algae (*Selenastrum capricornutum*) and YCT obtained from Aquatic BioSystems of Fort Collins, Colorado. Daphnids were transferred to new culture medium daily.

Beginning approximately 24 hours before toxicity test initiation neonates were removed from the culture cups. Offspring produced within eight hours were used for toxicity testing when the neonates were 24 hours old or less.

#### 2.5 Test Procedures

Prior to initiating the toxicity test, a sub-sample of effluent and receiving water was decanted for subsequent alkalinity and hardness determination. A sub-sample was also checked for presence of chlorine to determine whether dechlorination of effluent is required. Chlorine was not detected, therefore dechlorination of the effluent was not required. The sample was then aerated and warmed to test temperature.

The toxicity test was conducted at effluent concentrations of 100%, 75%, 50%, 25%, 12.5%, and 6.25% effluent. Test concentrations were prepared by diluting the appropriate volume of effluent with dilution water to a total volume of 300 mL. Test solutions were then decanted to ten replicate 30-mL cups per concentration, each containing approximately 20 mL of test solution. Three sets of control replicates were also included in the test array, set up as the effluent replicates. The controls included: Housatonic River water (dilution control), a laboratory control (a mix of moderately hard water and Lamoille River, VT water), and a laboratory control with sodium thiosulfate added (dechlorination control). The dechlorination control was included in the test array even though residual chlorine was not detected in the effluent.

Prior to testing, daphnids less than 24-hours old were collected from the cultures, pooled in Carolina bowl, and fed. The test was initiated when the daphnid neonates were transferred to the replicate test cups, one daphnid per cup. The toxicity test cups were incubated to maintain temperature in the range of 24°C to 26 °C. The lighting cycle was 16 hours light and eight hours dark and a luminance of approximately 80 ft-c.

The criteria for ending the toxicity test was based upon the controls reaching an average of 15 neonates or more per female and at least 60 percent of surviving females having produced three broods during the test.

#### 2.6 Test Monitoring

The number of surviving daphnids and the number of young produced was observed at approximately 24-hour intervals during the test, with the final count of surviving daphnids and young at the end of the test. Temperature was measured daily in one replicate of each test treatment. The parameters of pH, dissolved oxygen, and conductivity were measured daily on a composite of the test solutions before and after renewal.

Total hardness was measured by the EDTA titrimetric method and total alkalinity was measured by potentiometric titration to an endpoint of 4.5 on each new sample. The check for residual chlorine was performed with an acidified sample to which potassium iodide and starch indicator added. If chlorine was detected, the color was titrated away with 0.02 N sodium thiosulfate to determine the equivalent volume of 0.2 N sodium thiosulfate to add to effluent (if needed).

Dissolved oxygen was measured with a YSI Model 58 dissolved oxygen meter. A Beckman Phi 40 was used to measure pH. A Thermo-Orion Model 145 conductivity meter was used to measure conductivity.

#### 2.7 Reference Toxicant Test

A acute / chronic standard reference toxicant (SRT) test was conducted monthly. The SRT test was conducted as a quality control procedure to establish the health and sensitivity of the test organisms. The SRT included four concentrations of reagent grade sodium chloride (NaCl) with nominal concentrations of 0.25, 0.5, 1.0, 2.0, and 3.0 g NaCl/L. Ten test replicates, each containing one daphnid were test at each concentration and the laboratory control.

#### 3.0 Statistics

#### 3.1 Statistical protocol

The concentration-response relationships observed were characterized by the median lethal concentration (LC50, based on survival data at 48-hours of the test), which was the calculated concentration lethal to 50 percent of the test organisms. If no concentrations resulted in 50% mortality, the LC50 was reported as greater than the highest concentration effluent (in this case >100% effluent), by direct observation. If greater than 50 percent mortality was observed in any effluent treatment, then a computer program (TOXIS2) was used to calculate the LC50 value, following the U.S. EPA statistical flowchart (Appendix 3).

The Acute-No-Observable-Effect Concentration (A-NOEC) was determined statistically using multiple comparison tests (TOXIS2), with the receiving water control as the reference.

The Chronic-No-Observable-Effect Concentration (C-NOEC) was determined based on the end-of-test survival and reproduction data using multiple comparison tests (TOXIS2), with the receiving water control as the statistical reference.

#### 4.0 Results

#### 4.1 Effluent Toxicity Test

Results of effluent and receiving water characterizations performed at Aquatec as part of the toxicity test are presented in Table 1. Water quality parameters measured during the toxicity test are presented in Table 2. Measured temperatures during the test were within the range of 24°C to 26°C. The percent survival data and number of offspring produced during the exposure for the toxicity test are presented in Table 3.

By day six, at least 60 percent of the reference control (receiving water) organisms had produced at least three broods with a minimum of 15 young per surviving female.

Acute toxicity was not demonstrated during this evaluation. The 48-hour LC50 value was >100% effluent. The A-NOEC was 100% effluent. Chronic toxicity was not demonstrated during this evaluation. The C-NOEC value was 100% effluent. And the C-LOEC was >100% effluent.

#### 4.2 Reference Toxicant Test

The most recent standard reference toxicant (SRT) test, conducted in June 2006, had a resulting 48-hour LC50 1.782 g NaCl/L and a chronic IC25 of 0.155 g NaCl/L. These values were within the Control Chart limits generated for SRT tests with *Ceriodaphnia dubia* in our laboratory.

#### 5.0 Qualifiers

#### 5.1 Qualifiers and Special Conditions

Qualifiers or special conditions were not applicable to the reported toxicity test.

NPDES Permit No. MA0003891 SDG: 9664 July 27, 2006

#### References

American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17<sup>th</sup> Edition

U.S. Environmental Protection Agency, 2002. 4<sup>th</sup> Edition. *Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms*. EPA-821-R-02-013.

Table 1. Results of the characterization of the General Electric Pittsfield Plant effluent and receiving water samples.

| Parameter                                   | OUTFALL<br>COMPOSITE<br>A7407C | OUTFALL<br>COMPOSITE<br>A7409C | OUTFALL<br>COMPOSITE<br>A7411C |
|---------------------------------------------|--------------------------------|--------------------------------|--------------------------------|
| Temperature                                 | 25.4                           | 25.7                           | 25.3                           |
| рH                                          | 7.8                            | 7.6                            | 7.7                            |
| Alkalinity (as CaCO <sub>3</sub> ),<br>mg/L | 340                            | 256                            | 232                            |
| Hardness (as CaCO <sub>3</sub> ),<br>mg/L   | 374                            | 280                            | 242                            |
| Dissolved oxygen,<br>mg/L                   | 8.9                            | 8.5                            | 8.6                            |
| Specific conductivity, uS/cm                | 1361                           | 1022                           | 904                            |
| Total residual chlorine (mg/L)              | ND                             | ND                             | ND                             |

| Parameter                                | Housatonic<br>River<br>A7406R | Housatonic<br>River<br>A7408R | Housatonic<br>River<br>A7410R |
|------------------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Temperature                              | 24.9                          | 25.3                          | 25.6                          |
| рН                                       | 7.5                           | 7.4                           | 7.2                           |
| Alkalinity (as CaCO <sub>3</sub> ), mg/L | 88                            | 96                            | 64                            |
| Hardness (as CaCO₃),<br>mg/L             | 102                           | 114                           | 70                            |
| Dissolved oxygen,<br>mg/L                | 8.7                           | 8.7                           | 8.7                           |
| Specific conductivity, uS/cm             | 259                           | 289                           | 172                           |
| Total residual chlorine (mg/L)           | ND                            | ND                            | ND                            |

Note: Characterizations reflect conditions of sample after preparation for the toxicity test. ND = not detected

Table 2. Water quality measurements (ranges) recorded during the chronic toxicity test with *Ceriodaphnia dubia* exposed to General Electric Pittsfield Plant effluent, July 11 - 17, 2006.

| Test<br>Concentration<br>(% effluent) | рН        | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>(°C) | Conductivity<br>(umhos/cm) |
|---------------------------------------|-----------|-------------------------------|---------------------|----------------------------|
| Dechl. Control                        | 7.2 - 7.8 | 7.5 - 8.4                     | 24.3 – 25.6         | 308-329                    |
| Lab Control                           | 7.1 – 7.6 | 7.6 - 8.4                     | 24.4 – 25.1         | 203 - 218                  |
| Reference Control                     | 7.2- 7.7  | 7.6 – 9.1                     | 24.5 – 25.6         | 172 - 289                  |
| 6.25%                                 | 7.3 - 7.8 | 7.6 – 9.1                     | 24.3 – 25.4         | 216 - 337                  |
| 12.5%                                 | 7.4 – 7.9 | 7.6 – 9.1                     | 24.2 – 25.4         | 269 - 411                  |
| 25%                                   | 7.5 – 8.1 | 7.5 – 8.9                     | 24.4 – 25.5         | 361 - 547                  |
| 50%                                   | 7.6 – 8.2 | 7.6 – 8.9                     | 24.3 – 25.7         | 544 - 829                  |
| 75%                                   | 7.6 - 8.3 | 7.6 - 8.9                     | 24.4 – 26.0         | 716 - 1102                 |
| 100%                                  | 7.6 – 8.3 | 7.6 - 8.9                     | 24.4 – 26.0         | 876 - 1363                 |

Dechl. Control = laboratory water with sodium thiosulfate added (dechlorination control).

Lab Control = a mix of natural river water and moderately hard water. Dilution Control = receiving water (Housatonic River).

Table 3 a. Summary of percent survival data for the short-term chronic toxicity test with *Ceriodaphnia dubia* exposed to General Electric Pittsfield Plant effluent, July 11 - 17, 2006.

| Test Concentration (% effluent) | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Day 6 | Day 7 |
|---------------------------------|-------|-------|-------|-------|-------|-------|-------|
| Dechl. Control                  | 100   | 100   | 100   | 100   | 100   | 100   |       |
| Lab Control                     | 100   | 100   | 100   | 100   | 100   | 100   | •••   |
| Reference Control               | 100   | 100   | 100   | 100   | 100   | 100   | -     |
| 6.25%                           | 100   | 100   | 100   | 100   | 100   | 100   | -     |
| 12.5%                           | 100   | 100   | 100   | 100   | 100   | 100   | -     |
| 25%                             | 100   | 100   | 100   | 100   | 100   | 100   | •     |
| 50%                             | 100   | 100   | 100   | 100   | 100   | 100   | -     |
| 75%                             | 100   | 100   | 100   | 100   | 100   | 100   | -     |
| 100%                            | 100   | 100   | 100   | 100   | 100   | 90    | -     |

Dechl. Control = laboratory water with sodium thiosulfate added (dechlorination control).

Lab Control = a mix of natural river water and moderately hard water.

Dilution Control = receiving water (Housatonic River), the statistical control

Table 3 b. Summary of reproduction data (number of offspring produced) for the short-term chronic toxicity test with *Ceriodaphnia dubia* exposed to General Electric Pittsfield Plant effluent, July 11 - 17, 2006.

| Test Concentration (% effluent) | Day<br>1 | Day<br>2 | Day<br>3 | Day<br>4 | Day<br>5 | Day<br>6 | Day<br>7 | Avg.<br>per<br>Female |
|---------------------------------|----------|----------|----------|----------|----------|----------|----------|-----------------------|
| Dechl. Control                  | 0        | 0        | 49       | 78       | 1        | 134      | -        | 26.2                  |
| Lab Control                     | 0        | 0        | 55       | 83       | 2        | 143      | _        | 28.3                  |
| Reference Control               | 0        | 0        | 48       | 70       | 0        | 136      | -        | 25.4                  |
| 6.25%                           | 0        | 0        | 50       | 75       | 1        | 142      | -        | 26.8                  |
| 12.5%                           | 0        | 0        | 53       | 71       | 1        | 173      | -        | 29.8                  |
| 25%                             | 0        | 0        | 47       | 88       | 0        | 154      | -        | 28.9                  |
| 50%                             | 0        | 0        | 56       | 73       | 0        | 129      |          | 25.8                  |
| 75%                             | 0        | 0        | 62       | 78       | 1        | 178      | -        | 31.9                  |
| 100%                            | 0        | 0        | 59       | 88       | 0        | 162      | -        | 30.9                  |

Dechl. Control = laboratory water with sodium thiosulfate added (dechlorination control).

Lab Control = a mix of natural river water and moderately hard water.

Dilution Control = receiving water (Housatonic River), the statistical control

# Appendix 1 Chain-of-Custody Documentation

C 70x 1

|                                            |                                    | Aqua                               | tec B                    | <u> </u>      | Aquatec Biological Sciences                                                                                                                                                             | 273<br>WIIII                                                                                                           | 273 Commerce Street Williston, VT 05495    | Street<br>195                     |
|--------------------------------------------|------------------------------------|------------------------------------|--------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|
|                                            |                                    |                                    | Chain-                   | of-Cust       | Chain-of-Custody Record                                                                                                                                                                 | TEL.<br>FAX                                                                                                            | TEL. (802) 860-1638<br>FAX: (802) 658-3189 | 1638<br>3189                      |
| COMPANY INFORMATION                        | COMPA                              | COMPANY'S PROJECT INFORMATION      | ST INFORM                | ATION         | SHIPPING INFORMATION                                                                                                                                                                    | VOLUME/CONTAINER TYPE/<br>PRESERVATIVE                                                                                 | AINER TY                                   | PE/                               |
| Name: General Electric Company             | Project Nar                        | Project Name: GE PITTSFIEL         | FIELD                    |               | Carrier:                                                                                                                                                                                | 4°C 4°C 4°C                                                                                                            | 1                                          | J <sub>0</sub> V J <sub>0</sub> V |
| Address: O'Brien & Gere                    | Outfall C                          | Outfall Composite - INITIAL SAMPLE | INITIAL SA               | \<br>         |                                                                                                                                                                                         | H <sub>2</sub> SO <sub>4</sub>                                                                                         |                                            |                                   |
| 1000 East Street, Gate 64                  | - Project Nur                      | Project Number: 06004              |                          |               | Airbill Number:                                                                                                                                                                         | <u> </u><br> <br>                                                                                                      | <u> </u><br>                               | <u> </u><br>                      |
| City/State/Zip: Pittsfield, MA 01201       | Sampler Na                         | Sampler Name(s): Mar               | 3                        | 25111WSC      |                                                                                                                                                                                         | Plastic Plastic Plastic                                                                                                | Glass An                                   | Amber Plastic                     |
| Telephone: (413) 494-6709                  | NPDES Per                          | NPDES Permit #: MA0003891          |                          |               | Date Shipped: 7-10-06                                                                                                                                                                   |                                                                                                                        | <u></u>                                    | Glass                             |
| Facsimile:                                 | Ship these                         | Ship these samples on Monday.      | onday.                   | <u> </u>      |                                                                                                                                                                                         |                                                                                                                        | $\frac{1}{ I }$                            | $\frac{1}{1}$                     |
| Contact Name: Mark Wasnewsky               | _ Quote #;                         | 10/05 C                            | Client Code: 0           | Code: GEPITTS | Hand Delivered: 🔲 Yes                                                                                                                                                                   | 1 gal   1/2 gal   1 L                                                                                                  | 40 ml 25                                   | 250 ml   0.5 L                    |
| SAMPLE IDENTIFICATION DA                   | COLLECTION<br>DATE   TIME          | GRAB                               | COMPOSITE                | YIGTAM        | OMALVEIS                                                                                                                                                                                |                                                                                                                        |                                            |                                   |
|                                            |                                    |                                    |                          | Efficient     | Original dirties of an incharacteristics                                                                                                                                                | NUMBER OF CONTAINERS                                                                                                   | ONTAINE                                    | 38                                |
| 107 C                                      | M4/1/30-01-C                       |                                    | 7                        |               | reproduction (EPA Method 1002.0)                                                                                                                                                        |                                                                                                                        |                                            |                                   |
| Outfall Composite A 7400C                  | MY0/1-                             |                                    | 7                        | Effluent      | Total Residual Chlorine                                                                                                                                                                 |                                                                                                                        |                                            | _                                 |
| Phousatonic River #7406R                   | W 21.8                             | 7                                  |                          | Receiving     | Dilution Water                                                                                                                                                                          | 2                                                                                                                      |                                            |                                   |
| Housatonic River A7466R                    | M518                               | 7                                  |                          | Receiving     | Total Residual Chlorine                                                                                                                                                                 |                                                                                                                        |                                            | _                                 |
|                                            |                                    |                                    |                          |               |                                                                                                                                                                                         |                                                                                                                        |                                            |                                   |
|                                            |                                    |                                    |                          |               |                                                                                                                                                                                         |                                                                                                                        |                                            |                                   |
|                                            |                                    |                                    |                          |               |                                                                                                                                                                                         |                                                                                                                        |                                            |                                   |
|                                            |                                    |                                    |                          |               |                                                                                                                                                                                         |                                                                                                                        |                                            |                                   |
|                                            |                                    |                                    |                          |               |                                                                                                                                                                                         |                                                                                                                        |                                            |                                   |
| Relinquished by: (signature) DA            | DATE TIME                          | Received by:                       | by: (signature)          | ıre)          | NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the labels with clear tape. Tape the caps of the sample bottles to ensure that they do not               | the labels (Date, time, initine sample bottles to ensure                                                               | ials) and co                               | wer the                           |
| hil                                        |                                    |                                    | -tenn (huk               | Con .         | become distodged during shipment. Nest the samples in sufficient ice to maintain 0°C – 6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the report. | it the samples in sufficient<br>peratures exceeding 6°C o                                                              | t ice to mai<br>will be qua                | ntain 0°C –<br>ified in the       |
| Relinquished by: ( <i>signature</i> ) / DA | DATE TIME Received by: (signature) | Received                           | by: (signatu<br>∑∂€U. N  | (e)           | to Lab:<br>e if chlori                                                                                                                                                                  | Ambient cooler temperature: $\mathcal{S}_{\bullet}\mathcal{S}_{\circ}$ c. Dechlorinate the effluent<br>ne is detected. | rinate the                                 | effluent                          |
| Relinquished by: (signature) DA            | DATE TIME                          | 1                                  | Received by: (signature) | re)           |                                                                                                                                                                                         |                                                                                                                        |                                            |                                   |
|                                            |                                    |                                    |                          |               |                                                                                                                                                                                         |                                                                                                                        |                                            |                                   |

| 273 Commerce Street<br>Williston, VT 05495<br>TEL: (802) 860-1638<br>FAX: (802) 658-3189 | VOLUME/CONTAINER TYPE/<br>PRESERVATIVE | 4°C 4°C 4°C 4°C 4°C         | H <sub>2</sub> SO <sub>4</sub> H <sub>2</sub> SO <sub>4</sub> | Plastic Plastic Plastic Glass Amber Plastic Glass                   | <br> <br> <br> <br> <br> | 1 gal         1/2 gal         1 L         40 ml         250 ml         0.5 L | NUMBER OF CONTAINERS            |                                        |                                                 |                          | 2                             |                              |  |  | NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the labels with clear tape. Tape the caps of the sample bottles to ensure that they do not | become dislodged during shipment. Nest the samples in sufficient ice to maintain 0°C – 6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the |                                     | Ambient cooler temperature: $\int \int \int \int c$ . Dechlorinate the effluent ne is detected. |                                   |
|------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|--------------------------|------------------------------------------------------------------------------|---------------------------------|----------------------------------------|-------------------------------------------------|--------------------------|-------------------------------|------------------------------|--|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------|
| gical Sciences<br>tody Record                                                            | SHIPPING INFORMATION                   | Carrier:                    | Airhill Muschour                                              | // - C / - C                                                        | Date Snipped:            | Hand Delivered: Thes No                                                      | ANALYSIS                        | Ceriodaphnia dubia chronic suvival and | reproduction (EPA Method 1002.0) –<br>Renewal 1 | Total Residual Chlorine  | Dilution Water                | Total Residual Chlorine      |  |  | NOTES TO SAMPLER(S): (1): Complete labels with clear tape. Tape the caps of 1                                                                                             | 8                                                                                                                                                                               |                                     | Notes to Lab: Ambient cooler temper sample if chlorine is detected.                             |                                   |
| Aquatec Biological Sciences Chain-of-Custody Record                                      | COMPANY'S PROJECT INFORMATION          | Project Name; GE PITTSFIELD | Outfall Composite – RENEWAL SAMPLE Project Number: 06004      | lar KWasnausla                                                      | esday.                   | 10/05 Client Code; GEPITTS                                                   | TION TIME GRAB COMPOSITE MATRIX | /00 Effluent                           | AM                                              | AM Effluent              | 8 PM C Receiving              | 8 3m / Receiving             |  |  | TIME Received by: (signature)                                                                                                                                             | 3:40 Jenib Gelle                                                                                                                                                                | TIME Received by: (signature)       | 18:30 At Cab.                                                                                   | TIME Received by: (signature)     |
|                                                                                          | COMPANY INFORMATION CC                 | ompany                      | Address: O'Brien & Gere Out Gate 64 Proje                     | City/State/Zip: Pittsfield, MA 01201 Telephone; (413) 494-6709 NPDI | and the first            |                                                                              | COLLEC<br>ENTIFICATION DATE     | Outfall Composite                      | #7409C 7-12-0"                                  | Outfall Composite A7409C | Pousatonic River A74/08/R / 8 | Housatonic River A 7408R V 8 |  |  | Relinquished by: (signature) DATE                                                                                                                                         | Marsh (1) Donano Per 7-12-06 13:40                                                                                                                                              | Relinquished by: (signature) / DATE | 7-12-06 11                                                                                      | Relinquished by: (signature) DATE |

