

GE 159 Plastics Avenue Pittsfield, MA 01201

Transmitted via Overnight Courier

October 7, 2005

Mr. Dean Tagliaferro
U.S. Environmental Protection Agency
Region I – New England
10 Lyman Street, Suite 2
Pittsfield, MA 01201

Ms. Susan Steenstrup Bureau of Waste Site Cleanup Department of Environmental Protection 436 Dwight Street Springfield, MA 01103

Re: GE-Pittsfield/Housatonic River Site

Monthly Status Report Pursuant to Consent Decree for September 2005 (GECD900)

Dear Mr. Tagliaferro and Ms. Steenstrup:

Enclosed are copies of General Electric's (GE's) monthly progress report for September 2005 activities conducted by GE at the GE-Pittsfield/Housatonic River Site. This monthly report is submitted pursuant to Paragraph 67 of the Consent Decree (CD) for this Site, which was entered by the U.S. District Court on October 27, 2000.

The enclosed monthly report includes not only the activities conducted by GE under the CD, but also other activities conducted by GE at the GE-Pittsfield/Housatonic River Site (as defined in the CD). The report is formatted to apply to the various areas of the Site as defined in the CD, and to provide for each area, the information specified in Paragraph 67 of the CD. The activities conducted specifically pursuant to or in connection with the CD are marked with an asterisk. GE is submitting a separate monthly report to the Massachusetts Department of Environmental Protection (MDEP), with a copy to the United States Environmental Protection Agency (EPA), describing the activities conducted by GE at properties outside the CD Site pursuant to GE's November 2000 Administrative Consent Order from MDEP.

The enclosed monthly report includes, where applicable, tables that list the samples collected during the subject month, summarize the analytical results received during that month from sampling or other testing activities, and summarize other groundwater monitoring and oil recovery information obtained during that month. Also, enclosed for each of you (and for Weston) is a CD-ROM that contains these same tables of the analytical data and monitoring information in electronic form.

Please call Andrew Silfer or me if you have any questions.

Sincerely,

John F. Novotny, P.E.

Manager - Facilities and Brownfields Programs

Enclosure

V:\GE Pittsfield General Confidential\Reports and Presentations\Monthly Reports\2005\09-05 CD Monthly-Draft\Letter.doc

cc: Robert Cianciarulo, EPA (cover letter only)

Tim Conway, EPA (cover letter only)

Sharon Hayes, EPA

William Lovely, EPA (Items 7, 8, 9, 10, 11, 12, 16/17, 22, 23, and 25 only)

Rose Howell, EPA (cover letter only)

Holly Inglis, EPA (hard copy and CD-ROM of report)

Susan Svirsky, EPA (Items 7, 15, and 20 only)

K.C. Mitkevicius, USACE (CD-ROM of report)

Thomas Angus, MDEP (cover letter only)

Robert Bell, MDEP (cover letter only)

Anna Symington, MDEP (cover letter only)

Nancy E. Harper, MA AG

Susan Peterson, CT DEP

Field Supervisor, US FWS, DOI

Kenneth Finkelstein, Ph.D., NOAA (Items 13, 14, and 15 only)

Dale Young, MA EOEA

Mayor James Ruberto, City of Pittsfield

Thomas Hickey, Director, Pittsfield Economic Development Authority

Linda Palmieri, Weston (hard copy of report, CD-ROM of report, CD-ROM of data)

Richard Nasman, P.E., Berkshire Gas (CD-ROM of report)

Michael Carroll GE (CD-ROM of report)

Andrew Silfer, GE (cover letter only)

Rod McLaren, GE (CD-ROM of report)

James Nuss, BBL

James Bieke, Goodwin Procter

Jim Rhea, QEA (narrative only)

Teresa Bowers, Gradient

Public Information Repositories (1 hard copy, 5 copies of CD-ROM)

GE Internal Repository (1 hard copy)

(w/o separate CD-ROM, except where noted)

SEPTEMBER 2005

MONTHLY STATUS REPORT PURSUANT TO CONSENT DECREE FOR GE-PITTSFIELD/HOUSATONIC RIVER SITE

GENERAL ELECTRIC COMPANY

PITTSFIELD, MASSACHUSETTS

Background

The General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and other governmental entities have entered into a Consent Decree (CD) for the GE-Pittsfield/Housatonic River Site, which was entered by the U.S. Court on October 27, 2000. In accordance with Paragraph 67 of the CD, GE has prepared this monthly report, which summarizes the status of activities conducted by GE at the GE-Pittsfield/Housatonic River Site ("Site") (as defined in the CD).

This report covers activities in the areas listed below (as defined in the CD and/or the accompanying Statement of Work for Removal Actions Outside the River [SOW]). Only those areas that have had work activities for the month subject to reporting are included. The specific activities conducted pursuant to or in connection with the CD are noted with an asterisk.

General Activities (GECD900)

GE Plant Area (non-groundwater)

- 1. 20s, 30s, 40s Complexes (GECD120)
- 2. East Street Area 2 South (GECD150)
- 3. East Street Area 2 North (GECD140)
- 4. East Street Area 1 North (GECD130)
- 5. Hill 78 and Building 71 Consolidation Areas (GECD210/220)
- 6. Hill 78 Area Remainder (GECD160)
- 7. Unkamet Brook Area (GECD170)

Former Oxbow Areas (non-groundwater)

- 8. Former Oxbow Areas A & C (GECD410)
- 9. Lyman Street Area (GECD430)
- 10. Newell Street Area I (GECD440)
- 11. Newell Street Area II (GECD450)
- 12. Former Oxbow Areas J & K (GECD420)

Housatonic River

- 13. Upper ½-Mile Reach (GECD800)
- 14. 1½-Mile Reach (only for activities, if any, conducted by GE) (GECD820)
- 15. Rest of the River (GECD850)

Housatonic River Floodplain

- 16. Current Residential Properties Adjacent to 1½-Mile Reach (Actual/Potential Lawns) (GECD710)
- 17. Non-Residential Properties Adjacent to 1½-Mile Reach (excluding banks) (GECD720)
- 18. Current Residential Properties Downstream of Confluence (Actual/Potential Lawns) (GECD730)

Other Areas

- 19. Allendale School Property (GECD500)
- 20. Silver Lake Area (GECD600)

Groundwater Management Areas (GMAs)

- 21. Plant Site 1 (GECD310)
- 22. Former Oxbows J & K (GECD320)
- 23. Plant Site 2 (GECD330)
- 24. Plant Site 3 (GECD340)
- 25. Former Oxbows A&C (GECD350)

GENERAL ACTIVITIES GE-PITTSFIELD/HOUSATONIC RIVER SITE (GECD900) SEPTEMBER 2005

a. Activities Undertaken/Completed

- Attended Citizens Coordinating Council (CCC) meeting (September 7, 2005).
- Continued GE-EPA electronic data exchanges for the Housatonic River Watershed and Areas Outside the River.*
- Continued discussions with Western Massachusetts Electric Company (WMECo) regarding subordination agreements for WMECo easements on GE properties that will be subject to Grants of Environmental Restrictions and Easements (EREs).*

b. Sampling/Test Results Received

- Sample results were received for routine sampling conducted pursuant to GE's NPDES Permit for the GE facility. Sampling records and results are provided in Attachment A to this report.
- NPDES Discharge Monitoring Reports (DMRs) for the period of August 1 through August 31, 2005, are provided in Attachment B to this report.
- A report titled *Toxicity Evaluation of Wastewaters Discharged from the General Electric Plant; Pittsfield, Massachusetts (Samples Collected in September 2005)* was prepared for GE by SGS Environmental Services, Inc. (SGS). A copy of that report is provided in Attachment C.
- A report titled *Chronic Effects of the Process Wastewaters Discharged From the General Electric Plant; Pittsfield, Massachusetts [Samples Collected in September 2005]* was prepared for GE by SGS. A copy of that report is provided in Attachment D.

c. Work Plans/Reports/Documents Submitted

Submitted *Final Notification of On-Plant Excavations* (September 12, 2005), providing final notification to EPA and MDEP for several excavations performed by GE at the Pittsfield Plant pursuant to GE's *Protocols for the Management of Excavation Activities*. This notification letter referred to previously submitted sampling results and did not contain any sampling data that had not previously been submitted to EPA and MDEP. This notification letter is referenced under the appropriate areas discussed in subsequent items of this monthly report.

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue discussions with WMECo regarding subordination agreements for WMECo easements on GE properties that will be subject to EREs.*
- Continue NPDES sampling and monitoring activities.
- Attend public, CCC, and Pittsfield Economic Development Authority (PEDA) meetings, as appropriate.

GENERAL ACTIVITIES (cont'd) GE-PITTSFIELD/HOUSATONIC RIVER SITE (GECD900) SEPTEMBER 2005

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

ITEM 1 PLANT AREA 20s, 30s, 40s COMPLEXES (GECD120) SEPTEMBER 2005

a. Activities Undertaken/Completed

- Continued demolition activities at Buildings 42 and 43.
- Conducted wipe sampling as identified in Table 1-1.
- Conducted air monitoring for particulates and PCBs, as identified in Table 1-1.
- Conducted site inspections with EPA and MDEP on September 7, 2005 at former 30s Complex to view minor asphalt sinkhole outside of the Building 31 engineered barrier area. EPA and MDEP are in agreement that PEDA should asphalt-patch sinkhole area.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted *Final Notification of On-Plant Excavations* covering a minor excavation to set a telephone pole near Building 43A (September 12, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue demolition activities at Buildings 42 and 43.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Received
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2504-W1	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2504-W10	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2504-W11	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2504-W2	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2504-W3	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2504-W4	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2504-W5	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2504-W6	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2504-W7	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2504-W8	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2504-W9	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2602-W1	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2602-W10	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2602-W11	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2602-W2	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2602-W3	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2602-W4	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2602-W5	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2602-W6	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2602-W7	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2602-W8	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2602-W9	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2712-W1	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2712-W10	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2712-W11	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2712-W2	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2712-W3	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2712-W4	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2712-W5	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2712-W6	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2712-W7	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2712-W8	9/6/05	Wipe	SGS	PCB	9/12/05
Building 31W - Roll-Off Wipe Sampling	Bldg31W-2712-W9	9/6/05	Wipe	SGS	PCB	9/12/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	Background Location	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/6/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/6/05	Air	Berkshire Environmental	Particulate Matter	9/14/05

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Received
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/6/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/6/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Background Location	9/6/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/7/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/7/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/7/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/7/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Background Location	9/7/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/8/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/8/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/8/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/8/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Background Location	9/8/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/9/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/9/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/9/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/9/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Background Location	9/9/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/12/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/12/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/12/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/12/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	Background Location	9/12/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/13/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/13/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/13/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/13/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	Background Location	9/13/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/14/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/14/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/14/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/14/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	Background Location	9/14/05	Air	Berkshire Environmental	Particulate Matter	9/22/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/19/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/19/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/19/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/19/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Background Location	9/19/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/21/05	Air	Berkshire Environmental	Particulate Matter	9/30/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\09-05 CD Monthly\Tracking Logs\Tracking.xls TABLE 1-1

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Received
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/21/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/21/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Background Location	9/21/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/22/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/22/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/22/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/22/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Background Location	9/22/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/23/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/23/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/23/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/23/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Background Location	9/23/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/27/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/27/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/27/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/27/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Background Location	9/27/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	9/28/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/28/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/28/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/28/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Background Location	9/28/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
PCB Ambient Air Sampling	S2 - Woodlawn Avenue	9/20 - 9/21/05	Air	Berkshire Environmental	PCB	9/30/05
PCB Ambient Air Sampling	M2 - South of Bldg. 5	9/20 - 9/21/05	Air	Berkshire Environmental	PCB	9/30/05
PCB Ambient Air Sampling	MC3 - Near Bldg. 16 & 19	9/20 - 9/21/05	Air	Berkshire Environmental	PCB	9/30/05
PCB Ambient Air Sampling	MC3-CO-Colocated - near Bldgs. 16 & 19	9/20 - 9/21/05	Air	Berkshire Environmental	PCB	9/30/05
PCB Ambient Air Sampling	BK3-Background - East of Building 9B	9/20 - 9/21/05	Air	Berkshire Environmental	PCB	9/30/05

TABLE 1-2 PCB DATA RECEIVED DURING SEPTEMBER 2005

BUILDING 31W ROLL-OFF WIPE SAMPLING 20s, 30s, 40s COMPLEX **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS** (Results are presented in mg/100cm²)

	Date	Aroclor-1016, -1221,	- ,		
Sample ID	Collected	-1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
3LDG31W-2504-W1	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2504-W2	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2504-W3	9/6/2005	ND(1.0)	5.3	ND(1.0)	5.3
3LDG31W-2504-W4	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2504-W5	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2504-W6	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2504-W7	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2504-W8	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2504-W9	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2504-W10	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2504-W11	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2602-W1	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2602-W2	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2602-W3	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2602-W4	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2602-W5	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2602-W6	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2602-W7	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2602-W8	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2602-W9	9/6/2005	ND(1.0)	2.8	1.4	4.2
3LDG31W-2602-W10	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2602-W11	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2712-W1	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2712-W2	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2712-W3	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2712-W4	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2712-W5	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2712-W6	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2712-W7	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
3LDG31W-2712-W8	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2712-W9	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG31W-2712-W10	9/6/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
	0/0/0005	NID (4 a)	115 (4.0)		

BLDG31W-2712-W11

1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.

ND(1.0)

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

ND(1.0)

9/6/2005

ND(1.0)

ND(1.0)

TABLE 1-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING SEPTEMBER 2005

40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

MC3 - Near Bldg. 16 & 19 0.014*6 9:15 ⁶	Date	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
M2 - South of Bidg, 5 S2 - Woodlawn Avenue 0.036 12:00	09/01/05	W3 - West of 40s Complex	0.046	0.016*	12:00	WNW
S2 - Woodlawn Avenue		MC3 - Near Bldg. 16 & 19	0.017*		12:00	
09/02/05 Wi3 - West of 40s Complex MC3 - Near Bidg, 16 & 19 M2 - South of Bidg, 5 S2 - Woodlawn Avenue MC3 - Near Bidg, 16 & 19 M2 - South of Bidg, 5 S2 - Woodlawn Avenue MC3 - Near Bidg, 16 & 19 M2 - South of Bidg, 5 S2 - Woodlawn Avenue MC3 - Near Bidg, 16 & 19 M2 - South of Bidg, 5 S2 - Woodlawn Avenue MC3 - Near Bidg, 16 & 19 M2 - South of Bidg, 5 M3 - West of 40s Complex MC3 - Near Bidg, 16 & 19 M2 - South of Bidg, 5 M3 - West of 40s Complex MC3 - Near Bidg, 16 & 19 M2 - South of Bidg, 5 M3 - West of 40s Complex MC3 - Near Bidg, 16 & 19 M2 - South of Bidg, 5 M2 - Woodlawn Avenue M3 - West of 40s Complex M2 - South of Bidg, 5 M2 - Woodlawn Avenue M3 - West of 40s Complex M3 - West Bidg, 16 & 19 M2 - South of Bidg, 5 M2 - Woodlawn Avenue M3 - West Bidg, 16 & 19 M2 - South of Bidg, 5 M3 - West Bidg, 16 & 19 M3 - West Bidg, 16		M2 - South of Bldg. 5	0.033*		12:00	
MC3 - Near Bidg, 16 & 19 M2 - South of Bidg, 5 S2 - Woodlawn Avenue NA NA NA NA NA NA NA N		S2 - Woodlawn Avenue	0.036		12:00	
M2 - South of Bidg, 5 S2 - Woodlawn Avenue NA NA NA NA NA NA NA N	09/02/05 ¹	W3 - West of 40s Complex	NA	NA	NA	NA
S2 - Woodlawn Avenue		MC3 - Near Bldg. 16 & 19				
09/05/05 W3 - West of 40's Complex MC3 - Near Bidg, 16 & 19		M2 - South of Bldg. 5				
MC3 - Near Bidg, 16 & 19 M2 - South of Bidg, 5 S2 - Woodlawn Avenue O.005 O.006* 11:30 Calm MC3 - Near Bidg, 16 & 19 O.015* 10:30 MC3 - Near Bidg, 16 & 19 O.015* 10:30 MC3 - Near Bidg, 16 & 19 O.015* 10:30 MC3 - Near Bidg, 16 & 19 O.015* 10:30 MC3 - Near Bidg, 16 & 19 O.015* 11:115 Variable MC3 - Near Bidg, 16 & 19 O.017* 11:00 MC3 - Near Bidg, 16 & 19 O.017* 11:00 MC3 - Near Bidg, 16 & 19 O.017* 11:00 MC3 - Near Bidg, 16 & 19 O.021* O.026* O.017* O.026* O.005*						
M2 - South of Bidg. 5 S2 - Woodlawn Avenue 0.005 0.006* 11:30 Calm	09/05/05 ²	· ·	NA	NA	NA	NA
S2 - Woodlawn Avenue		MC3 - Near Bldg. 16 & 19				
09/06/05 W3 - West of 40s Complex 0.005 0.006* 11:30 10:30 MC3 - Near Bidg, 16 & 19 0.015* 10:30 10:30 S2 - Woodlawn Avenue 0.021 11:15 Variable MC3 - Near Bidg, 16 & 19 0.016* 11:30 MC3 - Near Bidg, 16 & 19 0.016* 11:30 MC3 - Near Bidg, 16 & 19 0.026 11:15 Variable MC3 - Near Bidg, 16 & 19 0.026 11:15 Variable MC3 - Near Bidg, 16 & 19 0.026* 11:15 Variable MC3 - Near Bidg, 16 & 19 0.021* 10:30 MC3 - Near Bidg, 16 & 19 0.021* 10:30 MC3 - Near Bidg, 16 & 19 0.021* 10:30 MC3 - Near Bidg, 16 & 19 0.024* 10:30 MC3 - Near Bidg, 16 & 19 0.024* 10:30 MC3 - Near Bidg, 16 & 19 0.025* 10:45 MC3 - Near Bidg, 16 & 19 0.007* 10:45 MC3 - Near Bidg, 16 & 19 0.007* MC3 - Near Bidg, 16 & 19 0.007* 10:45 MC3 - Near Bidg, 16 & 19 0.005* MC3 - Near Bidg, 16 & 19 0.005* MC3 - Near Bidg, 16 & 19 0.005* MC3 - Near Bidg, 16 & 19 0.035* MC3 - Near Bidg, 16 & 19 0.005* MC3 - Near Bidg, 16 & 19 MC3 - Near Bidg,		M2 - South of Bldg. 5				
MC3 - Near Bidg. 16 & 19		S2 - Woodlawn Avenue				
M2 - South of Bidg. 5 0.013* 10:30 11:15	09/06/05	· ·		0.006*		Calm
S2 - Woodlawn Avenue						
09/07/05		•				
MC3 - Near Bidg. 16 & 19						
M2 - South of Bidg. 5 S2 - Woodlawn Avenue 0.026 11:15 10:30 10:45 WSW	09/07/05	· ·		0.005*		Variable
S2 - Woodlawn Avenue						
09/08/05 W3 - West of 40s Complex 0.043 0.019* 10:45 WSW MC3 - Near Bidg, 16 & 19 0.021* 10:30 10:30 S2 - Woodlawn Avenue 0.034 10:30 10:30 10:30 MC3 - Near Bidg, 16 & 19 0.007* 11:00 NNW MC3 - Near Bidg, 16 & 19 0.007* 10:45 MC3 - Near Bidg, 16 & 19 0.007* 10:45 MC3 - Near Bidg, 16 & 19 0.007* 10:45 MC3 - Near Bidg, 16 & 19 0.007* 10:45 MC3 - Near Bidg, 16 & 19 0.007* 10:45 MC3 - Near Bidg, 16 & 19 0.033 0.037* 10:30 WNW MC3 - Near Bidg, 16 & 19 0.076* 0.099* 11:00 Variable MC3 - Near Bidg, 16 & 19 0.076* 0.099* 11:00 Variable MC3 - Near Bidg, 16 & 19 0.076* 0.099* 10:30 MC3 - Near Bidg, 16 & 19 0.075* 10:45 MC3 - Near Bidg, 16 & 19 0.052* 10:30 MC3 - Near Bidg, 16 & 19 0.052* 10:30 MC3 - Near Bidg, 16 & 19 0.052* 10:30 MC3 - Near Bidg, 16 & 19 0.052* 10:30 MC3 - Near Bidg, 16 & 19 0.052* 10:30 MC3 - Near Bidg, 16 & 19 0.052* 10:30 MC3 - Near Bidg, 16 & 19 0.052* 10:30 MC3 - Near Bidg, 16 & 19 0.052* 10:30 MC3 - Near Bidg, 16 & 19 NA NA NA NA NA NA NA N						
MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.034 09/09/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.025 0.007* 11:00 NNW MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.019³ 09/12/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.033 0.037* 10:30 WNW MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.060 09/13/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.060 09/13/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.157 ⁴ 11:00 09/14/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.157 ⁴ 0.056* 10:30 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.09/15/05° W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.09/15/05° W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.099 09/15/05° W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.099 09/15/05° W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.099 09/15/05° W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.099 09/15/05° W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.0915/05° W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.007° 0.009°° 0.00						
M2 - South of Bidg. 5 S2 - Woodlawn Avenue 0.034 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:30 10:45	09/08/05	·		0.019*		WSW
S2 - Woodlawn Avenue						
09/09/05		•				
MC3 - Near Bidg. 16 & 19					1	
M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.019³ 8:15³	09/09/05	·		0.007*		NNW
S2 - Woodlawn Avenue						
09/12/05						
MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue 0.060 09/13/05 W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue 0.073*4 MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue 0.157*4 11:00 09/14/05 W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue 0.047 MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue 0.099 09/15/05* W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue 09/16/05* W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue 09/16/05* W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue 09/16/05* W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue 09/19/05 W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue 09/19/05 W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue 09/19/05 W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue 09/19/05 W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 MNN, NNW						
M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.060 10:45	09/12/05	•		0.037*		WNW
S2 - Woodlawn Avenue						
09/13/05						
MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue O.157 ⁴ O.056* O.9/14/05 W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 MC3 - Near Bidg. 16 & 19 MC3 - Near Bidg. 16 & 19 MC3 - West of 40s Complex MC3 - Near Bidg. 5 S2 - Woodlawn Avenue O.099 O.099 O.050* W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue O9/15/05 ⁵ W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue O9/16/05 ⁵ W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue O9/19/05 W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 MC3 - Near Bidg. 16 & 19 MC3 - Near Bidg. 16 & 19 O.007 ⁶ O.009*				4		
M2 - South of Bldg. 5 0.122*4 11:00	09/13/05	· ·		0.099*4		Variable
S2 - Woodlawn Avenue 0.157 ⁴ 11:00						
09/14/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 0.052* 0.047 0.056* 10:45 SSW MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 0.074* 0.099 10:30 10:30 09/15/05 ⁵ W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue NA NA <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue O9/15/05 ⁵ W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 09/16/05 ⁶ W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 09/16/05 ⁶ W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 09/19/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 09/19/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 O.007 ⁶ O.009* ⁶ 9:15 ⁶ WNW, NNW MC3 - Near Bldg. 16 & 19 O.014* ⁶ 9:15 ⁶						
M2 - South of Bldg. 5 0.074* 10:30 10:30	09/14/05	·		0.056*		SSW
S2 - Woodlawn Avenue 0.099 10:30						
09/15/05 ⁵ W3 - West of 40s Complex MC3 - Near Bidg. 16 & 19 M2 - South of Bidg. 5 S2 - Woodlawn Avenue NA NA </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>		_				
MC3 - Near Bldg. 16 & 19						
M2 - South of Bldg. 5 S2 - Woodlawn Avenue 09/16/05 ⁵ W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 09/19/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 0.007 ⁶ 0.009* ⁶ 9:15 ⁶ WNW, NNW MC3 - Near Bldg. 16 & 19 0.014* ⁶ 9:15 ⁶	09/15/05°	-	NA	NA	NA	NA
S2 - Woodlawn Avenue 09/16/05 ⁵ W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 09/19/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 0.007 ⁶ 0.009* ⁶ 9:15 ⁶ WNW, NNW MC3 - Near Bldg. 16 & 19 0.014* ⁶ 9:15 ⁶						
09/16/05 ⁵ W3 - West of 40s Complex NA						
MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue 09/19/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 0.007 ⁶ 0.009* ⁶ 9:15 ⁶ WNW, NNW 9:15 ⁶			_	_	1	
M2 - South of Bldg. 5 S2 - Woodlawn Avenue 09/19/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 0.007 ⁶ 0.009* ⁶ 9:15 ⁶ 9:15 ⁶ 9:15 ⁶	09/16/05°	-	NA NA	NA NA	NA	NA
S2 - Woodlawn Avenue 09/19/05 W3 - West of 40s Complex MC3 - Near Bldg. 16 & 19 0.007 ⁶ 0.009* ⁶ 9:15 ⁶ 9:15 ⁶ 9:15 ⁶						
09/19/05 W3 - West of 40s Complex 0.007 ⁶ 0.009* ⁶ 9:15 ⁶ WNW, NNW MC3 - Near Bldg. 16 & 19 0.014* ⁶ 9:15 ⁶						
MC3 - Near Bldg. 16 & 19 0.014*6 9:15 ⁶			6	A : R		
	09/19/05	· '		0.009*°		WNW, NNW
I M2 - South of Blda. 5 0.018*° 9:00°						
S2 - Woodlawn Avenue 0.022 ⁶ 9:00 ⁶		M2 - South of Bldg. 5				

TABLE 1-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING SEPTEMBER 2005

40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
09/20/05 ⁵	W3 - West of 40s Complex	NA	NA	NA	NA
	MC3 - Near Bldg. 16 & 19				
	M2 - South of Bldg. 5				
	S2 - Woodlawn Avenue				
09/21/05	W3 - West of 40s Complex	0.013	0.003*	6:30 ⁷	NNW
	MC3 - Near Bldg. 16 & 19	0.007*		10:15	
	M2 - South of Bldg. 5	0.021*		10:15	
	S2 - Woodlawn Avenue	0.008		10:15	
09/22/05	W3 - West of 40s Complex	0.013	0.010*	11:00	SSW
	MC3 - Near Bldg. 16 & 19	0.018*		10:45	
	M2 - South of Bldg. 5	0.017*		10:45	
	S2 - Woodlawn Avenue	0.025		11:00	
09/23/05	W3 - West of 40s Complex	0.004	0.028*	10:00 ⁸	WNW
	MC3 - Near Bldg. 16 & 19	0.021*		9:45 ⁸	
	M2 - South of Bldg. 5	0.040*		9:45 ⁸	
	S2 - Woodlawn Avenue	0.032		9:45 ⁸	
09/26/05 ⁵	W3 - West of 40s Complex	NA	NA	NA	NA
	MC3 - Near Bldg. 16 & 19				
	M2 - South of Bldg. 5				
	S2 - Woodlawn Avenue				
09/27/05	W3 - West of 40s Complex	0.015	0.001*	11:15	WNW, NNW
	MC3 - Near Bldg. 16 & 19	0.004*		11:15	
	M2 - South of Bldg. 5	0.003*		11:15	
	S2 - Woodlawn Avenue	0.005		11:00	
09/28/05	W3 - West of 40s Complex	0.027	0.009*	10:45	SSW, Variable
	MC3 - Near Bldg. 16 & 19	0.010*		9:45 ⁹	
	M2 - South of Bldg. 5	0.012*		10:30	
	S2 - Woodlawn Avenue	0.004		10:45	
09/29/05 ⁵	W3 - West of 40s Complex	NA	NA	NA	NA
	MC3 - Near Bldg. 16 & 19				
	M2 - South of Bldg. 5				
	S2 - Woodlawn Avenue				
09/30/05 ¹	W3 - West of 40s Complex	NA	NA	NA	NA
	MC3 - Near Bldg. 16 & 19				
	M2 - South of Bldg. 5				
	S2 - Woodlawn Avenue				
Notification Level		0.120			

Notes:

NA - Not Available.

Background monitoring location east of Building 9B, between 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

^{*} Measured with DR-2000 or DR-4000. All others measured with pDR-1000.

¹ Sampling was not performed due to lack of site activity.

² Sampling was not performed due to lack of site activity on the Labor Day holiday.

³ Sampling data were modified to delete invalid recordings due to interference from an insect (fly).

⁴ Instrument reading is biased high due to high humidity levels and foggy conditions.

⁵ Sampling was not performed due to precipitation/threat of precipitation.

⁶ Sampling data were modified to delete invalid recordings due to morning fog.

⁷ Sampling period was shortened due to equipment malfunction.

 $^{^{\}rm 8}$ Sampling period was shortened due to precipitation/threat of precipitation.

⁹ Sampling period was shortened due to equipment malfunction (dead battery).