|                                      |                                    |                |                               |                |                                                                                                                                                                                                                                                            |                               |                            |                                                           |                                             | 1                  |
|--------------------------------------|------------------------------------|----------------|-------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------|-----------------------------------------------------------|---------------------------------------------|--------------------|
|                                      |                                    | Aquate         | itec E                        | ioloc          | c Biological Sciences                                                                                                                                                                                                                                      |                               |                            | 273 Co<br>Willisto                                        | 273 Commerce Street<br>Williston, VT 05495  | reet<br>15         |
|                                      |                                    |                | Chain-                        | of-Cusi        | Chain-of-Custody Record                                                                                                                                                                                                                                    |                               |                            | TEL: (8<br>FAX: 68                                        | TEL: (802) 860-1638<br>FAX: (802) 658-3189  | 85<br>85<br>85     |
| COMPANY INFORMATION                  | COMPANY                            | 'S PROJE       | COMPANY'S PROJECT INFORMATION | ATION          | SHIPPING INFORMATION                                                                                                                                                                                                                                       |                               | VOLUME/CONTAINER TYPE/     | ME/CONTAINER                                              | VER TYP                                     | E                  |
| Name: General Electric Company       | Project Name: GE PITTSFIELD        | GE PITT        | SFIELD                        |                | Carrier                                                                                                                                                                                                                                                    | <b>7</b> 0¢                   | ٢                          | ¥^\                                                       |                                             | -                  |
| Address: O'Brien & Gere              | Outfall Composite - RENI           | nposite -      | - RENEWAL                     | EWAL SAMPLE    |                                                                                                                                                                                                                                                            | 4<br>7                        |                            | 4°C 4°<br>H <sub>2</sub> SO <sub>4</sub> H <sub>2</sub> S | 4°C   4°C<br>H <sub>2</sub> SO <sub>4</sub> | <br>ဂ မို<br>ဂ ဝို |
| 1000 East Street, Gate 64            | Project Number: 06004              | er: 06004      |                               | en a lector    | Airbill Number:                                                                                                                                                                                                                                            | <u> </u>                      | $\frac{1}{I}$              |                                                           | <u> </u><br>                                | <u> </u>           |
| City/State/Zip: Pittsfield, MA 01201 | Sampler Name(s): Mark ( Jasneus le | e(s): M        | rkulasa                       |                |                                                                                                                                                                                                                                                            | Plastic                       | Plastic P                  | Plastic Gla                                               | Glass Amber                                 | er Plastic         |
| Telephone: (413) 494-6709            | NPDES Permit #: MA0003891          | #: MA000       | 3891                          | ###X:25##<br>- | Date Shipped: 7-14-06                                                                                                                                                                                                                                      |                               |                            |                                                           | Glass                                       |                    |
| Facsimile: Mark Wasnewsky            | Ship these samples on Friday.      | nples on F     | Friday.                       | OTTIGED. OPOU  | **************************************                                                                                                                                                                                                                     | 1                             |                            | <u> </u><br>                                              | <u> </u><br>                                |                    |
|                                      |                                    |                | Official Codds.               | Ш              | narid Delivered: Yes No                                                                                                                                                                                                                                    | l gal                         | 1/2 gal                    | 11 40                                                     | 40 ml   250 mi                              | ni 0.5 L           |
| ENTIFICATION                         | TIME                               | GRAB           | COMPOSITE                     | MATRIX         | ANALYSIS                                                                                                                                                                                                                                                   |                               | NIMBER                     | OFCO                                                      | NUMBER OF CONTAINERS                        | -                  |
| Outfall Composite                    | 0                                  |                |                               | Effluent       | Ceriodaphnia dubia chronic suvival and                                                                                                                                                                                                                     | 2                             |                            |                                                           |                                             |                    |
| A7400 C 7.19                         | 7.100 11 RM                        |                | 7                             |                | reproduction (EPA Method 1002.0) –                                                                                                                                                                                                                         |                               |                            |                                                           | ······                                      |                    |
| Outfall Composite A 74               | 001                                |                |                               | Effluent       | Total Residual Chlorine                                                                                                                                                                                                                                    |                               |                            |                                                           | +                                           |                    |
| Housatonic River 47 UND              | 12.13                              |                |                               | Receiving      | Dilution Water                                                                                                                                                                                                                                             | 6                             |                            |                                                           |                                             |                    |
| Housatonic River                     |                                    | 1              |                               | Receiving      | Total Decidion Office                                                                                                                                                                                                                                      | J                             |                            |                                                           |                                             |                    |
| 11/400K                              | 8 AM                               | 7              |                               | הפתפואווה      | lotal Residual Onlotine                                                                                                                                                                                                                                    |                               |                            |                                                           | <del>-</del>                                |                    |
|                                      |                                    |                |                               |                |                                                                                                                                                                                                                                                            |                               |                            |                                                           |                                             |                    |
|                                      |                                    |                |                               |                |                                                                                                                                                                                                                                                            |                               |                            |                                                           |                                             |                    |
|                                      |                                    | -              |                               |                |                                                                                                                                                                                                                                                            |                               |                            |                                                           |                                             |                    |
|                                      |                                    |                |                               |                |                                                                                                                                                                                                                                                            |                               |                            |                                                           |                                             |                    |
|                                      |                                    |                |                               |                |                                                                                                                                                                                                                                                            |                               |                            |                                                           |                                             |                    |
| Relinquished by: (signature) DATE    | LE TIME                            | Receive        | Received by: (signature)      | ure)           | NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the                                                                                                                                                                         | te the labels                 | (Date, tin                 | ne, initials                                              | and cove                                    | ar the             |
| Mr. Colon. A. S.                     | 2,70                               | S              |                               | :<br>!         | labels with clear tape. Tape the caps of the sample bottles to ensure that they do not become dislodged during shipment. Nest the samples in sufficient ice to maintain 0°C. Results for earning society of the samples in sufficient ice to maintain 0°C. | of the sample<br>lest the sam | e bottles t<br>iples in su | o ensure<br>ifficient ic                                  | that they de to maint                       | lo not<br>ain 0°C  |
| Mereuma 1                            |                                    |                |                               | 3              | Leport.                                                                                                                                                                                                                                                    | emperatures                   | s exceedin                 |                                                           | be qualifi                                  | ed in th           |
| y: (signature)                       |                                    | Received by: ( | d by: (signature)             |                | Notes to Lab: Ambient cooler temperature:                                                                                                                                                                                                                  | erature:3                     | S.                         | )echlorina                                                | 7 °C. Dechlorinate the effluent             | luent              |
| -                                    | 14 2                               |                | 5                             |                | sample if chlorine is detected.                                                                                                                                                                                                                            |                               | one-                       |                                                           |                                             |                    |
| Relinquished by: (signature) DATE    |                                    | Receive        | Received by: (signature)      | re)            |                                                                                                                                                                                                                                                            |                               |                            |                                                           |                                             |                    |
|                                      |                                    |                |                               | *              |                                                                                                                                                                                                                                                            |                               |                            |                                                           |                                             |                    |

# Appendix 2 Summary of Test Conditions

### Test Description: Daphnid, Ceriodaphnia dubia acute / chronic survival and reproduction

ASSOCIATED PROTOCOL: EPA 1994. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. (EPA/600/4-91/002) Method 1002.0

Static, daily renewal 1. Test type:

25 ± 1°C 2. Test temperature:

Ambient laboratory illumination 3. Light quality:

16 hr. light, 8 hr. dark 4. Photoperiod:

30 ml 5. Test chamber size:

15-20 ml / replicate Test solution volume:

Renewal of test concentrations: Daily

Less than 24 h, released within an 8 hr. period 8. Age of test organisms:

No. organisms / test chamber:

10. No. of replicate chambers / concentration: 10

10 11. No. of organisms / concentration:

0.1 ml each of YTC and algal suspension daily 12. Feeding regime:

Transfer to new test solution and test chamber 13. Cleaning:

daily

None 14. Aeration:

Receiving water 15. Dilution water:

6.25, 12.5, 25, 50, 75, 100% effluent 16. Test concentrations:

1:1 Lamoille R. / MHW as additional control. 17. Laboratory control: Sodium thiosulfate in MHW as additional

control

Until 60% of control females have three broods 18. Test duration:

Daily temperature, dissolved oxygen, pH, and 19. Monitoring:

conductivity. Hardness, alkalinity on each new

sample. Biological monitoring daily

Survival (Days 2 and end of test) and 19. End points:

reproduction (end of test)

Sodium chloride LC50 / IC25 20. Reference toxicant test:

80% or greater survival and an average of 15 or 21. Test acceptability (control performance):

more young/female. At least 60% of surviving females must have produced third brood

Acute: 48-h LC50 (point estimate); A-NOEC 22. Data interpretation:

Chronic: C-NOEC by hypothesis test statistics compared to the Lab Control usiing TOXIS2

Aquatec Biological Sciences Williston, Vermont

Date: 7/20/06

# Appendix 3 U.S. EPA Region 1 Toxicity Test Summary and Statistical Flow Chart

#### TOXICITY TEST SUMMARY SHEET

Facility Name: General Electric Co.

Test Start Date: July 11, 2006

NPDES Permit Number: MA0003891

Pipe Number: 001

Test Type Modified (chronic Test species

Sample Type

Sample Method

Ceriodaphnia dubia

Unchlorinated

Composite

reporting acute

values)

Dilution water: Receiving waters collected at a point upstream of or away from the discharge, free from toxicity or other sources of contamination (Receiving

water name: Housatonic River)

Effluent sampling dates: July 10, 12, and 14, 2006

Effluent concentrations tested (%): 100, 75, 50, 25, 12.5, 6.25

(permit limit concentration): N/A

Was effluent salinity adjusted? No

Reference Toxicant Test Date: June 13, 2006

#### PERMIT LIMITS AND TEST RESULTS

MEAN CONTROL SURVIVAL CRITERIA: >80%

MEAN CONTROL REPRODUCTION CRITERIA: average of 15 or more neonates produced per female and 60% of surviving females produced three broods.

TOXICITY TEST MEAN CONTROL SURVIVAL: 100%

TOXICITY TEST MEAN CONTROL REPRODUCTION: Average of 25.4

neonates per female and 100% produced three broods.

| L      | MITS | RESU                         | LTS            |
|--------|------|------------------------------|----------------|
| LC50   | N/A  | 48-hr LC50:                  | >100%          |
|        |      | Upper value:<br>Lower value: | N/A<br>N/A     |
|        |      | Data analysis method:        | Fisher / Steel |
| A-NOEC | N/A  | A-NOEC                       | 100%           |
| C-NOEC | N/A  | C-NOEC                       | 100%           |
|        |      | LOEC                         | >100%          |
|        |      |                              |                |

N/A - Not Applicable

# STATISTICAL ANALYSIS OF CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

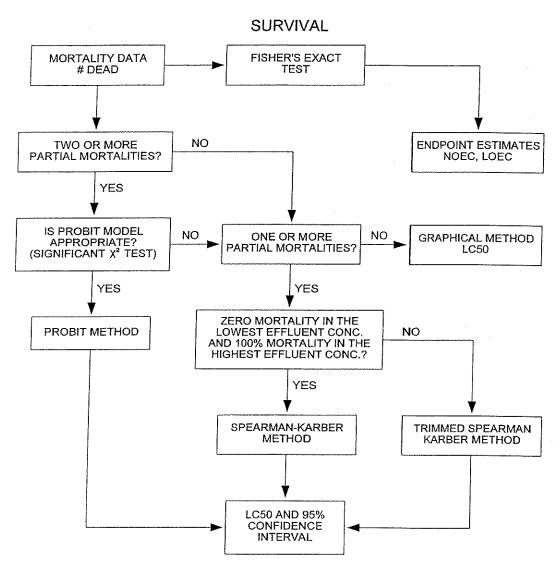



Figure 4. Flowchart for statistical analysis of the daphnid, Ceriodaphnia dubia, survival data.

# STATISTICAL ANALYSIS OF CERIODAPHNIA SURVIVAL AND REPRODUCTION TEST

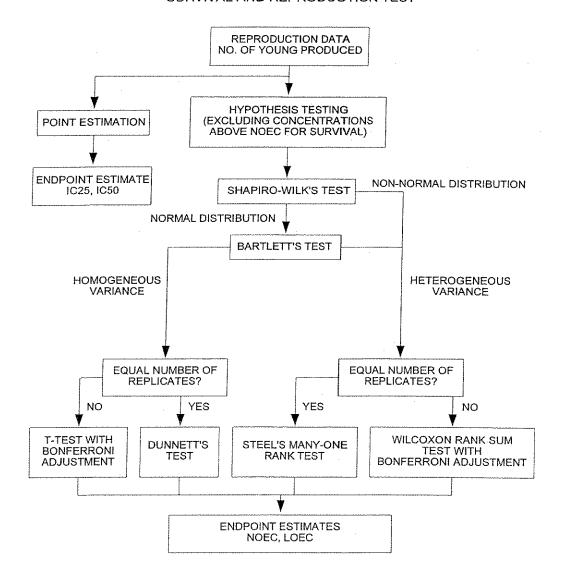



Figure 6. Flowchart for the statistical analysis of the daphnid, *Ceriodaphnia dubia*, reproduction data.

# Appendix 4 Bench Data, *Ceriodaphnia dubia* Chronic Toxicity Test

Aquatec Biological Sciences, Inc.

Test Number: 48289

Test Material: Effluent - POTW Source: MA0003891

Test Date: 7/11/06 Sample Date: 7/10/06 Species: Ceriodaphnia dubia Test Type: Chronic

General Electric Company Pittsfield, MA

|                                      |     |                   | UMMA |           |       |       |       | ====== |
|--------------------------------------|-----|-------------------|------|-----------|-------|-------|-------|--------|
| s======================<br>End Point | Day | Transformation    |      | Conc      | #Reps | Mean  | StDev | % Surv |
| Proportion Alive                     |     | No transformation |      |           |       |       |       |        |
| 10,000                               |     |                   |      | 0.000 B   | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | Х    | 0.000 D   | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | X    | 6.250 D   | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | Х    | 12.500 D  | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | Х    | 25.000 D  | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | X    | 50,000 D  | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | X    | 75.000 D  | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | Х    | 100.000 D | 10    | 1.00  | 0.000 |        |
| Proportion Alive                     | 7   | No transformation |      |           |       |       |       |        |
| TOPOLCTON INT.                       |     |                   |      | 0.000 B   | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | X    | 0.000 D   | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | Х    | 6.250 D   | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | Х    | 12.500 D  | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | X    | 25.000 D  | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | х    | 50.000 D  | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | Х    | 75.000 D  | 10    | 1.00  | 0.000 |        |
|                                      |     |                   | Х    | 100.000 D | 10    | .90   | .316  |        |
| Reproduction                         |     | No transformation |      |           |       |       |       |        |
|                                      |     |                   |      | 0.000 B   | 10    | 28.30 | 3.401 |        |
|                                      |     |                   | X    | 0.000 D   | 10    | 25.40 | 5.400 |        |
|                                      |     |                   | X    | 6.250 D   | 10    | 26.80 | 4.686 |        |
|                                      |     |                   | х    | 12.500 D  | 10    | 29.80 | 4.803 |        |
|                                      |     |                   | X    | 25.000 D  | 10    | 28.90 | 2.923 |        |
|                                      |     |                   | Х    | 50.000 D  | 10    | 25.80 | 7.208 |        |
|                                      |     |                   | Х    | 75.000 D  | 10    | 31.90 | 3-414 |        |
|                                      |     |                   | Х    | 100.000 D | 10    | 30.90 | 5.109 |        |

#### X = indicates concentrations used in calculations

|                                        | ======================================= |                                               | ====================================== | .===================================== |      | ======== |       |
|----------------------------------------|-----------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------|------|----------|-------|
|                                        |                                         | - HYPOTHE                                     | SIS TEST -                             |                                        |      |          |       |
| ====================================== | Day                                     | Transformation/Analysis                       | NOEC                                   | LOEC                                   | TU   | MSE      | MSD   |
| Proportion Alive                       |                                         | No transformation<br>Fisher Exact             | >100.000                               | >100.000 <                             | 1.00 |          |       |
| Proportion Alive                       | 7                                       | No transformation<br>Fisher Exact             | >1.00.000                              | >1.00.000 <                            | 1.00 |          |       |
| Reproduction                           |                                         | No transformation<br>Steel many-one rank test | >100.000                               | >100.000 <                             | 1.00 | 24.633   | 5.213 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                    | - P                    |                                                    |           | ========                                |                                        |                                         |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|----------------------------------------------------|-----------|-----------------------------------------|----------------------------------------|-----------------------------------------|------------------------|
| Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Flea                 |                        |                                                    |           |                                         |                                        |                                         |                        |
| Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                        |                                                    |           | Material                                |                                        | Protocol                                | =======<br>Test Number |
| ABS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CI                   | )                      | 7/11/2006                                          | EFF1      | (%)                                     | MA0003891                              | EPAF 94                                 | 48289                  |
| ====::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ======               |                        |                                                    |           | =======<br>istics Pa                    | ====================================== | =========                               | =========              |
| THE PARTY STATES AND ADDRESS OF THE PARTY STATES AND ADDRESS O |                      |                        |                                                    |           |                                         |                                        |                                         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                        |                                                    | PI        | ROPORTION                               |                                        |                                         |                        |
| E'ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nd Point             | . DA                   | Proportion                                         | Δline     |                                         |                                        |                                         | <del></del>            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                        | sher Exact                                         |           |                                         | h select                               | 1 control                               |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ransform             | ı: No                  | transformate-<br>e-tailed, de                      | tion      | -                                       |                                        |                                         |                        |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Constant             |                        | 01                                                 | JCI Gas   | 51119                                   | Variance:                              | .01                                     |                        |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Root                 |                        | 0.00                                               |           | Alpha                                   | Normality:                             | .01                                     |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                        |                                                    |           | ~                                       | NOEC:                                  | .05                                     |                        |
| EC/LO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C Method             | : F                    | (P,S,G,L,1                                         | 1)        | *************************************** | Superdunnet                            | : 4000                                  | 1                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                        |                                                    |           | GROWTH                                  |                                        |                                         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                        |                                                    |           | 0.10.1.11                               |                                        |                                         |                        |
| Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analysis<br>ransform | : EPA<br>: No<br>: One | Reproduction Flowchart transformate-tailed, de .01 | A<br>ion  | _                                       | h select Variance:                     | 1 control                               |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Root                 | 1                      | .00                                                |           | Alpha                                   | Normality:<br>NOEC:                    | .01                                     |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ate IC?              |                        | (Y,N)                                              |           |                                         | C resamples                            |                                         |                        |
| # # = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                        |                                                    |           | =======<br>rors/Warn                    |                                        |                                         |                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                        | =======================================            | * = = = = |                                         |                                        | ======================================= |                        |
| Туре                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Number               |                        |                                                    |           |                                         |                                        |                                         |                        |
| EC/LC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 71                   |                        |                                                    |           |                                         | ate can be of                          |                                         |                        |
| IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71                   | No lof to              | he group re                                        |           |                                         | ate can be of                          |                                         |                        |
| PROP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                    |                        | onse me<br>ysis comple                             | ted w     | ith no er                               | rors                                   |                                         |                        |
| GROW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                    | Anal                   | ysis comple                                        | ted w     | ith no er                               | rors                                   |                                         |                        |

| ======<br> Cerioda             | phnia      |                               | Proporti                        | on Al                 | ========<br>ive                         |                                        |           | Day 7    |
|--------------------------------|------------|-------------------------------|---------------------------------|-----------------------|-----------------------------------------|----------------------------------------|-----------|----------|
| Lab                            | Species    | Date                          | Test Mat                        | erial                 | Permit                                  | Proto                                  | ocol Test | : Number |
| ABS                            | CD         | 7/11/200                      | EFF1 (%)                        |                       | MA00038                                 | 891 EPAF                               | 94 4828   | 39       |
| =======<br>  Fisher<br> ====== | Exact      | =======<br>Auto gr<br>======= | =======<br>owth sele<br>======= | =====<br>ect<br>===== | ======================================  | ====================================== |           |          |
| Transfo                        | rmation    |                               |                                 |                       | Prop.<br>Conc                           | Alive                                  | P         | I        |
| No tran                        | sformation | n                             |                                 |                       | *************************************** |                                        |           |          |
|                                |            |                               |                                 | Х                     | 0.00B<br>0.00D                          | 1.00<br>1.00                           |           |          |
|                                |            |                               |                                 | X                     | 6.25D                                   | 1.00                                   | 1.000     |          |
|                                |            |                               |                                 | X                     | 12.50D                                  | 1.00                                   | 1.000     |          |
|                                |            |                               |                                 | X                     | 25.00D                                  | 1.00                                   | 1.000     |          |
|                                |            |                               |                                 | X                     |                                         | 1.00                                   | 1.000     |          |
|                                |            |                               |                                 | X<br>X                | 75.00D<br>100.00D                       | 1.00                                   | 1.000     |          |
|                                |            |                               |                                 |                       |                                         | .90                                    | .500      |          |
| NOEC                           | LOEC       | TU                            | Alpha                           | Ta                    | ail                                     | Based c                                | on<br>    |          |
| >100                           | >100       | <1                            | .05                             | One-s                 | sided                                   | Fisher Ex                              | cact      |          |

| ======<br> Cerioda          | ======<br>phnia                                                 |                                                                      | Reproduction                                                         | ====<br>on                 |                                          | =======================================                        |                                         |
|-----------------------------|-----------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------|------------------------------------------|----------------------------------------------------------------|-----------------------------------------|
| =======<br>Lab              | =======<br>Species                                              | Date                                                                 | Test Materi                                                          | ial                        | Permit                                   | Protocol                                                       | Test Number                             |
| ABS                         | CD                                                              | 7/11/200                                                             | EFF1 (%)                                                             |                            | MA0003891                                | EPAF 94                                                        | 48289                                   |
| EPA Flor                    | wchart                                                          | Auto gro                                                             | wth select                                                           | ====<br>1<br>=====         | control                                  | =======================================                        | ======================================= |
|                             | Conc                                                            | Mean                                                                 | SD                                                                   | N                          | Т                                        | Sum of<br>Ranks                                                |                                         |
| Data to X X X X X X X X X X | 0.00B<br>0.00D<br>6.25D<br>12.50D<br>25.00D<br>50.00D<br>75.00D | 28.30<br>25.40<br>26.80<br>29.80<br>28.90<br>25.80<br>31.90<br>30.90 | 3.401<br>5.400<br>4.686<br>4.803<br>2.923<br>7.208<br>3.414<br>5.109 | on 10 10 10 10 10 10 10 10 | 631<br>-1.982<br>-1.577<br>180<br>-2.928 | 113.500<br>128.500<br>126.500<br>110.500<br>141.500<br>136.500 |                                         |
|                             |                                                                 |                                                                      |                                                                      |                            |                                          |                                                                |                                         |

| NOEC | LOEC | TU  | Alpha | Tail      | Based on                                                                   | Critical Sum of Ran |
|------|------|-----|-------|-----------|----------------------------------------------------------------------------|---------------------|
|      |      |     |       |           | The plant again was said and the time that the state after the said again. |                     |
| >100 | >100 | < 1 | .05   | One-sided | Steel                                                                      | 74                  |
|      |      |     |       |           |                                                                            |                     |

| Dunnett Test:                     | MSE          | MSD<br>Reduct<br>from Co | tion         | Critical T       |
|-----------------------------------|--------------|--------------------------|--------------|------------------|
|                                   | 24.633       | 20.52                    | 226          | 2.3485           |
| Kolmogorov Test for Normality:    | Alpha        | D                        | Cutoff       |                  |
| Bartlett Test for Equal Variance: | .01<br>Alpha | .136609<br>B             | .124<br>P(B) | No<br>Equal Var? |
|                                   | .01          | 8.7662                   | .18715       | Yes              |

#### WATER FLEA TEST DATA

Test Number: 48289

(x) Chronic ( ) Acute hours

Test Number: 48289 (x) Chronic ( ) Acute

Test Date: 11-Jul-06

Source: MA0003891 Test Material: EFF1 (%)

|         |        | Cont.   | Da       | aily | Su | rviv | al | Prop  | Total | Max   |       |
|---------|--------|---------|----------|------|----|------|----|-------|-------|-------|-------|
| Conc    | Rep    | No. Sex | Start    | 1 2  | 3  | 4    | 5  | 6 End | Alive | Young | Young |
| 0.00 B  | 1      | F       | 1        |      |    |      |    | 1     | 1.00  | 23    | 12    |
| 0.00 B  | 2      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 30    | 16    |
| 0.00 B  | 3      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 30    | 15    |
| 0.00 B  | 4      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 35    | 16    |
| 0.00 B  | 5      | F       | 1.       | 1    |    |      |    | 1     | 1.00  | 29    | 14    |
| 0.00 B  | 6      | F       | 1        | 3    |    |      |    | 1     | 1.00  | 30    | 17    |
| 0.00 B  | 7      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 27    | 13    |
| 0.00 B  | 8      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 28    | 15    |
| 0.00 B  | 9      | F       | 7        | 1    |    |      |    | 1     | 1.00  | 24    | 1.3   |
| 0.00 B  | 10     | F       | 1        | 1    |    |      |    | 1     | 1.00  | 27    | 12    |
| 0.00 D  | 1      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 32    | 17    |
| 0.00 D  | 2      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 16    | 12    |
| 0.00 D  | 3      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 27    | 16    |
| 0.00 D  | 4      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 18    | 10    |
| 0.00 D  | *<br>5 | F       | 1        | 1    |    |      |    | 1     | 1.00  | 30    |       |
|         | 6      | F       | 1        |      |    |      |    |       |       |       | 14    |
| 0.00 D  | 7      | F       |          | 1    |    |      |    | 1     | 1.00  | 32    | 17    |
| 0.00 D  |        | F       | 1        | 1    |    |      |    | 1     | 1.00  | 24    | 11    |
| 0.00 D  | 8      |         | 1        | 1.   |    |      |    | 1     | 1.00  | 26    | 15    |
| 0.00 D  | 9      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 23    | 10    |
| 0.00 D  | 10     | F       | 1        | 1    |    |      |    | 1     | 1.00  | 26    | 14    |
| 6.25 D  | 1      | F -     | 1        | 1    |    |      |    | 1     | 1.00  | 29    | 16    |
| 6.25 D  | 2      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 24    | 14    |
| 6.25 D  | 3      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 28    | 15    |
| 6.25 D  | 4      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 25    | 13    |
| 6.25 D  | 5      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 28    | 15    |
| 6.25 D  | 6      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 31    | 17    |
| 6.25 D  | 7      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 15    | 10    |
| 6.25 D  | 8      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 30    | 16    |
| 6.25 D  | 9      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 30    | 14    |
| 6.25 D  | 10     | F       | 1        | 1    |    |      |    | 1     | 1.00  | 28    | 12    |
| 12.50 D | 1      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 30    | 17    |
| 12.50 D | 2      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 30    | 17    |
| 12.50 D | 3      | F       | 1.       | 1    |    |      |    | 1     | 1.00  | 37    | 23    |
| 12.50 D | 4      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 30    | 16    |
| 12.50 D | 5      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 29    | 17    |
| 12.50 D | 6      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 27    | 18    |
| 12.50 D | 7      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 27    | 13    |
| 12.50 D | 8      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 36    | 18    |
| 12.50 D | 9      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 32    | 17    |
| 12.50 D | 10     | F       | 1        | 1    |    |      |    | 1     | 1.00  | 20    | 17    |
| 25.00 D | 1      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 31    | 16    |
| 25.00 D | 2      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 27    | 16    |
| 25.00 D | 3      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 3.3   | 18    |
| 25.00 D | 4      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 29    | 14    |
| 25.00 D | 5      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 25    | 12    |
| 25.00 D | 6      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 27    | 16    |
| 25.00 D | 7      | F       | 1        | 1    |    |      |    | 1     | 1.00  | 27    | 16    |
| 25.00 D | ,      | F       | <u> </u> | 1    |    |      |    | 7     | 1.00  | 2 /   | 10    |

#### WATER FLEA TEST DATA

(x) Chronic ( ) Acute hours Test Number: 48289

Test Date: 11-Jul-06

Source: MA0003891 Test Material: EFF1 (%)

|          |     | Cont.   |       | Dail | ly Sur | rviv | al    | Prop  | Total | Max   |
|----------|-----|---------|-------|------|--------|------|-------|-------|-------|-------|
| Conc     | Rep | No. Sex | Start | 1 2  | 3 4    | 5    | 6 End | Alive | Young | Young |
| 25.00 D  | 8   | F       | 1     | 1    |        |      | 1     | 1.00  | 26    | 14    |
| 25.00 D  | 9   | F       | 1     | 1    |        |      | 1     | 1.00  | 33    | 14    |
| 25.00 D  | 10  | F       | 1     | 1    |        |      | 1     | 1.00  | 31    | 18    |
| 50.00 D  | 1   | F       | 1     | 1    |        |      | 1     | 1.00  | 29    | 16    |
| 50.00 D  | 2   | F       | 1     | 1    |        |      | 1     | 1.00  | 13    | 8     |
| 50.00 D  | 3   | F       | 1     | 1    |        |      | 1     | 1.00  | 35    | 19    |
| 50.00 D  | 4   | F       | ı     | 1    |        |      | 1     | 1.00  | 27    | 16    |
| 50.00 D  | 5   | F       | 1     | 1    |        |      | 1     | 1.00  | 31    | 18    |
| 50.00 D  | 6   | F       | 1     | 1    |        |      | 1     | 1.00  | 30    | 12    |
| 50.00 D  | 7   | F       | ı     | 1    |        |      | 1     | 1.00  | 29    | 14    |
| 50.00 D  | 8   | F       | 1     | 1    |        |      | 1     | 1.00  | 19    | 7     |
| 50.00 D  | 9   | F       | 1     | 1    |        |      | 1     | 1.00  | 16    | 12    |
| 50.00 D  | 10  | F       | 1     | 1    |        |      | 1     | 1.00  | 29    | 15    |
| 75.00 D  | 1   | F       | 1     | 1    |        |      | 1     | 1.00  | 33    | 20    |
| 75.00 D  | 2   | F       | 1     | 1    |        |      | 1     | 1.00  | 25    | 16    |
| 75.00 D  | 3   | F       | 1     | 1    |        |      | 1     | 1.00  | 31    | 19    |
| 75.00 D  | 4   | F       | 1     | 1    |        |      | 1     | 1.00  | 34    | 16    |
| 75.00 D  | 5   | F       | 1     | 1    |        |      | 1     | 1.00  | 34    | 20    |
| 75.00 D  | 6   | F       | 1     | 1    |        |      | 1     | 1.00  | 33    | 17    |
| 75.00 D  | 7   | F       | 1     | 1    |        |      | 1     | 1.00  | 28    | 16    |
| 75.00 D  | 8   | F       | 1     | 1    |        |      | 1     | 1.00  | 35    | 17    |
| 75.00 D  | 9   | F       | 1     | 1    |        |      | 1     | 1.00  | 36    | 20    |
| 75.00 D  | 10  | F       | 1     | 1    |        |      | 1     | 1.00  | 30    | 17    |
| 100.00 D | 1   | F       | 1     | 1    |        |      | 1.    | 1.00  | 29    | 15    |
| 100.00 D | 2   | F       | 1     | 1    |        |      | 1     | 1.00  | 29    | 18    |
| 100.00 D | 3   | F       | 1     | 1    |        |      | 1     | 1.00  | 33    | 17    |
| 100.00 D | 4   | F       | 1     | 1    |        |      | 1     | 1.00  | 36    | 19    |
| 100.00 D | 5   | F       | 1     | 1    |        |      | 1     | 1.00  | 34    | 19    |
| 100.00 D | 6   | F       | 0     | 1    |        |      | 0     | 0.00  | 18    | 8     |
| 100.00 D | 7   | F       | 1     | 1    |        |      | 1     | 1.00  | 31    | 16    |
| 100.00 D | 8   | F       | 1     | 1    |        |      | 1     | 1.00  | 31    | 19    |
| 100.00 D | 9   | F       | 1     | 1    |        |      | 1     | 1.00  | 35    | 18    |
| 100.00 D | 10  | F       | 1     | 1    |        |      | 1     | 1.00  | 33    | 18    |

QCV 15 7/27/06 J-1/28/06

#### Aquatec Biological Sciences, Inc.

#### WATER FLEA DAILY REPORT

TEST NUMBER: 48289 (x) Chronic () Acute hours
TEST DATE: 11-Jul-06
SOURCE: MA0003891 TEST MATERIAL: EFF1 (%)

| Conc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ctrl                            | Rep                                                                                                                                                                                                                                                                                                                                                                                                                         | Cont.<br># | 1 | 2 | Dail<br>3                              | y Re                                             | prod<br>5                               | ducti<br>6                                             | on<br>7 | 8 | 9 | 10 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|---|----------------------------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------------|---------|---|---|----|
| 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 8888888000000000000000000000000 | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>6<br>7<br>8<br>9<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>1<br>2<br>3<br>4<br>5<br>7<br>8<br>7<br>8<br>9<br>1<br>8<br>7<br>8<br>9<br>1<br>8<br>7<br>8<br>7<br>8<br>9<br>1<br>7<br>8<br>7<br>8<br>7<br>8<br>9<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7 |            |   |   | 55675456575464554654456656546734367443 | 698210987680064011869686976808112987864011898978 | 001000100000000000000000000000000000000 | 126156471353171668421611111111111111111111111111111111 |         |   |   |    |

#### Aquatec Biological Sciences, Inc.

#### WATER FLEA DAILY REPORT

|                                                                                                                                                                                                         | TEST I | ATE:                                                                                               | 48289 (x) Chronic () Acute<br>11-Jul-06<br>MA0003891 TEST MATERIAL: EFF1 (%) |   |   |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                               |         |   | hours |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---|---|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---|-------|----|
| Conc                                                                                                                                                                                                    | Ctrl   | Rep                                                                                                | Cont.<br>#                                                                   | 1 | 2 | Dail<br>3                         | y Re<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | prod<br>5                               | lucti<br>6                                                                                                                                                                                                                                                    | on<br>7 | 8 | 9     | 10 |
| 25.00<br>25.00<br>25.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>50.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>75.00<br>100.00<br>100.00<br>100.00<br>100.00<br>100.00 |        | 89<br>10<br>12<br>34<br>56<br>78<br>90<br>12<br>34<br>56<br>78<br>90<br>12<br>34<br>56<br>78<br>90 |                                                                              |   |   | 574756557754554487857865465676587 | 7<br>12<br>9<br>6<br>8<br>10<br>6<br>8<br>11<br>8<br>7<br>0<br>9<br>8<br>5<br>7<br>10<br>7<br>8<br>7<br>10<br>12<br>9<br>8<br>9<br>7<br>9<br>7<br>9<br>1<br>9<br>1<br>1<br>8<br>9<br>7<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>8<br>9<br>7<br>9<br>7 | 000000000000000000000000000000000000000 | 14<br>14<br>18<br>16<br>19<br>16<br>18<br>12<br>14<br>7<br>12<br>15<br>10<br>16<br>17<br>10<br>17<br>17<br>17<br>19<br>16<br>19<br>11<br>19<br>11<br>19<br>11<br>19<br>11<br>19<br>11<br>19<br>11<br>19<br>11<br>19<br>11<br>19<br>11<br>19<br>11<br>19<br>19 |         |   |       |    |

QCV YS 7/27/06 J 1/28/66

Ceriodaphnia dubia Survival and Reproduction Data (Page 1 of 4)

Client: CAS / GE PITTSFIELD Test #: 48289 SDG: 9664

Test Description: Ceriodaphnia dubia acute / chronic toxicity tests

| Effluent (%) | Repl<br>1  | Repl<br>2 | Repl<br>3 | Repl<br>4 | Repl<br>5 | Repl<br>6 | Repl<br>7     | Repl<br>8 | Repl<br>9 | Repl<br>10 | Remarks             |
|--------------|------------|-----------|-----------|-----------|-----------|-----------|---------------|-----------|-----------|------------|---------------------|
| Lab Ctrl     | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | Day 0               |
| Rec. Ctrl.   | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | Sample: 32270       |
| 6.25         | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | Fed Sel / YCT       |
| 12.5         | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | Sel Lot #:711 06 Se |
| 25           | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | YCT Lot #:67206     |
| 50           | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | Date/time/Init.     |
| 75           | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | KS 7-11-06          |
| 100          | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | 12:30               |
| Lab Ctrl     | 0          | 0         | 0         | 0         | 0         | 0         | 0             | O         | 0         | 0          | Day 1               |
| Rec. Ctrl.   | 0          | 0         | Ð         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | Sample: 32270       |
| 6.25         | <u>(</u> ) | 0         | 0         | 0         | 0         | 0         | 0             | Û         | 0         | 0          | Fed Sel / YCT       |
| 12.5         | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | Sel Lot#: above     |
| 25           | 0          | Ó         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | YCT Lot#:above      |
| 50           | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | Date/time/Init.     |
| 75           | 0          | 0         | C         | 0         | 0         | O         | 0             | 0         | 0         | n          | KS 7-12-06          |
| 100          | 0          | 0         | 0         | 0         | 0         | 0         | C             | 0         | 0         | 0          | 15:45               |
| Lab Ctrl     | 0          | 0         | 0         |           | 0         | 0         | 0             | 0         | 0         | 0          | Day 2               |
| Rec. Ctrl.   | 0          | 0         | 0         | 0         | 0         | 0         | $\mathcal{O}$ | 0         | 0         | 0          | Sample:32284        |
| 6.25         | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | Fed Sel/YCT         |
| 12.5         | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | Sel Lot#:above      |
| 25           | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | YCT Lot#above       |
| 50           | Ö          | 0         | 0         | 0         | O         | 0         | 0             | 0         | $\circ$   | 0          | Date/time/Init.     |
| 75           | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | KS 7-13-06          |
| 100          | 0          | 0         | 0         | 0         | 0         | 0         | 0             | 0         | 0         | 0          | 12:25               |

0=original organism surviving, no young; D=original organism dead; #=# young released; \*=lab-induced mortality. Receiving water is dilution water; Lab water is additional control.

| Aquatec Biolo | ogical Sciences Willis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ston, V | /ermont |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|
| Reviewed by:  | The state of the s | Date:   | 7/20/66 |

Ceriodaphnia dubia Survival and Reproduction Data (Page 2 of 4)

Client: CAS / GE PITTSFIELD Test #: 48289 SDG: 9664

Test Description: Ceriodaphnia dubia acute / chronic toxicity tests

| Effluent   | Repl                                          | Repl     | Repl           | Repl | Repl | Repl | Repl | Repl | Repl | Repl | Domeska                            |
|------------|-----------------------------------------------|----------|----------------|------|------|------|------|------|------|------|------------------------------------|
| (%)        | 1                                             | 2        | 3              | 4    | 5    | 6    | 7    | 8    | 9    | 10   | Remarks<br>Day 3                   |
| Lab Ctrl   | 5                                             | 5        | 6              | 7    | 5    | 4    | 5    | 6    | IJ   | 7    |                                    |
| Rec. Ctrl. | 545G                                          | 405      | <sub>-</sub> 5 | 4    | 6    | 4    | 5    | 5    | 4    | 6    | Sample: 32284                      |
| 6.25       | 5                                             | 4        | 4              | 5    | 6    | 6    | 5    | 6    | 5    | 4    | Fed Sel / YCT                      |
| 12.5       | 4                                             | 5        | 7              | 6    | 6    | 5    | 4    | 6    | 7    | 3    | Sel Lot#: 71106Sel                 |
| 25         | 4                                             | 3        | 6              | 7    | 4    | 4    | 3    | 5    | 7    | 4    | YCT Lot#: 62206940                 |
| 50         | 7                                             | 5        | 6              | 5    | 5    | 7    | チ    | LD   | Ц    | 5    | Date/time/Init.                    |
| 75         | 5                                             | 4        | 4              | 8    | 7    | િ    | 6    | 7    | 8    | G    | 7-14-06                            |
| 100        | 5                                             | 4        | 6              | 5    | 6    | 7    | 6    | 5    | ୪    | 7    | 18:00 ZE                           |
|            |                                               | <u> </u> |                |      |      |      |      |      |      |      |                                    |
| Lab Ctrl   | lo                                            | 9        | 8              | 12   | 61   | 9    | 8    | 7    | le   | ૪    | Day 4                              |
| Rec. Ctrl. | )0                                            | 0        | lo             | Н    | 10   | 11   | Ø    | 6    | 9    | Le   | Sample: 32341                      |
| 6.25       | 8                                             | lo       | 9              | 7    | 6    | E    | 0    | 8    | 11   | 75   | Fed Sel / YCT                      |
| 12.5       | 9                                             | 8        | 2              | 8    | lo   | 4    | 10   | ) [  | 8    | 0    | Sel Lot #: SAME                    |
| 25         | ì                                             | 8        | 9              | 8    | 9    | 2    | 8    | 2    | 12   | 9    | YCT Lot #: SAME                    |
| 50         | le                                            | 8        | 10             | 6    | 8    | l l  | 8    | 7    | 0    | 9    | Date/time/Init. Kル<br>ターち-06 14:25 |
| 75         | 8                                             | 5        | 7              | 10   | 2    | જ    | 7    | 1-]  | જ    | 7    |                                    |
| 100        | 9                                             | 7        | 10             | 12   | 9    | 8    | 9    | 2    | 9    | 8    |                                    |
|            | <u>i                                     </u> |          |                |      |      |      |      |      |      |      |                                    |
| Lab Ctrl   | 0                                             | 0        |                | 0    | 0    | 0    |      | 0    | 0    | 0    | Day 5                              |
| Rec. Ctrl. | 0                                             | 0        | 0              | 0    | 0    | 0    | 0    | 0    | 0    | 0    | Sample: 3234                       |
| 6.25       | Ö                                             | 0        | 0              | 0    | 1    | 0    | 0    | 0    | 0    | 0    | Fed Sel / YCT                      |
| 12.5       | 0                                             | 0        | 0              | 0    | 0    | 0    | 0    | 1    | 0    | 0    | Sel Lot #: above                   |
| 25         | 0                                             | 0        | 0              | 0    | 0    | 0    | 0    | 0    | 0    | 0    | YCT Lot #: above                   |
| 50         | 0                                             | 0        | 0              | 0    | 0    | 0    | 0    | 0    | 0    | 0    | Date/time/Init.                    |
| 75         | 0                                             | Ö        | İ              | 0    | 0    | 0    | 0    | 0    | 0    | 0    | KS 7-16-06                         |
| 100        | 0                                             | 0        | Ö              | 0    | 0    | 00   | 0    | 0    | 0    | 0    | 14:00                              |

1 may have killed Cid by accident. KS 7-16-06

0=original organism surviving, no young; D=original organism dead; #=# young released; \*=lab-induced mortality. Receiving water is dilution water; Lab water is additional control.

| Aquatec Biolo | ogical Sciences Willis |       |         |
|---------------|------------------------|-------|---------|
| Reviewed by:  |                        | Date: | 7/20/06 |

Ceriodaphnia dubia Survival and Reproduction Data (Page 3 of 4)

Client: CAS / GE PITTSFIELD Test #: 48289 SDG: 9664

Test Description: Ceriodaphnia dubia acute / chronic toxicity tests

| Effluent   | Repl | Repl | Repl | Repl | Repl            | Repl | Repl | Repl | Repl | Repl |                 |
|------------|------|------|------|------|-----------------|------|------|------|------|------|-----------------|
| (%)        | 1    | 2    | 3    | 4    | 5               | 6    | 7    | 8    | 9    | 10   | Remarks         |
| Lab Ctrl   | 12   | 16   | 15   | 16   | 14              | 17   | 13   | 15   | 13   | 12   | Day 6           |
| Rec. Ctrl. | 17   | 12   | 16   | 10   | 14              | 17   | []   | 15   | 0    | 14   | Sample:         |
| 6.25       | 16   | 14   | 15   | 13   | 15              | 17   | 10   | 16   | 14   | 12.  | Fed Sel / YCT — |
| 12.5       | 17   | 17   | 23   | 16   | 17              | 18   | 13   | 18   | 17   | 17   | Sel Lot #: . —  |
| 25         | 16   | 16   | 18   | 14   | 12              | 6    | 6    | 14   | 14   | 18   | YCT Lot #:      |
| 50         | 16   | 0    | 19   | 16   | 18              | 12   | 7    | 7    | 12   | 15   | Date/time/Init. |
| 75         | 20   | 16   | 19   | 5    | 20              | 17   | 16   | 17   | 20   | 17   | KS 7-17-06      |
| 100        | 15   | 18   | 17   | 19   | 19              | *1/3 | 16   | 19   | 18   | 18   | JI:25           |
| Lab Ctrl   |      |      |      |      |                 |      |      |      |      |      | Day 7           |
| Rec. Ctrl. |      |      |      |      |                 |      |      |      |      |      | Sample:         |
| 6.25       |      |      |      |      |                 |      |      |      |      |      | Fed Sel / YCT   |
|            |      |      |      |      |                 |      |      |      |      |      | Sel Lot #:      |
| 12.5       |      |      |      |      |                 |      |      |      |      |      | YCT Lot #:      |
| 25         |      |      |      |      |                 |      |      |      |      |      |                 |
| 50         |      |      |      |      |                 |      |      |      |      |      | Date/time/Init. |
| 75         |      |      |      |      | <sub>s</sub> of |      |      |      |      |      |                 |
| 100        |      |      |      |      |                 |      |      |      |      |      |                 |
| Lab Ctrl   |      |      |      |      |                 |      |      |      |      |      | Day 8           |
| Rec. Ctrl. |      |      |      |      |                 |      |      |      |      |      | Sample:         |
| 6.25       |      |      |      |      |                 |      |      |      |      |      | Fed Sel / YCT   |
| 12.5       |      |      |      |      |                 |      |      |      |      |      | Sel Lot#:       |
| 25         |      |      |      |      |                 |      |      |      |      |      | YCT Lot #:      |
| 50         |      | /    |      |      |                 |      |      |      |      |      | Date/time/Init. |
| 75         | -/   |      |      |      |                 |      |      |      |      |      |                 |
|            |      |      |      |      |                 |      |      |      |      |      |                 |
| 100        |      |      |      |      |                 |      |      |      |      |      |                 |

0=original organism surviving, no young; D=original organism dead; #=# young released; \*=lab-induced mortality. Receiving water is dilution water; Lab water is additional control.

| Aquatec Biologica | I Sciences | Williston, | vermont |
|-------------------|------------|------------|---------|
|                   |            |            | /.      |

Ceriodaphnia dubia Survival and Reproduction Data (Page 4 of 4) SDG: 9664

Test #: 48289 Client: CAS / GE PITTSFIELD

Test Description: Ceriodaphnia dubia acute / chronic toxicity tests

Sodium thiosulfate control

| Sodium thi<br>Effluent | Repl | Repl | Repl | Repl | Repl | Repl | Repl | Repl | Repl | Repl | Romarko                         |
|------------------------|------|------|------|------|------|------|------|------|------|------|---------------------------------|
| (%)                    | 1    | 2    | 3    | 4    | 5    | 6    |      | 8    | 9    | 10   | Remarks                         |
| Na thio                | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | Day 0 Fed K <sup>S</sup> V      |
| Na thio                | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | Day 1 Fed KS V                  |
| Na thio                | 0    | 0    | 0    | 0    | 0    | 0    | 0    | Ö    | 0    | 0    | Day 2 Fed KS V                  |
| Na thio                | 4    | 0    | 5    | 6    | 4    | 6    | 6    | 5    | 7    | 6    | Day 3 Fed JG 7-14-06 18:00      |
| Na thio                | 8    | 0    | 10   | 10   | 6    | 10   | 7    | 12   | 10   | 9    | Day 4 Fed                       |
| Na thio                | Ö    | 0    | 0    | 0    | 0    |      | 0    | 0    | 0    | 0    | Day 5 Fed 13:40<br>KS 7-16-06 V |
| Na thio                | 13   | Ŏ    | 15   | 13   | 15   | 16   | 16   | 16   | 13   | 17   | Day 6 Fed<br>K\$ 7-17-06 17-55  |
| Na thio                | 1-7  |      |      |      | - 52 |      |      |      |      |      | Day 7 Fed                       |
| Na thio                |      |      |      |      |      |      |      |      |      |      | Day 8 Fed                       |

<sup>0=</sup>original organism surviving, no young; D=original organism dead; #=# young released; \*=lab-induced mortality. Receiving water is dilution water; Lab water is additional control .