TABLE 1-4 AMBIENT AIR PCB DATA RECEIVED DURING SEPTEMBER 2005

40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	W3 - West of 40s Complex (µg/m³)	S2 - Woodlawn Avenue (µg/m³)	M2 - South of Bldg. 5 (μg/m³)	MC3 - Near Bldg. 16 & 19 (μg/m³)	MC3-CO Co-located - Near Bldgs. 16 & 19 (μg/m³)	BK3 Background - East of Building 9B (µg/m³)
09/20 - 09/21/05	0.0400	0.0080	0.0180	0.0369	0.0335	0.0034
Notification Level	0.05	0.05	0.05	0.05	0.05	0.05

ITEM 2 PLANT AREA EAST STREET AREA 2-SOUTH (GECD150) SEPTEMBER 2005

a. Activities Undertaken/Completed

- Performed sludge sampling at Building 64T, Liquid Phase Carbon Absorption (LPCA) sampling at Building 64G, and miscellaneous bucket wipe sampling, as identified in Table 2-1.
- Performed additional sampling activities proposed in GE's October 22, 2004 Interim Letter Report (approved by EPA on August 2, 2005) and in GE's August 15, 2005 Addendum to Interim Letter Report.*

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted *Final Notification of On-Plant Excavations* covering a minor excavation to set a telephone pole near Gate 64 (September 12, 2005).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue routine process sampling at Buildings 64G and/or 64T.
- Continue development of Final Completion Report for City Recreational Area.*

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	Received
Additional Pre-Design Soil Investigation Sampling	RAA4-16NW	9/23/05	1-6	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-206-SE	9/13/05	0-1	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-206-SN	9/13/05	0-1	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-206-SS	9/13/05	0-1	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-206-SW	9/13/05	0-1	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-211S-E	9/26/05	0-1	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-211S-N	9/26/05	0-1	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-211S-S	9/26/05	0-1	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-211S-W	9/26/05	0-1	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-A36	9/23/05	1-6	Soil	SGS	SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-A36	9/23/05	6-15	Soil	SGS	SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-A36	9/23/05	12-14	Soil	SGS	VOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-A36	9/23/05	4-6	Soil	SGS	VOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-A36	9/23/05	0-1	Soil	SGS	VOC, SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-BH000750	9/14/05	1-3	Soil	SGS	SVOC	9/26/05
Additional Pre-Design Soil Investigation Sampling	RAA4-BH000750	9/14/05	3-6	Soil	SGS	SVOC	9/26/05
Additional Pre-Design Soil Investigation Sampling	RAA4-BH000750E	9/14/05	1-3	Soil	SGS	SVOC	Extract and hold
Additional Pre-Design Soil Investigation Sampling	RAA4-BH000750E	9/14/05	3-6	Soil	SGS	SVOC	Extract and hold
Additional Pre-Design Soil Investigation Sampling	RAA4-BH000750N	9/14/05	1-3	Soil	SGS	SVOC	Extract and hold
Additional Pre-Design Soil Investigation Sampling	RAA4-BH000750N	9/14/05	3-6	Soil	SGS	SVOC	Extract and hold
Additional Pre-Design Soil Investigation Sampling	RAA4-BH000750S	9/14/05	1-3	Soil	SGS	SVOC	Extract and hold
Additional Pre-Design Soil Investigation Sampling	RAA4-BH000750S	9/14/05	3-6	Soil	SGS	SVOC	Extract and hold
Additional Pre-Design Soil Investigation Sampling	RAA4-BH000750W	9/14/05	1-3	Soil	SGS	SVOC	Extract and hold
Additional Pre-Design Soil Investigation Sampling	RAA4-BH000750W	9/14/05	3-6	Soil	SGS	SVOC	Extract and hold
Additional Pre-Design Soil Investigation Sampling	RAA4-C25N	9/21/05	1-6	Soil	SGS	PCB	9/29/05
Additional Pre-Design Soil Investigation Sampling	RAA4-C27N	9/21/05	1-6	Soil	SGS	PCB	9/29/05
Additional Pre-Design Soil Investigation Sampling	RAA4-D21N	9/21/05	1-6	Soil	SGS	PCB	9/29/05
Additional Pre-Design Soil Investigation Sampling	RAA4-D26	9/21/05	1-6	Soil	SGS	PCB	9/29/05
Additional Pre-Design Soil Investigation Sampling	RAA4-DUP#1 (RAA4-L23)	9/16/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-DUP#2 (RAA4-O18)	9/16/05	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-DUP-3 (RAA4-P21)	9/26/05	0-1	Soil	SGS	PCB, SVOC, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-E15N	9/20/05	1-6	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-E17N	9/20/05	1-6	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-F11N	9/21/05	1-6	Soil	SGS	PCB	9/29/05
Additional Pre-Design Soil Investigation Sampling	RAA4-F9	9/21/05	1-6	Soil	SGS	PCB	9/29/05
Additional Pre-Design Soil Investigation Sampling	RAA4-G23	9/21/05	3-6	Soil	SGS	PCB	9/29/05
Additional Pre-Design Soil Investigation Sampling	RAA4-G27E	9/23/05	1-6	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-G7N	9/21/05	1-6	Soil	SGS	PCB	9/29/05
Additional Pre-Design Soil Investigation Sampling	RAA4-H4N	9/23/05	1-6	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-HH30	9/12/05	0-1	Soil	SGS	PCB	9/20/05
Additional Pre-Design Soil Investigation Sampling	RAA4-I28	9/12/05	0-1	Soil	SGS	PCB	9/20/05
Additional Pre-Design Soil Investigation Sampling	RAA4-I30E	9/13/05	0-1	Soil	SGS	PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-I30N	9/13/05	0-1	Soil	SGS	PCDD/PCDF	

EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	Received
Additional Pre-Design Soil Investigation Sampling	RAA4-I30S	9/13/05	0-1	Soil	SGS	PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-I30W	9/13/05	0-1	Soil	SGS	PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-J27	9/13/05	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-K26	9/12/05	0-1	Soil	SGS	PCB	9/20/05
Additional Pre-Design Soil Investigation Sampling	RAA4-L10	9/20/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-L18	9/20/05	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-L19	9/20/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-L23	9/16/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-L24	9/28/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-L25	9/12/05	0-1	Soil	SGS	PCB	9/20/05
Additional Pre-Design Soil Investigation Sampling	RAA4-L26	9/13/05	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-L9	9/20/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-M18	9/20/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-M20	9/26/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-M22	9/16/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-M23E	9/15/05	0-1	Soil	SGS	PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-M23N	9/15/05	0-1	Soil	SGS	PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-M23S	9/15/05	0-1	Soil	SGS	PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-M23W	9/15/05	0-1	Soil	SGS	PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-M25	9/13/05	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-N17	9/20/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-N17	9/20/05	1-3	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-N17	9/20/05	3-6	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-N18	9/16/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-N19	9/20/05	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-N20	9/20/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-N21	9/16/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-N22	9/16/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-N23	9/15/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-N24	9/15/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-N25	9/15/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-N27	9/12/05	0-1	Soil	SGS	PCB	9/20/05
Additional Pre-Design Soil Investigation Sampling	RAA4-N28	9/13/05	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	0, = 0, 0 0
Additional Pre-Design Soil Investigation Sampling	RAA4-N3	9/14/05	0-1	Soil	SGS	PCB	9/22/05
Additional Pre-Design Soil Investigation Sampling	RAA4-N4	9/14/05	0-1	Soil	SGS	PCB, SVOC	9/22/05
Additional Pre-Design Soil Investigation Sampling	RAA4-N4	9/14/05	0-1	Soil	SGS	VOC, Inorganics	9/30/05
Additional Pre-Design Soil Investigation Sampling	RAA4-N4	9/14/05	0-1	Soil	SGS	PCDD/PCDF	0,00,00
Additional Pre-Design Soil Investigation Sampling	RAA4-N6	9/14/05	0-1	Soil	SGS	PCB, SVOC	9/22/05
Additional Pre-Design Soil Investigation Sampling	RAA4-N6	9/14/05	0-1	Soil	SGS	VOC, Inorganics	9/30/05
Additional Pre-Design Soil Investigation Sampling Additional Pre-Design Soil Investigation Sampling	RAA4-N6	9/14/05	0-1	Soil	SGS	PCDD/PCDF	3,30,03
Additional Pre-Design Soil Investigation Sampling	RAA4-O18	9/16/05	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling Additional Pre-Design Soil Investigation Sampling	RAA4-O19E	9/20/05	1-3	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling Additional Pre-Design Soil Investigation Sampling	RAA4-O19E RAA4-O19N	9/16/05	0-1	Soil	SGS	SVOC	

10/7/2005

EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	Received
Additional Pre-Design Soil Investigation Sampling	RAA4-O19N	9/20/05	1-3	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-O19S	9/16/05	0-1	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-O19S	9/20/05	1-3	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-O19W	9/20/05	1-3	Soil	SGS	SVOC	
Additional Pre-Design Soil Investigation Sampling	RAA4-O22	9/16/05	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-O24	9/15/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-P21	9/26/05	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-P22	9/20/05	0-1	Soil	SGS	PCB	
Additional Pre-Design Soil Investigation Sampling	RAA4-P24	9/15/05	0-1	Soil	SGS	PCB, VOC, SVOC, Inorganics, PCDD/PCDF	
Additional Pre-Design Soil Investigation Sampling	RAA4-P25	9/15/05	0-1	Soil	SGS	PCB	
Building 64G LPCA Monitoring	I5-64G-01	9/6/05	NA	Water	SGS	VOC	9/22/05
Building 64G LPCA Monitoring	I5-64G-02	9/6/05	NA	Water	SGS	SVOC	9/22/05
Building 64G LPCA Monitoring	I5-64G-03	9/6/05	NA	Water	SGS	PCB	9/22/05
Building 64G LPCA Monitoring	15-64G-04	9/6/05	NA	Water	SGS	Oil & Grease	9/22/05
Building 64G LPCA Monitoring	15-64G-05	9/6/05	NA	Water	SGS	VOC	9/22/05
Building 64G LPCA Monitoring	15-64G-06	9/6/05	NA	Water	SGS	SVOC	9/22/05
Building 64G LPCA Monitoring	I5-64G-07	9/6/05	NA	Water	SGS	PCB	9/22/05
Building 64G LPCA Monitoring	I5-64G-08	9/6/05	NA	Water	SGS	Oil & Grease	9/22/05
Building 64G LPCA Monitoring	I5-64G-09	9/6/05	NA	Water	SGS	VOC	9/22/05
Building 64G LPCA Monitoring	I5-64G-10	9/6/05	NA	Water	SGS	SVOC	9/22/05
Building 64G LPCA Monitoring	I5-64G-11	9/6/05	NA	Water	SGS	PCB	9/22/05
Building 64G LPCA Monitoring	I5-64G-12	9/6/05	NA	Water	SGS	Oil & Grease	9/22/05
Building 64G LPCA Monitoring	I5-64G-13	9/6/05	NA	Water	SGS	VOC	9/22/05
Building 64G LPCA Monitoring	I5-64G-14	9/6/05	NA	Water	SGS	SVOC	9/22/05
Building 64G LPCA Monitoring	I5-64G-15	9/6/05	NA	Water	SGS	PCB	9/22/05
Building 64G LPCA Monitoring	I5-64G-16	9/6/05	NA	Water	SGS	Oil & Grease	9/22/05
Building 64G LPCA Monitoring	I5-64G-17	9/23/05	NA	Water	SGS	VOC	
Building 64G LPCA Monitoring	I5-64G-18	9/23/05	NA	Water	SGS	SVOC	
Building 64G LPCA Monitoring	I5-64G-19	9/23/05	NA	Water	SGS	PCB	
Building 64G LPCA Monitoring	I5-64G-20	9/23/05	NA	Water	SGS	Oil & Grease	
Building 64G LPCA Monitoring	I5-64G-21	9/23/05	NA	Water	SGS	VOC	
Building 64G LPCA Monitoring	I5-64G-22	9/23/05	NA	Water	SGS	SVOC	
Building 64G LPCA Monitoring	I5-64G-23	9/23/05	NA	Water	SGS	PCB	
Building 64G LPCA Monitoring	I5-64G-24	9/23/05	NA	Water	SGS	Oil & Grease	
Building 64G LPCA Monitoring	I5-64G-25	9/23/05	NA	Water	SGS	VOC	
Building 64G LPCA Monitoring	I5-64G-26	9/23/05	NA	Water	SGS	SVOC	
Building 64G LPCA Monitoring	I5-64G-27	9/23/05	NA	Water	SGS	PCB	
Building 64G LPCA Monitoring	I5-64G-28	9/23/05	NA	Water	SGS	Oil & Grease	
Building 64G LPCA Monitoring	I5-64G-29	9/23/05	NA	Water	SGS	VOC	
Building 64G LPCA Monitoring	I5-64G-30	9/23/05	NA	Water	SGS	SVOC	
Building 64G LPCA Monitoring	I5-64G-31	9/23/05	NA	Water	SGS	PCB	
Building 64G LPCA Monitoring	I5-64G-32	9/23/05	NA	Water	SGS	Oil & Grease	
Building 64G LPCA Monitoring	I5-64G-33	9/29/05	NA	Water	SGS	PCB	

EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	Received
Building 64G LPCA Monitoring	I5-64G-34	9/29/05	NA	Water	SGS	PCB	
Building 64G LPCA Monitoring	I5-64G-35	9/29/05	NA	Water	SGS	PCB	
Building 64G LPCA Monitoring	I5-64G-36	9/29/05	NA	Water	SGS	PCB	
Building 64T Sludge Sampling	I5-64T-01	9/3/05	NA	Sludge	SGS	PCB	9/16/05
Lenox Construction Bucket Wipe Sampling	LENOX-BUCKET-W1	9/14/05	NA	Wipe	SGS	PCB	9/19/05
Lenox Construction Bucket Wipe Sampling	LENOX-BUCKET-W2	9/14/05	NA	Wipe	SGS	PCB	9/19/05
Lenox Construction Bucket Wipe Sampling	LENOX-BUCKET-W3	9/14/05	NA	Wipe	SGS	PCB	9/19/05

Note:

^{1.} Field duplicate sample locations are presented in parenthesis.

TABLE 2-2 PCB DATA RECEIVED DURING SEPTEMBER 2005

BUILDING 64T SLUDGE SAMPLING EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID	Date Collected	Aroclor-1016, -1221, -1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
I5-64T-01	9/3/2005	ND(12)	80	35	115

Notes:

- 1. Sample was collected by General Electric Company and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 2-3 DATA RECEIVED DURING SEPTEMBER 2005

BUILDING 64G LPCA MONITORING EAST STREET AREA 2 - SOUTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	Sample ID:	I5-64G-01	I5-64G-02	I5-64G-03	I5-64G-04	I5-64G-05	I5-64G-06	I5-64G-07	I5-64G-08
Parameter	Date Collected:	09/06/05	09/06/05	09/06/05	09/06/05	09/06/05	09/06/05	09/06/05	09/06/05
Volatile Organics									
1,1,1-Trichloroethane		ND(0.0050)	NA	NA	NA	ND(0.0050)	NA	NA	NA
1,1-Dichloroethane		ND(0.0050)	NA	NA	NA	0.0031 J	NA	NA	NA
Benzene		0.029	NA	NA	NA	ND(0.0050)	NA	NA	NA
Chlorobenzene		0.12	NA	NA	NA	ND(0.0050)	NA	NA	NA
Chloroform		ND(0.0050)	NA	NA	NA	ND(0.0050)	NA	NA	NA
Ethylbenzene		0.057	NA	NA	NA	ND(0.0050)	NA	NA	NA
Vinyl Chloride		ND(0.0050)	NA	NA	NA	ND(0.0050)	NA	NA	NA
PCBs-Unfiltered									
Aroclor-1221		NA	NA	ND(0.000065)	NA	NA	NA	ND(0.000065)	NA
Aroclor-1254		NA	NA	0.00033	NA	NA	NA	0.00034	NA
Total PCBs		NA	NA	0.00033	NA	NA	NA	0.00034	NA
Semivolatile Organics									
1,3-Dichlorobenzene		NA	0.00076 J	NA	NA	NA	ND(0.010)	NA	NA
1,4-Dichlorobenzene		NA	0.0017 J	NA	NA	NA	ND(0.010)	NA	NA
Acenaphthene		NA	0.0096 J	NA	NA	NA	ND(0.010)	NA	NA
Fluorene		NA	0.0012 J	NA	NA	NA	ND(0.010)	NA	NA
Conventionals							·		
Oil & Grease		NA	NA	NA	4.1 B	NA	NA	NA	3.1 B

TABLE 2-3 DATA RECEIVED DURING SEPTEMBER 2005

BUILDING 64G LPCA MONITORING EAST STREET AREA 2 - SOUTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Sample ID:		I5-64G-10	I5-64G-11	I5-64G-12	I5-64G-13	I5-64G-14	I5-64G-15	I5-64G-16
Parameter Date Collected:	09/06/05	09/06/05	09/06/05	09/06/05	09/06/05	09/06/05	09/06/05	09/06/05
Volatile Organics								
1,1,1-Trichloroethane	0.025	NA	NA	NA	ND(0.0050)	NA	NA	NA
1,1-Dichloroethane	0.028	NA	NA	NA	ND(0.0050)	NA	NA	NA
Benzene	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA	NA	NA
Chlorobenzene	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA	NA	NA
Chloroform	0.010	NA	NA	NA	ND(0.0050)	NA	NA	NA
Ethylbenzene	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA	NA	NA
Vinyl Chloride	0.0036 J	NA	NA	NA	ND(0.0050)	NA	NA	NA
PCBs-Unfiltered								•
Aroclor-1221	NA	NA	ND(0.000065)	NA	NA	NA	0.00071	NA
Aroclor-1254	NA	NA	0.00026	NA	NA	NA	0.00011	NA
Total PCBs	NA	NA	0.00026	NA	NA	NA	0.00082	NA
Semivolatile Organics								
1,3-Dichlorobenzene	NA	ND(0.010)	NA	NA	NA	ND(0.010)	NA	NA
1,4-Dichlorobenzene	NA	ND(0.010)	NA	NA	NA	ND(0.010)	NA	NA
Acenaphthene	NA	ND(0.010)	NA	NA	NA	ND(0.010)	NA	NA
Fluorene	NA	ND(0.010)	NA	NA	NA	ND(0.010)	NA	NA
Conventionals	•	,	•		•	, , , ,		•
Oil & Grease	NA	NA	NA	1.4 B	NA	NA	NA	1.3 B

Notes:

- 1. Samples were collected by General Electric Company and submitted to SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, and oil & grease.
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- Only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics (volatiles, PCBs, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Conventional Parameters

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TABLE 2-4 PCB DATA RECEIVED DURING SEPTEMBER 2005

LENOX CONSTRUCTION BUCKET WIPE SAMPLING EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in mg/100cm²)

Sample ID	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
LENOX-BUCKET-W1	9/14/2005	ND(1.0)	ND(1.0)						
LENOX-BUCKET-W2	9/14/2005	ND(1.0)	ND(1.0)						
LENOX-BUCKET-W3	9/14/2005	ND(1.0)	ND(1.0)						

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 2-5 PCB DATA RECEIVED DURING SEPTEMBER 2005

ADDITIONAL PRE-DESIGN SOIL INVESTIGATION SAMPLING EAST STREET AREA 2 - SOUTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

		Date								
Sample ID	Depth (Feet)	Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
RAA4-C25N	1-6	9/21/2005	ND(0.040)	ND(0.040)						
RAA4-C27N	1-6	9/21/2005	ND(0.034)	ND(0.034)	ND(0.034)	ND(0.034)	ND(0.034)	0.26	0.41	0.67
RAA4-D21N	1-6	9/21/2005	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	0.037	0.037
RAA4-D26	1-6	9/21/2005	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.028 J	0.060	0.088
RAA4-F9	1-6	9/21/2005	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.23	0.21	0.44
RAA4-F11N	1-6	9/21/2005	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	ND(0.036)	0.027 J	0.027 J
RAA4-G7N	1-6	9/21/2005	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	ND(0.037)	0.029 J	0.060	0.089
RAA4-G23	3-6	9/21/2005	ND(18)	ND(18)	ND(18)	ND(18)	ND(18)	78	200	278
RAA4-HH30	0-1	9/12/2005	ND(3.5)	ND(3.5)	ND(3.5)	ND(3.5)	ND(3.5)	9.7	23	32.7
RAA4-I28	0-1	9/12/2005	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.35)	ND(0.35)	5.1	5.1
RAA4-K26	0-1	9/12/2005	ND(36)	ND(36)	ND(36)	ND(36)	ND(36)	ND(36)	170	170
RAA4-L25	0-1	9/12/2005	ND(180)	ND(180)	ND(180)	ND(180)	ND(180)	2200	ND(180)	2200
RAA4-N3	0-1	9/14/2005	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	0.87	1.3	2.17
RAA4-N4	0-1	9/14/2005	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	0.82	0.50	1.32
RAA4-N6	0-1	9/14/2005	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	ND(0.035)	0.021 J	0.051	0.072
RAA4-N27	0-1	9/12/2005	ND(36)	ND(36)	ND(36)	ND(36)	ND(36)	140	240	380

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

Organics

J - Indicates an estimated value less than the practical quantitation limit (PQL).

TABLE 2-6 DATA RECEIVED DURING SEPTEMBER 2005

ADDITIONAL PRE-DESIGN SOIL INVESTIGATION SAMPLING EAST STREET AREA 2 - SOUTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID	: RAA4-BH000750	RAA4-BH000750	RAA4-N4	RAA4-N6
Sample Depth(Feet)	: 1-3	3-6	0-1	0-1
Parameter Date Collected	: 09/14/05	09/14/05	09/14/05	09/14/05
Volatile Organics	•	•	•	
Toluene	NA	NA	ND(0.0053)	0.0064
Trichlorofluoromethane	NA	NA	ND(0.0053)	0.0062
Semivolatile Organics	1		, ,	<u>I</u>
2-Methylnaphthalene	0.41 J	ND(0.36)	0.11 J	0.10 J
4-Nitrophenol	ND(18)	ND(1.9)	ND(1.8)	0.66 J
Acenaphthene	2.2 J	ND(0.36)	0.38	0.64
Aniline	ND(3.5)	ND(0.36)	0.14 J	ND(0.35)
Anthracene	5.1	ND(0.36)	0.74	1.2
Benzo(a)anthracene	10	0.58	1.4	1.9
Benzo(a)pyrene	9.0	0.93	1.4	1.8
Benzo(b)fluoranthene	8.5	2.3	1.2	1.4
Benzo(g,h,i)perylene	4.2	1.7	0.62	0.80
Benzo(k)fluoranthene	8.4	1.3	1.1	1.6
bis(2-Chloroethyl)ether	ND(3.5)	ND(0.36)	0.15 J	ND(0.35)
Chrysene	10	1.2	1.4	1.9
Dibenzo(a,h)anthracene	ND(3.5)	0.50	ND(0.35)	ND(0.35)
Dibenzofuran	1.2 J	ND(0.36)	0.17 J	0.27 J
Di-n-Butylphthalate	0.33 J	ND(0.36)	ND(0.35)	ND(0.35)
Fluoranthene	21	0.63	3.0	4.1
Fluorene	1.6 J	ND(0.36)	0.31 J	0.54
Indeno(1,2,3-cd)pyrene	3.7	1.3	0.56	0.73
Naphthalene	0.74 J	ND(0.36)	0.20 J	0.18 J
Phenanthrene	16	0.12 J	2.4	3.3
Phenol	0.72 J	ND(0.36)	ND(0.35)	0.044 J
Pyrene	20	0.59	2.7	3.5
Inorganics	•	•	•	
Antimony	NA	NA	1.20 B	ND(6.00)
Arsenic	NA	NA	8.10	3.20
Barium	NA	NA	68.0	230
Beryllium	NA	NA	0.370 B	0.270 B
Cadmium	NA	NA	0.380 B	0.120 B
Chromium	NA	NA	20.0	11.0
Cobalt	NA	NA	11.0	12.0
Copper	NA	NA	97.0	12.0
Cyanide	NA	NA	0.0940 B	0.210
Lead	NA	NA	43.0	7.40
Mercury	NA	NA	0.0650 B	ND(0.100)
Nickel	NA	NA	17.0	13.0
Sulfide	NA	NA	80.0	10.0
Thallium	NA	NA	2.60	1.30
Tin	NA	NA	10.0	2.40 B
Vanadium	NA	NA	21.0	9.60
Zinc	NA	NA	120	39.0

Notes

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, semivolatiles and metals.
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. Only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics (volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL). Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

ITEM 3 PLANT AREA EAST STREET AREA 2-NORTH (GECD140) SEPTEMBER 2005

a. Activities Undertaken/Completed

- Conducted sampling of material from catch basins (stored in drums at Building 78) and miscellaneous wipe sampling, as identified in Table 3-1.
- Completed site restoration of Buildings 4, 5, and 6.
- Continued asbestos removal activities at Buildings 15, 15A, 15B, and 15W.
- Continued asbestos removal activities at Buildings 1, 2, 3, and 3B.
- Conducted air monitoring for particulate matter on September 1, 2005, as identified in Table 3-1.
- Awarded the contract for the performance of demolition and site restoration activities at Buildings 15, 15A, 15B, and 15W (September 12, 2005).
- Distributed a Request for Proposal (RFP) to prospective contractors for the performance of demolition and site restoration activities at Buildings 1, 1A, 2, 3, 3B, and 100 Annex (September 30, 2005).
- Collected and tankered approximately 14,500 gallons of groundwater from Building 9 to Building 64G for treatment.
- Received EPA conditional approval of GE's Conceptual Removal Design/Removal Action (RD/RA) Work Plan (September 13, 2005).*

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

- Submitted *Final Notification of On-Plant Excavations* (September 12, 2005) covering major excavations for utility cutting and capping and minor excavations to set telephone poles.
- Submitted a letter to EPA notifying EPA of certain results of pre-demolition PCB sampling of oil from equipment in Buildings 1, 2, and 3 (September 22, 2005).

ITEM 3 (cont'd) PLANT AREA EAST STREET AREA 2-NORTH (GECD140) SEPTEMBER 2005

c. Work Plans/Reports/Documents Submitted (cont'd)

- Submitted a letter to EPA and accompanying figures and attachments notifying EPA of GE's proposed plans for the consolidation of certain building demolition debris at GE's On-Plant Consolidation Areas (OPCAs) (September 22, 2005).
- Submitted letter notifying EPA of approximate locations for PCB and particulate matter air monitoring stations at Buildings 1, 1A, 2, 3, 3B, and 100 Annex (September 30, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Complete asbestos removal activities at Buildings 15, 15A, 15B, and 15W.
- Initiate and complete equipment/liquids removal activities at Buildings 15, 15A, 15B, and 15W.
- Continue asbestos removal activities at Buildings 1, 2, 3, and 3B.
- Initiate demolition of Buildings 15, 15A, 15B, and 15W.
- Award contract for the performance of demolition and site restoration activities at Buildings 1, 1A, 2, 3, 3B, and 100 Annex.
- Submit supplement to Conceptual RD/RA Work Plan to EPA (due by October 11, 2005).*

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

- Received EPA conditional approval of GE's Conceptual RD/RA Work Plan (September 13, 2005).*
- Received EPA approval to continue to provide verbal notification, followed by written notification, of all TSCA exceedances encountered during the equipment-draining activities at Buildings 1, 2, and 3. As noted above, GE provided written notification to EPA on September 22, 2005.

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Building 16 Drawing Sampling	128A802-A-W2	9/14/05	Wipe	SGS	PCB	9/16/05
Building 16 Drawing Sampling	3917D200-W1	9/14/05	Wipe	SGS	PCB	9/16/05
Building 16 Drawing Sampling	NP234915-W3	9/14/05	Wipe	SGS	PCB	9/16/05
Building 16 Drawing Sampling	P-92622302-W4	9/14/05	Wipe	SGS	PCB	9/16/05
Building 16 Micro-Film Sampling	80-011-MICRO-W2	8/30/05	Wipe	SGS	PCB	9/1/05
Building 16 Micro-Film Sampling	C186-MICRO-W1	8/30/05	Wipe	SGS	PCB	9/1/05
uilding 78 Drum Sampling - Catch Basins	CB-SE-DUP-1 (CB76-SE-C1)	9/6/05	Sediment	SGS	PCB, VOC, SVOC, TCLP	
Building 78 Drum Sampling - Catch Basins	CB60-SE-C1	9/6/05	Sediment	SGS	PCB, VOC, SVOC, TCLP	
Building 78 Drum Sampling - Catch Basins	CB60-W-C1	9/6/05	Water	SGS	PCB, VOC, SVOC, Total Metals, Flashpoint	
uilding 78 Drum Sampling - Catch Basins	CB65-SE-C1	9/6/05	Sediment	SGS	PCB, VOC, SVOC, TCLP	
building 78 Drum Sampling - Catch Basins	CB74-SE-C-1	9/6/05	Sediment	SGS	PCB, VOC, SVOC, TCLP	
uilding 78 Drum Sampling - Catch Basins	CB76-SE-C1	9/6/05	Sediment	SGS	PCB, VOC, SVOC, TCLP	
Building 78 Drum Sampling - Catch Basins	CB76-W-C1	9/6/05	Water	SGS	PCB, VOC, SVOC, Total Metals, Flashpoint	
Buildings 1, 2, 3 Oil Sampling	71173	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71374	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71375	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71376	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71377	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71378	9/9/05	Oil	SGS	PCB	9/13/05
Buildings 1, 2, 3 Oil Sampling	71379	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71380	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71381	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71482	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71483	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71484	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71485	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71486	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71487	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71488	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71489	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	715100	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	715101	8/2/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	715102	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	715103	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	715104	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71590	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71591	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71592	8/2/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71593	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71594	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71595	8/1/05	Oil	SGS	PCB	9/7/05

TABLE 3-1 1 of 4 10/7/2005

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Buildings 1, 2, 3 Oil Sampling	71596	8/2/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71597	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71598	8/2/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	71599	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718105	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718106	8/2/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718107-1	8/2/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718107-2	8/2/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718108	8/10/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718109	8/10/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718110	8/10/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718111	8/2/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718112	8/2/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718113	8/10/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718114	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718115-1	8/2/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718115-2	8/2/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718116	8/2/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718118	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718118	8/1/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	718119	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	719120	8/5/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	719121	8/5/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720122	8/5/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720123	8/5/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720124	8/5/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720125	8/5/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720126	8/10/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720127	8/5/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720128	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720129	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720130	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720131	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720132	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720133	8/10/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720134	8/10/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720135	8/10/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	720137	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	721138	8/10/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	721139	8/10/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	721140	8/10/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	721141	8/10/05	Oil	SGS	PCB	9/7/05

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Buildings 1, 2, 3 Oil Sampling	722142	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	722143	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	723144	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	723145	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	723146	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	725147	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	725148	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	725149	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	725150	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	725151	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	725152	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	725153	8/3/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	725154	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	725155	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	725156	8/4/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	725157	8/5/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	72605-LQ-1	8/25/05	Oil	SGS	PCB	9/19/05
Buildings 1, 2, 3 Oil Sampling	726158	8/5/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	726159	8/5/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	726160	8/5/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	726161	8/5/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	72705-OIL-1	8/25/05	Oil	SGS	PCB, VOC, SVOC, Metals	9/19/05
Buildings 1, 2, 3 Oil Sampling	728168-OIL-1	8/24/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	729170-OIL-1	8/25/05	Oil	SGS	PCB	9/19/05
Buildings 1, 2, 3 Oil Sampling	801171-OIL-1	8/25/05	Oil	SGS	PCB	9/19/05
Buildings 1, 2, 3 Oil Sampling	802173-OIL-1	8/25/05	Oil	SGS	PCB	9/19/05
Buildings 1, 2, 3 Oil Sampling	802174-OIL-1	8/25/05	Oil	SGS	PCB	9/19/05
Buildings 1, 2, 3 Oil Sampling	802175-OIL-1	8/25/05	Oil	SGS	PCB	9/19/05
Buildings 1, 2, 3 Oil Sampling	80402-OIL-1	8/25/05	Oil	SGS	PCB	9/19/05
Buildings 1, 2, 3 Oil Sampling	810176-OIL-1	8/24/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	816178-OIL-1	8/24/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	C0333-C0343-OIL-1	8/24/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	C1060-OIL-1	8/9/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	C1067-OIL-1	8/25/05	Oil	SGS	PCB	9/19/05
Buildings 1, 2, 3 Oil Sampling	C1074-OIL-1	8/25/05	Oil	SGS	PCB	9/19/05
Buildings 1, 2, 3 Oil Sampling	C1091-OIL-1	8/25/05	Oil	SGS	PCB	9/19/05
Buildings 1, 2, 3 Oil Sampling	C1365-OIL-1	8/24/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	C1366-1	8/3/05	Oil	SGS	РСВ	9/7/05
Buildings 1, 2, 3 Oil Sampling	C1370-OIL-1	8/24/05	Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	F1734-1	8/22/05	Oil/Liquid	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	F1734-2	8/22/05	Oil/Liquid	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	F1734-3	8/22/05	Oil/Liquid	SGS	PCB	9/7/05

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Buildings 1, 2, 3 Oil Sampling	F1734-4	8/22/05	Oil/Liquid	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	F1735-1	8/22/05	Water/Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	F1735-2	8/22/05	Water/Oil	SGS	PCB	9/7/05
Buildings 1, 2, 3 Oil Sampling	F1735-3	8/22/05	Water/Oil	SGS	PCB	9/7/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	Background Location	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05

Note:

1. Field duplicate sample locations are presented in parenthesis.

TABLE 3-2 PCB DATA RECEIVED DURING SEPTEMBER 2005

BUILDINGS 1, 2, 3 OIL SAMPLING EAST STREET AREA 2 - NORTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Sample ID	Date Collected	Aroclor-1016, -1221, -1232, -1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
71173	8/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71374	8/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71375	8/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71376	8/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71377	8/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	10	10
71378	9/9/2005	ND(2.9)	ND(1.0) ND(2.9)	ND(1.0) ND(2.9)	ND(2.9)	ND(2.9)
71379	8/3/2005	ND(2.9) ND(1.0)	ND(2.9) ND(1.0)	ND(2.9) ND(1.0)	2.0	
71380	8/3/2005	ND(1.0)			ND(1.0)	2.0 0.44 J
71381			ND(1.0)	0.44 J		7.8
	8/3/2005	ND(1.0)	ND(1.0)	6.2	1.6	
71482	8/1/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71483	8/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71484	8/1/2005	ND(3.6)	ND(3.6)	ND(3.6)	12	12
71485	8/1/2005	ND(3.9)	ND(3.9)	16	ND(3.9)	16
71486	8/1/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71487	8/1/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71488	8/1/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71489	8/1/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71590	8/1/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71591	8/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	15	15
71592	8/2/2005	ND(4.0)	ND(4.0)	5.6	ND(4.0)	5.6
71593	8/1/2005	ND(1.0)	ND(1.0)	21	19	40
71594	8/1/2005	ND(1.0)	ND(1.0)	3.5	5.2	8.7
71595	8/1/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71596	8/2/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
71597	8/1/2005	ND(1.0)	ND(1.0)	14	8.8	22.8
71598	8/2/2005	ND(1.0)	ND(1.0)	0.43 J	0.77 J	1.2 J
71599	8/1/2005	ND(1.0)	ND(1.0)	26	9.0	35
715100	8/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	1.3	1.3
715101	8/2/2005	ND(3.9)	ND(3.9)	12	ND(3.9)	12
715102	8/1/2005	ND(77)	ND(77)	110	ND(77)	110
715103	8/1/2005	ND(1.0)	ND(1.0)	1.0	ND(1.0)	1.0
715104	8/1/2005	ND(1.0)	ND(1.0)	0.71 J	1.1	1.81
718105	8/1/2005	ND(3.9)	ND(3.9)	38	24	62
718106	8/2/2005	ND(1.0)	ND(1.0)	15	13	28
718108	8/10/2005	ND(1.0)	ND(1.0)	ND(1.0)	16	16
718109	8/10/2005	ND(1.0)	ND(1.0)	8.5	5.7	14.2
718110	8/10/2005	ND(1.0)	ND(1.0)	3.4	2.8	6.2
718111	8/2/2005	ND(1.0)	ND(1.0)	12	34	46
718112	8/2/2005	ND(4.0)	ND(4.0)	ND(4.0)	150	150
718113	8/10/2005	ND(1.0)	ND(1.0)	1.1	ND(1.0)	1.1
718114	8/1/2005	ND(1.0) ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
718114 718116	8/1/2005	ND(1.0) ND(1.0)	ND(1.0) ND(1.0)	ND(1.0) ND(1.0)	ND(1.0)	` '
		. ,	(/	\ -/	_	16
718118	8/1/2005	ND(1.0)	ND(1.0)	9.9 ND(4.0)	17	26.9
718118	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	2.4	2.4
718119	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	5.7	5.7
719120	8/5/2005	ND(48)	ND(48)	ND(48)	ND(48)	ND(48)
719121	8/5/2005	ND(1.0)	ND(1.0)	ND(1.0)	1.4	1.4
720122	8/5/2005	ND(1.0)	ND(1.0)	ND(1.0)	1.2	1.2
720123	8/5/2005	ND(1.0)	ND(1.0)	ND(1.0)	1.1	1.1
720124	8/5/2005	ND(1.0)	ND(1.0)	ND(1.0)	3.4	3.4
720125	8/5/2005	ND(1.0)	ND(1.0)	ND(1.0)	3.5	3.5
720126	8/10/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
720127	8/5/2005	ND(4.0)	ND(4.0)	4.0	5.9	9.9
720128	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	1.1	1.1
720129	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	0.83 J	0.83 J
720130	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	2.9	2.9

TABLE 3-2 PCB DATA RECEIVED DURING SEPTEMBER 2005

BUILDINGS 1, 2, 3 OIL SAMPLING EAST STREET AREA 2 - NORTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Sample ID	Date Collected	Aroclor-1016, -1221, -1232, -1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
720131	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
720132	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
720133	8/10/2005	ND(1.0)	ND(1.0)	2.0	1.9	3.9
720134	8/10/2005	ND(1.0)	ND(1.0)	ND(1.0)	4.0	4.0
720135	8/10/2005	ND(1.0)	ND(1.0)	ND(1.0)	4.0	4.0
720137	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	8.5	8.5
721138	8/10/2005	ND(8.0)	ND(8.0)	ND(8.0)	130	130
721139	8/10/2005	ND(1.0)	ND(1.0)	7.7	ND(1.0)	7.7
721140	8/10/2005	ND(1.0)	ND(1.0)	3.4	ND(1.0)	3.4
721141	8/10/2005	ND(1.0)	ND(1.0)	1.2	ND(1.0)	1.2
722142	8/3/2005	ND(1.0)	ND(1.0)	6.0	3.6	9.6
722143	8/3/2005	ND(1.0)	ND(1.0)	2.5	2.6	5.1
723144	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
723145	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
723146	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
725147	8/4/2005	ND(7.9)	ND(7.9)	ND(7.9)	83	83
725148	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	4.0	4.0
725149	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
725150	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
725151	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
725152	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	31	31
725153	8/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
725154	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
725155	8/4/2005	ND(1.0)	ND(1.0)	ND(1.0)	1.9	1.9
725156	8/4/2005	ND(1.0)	ND(1.0)	1.2	0.90 J	2.1
725157	8/5/2005	ND(1.0)	ND(1.0)	ND(1.0)	1.7	1.7
726158	8/5/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
726159	8/5/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
726160	8/5/2005	ND(1.0)	ND(1.0)	ND(1.0)	1.7	1.7
726161	8/5/2005	ND(1.0)	ND(1.0)	0.67 J	0.91 J	1.58 J
718107-1	8/2/2005	ND(1.0)	ND(1.0)	19	17	36
718107-2	8/2/2005	ND(1.0)	ND(1.0)	16	14	30
718115-1	8/2/2005	ND(1.0)	ND(1.0)	ND(1.0)	15	15
718115-2	8/2/2005	ND(1.0)	ND(1.0)	ND(1.0)	14	14
72605-LQ-1	8/25/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
728168-OIL-1	8/24/2005	ND(1.0)	ND(1.0)	1.4	2.9	4.3
729170-OIL-1	8/25/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
801171-OIL-1	8/25/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
802173-OIL-1	8/25/2005	ND(1.0)	ND(1.0)	11	ND(1.0)	11
802174-OIL-1	8/25/2005	ND(1.0)	ND(1.0)	4.5	ND(1.0)	4.5
802175-OIL-1	8/25/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
80402-OIL-1	8/25/2005	ND(1.0)	5.6	4.2	ND(1.0)	9.8
810176-OIL-1	8/24/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
816178-OIL-1	8/24/2005	ND(1.0)	ND(1.0)	ND(1.0)	15	15
C0333-C0343-OIL-1	8/24/2005	ND(1.0)	ND(1.0)	ND(1.0)	11	11
C1060-OIL-1	8/9/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
C1067-OIL-1	8/25/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
C1074-OIL-1	8/25/2005	ND(1.0)	ND(1.0)	ND(1.0)	6.2	6.2
C1091-OIL-1	8/25/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
C1365-OIL-1	8/24/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
C1366-1	8/3/2005	ND(1.0)	ND(1.0)	5.4	0.98 J	6.38
C1370-OIL-1	8/24/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
F1734-1	8/22/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
F1734-2	8/22/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)

TABLE 3-2 PCB DATA RECEIVED DURING SEPTEMBER 2005

BUILDINGS 1, 2, 3 OIL SAMPLING EAST STREET AREA 2 - NORTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	Date	Aroclor-1016, -1221,				
Sample ID	Collected	-1232, -1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
F1734-3	8/22/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
F1734-4	8/22/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
F1735-1	8/22/2005	ND(0.00025)	ND(0.00025)	ND(0.00025)	0.00054	0.00054
F1735-2	8/22/2005	ND(0.00025)	ND(0.00025)	ND(0.00025)	ND(0.00025)	ND(0.00025)
F1735-3	8/22/2005	ND(1.0)	ND(1.0)	2.4	ND(1.0)	2.4

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

J - Indicates an estimated value less than the practical quantitation limit (PQL).

TABLE 3-3 DATA RECEIVED DURING SEPTEMBER 2005

BUILDINGS 1, 2, 3 OIL SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Poculto are presented in parts now million, page)

(Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	72705-OIL-1 08/25/05
Volatile Organics	Date Collected.	00/23/03
Toluene		10
PCBs	<u>l</u>	-
Aroclor-1248		5.4
Aroclor-1254		5.4
Total PCBs		10.8
Semivolatile Organics		
Di-n-Butylphthalate		97 J
Phenol		13 J
Inorganics		
Barium		0.400
Cadmium		11.0
Chromium		1.00
Lead		17.0
Selenium		2.10 B
Silver		0.160 B

Notes:

- Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, and metals.
- 2. Only detected constituents are summarized.

Data Qualifiers:

Organics (PCBS, volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TABLE 3-4 **PCB DATA RECEIVED DURING SEPTEMBER 2005**

BUILDING 16 MICRO-FILM SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in mg/100cm²)

Sample ID	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
80-011-MICRO-W2	8/30/2005	ND(1.0)	ND(1.0)						
C186-MICRO-W1	8/30/2005	ND(1.0)	ND(1.0)						

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 3-5 PCB DATA RECEIVED DURING SEPTEMBER 2005

BUILDING 16 DRAWING SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in mg/100cm²)

Sample ID	Date Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
128A802-A-W2	9/14/2005	ND(1.0)	ND(1.0)						
3917D200-W1	9/14/2005	ND(1.0)	ND(1.0)						
NP234915-W3	9/14/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	1.4	ND(1.0)	1.4
P-92622302-W4	9/14/2005	ND(1.0)	ND(1.0)						

<u>Notes</u>

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 3-6 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING SEPTEMBER 2005

BUILDINGS 4, 5, AND 6 DEMOLITION ACTIVITIES EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
09/01/05	MC3 - Near Bldg. 16 & 19	0.017*	0.016*	12:00	WNW
	M2 - South of Bldg. 5	0.033*		12:00	
	S2 - Woodlawn Avenue	0.036		12:00	
Notification Level		0.120			

Notes:

NA - Not Available.

Background monitoring location east of Building 9B, between Building 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

Buildings 4, 5, & 6 demolition completed September 1, 2005.

^{*} Measured with DR-2000 or DR-4000. All others measured with pDR-1000.

ITEM 4 PLANT AREA EAST STREET AREA 1-NORTH (GECD130) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Participated in pre-certification inspection (September 7, 2005).
- Received EPA approval and MDEP acceptance of ERE for GE-owned properties.
- Recorded ERE for GE-owned properties and associated Plan of Land, and Plan of Restricted Area in the Berkshire Middle District Registry of Deeds (September 27, 2005).
- Received EPA approval of Final Completion Report (dated September 29, 2005) and EPA Certificate of Completion for the East Street Area 1-North Removal Action (dated September 30, 2005).

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

- Submitted revised draft of Final Completion Report (September 15, 2005).
- Submitted Final Completion Report (September 22, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

None

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

ITEM 5 PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Completed construction of the base liner system for the third cell of the Building 71 OPCA.
- Conducted ambient air monitoring for particulates and PCBs, as identified in Table 5-1.
- Continued transfer of leachate from Building 71 OPCA to Building 64G for treatment. The total amount transferred in September 2005 was 76,000 gallons (see Table 5-4).
- Transferred to the OPCAs soils and sediments from removal activities at the 1½ Mile floodplain properties; demolition materials from the 40s Complex and Buildings 4, 5, and 6; excavated materials from Newell Street Area I (Moldmaster property) and Newell Street Area II removal activities; and various facility-related materials.
- Continued construction of the Building 71 OPCA final cover system for Cell 1 and a portion of Cell 2.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue transfer to the OPCAs of building demolition debris from various ongoing demolition projects, excavated material from removal activities in the 1½ Mile Reach and 1½ Mile floodplain properties, and excavated materials from Newell Street Area I and II removal activities.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

TABLE 5-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Received
Ambient Air Particulate Matter Sampling	North of OPCAs	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	Background Location	9/1/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/2/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/2/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/2/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/2/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/2/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	Background Location	9/2/05	Air	Berkshire Environmental	Particulate Matter	9/7/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/6/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/6/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/6/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/6/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/6/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Background Location	9/6/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/7/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/7/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/7/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/7/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/7/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Background Location	9/7/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/8/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/8/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/8/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/8/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/8/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Background Location	9/8/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/9/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/9/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/9/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/9/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/9/05	Air	Berkshire Environmental	Particulate Matter	9/14/05
Ambient Air Particulate Matter Sampling	Background Location	9/9/05	Air	Berkshire Environmental	Particulate Matter	9/14/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\09-05 CD Monthly\Tracking Logs\Tracking.xls TABLE 5-1

TABLE 5-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Received
Ambient Air Particulate Matter Sampling	North of OPCAs	9/12/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/12/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/12/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/12/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/12/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	Background Location	9/12/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/13/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/13/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/13/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/13/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/13/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	Background Location	9/13/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/14/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/14/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/14/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/14/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/14/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	Background Location	9/14/05	Air	Berkshire Environmental	Particulate Matter	9/20/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/19/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/19/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/19/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/19/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/19/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Background Location	9/19/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/21/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/21/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/21/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/21/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/21/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Background Location	9/21/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/22/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/22/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/22/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/22/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/22/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Background Location	9/22/05	Air	Berkshire Environmental	Particulate Matter	9/30/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\09-05 CD Monthly\Tracking Logs\Tracking.xls TABLE 5-1 2 of 3

TABLE 5-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Received
Ambient Air Particulate Matter Sampling	North of OPCAs	9/23/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/23/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/23/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/23/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/23/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	Background Location	9/23/05	Air	Berkshire Environmental	Particulate Matter	9/30/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/27/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/27/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/27/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/27/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/27/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Background Location	9/27/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/28/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/28/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/28/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/28/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/28/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Background Location	9/28/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	North of OPCAs	9/30/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	9/30/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	9/30/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	9/30/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	West of OPCAs	9/30/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
Ambient Air Particulate Matter Sampling	Background Location	9/30/05	Air	Berkshire Environmental	Particulate Matter	10/5/05
PCB Ambient Air Sampling	Southwest of OPCAs	9/01 - 9/2/05	Air	Berkshire Environmental	PCB	9/15/05
PCB Ambient Air Sampling	Southwest of OPCAs Co-located	9/01 - 9/2/05	Air	Berkshire Environmental	PCB	9/15/05
PCB Ambient Air Sampling	West of OPCAs	9/01 - 9/2/05	Air	Berkshire Environmental	PCB	9/15/05
PCB Ambient Air Sampling	North of OPCAs	9/01 - 9/2/05	Air	Berkshire Environmental	PCB	9/15/05
PCB Ambient Air Sampling	Southeast of OPCAs	9/01 - 9/2/05	Air	Berkshire Environmental	PCB	9/15/05
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	9/01 - 9/2/05	Air	Berkshire Environmental	PCB	9/15/05
PCB Ambient Air Sampling	Background East of Building 9B	9/01 - 9/2/05	Air	Berkshire Environmental	PCB	9/15/05

TABLE 5-2 AMBIENT AIR PCB DATA RECEIVED DURING SEPTEMBER 2005

PCB AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON-PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Southwest of OPCAs (μg/m³)	Southwest of OPCAs Co-located (µg/m³)	West of OPCAs (μg/m³)		Southeast of OPCAs (µg/m³)	Pittsfield Generating (PGE) (µg/m³)	Background East of Building 9B (μg/m³)
09/01 - 09/02/05	0.0220	0.0269	0.0025	0.0015	0.0372	0.0309	0.0010
Notification Level	0.05	0.05	0.05	0.05	0.05	0.05	0.05

TABLE 5-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING SEPTEMBER 2005

PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON-PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
09/01/05	North of OPCAs	0.011	0.016*	10:45	WNW
	Pittsfield Generating Co.	0.023*		10:45	
	Southeast of OPCAs	0.034		10:45	
	Southwest of OPCAs	0.035*		10:15	
	West of OPCAs	0.029		10:45	
09/02/05	North of OPCAs	0.018	0.015*	11:00	SSW, WSW
	Pittsfield Generating Co.	0.021*		10:30	,
	Southeast of OPCAs	0.031		11:00	
	Southwest of OPCAs	0.031*		10:15	
	West of OPCAs	0.028		11:00	
09/05/05 ¹	North of OPCAs	NA NA	NA	NA	NA
	Pittsfield Generating Co.		12.		
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
09/06/05	North of OPCAs	0.001	0.006*	11:30	Calm
00/00/00	Pittsfield Generating Co.	0.014*	0.000	10:45	Guini
	Southeast of OPCAs	0.032		11:30	
	Southwest of OPCAs	0.019*		10:45	
	West of OPCAs	0.017		11:30	
09/07/05	North of OPCAs	0.004	0.005*	11:15	Variable
09/01/03	Pittsfield Generating Co.	0.020*	0.005	11:00	Variable
	Southeast of OPCAs	0.020		11:15	
	Southwest of OPCAs	0.032		11:00	
	West of OPCAs	0.027		11:15	
09/08/05	North of OPCAs	0.022	0.019*	9:45 ²	WSW
09/06/05	Pittsfield Generating Co.	0.016	0.019	11:00	VVSVV
	Southeast of OPCAs	0.026		11:00	
	Southwest of OPCAs	0.032*		11:00	
09/09/05	West of OPCAs North of OPCAs	0.037	0.007*	11:00 10:45	NNW
09/09/05		0.005	0.007		ININVV
	Pittsfield Generating Co.	0.014*		10:45	
	Southeast of OPCAs	0.016		10:45	
	Southwest of OPCAs	0.011*		10:30	
00/40/05	West of OPCAs	0.014	0.007*	10:45	14/h D4/
09/12/05	North of OPCAs	0.026	0.037*	10:45	WNW
	Pittsfield Generating Co.	0.049*		10:45	
	Southeast of OPCAs	0.094		10:45	
	Southwest of OPCAs	0.080*		10:30	
	West of OPCAs	0.054	0.000*3	10:45	
09/13/05	North of OPCAs	0.0623	0.099*3	11:00	Variable
	Pittsfield Generating Co.	0.105*3		11:00	
	Southeast of OPCAs	0.151 ³		11:00	
	Southwest of OPCAs	0.193* ³		11:00	
	West of OPCAs	0.128 ³		11:00	
09/14/05	North of OPCAs	0.042	0.056*	10:30	SSW
	Pittsfield Generating Co.	0.065*		10:30	
	Southeast of OPCAs	0.084		10:30	
	Southwest of OPCAs	0.114*		10:30	
	West of OPCAs	0.080		10:30	

TABLE 5-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING SEPTEMBER 2005

PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON-PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
09/15/05 ⁴	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
09/16/05 ⁴	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
09/19/05	North of OPCAs	0.005^{5}	0.009*5	9:15 ⁵	WNW, NNW
	Pittsfield Generating Co.	0.020*5		9:15 ⁵	·
	Southeast of OPCAs	0.010 ⁵		9:15 ⁵	
	Southwest of OPCAs	0.022*5		9:00 ⁵	
	West of OPCAs	0.017 ⁵		9:15 ⁵	
09/20/05 ⁶	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
09/21/05	North of OPCAs	0.004	0.003*	6:30 ²	NNW
00/21/00	Pittsfield Generating Co.	0.015*	0.000	10:45	
	Southeast of OPCAs	0.016		10:45	
	Southwest of OPCAs	0.009*		10:45	
	West of OPCAs	0.006		10:45	
09/22/05	North of OPCAs	0.012	0.010*	11:00	SSW
	Pittsfield Generating Co.	0.020*		11:00	
	Southeast of OPCAs	0.020		11:00	
	Southwest of OPCAs	0.023*		10:45	
	West of OPCAs	0.014		11:00	
09/23/05	North of OPCAs	0.025	0.028*	9:45 ⁷	WNW
00/20/00	Pittsfield Generating Co.	0.027*	0.020	9:45 ⁷	
	Southeast of OPCAs	0.040		9:45 ⁷	
	Southwest of OPCAs	0.054*		9:30 ⁷	
	West of OPCAs	0.041		9:45 ⁷	
09/26/05 ⁶	North of OPCAs	NA NA	NA	NA NA	NA NA
00/20/00	Pittsfield Generating Co.	14/1		14/	141
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
09/27/05	North of OPCAs	0.007	0.001*	11:00	WNW, NNW
09/21/03	Pittsfield Generating Co.	0.007	0.001	11:00	VVINVV, ININVV
	Southeast of OPCAs	0.000		10:45	
	Southwest of OPCAs	0.000*		11:00	
	West of OPCAs				
09/28/05		0.002	0.009*	11:00	SSW Variable
U9/Z6/U5	North of OPCAs	0.018	0.009"	10:30	SSW, Variable
	Pittsfield Generating Co.	0.014*		10:30	
	Southeast of OPCAs	0.012		10:30	
	Southwest of OPCAs	0.006*		6:30 ⁸	
	West of OPCAs	0.015		10:30	<u> </u>

TABLE 5-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING SEPTEMBER 2005

PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON-PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
09/29/05 ⁴	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
09/30/05	North of OPCAs	0.034	0.003*	10:45	NNW
	Pittsfield Generating Co.	0.005*		10:30	
	Southeast of OPCAs	0.003		10:45	
	Southwest of OPCAs	0.004*		10:30	
	West of OPCAs	0.005		10:45	
Notification Level		0.120			

Notes:

NA - Not Available.

Background monitoring location east of Building 9B, between Building 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

- ¹ Sampling was not performed due to lack of site activity on the Labor Day holiday.
- ² Sampling period was shortened due to instrument malfunction.
- ³ Instrument reading is biased high due to high humidity levels and foggy conditions.
- ⁴ Sampling was not performed due to precipitation/threat of precipitation.
- ⁵ Sampling data were modified to delete invalid recordings due to morning fog.
- ⁶ Sampling was not performed due to lack of site activity.
- ⁷ Sampling period was shortened due to precipitation/threat of precipitation.
- ⁸ Sampling period was shortened due to technician error.

^{*} Measured with DR-2000 or DR-4000. All others measured with pDR-1000.

TABLE 5-4

BUILDING 71 CONSOLIDATION AREA LEACHATE TRANSFER SUMMARY PLANT AREA - HILL 78 & BUILDING 71 CONSOLIDATION AREAS

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

Month / Year	Total Volume of Leachate Transferred (Gallons)
September 2004	230,000
October 2004	177,000
November 2004	138,000
December 2004	146,000
January 2005	136,000
February 2005	116,500
March 2005	174,500
April 2005	192,000
May 2005	89,500
June 2005	130,000
July 2005	127,500
August 2005	55,000
September 2005	46,000

Leachate is transferred from the Building 71 On-Plant Consolidation Area to Building 64G for treatment.

ITEM 6 PLANT AREA HILL 78 AREA - REMAINDER (GECD160 SEPTEMBER 2005

a. Activities Undertaken/Completed

- Completed preparation of Pre-Design Investigation Report, including a preliminary evaluation of City of Pittsfield storm drains and sewer lines extending beneath Hill 78.*
- Conducted miscellaneous drum sampling, as identified in Table 6-1.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted Pre-Design Investigation Report (September 7, 2005) and certain boring logs that were omitted from the Pre-Design Investigation Report (September 22, 2005).*

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Coordinate with the City of Pittsfield to arrange for draining of the storm and sanitary sewer pipes beneath Hill 78 to allow the completion of video inspections. A meeting was held between GE and the City of Pittsfield on September 19, 2005. GE is awaiting City approval to conduct pipe cleanout activities.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

Additional soil sampling activities were proposed in the Pre-Design Investigation Report and will be performed following EPA approval.*

TABLE 6-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

HILL 78 AREA-REMAINDER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Building 78 Drum Sampling	78-Compactor	9/9/05	Oil	SGS	PCB	9/19/05
Building 78 Drum Sampling	B1541	9/9/05	Water	SGS	PCB	9/19/05
Building 78 Drum Sampling	C1122	9/9/05	Oil	SGS	PCB	9/19/05

BUILDING 78 DRUM SAMPLING HILL 78 AREA REMAINDER GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Date								
Sample ID	Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
78-COMPACTOR	9/9/2005	ND(1.0)	ND(1.0)						
B1541	9/9/2005	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	0.0015	0.0015
C1122	9/9/2005	ND(1.0)	ND(1.0)						

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

ITEM 7 PLANT AREA UNKAMET BROOK AREA (GECD170) SEPTEMBER 2005

a. Activities Undertaken/Completed

- Completed preparation of Pre-Design Investigation Report.*
- Conducted equipment wipe sampling, as identified in Table 7-1.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

- Submitted Pre-Design Investigation Report (September 6, 2005).*
- Submitted *Final Notification of On-Plant Excavations* covering various major and minor excavations within this area (September 12, 2005).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

None

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

- In a letter dated August 15, 2005, GE proposed to remove Parcel L12-1-2 from the Unkamet Brook Area RAA. That proposal is pending approval from the EPA.*
- Additional soil sampling activities were proposed in the Pre-Design Investigation Report and will be performed following EPA approval.*

TABLE 7-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Received
SABRE Equipment Wipe Sampling	EXCAVATOR-BUCKET-W7	9/15/05	Wipe	SGS	PCB	9/19/05
SABRE Equipment Wipe Sampling	EXCAVATOR-BUCKET-W8	9/15/05	Wipe	SGS	PCB	9/19/05
SABRE Equipment Wipe Sampling	EXCAVATOR-BUCKET-W9	9/15/05	Wipe	SGS	PCB	9/19/05
SABRE Equipment Wipe Sampling	EXCAVATOR-HAMMER-W1	9/15/05	Wipe	SGS	PCB	9/19/05
SABRE Equipment Wipe Sampling	EXCAVATOR-TRACK-W1	9/15/05	Wipe	SGS	PCB	9/19/05
SABRE Equipment Wipe Sampling	EXCAVATOR-TRACK-W2	9/15/05	Wipe	SGS	PCB	9/19/05
SABRE Equipment Wipe Sampling	EXCAVATOR-TRACK-W3	9/15/05	Wipe	SGS	PCB	9/19/05
SABRE Equipment Wipe Sampling	EXCAVATOR-TRACK-W4	9/15/05	Wipe	SGS	PCB	9/19/05
SABRE Equipment Wipe Sampling	EXCAVATOR-TRACK-W5	9/15/05	Wipe	SGS	PCB	9/19/05
SABRE Equipment Wipe Sampling	EXCAVATOR-TRACK-W6	9/15/05	Wipe	SGS	PCB	9/19/05
SABRE Equipment Wipe Sampling	S175-BUCKET-W1	9/15/05	Wipe	SGS	PCB	9/19/05
SABRE Equipment Wipe Sampling	S175-BUCKET-W2	9/15/05	Wipe	SGS	PCB	9/19/05
SABRE Equipment Wipe Sampling	S175-BUCKET-W3	9/15/05	Wipe	SGS	PCB	9/19/05

SABRE EQUIPMENT WIPE SAMPLING UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in mg/100cm²)

	Date								
Sample ID	Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
EXCAVATOR-BUCKET-W7	9/15/2005	ND(1.0)	ND(1.0)						
EXCAVATOR-BUCKET-W8	9/15/2005	ND(1.0)	ND(1.0)						
EXCAVATOR-BUCKET-W9	9/15/2005	ND(1.0)	ND(1.0)						
EXCAVATOR-HAMMER-W1	9/15/2005	ND(1.0)	ND(1.0)						
EXCAVATOR-TRACK-W1	9/15/2005	ND(1.0)	ND(1.0)						
EXCAVATOR-TRACK-W2	9/15/2005	ND(1.0)	ND(1.0)						
EXCAVATOR-TRACK-W3	9/15/2005	ND(1.0)	ND(1.0)						
EXCAVATOR-TRACK-W4	9/15/2005	ND(1.0)	ND(1.0)						
EXCAVATOR-TRACK-W5	9/15/2005	ND(1.0)	ND(1.0)						
EXCAVATOR-TRACK-W6	9/15/2005	ND(1.0)	ND(1.0)						
S175-BUCKET-W1	9/15/2005	ND(1.0)	ND(1.0)						
S175-BUCKET-W2	9/15/2005	ND(1.0)	ND(1.0)						
S175-BUCKET-W3	9/15/2005	ND(1.0)	ND(1.0)						

Notes

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

ITEM 8 FORMER OXBOW AREAS A & C (GECD410) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Completed preparation of an Addendum to the Final RD/RA Work Plan.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

Submitted the Addendum to the Final RD/RA Work Plan (September 26, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

None

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

ITEM 9 LYMAN STREET AREA (GECD430) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Completed preparation of Final RD/RA Work Plan.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

Submitted the Final RD/RA Work Plan to EPA (September 1, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

None

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

ITEM 10 NEWELL STREET AREA I (GECD440) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Continued remediation of Parcel J9-23-13.
- Initiated remediation of Parcels J9-23-19, -20, and -21.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Complete remediation of Parcel J9-23-13.
- Continue remediation of Parcels J9-23-19, -20, and -21.
- Record ERE and Notice of Completion for Parcel J9-23-24 following receipt of EPA approval and MDEP acceptance of same.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

ITEM 11 NEWELL STREET AREA II (GECD450) SEPTEMBER 2005

a. Activities Undertaken/Completed

- Continued soil remediation.*
- During soil removal activities, encountered drums in subsurface soil at Parcel J9-23-8, some of which were crushed or in pieces and some of which appeared to be intact or partially intact. Consistent with previously reported response activities, GE: (1) properly removed the drums; (2) sent the crushed drums and drums observed to contain solid material to GE's OPCAs for disposition there; and (3) overpacked the intact or partially intact drums that contained liquid material, sent those drums to GE's on-plant TSCA storage area, and implemented a program to characterize their contents to facilitate the appropriate off-site disposition of these drums, as identified on Table 11-1.
- During soil removal activities, encountered capacitors in subsurface soil at Parcel J9-23-8. In response, GE placed these capacitors into drums and sent those drums to GE's on-plant TSCA storage area for subsequent appropriate off-site disposal.
- Initiated geophysical survey activities at Parcel J9-23-8.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted a Proposal for Geophysical Survey at Parcel J9-23-8 (September 6, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Submit analytical results for proposed topsoil source once received from the laboratory.*
- Based on sampling results for liquid contents of drums from Parcel J9-23-8 that contained liquid, arrange for appropriate off-site disposal of those drums.
- Arrange for appropriate disposal of drummed capacitors.
- Complete geophysical survey activities and discuss results, as well as next steps, with EPA.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

Issues relating to drums and capacitors at Parcel J9-23-8 are under discussion with EPA.