### Documentation of Collection of Ceriodaphnia dubia for Toxicity Testing

| Brood Board | Date / Time<br>Init. when<br>cleared of<br>Neonates | Date / Time<br>Init. when<br>neonates<br>collected | No. Cups<br>with 8 or<br>more<br>neonates | Fed YCT /<br>Selenastrum<br>/ (Lot #s) |
|-------------|-----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------|
| 113A        | KS 7/10 12:45                                       | -                                                  |                                           | V/622069C                              |
| 7/36        | KS 7/10 13:00                                       |                                                    |                                           | 1 52106 SE1                            |
| 7/3A        | KS 7/10/06 -                                        | -> 16:30                                           | 2                                         | 1//                                    |
| 7/38        | KS 7/10/06 -                                        | -> 16:40                                           | 7 9                                       |                                        |
|             |                                                     |                                                    |                                           |                                        |
| 7/3A =      | 7-11-06 00100 JG+                                   | <del>`</del>                                       | 3                                         |                                        |
| - (         | 7-11-06 00:05 JG.                                   |                                                    |                                           |                                        |
|             |                                                     |                                                    |                                           |                                        |
| 7/3 A =     | 7-11-06 KS -                                        | → 8:25                                             | 14                                        |                                        |
| 7/38        | 7-11-06 KS-                                         | -> 8:25                                            |                                           | <del>-</del>                           |
| 7/3A        | 7-11-06 KS+                                         | → 12°30                                            | (0                                        | 1                                      |
| 736         | 7-11-06 KS                                          | -5 12:35                                           | 2                                         |                                        |

| Project Description / Test Use: | GE | Pitts. | Cd. |   |
|---------------------------------|----|--------|-----|---|
| cdcoll.doc                      |    |        |     | _ |

Water Chemistry Data

| Client: C/       | CAS / GE PITTSFIELD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FIELD       | Test       | Test Description:       |          | a acute / c | C. dubia acute / chronic toxicity *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c toxicity * |              | Test #: 48289 | 89       |                            | SDG: 9664 | 164        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------|-------------------------|----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------------|----------|----------------------------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA |             | INITIAL    | INITIAL WATER CHEMISTRY | EMISTRY  | DATA        | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |              | A SAME       | FINAL         | WATER C  | FINAL WATER CHEMISTRY DATA | DATA      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Day:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0           |            | 2                       |          | 4           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9            | <del>-</del> | 2             | 3        | 4                          | 5         | 9          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Lab              | Hd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 76          | 17         | 九七                      | 7.4      | 23          | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 73           | 43            | 14.<br>S | 7.5                        | THE       | 7.3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contr            | OG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,8         | 43         | න<br>ට                  | 8.3      | 8.4         | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | サラ           | £             | 7.9      | 2.5                        | 8,2       | 40         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 16/62       | 9,4%       | 24.6                    | 4.45     | 24.7        | 24,8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 24.9         | 755,          | 249      | C:h2                       | 8,42      | 24'4       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Conduct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1202        | 203        | 204                     | 100      | 2i 4        | 9<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 300          | 2/6           | 25.4     | 2/8                        | 26        | 20%<br>20% |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rec. W           | Hd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45          | 7.5        | 4.4                     | 51       | 7.6         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | %上 Su        | 44            | 4.6      | 600                        | 75        | 74         | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th |
| Contr            | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.7         | 8.7        | £18                     | <u>г</u> | 8:7         | 8,5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 7            | 7             | &<br>⊘   | S. S.                      | )<br>Š    | ##         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ö.               | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5/h2        | 25,3       | 253                     |          | 25.6        | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 25.0         | 25.1          | 25.1     | 25.0                       | 24.9      | 25.2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Water)           | Conduct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 259         | 259        | 289                     | Δ        | ベチチック       | 177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 父ろのた         | \$ 265        | 787      | 582                        | 175       | 174        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.25%            | Hď                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.6         | のと         | 75,                     | 7.5      | 7.3         | 744                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 8 F          | 748           | ±'±      | 8.6                        | 744       | 75         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | OO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16/8        | 世》         | 8.8                     | 9,1      | 8.4         | Sie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 7-10         | 49            | 8,0      | 8.5                        | Š         | 44         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.8        | h'\$2      | n' 52                   | 24.3     | 25.3        | 0'57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 797          | 25.0          | 25.7     | 25.0                       | 0'52      | 25,2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Conduct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 888         | 334        | 333                     | ļ        | 2.8         | بر<br>چ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | 182835       | St 337        | 334      | 335                        | 222       | 223        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12.5%            | Hd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 247         | 17         | 75                      | 7.5      | 4.6         | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 78           | 9th           | 7.8      | 8.6                        | 54        | 246        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.0         | 44         | 8:8                     | 9.1      | \$0<br>1.   | 8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 76           | 7.9           | 8,0      | 28                         | 1'8       | 77         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.9        | 25.4       | 25.4                    | 2.12     | 25.3        | 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 1.62         | 125.1         | 25.2     | 15.0                       | 0'52      | 25,2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Conduct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 804         | 804        | 279                     | 307      | 201         | 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 400          |               | 382      | 380                        | 272       | 142        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <sup>4</sup> 25% | Hd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t L         | 44         | 24                      | 9.6      | 9.5         | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | 34           | 8'            | 7.9      | 6.6                        | 74        | 78         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · 2              | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.9         | 4.8        | 8.8                     | 6.8      | 8.4         | 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 75           | 718           | 4.9      | 8,2                        | 8,1       | 44         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25,0        | 25.5       | 25.5                    | 124.4    | 25.3        | 25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 25.2         | 25.3          | 25.7     | 25.O                       | 25.1      | 25,2       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Conduct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | カゴル         | 545        | 1475                    | 1.Ch     | 3sole       | 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 543          | 545           | 476      | 10                         | 367       | 367        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20%              | Hd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tt          | 7.8        | 95-                     | 6.6      | 9.6         | 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 80           | 8,2           | 8,1      | _<br>⊗                     | 8,0       | 8          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8,0         | 8,7        |                         | 8.8      | 8.5         | 0,18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              | 70,70         | 7.9      | 2.5                        | 8,0       | +++        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.0        | 75.7       | (1)                     | 24.3     | 25.2        | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 246          | 75,5          | 25.1     | 25.0                       | 25,       | 527        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Conduct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 839         | \$3.7      | 628                     | 050      | 548         | 544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 45           | 3820          | 99       | 656                        | 246       | 550        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75%              | Hd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | せた          | 64         | 76                      | 0.0      | 66          | 378                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 8.2          | 8             | 8.2      | 8.3                        | 872       | 8.2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80          | 3/8        | 58                      | 18.9     | <i>6</i> .4 | 8,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 7            | 79            | 4,0      |                            | 7         | 418        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.3        | 26 io      | 25,6                    |          | 2.5.2       | 125.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | 3.67         | 9,52          | 74.9     | 2.4.3                      | 7 7 6     | 4.4.2      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Conduct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 = 3      | 8          | 843                     | 838      | 216         | 7720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 98.          | 3 102         | F 855    | 834                        | +27       | 435        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100%             | Ha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 877         | 7.9        | 746                     | 2.8      | 1.0         | 84 <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              | مّز          | 8             | 83       | 83                         | 2,8       | 83         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | OQ<br>DO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.0         | 8,5        | 85                      | 8.5      | <i>a</i> .8 | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 76           | 79            | 4.9      | %,5                        | 8.0       | 718        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.87        | 26.0       | 45.7                    | h3h2     | 25.3        | 25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 192          | 6 62          | 25.1     | 25.0                       | 7,70      | 576.9      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Conduct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1361        | 1363       | (102)                   | 10i5     | 90t         | 907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              | 185          | 1 1237        | 1015     | 1007                       | 8<br>TO   | 25.5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                  | Sample #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32270       | 32270      | 32284                   | 32284    | 32341       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 1            | ;             | **       | -                          | 1 1       | -          | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | Init./Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111/45/1    | 1KS 7/12   | 2 187 13                | 5 KK7/14 | 1 KK 9/15   | 1837116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | KS 7112      | 21公开13        | 1631     | 14 KK7/15                  | K> +116   | 37         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aquatec          | Aquatec Biological Sciences Williston, Vermont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ences Willi | ston, Verm | ont                     |          |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | -            |               | -        |                            |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

GE TOX FORMS Cd

Reviewed by: \_

|         | FINAL                   | FINAL WATER CHEMISTRY DATA | HEMISTR | / DATA | ,       |   |
|---------|-------------------------|----------------------------|---------|--------|---------|---|
| -       | 2                       | 3                          | 4       | 5      | 9       | 7 |
| 4.5     | 73                      | 7 7                        | 9.5     | 34.    | 78      |   |
| ٦       | 6F                      | 4.9                        | 1.8     | 78     | 75      |   |
| 150,7   | 5/12                    | 24.9                       | 15.3    | 9,42   | 25.3    |   |
| 3,45    | 318                     | 320                        | 314     | 329    | h78     |   |
| 1657112 | KS 7/12/KS 7/13/76-7/14 |                            | XX 7/16 | 11127  | 4/12 ST | 7 |

Aquatec Biological Sciences Williston, Vermont

Reviewed by:

GE TOX FORMS Cd

43

# Alkalinity and Hardness Worksheet

|        |                                      |                |                  |                  |                            | Aika                     | Alkalinity |                  |            |                  |                            | Hard                     | Hardness         |                  |          |
|--------|--------------------------------------|----------------|------------------|------------------|----------------------------|--------------------------|------------|------------------|------------|------------------|----------------------------|--------------------------|------------------|------------------|----------|
| Sample | Sample LIMS Identifier<br>Identifier | Sub ID<br>Code | Sampling<br>Date | Sample<br>Volume | Initial<br>Titrant<br>(ml) | Final<br>Titrant<br>(ml) | Analyst    | Analysis<br>Date | Alkalinity | Sample<br>Volume | Initial<br>Titrant<br>(ml) | Final<br>Titrant<br>(ml) | Analyst          | Analysis<br>Date | Hardness |
| 32270  | Outfall Composite -                  |                | 7/11/06          | 25               | 6.0                        | 9.4                      | ¥          | 7/12/06          | 340.0      | 50               | 4.3                        | 23                       | 桑                | 7/11/06          | 374.0    |
| 32271  | Housatonic River -                   |                | 7/11/06          | 25               | 9.4                        | 11.6                     | 축          | 7/12/06          | 88.0       | 20               | 23                         | 28.1                     | , <del>,</del> , | 7/11/06          | 2 5 5 5  |
| 32284  | Outfall Composite -                  |                | 7/13/06          | 25               | 17.9                       | 24.3                     | 秦          | 7/13/06          | 256.0      | 20               | 15.1                       | 29.1                     | ž                | 7/13/08          | 280.0    |
| 32285  | Housatonic River -                   |                | 7/13/06          | 25               | 24.3                       | 26.7                     | ᄎ<br>ᄎ     | 7/13/06          | 0.96       | 20               | 29.1                       | 34.8                     | . <del>X</del>   | 7/13/06          | 414.0    |
| 32341  | Outfall Composite                    |                | 7/14/06          | 25               | 20.2                       | 26                       | X<br>X     | 7/17/06          | 232.0      | 20               | 8.4                        | 20.5                     | ž                | 7/15/06          | 242.0    |
| 32342  | Housatonic River A                   |                | 7/14/06          | 25               | 56                         | 27.6                     | 춪          | 7/17/06          | 64.0       | 90               | 20.5                       | 24                       | 桑                | 7/15/06          | 70.0     |

99/00/12

**Sample Preparation** 

Client: CAS / GE PITTSFIELD Test #: 48289 (C. dubia) SDG: 9664

Test Description: Ceriodaphnia dubia acute / chronic toxicity tests

#### Sample Identification:

| Sample<br>Description | Effluent | Receiving<br>Water | Effluent | Receiving<br>Water | Effluent | Receiving<br>Water |
|-----------------------|----------|--------------------|----------|--------------------|----------|--------------------|
| Sample #              | 32270    | 32271              | 32284    | 32285              | 32341    | 32342              |

#### Sample Preparation:

| Filtration                  | 60 micron      | 60 mieron | 60 micron      | 60 micron | 60 micron | 60 mioron |
|-----------------------------|----------------|-----------|----------------|-----------|-----------|-----------|
| Chlorine 1                  | ND             | ND        | ND             | ND        | NP        | NP        |
| Dechlorine <sup>2</sup>     | No             | No        | No /           | No        | No        | No        |
| Warm (25°C)                 |                |           | <b>/</b>       | V         |           |           |
| Prepared by<br>(Init./date) | PS<br>7-11-06- |           | KS<br>7-13-06- |           | 7-14-06-  |           |

<sup>&</sup>lt;sup>1</sup> Record vol. 0.025 N sodium thiosulfate to dechorinate 100 mL sample or record "ND" (not detected).

Daily Dilution Plan for: Ceriodaphnia dubia chronic toxicity test

| Concentration<br>(%)                           | Volume Effluent (mL) | Volume Diluent<br>(mL) | Total Volume<br>(mL) |
|------------------------------------------------|----------------------|------------------------|----------------------|
| Lab Water                                      | 0                    | 300                    | 300                  |
| (Additional Control)<br>Na thìosulfate control | 0                    | 300                    | 300                  |
| Receiving water                                |                      |                        |                      |
| (Dilution Water)                               | 0                    | 300                    | 300                  |
| 6.25                                           | 18.8                 | 281.2                  | 300                  |
| 12.5                                           | 37.5                 | 262.5                  | 300                  |
| 25                                             | 75                   | 225                    | 300                  |
| 50                                             | 150                  | 150                    | 300                  |
| 75                                             | 225                  | 75                     | 300                  |
| 100                                            | 300                  | 0                      | 300                  |
| Total Volume                                   | 806.3                | 1893.7                 |                      |

#### Comments:

Collect alkalinity and hardness samples on each new effluent and receiving water sample.

| Aquatec Biologi | cal Sciences | Williston, V | ermont | ,      |
|-----------------|--------------|--------------|--------|--------|
| Reviewed by:    | J            | Date:        |        | 120/06 |

<sup>&</sup>lt;sup>2</sup> Dechlorination not required per instructions from client.

Total Residual Chlorine Analysis Client

GE Pittsfield, MA

SDG 9664

| Sample # | Sample ID                      | Collection<br>Date / Time | Analysis<br>Date / Time /<br>Analyst | Result<br>(TRC mg/L) | Method              |
|----------|--------------------------------|---------------------------|--------------------------------------|----------------------|---------------------|
| 32270    | Outfall<br>Composite<br>A7407C | 7/10/06,<br>11:00         | 7/11/06,<br>12:40<br>JWW             | <0.1                 | DPD<br>Colorimetric |
| 32271    | Housatonic<br>River<br>A7406R  | 7/10/06,<br>08:15         | 7/11/06,<br>12:40<br>JWW             | <0.1                 | DPD<br>Colorimetric |

# Appendix 5 Standard Reference Toxicant Test Control Chart

Reference Control Chart for NaCl Acute Toxicity Ceriodaphnia dubia

| Test              | Date   | 10/04/04 | 11/01/04                    | 01/04/05                    | 02/03/05                    | 03/02/05                    | 04/01/05                    | 05/03/05                    | 06/02/05                    | 07/05/05                    | 08/02/05                    | 09/06/05                    | 10/07/05                    | 11/08/05                    | 12/06/05                    | 01/03/06                    | 02/02/08                    | 03/02/06                    | 04/18/06                    | 05/02/08                    | 06/13/06                    |
|-------------------|--------|----------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| Test              | Number | -        | 2                           | m                           | 4                           | ស                           | 9                           | 7                           | œ                           | ക                           | 10                          | <b>-</b>                    | 12                          | <u> </u>                    | . 4                         | , fc                        | , ç                         |                             | £ 60                        | ÷ 6                         | 20                          |
|                   |        |          |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |                             |
| Organism          | Source |          | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences | Aquatec Biological Sciences |
| limits            | Lower  |          | 2.10                        | 2.15                        | 1.60                        | 1.68                        | 1.74                        | 1.79                        | 1.76                        | 1.78                        | 1.60                        | 1.63                        | 1.65                        | 1.68                        | 1.62                        | 1,64                        | 1.48                        | 1.49                        | 51                          | 1.38                        | 1.37                        |
| Calculated limits | Upper  |          | 2.44                        | 2.43                        | 2.71                        | 2.68                        | 2.69                        | 2.69                        | 2.66                        | 2.69                        | 2.75                        | 2.76                        | 2.79                        | 2.80                        | 2.80                        | 2.79                        | 2.85                        | 2.90                        | 2.91                        | 2.95                        | 2.93                        |
| Mean              | LC50   | 2.33     | 2.27                        | 2.29                        | 2.15                        | 2.18                        | 2.22                        | 2.24                        | 2.21                        | 2.24                        | 2.17                        | 2.20                        | 2.22                        | 2.24                        | 2.21                        | 2.22                        | 2.17                        | 2.20                        | 2.21                        | 2.17                        | 2.15                        |
| LC50              | (g/L)  | 2.328    | 2.209                       | 2.328                       | 1.744                       | 2.289                       | 2.395                       | 2:375                       | 2.000                       | 2.450                       | 1.625                       | 2.422                       | 2.522                       | 2.450                       | 1.782                       | 2.328                       | 1.414                       | 2.672                       | 2.450                       | 1.361                       | 1.782                       |
| Test              | Date   | 11/01/04 | 12/07/04                    | 01/04/05                    | 02/03/05                    | 3/2/2005                    | 4/1/2005                    | 5/3/2005                    | 6/2/2005                    | 7/5/2005                    | 8/2/2005                    | 9/6/2005                    | 10/7/2005                   | 11/8/2005                   | 12/6/2005                   | 1/3/2006                    | 2/2/2006                    | 3/2/2006                    | 4/18/2006                   | 5/2/2006                    | 6/13/2006                   |
| Test              | Number | -        | 2                           | ო                           | 4                           | ស                           | φ                           | 7                           | œ                           | თ                           | 10                          | <del>*</del>                | 12                          | 55                          | 14                          | 15                          | 16                          | 7-                          | <del>0</del>                | 19                          | 20                          |

Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences

0.04

0.19

50 40 31 27 27 17 17

0.63 0.57 0.52

-0.15 -0.12 -0.12 -0.11 -0.08 <del>-</del>0.08

20

0.49 0.50 0.53 0.51

Aquatec Biological Sciences Aquatec Biological Sciences

0.84

0.84 0.92 0.73 0.66

0.842 0.842 1.063 0.171 0.375 0.49 0.192 0.178

Organism Source

Lower

Upper

IC-25 (g/L)

Calculated limits

Reference Control Chart for NaCl Chronic Toxicity

Ceriodaphnia dubia

Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences

-0.08

Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences Aquatec Biological Sciences

0.06

.09 .07 .07 .08 .08 .09 .03

0.50 0.50 0.48 0.50 0.50 0.50

0.25 0.587 0.837 0.305 0.573 0.339 0.339 0.78 0.693 0.155

Aquatec Biological Sciences Aquatec Biological Sciences

⊲ 20 ø 9 0 Lower Limit ¢ 3 ٥ ~ ٥ ç 5 4 Upper Limit Reference Control Chart 5 2 ⊲ Test Number Ţ-10 0 ø ◁ IC-25 × 40 رن دن 4... 0.9 0.7 9.0 0 0.1 ç (J/g) (DeV × 0 20 ◁ á Lower Limit 5 00 ₫ 13 ٥ <u>⇔</u> 5

Upper Limit Test Number 0907 х

4

5

12

Ξ 2

\qaqc\snts\Cd acute chronic SRT

3.000

Reference Control Chart

Ceriodaphnia dubia Acute LC50

◁

◁ ⋖

⊲

2.750

. ⊲

2.500

2.250

2.000

(J/6) IDEN

1,750

1.500

1.250

000

NPDES Permit No. MA0003891 SDG: 9664 July 27, 2006

# Appendix 6 SOP TOX2-002, Standard Operating Procedure for Cladoceran, *Ceriodaphnia dubia*, Survival and Reproduction Toxicity Test

## Standard Operating Procedure for Cladoceran, Ceriodaphnia dubia Survival and Reproduction Toxicity Test U.S. EPA Method 1002.0 (NELAC ACCREDITED METHOD)

#### 1.0 IDENTIFICATION OF TEST METHOD

This SOP describes procedures for conducting a chronic toxicity test with the cladoceran, *Ceriodaphnia dubia*. This test is used to estimate the chronic toxicity of whole effluents or other aqueous samples with this test species.