ITEM 11 (cont'd) NEWELL STREET AREA II (GECD450) SEPTEMBER 2005

f. Proposed/Approved Work Plan Modifications

Received conditional approval from EPA of geophysical survey proposal (September 14, 2005).

TABLE 11-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Drum Sampling	A1913-O	8/31/05	Oil	SGS	PCB, VOC, SVOC, TCLP	9/20/05
Drum Sampling	A2523-LIQUID	8/31/05	Oil	SGS	PCB, VOC, SVOC, Flashpoint, Total Metals	9/20/05
Drum Sampling	A2524-LIQUID	8/31/05	Oil	SGS	PCB, VOC, SVOC, Flashpoint, Total Metals	9/20/05
Drum Sampling	A2524-O	8/31/05	Oil	SGS	PCB, VOC, SVOC, TCLP	9/20/05
Drum Sampling	D0561-LIQUID	8/31/05	Water	SGS	PCB	9/20/05
Drum Sampling	D0561-SOLID	8/31/05	Solid	SGS	PCB, VOC, SVOC, TCLP	9/20/05
Drum Sampling	D0562-O	8/30/05	Oil	SGS	PCB, VOC, SVOC, TCLP	9/20/05
Drum Sampling	D0563-LIQUID	8/31/05	Oil	SGS	PCB, VOC, SVOC, Flashpoint, Total Metals	9/20/05
Drum Sampling	D0563-SOLID	8/31/05	Solid	SGS	PCB, VOC, SVOC, TCLP	9/20/05
Drum Sampling	D0564-LIQUID	8/31/05	Water	SGS	PCB	9/20/05
Drum Sampling	D0564-SOLID	8/31/05	Solid	SGS	PCB, VOC, SVOC, TCLP	9/20/05
Drum Sampling	D0577-LIQUID	8/30/05	Oil	SGS	PCB, VOC, SVOC, Flashpoint, Total Metals	9/20/05
Drum Sampling	D0577-SOLID	8/30/05	Soil	SGS	PCB, VOC, SVOC, TCLP	9/20/05
Drum Sampling	D0581-LIQUID	9/22/05	Liquid	SGS	PCB	9/29/05
Drum Sampling	D0581-LIQUID	9/22/05	Liquid	SGS	VOC, SVOC, Total Metals, Flashpoint	
Drum Sampling	D0581-SOLID	9/21/05	Solid	SGS	PCB	9/28/05
Drum Sampling	D0581-SOLID	9/21/05	Solid	SGS	VOC, SVOC, TCLP (Exc-Pest/Herb)	
Drum Sampling	D0582-LIQUID	9/22/05	Liquid	SGS	PCB	9/29/05
Drum Sampling	D0582-LIQUID	9/22/05	Liquid	SGS	VOC, SVOC, Total Metals, Flashpoint	
Drum Sampling	D0582-SOLID	9/21/05	Solid	SGS	PCB	9/28/05
Drum Sampling	D0582-SOLID	9/21/05	Solid	SGS	VOC, SVOC, TCLP (Exc-Pest/Herb)	
Drum Sampling	D0583-SOLID	9/21/05	Solid	SGS	PCB	9/28/05
Drum Sampling	D0583-SOLID	9/21/05	Solid	SGS	VOC, SVOC, TCLP (Exc-Pest/Herb)	
Drum Sampling	D0584-SOLID	9/21/05	Solid	SGS	PCB	9/28/05
Drum Sampling	D0584-SOLID	9/21/05	Solid	SGS	VOC, SVOC, TCLP (Exc-Pest/Herb)	
Drum Sampling	D0585-SOLID	9/20/05	Solid	SGS	PCB	9/28/05
Drum Sampling	D0585-SOLID	9/20/05	Solid	SGS	VOC, SVOC, TCLP (Exc-Pest/Herb)	
Drum Sampling	D0586-SOLID	9/21/05	Solid	SGS	PCB	9/28/05
Drum Sampling	D0586-SOLID	9/21/05	Solid	SGS	VOC, SVOC, TCLP (Exc-Pest/Herb)	
Drum Sampling	D0591-SOLID	9/21/05	Solid	SGS	PCB	9/28/05
Drum Sampling	D0591-SOLID	9/21/05	Solid	SGS	VOC, SVOC, TCLP (Exc-Pest/Herb)	
Drum Sampling	D0592-SOLID	9/20/05	Solid	SGS	PCB	9/28/05
Drum Sampling	D0592-SOLID	9/20/05	Solid	SGS	VOC, SVOC, TCLP (Exc-Pest/Herb)	
Drum Sampling	D0593-SOLID	9/20/05	Solid	SGS	PCB	9/28/05
Drum Sampling	D0593-SOLID	9/20/05	Solid	SGS	VOC, SVOC, TCLP (Exc-Pest/Herb)	
Drum Sampling	D0594-SOLID	9/20/05	Solid	SGS	PCB	9/28/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\09-05 CD Monthly\Tracking Logs\Tracking.xls TABLE 11-1

TABLE 11-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Drum Sampling	D0594-SOLID	9/20/05	Solid	SGS	VOC, SVOC, TCLP (Exc-Pest/Herb)	
Drum Sampling	D0595-SOLID	9/20/05	Solid	SGS	PCB	9/28/05
Drum Sampling	D0595-SOLID	9/20/05	Solid	SGS	VOC, SVOC, TCLP (Exc-Pest/Herb)	
Drum Sampling	D0596-SOLID	9/20/05	Solid	SGS	PCB	9/28/05
Drum Sampling	D0596-SOLID	9/20/05	Solid	SGS	VOC, SVOC, TCLP (Exc-Pest/Herb)	
Drum Sampling	D0597-LIQUID	8/31/05	Oil	SGS	PCB, VOC, SVOC, Flashpoint, Total Metals	9/20/05
Drum Sampling	D0597-SOLID	8/31/05	Solid	SGS	PCB, VOC, SVOC, TCLP	9/20/05
Drum Sampling	D0598-LIQUID	8/31/05	Water	SGS	PCB	9/20/05
Drum Sampling	D0598-SOLID	8/31/05	Solid	SGS	PCB, VOC, SVOC, TCLP	9/20/05
Drum Sampling	D0599-SOLID	8/31/05	Solid	SGS	PCB, VOC, SVOC, TCLP	9/20/05
Drum Sampling	D0600-SOLID	8/30/05	Soil	SGS	PCB, VOC, SVOC, TCLP	9/20/05
Drum Sampling	NSAII-DRUM-DUP-1 (D0562-O)	8/30/05	Soil	SGS	PCB, VOC, SVOC, TCLP	9/20/05
Top Soil Sampling	NSAII-TOPSOIL-1	8/24/05	Soil	SGS	PCB, VOC, SVOC, Metals	9/16/05

Note:

1. Field duplicate sample locations are presented in parenthesis.

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	A1913-O	A2523-LIQUID	A2524-LIQUID	A2524-O	D0561-LIQUID	D0561-SOLID	D0562-O	D0563-LIQUID
Parameter	Date Collected:	08/31/05	08/31/05	08/31/05	08/31/05	08/31/05	08/31/05	08/30/05	08/31/05
Volatile Organi	cs								•
1,1,2-Trichloroe	thane	ND(5.0)	ND(100)	1400	ND(1200)	NA	ND(130)	ND(6200) [ND(62000)]	410 J
Ethylbenzene		8.3	ND(100)	ND(1200)	ND(1200)	NA	ND(130)	ND(6200) [ND(62000)]	ND(1800)
Tetrachloroethe	ne	ND(5.0)	ND(100)	ND(1200)	ND(1200)	NA	ND(130)	ND(6200) [ND(62000)]	ND(1800)
Toluene		8.8	ND(100)	ND(1200)	ND(1200)	NA	97 J	ND(6200) [ND(62000)]	ND(1800)
Trichloroethene		19	110	100000	42000	NA	8400	270000 [160000]	37000
Xylenes (total)		31	ND(100)	ND(1200)	ND(1200)	NA	130	ND(6200) [ND(62000)]	ND(1800)
PCBs									
Aroclor-1254		740	190	760000	400000	390	65000	380000 [430000]	780000
Total PCBs		740	190	760000	400000	390	65000	380000 [430000]	780000
Semivolatile O	rganics								•
1,2,4-Trichlorob	enzene	ND(5100)	ND(2100)	ND(80000)	ND(610000)	NA	490 J	ND(320000) [ND(490000)]	ND(86000)
2-Methylnaphtha	alene	ND(5100)	ND(2100)	ND(80000)	ND(610000)	NA	ND(1600)	ND(320000) [ND(490000)]	ND(86000)
Anthracene		ND(5100)	ND(2100)	ND(80000)	ND(610000)	NA	ND(1600)	ND(320000) [ND(490000)]	ND(86000)
Fluorene		ND(5100)	ND(2100)	ND(80000)	ND(610000)	NA	ND(1600)	ND(320000) [ND(490000)]	ND(86000)
Naphthalene		ND(5100)	660 J	ND(80000)	ND(610000)	NA	ND(1600)	ND(320000) [ND(490000)]	ND(86000)
Phenanthrene		ND(5100)	540 J	ND(80000)	ND(610000)	NA	ND(1600)	ND(320000) [ND(490000)]	ND(86000)
Pyrene		ND(5100)	430 J	ND(80000)	ND(610000)	NA	ND(1600)	ND(320000) [ND(490000)]	ND(86000)
Inorganics									
Arsenic		NA	0.580 B	ND(0.750)	NA	NA	NA	NA	0.370 B
Barium		NA	10.0	0.300	NA	NA	NA	NA	2.00
Cadmium		NA	0.0670 B	ND(0.150)	NA	NA	NA	NA	0.130 B
Chromium		NA	2.60	0.760	NA	NA	NA	NA	5.20
Lead		NA	14.0	3.50	NA	NA	NA	NA	9.80
Mercury		NA	1.40	0.240	NA	NA	NA	NA	1.20
Selenium		NA	0.870 B	1.30 B	NA	NA	NA	NA	1.60 B
Silver		NA	0.200 B	0.180 B	NA	NA	NA	NA	0.200 B
Conventionals									
Flash Point (°F))	NA	>180	>180	NA	NA	NA	NA	>180

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Parameter	Sample ID: Date Collected:	D0563-SOLID 08/31/05	D0564-LIQUID 08/31/05	D0564-SOLID 08/31/05	D0577-LIQUID 08/30/05	D0577-SOLID 08/30/05	D0581-LIQUID 09/22/05	D0582-LIQUID 09/22/05	D0597-LIQUID 08/31/05	D0597-SOLID 08/31/05
Volatile Organi	cs									
1,1,2-Trichloroet	hane	100 J	NA	ND(120)	ND(1000)	19 J	NA	NA	ND(10)	ND(5.2)
Ethylbenzene		ND(550)	NA	ND(120)	ND(1000)	ND(28)	NA	NA	30	6.0
Tetrachloroether	ne	ND(550)	NA	ND(120)	ND(1000)	ND(28)	NA	NA	ND(10)	ND(5.2)
Toluene		62 J	NA	ND(120)	ND(1000)	ND(28)	NA	NA	30	6.3
Trichloroethene		8600	NA	8400	13000	2500	NA	NA	370	32
Xylenes (total)		200 J	NA	ND(120)	ND(1000)	ND(28)	NA	NA	110	22
PCBs										
Aroclor-1254		150000	65	140000	530000	31000	2.5	2.3	10	170
Total PCBs		150000	65	140000	530000	31000	2.5	2.3	10	170
Semivolatile O	rganics									
1,2,4-Trichlorobe	enzene	620 J	NA	220 J	ND(150000)	620 J	NA	NA	ND(2700)	ND(190)
2-Methylnaphtha	lene	ND(1800)	NA	ND(1300)	ND(150000)	ND(2000)	NA	NA	1900 J	330
Anthracene		ND(1800)	NA	ND(1300)	ND(150000)	ND(2000)	NA	NA	ND(2700)	20 J
Fluorene		ND(1800)	NA	ND(1300)	ND(150000)	ND(2000)	NA	NA	ND(2700)	27 J
Naphthalene		ND(1800)	NA	ND(1300)	ND(150000)	ND(2000)	NA	NA	640 J	96 J
Phenanthrene		ND(1800)	NA	ND(1300)	ND(150000)	ND(2000)	NA	NA	500 J	93 J
Pyrene		ND(1800)	NA	ND(1300)	ND(150000)	ND(2000)	NA	NA	440 J	77 J
Inorganics										
Arsenic		NA	NA	NA	ND(0.750)	NA	NA	NA	1.00	NA
Barium		NA	NA	NA	2.00	NA	NA	NA	0.680	NA
Cadmium		NA	NA	NA	0.170	NA	NA	NA	0.0950 B	NA
Chromium		NA	NA	NA	15.0	NA	NA	NA	0.750	NA
Lead		NA	NA	NA	21.0	NA	NA	NA	16.0	NA
Mercury		NA	NA	NA	5.00	NA	NA	NA	0.320	NA
Selenium		NA	NA	NA	1.40 B	NA	NA	NA	1.10 B	NA
Silver		NA	NA	NA	0.260 B	NA	NA	NA	0.380 B	NA
Conventionals										
Flash Point (°F)		NA	NA	NA	>180	NA	NA	NA	>180	NA

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Parameter Da Volatile Organics 1,1,2-Trichloroethane	ate Collected:	08/31/05			D0600-SOLID	DO581-SOLID	DO582-SOLID	DO583-SOLID	DO584-SOLID	DO585-SOLID
			08/31/05	08/31/05	08/30/05	09/21/05	09/21/05	09/21/05	09/21/05	09/20/05
1,1,2-Trichloroethane										
	е	NA	ND(600)	ND(1600)	ND(28)	NA	NA	NA	NA	NA
Ethylbenzene		NA	ND(600)	ND(1600)	ND(28)	NA	NA	NA	NA	NA
Tetrachloroethene		NA	220 J	ND(1600)	ND(28)	NA	NA	NA	NA	NA
Toluene		NA	240 J	ND(1600)	ND(28)	NA	NA	NA	NA	NA
Trichloroethene		NA	7800	16000	170	NA	NA	NA	NA	NA
Xylenes (total)		NA	140 J	ND(1600)	190	NA	NA	NA	NA	NA
PCBs										
Aroclor-1254		3.2	34000	47000	65000	88000	21000	420000	340000	3000
Total PCBs		3.2	34000	47000	65000	88000	21000	420000	340000	3000
Semivolatile Organ	ics									
1,2,4-Trichlorobenze	ene	NA	3800	2800	ND(4000)	NA	NA	NA	NA	NA
2-Methylnaphthalene)	NA	ND(1200)	ND(1500)	ND(4000)	NA	NA	NA	NA	NA
Anthracene		NA	ND(1200)	ND(1500)	ND(4000)	NA	NA	NA	NA	NA
Fluorene		NA	ND(1200)	ND(1500)	ND(4000)	NA	NA	NA	NA	NA
Naphthalene		NA	ND(1200)	ND(1500)	ND(4000)	NA	NA	NA	NA	NA
Phenanthrene		NA	ND(1200)	ND(1500)	ND(4000)	NA	NA	NA	NA	NA
Pyrene		NA	ND(1200)	ND(1500)	ND(4000)	NA	NA	NA	NA	NA
Inorganics										
Arsenic		NA	NA	NA	NA	NA	NA	NA	NA	NA
Barium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA	NA	NA
Mercury		NA	NA	NA	NA	NA	NA	NA	NA	NA
Selenium	_	NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA	NA	NA
Conventionals							_			
Flash Point (°F)		NA	NA	NA	NA	NA	NA	NA	NA	NA

DRUM SAMPLING **NEWELL STREET AREA II**

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	Sample ID:	DO586-SOLID	DO591-SOLID	DO592-SOLID	DO593-SOLID	DO594-SOLID	DO595-SOLID	DO596-SOLID
Parameter	Date Collected:	09/21/05	09/21/05	09/20/05	09/20/05	09/20/05	09/20/05	09/20/05
Volatile Organ	nics							
1,1,2-Trichloro	ethane	NA						
Ethylbenzene		NA						
Tetrachloroeth	ene	NA						
Toluene		NA						
Trichloroethene	е	NA						
Xylenes (total)		NA						
PCBs								
Aroclor-1254		12000	12000	75000	1200	430000	84000	4400
Total PCBs		12000	12000	75000	1200	430000	84000	4400
Semivolatile (Organics							
1,2,4-Trichloro	benzene	NA						
2-Methylnaphth	nalene	NA						
Anthracene		NA						
Fluorene		NA						
Naphthalene		NA						
Phenanthrene		NA						
Pyrene		NA						
Inorganics								
Arsenic		NA						
Barium		NA						
Cadmium		NA						
Chromium		NA						
Lead		NA						
Mercury		NA						
Selenium	_	NA						
Silver		NA						
Conventional	S							
Flash Point (°I	=)	NA						

Notes:

- Samples were collected by ONYX Environmental Services, and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, semivolatiles, metals, flash point, and TCLP constituents.
- Please refer to Table 11-3 for a summary of TCLP constituents.
- NA Not Analyzed.
- ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- Field duplicate sample results are presented in brackets.
- Only those constituents detected in one or more samples are summarized.
- Solid matrix samples are presented in dry weight.

Data Qualifiers:

Organics (volatiles, PCBs, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Parameter	Sample ID: Date Collected:	TCLP Regulatory Limits	A1913-O 8/31/2005	A2524-O 8/31/2005	D0561-SOLID 8/31/2005	D0562-O 8/30/2005	D0563-SOLID 8/31/2005	D0564-SOLID 8/31/2005	D0577-SOLID 8/30/2005
Volatile Organics	Date Conceteu.	Lillits	0/31/2003	0/31/2003	0/31/2003	0/30/2003	0/31/2003	0/31/2003	0/30/2003
1.1-Dichloroethene		0.7	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0) [ND(5.0)]	ND(5.0)	ND(5.0)	ND(5.0)
1.2-Dichloroethane		0.5	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0) [ND(5.0)]	ND(5.0)	ND(5.0)	ND(5.0)
2-Butanone		200	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0) [ND(5.0)]	ND(5.0)	ND(5.0)	ND(5.0)
Benzene		0.5	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0) [ND(5.0)]	ND(5.0)	ND(5.0)	ND(5.0)
Carbon Tetrachloride		0.5	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0) [ND(5.0)]	ND(5.0)	ND(5.0)	ND(5.0)
Chlorobenzene		100	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0) [ND(5.0)]	ND(5.0)	ND(5.0)	ND(5.0)
Chloroform		6	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0) [ND(5.0)]	ND(5.0)	ND(5.0)	ND(5.0)
Tetrachloroethene		0.7	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0) [ND(5.0)]	ND(5.0)	ND(5.0)	ND(5.0)
Trichloroethene		0.5	19	320	52	230 [190]	93	84	140
Vinyl Chloride		0.2	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0) [ND(5.0)]	ND(5.0)	ND(5.0)	ND(5.0)
Semivolatile Organics			, ,	` '	, , ,	, , , , , , , , , , , , , , , , , , , ,	, ,	` ` '	, ,
1.4-Dichlorobenzene		7.5	ND(0.050)	ND(0.050)	0.075	0.0038 J [ND(0.050)]	0.015 J	ND(0.050)	ND(0.050)
2,4,5-Trichlorophenol		400	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	ND(0.050)
2,4,6-Trichlorophenol		2	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	ND(0.050)
2,4-Dinitrotoluene		0.13	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	ND(0.050)
Cresol		200	ND(0.050)	0.0064 J	0.026 J	0.022 J [ND(0.050)]	0.57	ND(0.050)	ND(0.050)
Hexachlorobenzene		0.13	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobutadiene		0.5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	ND(0.050)
Hexachloroethane		3	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	ND(0.050)
Nitrobenzene		2	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	ND(0.050)
Pentachlorophenol		100	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	ND(0.050)
Pyridine		5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050) [ND(0.050)]	ND(0.050)	ND(0.050)	0.49
Inorganics									
Arsenic		5	ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100) [ND(0.100)]	0.00510 B	ND(0.100)	ND(0.100)
Barium		100	0.260	0.400	0.770	0.0990 B [0.0650 B]	0.230	0.660	0.540
Cadmium		1	0.00570 B	0.0100 B	0.0230	0.00600 B [0.00410 B]	0.0330	0.0870	0.0360
Chromium		5	0.00540 B	0.00290 B	0.0110 B	0.00350 B [0.00220 B]	0.0120 B	0.00400 B	0.00420 B
Lead		5	0.180	1.40	16.0	0.660 [0.460]	15.0	3.20	7.40
Mercury		0.2	0.000200 B	ND(0.00200)	ND(0.00200)	0.000130 B [0.000150 B]	0.000110 B	ND(0.00200)	ND(0.00200)
Selenium		1	0.0100 B	0.00760 B	0.00900 B	0.0120 B [0.00800 B]	0.00970 B	0.00600 B	0.00740 B
Silver		5	ND(0.0200)	ND(0.0200)	ND(0.0200)	ND(0.0200) [ND(0.0200)]	ND(0.0200)	ND(0.0200)	ND(0.0200)

DRUM SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	TCLP				
Sample	e ID: Regulatory	D0597-SOLID	D0598-SOLID	D0599-SOLID	D0600-SOLID
Parameter Date Collect	ted: Limits	8/31/2005	8/31/2005	8/31/2005	8/30/2005
Volatile Organics					
1,1-Dichloroethene	0.7	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
1,2-Dichloroethane	0.5	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
2-Butanone	200	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
Benzene	0.5	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
Carbon Tetrachloride	0.5	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
Chlorobenzene	100	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
Chloroform	6	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
Tetrachloroethene	0.7	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
Trichloroethene	0.5	27	110	140	130
Vinyl Chloride	0.2	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
Semivolatile Organics					
1,4-Dichlorobenzene	7.5	ND(0.050)	0.052	0.064	ND(0.050)
2,4,5-Trichlorophenol	400	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
2,4,6-Trichlorophenol	2	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
2,4-Dinitrotoluene	0.13	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Cresol	200	ND(0.050)	0.029 J	0.24	ND(0.050)
Hexachlorobenzene	0.13	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobutadiene	0.5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachloroethane	3	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Nitrobenzene	2	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Pentachlorophenol	100	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Pyridine	5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Inorganics					
Arsenic	5	ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100)
Barium	100	0.190	0.690	0.130	0.0830 B
Cadmium	1	0.00830 B	0.0480	0.0290	0.190
Chromium	5	0.00500 B	0.00550 B	0.00600 B	0.00900 B
Lead	5	0.120	1.20	4.40	2.80
Mercury	0.2	ND(0.00200)	ND(0.00200)	ND(0.00200)	0.00170 B
Selenium	1	0.00990 B	0.00950 B	0.00640 B	0.0120 B
Silver	5	ND(0.0200)	ND(0.0200)	ND(0.0200)	ND(0.0200)

Notes:

- Samples were collected by ONYX Environmental Services, and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, semivolatiles, metals, flashpoint, and TCLP constituents.
- 2. Please refer to Table 11-2 for a summary of PCBs, volatiles, semivolatiles and flashpoint.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- Field duplicate sample results are presented in brackets.
- Shading indicates that value exceeds the TCLP Regulatory Limits.

Data Qualifiers:

Organics (volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TOP SOIL SAMPLING NEWELL STREET AREA II

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	NSAII-TOPSOIL-1
Parameter	Date Collected:	08/24/05
Volatile Organics		
None Detected		
PCBs		
None Detected		
Semivolatile Organics		
None Detected		
Inorganics		
Antimony		1.00 B
Arsenic		15.0
Barium		32.0
Beryllium		0.400 B
Cadmium		0.340 B
Chromium		7.10
Cobalt		8.80
Copper		11.0
Lead		8.10
Mercury		0.0240 B
Nickel		12.0
Thallium		0.980 B
Tin		1.50 B
Vanadium		11.0
Zinc		50.0

Notes:

- Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, and metals.
- 2. Only detected constituents are summarized.
- 3. -- Indicates that all constituents for the parameter group were not detected.

Data Qualifiers:

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

ITEM 12 FORMER OXBOW AREAS J & K (GECD420) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

Completed preparation of Final RD/RA Work Plan.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

Submitted Final RD/RA Work Plan to EPA (September 13, 2005).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

None

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

ITEM 13 HOUSATONIC RIVER AREA UPPER ½ MILE REACH (GECD800) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

On September 29, 2005, BBL (on GE's behalf) performed a round of water column monitoring at nine locations along the Housatonic River (discussed further in Items 14 and 15 below). This sampling was performed during a storm event. As such, the sampling at two of these locations also served as storm event sampling for the ½ Mile Reach of the river. These two locations were: (1) Lyman Street Bridge (Location 4), situated just downstream of the ½ Mile Reach (also discussed in Item 14); and (2) Newell Street Bridge (Location 2), situated just upstream of the ½ Mile Reach (also discussed in Item 15). Composite grab samples were collected for analysis of PCBs (total – filtered and unfiltered), TSS, POC, and chlorophyll-a, as identified in Table 13-1. (Note that the samples identified in this table are also identified in Table 14-1 for Location 4 and in Table 15-1 for Location 2.)

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Submit draft trip reports detailing results of summer 2005 restored bank vegetation inspection and 2005 aquatic habitat structures inspection.
- Submit revised draft proposal for modification of restored bank vegetation monitoring program incorporating Trustee comments.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

- Seepage meter monitoring has not occurred due to increased water levels. EPA and GE have agreed to postpone installation of seepage meters until after the completion of EPA activities in the 1½ Mile Reach.
- Issues relating to total organic carbon (TOC) content in isolation layer remain unresolved. EPA and GE have agreed that GE's report on those issues will be deferred until after the seepage meter data are available. The Final Completion Report for Upper ½ Mile Reach Removal Action will be submitted following resolution of those issues.

ITEM 13 (cont'd) HOUSATONIC RIVER AREA UPPER ½ MILE REACH (GECD800) SEPTEMBER 2005

f. Proposed/Approved Work Plan Modifications

TABLE 13-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

HOUSATONIC RIVER - UPPER 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

	Sample						
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received	
Monthly Water Column Sampling/Upper 1/2 Mile Reach Storm Event Sampling	Location-2	9/29/05	Water	NEA	PCB, PCB(f), TSS, POC, Chlorophyll-A		
Monthly Water Column Sampling/Upper 1/2 Mile Reach Storm Event Sampling	Location-4	9/29/05	Water	NEA	PCB, PCB(f), TSS, POC, Chlorophyll-A		

Note:

1. (f) - Indicates filtered analysis requested.

ITEM 14 HOUSATONIC RIVER AREA 1½-MILE REACH (GECD820) SEPTEMBER 2005

(Note: This item is limited to activities conducted by GE and does not include EPA's work on the 1½-Mile Reach Removal Action)

a. Activities Undertaken/Completed

On September 29, 2005, BBL (on GE's behalf) performed a round of water column monitoring at nine locations along the Housatonic River between Coltsville, MA and Great Barrington, MA. Two of these locations are situated in the 1½-Mile Reach: Lyman Street Bridge (Location 4) and Pomeroy Avenue Bridge (Location 6A). A composite grab sample was collected at each location and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a, as identified in Table 14-1. (The other seven locations are discussed under Item 15 below.)

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue Housatonic River monthly water column monitoring.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

TABLE 14-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

	Sample						
Project Name	Field Sample ID	Date	Matrix Laboratory		Analyses	Received	
Monthly Water Column Sampling	Location-4	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/16/05	
Monthly Water Column Sampling/Upper 1/2 Mile Reach Storm Event Sampling	Location-4	9/29/05	Water	NEA	PCB, PCB (f), TSS, POC, Chlorophyll-A		
Monthly Water Column Sampling	Location-6A	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/16/05	
Monthly Water Column Sampling	Location-6A	9/29/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A		

Note:

1. (f) - Indicates filtered analysis requested.

TABLE 14-2 SAMPLE DATA RECEIVED DURING SEPTEMBER 2005

MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID	Location	Date Collected	Aroclor-1016, -1221, -1232, -1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	POC	TSS	Chlorophyll (a)
LOCATION-4	Lyman Street Bridge	8/30/2005	ND(0.0000220)	ND(0.0000220)	0.0000420 AF	0.0000370 AG	0.0000790	0.638	13.0	0.0026
LOCATION-6A	Pomeroy Ave. Bridge	8/30/2005	ND(0.0000220)	0.0000290 PE	0.000190 AF	0.000130 AG	0.0003490	1.28	22.4	0.0019

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc. and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).
- 2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

- AF Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- AG Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- PE Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

ITEM 15 HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) SEPTEMBER 2005

a. Activities Undertaken/Completed

- On September 29, 2005, BBL (on GE's behalf) performed a round of water column monitoring at nine locations along the Housatonic River between Coltsville and Great Barrington, MA. Two locations are situated in the 1½-Mile Reach of the Housatonic River and were discussed in Item 14. Of the remaining seven locations, two are located upstream of the 1½-Mile Reach: Hubbard Avenue Bridge (Location 1) and Newell Street Bridge (Location 2). The five remaining locations are situated in the Rest of the River: Holmes Road Bridge (Location 7); New Lenox Road Bridge (Location 9); Woods Pond Headwaters (Location 10); Schweitzer Bridge (Location 12); and Division Street Bridge (Location 13). Sampling activities were performed at all these locations on September 29, 2005 from downstream to upstream. Composite grab samples were collected at each location sampled and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a, as identified in Table 15-1.
- Completed routine maintenance activities at Woods Pond Dam.*
- Continued work on repairs to gate stem at Rising Pond Dam.*
- In conjunction with EPA, completed collection of cross-section (geometry) data for numerous transects located on the Housatonic River between Woods Pond Dam and Rising Pond Dam. These data will be used to expand EPA's current model of the Housatonic River from Woods Pond Dam downstream to Rising Pond Dam.*
- Performed maintenance of the biota consumption advisory signs posted along the Housatonic River. Missing signs were noted and replaced.*

b. Sampling/Test Results

See attached tables.

c. Work Plans/Reports/Documents Submitted

- Submitted Interim Media Protection Goals (IMPG) Proposal (September 6, 2005).*
- Submitted letter report summarizing the soil PCB data collected during 2005 from three properties located adjacent to the Housatonic River in the reach between Woods Pond and Rising Pond (Reach 7) (September 12, 2005).

ITEM 15 (cont'd) HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) SEPTEMBER 2005

c. Work Plans/Reports/Documents Submitted (cont'd)

- Submitted report from Academy of Natural Sciences of Philadelphia (on GE's behalf) on 2004 fish sampling and 2005 benthic insect sampling in Connecticut portion of River (September 13, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue Housatonic River monthly water column monitoring.
- Continue work on repairs to gate stem at Rising Pond Dam.*

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

TABLE 15-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Monthly Water Column Sampling	HR-D1 (Location-12)	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/16/05
Monthly Water Column Sampling	HR-D1 (Location-12)	9/29/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-1	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/16/05
Monthly Water Column Sampling	Location-1	9/29/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-10	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/16/05
Monthly Water Column Sampling	Location-10	9/29/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-12	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/16/05
Monthly Water Column Sampling	Location-12	9/29/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-13	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/16/05
Monthly Water Column Sampling	Location-13	9/29/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling/Upper 1/2 Mile Reach Storm Event Sampling	Location-2	9/29/05	Water	NEA	PCB, PCB (f), TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-2	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/16/05
Monthly Water Column Sampling	Location-7	9/29/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-7	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/16/05
Monthly Water Column Sampling	Location-9	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	9/16/05
Monthly Water Column Sampling	Location-9	9/29/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	

Notes:

^{1.} Field duplicate sample locations are presented in parenthesis.

^{2. (}f) - Indicates filtered analysis requested.

TABLE 15-2 SAMPLE DATA RECEIVED DURING SEPTEMBER 2005

MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD. MASSACHUSETTS

(Results are presented in parts per million, ppm)

		Date	Aroclor-1016, -1221,							
Sample ID	Location	Collected	-1232, -1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	POC	TSS	Chlorophyll (a)
LOCATION-1	Hubbard Avenue Bridge	8/30/2005	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.387	2.60	0.0014
LOCATION-2	Newell Street Bridge	8/30/2005	ND(0.0000220)	ND(0.0000220)	0.0000230 AF	0.0000230 AG	0.0000460	0.830	13.7	0.0030
LOCATION-7	Holmes Road Bridge	8/30/2005	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.000290 AG	0.000290	0.923	24.0	0.0065
LOCATION-9	New Lenox Road Bridge	8/30/2005	ND(0.0000220)	0.0000250 PE	0.0000340 AF	0.0000530 AG	0.000112	1.39	4.60	0.0028
LOCATION-10	Headwaters of Woods Pond	8/30/2005	ND(0.0000220)	0.0000250 PE	0.0000350 AF	0.0000320 AG	0.0000920	0.312	2.00	0.0083
LOCATION-12	Schweitzer Bridge	8/30/2005	ND(0.0000220)	ND(0.0000220)	0.0000310 AF	0.0000370 AG	0.0000680	0.325	1.80	0.0176
		8/30/2005	[ND(0.0000220)]	[0.0000330 PE]	[0.0000400 AF]	[0.0000470 AG]	[0.000120]	[0.391]	[2.20]	[0.0175]
LOCATION-13	Division Street Bridge	8/30/2005	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.241	1.50	0.0068

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc. and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).
- 2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. Field duplicate sample results are presented in brackets.

Data Qualifiers:

- AF Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- AG Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- PE Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs.

present in a sample that has undergone environmental alteration.

ITEMS 16 & 17 HOUSATONIC RIVER FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1½-MILE REACH (GECD710 AND GECD720) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Continued remediation at the Group 3A, 3B, and 3D floodplain properties.
- Initiated remediation at the Group 3C floodplain properties.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue remediation at Group 3A, 3B, 3C, and 3D properties.
- Select Remediation Contractor for Phase 4 properties.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

GE will discuss with EPA a schedule for pre-certification inspection and submittal of a Final Completion Report for Phase 1 and Phase 2 properties and ERE for City property in Phase 2.

f. Proposed/Approved Work Plan Modifications

ITEM 18 HOUSATONIC RIVER FLOODPLAIN CURRENT RESIDENTIAL PROPERTIES DOWNSTREAM OF CONFLUENCE (ACTUAL/POTENTIAL LAWNS) (GECD730) SEPTEMBER 2005

a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

None

e. General Progress/Unresolved Issues/Potential Schedule Impacts

Awaiting EPA approval of GE's Pre-Design Investigation Work Plan (submitted on February 26, 2002). (Based on discussions with EPA, it appears that this pre-design sampling will be deferred for some period of time.)*

f. Proposed/Approved Work Plan Modifications

ITEM 20 OTHER AREAS SILVER LAKE AREA (GECD600) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Performed water level monitoring at Silver Lake staff gauge and monitoring wells surrounding the lake (see Item 21.a).
- Continued performance of Stage 3 of the Bench-Scale study for sediments in accordance with the Bench-Scale Study Work Plan.
- Conducted monthly bench-scale overburden water sampling for PCB analysis, as identified in Table 20-1.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled Activities (next six weeks)

- Continue water level monitoring at well pairs surrounding the lake.
- Continue Bench-Scale study for sediments in accordance with the Bench-Scale Study Work Plan.
- Initiate supplemental soil sampling at certain properties adjacent to lake in accordance with GE's Second Interim Pre-Design Investigation Report for Soils Adjacent to Silver Lake, as conditionally approved by EPA on August 30, 2005.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

TABLE 20-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Silver Lake Bench Scale Study	SL-BS-D10-2	9/26/05	Water	NEA	PCB	
Silver Lake Bench Scale Study	SL-BS-D11-2	9/26/05	Water	NEA	PCB	
Silver Lake Bench Scale Study	SL-BS-D12-2	9/26/05	Water	NEA	PCB	
Silver Lake Bench Scale Study	SL-BS-D14-2	9/26/05	Water	NEA	PCB	
Silver Lake Bench Scale Study	SL-BS-D16-2	9/26/05	Water	NEA	PCB	

ITEM 21 GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

General

- Conducted routine groundwater elevation and NAPL monitoring.
- Conducted the semi-annual bailing round at all wells found to contain NAPL during the prior year.
- Performed inspections of wells to be sampled in fall 2005 that have not been otherwise monitored recently.
- Performed minor repairs to certain wells, as identified during well inspections.

East Street Area 1-North and South:

- Continued automated groundwater and NAPL pumping at North Side and South Side Caissons. Approximately 4 gallons of LNAPL were recovered from the North Side Caisson, and approximately 9 gallons of LNAPL were recovered from the South Side Caisson in September.
- Collected approximately 5.016 liters (1.324 gallons) of LNAPL from wells in this area in September.

East Street Area 2-South:

- Continued automated groundwater and LNAPL removal activities. A total of approximately 2,629,649 gallons of groundwater was recovered from pumping systems 64R, 64S, 64V, 64X, RW-1(S), RW-1(X), and RW-2(X). In addition, approximately 749 gallons of LNAPL were removed from pumping systems 64R, 64V, RW-1(S), RW-1(X), 64X, and 64S Caisson.
- Continued automated DNAPL removal activities. Removed approximately 40 gallons of DNAPL from pumping system RW-3(X).
- Continued routine well monitoring and manual NAPL removal activities. Approximately 16.442 liters (4.338 gallons) of LNAPL and 3.214 liters (0.848 gallon) of DNAPL were removed from wells in this area during September.
- Treated/discharged 2,873,230 gallons of water through 64G Groundwater Treatment Facility.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) SEPTEMBER 2005

a. Activities Undertaken/Completed (cont'd)

East Street Area 2-North:

 Continued routine well monitoring and NAPL removal activities. Approximately 1.043 liters (0.275 gallon) of LNAPL and 0.056 liter (0.015 gallon) of DNAPL were removed from wells in this area during September.

20s, 30s, and 40s Complexes:

- Continued routine well monitoring and manual NAPL removal activities. Approximately 0.019 liter (0.005 gallon) of LNAPL was removed from wells in this area during September.

Lyman Street Area:

- Continued automated groundwater and NAPL removal activities. A total of approximately 198,753 gallons of groundwater was recovered from pumping systems RW-1R, RW-2, and RW-3. No LNAPL was removed from the automated recovery system during September.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 1.647 liters (0.435 gallon) of LNAPL and 4.967 liters (1.311 gallons) of DNAPL were removed from wells in this area during September.

Newell Street Area II:

- Continued routine well monitoring and manual NAPL removal activities. Approximately 1.483 liters (0.391 gallon) of LNAPL and 2.630 liter (0.694 gallon) of DNAPL were removed from wells in this area during September.
- Collected samples of DNAPL from two wells in this area (MW-1S and N2SC-8) for flashpoint analysis, as identified in Table 21-1.

Silver Lake Area:

- Continued routine monitoring of monitoring well pairs around lake and staff gauge in lake.

b. Sampling/Test Results Received

See attached tables.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) SEPTEMBER 2005

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine monitoring activities.
- Conduct fall 2005 groundwater elevation/NAPL monitoring event.
- Initiate fall 2005 interim groundwater quality monitoring activities.
- Following EPA approval of proposed activities contained in GE's Spring 2005 NAPL Monitoring Report (submitted on August 30, 2005), GE will:
 - Install LNAPL monitoring wells GMA1-22, GMA1-23, and GMA1-24 in East Street Area 2-South.
 - Remove oil skimmer from well 40R and place it in well GMA1-17W.
 - Decommission 31 wells at the Lyman Street Area.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

The automated DNAPL recovery systems for Newell Street Area II were shut down on July 25, 2005 pursuant to EPA approval of GE's June 7 and 23, 2005 proposals. Each system has been disconnected from the associated recovery wells and the System 1 control shed has been removed. Pipelines scheduled for replacement have been drained and removed. Two replacement recovery wells (N2SC-1I(R) and N2SC-3I(R)) have been installed and developed. The upgraded recovery system will be completed and activated approximately 2 to 3 months after completion of the EPA-approved soil remediation activities in this area.

f. Proposed/Approved Work Plan Modifications

Several program modifications were proposed in the Spring 2005 NAPL Monitoring Report (see Item 21.d above).

TABLE 21-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

GROUNDWATER MANAGEMENT AREA 1 GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
DNAPL Sampling	MW-1S-DNAPL-1	9/7/05	DNAPL	SGS	Flashpoint	9/13/05
DNAPL Sampling	N2SC-08-DNAPL-1	9/7/05	DNAPL	SGS	Flashpoint	9/13/05

TABLE 21-2 DATA RECEIVED DURING SEPTEMBER 2005

DNAPL SAMPLING GROUNDWATER MANAGEMENT AREA 1 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Parameter	Sample ID: Date Collected:	MW-1S-DNAPL-1 09/07/05	N2SC-08-DNAPL-1 09/07/05					
Conventional Parameters								
Flash Point (°F)		>180	>180					

Note:

1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of flashpoint.

AUTOMATED LNAPL & GROUNDWATER RECOVERY SYSTEMS MONTHLY SUMMARY EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

		Val. I NADI		
		Vol. LNAPL Collected	Vol. Water Recovered	Percent
Caisson	Month	(gallon)	(gallon)	Downtime
Northside	September 2004	4.0	24,300	
	October 2004	0.0	25,000	0.30
	November 2004	0.0	18,300	0.31 - Power Outage
	December 2004	35.0	32,200	
	January 2005	2.0	32,600	
	February 2005	3.0	24,700	
	March 2005	1.0	34,700	
	April 2005	0.0	37,100	1.72 - Power Outage
	May 2005	20.0	16,300	
	June 2005	22.0	21,000	8.57 - Maintenance
	June 2005	0.0	16,600	
	July 2005	1.0	16,000	
	September 2005	4.0	10,400	4.91
Southside	September 2004	0.0	102,700	
	October 2004	2.0	82,700	0.30
	November 2004	2.0	69,600	0.31 - Power Outage
	December 2005	4.0	98,300	
	January 2005	1.0	77,400	
	February 2005	1.0	76,500	
	March 2005	1.0	98,200	
	April 2005	0.0	99,900	1.72 - Power Outage
	May 2005	0.0	86,600	
	June 2005	2.0	100,300	
	July 2005	0.0	45,800	
	August 2005	1.0	37,100	
	September 2005	9.0	56,300	4.91

TABLE 21-4 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL

EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

		Depth	Depth to	LNAPL	LNAPL	September 2005			
Well	Date	to Water	LNAPL	Thickness	Removed	Removal			
Name		(ft BMP)	(ft BMP)	(feet)	(liters)	(liters)			
GMA 1 - East Street Area 1 - North									
49	9/28/2005	6.80	6.78	0.02	0.074	0.074			
105	9/28/2005	10.17	8.25	1.92	1.185	1.185			
106	9/28/2005	12.44	10.30	2.14	1.320	1.320			
131	9/28/2005	5.72	5.65	0.07	0.024	0.024			
GMA 1 - East S	Street Area 1 -	South							
34	9/28/2005	7.50	7.45	0.05	0.031	0.031			
35	9/28/2005	7.05	7.02	0.03	0.019	0.019			
45	9/28/2005	9.00	6.80	2.20	1.357	1.357			
72	9/28/2005	8.62	8.09	0.53	0.377	0.377			
76	9/28/2005	8.91	7.89	1.02	0.629	0.629			

Total LNAPL Removal East Street Area 1 - North for September 2005: 2.603 liters

0.687 gallons

Total LNAPL Removal East Street Area 1 - South for September 2005: 2.413 liters

0.637 gallons

Total Manual LNAPL Removal for September 2005: 5.016 liters

1.324 gallons

Note:

1. ft BMP - feet Below Measuring Point.

TABLE 21-5 ROUTINE WELL MONITORING EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	-	Thickness	-	Depth	Thickness	
Name	(feet)		(ft BMP)		(feet)	(ft BMP)	_		(feet)
GMA 1 - East S	treet Area 1 -	- North	,	,	,	,	,	, ,	,
49	999.90	9/28/2005	6.80	6.78	0.02		20.60	0.00	993.12
105	1002.85	9/28/2005	10.17	8.25	1.92		17.40	0.00	994.47
106	1004.06	9/28/2005	12.44	10.30	2.14		12.50	0.00	993.61
131	1001.18	9/28/2005	5.72	5.65	0.07		6.33	0.00	995.53
140	1000.30	9/28/2005	8.88		0.00		15.84	0.00	991.42
ES1-08	1000.85	9/28/2005	7.96		0.00		13.48	0.00	992.89
North Caisson	997.84	9/8/2005	17.40	Р	< 0.01		19.80	0.00	980.44
North Caisson	997.84	9/14/2005	13.25	13.23	0.02		19.80	0.00	984.61
North Caisson	997.84	9/23/2005	18.50	18.49	0.01		19.80	0.00	979.35
North Caisson	997.84	9/28/2005	18.40	18.38	0.02		19.80	0.00	979.46
GMA 1 - East S	treet Area 1	- South							
31R	1,000.23	9/19/2005	10.61		0.00		15.05	0.00	989.62
33	999.50	9/28/2005	8.98		0.00	-	21.36	0.00	990.52
34	999.90	9/28/2005	7.50	7.45	0.05		21.02	0.00	992.45
35	1000.15	9/28/2005	7.05	7.02	0.03		9.60	0.00	993.13
45	1000.10	9/28/2005	9.00	6.80	2.20		27.40	0.00	993.15
72	1000.62	9/28/2005	8.62	8.09	0.53		21.95	0.00	992.49
72R	1000.92	9/19/2005	7.83		0.00		13.31	0.00	993.09
76	1000.45	9/28/2005	8.91	7.89	1.02		18.73	0.00	992.49
139R	986.91	9/16/2005	13.47		0.00		14.20	0.00	973.44
GMA1-6	1000.44	9/15/2005	8.87		0.00		15.09	0.00	991.57
South Caisson	1001.11	9/8/2005	12.60	12.55	0.05		15.00	0.00	988.56
South Caisson	1001.11	9/14/2005	14.32	14.25	0.07		15.00	0.00	986.86
South Caisson	1001.11	9/23/2005	14.30	14.29	0.01		15.00	0.00	986.82
South Caisson	1001.11	9/28/2005	14.53	14.50	0.03		15.00	0.00	986.61

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. P indicates that NAPL is present at a thickness < 0.01 feet, the corresponding thickness is recorded as such.

TABLE 21-6 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

Pocovory		Oil	Water	
Recovery System		Collected	Recovered	Percent
-	Manth			
Location	Month	(gallon)	(gallon)	Downtime
40R	September 2004	0		0.20 Dawer Outers
	October 2004	0		0.30 - Power Outage
	November 2004	0		0.31 - Power Outage
	December 2004	0		
	January 2005	0		
	February 2005	0		
	March 2005	0		
	April 2005	0		1.72 - Power Outage
	May 2005	0		0.96 - Maintenance
	June 2005	0		0.36 - Power Outage
	July 2005	0		
	August 2005	0		
	September 2005	0		
64R	September 2004	350	675,600	
	October 2004	175	472,200	0.30 - Power Outage
	November 2004	150	566,100	0.31 - Power Outage
	December 2004	350	630,500	
	January 2005	575	357,900	
	February 2005	400	228,400	
	March 2005	175	292,400	
	April 2005	575	1,071,000	1.72 - Power Outage
	May 2005	550	931,300	0.96 - Maintenance
	June 2005	325	643,200	0.36 - Power Outage
	July 2005	225	260,800	
	August 2005	250	73,300	
	September 2005	50	10,200	4.91
64S System	September 2004	479	681,275	
,	October 2004	324	1,034,272	0.30 - Power Outage
	November 2004	625	902,053	0.31 - Power Outage
	December 2004	91	1,147,526	ŭ
	January 2005	75	844,225	
	February 2005	97	821,010	
	March 2005	282	905,525	
	April 2005	499	1,039,179	1.72 - Power Outage
	May 2005	300	660,761	0.96 - Maintenance
	June 2005	275	527,949	0.36 - Power Outage
	July 2005	10	330,937	
	August 2005	218	271,691	13.73 - Maintenance
	September 2005	321	172,650	4.91
	Gepterriber 2005	JZI	112,030	ا ت.۳

TABLE 21-6 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

Recovery		Oil	Water	
System		Collected	Recovered	Percent
Location	Month	(gallon)	(gallon)	Downtime
64V ¹	September 2004	1,170	1,385,900	
	October 2004	920	1,221,100	0.30 - Power Outage
	November 2004	551	1,108,200	0.31 - Power Outage
	December 2004	832	1,460,100	•
	January 2005	747	1,103,300	
	February 2005	622	1,095,400	
	March 2005	675	1,342,900	
	April 2005	785	1,221,000	1.72 - Power Outage
	May 2005	254	996,400	0.96 - Maintenance
	June 2005	515	1,177,700	0.36 - Power Outage
	July 2005	465	922,700	•
	August 2005	581	993,100	
	September 2005	349	714,700	4.91
64X	September 2004	51	518,400	
	October 2004	5	403,200	0.30 - Power Outage
	November 2004	10	388,800	0.31 - Power Outage
	December 2004	10	518,400	
	January 2005	5	388,800	
	February 2005	5	403,200	
	March 2005	5	532,800	
	April 2005	0	417,600	1.72 - Power Outage
	May 2005	0	374,400	0.96 - Maintenance
	June 2005	5	504,000	3.21 - Maint. & Power Outage
	July 2005	15	417,600	3.45 - Maintenance
	August 2005	20	489,600	
	September 2005	25	403,200	
RW-2(X)	September 2004	0	1,138,800	0.93
	October 2004	0	911,800	0.30 - Power Outage
	November 2004	0	836,300	0.31 - Power Outage
	December 2004	0	1,111,700	
	January 2005	0	822,500	
	February 2005	0	825,200	
	March 2005	0	1,019,600	
	April 2005	0	859,500	1.72 - Power Outage
	May 2005	0	730,600	0.96 - Maintenance
	June 2005	0	972,100	3.21 - Maint. & Power Outage
	July 2005	0	747,100	
	August 2005	0	982,100	
	September 2005	0	721,200	4.91

TABLE 21-6 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

Recovery		Oil	Water	
System		Collected	Recovered	Percent
Location	Month	(gallon)	(gallon)	Downtime
RW-1(S) ²	September 2004	159	914,647	9.72
(0)	October 2004	1	1,092,740	0.30 - Power Outage
	November 2004	0	977,271	0.31 - Power Outage
	December 2004	11	1,362,634	0.35 - Maintenance
	January 2005	50	998,655	
	February 2005	41	934,203	
	March 2005	43	1,117,949	
	April 2005	1	864,198	22.41 - Maint. & Power Outage
	May 2005	0	912,416	0.96 - Maintenance
	June 2005	0	1,107,860	0.36 - Power Outage
	July 2005	17	813,490	· ·
	August 2005	32	780,217	1.96 - Maintenance
	September 2005	4	527,699	4.91
RW-1(X)	September 2004	10	500,500	
, ,	October 2004	0	501,400	0.30 - Power Outage
	November 2004	0	402,900	0.31 - Power Outage
	December 2004	0	443,700	4.17 - Maintenance
	January 2005	0	389,000	
	February 2005	0	330,400	
	March 2005	0	399,300	
	April 2005	0	354,700	1.72 - Power Outage
	May 2005	0	233,700	0.96 - Maintenance
	June 2005	0	328,300	3.21 - Maint. & Power Outage
	July 2005	0	109,800	
	August 2005	0	142,000	
	September 2005	0	80,000	4.91
RW-3(X)	September 2004	67		
	October 2004	52		0.30 - Power Outage
	November 2004	46		0.31 - Power Outage
	December 2004	66		
	January 2005	53		
	February 2005	37		
	March 2005	64		4 TO D
	April 2005	53		1.72 - Power Outage
	May 2005	51		0.96 - Maintenance
	June 2005	62		0.36 - Power Outage
	July 2005	44		44.70 14 17
	August 2005	51		11.76 - Maintenance
	September 2005	40		

AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS September 2005

Recovery		Oil	Water	
System		Collected	Recovered	Percent
Location	Month	(gallon)	(gallon)	Downtime
•	Summary of 1	Total Automate		
	Water:	2,629,649	Gallons	
	LNAPL:	749	Gallons	
	DNAPL:	40	Gallons	

Notes:

- 1. The flow meter at recovery well 64V was reset in December 2004.
- 2. The flow meter at recovery well RW-1(S) was reset in February 2005.

WELL MONITORING AND RECOVERY OF LNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES **GROUNDWATER MANAGEMENT AREA 1**

CONSENT DECREE MONTHLY STATUS REPORT **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS** September 2005

		Depth	Depth to	LNAPL	LNAPL	September 2005
Well	Date	to Water	LNAPL	Thickness	Removed	Removal
Name		(ft BMP)	(ft BMP)	(feet)	(liters)	(liters)
20's Complex						
CC	9/27/2005	22.00	21.97	0.03	0.019	0.019
East Street Are		T				
05-N	9/27/2005	24.91	24.90	0.01	0.006	0.006
14-N	9/27/2005	24.80	23.96	0.84	0.518	0.518
16-N	9/27/2005	33.57	33.50	0.07	0.043	0.043
17-N	9/27/2005	33.92	33.17	0.75	0.463	0.463
23-N	9/27/2005	33.58	33.56	0.02	0.012	0.012
East Street Are	ea 2 - South					
02	9/26/2005	21.17	21.14	0.03	0.019	0.019
05	9/26/2005	17.21	17.18	0.03	0.019	0.019
13	9/26/2005	18.90	18.71	0.19	0.117	0.117
14	9/26/2005	19.40	18.74	0.66	0.407	0.407
25R	9/26/2005	24.60	22.92	1.68	1.036	1.036
26RR	9/27/2005	25.45	24.81	0.64	0.395	0.395
29	9/26/2005	21.15	19.38	1.77	1.092	1.092
30	9/26/2005	16.55	14.55	2.00	1.234	1.234
43	9/26/2005	16.09	16.06	0.03	0.019	0.019
47	9/26/2005	21.00	18.85	2.15	1.326	1.326
48	9/26/2005	19.20	16.82	2.38	1.468	1.468
50	9/26/2005	11.60	11.35	0.25	0.154	0.154
55	9/26/2005	19.60	17.50	2.10	1.296	1.296
58	9/26/2005	14.50	14.15	0.35	0.216	0.216
95-04	9/26/2005	17.92	15.82	2.10	0.731	0.731
95-05	9/26/2005	17.80	16.98	0.82	0.506	0.506
95-07	9/26/2005	23.60	21.20	2.40	0.836	0.836
GMA1-15	9/26/2005	17.30	16.25	1.05	0.648	0.648
GMA1-16	9/26/2005	14.97	14.34	0.63	0.389	0.389
GMA1-17E	9/12/2005	16.60	16.38	0.22	0.136	0.136
GMA1-17W	9/26/2005	22.58	17.30	5.28	3.258	3.258
	9/8/2005	12.15	11.65	0.50	0.308	
GMA1-19	9/16/2005	12.30	11.98	0.32	0.197	0.006
GIVIA 1-19	9/21/2005	12.30	11.95	0.35	0.216	0.006
	9/26/2005	12.30	12.10	0.20	0.123	
M-R	9/26/2005	21.53	21.41	0.12	0.074	0.074

Total LNAPL Removal East Street Area 2 - South for September 2005: 15.381 liters 4.058 gallons

Total LNAPL Removal East Street Area 2 - North for September 2005: 1.043 liters

0.275 gallons

Total LNAPL Removal 20's, 30's & 40's Complexs for September 2005: 0.019 liters

0.005 gallons

Total LNAPL Removal for September 2005: 16.442 liters 4.338 gallons

1. ft BMP - feet Below Measuring Point.

WELL MONITORING AND RECOVERY OF DNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

Well Name	Date	Depth to Water (ft BMP)	Depth to DNAPL (ft BMP)	DNAPL Thickness (feet)	DNAPL Removed (liters)	September 2005 Removal (liters)				
East Street Are	East Street Area 2 - North									
05-N	9/27/2005	24.91	27.41	0.09	0.056	0.056				
East Street Area 2 - South										
E2SC-03I	9/27/2005	10.50		5.12	3.159	3.159				

Total DNAPL Removal East Street Area 2 - South for September 2005: 3.159 liters

0.833 gallons

Total DNAPL Removal East Street Area 2 - North for September 2005: 0.056 liters

0.015 gallons

Total LNAPL Removal 20's, 30's & 40's Complexes for September 2005: 0.000 liters

0.000 gallons

Total DNAPL Removal for September 2005: 3.214 liters

Note: 0.848 gallons

1. ft BMP - feet Below Measuring Point.