#### 2.0 APPLICABLE MATRIX OR MATRICES

The described test is used to assess toxicity of wastewaters (effluents, influents), receiving waters, and other prepared aqueous solutions.

#### 3.0 DETECTION LIMIT

Not applicable.

#### 4.0 SCOPE AND APPLICATION

This SOP describes procedures for performing a static-renewal chronic toxicity test with cladoceran, *Ceriodaphnia dubia*.

#### 5.0 SUMMARY OF TEST METHOD

A summary of the test method is attached (Table 1). Organisms are exposed, for 6 – 8 days, typically to five concentrations of effluent (or aqueous sample) and the controls. Chronic toxicity is estimated by calculating the chronic no-observed-effect-concentration (C-NOEC). The IC25 is an additional chronic value that may be used to estimate chronic toxicity to *Ceriodaphnia dubia*. This procedure is based on the guidelines of EPA-821-R-02-013 (Method 1002.0). In some US EPA regions, NPDES permits require calculation of acute values from the 48-h survival data within the chronic test. The A-NOEC and 48-h LC50 are calculated from the 48-h data using TOXIS2.

#### 6.0 DEFINITIONS

<u>LC50</u>: The computed concentration that results in 50 percent mortality of the test organisms (may be computed from 48-h data).

<u>A-NOEC</u>: The acute no-observed-effect-concentration. The highest concentration resulting in no statistically significant reduction in survival or reproduction relative to the control.

<u>C-NOEC</u>: The chronic no-observed-effect-concentration. The highest concentration resulting in no statistically significant reduction in survival relative to the control.

<u>IC25</u>: A value calculated by linear interpolation to provide a point-estimate of effluent (or other aqueous samples) that causes a 25% reduction in reproduction relative to the control. <u>Initial chemistry</u>: Water chemistry parameters (temperature, pH, dissolved oxygen, and conductivity) measured from a sub-sample of all test concentrations and controls before the time of test start and daily before test solution renewals.

<u>Final chemistry</u>: Water chemistry parameters (temperature, pH, dissolved oxygen, and conductivity) measured in all test concentrations and controls daily after test solution renewals (old water from the test cups) and at the end of the test.

#### 7.0 INTERFERENCES

Not applicable.

#### 8.0 SAFETY

Samples acquired for toxicity testing may contain unknown toxicants or health hazards. Protective equipment (e.g., lab coats, disposable gloves) should be worn when handling samples.

#### 9.0 EQUIPMENT AND SUPPLIES

Calibrated Instrumentation and Water Quality Apparatus:

Controlled Document TOX2-002 Cd chronic Revision 4 (NELAC) May 4, 2006 Page 2 of 10

pH meter

Dissolved Oxygen (DO) meter

Thermometer (accurate to 0.1°C)

Conductivity meter

Alkalinity titration apparatus

Hardness titration apparatus

Additional Equipment:

Test chambers (30-ml disposable cups), color coded

Test board with randomized scheme, glass cover

Light table

Waste collection bucket

Forms and Paperwork:

Survival and reproduction data form Initial and final chemistry data form Alkalinity and hardness data form

#### **10.0 REAGENTS AND STANDARDS**

Laboratory reconstituted water (soft water, moderately hard water) or culture water

Deionized water

Reference toxicant solutions

#### 11.0 SAMPLE COLLECTION, PRESERVATION, SHIPMENT, AND STORAGE

Samples for chronic toxicity tests are typically collected, cold-preserved, and shipped to Aquatec. Sample acceptance and log-in procedures are outlined in SOP TOX1-017. After receipt at Aquatec, samples should be refrigerated when not being prepared for use in toxicity tests. The holding time for effluent samples is 36 hours from the time of collection until the time of first use. Typically a series of three samples (effluent and receiving water) are shipped and received for testing. The first samples are used for Days 0 (test start) and renewal on Day 1; the second samples are used for renewal on Days 2 and 3; the third samples are used for renewal on Days 4, 5, and 6 (and 7 and 8, if required).

#### 12.0 QUALITY CONTROL

For the test to be acceptable, survival in the controls must equal or exceed 80 percent. Also, the control females must have produced an average of 15 or more young per female and at least 60% of the surviving females in the controls must have produced a third brood. Also, the test conditions must be within the guidelines described in the protocol (Table 1).

Standard reference toxicant (SRT) tests (monthly 48-h acute tests with sodium chloride as the toxicant and quarterly chronic SRT tests with sodium chloride as the toxicant) are performed with a representative sub-set of the test organisms and result in an LC50 (for acute SRTs) or IC25 (for chronic SRTs) within the boundaries of the control chart. Deviations from acceptance standards should be documented and may result in the test being viewed as "conditionally acceptable" or "unacceptable" (See Section 19.0 below).

#### 13.0 CALIBRATION AND STANDARDIZATION

Not applicable for the toxicity test. Any instrumentation (e.g., water quality instrumentation) required for conducting the test must be calibrated on a daily basis following the relevant SOP or instrument guidelines.

#### 14.0 PROCEDURE

#### 14.1 Test System and Conditions

The test system and environmental conditions for the chronic toxicity test are summarized in Table 1.

#### 14.2 Test Organisms

#### **Procurement and Documentation**

Test organisms for the *Ceriodaphnia* chronic test are obtained from Aquatec Biological Sciences, Inc. laboratory cultures. Neonates less than 24-h old and all collected within an 8-h period are used for testing. Documentation of brood board source and date and time must be included in the project data package. *Ceriodaphnia dubia* are cultured in individual culture cups (one organism per cup) maintained at  $25 \pm 1^{\circ}$ C. Neonates collected for testing may be held in individual culture cups until distributed to tests.

#### Evaluation of Ceriodaphnia Condition and Acclimation

If, during examination, it appears that more than 10 percent of the parent females or the neonates collected for the test have died during the 24-h period preceding the test, notify the Toxicity Laboratory Manager immediately. A decision will be made regarding the possibility of collecting an alternate stock of neonates for testing. If the test is to be delayed, document the reason on the Project Documentation form. Also, it may be necessary to notify the client.

**NOTE**: Brood boards for a test are started 7-10 days prior to the test. These brood boards must be carefully monitored for general health and reproductive condition. Documented tracking of parent organisms for survival and reproduction must be performed daily prior to collecting neonates for a chronic toxicity test. Any problems with brood board *Ceriodaphnia dubia* stocks should be reported to the Laboratory Manager immediately.

Ordinarily, *C. dubia* neonates are cultured in laboratory water (1:1 mix of Lamoille River water and moderately hard water amended with selenium and vitamin B12) up until the time of test initiation. The temperature of the parent and neonate stocks should be maintained at  $25 \pm 1^{\circ}$ C. Return parent stock females from the neonate cups to the source batch culture.

If acclimation to a client's receiving water is required, gradual water changes should be made (eg., 25%-50% hourly) to the test organisms to receiving water.

#### Food

At the time of neonate collection, or on the morning of a scheduled test, feed neonates in each cup 0.1 ml *Selenastrum* and 0.1 ml yeast-Cerophyll-trout chow (YCT).

#### Sample Preparation

Procedures for effluent and diluent sample preparation are described in a SOP TOX1-013. The typical dilution factors are 0.5, however, consult applicable client permits for the appropriate dilution factor and included permit-limit concentrations when required.

#### 14.3 Initiate the Test

#### Prepare the test chambers

For a test where receiving water is used as the diluent, an additional laboratory control (e.g., soft water, moderately hard water, or culture water) must be included in the test array. New 30-mL disposable plastic condiment cups are used as test chambers. Each test treatment will have ten true replicates (no water connection), therefore, 70 test cups will be required. Test cups should be color coded with stick-on dots as follows:

| Color Code | Test Treatment                                |
|------------|-----------------------------------------------|
| Green      | Laboratory Control                            |
| Dark Blue  | Receiving water Control                       |
| Light Blue | Lowest test concentration                     |
| Orange     | Next lowest test concentration                |
| Yellow     | <ul> <li>Middle test concentration</li> </ul> |
| Red        | Next highest test concentration               |
| Star       | Highest test concentration                    |

Typically the receiving water is the dilution water and statistical control for a toxicity test, however, there are cases where a client's permit requires that laboratory water be used as dilution water (and statistical control) and the receiving water is used as an additional (non-statistical) control.

#### Measure Initial Chemistries

Remove an aliquot (approximately 100 ml) from each test dilution and the controls. This aliquot is used to measure the following parameters: pH, DO, temperature, and conductivity. Record the data directly on the Toxicity Test Data Form for Day 0. The temperature of the solutions must be within a range of  $\pm$  1°C of the selected test temperature (25°C).

#### Recommended water chemistry ranges at time of test initiation

If solutions are not within the ranges specified below, notify the Toxicity Laboratory Director.

pH - acceptable range, 6.0-9.0

DO - acceptable range, 4.0 - 8.5 mg/L

Temperature - acceptable range, 24-26°C

Conductivity - often has a pattern of increasing conductance with increasing sample strength.

Collect a sub-sample of each new sample of the controls and 100% effluent for subsequent analysis of hardness and alkalinity. Label and store in a refrigerator at 4<sup>o</sup>C.

If prepared solutions are to be stored temporarily prior to starting the test, store the test solutions at the target test temperature (24-26°C).

Decant test solutions to the appropriate test cups, approximately 20 mL per cup. Place the test cups in randomized positions on the test board.

#### Prepare and distribute test organisms

Select approximately 20 brood cups (containing neonates collected for the test), each with 8 or more neonates. Pool neonates in a crystallizing dish prior to distribution to the test. Randomly distribute neonates to test containers (5 per test container) with a transfer pipet.

#### Distribution of test organisms and test initiation

Neonates are distributed to the test board following the blocking procedure outlined in EPA-600-4-91/002. This blocking procedure allows the performance of each parent female to be tracked. If a particular female produces one weak offspring or male for use in the test, the likelihood of producing all weak offspring or all males is greater. By using the known parentage technique, poor performance of young from a given female can be omitted from all concentrations. The procedure is as follows:

 Select 10 brood cups (containing neonates collected for the test), each with 8 or more neonates. From a single cup, distribute (with a transfer pipet) one neonate to the

Controlled Document TOX2-002 Cd chronic Revision 4 (NELAC) May 4, 2006 Page 5 of 10

laboratory control cup, then one to the diluent control, one to the low test concentration, etc., working from low to high test concentration in test column 1.

- Rinse the pipet with deionized water.
- Select a second neonate up and distribute neonates to column 2 in the same manner as in Step a.
- Continue distributing neonates from a single neonate cup the the remaining test columns as in Step a. until all test chambers contain a single neonate.
- Record the date and time of test initiation on the Ceriodaphnia Survival and Reproduction Data form.

#### Aeration

Do not aerate Ceriodaphnia dubia chronic tests.

#### Feed the test organisms

Add 0.1 mL of Selenastrum and 0.1 mL of YCT solution to each test cup. Record the feeding time on the Survival and Reproduction Data form.

#### 14.4 Monitoring the test

#### Daily Monitoring and Test Solution Renewal

The procedures described below pertain to Days 1-8 of the test (The test starts Day 0).

#### Sample preparation

Generally, samples collected on three separate occasions are used for the chronic test (e.g., samples are delivered on Day 0, Day 2 and Day 4). Samples are prepared according to the procedures outlined in SOP TOX1-013. Use the most recently collected samples (effluent and dilution water) for the renewal procedure. The initial chemistry parameters of temperature, pH, dissolved oxygen, and conductivity should be measured daily and recorded on each test concentration prior to completing the test solution renewal.

#### Test solution renewal and biological monitoring

Test solutions in each test cup are renewed daily. During the renewal procedure, take care to avoid injuring neonates. The controls should be renewed first, then the low concentrations and then the higher test concentrations. This procedure will minimize the potential for back-contamination of a lower test concentration with a higher test concentration. Conduct the renewal procedure over a light table.

- Remove the test board from the test rack and remove the glass cover.
   Measure the temperature of one replicate of each test treatment
   Record the data on the Final Chemistry Data form.
- Fill ten new cups coded for laboratory control with approximately 15-20 mL of laboratory control water. Remove laboratory control Replicate 1 test cup from the test board.
- If the parent organism in this replicate is alive, transfer the organism with a
  large-bore pipet to the new test cup containing new control solution. Record
  a zero (if no neonates are present) in the data box for Laboratory Control,
  Replicate 1.
- If the organism is dead, record a "D" in the data box for this replicate. (It is helpful at this point to record "D" in the box for this replicate for subsequent test days to prevent that data box from being used in the future.)
- Examine the original test cup carefully to see whether any neonates were released by the parent organism in the prior 24-hour period. (Neonate production does not normally start until Day 3 or Day 4 of the test.) If live neonates are present in the cup, the exact neonate count must be

Controlled Document TOX2-002 Cd chronic Revision 4 (NELAC) May 4, 2006 Page 6 of 10

recorded in the data box for the replicate. If the parent organism has died record: D / # of neonates released. If a parent organism is accidentally injured and dies, designate as "\*" and footnote the occurrence of the accidental mortality. This organism will be deleted from the data analysis. Place marble to fill any location that is empty due to mortality. If the parent organism is missing, it should be scored as "D" (unless a known and documented laboratory error resulted in the loss of the organism.

 Continue the procedure outlined above for Control Replicates 2-10. Pool the "old test water" from the old test cups into a beaker or cup. This must be saved for final chemistry analysis.

The decanted water ("old water") from the ten replicates must be pooled and saved for final chemistry determinations. Continue renewals for all test solutions working from low to high test concentrations.

When renewals have been completed, record your initials, date, and time of renewal in the remarks section of the Survival and Reproduction Data form. Also, indicate the sample number used for renewal. Replace all test cups in the assigned position on the test board.

#### **Final Chemistry**

Measure the pH, D.O., and conductivity (Temperature has already been measured in "a." above.) of the pooled water sample decanted from the ten replicates for each test treatment. It is preferable to do this immediately after completing the renewal to obtain an accurate representation of the test conditions. Discard the solution in the appropriate waste receptacle.

#### Feeding

As soon as the renewal procedure has been completed, add 0.1 ml of *Selenastrum* and 0.1 ml of YCT to each test cup. Record the time fed in the Remarks section of the Survival and Reproduction Data form. Replace the glass cover on the test board and return the test board to the testing area.

#### 14.5 Termination of the Toxicity Test

The Ceriodaphnia dubia chronic test may be ended on Day 6, 7, or 8. The test should be ended when 60% or more of the surviving females in the controls have produced their third brood and have released an average of at least 15 neonates per female during the test. If this requirement has not been reached on Day 8, the final test data (survival and reproduction) should be recorded and the test should be ended.

#### Final Biological Monitoring (Survival and Reproduction)

- Measure and record temperatures from the test.
- For each replicate, determine whether the parent female is alive or dead and record
  the results in the appropriate data box of the Survival and Reproduction Data form.
  Also, count the number of neonates released by the parent female in the prior 24
  hours and record the data in the appropriate box.

Because of the rapid rate of development of *Ceriodaphnia*, all observations of organism survival and neonate production should be completed within two hours. Record the time of test completion in remarks section.

#### Final Chemistry (end of test)

Combine the test solution from each replicate of a test treatment. Measure and record the final chemistry parameters (pH, DO, and conductivity) as specified above.

#### 15.0 CALCULATIONS

The C-NOEC is calculated using the TOXIS2 software program. The IC25 can also be computed automatically using the TOXIS2 program. Enter the test data into the TOXIS2 template prepared for each client. The dilution water control should be entered as the "D" control and is used for statistical comparisons. The additional control is entered as the "B" control. Run the statistical program for the EPA chronic Toxicity Test flow chart (Figures 4 and 6, pages 168 and 173 of EPA-821-02-013) and print the entered test data and the statistical results. Check the entered data against the original hand-written test data and record the date and initials. Place the statistical printouts in the project folder (by SDG) and return the folder with all paperwork to the project holding file.

#### 16.0 METHOD PERFORMANCE

Test conditions should be at or near the limits outlined in the Protocol (Table 1).

#### 17.0 POLLUTION PREVENTION

Effluents and receiving waters used in toxicity tests are stored refrigerated until the test data have been reviewed and deemed acceptable by the Laboratory Manager or the Director. Contact the Laboratory Manager or Director prior to discarding any stored samples. Effluent and receiving water samples may be discarded following a period of chlorination (e.g., 30 minutes). Effluent samples that have exhibited high toxicity in low test concentrations should be discarded in the "Aqueous Waste" drum for disposal by a certified waste handler. Other samples containing unknown or suspected toxic contaminants should be discarded in the "Aqueous Waste" drum.

#### 18.0 DATA ASSESSMENT AND ACCEPTANCE CRITERIA FOR QUALITY CONTROL MEASURES

The Laboratory Manager and/or the Laboratory Director will review test data to ensure that all elements of the data package are available and complete (Log-in work sheets, test IDs, Chain-of-Custody documentation, toxicity test bench sheets, organism records, and SRT data). The reviewer will check to package for transcription errors, clarity of observations and notations, initials, and completeness. The reviewer will also compare the test data to the Quality Control standards outlined in Section 12.0 above. Any deficiencies will be addressed and resolved (with appropriate notation) prior to assembling the package for the final report.

#### 19.0 CORRECTIVE ACTIONS FOR OUT-OF-CONTROL DATA

Data that do not meet Quality Control standards will be assessed and a decision will be made whether to reject the test data and deemed "unacceptable" (requiring a repeated test) or "provisionally acceptable" (requiring a qualifier in the final report). An example of and unacceptable test could include one where the controls fail to meet the 80% survival requirement. A designation of a "provisionally acceptable" test might include one where samples were received outside of prescribed holding temperatures or times.

#### 20.0 CONTINGENCIES FOR HANDLING OUT-OF-CONTROL OR UNACCEPTABLE DATA

Analysts experiencing and "out-of-control" event (e.g., test replicate spills, test solutions improperly prepared, test temperatures out of target range, etc.) should note the event on the bench sheet and also notify the Laboratory Manager or Laboratory Director. A decision will be made by the Laboratory Manager or Laboratory Director as to whether to continue the test (with the appropriate qualifier) or whether to terminate the test. If the test is terminated, the client should be notified so that re-sampling and re-testing can be scheduled as soon as possible.

#### 21.0 WASTE MANAGEMENT

See 17.0 above.

#### 22.0 REFERENCES

The test procedure is based upon the guidelines outlined in EPA-821-R-02-013, Short-term Methods for Measuring the Chronic Toxicity of Effluents and Receiving Water to Freshwater

Controlled Document TOX2-002 Cd chronic Revision 4 (NELAC) May 4, 2006 Page 8 of 10

*Organisms* (4<sup>rd</sup> Ed.). Regional guidelines may require in slight modifications of the test protocol (e.g., solution renewals, test duration, target test temperature).

#### 23.0 TABLES, DIAGRAMS, FLOW CHARTS, AND VALIDATION DATA

Refer to Table 3 (pp. 164 of EPA-821-R-02-013) and the EPA Statistical Flow Chart (Figure 4 page 168 of EPA-821-R-02-013 and related discussions within that document.

#### 24.0 TRAINING

Laboratory analysts performing this procedure must receive instruction from a previously trained analyst. Individual parts of the overall procedure may be performed under the guidance of a previously-trained analyst.

To be qualified for the overall procedure outlined in this SOP, the analyst must:

Read this SOP.

Receive verbal and visual instruction.

Achieve a daily neonate count that agrees (± 5%) with the count of an experienced analyst.

Be trained on pertinent associated SOPs.

Table 1. Test Protocol for Ceriodaphnia dubia survival and reproduction test ASSOCIATED PROTOCOL: EPA 2002. Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. (EPA-821-R-02-013), Method 1002.0

| Method 1002.0                                  |                                                                                                                                                                           |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. Test type:                                  | Static, daily renewal                                                                                                                                                     |
| 2: Test temperature:                           | 25 <u>+</u> 1 <sup>0</sup> C                                                                                                                                              |
| 3. Light quality:                              | Ambient laboratory illumination                                                                                                                                           |
| 4. Photoperiod:                                | 16 hr. light, 8 hr. dark                                                                                                                                                  |
| 5. Test chamber size:                          | 30 ml                                                                                                                                                                     |
| 6. Test solution volume:                       | 15 - 25 ml / replicate                                                                                                                                                    |
| 7. Renewal of test concentrations:             | Daily using most recent samples collected                                                                                                                                 |
| 8. Age of test organisms:                      | Less than 24 h (released within 8-h period)                                                                                                                               |
| 9. No. organisms / test chamber:               | 1                                                                                                                                                                         |
| 10. No. of replicate chambers / concentration: | 10                                                                                                                                                                        |
| 11. No. of organisms / concentration:          | 10                                                                                                                                                                        |
| 12. Feeding regime:                            | Feed 0.1 ml of YTC and algal suspension daily                                                                                                                             |
| 13. Cleaning:                                  | None, new color-coded cups daily with renewal                                                                                                                             |
| 14. Aeration:                                  | None                                                                                                                                                                      |
| 15. Dilution water:                            | Receiving water or laboratory water                                                                                                                                       |
| 16. Test concentrations:                       | 6.25, 12.5, 25, 50, 100% (unless specified otherwise by permit)                                                                                                           |
| 17. Laboratory control:                        | Reconstituted water (soft, or moderately hard) or culture water                                                                                                           |
| 18. Test duration:                             | 6 – 8 days                                                                                                                                                                |
| 19. Monitoring:                                | Daily: temperature, DO, pH, and conductivity before and after renewal. Hardness, alkalinity on each new sample. Biological monitoring (survival and neonate counts) daily |
| 19. End points:                                | Survival and reproduction                                                                                                                                                 |
| 20. Reference toxicant test:                   | Sodium chloride 48-h LC50 and IC25                                                                                                                                        |
| 21. Test acceptability (Control performance):  | 80% or greater survival and an average of 15 neonates per surviving female. 60% of the control organisms must have produced three broods.                                 |
| 22. Data interpretation:                       | C-NOEC and IC25 (if client or permit requires) using Toxis2 statistical software.                                                                                         |

#### **DOCUMENT SIGNATURE PAGE**

#### DOCUMENT NAME: SOP TOX2-002 Ceriodaphnia dubia chronic Revision 4

| I have read and I understand and I agree, to the best of my ability, to follow the procedures outlined in this SOP | -                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|--------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Signature                                                                                                          | Initials             | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| •                                                                                                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    | •                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| •                                                                                                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    | a                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    | ······               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    | -                    | 7 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min 1 min |  |
|                                                                                                                    | •                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ļ                                                                                                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                                                                                                    | this SOP Signature . | this SOP Signature Initials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |

#### APPENDIX 2

#### **Laboratory Reports**

Columbia Analytical Services, Inc. O'Brien & Gere, Inc.

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06

Client Sample ID : A7407CDM

Sample Matrix: WATER

Date Sampled: 07/10/00 11:00 Order #: 915983
Date Received: 07/11/06 Submission #: R2632318

| ANALYTE          | METHOD | PQL     | RESULT    | UNITS | DATE<br>ANALYZED | DILUTION |
|------------------|--------|---------|-----------|-------|------------------|----------|
| ALUMINUM         | 200.7  | 0.100   | 0.100 U   | MG/L  | 07/14/06         | 1.0      |
| CADMIUM          | 200.7  | 0.00500 | 0.00500 U | MG/L  | 07/14/06         | 1.0      |
| CHROMIUM         | 200.7  | 0.0100  | 0.0100 U  | MG/L  | 07/14/06         | 1.0      |
| COPPER           | 200.7  | 0.0200  | 0.0200 U  | MG/L  | 07/14/06         | 1.0      |
| LEAD             | 200.7  | 0.00500 | 0.00500 U | MG/L  | 07/14/06         | 1.0      |
| NICKEL           | 200.7  | 0.0400  | 0.0400 U  | MG/L  | 07/14/06         | 1.0      |
| NICKEL<br>SILVER | 200.7  | 0.0100  | 0.0100 U  | MG/L  | 07/14/06         | 1.0      |
| ZINC             | 200.7  | 0.0200  | 0.0200 U  | MG/L  | 07/14/06         | 1.0      |

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06 Client Sample ID: A7407CTM

Date Sampled: 07/10/00 11:00 Order #: 915984
Date Received: 07/11/06 Submission #: R2632318

Submission #: R2632318

Sample Matrix: WATER

| ANALYTE   | METHOD | PQL     | RESULT    | UNITS            | DATE<br>ANALYZED | DILUTION |
|-----------|--------|---------|-----------|------------------|------------------|----------|
| ALUMINUM  | 200.7  | 0.100   | 0.100 U   | MG/L             | 07/14/06         | 1.0      |
| CADMIUM   | 200.7  | 0.00500 | 0.00500 U | MG/L             | 07/14/06         | 1.0      |
| CALCIUM   | 200.7  | 1.00    | 93.9      | MG/L             | 07/14/06         | 1.0      |
| HROMIUM   | 200.7  | 0.0100  | 0.0100 U  | MG/L             | 07/14/06         | 1.0      |
| OPPER     | 200.7  | 0.0200  | 0.0200 U  | MG/L             | 07/14/06         | 1.0      |
| EAD       | 200.7  | 0.00500 | 0.00500 U | MG/L             | 07/14/06         | 1.0      |
| iagnesium | 200.7  | 1.00    | 38.0      | ${ m MG}/{ m L}$ | 07/14/06         | 1.0      |
|           | 200.7  | 0.0400  | 0.0400 U  | MG/L             | 07/14/06         | 1.0      |
| ICKEL     | 200.7  | 0.0100  | 0.0100 U  | MG/L             | 07/14/06         | 1.0      |
| ILVER     | 200.7  | 0.0200  | 0.0200 U  | MG/L             | 07/14/06         | 1.0      |

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06 Client Sample ID : A7406RTM

Order #: 915985

Sample Matrix: WATER Date Sampled: 07/10/00 08:15 Date Received: 07/11/06 Submission #: R2632318

| ANALYTE   | METHOD | PQL     | RESULT    | UNITS | DATE<br>ANALYZED | DILUTION |
|-----------|--------|---------|-----------|-------|------------------|----------|
| ALUMINUM  | 200.7  | 0.100   | 0.100 U   | MG/L  | 07/14/06         | 1.0      |
| CADMIUM   | 200.7  | 0.00500 | 0.00500 U | MG/L  | 07/14/06         | 1.0      |
| CALCIUM   | 200.7  | 1.00    | 24.4      | MG/L  | 07/14/06         | 1.0      |
| CHROMIUM  | 200.7  | 0.0100  | 0.0100 U  | MG/L  | 07/14/06         | 1.0      |
| COPPER    | 200.7  | 0.0200  | 0.0200 U  | MG/L  | 07/14/06         | 1.0      |
| EAD       | 200.7  | 0.00500 | 0.00500 U | MG/L  | 07/14/06         | 1.0      |
| IAGNESIUM | 200.7  | 1.00    | 8.72      | MG/L  | 07/14/06         | 1.0      |
| MCKEL     | 200.7  | 0.0400  | 0.0400 U  | MG/L  | 07/14/06         | 1.0      |
| SILVER    | 200.7  | 0.0100  | 0.0100 U  | MG/L  | 07/14/06         | 1.0      |
| ZINC      | 200.7  | 0.0200  | 0.0200 U  | MG/L  | 07/14/06         | 1.0      |

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06 Client Sample ID: A7406R

Sample Matrix: WATER

Date Sampled: 07/10/00 08:15 Order #: 915981 Submission #: R2632318

| ANALYTE                                | METHOD | PQL    | RESULT   | UNITS | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |
|----------------------------------------|--------|--------|----------|-------|------------------|------------------|----------|
| AMMONIA                                | 350.1  | 0.0500 | 0.0500 U | MG/L  | 07/17/06         | 10:52            | 1.0      |
| CHLORIDE                               | 300.0  | 0.200  | 18.0     | MG/L  | 07/13/06         | 17:40            | 10.0     |
| TOTAL ALKALINITY                       | 310.1  | 2.00   | 94.3     | MG/L  | 07/17/06         | 09:30            | 1.0      |
| TOTAL ARABINITI                        | 9060   | 1.00   | 7.01     | MG/L  | 07/20/06         | 17:10            | 1.0      |
| TOTAL PHOSPHORUS                       | 365.1  | 0.0500 | 2.14     | MG/L  | 07/17/06         | 12:34            | 1.0      |
|                                        | 160.3  | 10.0   | 148      | MG/L  | 07/14/06         | 10:00            | 1.0      |
| TOTAL SOLIDS<br>TOTAL SUSPENDED SOLIDS | 160.2  | 1.00   | 2.50     | MG/L  | 07/12/06         | 12:00            | 1.0      |

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06
Client Sample ID : A7407C

Sample Matrix: WATER Order #: 915982

Date Sampled: 07/10/00 11:00 Date Received: 07/11/06 Submission #: R2632318

| ANALYTE                | METHOD | PQL    | RESULT   | UNITS           | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |
|------------------------|--------|--------|----------|-----------------|------------------|------------------|----------|
| AIRONIA                | 350.1  | 0.0500 | 0.487    | MG/L            | 07/17/06         | 10:52            | 1.0      |
| CHLORIDE               | 300.0  | 0.200  | 210      | MG/L            | 07/16/06         | 01:20            | 40.0     |
| TOTAL ALKALINITY       | 310.1  | 2.00   | 371      | $\mathtt{MG/L}$ | 07/17/06         | 09:30            | 1.0      |
| TOTAL ORGANIC CARBON   | 9060   | 1.00   | 6.10     | MG/L            | 07/20/06         | 17:48            | 1.0      |
| TOTAL PHOSPHORUS       | 365.1  | 0.0500 | 0.0500 U | MG/L            | 07/17/06         | 12:34            | 1.0      |
| TOTAL SOLIDS           | 160.3  | 10.0   | 739      | MG/L            | 07/14/06         | 10:00            | 1.0      |
| TOTAL SUSPENDED SOLIDS | 160.2  | 1.00   | 1.00 U   | MG/L            | 07/12/06         | 12:00            | 1.0      |

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06

Client Sample ID : A7407CCN

Sample Matrix: WATER

Date Sampled: 07/10/00 11:00 Order #: 915986
Date Received: 07/11/06 Submission #: R2632318

| ANALYTE       | METHOD | PQL    | RESULT | UNITS | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |
|---------------|--------|--------|--------|-------|------------------|------------------|----------|
| TOTAL CYANIDE | 335.4  | 0.0100 | 0.0500 | MG/L  | 07/18/06         | 11:45            | 1.0      |

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06 Client Sample ID: A7406RCN

| Date Sampled :<br>Date Received: | 07/10/00<br>07/11/06 | 08:15  |        | #: 915987<br>#: R2632318 |       | Sample Matri       | ix: WATER        |          |
|----------------------------------|----------------------|--------|--------|--------------------------|-------|--------------------|------------------|----------|
| ANALYTE                          |                      | METHOD | PQL    | RESULT                   | UNITS | DATE<br>ANALYZED A | TIME<br>ANALYZED | DILUTION |
| TOTAL CYANIDE                    |                      | 335.4  | 0.0100 | 0.0100 U                 | MG/L  | 07/18/06           | 11:45            | 1.0      |

### NPDES Sampling GE Pittsfield Toxicity pH

| Date: 7/10/06  Acute Dry                                                                               | Split Sample<br>C. TOXI / A. TOX |
|--------------------------------------------------------------------------------------------------------|----------------------------------|
| Effluent Composite Sample # <u>A 740 7</u> C  Date <u>7-10-06</u> Time <u>1100AM</u> pH <u>7.81</u> su | July 2006                        |
| River/Dilution Water Sample # A7406 R  Date 7-10-06 Time 8 15 AM  pH 7728 su                           |                                  |

Mark Charrensby 7-10-06

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06

Client Sample ID : A7409CDM

Sample Matrix: WATER

Date Sampled: 07/12/06 11:00 Order #: 921132 Submission #: R2632624

| ANALYTE  | METHOD | PQL     | RESULT    | UNITS          | DATE<br>ANALYZED | DILUTION |
|----------|--------|---------|-----------|----------------|------------------|----------|
| ALUMINUM | 200.7  | 0.100   | 0.100 U   | MG/L           | 07/19/06         | 1.0      |
| CADMIUM  | 200.7  | 0.00500 | 0.00500 U | MG/L           | 07/19/06         | 1.0      |
| CHROMIUM | 200.7  | 0.0100  | 0.0100 U  | MG/L           | 07/19/06         | 1.0      |
| COPPER   | 200.7  | 0.0200  | 0.0200 U  | MG/L           | 07/19/06         | 1.0      |
| EAD      | 200.7  | 0.00500 | 0.00500 U | MG/L           | 07/19/06         | 1.0      |
| ICKEL    | 200.7  | 0.0400  | 0.0400 U  | ${	t MG/L}$    | 07/19/06         | 1.0      |
| SILVER   | 200.7  | 0.0100  | 0.0100 U  | ${ m MG/L}$    | 07/19/06         | 1.0      |
| ZINC     | 200.7  | 0.0200  | 0.0499    | $	exttt{MG/L}$ | 07/19/06         | 1.0      |

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06 Client Sample ID: A7409CTM

Date Sampled: 07/12/06 11:00 Order #: 921134 Submission #: R2632624

Sample Matrix: WATER

| ANALYTE   | METHOD | PQL     | RESULT    | UNITS                    | DATE<br>ANALYZED | DILUTION |
|-----------|--------|---------|-----------|--------------------------|------------------|----------|
| ALUMINUM  | 200.7  | 0.100   | 0.222     | MG/L                     | 07/19/06         | 1.0      |
| CADMIUM   | 200.7  | 0.00500 | 0.00500 U | ${	t MG/L}$              | 07/19/06         | 1.0      |
| CALCIUM   | 200.7  | 1.00    | 67.7      | ${ m MG/L}$              | 07/19/06         | 1.0      |
| CHROMIUM  | 200.7  | 0.0100  | 0.0100 U  | $\mathtt{MG}/\mathtt{L}$ | 07/19/06         | 1.0      |
| COPPER    | 200.7  | 0.0200  | 0.0200 U  | MG/L                     | 07/19/06         | 1.0      |
| LEAD      | 200.7  | 0.00500 | 0.00620   | MG/L                     | 07/19/06         | 1.0      |
| MAGNESIUM | 200.7  | 1.00    | 26.9      | MG/L                     | 07/19/06         | 1.0      |
| NICKEL    | 200.7  | 0.0400  | 0.0400 U  | MG/L                     | 07/19/06         | 1.0      |
| SILVER    | 200.7  | 0.0100  | 0.0100 U  | MG/L                     | 07/19/06         | 1.0      |
| ZINC      | 200.7  | 0.0200  | 0.0589    | MG/L                     | 07/19/06         | 1.0      |

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06

Client Sample ID : A7408RTM

Sample Matrix: WATER

Date Sampled: 07/12/06 08:15 Order #: 921136 Submission #: R2632624

| ANALYTE           | METHOD | PQL     | RESULT    | UNITS       | DATE<br>ANALYZED | DILUTION |
|-------------------|--------|---------|-----------|-------------|------------------|----------|
| ALUMINUM          | 200.7  | 0.100   | 0.100 U   | MG/L        | 07/19/06         | 1.0      |
| CADMIUM           |        | 0.00500 | 0.00500 U | MG/L        | 07/19/06         | 1.0      |
| CALCIUM           | 200.7  | 1.00    | 26.8      | MG/L        | 07/19/06         | 1.0      |
| CHROMIUM          | 200.7  | 0.0100  | 0.0100 U  | MG/L        | 07/19/06         | 1.0      |
| COPPER            | 200.7  | 0.0200  | 0.0200 U  | ${ m MG/L}$ | 07/19/06         | 1.0      |
|                   |        | 0.00500 | 0.00500 U | MG/L        | 07/19/06         | 1.0      |
| LEAD<br>MAGNESIUM | 200.7  | 1.00    | 9.74      | MG/L        | 07/19/06         | 1.0      |
|                   | 200.7  | 0.0400  | 0.0400 U  | MG/L        | 07/19/06         | 1.0      |
| NICKEL            | 200.7  | 0.0100  | 0.0100 U  | MG/L        | 07/19/06         | 1.0      |
| SILVER<br>ZINC    | 200.7  | 0.0200  | 0.0200 U  | MG/L        | 07/19/06         | 1.0      |

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06

Client Sample ID : A7408R

Sample Matrix: WATER

Date Sampled: 07/12/06 08:15 Order #: 921125
Date Received: 07/13/06 Submission #: R2632624

| ANALYTE                | METHOD | PQL    | RESULT   | UNITS          | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |
|------------------------|--------|--------|----------|----------------|------------------|------------------|----------|
| AMMONIA                | 350.1  | 0.0500 | 0.0500 U | MG/L           | 07/17/06         | 10:52            | 1.0      |
| CHLORIDE               | 300.0  | 0.200  | 18.9     | MG/L           | 07/16/06         | 12:10            | 10.0     |
| TOTAL ALKALINITY       | 310.1  | 2.00   | 107      | MG/L           | 07/17/06         | 09:30            | 1.0      |
| TOTAL ORGANIC CARBON   | 9060   | 1.00   | 5.82     | MG/L           | 07/20/06         | 18:26            | 1.0      |
| TOTAL PHOSPHORUS       | 365.1  | 0.0500 | 0.0500 U | $	exttt{MG/L}$ | 07/17/06         | 12:34            | 1.0      |
| TOTAL SOLIDS           | 160.3  | 10.0   | 170      | MG/L           | 07/19/06         | 11:00            | 1.0      |
| TOTAL SUSPENDED SOLIDS | 160.2  | 1.00   | 1.30     | MG/L           | 07/14/06         | 13:20            | 1.0      |

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06

Client Sample ID : A7409C

Sample Matrix: WATER

Date Sampled: 07/12/06 11:00 Order #: 921126 Submission #: R2632624

| ANALYTE                | METHOD | PQL    | RESULT | UNITS       | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |
|------------------------|--------|--------|--------|-------------|------------------|------------------|----------|
| AMMONIA                | 350.1  | 0.0500 | 0.443  | MG/L        | 07/17/06         | 10:52            | 1.0      |
| CHLORIDE               | 300.0  | 0.200  | 151    | ${	t MG/L}$ | 07/18/06         | 17:40            | 40.0     |
| FOTAL ALKALINITY       | 310.1  | 2.00   | 265    | MG/L        | 07/17/06         | 09:30            | 1.0      |
| TOTAL ORGANIC CARBON   | 9060   | 1.00   | 9.73   | MG/L        | 07/20/06         | 19:04            | 1.0      |
| TOTAL PHOSPHORUS       | 365.1  | 0.0500 | 0.0917 | MG/L        | 07/17/06         | 12:34            | 1.0      |
| TOTAL SOLIDS           | 160.3  | 10.0   | 579    | MG/L        | 07/19/06         | 11:00            | 1.0      |
| TOTAL SUSPENDED SOLIDS | 160.2  | 1.00   | 6.90   | MG/L        | 07/14/06         | 13:20            | 1.0      |

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06

Client Sample ID : A7408RCN

Date Sampled: 07/12/06 08:15 Order #: 921137 Date Received: 07/13/06 Submission #: R2632624

Sample Matrix: WATER

| ANALYTE       | METHOD | PQL    | RESULT   | UNITS | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |
|---------------|--------|--------|----------|-------|------------------|------------------|----------|
| TOTAL CYANIDE | 335.4  | 0.0100 | 0.0100 U | MG/L  | 07/18/06         | 11:45            | 1.0      |

Reported: 07/21/06

General Electric

Project Reference: GE-PITTSFIELD BIOMONITORING - 7/06

Client Sample ID : A7409CCN

Sample Matrix: WATER

Date Sampled: 07/12/06 11:00 Order #: 921139
Date Received: 07/13/06 Submission #: R2632624

| ANALYTE       | METHOD | PQL    | RESULT | UNITS | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |
|---------------|--------|--------|--------|-------|------------------|------------------|----------|
| TOTAL CYANIDE | 335.4  | 0.0100 | 0.0258 | MG/L  | 07/18/06         | 11:45            | 1.0      |

### NPDES Sampling GE Pittsfield Toxicity pH

| Date: 7/12/06                                                                |
|------------------------------------------------------------------------------|
| Acute Dry Acute Wet Chronic (Day 1/2) or 3)                                  |
| Effluent Composite Sample # A7409 C  Date 7-12-06 Time 1100AM pH 7.78 su     |
| River/Dilution Water  Sample # A7408R  Date 7-12-06  Time 815 pm  pH 7.84 su |
| Mark Wasnersky 7-12-00<br>Signed & Dated                                     |

Reported: 07/25/06

General Electric

Project Reference: BIOMONITORING - 7/06

Client Sample ID : A7411CDM

Date Sampled: 07/14/06 11:00 Order #: 921864
Date Received: 07/15/06 Submission #: R2632654

Sample Matrix: WATER

| ANALYTE  | METHOD | PQL     | RESULT    | UNITS | DATE<br>ANALYZED | DILUTION |
|----------|--------|---------|-----------|-------|------------------|----------|
| ALUMINUM | 200.7  | 0.100   | 0.100 U   | MG/L  | 07/19/06         | 1.0      |
| CADMIUM  | 200.7  | 0.00500 | 0.00500 U | MG/L  | 07/19/06         | 1.0      |
| CHROMIUM | 200.7  | 0.0100  | 0.0100 U  | MG/L  | 07/19/06         | 1.0      |
| COPPER   | 200.7  | 0.0200  | 0.0200 U  | MG/L  | 07/19/06         | 1.0      |
| LEAD     | 200.7  | 0.00500 | 0.00500 U | MG/L  | 07/19/06         | 1.0      |
| NICKEL   | 200.7  | 0.0400  | 0.0400 U  | MG/L  | 07/19/06         | 1.0      |
| SILVER   | 200.7  | 0.0100  | 0.0100 U  | MG/L  | 07/19/06         | 1.0      |
| ZINC     | 200.7  | 0.0200  | 0.0364    | MG/L  | 07/19/06         | 1.0      |

Reported: 07/25/06

General Electric

Project Reference: BIOMONITORING - 7/06 Client Sample ID: A7411CTM

Sample Matrix: WATER

Date Sampled: 07/14/06 11:00 Order #: 921867
Date Received: 07/15/06 Submission #: R2632654

| ANALYTE             | METHOD | PQL     | RESULT    | UNITS                    | DATE<br>ANALYZED | DILUTION |
|---------------------|--------|---------|-----------|--------------------------|------------------|----------|
| ALUMINUM            | 200.7  | 0.100   | 0.100 U   | MG/L                     | 07/19/06         | 1.0      |
| CADMIUM             | 200.7  | 0.00500 | 0.00500 U | $\mathtt{MG}/\mathtt{L}$ | 07/19/06         | 1.0      |
| CALCIUM             | 200.7  | 1.00    | 59.8      | MG/L                     | 07/19/06         | 1.0      |
| CHROMIUM            | 200.7  | 0.0100  | 0.0100 U  | MG/L                     | 07/19/06         | 1.0      |
| COPPER              | 200.7  | 0.0200  | 0.0200 U  | MG/L                     | 07/19/06         | 1.0      |
| LEAD                | 200.7  | 0.00500 | 0.00500 U | ${	t MG/L}$              | 07/19/06         | 1.0      |
| MAGNESIUM           | 200.7  | 1.00    | 23.5      | MG/L                     | 07/19/06         | 1.0      |
| MAGNESION<br>NICKEL | 200.7  | 0.0400  | 0.0400 U  | MG/L                     | 07/19/06         | 1.0      |
| SILVER              | 200.7  | 0.0100  | 0.0100 U  | MG/L                     | 07/19/06         | 1.0      |
| ZINC                | 200.7  | 0.0200  | 0.0294    | MG/L                     | 07/19/06         | 1.0      |