TABLE 21-9 64G TREATMENT PLANT DISCHARGE DATA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

Date	Housatonic River Discharge (gallons)	Recharge Pond Discharge (gallons)	Total Discharge (gallons)
September 2004	5,075,190	248,505	5,323,695
October 2004	6,097,384	260,847	6,358,231
November 2004	5,521,300	180,462	5,701,762
December 2004	5,656,177	152,428	5,808,605
January 2005	5,650,380	112,791	5,763,171
February 2005	4,576,005	195,380	4,771,385
March 2005	5,005,313	235,153	5,240,466
April 2005	5,759,380	172,867	5,932,247
May 2005	4,962,650	288,751	5,251,401
June 2005	4,057,780	318,355	4,376,135
July 2005	3,212,250	389,015	3,601,265
August 2005	2,778,090	356,961	3,135,051
September 2005	2,537,520	335,710	2,873,230

After treatment, the majority of the water processed at GE's Building 64G groundwater treatment facility is discharged to the Housatonic River through NPDES permitted Outfall 005. However, as part of GE's overall efforts to contain NAPL within the site and to optimize NAPL recovery operations, a portion of the treated water discharged from the 64G facility is routed to GE's on-site recharge pond located in East Street Area 2-South.

	1								
	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
20's Complex	T	T					T	T	
CC	998.84	9/27/2005	22.00	21.97	0.03		27.20	0.00	976.87
EE	1,004.27	9/27/2005	26.65		0.00		33.65	0.00	977.62
FF	1,005.70	9/27/2005	26.68		0.00		32.74	0.00	979.02
II	1,007.26	9/27/2005	30.56	30.50	0.06		31.70	0.00	976.76
U	998.89	9/27/2005	22.96		0.00		26.56	0.00	975.93
30's Complex	1						ı	•	
95-15	986.38	9/12/2005	9.09		0.00		16.67	0.00	977.29
GMA1-10	984.86	9/12/2005	8.60		0.00		19.82	0.00	976.26
GMA1-12	992.26	9/12/2005	16.55		0.00		22.14	0.00	975.71
RF-02	982.43	9/12/2005	6.73		0.00		18.30	0.00	975.70
RF-03	985.40	9/12/2005	9.90		0.00		18.44	0.00	975.50
RF-03D	985.31	9/12/2005	8.60		0.00		36.00	0.00	976.71
RF-16	987.91	9/12/2005	10.35		0.00		20.73	0.00	977.56
40s Complex									
95-17	1,007.67	9/12/2005	24.45		0.00		28.32	0.00	983.22
RF-4	1,011.99	9/12/2005	17.30		0.00		23.95	0.00	994.69
East Street Area	2 - North								
05-N	1,009.23	9/27/2005	24.91	24.90	0.01	27.41	27.50	0.09	984.33
11-N	1,010.85	9/27/2005	33.38		0.00		25.70	0.00	977.47
14-N	1,010.53	9/27/2005	24.80	23.96	0.84		30.35	0.00	986.51
16-N	1,010.65	9/27/2005	33.57	33.50	0.07		37.41	0.00	977.15
17-N	1,010.49	9/27/2005	33.92	33.17	0.75		38.81	0.00	977.27
23-N	1,011.13	9/27/2005	33.58	33.56	0.02		38.30	0.00	977.57
24-N	1,010.50	9/27/2005	32.61		0.00		35.30	0.00	977.89
ES1-05	1,023.33	9/14/2005	41.62		0.00		44.27	0.00	981.71
ES1-27R	1,023.19	9/14/2005	10.55		0.00		19.15	0.00	1,012.64
East Street Area	2 - South								
02	995.64	9/26/2005	21.17	21.14	0.03		23.38	0.00	974.50
05	996.10	9/26/2005	17.21	17.18	0.03		23.44	0.00	978.92
09R	986.88	9/26/2005	14.70		0.00		19.58	0.00	972.18
13	990.88	9/26/2005	18.90	18.71	0.19		22.60	0.00	972.16
14	991.61	9/26/2005	19.40	18.74	0.66		25.68	0.00	972.82
19	983.59	9/8/2005	11.60		0.00		19.93	0.00	971.99
19	983.59	9/12/2005	11.73		0.00		19.90	0.00	971.86
19	983.59	9/21/2005	11.80		0.00		19.90	0.00	971.79
19	983.59	9/27/2005	11.74		0.00		19.90	0.00	971.85
25R	998.31	9/26/2005	24.60	22.92	1.68		30.80	0.00	975.27
26RR	1,000.58	9/27/2005	25.45	24.81	0.64		28.54	0.00	975.73
28	991.86	9/26/2005	18.30		0.00		21.70	0.00	973.56
29	991.59	9/26/2005	21.15	19.38	1.77		22.05	0.00	972.09
30	989.34	9/26/2005	16.55	14.55	2.00	-	20.41	0.00	974.65
40R	991.60	9/8/2005	19.85	19.55	0.30		NM	0.00	972.03
40R	991.60	9/14/2005	20.20	19.80	0.40		NM	0.00	971.77

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
40R	991.60	9/23/2005	18.73	18.73	0.00		NM	0.00	972.87
40R	991.60	9/28/2005	20.70	20.25	0.45		NM	0.00	971.32
43	989.67	9/26/2005	16.09	16.06	0.03		22.50	0.00	973.61
47	991.09	9/26/2005	21.00	18.85	2.15		23.06	0.00	972.09
48	992.39	9/26/2005	19.20	16.82	2.38		22.67	0.00	975.40
49R	988.71	9/12/2005	18.60		0.00		24.83	0.00	970.11
49RR	989.80	9/12/2005	17.60		0.00		23.05	0.00	972.20
50	985.79	9/26/2005	11.60	11.35	0.25		23.46	0.00	974.42
52	985.18	9/15/2005	12.91		0.00		23.91	0.00	972.27
55	989.45	9/26/2005	19.60	17.50	2.10		30.05	0.00	971.80
58	985.79	9/26/2005	14.50	14.15	0.35		24.15	0.00	971.62
64R	993.37	9/8/2005	17.30	Р	< 0.01		19.00	0.00	976.07
64R	993.37	9/14/2005	17.32	Р	< 0.01		19.00	0.00	976.05
64R	993.37	9/23/2005	17.48	17.48	0.00		19.00	0.00	975.89
64R	993.37	9/28/2005	17.65	17.63	0.02		19.00	0.00	975.74
64S	984.48	9/8/2005	19.61	19.60	0.01		28.70	0.00	964.88
64S	984.48	9/14/2005	19.56	Р	< 0.01		28.70	0.00	964.92
64S	984.48	9/23/2005	19.15		0.00		28.70	0.00	965.33
64S	984.48	9/28/2005	18.93	18.92	0.01		28.70	0.00	965.56
64S-Caisson	NA	9/8/2005	10.60	10.58	0.02		14.55	0.00	NA
64S-Caisson	NA	9/14/2005	10.90	10.89	0.01		14.55	0.00	NA
64S-Caisson	NA	9/23/2005	11.10	11.00	0.10		14.55	0.00	NA
64S-Caisson	NA	9/28/2005	11.12	11.11	0.01		14.55	0.00	NA
64V	987.29	9/8/2005	21.80	21.20	0.60		29.60	0.00	966.05
64V	987.29	9/14/2005	22.00	21.30	0.70		29.60	0.00	965.94
64V	987.29	9/23/2005	22.10	21.60	0.50	Р	29.60	< 0.01	965.66
64V	987.29	9/28/2005	22.00	21.35	0.65	Р	29.60	< 0.01	965.89
64X(N)	984.83	9/8/2005	13.18	13.17	0.01		15.85	0.00	971.66
64X(N)	984.83	9/14/2005	13.48	13.45	0.03		15.85	0.00	971.38
64X(N)	984.83	9/23/2005	13.31	13.30	0.01		15.85	0.00	971.53
64X(N)	984.83	9/28/2005	13.49	13.48	0.01		15.85	0.00	971.35
64X(S)	981.56	9/8/2005	16.08	16.03	0.05		23.82	0.00	965.53
64X(S)	981.56	9/14/2005	16.20	16.15	0.05		23.82	0.00	965.41
64X(S)	981.56	9/23/2005	16.12	16.10	0.02		23.82	0.00	965.46
64X(S)	981.56	9/28/2005	16.25	16.20	0.05		23.82	0.00	965.36
64X(W)	984.87	9/8/2005	19.25	19.23	0.02		24.35	0.00	965.64
64X(W)	984.87	9/14/2005	19.41	19.37	0.04		24.35	0.00	965.50
64X(W)	984.87	9/23/2005	19.40	19.37	0.03		24.35	0.00	965.50
64X(W)	984.87	9/28/2005	19.45	19.43	0.02		24.35	0.00	965.44
95-01	983.77	9/12/2005	10.95		0.00		17.20	0.00	972.82
95-04	988.70	9/26/2005	17.92	15.82	2.10	-	21.71	0.00	972.73
95-05	989.45	9/26/2005	17.80	16.98	0.82	-	20.66	0.00	972.41
95-07	994.91	9/26/2005	23.60	21.20	2.40		29.45	0.00	973.54
3-6C-EB-22	986.94	9/12/2005	14.63		0.00		20.01	0.00	972.31

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)	Date	(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
E2SC-03I	982.12	9/27/2005	` ,		· · · · ·		, ,	` ′	` '
E2SC-031			10.50		0.00	37.26	42.38	5.12	971.62
	985.38	9/27/2005	12.58		0.00		25.75	0.00	972.80
E2SC-23	992.07	9/12/2005	18.70		0.00		21.15	0.00	973.37
E2SC-24	987.90	9/12/2005	16.53		0.00		21.60	0.00	971.37
ES2-02A	979.63 986.00	9/15/2005	7.70		0.00		17.49	0.00	971.93
ES2-06 ES2-06		9/15/2005 9/12/2005	14.37		0.00		34.36	0.00	971.63
GMA1-13	986.00 991.41	9/12/2005	14.50 19.21		0.00		34.35 27.18	0.00	971.50 972.20
GMA1-13 GMA1-14	997.43	9/12/2005	21.25		0.00		23.50	0.00	976.18
GMA1-14	988.59	9/26/2005	17.30	16.25	1.05		17.83	0.00	972.27
GMA1-15	986.82	9/26/2005	14.97	14.34	0.63		20.00	0.00	972.44
GMA1-17E	993.03	9/12/2005	16.60	16.38	0.03		17.30	0.00	976.63
GMA1-17W	992.63	9/26/2005	22.58	17.30	5.28		23.25	0.00	974.96
GMA1-19	984.28	9/8/2005	12.15	11.65	0.50		17.13	0.00	972.60
GMA1-19	984.28	9/16/2005	12.30	11.98	0.32		17.13	0.00	972.28
GMA1-19	984.28	9/21/2005	12.30	11.95	0.35		17.13	0.00	972.31
		9/26/2005							
GMA1-19	984.28		12.30	12.10	0.20		17.14	0.00	972.17
GMA1-20	983.49	9/8/2005	11.14		0.00		17.30	0.00	972.35
GMA1-20	983.49	9/12/2005	11.34		0.00		17.30	0.00	972.15
GMA1-20	983.49	9/21/2005	11.40		0.00		17.30	0.00	972.09
GMA1-20	983.49	9/27/2005	11.41		0.00		17.30	0.00	972.08
GMA1-21	985.68	9/8/2005	13.32		0.00		19.53	0.00	972.36
GMA1-21	985.68	9/12/2005	13.48		0.00		19.53	0.00	972.20
GMA1-21	985.68	9/21/2005	13.55		0.00		19.48	0.00	972.13
GMA1-21 HR-C-RW-1	985.68 NA	9/27/2005	13.53 7.93		0.00		19.53 22.70	0.00	972.15 NA
HR-G1-MW-3	980.21	9/27/2005 9/15/2005	9.10		0.00		17.86	0.00	971.11
HR-G2-MW-1	982.60	9/13/2005	11.44		0.00		18.24	0.00	971.11
HR-G2-MW-2	981.39	9/12/2005	9.60		0.00		17.66	0.00	971.79
HR-G2-MW-3	987.14	9/12/2005	15.50		0.00		22.00	0.00	971.64
HR-G2-RW-1	976.88	9/12/2005	7.25		0.00		18.69	0.00	971.46
M-R	998.19	9/26/2005	21.53	21.41	0.12		29.22	0.00	976.77
P3	989.25	9/26/2005	5.00		0.00		13.09	0.00	984.25
RW-1(S)	987.23	9/8/2005	19.30	19.20	0.10		28.60	0.00	968.02
RW-1(S)	987.23	9/14/2005	19.60	19.00	0.60		28.60	0.00	968.19
RW-1(S)	987.23	9/23/2005	19.20	19.05	0.15		28.60	0.00	968.17
RW-1(S)	987.23	9/28/2005	19.20	18.90	0.30		28.60	0.00	968.31
RW-1(X)	982.68	9/8/2005	14.15		0.00		20.80	0.00	968.53
RW-1(X)	982.68	9/14/2005	11.50		0.00		20.80	0.00	971.18
RW-1(X)	982.68	9/23/2005	14.21		0.00		20.80	0.00	968.47
	982.68						20.80		
RW-1(X)		9/28/2005	14.00		0.00			0.00	968.68
RW-2(X)	985.96 985.96	9/8/2005	16.20		0.00		15.30	0.00	969.76
RW-2(X)		9/14/2005	16.40		0.00		15.30	0.00	969.56
RW-2(X)	985.96	9/23/2005	16.40		0.00		15.30	0.00	969.56

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

Well	Measuring Point Elev.	Date	Depth to Water	Depth to LNAPL	LNAPL Thickness	Depth to DNAPL	Total Depth	DNAPL Thickness	Corrected Water Elev.	
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)	
RW-2(X)	985.96	9/28/2005	16.40		0.00		15.30	0.00	969.56	
RW-3(X)	980.28	9/8/2005	8.20		0.00	41.82	44.40	2.58	972.08	
RW-3(X)	980.28	9/14/2005	8.25		0.00	41.75	44.40	2.65	972.03	
RW-3(X)	980.28	9/23/2005	9.90		0.00	41.90	44.40	2.50	970.38	
RW-3(X)	980.28	9/28/2005	9.80		0.00	42.10	44.40	2.30	970.48	
Housatonic Rive	er									
SG-HR-1	990.73	9/6/2005	19.08	See Note 7	regarding der	oth to water			971.65	
SG-HR-1	990.73	9/14/2005	20.10	See Note 7		970.63				
SG-HR-1	990.73	9/21/2005	19.96	See Note 7	See Note 7 regarding depth to water					
SG-HR-1	990.73	9/29/2005	18.30	See Note 7	regarding der	oth to water			972.43	

Notes:

- 1. ft BMP feet Below Measuring Point
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- Well HR-G2-RW-1 is constructed at an angle of 41.67 degrees from vertical. Depth to water data reflect
 measurements collected along the angled well casing. Groundwater elevations are corrected to account for the angle
 of the well casing.
- 7. A survey reference point (SG-HR-1) was established on the Newell Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

TABLE 21-11 ACTIVE RECOVERY SYSTEMS MONTHLY SUMMARY LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

	Volume	RW-1	RW-1R	RW-3
	Water	DNAPL	LNAPL	LNAPL
N 41 434	Pumped	Recovered	Recovered	Recovered
Month / Year	(gallon)	(gallon)	(gallon)	(gallon)
September 2003	309,162			20
October 2003	485,653			20
November 2003	363,979			
December 2003	490,517			
January 2004	299,584			
February 2004	305,485			
March 2004	409,514			
April 2004	344,707			1
May 2004	307,361			
June 2004	410,230			
July 2004	328,363			
August 2004	310,473			
September 2004	499,209		1	20
October 2004	426,078			
November 2004	421,409			12
December 2004	539,528		-	10
January 2005	443,634			10
February 2005	409,113			5
March 2005	455,192			5
April 2005	425,145			5
May 2005	357,497			
June 2005	422,006			10
July 2005	310,647		5	10
August 2005	310,647			
September 2005	198,753			

Notes:

- 1. Volume of water pumped is total from wells RW-1R, RW-2, and RW-3.
- 2. -- indicates LNAPL or DNAPL was not recovered by the system.
- 3. There was 7 hours of downtime for RW-1/RW-1R during September 2005.

TABLE 21-12 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	September 2005 Removal (liters)
LS-21	9/28/2005	12.35	11.30	1.05	0.648	0.648
LS-23	9/28/2005	12.75	12.28	0.47	0.290	0.290
LS-30	9/28/2005	14.42	14.41	0.010	0.006	0.006
LS-31	9/28/2005	14.86	14.24	0.620	0.197	0.197
LS-35	9/28/2005	15.22	14.76	0.46	0.284	0.284
LSSC-06	9/28/2005	11.99	11.63	0.36	0.222	0.222

Total Manual LNAPL Removal for September 2005: 1.647 liters

Note: 0.435 gallons

1. ft BMP - feet Below Measuring Point.

TABLE 21-13 MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

Well Name	Date	Depth to Water (ft BMP)	Depth to DNAPL (ft BMP)	DNAPL Thickness (feet)	DNAPL Removed (liters)	September 2005 Removal (liters)	
LS-04	9/28/2005	12.41	17.55	0.59	0.364	0.364	
LS-30	9/28/2005	14.42	17.75	4.45	2.745	2.745	
LS-31	9/28/2005	14.86	22.50	0.82	0.506	0.506	
LS-34	9/28/2005	13.83	28.10	0.43	0.265	0.265	
LS-38	9/28/2005	15.52	25.02	0.03	0.019	0.019	
LSSC-07	9/8/2005	10.70	24.75	0.33	0.204		
	9/16/2005	11.01	24.80	0.28	0.173	0.777	
	9/21/2005	10.90	25.08	0.00	0.204	0.777	
	9/28/2005	10.81	24.76	0.32	0.197		
LSSC-08I	9/16/2005	12.41	23.37	0.01	0.006	0.019	
L330-00I	9/28/2005	12.02	23.36	0.02	0.013	0.019	
LSSC-34I	9/28/2005	13.19	28.04	0.44	0.271	0.271	

Total Manual DNAPL Removal for September 2005: 4.967 liters
1.311 gallons

ft BMP - feet Below Measuring Point.

Note:

TABLE 21-14 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

	Measuring Depth Depth to LNAPL Depth to Total DNAPL Corrected								
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)	Date	(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
E-07	982.87	9/19/2005	· · · · · ·	(ILDIVIP)	0.00			` ′	974.47
			8.40				19.70	0.00	974.47
EPA-01 LS-04	983.04	9/19/2005	12.30 12.41		0.00	17.55	22.65	0.00 0.59	
LS-04 LS-13	984.51 984.65	9/28/2005 9/28/2005	Buried Unde		0.00	17.55	18.14	0.59	972.10 NA
LS-13 LS-21	983.42	9/28/2005		•	1.05		12.49	0.00	972.05
			12.35 12.75	11.30	1.05 0.47		12.48	0.00	
LS-23	984.38	9/28/2005		12.28			15.30	0.00	972.07
LS-24	986.58	9/19/2005	Unable to ga				04.55	0.00	NA
LS-29	988.25	9/19/2005	15.09		0.00	47.75	34.55	0.00	973.16
LS-30	986.440	9/28/2005	14.42	14.41	0.010	17.75	22.20	4.45	972.03
LS-31	987.090	9/28/2005	14.86	14.24	0.620	22.50	23.32	0.82	972.81
LS-32	985.75	9/28/2005	14.15		0.00		22.62	0.00	971.60
LS-34	985.79	9/28/2005	13.83		0.00	28.10	28.53	0.43	971.96
LS-35	986.80	9/28/2005	15.22	14.76	0.46		21.65	0.00	972.01
LS-38	986.95	9/28/2005	15.52		0.00	25.02	25.05	0.03	971.43
LS-44	980.78	9/19/2005	9.85		0.00		24.76	0.00	970.93
LSSC-06	984.91	9/28/2005	11.99	11.63	0.36		19.33	0.00	973.25
LSSC-07	982.48	9/8/2005	10.70		0.00	24.75	25.08	0.33	971.78
LSSC-07	982.48	9/16/2005	11.01		0.00	24.80	25.08	0.28	971.47
LSSC-07	982.48	9/21/2005	10.90		0.00	24.75	25.08	0.33	971.58
LSSC-07	982.48	9/28/2005	10.81		0.00	24.76	25.08	0.32	971.67
LSSC-08I	983.13	9/8/2005	12.18		0.00		23.36	0.00	970.95
LSSC-08I	983.13	9/16/2005	12.41		0.00	23.37	23.38	0.01	970.72
LSSC-08I	983.13	9/21/2005	12.20		0.00		23.38	0.00	970.93
LSSC-08I	983.13	9/28/2005	12.02		0.00	23.36	23.38	0.02	971.11
LSSC-08S	983.11	9/19/2005	12.50		0.00		14.68	0.00	970.61
LSSC-16I	980.88	9/28/2005	9.10		0.00		28.53	0.00	971.78
LSSC-16S	981.37	9/15/2005	9.65		0.00		14.12	0.00	971.72
LSSC-18	987.32	9/19/2005	15.28		0.00		18.52	0.00	972.04
LSSC-32	980.68	9/19/2005	9.50		0.00		35.21	0.00	971.18
LSSC-33	980.49	9/19/2005	9.32		0.00		29.75	0.00	971.17
LSSC-34I	984.74	9/28/2005	13.19		0.00	28.04	28.48	0.44	971.55
MW-4R	980.82	9/15/2005	9.46		0.00		14.04	0.00	971.36
MW-6R	985.14	9/19/2005	11.78		0.00		13.92	0.00	973.36
RW-1	984.88	9/8/2005	12.73		0.00	Р	21.00	< 0.01	972.15
RW-1	984.88	9/14/2005	12.97		0.00	20.90	21.00	0.10	971.91
RW-1	984.88	9/23/2005	12.89	Р	< 0.01		21.00	0.00	971.99
RW-1	984.88	9/28/2005	13.00		0.00	Р	21.00	< 0.01	971.88
RW-1 (R)	985.07	9/8/2005	15.85		0.00	Р	20.42	< 0.01	969.22
RW-1 (R)	985.07	9/14/2005	15.65		0.00		20.42	0.00	969.42
RW-1 (R)	985.07	9/23/2005	15.72		0.00	Р	20.42	< 0.01	969.35
RW-1 (R)	985.07	9/28/2005	15.50		0.00	P	20.42	< 0.01	969.57
RW-2	987.82	9/8/2005	14.55		0.00		21.75	0.00	973.27
RW-2	987.82	9/14/2005	14.70		0.00	Р	21.75	< 0.01	973.12
RW-2	987.82	9/23/2005	14.80		0.00		21.75	0.00	973.02
RW-2	987.82	9/28/2005	17.60		0.00		21.75	0.00	970.22
RW-3	984.08	9/8/2005	16.65	16.45	0.20		21.57	0.00	967.62
RW-3	984.08	9/14/2005	16.54	16.52	0.02		21.57	0.00	967.56

TABLE 21-14 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
RW-3	984.08	9/23/2005	16.35	16.31	0.04		21.57	0.00	967.77
RW-3	984.08	9/28/2005	16.55	16.45	0.10		21.57	0.00	967.62
Housatonic River (Lyman Street Bridge)									
BM-2A	986.32	9/6/2005	14.41	See Note 5 regarding depth to water					971.91
BM-2A	986.32	9/14/2005	15.98	See Note 5 regarding depth to water					970.34
BM-2A	986.32	9/21/2005	15.58	See Note 5 regarding depth to water					970.74
BM-2A	986.32	9/29/2005	13.85	See Note 5 regarding depth to water					972.47

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 5. A survey reference point (BM-2A) was established on the Lyman Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

TABLE 21-15 ACTIVE DNAPL RECOVERY SYSTEMS MONTHLY SUMMARY NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

Recovery System	Date	Total Gallons Recovered
System 1 (1)	September 2004	16.5
	October 2004	11.0
	November 2004	15.4
	December 2004	15.4
	January 2005 (3)	8.8
	February 2005	13.2
	March 2005	17.3
	April 2005	24.2
	May 2005	9.9
	June 2005	18.7
	July 2005	14.3
	August 2005	(4)
	September 2005	⁽⁴⁾
System 2 ⁽²⁾	September 2004	129.6
	October 2004	78.2
	November 2004	81.0
	December 2004	64.8
	January 2005 (3)	157.2
	February 2005	126.9
	March 2005	16.2
	April 2005	16.2
	May 2005	145.8
	June 2005	32.4
	July 2005	48.6
	August 2005	(4)
	September 2005	(4)
Total Automated DNAF	PL Removal for September 2005:	0.0 Gallons

Notes:

- 1. System 1 wells are NS-15, NS-30, and NS-32.
- 2. System 2 wells are N2SC-01I, N2SC-03I, and N2SC-14.
- 3. In January 2005, System 2 malfunctioned during weeks 2 and 3 pumping mostly water. The volume reported for those two weeks is an estimated quantity that was included in the total volume removed.
- 4. The DNAPL recovery systems for the Newell Street Area II were shut down on July 25, 2005. The upgraded system will be completed and activated approximately 2 to 3 months after completion of the EPA-approved soil remediation activities in this area.

TABLE 21-16 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

CONSENT DECREE MONTHLY STATUS REPORT GROUNDWATER MANAGEMENT AREA 1 - NEWELL STREET AREA II MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL September 2005

		Depth	Depth to	LNAPL	LNAPL	September 2005
Well	Date	to Water	LNAPL	Thickness	Removed	Removal
Name		(ft BMP)	(ft BMP)	(feet)	(liters)	(liters)
NS-10	9/29/2005	11.34	10.74	0.60	1.483	1.483

Total LNAPL Removal for September 2005: 1.483 liters

Note:

0.391 gallons

1. ft BMP - feet Below Measuring Point

TABLE 21-17 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

CONSENT DECREE MONTHLY STATUS REPORT GROUNDWATER MANAGEMENT AREA 1 - NEWELL STREET AREA II MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL September 2005

Well Name	Date	Depth to Water (ft BMP)	Depth to DNAPL (ft BMP)	DNAPL Thickness (feet)	DNAPL Removed (liters)	September 2005 Removal (liters)
MW-1D	9/29/2005	15.01	39.25	0.27	0.167	0.167
MW-1S	9/29/2005	14.47	24.71	0.52	0.321	0.321
N2SC-07	9/29/2005	12.78	38.06	0.09	0.056	0.056
N2SC-08	9/29/2005	13.51	40.94	1.62	0.999	0.999
N2SC-13I	9/29/2005	12.27	40.58	0.44	1.088	1.088

Total DNAPL Removal for September 2005: 2.630 liters

Note: 0.694 gallons

1. ft BMP - feet Below Measuring Point

TABLE 21-18 ROUTINE WELL MONITORING NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected	
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.	
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)	
MW-1D	987.20	9/29/2005	15.01		0.00	39.25	39.52	0.27	972.19	
MW-1S	986.60	9/29/2005	14.47		0.00	24.71	25.23	0.52	972.13	
N2SC-01I	984.99	9/29/2005	13.50		0.00	38.35	41.68	3.33	971.49	
N2SC-01I(R)	984.99	9/8/2005	14.01		0.00		38.41	0.00	970.98	
N2SC-01I(R)	984.99	9/16/2005	14.40		0.00		38.35	0.00	970.59	
N2SC-01I(R)	984.99	9/21/2005	14.24		0.00		38.33	0.00	970.75	
N2SC-01I(R)	984.99	9/29/2005	13.86		0.00		38.20	0.00	971.13	
N2SC-02	985.56	9/29/2005	13.78		0.00		40.55	0.00	971.78	
N2SC-03I	985.33	9/29/2005	13.70		0.00	37.80	40.68	2.88	971.63	
N2SC-03I(R)	985.33	9/8/2005	13.95		0.00		39.58	0.00	971.38	
N2SC-03I(R)	985.33	9/16/2005	Well Inacces	ssible due to	excavation a	ctivities			NA	
N2SC-03I(R)	985.33	9/21/2005	Well Inacces	ssible due to	excavation a	ctivities			NA	
N2SC-03I(R)	985.33	9/29/2005	Well Inacces	ssible due to	excavation a	ctivities			NA	
N2SC-07	984.61	9/29/2005	12.78		0.00	38.06	38.15	0.09	971.83	
N2SC-07S	982.93	9/14/2005	11.46		0.00		19.91	0.00	971.47	
N2SC-08	986.07	9/29/2005	13.51		0.00	40.94	42.56	1.62	972.56	
N2SC-09I	987.77	9/29/2005	Well is Obst	ructed					NA	
N2SC-13I	984.75	9/29/2005	12.27		0.00	40.58	41.02	0.44	972.48	
N2SC-14	985.06	9/29/2005	14.75		0.00	38.35	40.11	1.76	970.31	
N2SC-16	985.62	9/29/2005	Well is Obst	ructed					NA	
NS-10	984.59	9/29/2005	11.34							
NS-15	982.76	9/29/2005	Well is Damaged						NA	
NS-17	984.64	9/14/2005	13.06 0.00 18.72 0.00					971.58		
NS-30	985.99	9/29/2005	Well is Dama	ell is Damaged						
NS-32	986.20	9/29/2005	13.48		0.00	39.95	40.24	0.29	972.72	

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.