Reported: 07/25/06

General Electric

Project Reference: BIOMONITORING - 7/06 Client Sample ID: A7410RTM

Sample Matrix: WATER

 Date Sampled:
 07/14/06 08:15
 Order #: 921868

 Date Received:
 07/15/06
 Submission #: R2632654

| ANALYTE   | METHOD | PQL     | RESULT    | UNITS | DATE<br>ANALYZED | DILUTION |
|-----------|--------|---------|-----------|-------|------------------|----------|
| ALUMINUM  | 200.7  | 0.100   | 0.123     | MG/L  | 07/19/06         | 1.0      |
| CADMIUM   | 200.7  | 0.00500 | 0.00500 U | MG/L  | 07/19/06         | 1.0      |
| CALCIUM   | 200.7  | 1.00    | 15.8      | MG/L  | 07/19/06         | 1.0      |
| CHROMIUM  | 200.7  | 0.0100  | 0.0100 U  | MG/L  | 07/19/06         | 1.0      |
| COPPER    | 200.7  | 0.0200  | 0.0200 U  | MG/L  | 07/19/06         | 1.0      |
| LEAD      | 200.7  | 0.00500 | 0.00500 U | MG/L  | 07/19/06         | 1.0      |
| MAGNESIUM | 200.7  | 1.00    | 5.46      | MG/L  | 07/19/06         | 1.0      |
| NICKEL    | 200.7  | 0.0400  | 0.0400 U  | MG/L  | 07/19/06         | 1.0      |
| SILVER    | 200.7  | 0.0100  | 0.0100 U  | MG/L  | 07/19/06         | 1.0      |
| ZINC      | 200.7  | 0.0200  | 0.0200 U  | MG/L  | 07/19/06         | 1.0      |

Reported: 07/25/06

General Electric

Project Reference: BIOMONITORING - 7/06

Client Sample ID : A7410R

Sample Matrix: WATER

Date Sampled: 07/14/06 08:15 Order #: 921860 Submission #: R2632654

| ANALYTE                | METHOD | PQL    | RESULT   | UNITS       | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |
|------------------------|--------|--------|----------|-------------|------------------|------------------|----------|
| AINOMMA                | 350.1  | 0.0500 | 0.100 U  | MG/L        | 07/25/06         | 10:49            | 2.0      |
| CHLORIDE               | 300.0  | 0.200  | 12.5     | MG/L        | 07/23/06         | 23:29            | 10.0     |
| TOTAL ALKALINITY       | 310.1  | 2.00   | 59.5     | ${	t MG/L}$ | 07/24/06         |                  | 1.0      |
| TOTAL ORGANIC CARBON   | 9060   | 1.00   | 6.39     | MG/L        | 07/20/06         | 19:42            | 1.0      |
| TOTAL PHOSPHORUS       | 365.1  | 0.0500 | 0.0500 U | MG/L        | 07/24/06         | 14:02            | 1.0      |
| TOTAL SOLIDS           | 160.3  | 10.0   | 108      | MG/L        | 07/19/06         | 11:00            | 1.0      |
| TOTAL SUSPENDED SOLIDS | 160.2  | 1.00   | 5.30     | MG/L        | 07/20/06         | 15:15            | 1.0      |

Reported: 07/25/06

General Electric

Project Reference: BIOMONITORING - 7/06 Client Sample ID: A7411C

Date Sampled: 07/14/06 11:00 Order #: 921861
Date Received: 07/15/06 Submission #: R2632654

Sample Matrix: WATER

| ANALYTE                | METHOD | PQL    | RESULT   | UNITS       | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |
|------------------------|--------|--------|----------|-------------|------------------|------------------|----------|
| AMMONIA                | 350.1  | 0.0500 | 0.269    | MG/L        | 07/25/06         | 10:49            | 1.0      |
| CHLORIDE               | 300.0  | 0.200  | 129      | ${	t MG/L}$ | 07/24/06         | 00:25            | 40.0     |
| TOTAL ALKALINITY       | 310.1  | 2.00   | 241      | MG/L        | 07/24/06         |                  | 1.0      |
| TOTAL ORGANIC CARBON   | 9060   | 1.00   | 6.28     | ${	t MG/L}$ | 07/20/06         | 20:57            | 1.0      |
| TOTAL PHOSPHORUS       | 365.1  | 0.0500 | 0.0500 U | MG/L        | 07/24/06         | 14:02            | 1.0      |
| TOTAL SOLIDS           | 160.3  | 10.0   | 492      | MG/L        | 07/19/06         | 11:00            | 1.0      |
| TOTAL SUSPENDED SOLIDS | 160.2  | 1.00   | 2.60     | MG/L        | 07/20/06         | 15:15            | 1.0      |

Reported: 07/25/06

General Electric

Project Reference: BIOMONITORING - 7/06

Client Sample ID : A7410RCN

Sample Matrix: WATER

Date Sampled: 07/14/06 08:15 Order #: 921869
Date Received: 07/15/06 Submission #: R2632654

| ANALYTE       | METHOD | PQL    | RESULT   | UNITS | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |  |
|---------------|--------|--------|----------|-------|------------------|------------------|----------|--|
| TOTAL CYANIDE | 335.4  | 0.0100 | 0.0100 U | MG/L  | 07/24/06         | 12:04            | 1.0      |  |

Reported: 07/25/06

General Electric

Project Reference: BIOMONITORING - 7/06

Client Sample ID : A7411CCN

Sample Matrix: WATER

Date Sampled: 07/14/06 11:00 Order #: 921870 Date Received: 07/15/06 Submission #: R2632654

| ANALYTE       | METHOD | PQL    | RESULT | UNITS | DATE<br>ANALYZED | TIME<br>ANALYZED | DILUTION |  |
|---------------|--------|--------|--------|-------|------------------|------------------|----------|--|
| TOTAL CYANIDE | 335.4  | 0.0100 | 0.0314 | MG/L  | 07/24/06         | 12:04            | 1.0      |  |

### NPDES Sampling GE Pittsfield Toxicity pH

| Date: 7/14/06                                                                 |
|-------------------------------------------------------------------------------|
| Acute Dry Acute Wet Chronic(Day 1,2 or 3)                                     |
| Effluent Composite  Sample # A74//  Date 7-14-06  Time 110940  pH 7.75 su     |
| River/Dilution Water  Sample # A74/0/C  Date 7-/4-06  Time 8'5 AM  pH 7.73 su |
| Mark Wasner sky 7-14-06                                                       |
| Signed & Dated                                                                |

### APPENDIX 3

**Chain of Custody Forms** 

| Ċ                                      |
|----------------------------------------|
| Columbia<br>Analylical<br>Services inc |
|                                        |

## CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

tmplayes - Owned Company One Muslard St., State 250 • Rochester, NY 14609-0659 • (585) 288-5360 • 800-695-7222 x11 • FAX (585) 288-6475 PAGE

유

CAS Contact

# ES

Preservative Key 0. NONE 2. HCL 2. HNO3 3. H2SO4 4. N3OH 6. MeOH 7. NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION Other SUBMISSION #: ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Neme Date/Time Signature Fil PO# TV, Date Valkdatlon Report with Raw Data V. Speicelized Forms / Custom Report ž II. Results + QC Summanes (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration RELINQUISHED BY . Results Only Edale Printed Name Date/Time E TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE 24 hr Printed Name Date/Time Signature PRESERVATIVE z > H CUSTODY SEALS: NUMBER OF CONTAINERS RELINQUISHED BY 2.10-de 7000 H20 SAMPLING MATRIX Masmaker SE 444 S14 IFF GE Corp Environmenta 20,00 8 324 Printed Name Dete/Time The Bldg man CASON O'COMPILAR DatesTime > 18 9.45 215% FOR OFFICE USE ONLY LAB ID 281516 36516 126516 Sampler's Printe 115% 715PR Project Number 1365/6 36516 Report CC MARKU ASNEWS H SAMPLE RECEIPT: CONDITION/COOLER TEMP: Prosetts 4485915 Whench SPECIAL INSTRUCTIONS/COMMENTS NOO! JNIMO1501 CLIENT SAMPLE ID 47417 74670 Note K キンセピング 7 406 R 97407 C 47406R AJ 40PR 6 20 - 06 ' See OAPP

Distribution: White - Return to Originator; Vellor/Lab Copy; Pink - Retained by Client

## CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

CAS Contact # HS

> Ь Imployee - Owned Company One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE.

Project Number

L. | Toredt + Vasorved MFTRIX SPIKE MATRIXSAKE Preservative Key
0. NONE
2. HNL
3. HSO
4. NaOH
5. Zn. Acetale
6. MeOH
7. NaHSO 263231F HNO3 H2SO4 N3OH Zn. Acetate MeOH NaHSO4 ALTERNATE DESCRIPTION INVOICE INFORMATION Other ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name **Date/Time** BILL TO Fim IV, Dala Validation Report with Raw Data V. Speicalized Forms / Custom Report II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration RELINGUISHED BY . I. Results Only ginled Name Signature Date/Time TURNAROUND REQUIREMENTS 24 hr 48 hr 5 day RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE Printed Name Signalure Date/Time PRESERVATIVE CUSTODY SEALS: Y ER OF CONTAINERS + D. METALS F LISTED 1) ASUCUSICY SAMPLING ATRIX 7-10-06 P:154/HD 413 4485935 180g <u>ال</u>ا ال か/と よ/シ 35 1100  $(\omega)$ 0011  $\vec{\beta}$ Printed Name SAMPLES PACKED IN I CE Date/Time Are Bldg ST かれる arp Environmen OR OFFICE USE ONLY 536516 18616 BOTTLE 91598 936516 126516 4186516 36516 586516 16516 Report CC SAMPLE RECEIPT: CONDITION/COOLER TEMP: Ment Wagnerathy F. METALS 10 SAMPLE NPOES Brait 1-10-06 20gm SPECIAL INSTRUCTIONS/COMMENTS Michael San P. Hsfeld Sths Ahh eit CLIENT SAMPLE ID 154 Plest AT S COHER A7406RTM See CIAPP Metals 7

Distribution; White - Return to Originator; Yellow - Lab Copy; Pink - Retained by Client

Cooler Receipt And Preservation Check Form

| Project/Client Submission Number  Cooler received on 7-11-06 by: COURIER: CAS UPS FEDEX VELOCITY CLIENT  Were custody seals on outside of cooler?  Were custody papers properly filled out (ink, signed, etc.)?  Did all bottles arrive in good condition (unbroken)?  Did any VOA vials have significant air bubbles?  Were Ice or Ice packs present?  CAS/ROC CLIENT |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 1. Were custody seals on outside of cooler?  2. Were custody papers properly filled out (ink, signed, etc.)?  3. Did all bottles arrive in good condition (unbroken)?  4. Did any VOA vials have significant air bubbles?  Were Ice or Ice packs present?  YES NO YES NO YES NO YES NO                                                                                 |              |
| 6. Where did the bottles originate? 7. Temperature of cooler(s) upon receipt: 5.40                                                                                                                                                                                                                                                                                     |              |
| Is the temperature within 0° - 6° C?: Yes Yes Yes Yes Yes                                                                                                                                                                                                                                                                                                              |              |
| If No, Explain Below  Date/Time Temperatures Taken:  Thermometer ID: 161 or IR GUN Reading From: Temp Blank or Sample Bottle                                                                                                                                                                                                                                           |              |
| Date/Time Temperatures Taken: 11-06 10,00                                                                                                                                                                                                                                                                                                                              |              |
| Thermometer ID: 161 or IR GUN Reading From: Temp Blank or Sample Bottle                                                                                                                                                                                                                                                                                                |              |
| If out of Temperature, Client Approval to Run Samples PC Secondary Review: 7-11-06                                                                                                                                                                                                                                                                                     |              |
| Cooler Breakdown: Date:                                                                                                                                                                                                                                                                                                                                                | <del></del>  |
| YES NO Sample I.D. Reagent Vol. Added Final pH                                                                                                                                                                                                                                                                                                                         | $-\parallel$ |
| pH Reagent                                                                                                                                                                                                                                                                                                                                                             |              |
| 12 NaOH                                                                                                                                                                                                                                                                                                                                                                |              |
| 2 HNO <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                     | _            |
| 2 H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                       |              |
| Residual Chlorine (+/-) for TCN & Phenol                                                                                                                                                                                                                                                                                                                               |              |
| 5_9** P/PCBs (608 only)                                                                                                                                                                                                                                                                                                                                                |              |
| YES = All samples OK NO = Samples were preserved at lab as listed PC OK to adjust pH  **If pH adjustment is required, use NaOH and/or H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                   |              |
| VOC Vial pH Verification (Tested after Analysis) Following Samples Exhibited pH > 2                                                                                                                                                                                                                                                                                    |              |
| PC Secondary Review:                                                                                                                                                                                                                                                                                                                                                   |              |

H:\SMODOCS\Cooler Receipt v 2.doc

7/10/2006

### CHRONIC AQUATIC TOXICITY COMPOSITE 7C1

Month: JUL Week: 3 Fiscal Wk: 28

Weather: Chronic Composite Sample #1

| Split Sample XX<br>Split Sample XX<br>2006 |
|--------------------------------------------|
| C. TO JULY                                 |

|                                 | Gallons/Day                               | MI in Composite                      | Percent of Composite                                          |
|---------------------------------|-------------------------------------------|--------------------------------------|---------------------------------------------------------------|
| 001<br>004<br>007<br>64T<br>64G | 41,690<br>0<br>0<br>8,440<br>159,900<br>0 | 2,977.43<br>-<br>602.77<br>11,419.80 | 19.85%<br>0.00%<br>0.00%<br>4.02%<br>76.13%<br>0.00%<br>0.00% |
| 09B                             | 210,030                                   | 15000                                | 100.00%                                                       |

The Chronic Toxicity Composite was made today by  $Markwasnewsky @ 1160_{AM}$  according to the table above, and given the sample ID# A7407C

COC 8BG071006

Mark College Signed

1 / 1

Aguatek Brologikail Sciences

become dislodged during shipment. Nest the samples in sufficient ice to maintain 0°C – 6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the Plastic 0.5 L သို့ သို့ Notes to Lab: Ambient cooler temperature: 3  $^{\circ}8$   $^{\circ}\mathrm{C}$ . Dechlorinate the effluent labels with clear tape. Tape the caps of the sample bottles to ensure that they do not NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the (\*) TEL (802) 860-1638 (\*) (802) 658-3189 250 mi Amber NUMBER OF CONTAINERS Glass VOLUME/CONTAINER TYPE/ PRESERVATIVE 40 ml Glass 4°C H₂SO₄ 4°C H<sub>2</sub>SQ4 Plastic 1/2 gal Plastic ည 1 gai Plastic N <sup>2</sup>ပ Ceriodaphnia dubia chronic suvival and £ □ sample if chlorine is detected. Date Shipped: 7-10-06 reproduction (EPA Method 1002.0) Total Residual Chlorine Total Residual Chlorine SHIPPING INFORMATION Dilution Water **ANALYSIS** Hand Delivered: Yes Chain-of-Custody Record Airbill Number: Carrier: Effluent Receiving Receiving COMPOSITE | MATRIX Effluent Client Code: GEPITTS 7/10/06/16:15 Haven Doinly Sampler Name(s): Morric Copstitude COMPANY'S PROJECT INFORMATION **Outfall Composite - INITIAL SAMPLE** Received by: (signature) Received by: (signature) Received by: (signature) Ship these samples on Monday. Project Name: GE PITTSFIELD NPDES Permit #: MA0003891 Project Number: 06004 GRAB 10/05 1135 TIME TIME 17-10-0/11 pm TIME \$ 100 m 8€ 8€ IN I Quote #; COLLECTION 90-01-6 DATE DATE DATE Outfall Composite A7407C をしどのが A7406R COMPANY INFORMATION SAMPLE IDENTIFICATION Mark Wasnewsky City/State/Zip: Pittsfield, MA 01201 47407C General Electric Company Relinquished by: (signature) Relinquished by: (signature) Telephone: (413) 494-6709 Address: O'Brien & Gere 1000 East Street, Gale 64 Plousatonic River Outfall Composite Housatonic River Contact Name: Facsimile: Name:

# CHAIN OF CUSTODY/LABORATORY ANALYSIS HEQUES! FURIN

Columbia Analytical Services lac

One Mustard Sl., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5360 • 800-695-7222 x11 • FAX (585) 288-6475 PAGE

유

CAS Contact

+17csprade ALTERNATE DESCRIPTION HNO3 H2SO4 NGOH Zn. Acetale MeOH NaHSO4 INVOICE INFORMATION Other Po-do45067 BXIIIN--なら ANALYSIS REQUESTED (Include Method Number and Containsr Preservative) DIE 70 2 REPORT REQUIREMENTS (LCS, DUP, MSIMSD an required) III, Results 4 OC and Calbration II. Reculte + OO Summeres 1. Heaults Only 7 TURNARDUND RECOUREMENTS **1** Squ RUSH (SURCHARGES APPLY) REQUESTED FAX DATE STANDARD # # # GCANS VOAS TASSO TI 624 TONS SACSET PRESERVATIVE これ NUMBER OF CONTAINERS LASMEWSK4 MATHIX Franko 11092 SAMPLING ATE TIME +Dissilved metalls 77.0 DATE oru Environmen 413 FOR OFFICE USE ONLY 921126 921126 8112b 92132 11/0 921136 871176 がころ grin Project Number Report CC 46thes SPECIAL INSTRUCTIONS/COMMENTS NPDE Crmit J Michalson CLENT SAMPLE ID in Employes - Owned Company www.casteb.com Metals 15 to 1 709C 2028 160h 5

Samples Packalin 1 ca

4532535

£

Yes

Edata

**RELINGUISHED BY** 

RECEIVED BY

CUSTODY SEALS: Y

RELINQUISHED BY

RECEIVED BY

SAMPLE PECEIPT: CONDITION/CODLER TEMP:

See OAPP

10. Dala Validation Report with Raw Data V. Spelcalized Forms / Custorn Report

REQUESTED REPORT DATE

Printed Name Signalize

Printed Name

Pinled Name

Signature

Dale/Time

Date Ime

Date/Ime

E

룬

Printed Name Cale line 7/13/06 920 WHAKU MENENSHI CHAEL CHAEL Heathur Lovering 3 1000 E 70-21-

Distribution: White . Return to Originator, Yellow . Lab Copy, Pink : Refathed by Client

### CHAIN OF CUSTODY/LABORALOHY ANALYSIS HEGUES! FURIN Columbia — Analytical Services Mc

One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (565) 288-5360 • 800-695-7222 x11 • FAX (565) 288-6475 PAGE

An Employee - Омлед Сомрану

P

CAS Contact

HEMARKS/ ALTERNATE DESCRIPTION HNO3 H2SO4 NGOH Zn. Acetale MeOH NaHSO4 INVOICE INFORMATION **Ç**O→0444667 Printed Name ANALYSIS RECUESTED (Include Method Number and Container Preservative) Date/Time Signaturie 明,70 Ē N. Daiz Vandellon Report with Raw Date V. Spekcelized Forms / Custom Report 2 REPORT REQUIREMENTS II. Results + CC Summaries (LCS, DUP, MS/MSD as required) III. Results + QC and Calbraion RELINCUISHED BY <u>J</u> I. Results Only Edats Phried Name DateTime E TURNAROUND REQUIREMENTS RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE STANDARD 1 2 T Finled Name Signature CHEL THE E PRESERVATIVE CUSTODY SEALS: Y HELINGUISHED BY NUMBER OF CONTRINERS MATRIX 12-04 F154 120 CWASKY Printed Name SAMPLING DATE TIME Daleyime Samples Packed in YAVITON Mam Finance Cevering Film Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Cons のとう FOR OPFICE USE ONLY LAB ID 851139 Gz 43 1000 Part Pelie 921137 571176 521126 42112 Project Mumba Report CC SAMPLE RECEIPT: CONDITION/COOLER TEMP? 12-06 204M A RECUITION STANSES SPECIAL INSTRUCTIONS/COMMENTS
Metals Project Name NPDES POYM! CLIENT SAMPLE ID 2408K 6 See CAPP [

-Distribution: White - Return to Orlginstor; Willow: Lab Copy, Pink - Retained by Client

### Cooler Receipt And Preservation Check Form

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                 |                                             | Sub          | mission Nun                    | nber     | *                 | ·        |          | · ·      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------|--------------------------------|----------|-------------------|----------|----------|----------|
| Project/ClientG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                                                                        |                                             |              |                                |          |                   | VELOC    | TY CI    | JENT     |
| Cooler received on 71:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3 06 by: 910=                                                                                                                                                                                   | C                                           | OURI         | ER: CAS                        | UPS      | (FEDEX)           | A DDOO:  |          |          |
| Cooler received on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 | olor                                        | ภ            |                                |          | Œ                 | NO       |          |          |
| 1. Were custody s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eals on outside of apers properly fill                                                                                                                                                          | led out                                     | ;<br>(ink, : | signed, etc.)?                 | ı        | <b>TES</b>        | NO<br>NO |          | ٠        |
| 2. Were custody p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | apers properly in<br>unive in good con                                                                                                                                                          | dition                                      | (unbro       | ken)?                          |          | <b>Œ</b> S<br>YES | NO       | (N/A)    |          |
| <b>Χ/</b> ΟΔ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Walk Dave Dieman                                                                                                                                                                                | ant air                                     | bubbl        | es?                            |          | VES               | NO       |          | •        |
| Too of Idi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DESCRIPTION OF THE STATES                                                                                                                                                                       |                                             |              |                                |          | CAS/R             | OC CLI   | ENT      | -        |
| 1.3.45.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | bottles originate?<br>f cooler(s) upon re                                                                                                                                                       | eceipt:                                     | _ =          | <u> </u>                       |          |                   |          |          |          |
| 7. Temperature o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :1:- 09 69                                                                                                                                                                                      | <i>C</i> 7·                                 | Ŕ            | es Ye                          | S-       | Yes               | Yes      | Yes      | ;<br>:   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ture within 0° - 6°                                                                                                                                                                             | C.                                          |              | io No                          | <b>D</b> | No                | No       | No       |          |
| If No, Explai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 Below                                                                                                                                                                                         |                                             |              |                                |          |                   |          |          |          |
| Date/Time Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mperatures Taken                                                                                                                                                                                | ! <del>`</del>                              | _            | <u>া) ১)০৮</u><br>Reading Fron |          | nn Blank          | or S     | ample B  | ottle    |
| Thermometer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ID: 161 or (                                                                                                                                                                                    | IR GU                                       |              |                                | 11. 10.  |                   |          |          | :        |
| If out of Temperatu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | re, Client Appro                                                                                                                                                                                | val to                                      | Run S        | Samples                        |          |                   |          |          | :        |
| PC Secondary Review                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |                                             | -            |                                | by:      |                   |          |          | :        |
| Cooler Breakdown:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date:                                                                                                                                                                                           | lias                                        | nalvsi       | s breservatio                  | n, etc.  | ? YES             | NO<br>NO |          | :        |
| 1. Were all bott                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Te ispers combined                                                                                                                                                                              | gree W                                      | ith cus      | tody papers?                   | •        | YES<br>YES        | NO       |          |          |
| 2. Did all buttle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t containers used f                                                                                                                                                                             | or the                                      | tests i      | adicated?                      |          |                   | ar® Bags | Inflated | N/A      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                 |                                             |              |                                | occilii7 | CII 7             |          |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Caecettes / lui                                                                                                                                                                               | )CO TITA                                    | ***          | Canisters Pr                   | essuriz  | eu 1va            |          |          |          |
| 4. Air Samples Explain any discrep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . Caecettes / lui                                                                                                                                                                               | )CO TITA                                    | ***          |                                | essunz   |                   |          |          | Final pH |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Caecettes / lui                                                                                                                                                                               | )CO TITA                                    | ***          | Sample I.D.                    | essuriz  | Resgent           |          | . Added  |          |
| 4. Air Samples Explain any discrep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . Caecettes / lui                                                                                                                                                                               | )CS III.0                                   |              |                                | essunz   |                   |          |          |          |
| 4. Air Samples Explain any discrep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : Cassettes / Iut                                                                                                                                                                               | )CS III.0                                   |              |                                | essunz   |                   |          |          |          |
| 4. Air Samples Explain any discrep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : Cassettes / Tut<br>ancies:                                                                                                                                                                    | )CS III.0                                   |              |                                | essunz   |                   |          |          |          |
| 4. Air Samples Explain any discrept  pH  12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Reagent NaOH                                                                                                                                                                                    | )CS III.0                                   |              |                                | essunz   |                   |          |          |          |
| 4. Air Samples Explain any discrept  pH  12  2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Reagent NaOH HNO3                                                                                                                                                                               | )CS III.0                                   |              |                                | essunz   |                   |          |          |          |
| 4. Air Samples Explain any discrept  pH  12  2  Residual Chlorine (+/-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol                                                                                                                               | YES                                         | NO           | Sample I.D.                    |          | Reagent           | Vol      |          |          |
| 4. Air Samples Explain any discrept  PH  12  2  2  Residual Chlorine (+/-)  5-9**                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only)                                                                                                             | YES                                         | NO NO        | Sample I.D.                    |          | Reagent           |          |          |          |
| 4. Air Samples Explain any discrept  pH  12  2  Residual Chlorine (+/-)  5-9**  YES = All samples Of the physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physic | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) NO = S equired, use NaOH and                                                                                | YES  amples vidor H <sub>2</sub> S          | NO NO        | Sample I.D.                    | listed   | Reagent PC OK to  | Vol      |          |          |
| 4. Air Samples Explain any discrept  pH  12  2  Residual Chlorine (+/-)  5-9**  YES = All samples Of the physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physic | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) NO = S equired, use NaOH and                                                                                | YES  amples vidor H <sub>2</sub> S  ion     | NO NO        | Sample I.D.                    |          | Reagent PC OK to  | Vol      |          |          |
| 4. Air Samples Explain any discrept  pH  12  2  Residual Chlorine (+/-)  5-9**  YES = All samples Of the physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physic | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) NO = S equired, use NaOH and (Tested after Analysis Following Samples                                       | YES  amples vidor H <sub>2</sub> S  ion  s) | NO NO        | Sample I.D.                    | listed   | Reagent PC OK to  | Vol      |          |          |
| 4. Air Samples Explain any discrept  pH  12  2  Residual Chlorine (+/-)  5-9**  YES = All samples Of the physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physic | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) NO = S equired, use NaOH and VOC Vial pH Verificat Crested after Analysis                                   | YES  amples vidor H <sub>2</sub> S  ion  s) | NO NO        | Sample I.D.                    | listed   | Reagent PC OK to  | Vol      |          |          |
| 4. Air Samples Explain any discrept  pH  12  2  Residual Chlorine (+/-)  5-9**  YES = All samples Of the physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physic | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) NO = S equired, use NaOH and (Tested after Analysis Following Samples                                       | YES  amples vidor H <sub>2</sub> S  ion  s) | NO NO        | Sample I.D.                    | listed   | Reagent PC OK to  | Vol      |          |          |
| 4. Air Samples Explain any discrept  pH  12  2  Residual Chlorine (+/-)  5-9**  YES = All samples Of the physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physic | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) NO = S equired, use NaOH and (Tested after Analysis Following Samples                                       | YES  amples vidor H <sub>2</sub> S  ion  s) | NO NO        | Sample I.D.                    | listed   | Reagent PC OK to  | Vol      |          |          |
| 4. Air Samples Explain any discrept  pH  12  2  Residual Chlorine (+/-)  5-9**  YES = All samples Of the physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physical physic | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) NO = S equired, use NaOH and (Tested after Analysis Following Samples                                       | YES  amples vidor H <sub>2</sub> S  ion  s) | NO NO        | Sample I.D.                    | listed   | Reagent PC OK to  | Vol      |          |          |
| 4. Air Samples Explain any discrep:  pH  12  2  Residual Chlorine (+/-)  5-9**  YES = All samples OF  **If pH adjustment is r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) NO = S equired, use NaOH and VOC Vial pH Verificat (Tested after Analysi Following Samples Exhibited pH > 2 | YES  amples vidor H <sub>2</sub> S  ion  s) | NO NO        | Sample I.D.                    | listed   | Reagent PC OK to  | Vol      |          |          |
| pH  12  2  Residual Chlorine (+/-)  5-9**  YES = All samples OF  **if pH adjustment is r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) NO = S equired, use NaOH and VOC Vial pH Verificat (Tested after Analysi Following Samples Exhibited pH > 2 | YES  amples v d/or H <sub>2</sub> S  ion s) | NO NO        | Sample I.D.                    | listed   | Reagent PC OK to  | Vol      |          |          |

7/12/2006

### CHRONIC AQUATIC TOXICITY COMPOSITE 7C2

Month: JULY Week: 3 Fiscal Wk: 28

Weather: Chronic Composite Sample #2

|     | Gallons/Day | MI in Composite | Percent of Composite |
|-----|-------------|-----------------|----------------------|
| 001 | 122,780     | 5,494.17        | 36.63%               |
| 001 | 0           |                 | 0.00%                |
| 007 | 0           | -               | 0.00%                |
| 64T | 46.440      | 2,078.10        | 13.85%               |
| 64G | 165,990     | 7,427.73        | 49.52%               |
| 09A | O           | •               | 0.00%                |
| 09B | 0           | -               | 0.00%                |
|     | 335,210     | 15000           | 100.00%              |

Chain-of-Custody Form Number: 0BG071206

Analysis: C. TOX Z

Location: 1100Am Date: 7-12-06

Sample Label Serial Number A 7409C

Mah Wasnewsky
Signed
7-12-06

C LOX 2

T ayd

become dislodged during shipment. Nest the samples in sufficient ice to maintain  $0^{\circ}C - 6^{\circ}C$ . Results for samples received at temperatures exceeding  $6^{\circ}C$  will be qualified in the Plastic 0.5 L <sup>4</sup> မ လိုင် Notes to Lab: Ambient cooler temperature:  $\int_{C} g^{\alpha} C$ . Dechlorinate the effluent NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the labels with clear tape. Tape the caps of the sample bottles to ensure that they do not 250 mf TEL\* (802) 860-1638 Amber Glass FAX (802) 658-3189 \*Vinisian, VT 05495 NUMBER OF CONTAINERS VOLUME/CONTAINER TYPE/ <del>----</del> **PRESERVATIVE** 40 m Glass 4°C H2SO4 4°C H₂SO₄ Plastic 1/2 gal Plastic Plastic | 1 gai  $\sim$ **န**ိုင် Ceriodaphnia dubia chronic suvival and reproduction (EPA Method 1002.0) – <u></u>≗ sample if chlorine is detected. 7-12-06 Total Residual Chlorine Total Residual Chlorine SHIPPING INFORMATION Aquatee Biological Solences Dilution Water **ANALYSIS** Hand Delivered: Yes Chain-of-Custody Record Date Shipped: Airbill Number: Jewith Lellan Receiving Receiving Effluent COMPOSITE | MATRIX Effluent Client Code: GEPITTS Sampler Name(s): Markubsneus. Outfall Composite - RENEWAL SAMPLE COMPANY'S PROJECT INFORMATION Received by: (signature) Received by: (signature) Received by: (signature) At 126. Ship these samples on Wednesday. Project Name: GE PITTSFIELD NPDES Permit #: MA0003891 Project Number; 06004 GRAB 10/05 105:21/90-21-0 18:30 TIME TIME TIME & IS PM S S A7409C 7-12-04 11 001 E E Quote #: COLLECTION F12061 DATE DATE Outfall Composite Aつかる A DYNSK オンソットス COMPANY INFORMATION SAMPLE IDENTIFICATION Contact Name: Mark Wasnewsky City/State/Zip: Pittsfield, MA 01201 General Electric Company Relinquished by: (signature) Relinquished by: (signature) Telephone: (413) 494-6709 1000 East Street, Gate 64 Address: O'Brien & Gere Pousatonic River Housatonic River Ouffall Composite Facsimile:

| •                                      |
|----------------------------------------|
| Columbia<br>Analytical<br>Services No. |

## CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

An Emplayee - Durined Company One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695-7222 x11 • FAX (585) 288-8475 PAGE

5

P

SH # CAS Conlact

Tresorived 263265 Preservative Key
0. NONE
1. HOL
2. HNO3
3. H2SO4
4. NaOH
6. Zn Actale
7. NaHSO4 REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION SUBMISSION # ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name Date/Time Signature BILL TO: E #Od IV. Dala Validation Report with Raw Data V Speicalized Forms / Custom Report 2 II. Results + QC Summaries (LCS, DUP, MS/MSD as required) REPORT REQUIREMENTS III. Results + QC and Calibration HELINOUISHED BY . Results Only Edala Printed Name Date/Time Ę TURNAHOUND RECOUREMENTS 40 hr 5 day RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REQUESTED FAX DATE Printed Name Date/Time Signature **PRESERVATIVE** z CUSTODY SEALS: Y NUMBER OF CONTAINERS RELINOUISHED BY WASWED SXY MATRIX -14-06 8/3m H20 SPECIAL INSTRUCTIONS/COMMENTS SALVED LISTED 6N
Metals 7277 L + DISSALVED LISTED 6N 100 SAMPLING DATE TIME Printed Name Date/Time Signalure Fruitanmenta Distribution: White - Return to Originator, Yellow - Leb Copy, Pink - Retained by Chent Samples Packad in Firm Heathous Love 971864 THE NUMBER OF STATES OF PIPE STORY FOR ØFFICE USE ONLY LAB ID 9218ho RECEIVED BY 92126 92126 92,1860 Project Number SAMPLE BITLE Report CC SAMPLE RECEIPT: CONDITION/COOLER TEMP: as a lather orande CLIENT SAMPLE 1D しがったける First - 14 - 0 C See OAPP

| viniinia. | Analylica | Services *** |
|-----------|-----------|--------------|
|           |           |              |

## CHAIN OF CUSTODY/LABORATORY ANALYSIS REQUEST FORM

An Employee - Owned Company One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (585) 286-5380 • 800-695-7222 x11 • FAX (585) 286-8475 PAGE

ᆼ

#ES

CAS Contact

REMARKS/ ALTERNATE DESCRIPTION INVOICE INFORMATION Other ひしようようらて ANALYSIS REQUESTED (Include Method Number and Container Preservative) Printed Name **Date/Time** Signature Film Š IV. Data Validation Report with Raw Data V. Speicalized Forms / Custom Report REPORT REQUIREMENTS II. Results + QC Summaries (LCS, DUP, MS/MSD as required) # Results + OC and Calibration HELINQUISHED BY I. Results Only Erlefa Printed Name Date/Time E TURNAROUND REQUIREMENTS 48 1 5 day RUSH (SURCHARGES APPLY) RECEIVED BY REQUESTED REPORT DATE REGUESTED FAX DATE Printed Name Signalure PRESERVATIVE CUSTODY SEALS: Y 7 N NUMBER OF CONTAINERS RELINQUISHED BY SAMPLING
DATE TIME MATRIX 7-14-06 8 15mm Ha 187 Printed Name Data/Time MUILBAMEN Distribution. White .. Return Lo Onginator, Yellow .. Lab Copy, Pink - Retained by Client Delecting Child 1035 FOR OFFICE USE ONLY LAB ID 921870 Modern Lucy Project Number 92.1860 92/26 Report CC SAMPLE RECEIPT: CONDITION/COOLER TEMP: a h (LIRSTMA) SPECIAL INSTRUCTIONS/COMMENTS 12000 2000 Date/Time CLIENT SAMPLE ID See OAPP

### Cooler Receipt And Preservation Check Form

| Project/ClientG                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | S               | ubmissi                | on Nun                         | iber         |                     | *                             |       | a de arraman i no se |  |  |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|------------------------|--------------------------------|--------------|---------------------|-------------------------------|-------|----------------------|--|--|
| Cooler received on_                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 |                        |                                |              | FEDEX               | VELOCIT                       | Y C   | LIENT                |  |  |
| <ol> <li>Were custody</li> <li>Did all bottle</li> <li>Did any VOA</li> <li>Were Ice or I</li> <li>Where did th</li> </ol> | Were custody seals on outside of cooler?  Were custody papers properly filled out (ink, signed, etc.)?  Did all bottles arrive in good condition (unbroken)?  Did any VOA vials have significant air bubbles?  Were Ice or Ice packs present?  Where did the bottles originate?  Where did the bottles originate?  YES NO  YES NO  N/A  YE |                                    |                 |                        |                                |              |                     |                               |       |                      |  |  |
| Is the temper                                                                                                              | ature within 0° - 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6° C?:                             | (               | Yes)                   | Yes                            | <b>.</b>     | Yes                 | Yes                           | Yes   |                      |  |  |
| If No, Expla                                                                                                               | in Below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    |                 | No                     | No                             |              | No                  | No                            | No    | 1                    |  |  |
| Date/Time T                                                                                                                | emperatures Take                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n:                                 |                 | _ ¬ի5                  | Jou                            | 1040         |                     |                               |       |                      |  |  |
| Thermomete                                                                                                                 | er ID: 161 or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IR G                               | UN              | Readin                 | g From                         | Tem          | p Blank             | or Sam                        | ple B | ottle                |  |  |
| 2. Did all bottl                                                                                                           | ew:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e (i.e. agree was for the          | analysi         | is, prese<br>stody pa  | by<br>rvation,<br>spers?<br>1? | /:<br>etc.)? | YES<br>YES<br>YES   | NO<br>NO<br>NO<br>® Bags Infl | ated  | <br>N/A              |  |  |
| Fynlain any discrep                                                                                                        | ancies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                    |                 |                        |                                |              |                     |                               |       |                      |  |  |
| Explain any discrep                                                                                                        | ancies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | YES                                | NO              | Sample                 |                                |              | Reagent             | Vol. Add                      |       | Final pH             |  |  |
| Explain any discrep                                                                                                        | ancies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I .                                |                 | -                      |                                |              |                     | Vol. Add                      |       | -                    |  |  |
| Explain any discrep                                                                                                        | Reagent NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I .                                |                 | -                      |                                |              |                     | Vol. Add                      |       | -                    |  |  |
| Explain any discrep                                                                                                        | ancies:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I .                                |                 | -                      |                                |              |                     | Vol. Add                      |       | -                    |  |  |
| Explain any discrep                                                                                                        | Reagent NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I .                                |                 | -                      |                                |              |                     | Vol. Add                      |       | -                    |  |  |
| pH 12 2                                                                                                                    | Reagent NaOH HNO <sub>3</sub> H <sub>2</sub> SO <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | I .                                |                 | -                      |                                |              |                     | Vol. Add                      |       | -                    |  |  |
| pH 12 2 2                                                                                                                  | Reagent NaOH HNO3 H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | YES                                | NO              | Sample                 | LD.                            | 1            | Reagent             |                               |       | -                    |  |  |
| pH  12  2  Residual Chlorine (+/-)  5-9**                                                                                  | Reagent NaOH HNO <sub>3</sub> H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) NO = Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | YES mples w                        | NO NO rere pres | -                      | LD.                            | 1            |                     |                               |       | -                    |  |  |
| pH  12  2  Residual Chlorine (+/-)  5-9**  YES = All samples OK  **If pH adjustment is re                                  | Reagent NaOH HNO <sub>3</sub> H <sub>2</sub> SO <sub>4</sub> for TCN & Phenol P/PCBs (608 only) NO = Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | YES  mples wor H <sub>2</sub> SCon | NO NO rere pres | Sample<br>served at la | LD.                            | a            | Reagent PC OK to ad |                               |       | -                    |  |  |

7/14/2006

### CHRONIC AQUATIC TOXICITY COMPOSITE 7C3

Month: JULY Week: 3 Fiscal Wk: 28

Weather: Chronic Composite Sample #3

|     | Gallons/Day | MI in Composite | Percent of Composite |
|-----|-------------|-----------------|----------------------|
| 001 | 55,460      | 2,690.13        | 17.93%               |
| 004 | 0,700       | •               | 0.00%                |
| 004 | ō           | <b></b>         | 0.00%                |
| 64T | 69,370      | 3,364.85        | 22.43%               |
| 64G | 158,940     | 7,709.52        | 51.40%               |
| 09A | 0           | -               | 0.00%                |
| 09B | 25,471      | 1,235.49        | 8.24%                |
|     | 309,241     | 15000           | 100.00%              |

COC 0BG071406

Signed 14-116

Date

| 27.3 Commerce Street Williston VII.05495 THE: (BPZ) 868/1638 FAX. (802) 658-3189 | VOLUME/CONTAINER TYPE/<br>PRESERVATIVE | 4°C 4°C                           | HNO3                    |                       | Plastic Plastic Glass Amber Plastic |                           | <u>                                     </u> | 1gal 1/2 gal 1 L 40 ml 250 ml 0.5 L | NUMBER OF CONTAINERS        | 2                                      |                                                 |          | 2                        |                           |  |  | NOTES TO SAMPLER(S): (1): Complete the labels (Date, time, initials) and cover the labels with clear tape. Tape the caps of the sample bottles to ensure that they do not become dislodged during shipment. Nest the samples in sufficient ice to maintain 0°C – 6°C. Results for samples received at temperatures exceeding 6°C will be qualified in the report. | Ambient cooler temperature: ) ( °C. Dechlorinate the effluent ne is detected. |          |
|----------------------------------------------------------------------------------|----------------------------------------|-----------------------------------|-------------------------|-----------------------|-------------------------------------|---------------------------|----------------------------------------------|-------------------------------------|-----------------------------|----------------------------------------|-------------------------------------------------|----------|--------------------------|---------------------------|--|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------|
| nces                                                                             | SHIPPING INFORMATION                   | Carrier:                          |                         | Airbill Number:       |                                     | Date Shipped: 7-14-06     |                                              | Hand Delivered: Yes No              | ANALYSIS                    | Ceriodaphnia dubia chronic suvival and | reproduction (EPA Method 1002.0) –<br>Renewal 2 | Total F  | Dilution Water           | Total Residual Chlorine   |  |  | NOTES TO SAMPLER(S): (1): Comple labels with clear tape. Tape the caps become dislodged during shipment. 6°C. Results for samples received at report.                                                                                                                                                                                                             | Notes to Lab: Ambient cooler temports ample if chlorine is detected.          |          |
| lec Biological Scie<br>Chain-of-custody/Record                                   | T INFORMATION                          |                                   | - RENEWAL SAMPLE        |                       | larku lasaruska                     | 7                         | iday.                                        | Client Code: GEPITTS                | COMPOSITE   MATRIX          | Effluent                               | 7                                               | Effluent | Receiving                | Receiving                 |  |  | Received by: (signature)  Repeived by: (signature)                                                                                                                                                                                                                                                                                                                | JO Companie                                                                   | <b>.</b> |
| A quate                                                                          | COMPANY'S PROJECT INFORMATION          | Project Name: GE PITTSFIELD       | Outfall Composite -     | Project Number: 06004 | Sampler Name(s): Mai                | NPDES Permit #: MA0003891 | Ship these samples on Friday                 | Quote #: 10/05 C                    | COLLECTION DATE TIME GRAB C |                                        | 7-1404 11 AM                                    | 080      | ١٨١                      | 1 44.8                    |  |  | TIME 3.46 TIME                                                                                                                                                                                                                                                                                                                                                    | 7/19/4 (7:30 ()/                                                              |          |
|                                                                                  | COMPANY INFORMATION                    | Name: General Electric Company Pr | Address: O'Brien & Gere |                       | .01201                              | Telephone: (413) 494-6709 |                                              | Contact Name: Mark Wasnewsky        | SAMPLE IDENTIFICATION DATE  | Outfall Composite                      | 400C                                            | 2        | Housatonic River A7 400R | Housatonic River A7410R V |  |  | Relinquished by: (signature)  Man (Manney) - 14-46  Relinquished by: (signature)  DATE                                                                                                                                                                                                                                                                            |                                                                               |          |