TABLE 21-19 ROUTINE WELL MONITORING SILVER LAKE AREA

GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
Monitoring Wells	s Adjacent to	Silver Lake							
SLGW-01D	983.13	9/20/2005	5.81		0.00		36.95	0.00	977.32
SLGW-01S	982.94	9/20/2005	7.29		0.00		16.25	0.00	975.65
SLGW-02D	985.10	9/20/2005	8.40		0.00		36.85	0.00	976.70
SLGW-03D	979.14	9/20/2005	2.60		0.00		32.08	0.00	976.54
SLGW-03S	980.21	9/20/2005	4.58		0.00		14.60	0.00	975.63
SLGW-04D	983.51	9/20/2005	7.40		0.00		37.08	0.00	976.11
SLGW-04S	984.02	9/20/2005	8.60		0.00		16.60	0.00	975.42
SLGW-05D	979.30	9/20/2005	3.62		0.00		34.90	0.00	975.68
SLGW-05S	979.12	9/20/2005	3.50		0.00		11.68	0.00	975.62
SLGW-06D	981.63	9/20/2005	7.08		0.00		35.00	0.00	974.55
SLGW-06S	981.66	9/20/2005	6.26		0.00		13.75	0.00	975.40
Staff Gauge with	nin Silver Lak	е							
Silver Lake Gauge	NA	9/6/2000	4.73	See Note 4	regarding dep	oth to water			NA
Silver Lake Gauge	NA	9/14/2005	4.71	See Note 4	regarding dep	oth to water			NA
Silver Lake Gauge NA 9/20/2005 4.71 See Note 4 regarding depth to water								NA	
Silver Lake Gauge	NA	9/29/2005	4.51	See Note 4	regarding dep	oth to water			NA

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. A new Silver Lake Gauge has been installed and will be surveyed to obtain a new horizontal datum. "Depth to Water" values provided refer to feet above the datum, rather than feet below the measuring point.
- 5. Additional groundwater elevation data was collected from wells near Silver Lake that are located in the 30s Complex and at the Lyman Street Area. Those results are presented in the monitoring tables for those Removal Action Areas.

ITEM 22 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS J & K (GMA 2) (GECD320) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

Continued routine well monitoring and monthly river elevation monitoring.

b. Sampling/Test Results Received

See attached table.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Conduct monthly river elevation monitoring.
- Conduct annual interim groundwater monitoring.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

None

TABLE 22-1 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 2

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
Former Oxbow	Area J								
GMA 2-1	991.36	9/16/2005	16.58		0.00		27.17	0.00	974.78
Former Oxbow	Area K								
GMA 2-4	983.41	9/16/2005	9.76		0.00		17.97	0.00	973.65
GMA 2-9	981.29	9/16/2005	8.30		0.00		17.11	0.00	972.99
Housatonic Riv	er (Foot Brid	lge)							
GMA2-SG-1 989.82 9/19/2005 17.25 See Note 3 regarding depth to water									

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. A survey reference point was established on the Oxbow J & K foot bridge. The "Depth to Water" value(s) provided in the above table refers to the vertical distance from the surveyed reference point to the water surface.

ITEM 23 GROUNDWATER MANAGEMENT AREAS PLANT SITE 2 (GMA 3) (GECD330) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

- Conducted routine groundwater elevation monitoring and NAPL monitoring/removal activities, including completion of summer 2005 quarterly monitoring round. Approximately 382.03 liters (100.80 gallons) of LNAPL were removed by the automatic skimmer located in well 51-21 and 14.628 additional liters (3.86 gallons) of LNAPL were manually removed from the wells in this area (see Table 23-1).
- Inspected wells 39D, 51-17, GMA3-6, OBG-2, UB-PZ-1, and UB-PZ-2, which were not located or were found to be damaged during recent monitoring rounds.
- Conducted semi-annual bailing round at all wells found to contain NAPL during the prior year (see Table 23-2).

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue ongoing groundwater and NAPL monitoring and recovery activities.
- Redevelop well 16C-R.
- Repair certain monitoring wells, as identified during well inspections.
- Replace piezometer UB-PZ-2 with a new well to be designated as GMA3-15.
- Conduct fall 2005 groundwater elevation/NAPL monitoring event.
- Conduct fall 2005 baseline groundwater sampling activities.

ITEM 23 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 2 (GMA 3) (GECD330) SEPTEMBER 2005

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u> (cont'd)

- Following EPA approval of proposed activities contained in GE's Spring 2005 Baseline Groundwater Quality and NAPL Monitoring Interim Report (submitted on August 30, 2005):
 - Sample wells 39B-R and 114A as part of the fall 2005 sampling round.
 - Collect a groundwater sample from well 51-8 and, if necessary, a NAPL-saturated soil sample.
 - Perform desktop modeling of the potential volatilization of constituents observed at well 51-8.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

Natural attenuation well 39D was found to be destroyed during recent inspections. GE plans to examine the prior data from this location and will discuss with EPA whether a replacement for this well is necessary.

f. Proposed/Approved Work Plan Modifications

Several program modifications were proposed in the Spring 2005 Baseline Groundwater Quality and NAPL Monitoring Interim Report (see Item 23.d above).

TABLE 23-1 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	September 2005 Removal (liters)
51-05	9/29/2005	11.80	11.56	0.24	0.148	0.148
	9/8/2005	13.30	11.80	1.50	0.925	
51-08	9/16/2005	13.45	11.89	1.56	0.962	3.609
31-06	9/21/2005	13.43	11.96	1.47	0.907	3.009
	9/29/2005	13.30	11.98	1.32	0.814	
51-15	9/29/2005	12.20	11.28	0.92	0.568	0.568
51-16R	9/29/2005	12.05	11.30	0.75	0.814	0.814
51-19	9/29/2005	12.40	11.40	1.00	0.617	0.617
	9/8/2005	16.28	16.25	0.03	25.014	
51-21	9/14/2005	16.38	16.36	0.02	26.151	382.032
31-21	9/23/2005	17.60	16.38	1.22	35.247	302.032
	9/28/2005	16.55	16.54	0.01	295.62	
59-03R	9/29/2005	13.55	12.54	1.01	0.623	0.623
59-07	9/29/2005	13.45	12.78	0.67	0.413	0.413
	9/8/2005	12.70	12.15	0.55	0.339	
GMA3-10	9/16/2005	12.90	12.25	0.65	0.401	1.259
	9/29/2005	13.23	12.39	0.84	0.518]
	9/16/2005	13.40	12.56	0.84	2.076	
GMA3-12	9/21/2005	13.50	12.61	0.89	2.200	6.500
	9/29/2005	13.60	12.70	0.90	2.224	
UB-PZ-3	9/29/2005		13.10	>0.12	0.077	0.077

Total Automated LNAPL Removal at well 51-21 for September 2005: 382.032 liters

100.80 Gallons

Total Manual LNAPL Removal at all other wells for September 2005: 14.628 liters

3.86 Gallons

Total LNAPL Removed for September 2005: 396.660 liters

Notes:

104.66 Gallons

- 1. ft BMP feet Below Measuring Point.
- 2. P indicates that LNAPL or DNAPL is present at a thickness that is < 0.01 feet. The corresponding thickness is recorded as such.

TABLE 23-2 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
016C-R	993.23	9/14/2005	9.16		0.00		101.24	0.00	984.07
039D	992.16	9/14/2005	Destroyed	NM	NM	NM	NM	NM	NA
078B-R	988.83	9/29/2005	2.98		0.00		11.74	0.00	985.85
51-05	996.44	9/29/2005	11.80	11.56	0.24		12.54	0.00	984.86
51-06	997.36	9/20/2005	11.83		0.00		14.60	0.00	985.53
51-07	997.08	9/20/2005	11.09		0.00		11.20	0.00	985.99
51-08	997.08	9/8/2005	13.30	11.80	1.50		14.66	0.00	985.18
51-08	997.08	9/16/2005	13.45	11.89	1.56		14.66	0.00	985.08
51-08	997.08	9/21/2005	13.43	11.96	1.47		14.67	0.00	985.02
51-08	997.08	9/29/2005	13.30	11.98	1.32		14.66	0.00	985.01
51-11	994.37	9/20/2005	9.80		0.00		13.50	0.00	984.57
51-12 51-14	996.55 996.77	9/20/2005 9/20/2005	8.00 11.90		0.00		13.31 14.94	0.00	988.55 984.87
51-14	996.43	9/29/2005	12.20	11.28	0.00		14.49	0.00	985.09
51-15	996.39	9/29/2005	12.05	11.30	0.32		14.56	0.00	985.04
51-17	996.43	9/14/2005	Well has been		NM	NM	NM	NM	NA
51-18	997.12	9/20/2005	12.01		0.00		12.60	0.00	985.11
51-19	996.43	9/29/2005	12.40	11.40	1.00		14.02	0.00	984.96
51-21	1001.49	9/8/2005	16.28	16.25	0.03		NM	0.00	985.24
51-21	1001.49	9/14/2005	16.38	16.36	0.02		NM	0.00	985.13
51-21	1001.49	9/23/2005	17.60	16.38	1.22		NM	0.00	985.02
51-21	1001.49	9/28/2005	16.55	16.54	0.01		NM	0.00	984.95
59-03R	997.64	9/29/2005	13.55	12.54	1.01		17.03	0.00	985.03
59-07	997.96	9/20/2005	10.00		0.00		11.24	0.00	987.96
59-07	997.96	9/29/2005	13.45	12.78	0.67		23.53	0.00	985.13
GMA3-10	997.54	9/8/2005	12.70	12.15	0.55	-	18.00	0.00	985.35
GMA3-10	997.54	9/16/2005	12.90	12.25	0.65		18.00	0.00	985.24
GMA3-10	997.54	9/21/2005	12.42	12.30	0.12		18.00	0.00	985.23
GMA3-10	997.54	9/29/2005	13.23	12.39	0.84		18.02	0.00	985.09
GMA3-11	997.25	9/20/2005	11.85		0.00		18.36	0.00	985.40
GMA3-12	997.84	9/8/2005	13.25	12.45	0.80		21.24	0.00	985.33
GMA3-12	997.84	9/16/2005	13.40	12.56	0.84		21.24	0.00	985.22
GMA3-12	997.84	9/21/2005	13.50	12.61	0.89		21.20	0.00	985.17
GMA3-12	997.84	9/29/2005	13.60	12.70	0.90		21.24	0.00	985.08
GMA3-13	997.73	9/8/2005	12.35		0.00		17.80	0.00	985.38
GMA3-13	997.73	9/16/2005	12.46		0.00		17.80	0.00	985.27
GMA3-13	997.73	9/21/2005	12.58		0.00		17.80	0.00	985.15
GMA3-13	997.73	9/29/2005	12.84		0.00		17.80	0.00	984.89
GMA3-14	997.42	9/29/2005	11.66		0.00		17.06	0.00	985.76
OBG-2	992.20	9/14/2005	7.39		0.00		15.35	0.00	984.81
UB-MW-10	995.99	9/20/2005	10.85		0.00		15.65	0.00	985.14
UB-PZ-1	999.70	9/14/2005	Obstructed	NM	NM	NM	1.27	NM	NA
UB-PZ-2	994.77	9/14/2005	Destroyed	NM	NM	NM	NM	NM	NA
UB-PZ-3	998.15	9/29/2005		13.10	>0.12		13.40	0.00	< 984.75

Notes:

- ft BMP feet Below Measuring Point.
 --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.

ITEM 24 GROUNDWATER MANAGEMENT AREAS PLANT SITE 3 (GMA 4) (GECD340) SEPTEMBER 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Conducted routine groundwater elevation monitoring at well GMA4-3 (see Table 24-1).
- Inspected wells H78B-16 and H78B-17R prior to fall sampling round.

b. Sampling/Test Results Received

See attached table.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine monitoring at well GMA4-3.
- Conduct fall 2005 groundwater elevation monitoring event.
- Conduct fall 2005 interim groundwater quality sampling activities (see Item 24.f).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

In the Spring 2005 Groundwater Quality Monitoring Interim Report (submitted on August 30, 2005), GE proposed that wells GMA4-5 and H78B-13R no longer be sampled under the interim groundwater monitoring program.

TABLE 24-1 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 4

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2005

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	Thickness	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
GMA4-3	1,003.95	9/20/2005	18.75		0.00		26.26	0.00	985.20
H78B-16	999.33	9/14/2005	13.68		0.00		16.98	0.00	985.65
H78B-17R	1,000.31	9/14/2005	14.24		0.00		24.97	0.00	986.07

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.

ITEM 25 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS A & C (GMA 5) (GECD350) SEPTEMBER 2005

- * All activities described below for this item were conducted pursuant to the Consent Decree.
- a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Conduct semi-annual groundwater elevation monitoring.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

EPA's November 10, 2004 letter to GE states that interim groundwater quality sampling activities are to be postponed until groundwater elevation monitoring data demonstrate that groundwater flow is not being artificially influenced by the temporary dam that is being maintained as part of the remediation along the 1½ Mile Reach of the Housatonic River. Since those remediation activities are ongoing, and the temporary dam is still in place, no groundwater sampling will be conducted at GMA 5 in fall 2005.

Attachment A

NPDES Sampling Records and Results September 2005

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
NPDES Sampling	001-A6714	9/5/05	Water	SGS	Oil & Grease	9/22/05
NPDES Sampling	001-A6716	9/5/05	Water	SGS	PCB	Cancelled
NPDES Sampling	001-A6724	9/6/05	Water	SGS	TSS	9/22/05
NPDES Sampling	001-A6758	9/22/05	Water	SGS	PCB	
NPDES Sampling	005-A6678/A6679	8/15/05	Water	SGS	PCB	9/8/05
NPDES Sampling	005-A6699/A6700	8/23/05	Water	SGS	PCB	9/2/05
NPDES Sampling	005-A6706/A6709	8/29/05	Water	SGS	PCB	9/9/05
NPDES Sampling	005-A6722/A6723	9/6/05	Water	SGS	PCB, TSS, BOD	9/16/05
NPDES Sampling	005-A6734/A6737	9/12/05	Water	SGS	PCB	9/23/05
NPDES Sampling	005-A6753/A6754	9/20/05	Water	SGS	PCB	
NPDES Sampling	005-A6770/A6771	9/27/05	Water	SGS	PCB	
NPDES Sampling	06A-A6711	8/30/05	Water	SGS	Oil & Grease	9/12/05
NPDES Sampling	09B-A6682	8/15/05	Water	SGS	TSS, BOD	9/8/05
NPDES Sampling	09B-A6710	8/29/05	Water	SGS	TSS, BOD	9/9/05
NPDES Sampling	09B-A6738	9/13/05	Water	SGS	TSS, BOD	9/20/05
NPDES Sampling	09B-A6757	9/21/05	Water	SGS	BOD	9/29/05
NPDES Sampling	09B-A6768	9/26/05	Water	Columbia	TSS, BOD	
NPDES Sampling	09C-A6701	8/28/05	Water	SGS	Oil & Grease	9/9/05
NPDES Sampling	09C-A6742	9/15/05	Water	SGS	Oil & Grease	9/29/05
NPDES Sampling	09C-A6755	9/20/05	Water	SGS	Oil & Grease	
NPDES Sampling	09C-A6765	9/26/05	Water	Columbia	Oil & Grease	
NPDES Sampling	64G-A6696	8/22/05	Water	SGS	Oil & Grease	9/2/05
NPDES Sampling	64G-A6707	8/29/05	Water	SGS	Oil & Grease	9/9/05
NPDES Sampling	64G-A6719	9/5/05	Water	SGS	Oil & Grease	9/16/05
NPDES Sampling	64G-A6735	9/12/05	Water	SGS	Oil & Grease	9/23/05
NPDES Sampling	64G-A6750	9/19/05	Water	SGS	Oil & Grease	
NPDES Sampling	64G-A6759	9/26/05	Water	Columbia	Oil & Grease	
NPDES Sampling	64T-A6694	8/22/05	Water	SGS	Oil & Grease	9/2/05
NPDES Sampling	64T-A6704	8/29/05	Water	SGS	Oil & Grease	9/9/05
NPDES Sampling	64T-A6717	9/5/05	Water	SGS	Oil & Grease	9/16/05
NPDES Sampling	64T-A6732	9/12/05	Water	SGS	Oil & Grease	9/23/05
NPDES Sampling	64T-A6748	9/19/05	Water	SGS	Oil & Grease	
NPDES Sampling	64T-A6762	9/26/05	Water	Columbia	Oil & Grease	
NPDES Sampling	A6667RCN	8/15/05	Water	SGS	CN	9/8/05
NPDES Sampling	A6667RTM	8/15/05	Water	SGS	Metals (10)	9/8/05
NPDES Sampling	A6668CCN	8/15/05	Water	SGS	CN	9/8/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\09-05 CD Monthly\Tracking Logs\Tracking.xls TABLE A-1

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2005

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
NPDES Sampling	A6668CDM	8/15/05	Water	SGS	Filtered Metals (8)	9/22/05
NPDES Sampling	A6668CTM	8/15/05	Water	SGS	Metals (10)	9/8/05
NPDES Sampling	A6725R	9/12/05	Water	SGS	Acute and Chronic Toxicity Test	9/29/05
NPDES Sampling	A6725RCN	9/12/05	Water	SGS	CN	9/23/05
NPDES Sampling	A6725RTM	9/12/05	Water	SGS	Metals (10)	9/23/05
NPDES Sampling	A6726C	9/12/05	Water	SGS	Acute and Chronic Toxicity Test	9/29/05
NPDES Sampling	A6726CCN	9/12/05	Water	SGS	CN	9/23/05
NPDES Sampling	A6726CDM	9/12/05	Water	SGS	Filtered Metals (8)	9/23/05
NPDES Sampling	A6726CTM	9/12/05	Water	SGS	Metals (10)	9/23/05
NPDES Sampling	A6727R	9/14/05	Water	SGS	Chronic Toxicity Test	9/29/05
NPDES Sampling	A6727RCN	9/14/05	Water	SGS	CN	9/26/05
NPDES Sampling	A6727RTM	9/14/05	Water	SGS	Metals (10)	9/26/05
NPDES Sampling	A6728C	9/14/05	Water	SGS	Chronic Toxicity Test	9/29/05
NPDES Sampling	A6728CCN	9/14/05	Water	SGS	CN	9/26/05
NPDES Sampling	A6728CDM	9/14/05	Water	SGS	Filtered Metals (8)	9/26/05
NPDES Sampling	A6728CTM	9/14/05	Water	SGS	Metals (10)	9/26/05
NPDES Sampling	A6729R	9/16/05	Water	SGS	Chronic Toxicity Test	9/29/05
NPDES Sampling	A6729RCN	9/16/05	Water	SGS	CN	9/29/05
NPDES Sampling	A6729RTM	9/16/05	Water	SGS	Metals (10)	9/29/05
NPDES Sampling	A6730C	9/16/05	Water	SGS	Chronic Toxicity Test	9/29/05
NPDES Sampling	A6730CCN	9/16/05	Water	SGS	CN	9/29/05
NPDES Sampling	A6730CDM	9/16/05	Water	SGS	Filtered Metals (8)	9/29/05
NPDES Sampling	A6730CTM	9/16/05	Water	SGS	Metals (10)	9/29/05
NPDES Sampling	AUG05WK4	8/23/05	Water	SGS	Cu, Pb, Zn	9/2/05
NPDES Sampling	OCT05WK1	9/27/05	Water	Columbia	Cu, Pb, Zn	
NPDES Sampling	SEP05WK1	8/29/05	Water	SGS	Cu, Pb, Zn	9/9/05
NPDES Sampling	SEP05WK2	9/6/05	Water	SGS	Cu, Pb, Zn	9/16/05
NPDES Sampling	SEP05WK4	9/20/05	Water	SGS	Cu, Pb, Zn	

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	001-A6714	001-A6724	005-A6678/A6679	005-A6699/A6700	005-A6706/A6709	005-A6722/A6723	005-A6734/A6737
Parameter Dat	e Collected:	09/05/05	09/06/05	08/15/05	08/23/05	08/29/05	09/06/05	09/12/05
PCBs-Unfiltered								
Aroclor-1254		NA	NA	ND(0.000065)	ND(0.000065)	0.000033 J	0.00031	0.000077
Aroclor-1260		NA	NA	0.000014 J	ND(0.000065)	ND(0.000065)	ND(0.000065)	0.000059 J
Total PCBs		NA	NA	0.000014 J	ND(0.000065)	0.000033 J	0.00031	0.000136
Inorganics-Unfiltered								
Aluminum		NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA
Cyanide		NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA
Inorganics-Filtered								
Aluminum		NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA
Conventionals		<u> </u>						
Biological Oxygen Demand (5-day)	NA	NA	NA	NA	NA	ND(2.0)	NA
Oil & Grease		ND(5.0)	NA	NA	NA	NA	NA	NA
Total Suspended Solids		NA	6.00	NA	NA	NA	6.00	NA

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	06A-A6711	09B-A6682	09B-A6710	09B-A6738	09B-A6757	09C-A6701	09C-A6742	64G-A6696
Parameter D	ate Collected:	08/30/05	08/15/05	08/29/05	09/13/05	09/21/05	08/28/05	09/15/05	08/22/05
PCBs-Unfiltered									
Aroclor-1254		NA							
Aroclor-1260		NA							
Total PCBs		NA							
Inorganics-Unfiltered									
Aluminum		NA							
Cadmium		NA							
Calcium		NA							
Chromium		NA							
Copper		NA							
Cyanide		NA							
Lead		NA							
Magnesium		NA							
Nickel		NA							
Silver		NA							
Zinc		NA							
Inorganics-Filtered									
Aluminum		NA							
Cadmium		NA							
Chromium		NA							
Copper		NA							
Lead		NA							
Nickel		NA							
Silver		NA							
Zinc		NA							
Conventionals									
Biological Oxygen Demand	d (5-day)	NA	2.8	3.7	4.1	2.4	NA	NA	NA
Oil & Grease		4.5 B	NA	NA	NA	NA	1.7 B	1.1 B	1.0 B
Total Suspended Solids		NA	19.0	23.0	7.00	NA	NA	NA	NA

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	64G-A6707	64G-A6719	64G-A6735	64T-A6694	64T-A6704	64T-A6717	64T-A6732	A6667RCN
Parameter Da	ate Collected:	08/29/05	09/05/05	09/12/05	08/22/05	08/29/05	09/05/05	09/12/05	08/15/05
PCBs-Unfiltered									
Aroclor-1254		NA							
Aroclor-1260		NA							
Total PCBs		NA							
Inorganics-Unfiltered									
Aluminum		NA							
Cadmium		NA							
Calcium		NA							
Chromium		NA							
Copper		NA							
Cyanide		NA	0.00520 B						
Lead		NA							
Magnesium		NA							
Nickel		NA							
Silver		NA							
Zinc		NA							
Inorganics-Filtered									
Aluminum		NA							
Cadmium		NA							
Chromium		NA							
Copper		NA							
Lead		NA							
Nickel		NA							
Silver		NA							
Zinc		NA							
Conventionals		<u> </u>	<u> </u>			<u> </u>		<u> </u>	<u> </u>
Biological Oxygen Demand	d (5-day)	NA							
Oil & Grease		1.3 B	3.1 B	0.90 B	1.7 B	2.3 B	4.4 B	0.80 B	NA
Total Suspended Solids		NA							

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Parameter Da	Sample ID: ate Collected:	A6667RTM 08/15/05	A6668CCN 08/15/05	A6668CDM 08/15/05	A6668CTM 08/15/05	A6725RCN 09/12/05	A6725RTM 09/12/05	A6726CCN 09/12/05	A6726CDM 09/12/05
PCBs-Unfiltered								ı	
Aroclor-1254		NA							
Aroclor-1260		NA							
Total PCBs		NA							
Inorganics-Unfiltered	•							•	
Aluminum		ND(0.100)	NA	NA	0.400	NA	ND(0.100)	NA	NA
Cadmium		0.00350	NA	NA	ND(0.00100)	NA	0.00170	NA	NA
Calcium		38.0	NA	NA	43.0	NA	48.0	NA	NA
Chromium		0.00300 B	NA	NA	0.00140 B	NA	0.00170 B	NA	NA
Copper		0.00460 B	NA	NA	0.0250	NA	0.00170 B	NA	NA
Cyanide		NA	0.0190 B	NA	NA	0.00670 B	NA	0.0550	NA
Lead		0.00370 B	NA	NA	0.00740	NA	0.00280 B	NA	NA
Magnesium		13.0	NA	NA	18.0	NA	18.0	NA	NA
Nickel		0.00310 B	NA	NA	0.00280 B	NA	ND(0.00500)	NA	NA
Silver		0.00310 B	NA	NA	ND(0.00500)	NA	ND(0.00500)	NA	NA
Zinc		0.0110 B	NA	NA	0.0370	NA	0.00370 B	NA	NA
Inorganics-Filtered									
Aluminum		NA	NA	ND(0.100)	NA	NA	NA	NA	ND(0.100)
Cadmium		NA	NA	ND(0.00100)	NA	NA	NA	NA	ND(0.00100)
Chromium		NA	NA	ND(0.00500)	NA	NA	NA	NA	0.000800 B
Copper		NA	NA	0.0170	NA	NA	NA	NA	0.00260 B
Lead		NA	NA	ND(0.00500)	NA	NA	NA	NA	ND(0.00500)
Nickel		NA	NA	0.00220 B	NA	NA	NA	NA	ND(0.00500)
Silver		NA	NA	ND(0.00500)	NA	NA	NA	NA	ND(0.00500)
Zinc		NA	NA	0.0290	NA	NA	NA	NA	0.0120 B
Conventionals									
Biological Oxygen Demand	d (5-day)	NA							
Oil & Grease		NA							
Total Suspended Solids		NA							

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	Sample ID:	A6726CTM	A6727RCN	A6727RTM	A6728CCN	A6728CDM	A6728CTM	A6729RCN	A6729RTM
	te Collected:	09/12/05	09/14/05	09/14/05	09/14/05	09/14/05	09/14/05	09/16/05	09/16/05
PCBs-Unfiltered				T		T	T		
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA
Inorganics-Unfiltered									
Aluminum		ND(0.100)	NA	ND(0.100)	NA	NA	ND(0.100)	NA	ND(0.100)
Cadmium		0.000900 B	NA	ND(0.00100)	NA	NA	ND(0.00100)	NA	ND(0.00100)
Calcium		83.0	NA	48.0	NA	NA	80.0	NA	40.0
Chromium		0.000970 B	NA	ND(0.00500)	NA	NA	ND(0.00500)	NA	ND(0.00500)
Copper		0.00250 B	NA	ND(0.00500)	NA	NA	0.00210 B	NA	ND(0.00500)
Cyanide		NA	0.00680 B	NA	0.0610	NA	NA	0.00690 B	NA
Lead		0.00290 B	NA	0.00260 B	NA	NA	ND(0.00500)	NA	0.00200 B
Magnesium		35.0	NA	17.0	NA	NA	33.0	NA	14.0
Nickel		ND(0.00500)	NA	ND(0.00500)	NA	NA	ND(0.00500)	NA	ND(0.00500)
Silver		ND(0.00500)	NA	ND(0.00500)	NA	NA	ND(0.00500)	NA	ND(0.00500)
Zinc		0.00400 B	NA	ND(0.0200)	NA	NA	0.00310 B	NA	ND(0.0200)
Inorganics-Filtered									
Aluminum		NA	NA	NA	NA	ND(0.100)	NA	NA	NA
Cadmium		NA	NA	NA	NA	ND(0.00100)	NA	NA	NA
Chromium		NA	NA	NA	NA	ND(0.00500)	NA	NA	NA
Copper		NA	NA	NA	NA	0.00160 B	NA	NA	NA
Lead		NA	NA	NA	NA	ND(0.00500)	NA	NA	NA
Nickel		NA	NA	NA	NA	ND(0.00500)	NA	NA	NA
Silver		NA	NA	NA	NA	ND(0.00500)	NA	NA	NA
Zinc		NA	NA	NA	NA	0.0120 B	NA	NA	NA
Conventionals									
Biological Oxygen Demand	(5-day)	NA	NA	NA	NA	NA	NA	NA	NA
Oil & Grease		NA	NA	NA	NA	NA	NA	NA	NA
Total Suspended Solids		NA	NA	NA	NA	NA	NA	NA	NA

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

_	Sample ID:	A6730CCN	A6730CDM	A6730CTM	AUG05WK4	SEP05WK1	SEP05WK2
	ate Collected:	09/16/05	09/16/05	09/16/05	08/23/05	08/29/05	09/06/05
PCBs-Unfiltered				-	-	_	
Aroclor-1254		NA	NA	NA	NA	NA	NA
Aroclor-1260		NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA
Inorganics-Unfiltered							
Aluminum		NA	NA	0.0600 B	NA	NA	NA
Cadmium		NA	NA	ND(0.00100)	NA	NA	NA
Calcium		NA	NA	79.0	NA	NA	NA
Chromium		NA	NA	ND(0.00500)	NA	NA	NA
Copper		NA	NA	0.00540	0.00840	0.0310	0.00230 B
Cyanide		0.0600	NA	NA	NA	NA	NA
Lead		NA	NA	0.00350 B	0.0110	0.00410 B	ND(0.00500)
Magnesium		NA	NA	35.0	NA	NA	NA
Nickel		NA	NA	ND(0.00500)	NA	NA	NA
Silver		NA	NA	ND(0.00500)	NA	NA	NA
Zinc		NA	NA	0.00620 B	0.0210	0.0340	0.00580 B
Inorganics-Filtered							
Aluminum		NA	ND(0.100)	NA	NA	NA	NA
Cadmium		NA	ND(0.00100)	NA	NA	NA	NA
Chromium		NA	ND(0.00500)	NA	NA	NA	NA
Copper		NA	0.00710	NA	NA	NA	NA
Lead		NA	ND(0.00500)	NA	NA	NA	NA
Nickel		NA	ND(0.00500)	NA	NA	NA	NA
Silver		NA	ND(0.00500)	NA	NA	NA	NA
Zinc		NA	0.0140 B	NA	NA	NA	NA
Conventionals							
Biological Oxygen Deman	d (5-day)	NA	NA	NA	NA	NA	NA
Oil & Grease		NA	NA	NA	NA	NA	NA
Total Suspended Solids		NA	NA	NA	NA	NA	NA

Notes:

- Samples were collected by General Electric Company and submitted to SGS Environmental Services, Inc. for analysis of PCBs, cyanide, TSS, BOD, oil & grease, and metals (filtered and unfiltered).
- 2. NA Not Analyzed.
- ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- With the exception of inorganics, only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics and Conventional Parameters

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

Attachment B

NPDES Discharge Monitoring Reports August 2005

PERMITTEE NAME/ADDRESS (Include Facility Name/Location If Different)

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY, G. RUEBESAM

100 WOODLAWN AVENUE

PITTEFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTEFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MACCOCRET PERMIT NUMBER

OOS DISCHARGE NUMBER

MONITORING PERIOD МО DAY YEAR MO DAY YEAR 05 TO 01 31

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W). F - FINAL

WATERS TO HOUSATONIC-RIVER

*** NO DISCHARGE | | ***

FROM NOTE: Read instructions before completing this form. ATTN: MICHAEL T CARROLL EURSE

PARAMETER		QL	JANTITY OR LOADIN	VG	QUALIT	TY OR CONCENTR	ATION		NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
BOD: 5-DAY (20 DEG. C)	SAMPLE MEASUREMEN	0	0	(26)	长长长长长	经长柱长柱	****		- 0	01/30	CP
00310 T 0 0 BEE COMMENTS BELOW	PERMIT REQUIREMENT	90 MO AVO	DAILY MX	LBS/DY	******	在位在中心	****	****		DNCE/	COMPO
SOLIDS, TOTAL SUSPENDED	SAMPLE MEASUREMEN		0	(25)	松松於於於於	***	谷林林林林林		0	01/30	- CP
DOSGO T -O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	198 MO AVG	270 DAILY MX	LBS/DY	******	计计算计算计	45-45-45-45-45	****		ONCE/ MONTH	COMPO
DIL & GREASE	SAMPLE MEASUREMEN	******	10.1	(26)	经保存条件	****	2.7	(-19)	0	01/07	GR
OOSSA T O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	特条特殊特	DAILY MX	LBS/DY	女体体体体体	*****	DATLY MX	MG/L MG/L		MEENLY	GRAB
POLYCHLORINATED BIPHENYLS (PCBS)	SAMPLE MEASUREMEN	-0.00001	0.00002	(26) LBS/DY	各种各种种种	各共各共共	****		0	01/07	CP
37516 T O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	0.01 MD AVG	O. OG DAILY MX	LBS/DY	安安安安安安	经验证证证	中部并存在的。	****		JEEKLY	COMPO
FLOW, IN CONDUIT GR THRU TREATMENT PLANT	SAMPLE MEASUREMEN	0.100	0.256	(03) MGD	****	林林林林林	*****		, 0	99/99	RC
50050 T 0 0 BEE COMMENTS BELOW	PERMIT REQUIREMENT	2.09 MD AVG	2.09 DAILY MX	MGD	长林林林林	作标准计模块	**************************************	****		CONTIN	RCORD
	SAMPLE MEASUREMEN	Г									and the second s
	PERMIT REQUIREMENT									1	1
	SAMPLE MEASUREMEN										
	PERMIT REQUIREMENT									1	- 2
NAME/TITLE PRINCIPAL EXECUTIVE			this document and all attach pervision in accordance with				T	TELEPHON	IE.	DA	TE
Michael T. Carroll Mgr. Pittsfield Remediation	on Prog. to assistation or the submit	ire that qualified personnel p tied. Based on my inquiry o se persons directly responsib tied is, to the best of my kno	properly gather and evaluate f the person of persons who he for gathering the informat whedge and belief, true, accu	the information manage the system, ion, the informatio trate, and complete	· m	7. Carol		3 448-59	902	2005	9 2/
TYPED OR PRINTED			nt penalties for submitting for I imprisonment for knowing			TURE OF PRINCIPAL I CER OR AUTHORIZED	I A D	EA NUMBE	R	YEAR N	O DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all ettechments here)

SEE PAGE 8 + 9 OF PERMIT FOR SAMPLING REQUIREMENTS. SEE DMR(S) 064G + 064T FOR FURTHER PARAMETERS.

OF

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f D(forent)

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTSFIELD

MA 01201 ATTN- MICHAEL T CARROLL, FHERE

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

064 G DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY FROM TO 31

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W). F - FINAL

GROUNDWATER TREATMENT

*** NO DISCHARGE | 1 ***

NOTE: Read instructions before completing this form.

PARAMETER		QUA	ANTITY OR LOADIN	1G	QUAL	ITY OR CONCENTE	RATION		NO.	FREQUENCY	2 WIAIL FF
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
PH	SAMPLE MEASUREMENT	经保持保持	****		7.3	经按按特殊 特	7.4	(12)	0	99/99	RCDF
00400 T 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMENT	****	计传统计算 4	非共分 技术分析	6.0 MINIMUM	特殊技術發展	9.0 MAXIMUM	SU SU		VEEKLY	RANG-
BASE NEUTRALS & ACID (METHOD 625), TOTAL	SAMPLE MEASUREMENT	*****	本社会社会	2	林林林林林	NODI [9]	NODI [9]	(17)			
74030 T 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMENT	****	******	***	***	REPORT MC AV9	REPORT DATLY M	MG/L		STREY	GRAB
VOLATILE COMPOUNDS, (GC/MS)	SAMPLE MEASUREMENT	****	并并并并特		*****	NODI [9]	NODI [9]	(19)			*
78732 T O O . SEE COMMENTS BELOW	PERMIT REQUIREMENT	***	非非非非非非 的	***	****	REPORT MO AVG	REPORT DAILY M	MG/L		TREY	GRAB
	SAMPLE MEASUREMENT	_		,							
	PERMIT REQUIREMENT									1	
	SAMPLE MEASUREMENT								,	:	
	PERMIT REQUIREMENT										4.1
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT						d'			1	
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
NAME/TITLE PRINCIPAL EXECUTIVE			is document and all attach					TELEPHON	VE.	D/	ATE
Michael T. Carroll Mgr. Pittsfield Remediation	to assure submitted or those p	that qualified personnel pr l. Based on my inquiry of l ersons directly responsible	operly gather and evaluate the person or persons who i for gathering the informati riedge and belief, true, accu	the information manage the syste ion, the informa	em, tlon	7. Carrol	4	13 448-59	02	2005	9 21
TYPED OR PRINTED	I am awar	e that there are significant	penalties for submitting fa mprisonment for knowing	lse information,	SIGNA	TURE OF PRINCIPAL	EXECUTIVE AF	EA NUMBE	R	YEAR N	AO DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE COMMENTS FOR COS1. SEE PAGE 8 + 7 OF PERMIT.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f Different)

NAME GENERAL ELECTRIC CORPORATION

ATTN: MICHAEL T CARROLL, FHS&F

ADDRESS ATTN: JEFFREY, G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

TO

MACCOCARD 1 T

МО

DAY

YEAR

FROM

DISCHARGE NUMBER

08

DAY

31

JMBER DISCHARGE NUMBER

MONITORING PERIOD

YEAR MO

MAJOR (SUBR W). F - FINAL

WASTEWATER TREATMENT (005)

*** NO DISCHARGE | |

NOTE: Read instructions before completing this form.

Form Approved.

OMB No. 2040-0004

PARAMETER		QU	ANTITY OR LOADIN	IG .	QUALI	TY OR CONCENTE	ATION		NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
PH	SAMPLE MEASUREMENT	安安安特特	科林林林		6.9	****	7.5	(12)	0	99/99	RCDF
00400 T O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	작용관심성공	******	*** ****	6.0 MINIMUM	*****	7.0 MAXÎMUM	SU		VEEKLY	RANO-
DIBENZOFURAN	SAMPLE MEASUREMENT	****	******		特特特特特	NODI [6]	NODI [6]	(22)			in the second
81302 T O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	非非特殊特殊	特特特特特 专	李春春春	***	REPORT MC AVG	REPORT DAILY M	X PPT		DNCE/	COMPUS
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT	* 188								2	
	SAMPLE MEASUREMENT		2						i a		
	PERMIT REQUIREMENT									1	
	SAMPLE MEASUREMENT								,	•	
	PERMIT REQUIREMENT									1	
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT									2	
NAME/TITLE PRINCIPAL EXECUTIVE	OFFICER 1 certify	under penalty of law that the under my direction or sup-	is document and all attachmeryision in accordance with	nents were				TELEPHON	IE	DA	ATE .
Michael T. Carroll Mgr. Pittsfield Remediation	to assure submitte or those submitte	that qualified personnel pr d. Based on my inquiry of i persons directly responsible d is, to the best of my know are that there are significant	operly gather and evaluate the person of persons who not for gathering the information and belief, true, accur	the information nanage the syste on, the informa- rate, and comple	em, tion m, tete.	Carrol TURE OF PRINCIPAL		13 448-59	02	2005	9 21
TYPED OR PRINTED	including	g the possibility of fine and I	mprisonment for knowing v			CER OR AUTHORIZE	AGENT	DOE NUMBER	R	YEAR N	O DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)
SEE COMMENTS FOR 0051. SEE PAGE 8 + 9 OF PERMIT.

This is a 4-part form.

OF

PERMITTEE NAME/ADDRESS (Include Feetlity Name/ Location of Different)

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY, G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

- FROM

DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY 01 TO 31

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W). F - FINAL

DISCHARGE TO HOUSATONIC RIVER

*** NO DISCHARGE

NOTE: Read instructions before completing this form.

PARAMETER		QU/	ANTITY OR LOADII	VG	QUAL	ITY OR CONCENTE	RATION		NO.	FREQUENCY	SHIMILLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
EMPERATURE, WATER	SAMPLE MEASUREMENT	****	外科特特特		******			(15)			
DO11 W O O	PERMIT REQUIREMENT	持根据保持	化非合金化基 4	***	苏林林林林	70 MD AVG	75 DATEY MX	DEC F		DNCE/ MONTH	GRAB
1	SAMPLE MEASUREMENT	******	****			***		(12)			
0400 W O O O	PERMIT REQUIREMENT	*****	李松子子孙 3	***	6.0 MINIMUM	****	9 0 MAXIMUM	su /		REEKTA	RANG
ILYCHLORINATED IPHENYLS (PCBS)	SAMPLE MEASUREMENT	******	李林春春春春		长春桂桂桂			(21)			
7516 W O O SE COMMENTS BELOW	PERMIT REQUIREMENT	******	李林安安安 4	***	各种特殊特殊	REPORT MO AVG	REPORT DAILY MX	PPB		REY.	GRAB
DW. IN CONDUIT OR	SAMPLE MEASUREMENT			(037	****	*****	*****	1			
DOSO W O O SE COMMENTS BELOW	PERMIT REQUIREMENT	REPORT MO AVG	REPORT DAILY MX	MGD	各位各位的	经验证证券	*******	****		DMCE/	CALC
	SAMPLE MEASUREMENT								,	-	
	PERMIT REQUIREMENT									E :	
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT						4 .			Ē	
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
ME/TITLE PRINCIPAL EXECUTIVE		under penalty of law that th						TELEPHON	E *	DA	TE
Michael T. Carroll Mgr. Pittsfield Remediation	to assur submitte on Prog. or those submitte	d under my direction or sup e that qualified personnel pr ed. Based on my inquiry of t persons directly responsible ed is, to the best of my know	operly gather and evaluate the person or persons who i for gathering the informat dedge and belief, true, accu	the information manage the syste ion, the informat rate, and comple	m, lon dete.	7. Cano		13,448-59		3 - 2	9 21
TYPED OR PRINTED		are that there are significant g the possibility of fine and i				TURE OF PRINCIPAL		NUMBER	9	YEAR M	O DA

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE AT MANHOLE PRIOR TO CITY STORM DRAIN.

PAGE

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (I Different)

NAME GENERAL ELECTRIC CORPORATION ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

ATTN: MICHAEL T CARROLL, EHS&F

LOCATIONPITTSFIELD

MA 01501

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MA00003891 PERMIT NUMBER

- FROM

DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY TO 31

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W). F - FINAL

PROCESSES TO UNKAMET BROOK .

*** NO DISCHARGE | 1 555 NOTE: Read instructions before completing this form.

PARAMETER		QL	ANTITY OR LOAD!	NG	QUAL	ITY OR CONCENTE	RATION		NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
BCD, S-DAY (20 DEG. C)	SAMPLE MEASUREMEN	UT 0.1	0.3	(26)	各种特殊各种	******	****	and the state of t	0	O//DW	RMTC CP
00310 V O O SEE COMMENTS BELOW	PERMIT REQUIREMEN	T MO AVG	A38 DAILY MX	LBS/DY	하하는 하하다	杂类物类类	****	****		VEEKLY	COMBOS
PH	SAMPLE MEASUREMEN	T - ******	谷谷长谷谷谷		7.6	安林林林林	7.6	(,15)	0	01/DV	GR
00400 V 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMEN	化长柱状体长	李林林林林林	****	6.0 MINIMUM	各种种种特殊	9.0 MAXIMUM	SU SU/		AEEKLY	RANG-(
SOLIDS, TOTAL SUSPENDED	SAMPLE MEASUREMEN	о.6	1.8	(26)	***	****	李桥桥桥桥	-	0	O//DU ERRO	RM7CP
00530 V O O . SEE COMMENTS BELOW	PERMIT REQUIREMEN	T MO AVG	DAILY MX	LBS/DY	安林安林安县	经按证券	******	****		EEKLY	COMPOS
OIL & GREAGE	SAMPLE MEASUREMEN	*****	NODI "E"	(26), LBS/DY	*****	***	NODI "E"	(19)			
GOSSA V O O BEE COMMENTS BELOW	PERMIT REQUIREMEN	**************************************	DAILY MX	LBS/DY	त्रक्षयक्त्रक	法私外共共和	15 DAILY MX	MG/L MG/L		TEKLY	BARE
POLYCHLORINATED BIPHENYLS (PCBS)	SAMPLE MEASUREMEN	Y 华华华华	本本本本本本		******	NODI [9]	NODI [9]	(19)	,	a •	
37516 V O O SEE COMMENTS BELOW	PERMIT REQUIREMEN	经验证证券	非婚替告安全 4	**** ****	*****	REFORT MO AVG	REPORT DAILY MX	MG/L		PIRLY	GRAB
FLOW, IN CONDUIT OR THRU TREATMENT PLANT	SAMPLE MEASUREMEN	т 0.003	0.040	(03) MGD	*****	特格特特特	特米特特特		0	99/99	RC
50050 V 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMEN	REPORT MO AVG	REPORT DAILY MX	MGD	· · · · · · · · · · · · · · · · · · ·	等等分类标准 。	4. 14. 14. 14. 14. 14. 14. 14. 14. 14. 1	****		DOWTIN UDUS	RODROS
	SAMPLE MEASUREMEN	т									
	PERMIT REQUIREMENT	•	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
NAME/TITLE PRINCIPAL EXECUTIVE		ity under penalty of law that t ared under my direction or su						TELEPHON	E	DA	TE
Michael T. Carroll Mgr. Pittsfield Remediation	on Prog. to assubm	sure that qualified personnel p dited. Based on my inquiry of ose persons directly responsible dited is, to the best of my kno- aware that there are significan	roperly gather and evaluate the person or persons who is for gathering the informat wiedge and belief, true, accu	the information manage the system ion, the information trate, and complete	n, on le.	TURE OF PRINCIPAL I	CR 41	3 448-59	02	2005	9 2/
TYPED OR PRINTED	Inclu	ding the possibility of fine and	imprisonment for knowing	violations.		CER OR AUTHORIZED		A NUMBER	1	YEAR M	O DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 11 OF PERMIT. SEE DMRS 009A + 009B. REPORT SUM OF LOAD OFA + OFB, FOR BOD, TSS, FLOW AT DISCHARGE POINT TO BROOK FOR PH, DIL & GREASE, AND PCB

> This is a 4-part form. 00383

OF

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (/ Different)

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

TO

MA0003891 PERMIT NUMBER

MO

DAY

YEAR

FROM

009 DISCHARGE NUMBER

YEAR MO DAY

MAJOR (SUBR W).

F - FINAL

09A SAMPLE POINT BEFORE 009

*** NO DISCHARGE

Form Approved.

OMB No. 2040-0004

PARAMETER		Q	UANTITY OR LOADII	NG	QUALI	TY OR CONCENTR	ATION		NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
GDD. S-DAY (20 DEG. C)	SAMPLE MEASUREMENT		N	(26)	****	长老爷爷爷	华桥长桥传。				
00310 V 0 0 BEE COMMENTS BELOW	PERMIT REQUIREMENT	106 MO AVG	43B DAILY MX	LBS/DY	各种特殊特益	장문장상수	计特殊特殊计	****		REMILY	COMPO
OLIDS, TOTAL SUSPENDED	SAMPLE MEASUREMENT			(26)	计符件分类符	杂种特种杂种	李谷衣女女:				
00520 V -O O DEE COMMENTS BELOW	PERMIT REQUIREMENT	213 MO AVG	DAILY MX	LBS/DY	营收特价资格	****	****	****		WEEKLY	COMPO
LOW, IN CONDUIT OR THRU TREATMENT PLANT	SAMPLE MEASUREMENT			(03)	*****	****	松松松松谷				
GOOSO V O O SELOW	PERMIT REQUIREMENT	REPORT MD AVG	REPORT DAILY MX	MGD	****	*****	****	****		CONTIN	PCORD
	SAMPLE MEASUREMENT			,							
	PERMIT REQUIREMENT									- 1	
	SAMPLE MEASUREMENT								,	40	
	PERMIT REQUIREMENT		A State of the second							- 1	
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT				***						
× ×	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
IAME/TITLE PRINCIPAL EXECUTIVE	OFFICER I certif	y under penalty of law tha	t this document and all attach upervision in accordance with	ments were				TELEPHO	VE.	DA	TE
Michael T. Carroll Mgr. Pittsfield Remediation	to assu submit or the submit	re that qualified personnel ted. Based on my inquiry e persons directly responsi ted is, to the best of my kr	properly gather and evaluate of the person or persons who ble for gathering the informat towledge and belief, true, accu-	the information manage the system, tion, the information trate, and complete.		7. Caro		13 448-5	902	2005	9 2,
TYPED OR PRINTED			ant penalties for submitting for ad imprisonment for knowing			ture of principal e cer or authorized	AGENT AF	EA NUMBE	R	YEAR M	O DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 11 OF PERMIT. SEE DMR 0091. SAMPLE AT 09A.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f Different)

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTEFIELD

MA 01201

- FROM

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MACCOCRET PERMIT NUMBER

ano DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY DAY YEAR MO TO 31

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W). F - FINAL

098 SAMPLE POINT PRIOR TO 009

*** NO DISCHARGE | | ***

PARAMETER		QU	JANTITY OR LOADIN	NG	QUALI	ITY OR CONCENTRA	ATION	,	NO.	1 00	SWIMELE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
OD, S-DAY (20 DEG. C)	SAMPLE MEASUREMENT	0.1	0.3	(LESPOY	*****	各种条件格	计科特特特	MIC	0	01/00	
OBIO V O O EE COMMENTS BELOW	PERMIT REQUIREMENT	106	DAILDA-MX	LBS/DY	经营销额债务	经营税价格价	本格技术教徒	***	C	DEEKLY	COMPO 40
OLIDS, TOTAL USPENDED	SAMPLE MEASUREMENT		1.8	(LES/OY	特特特许安长	李爷爷爷爷	拉格特特特特	MIL	0	OI/DW	ICP
DS30 V O O SE COMMENTS BELOW	PERMIT REQUIREMENT	MO_0X003-	B76 DAJBBWWX	LBB/DY	安林林林林林	经营收收款款	计算符号标告	****	-6	VEEKLY Veekee	COMPO
OW, IN CONDUIT OR REAL TREATMENT PLANT	SAMPLE MEASUREMENT	0,003	0,040	(WGD	***	****	部体体操件	MTC	0	99/99	RC
DOSO V O O :	PERMIT REQUIREMENT	REPORM76 MO ÁVO			各种特殊条件	49-48-49-49-49-49-	***	****		CONTINUOUS	RCORD
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT					E (1)	The second secon				
	SAMPLE MEASUREMENT								,	4.	
	PERMIT REQUIREMENT						1.21 1.21				
	SAMPLE MEASUREMENT						A CONTRACTOR OF THE CONTRACTOR				
	PERMIT REQUIREMENT						•				
	SAMPLE MEASUREMENT	- Constitution of the Cons			7	PARTIE AND ADDRESS OF THE PARTIE AND ADDRESS	ALEXANDER AND A STATE OF THE ASSESSMENT AND A STATE OF THE ASSESSM				
	PERMIT REQUIREMENT									1	
AME/TITLE PRINCIPAL EXECUTIVE	DEPICER prepared	ly under penalty of law that the red under my direction or sup-					A	TELEPHON	7/17	DA	ATE
Mgr. Pittsfield Remediatio	on Prog. to assure submitte or those submitte	ure that qualified personnel pr tted. Based on my inquiry of se persons directly responsible tted is, to the best of my know	properly gather and evaluate of the person or persons who note the for gathering the information whedge and belief, true, accurate	e the information manage the system, stion, the information arrate, and complete.	m.7	7. Cause	L	13 448-59	02	2004	9 2/
TYPED OR PRINTED	lamaw	ware that there are significant ling the possibility of fine and i	nt penalties for submitting fa	false information,	SIGNAT	TURE OF PRINCIPAL E.		REA NUMBER	A	YEAR M	NO DA

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 11 OF PERMIT. SEE DMR 0091; SAMPLE AT 098.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location of Different)

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA -01201

FACILITY GENERAL ELECTRIC COMPANY

ATTN: MICHAEL T CARROLL, EHS&F

LOCATIONPITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

TO

MACCOCKED PERMIT NUMBER

MO

DAY

YEAR

FROM

FILM A DISCHARGE NUMBER

DAY

YEAR MO

(SUBR W). F - FINAL

MAJOR

METALS: 001, 004, 005, 007, 009, 011

Form Approved.

OMB No. 2040-0004

*** NO DISCHARGE | | ***

NOTE: Read instructions before completing this form.

PARAMETER		QU	ANTITY OR LOADIN	QUALITY OR CONCENTRATION				NO.	FREQUENCY	SAMPLE	
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
PHOSPHORUS, TOTAL (AS P)	SAMPLE MEASUREMENT	各种特殊特殊	0.4	(26)	经存货条件	林安母春安安	特殊教授的		0	03/30	СР
00865 1 0 0 Effluent gross value	PERMIT REQUIREMENT	华长桥北京长	REPORT DAILY MX	LBS/DY	特别非常教物	各种特殊特殊	****	****		MONTH	COMPO
VICKEL TOTAL RECOVERABLE	SAMPLE MEASUREMENT	特特特特会会	0.01	(26)	****	*****	按按按标 件		0	03/30	СР
01074 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	***	REPORT DAILY MX	LBS/DY	米林林林 茶	基本分分件 水	计计学特性计	****		MONTH	COMPO
SILVER FOTAL RECOVERABLE	SAMPLE MEASUREMENT	******	0	(26)	计算法计算符	传传传传传	*******		0	03/30	·CP
01079 1 0 0 . SFFLUENT GROSS VALUE	PERMIT REQUIREMENT	************	REPORT DAILY MX	LBS/DY LBS/DY	******	****	******	****		NOE7	COMPO
ZINC TOTAL RECOVERABLE	SAMPLE MEASUREMENT	泰林安泰安安	, 0.1	(26); LBS/DY	经验检查检验	*****	李林林林 林		0	02/07	СР
D1094 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	特格特特基格	REPORT DAILY MX	LBS/DY	特许特殊特殊	经验证证据	存在存在存	专业业务 安全安全		JEE'ALY	COMPO
ALUMINUM, TOTAL (AS AL)	SAMPLE MEASUREMENT	林桥茶茶香塘	1.2	(25) LBS/DY	长长长长长	特於共計資於	松供长松长谷		, 0	- 03/30	CP
01105 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	****	REPORT DAILY MX	LBS/DY	各共争争共争	华安安安安县	各种特殊条件	****		MENTH	COMPO
CADMIUM	SAMPLE MEASUREMENT	***	0	(26) LBS/DY	*****	*****	禁护条件条件		0	03/30	CP
DIMIB I O O EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	安徽传播基金	REPORT DAILY MX	LBS/DY	· 特· 特· 特· 特· 特· 特·	拉林袋等标准	*****	****		MOEZ MONTH	COMPA
TOTAL RECOVERABLE	SAMPLE MEASUREMENT	****	0.02	(26) LBS/DY	***	安林谷谷谷谷	*****		0	02/07	° CP
01114 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	****	REPORT DAILY MX	LBS/DY	经验证证证	许要格特替特	各种传统物	****		MEERLY	COMPO
NAME/TITLE PRINCIPAL EXECUTIVE OFFICER 1 certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed							TELEPHON	IE	DA	TE	
Michael T. Carroll Mgr. Pittsfield Remediate	to assure submitte or those submittee	that qualified personnel p d. Based on my inquiry of persons directly responsible d is, to the best of my know	roperly gather and evaluate the person or persons who re for gathering the informati wiedge and belief, true, accu	the information manage the system, ion, the information rate, and complete.	100	7. Carrol		13 448-59	902	2005	9 21
TYPED OR PRINTED			t penalties for submitting fa imprisonment for knowing			TURE OF PRINCIPAL E CER OR AUTHORIZED		DE NUMBEI	R	YEAR M	O DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

COMPOSITE PROPORTIONATE TO FLOW.

OO210/050113-part form.

PAGE

OF

PERMITTEE NAME/ADDRESS (Include Facility Name/ Location (f D(ferent)

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MADODORDI PERMIT NUMBER DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY - FROM TO 05

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W). F - FINAL

METALS: 001, 004, 005, 007, 009, 011

*** NO DISCHARGE | | *** NOTE: Read instructions before completing this form

PARAMETER		QUANTITY OR LOADING			QUALI		NO.	FREQUENCY	Deciain P		
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
CHROMIUM TOTAL RECOVERABLE	SAMPLE MEASUREMENT	各种条件	0.004	(26)	*****	各种共体	****		0	03/30	CP
DIŽIB 1 0 0 EFFLUENT GROSS VALUS	PERMIT REQUIREMENT	非非非非非	REPORT DAILY MX	LBS/DY	사라#작작*	******	****	****		DNCE/	COMPE
OPPER TOTAL RECOVERABLE	SAMPLE MEASUREMENT	*************************************	0.08	(26)	安安安安安安	华华华华华	****		0	02/07	CP
DILLY 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	沙特特安安安	REPORT DAILY MX	LBS/DY	李산왕산왕왕	*******	表 机-4 45 45 4b	***		WEEKLY	COMPC
YANIDE, TOTAL RECOVERABLE	SAMPLE MEASUREMENT	本本本本本	0.08	(56)	各条条条条件	****	安安安安安		0	03/30	.Cb
78248 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	******	REPORT DAILY MX	LBS/DY	****	******	क्रक्षक्र	****		DNCE/ MONTH	GRAB
	SAMPLE MEASUREMENT			*							
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT								,		
	PERMIT REQUIREMENT									1	
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT		A CONTROL OF THE PARTY OF THE P								
	SAMPLE MEASUREMENT		And the state of t								
	PERMIT REQUIREMENT		A PROPERTY OF THE PROPERTY OF								
NAME/TITLE PRINCIPAL EXECUTIVE OFFICER I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed						TELEP			IE	DA	TE
Michael T. Carroll Mgr. Pittsfield Remediation	that qualified personnel pr d. Based on my Inquiry of persons directly responsible d is, to the best of my know	at qualified personnel properly gather and evaluate the information Based on my inquiry of the person or persons who manage the system, sons directly responsible for gathering the information, the information to the best of my knowledge and belief, true, accurate, and complete, that there are significant penalties for submitting false information,			M. T. Carroll BIGNATURE OF PRINCIPAL EXECUTIVE			902	2005	9 2/	
TYPED OR PRINTED			mprisonment for knowing			OFFICER OR AUTHORIZED AGENT			R	YEAR M	O DA

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

COMPOSITE PROPORTIONATE TO FLOW

DAY

MONITORING PERIOD

TO

Form Approved. OMB No. 2040-0004

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM 100 WOODLAWN AVENUE

ATIN: MICHAEL T CARROLL, EHS&F

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTSFIELD

MA 01201

MACCOCCE PERMIT NUMBER

MO

YEAR

FROM

CI IN D DISCHARGE NUMBER

08

YEAR MO

MAJOR (SUBR W).

DAY

F - FINAL TOXICS: 001, 004, 005, 007, 009, 011

*** NO DISCHARGE | 1 ***

NOTE: Read instructions before completing this form.

PARAMETER	/	QUANTITY OR LOADING			QUALI	QUALITY OR CONCENTRATION					SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
NOEL STAT 7DAY CHR (SAMPLE MEASUREME	NT ****	松林长兴长春		100	茶茶茶茶茶	***	(%23)	0	01/30	СР
TBD3B 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMEN	IT #####	非常特殊等	**** 安养茶茶。	REPORT DAILY MN	****	*****	PER- CENT		DNCE/	COMPO
NOĂEL STAT 48HR ACU CERIODAPHNIA	SAMPLE MEASUREME	*****	特拉特特特特	100	NODI [8]	********	****	(23)			
TDÄBB 1 -0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMEN	THE STATE OF THE S	新华华华华	林安安	REPORT DAILY MN	经收收收益	安安安安安	PER- CENT		DNCE/ MONTH	compa:
VOAEL STATRE 48HR AC	SAMPLE MEASUREME	特殊条件件 TN	*****		NODI [9]	安安安安安	经存货帐价	(%23)			
TDMGD 1 0 0 : EFFLUENT GROSS VALUE	PERMIT REQUIREMEN	TT 特件条件条件	非安林市安林 4	5 安安安 松安安安	GE DAILY MN	计科技技术计	*****	PER- CENT		MONTH	COMPO
	SAMPLE MEASUREME	NT									
	PERMIT REQUIREMEN	ıπ									
	SAMPLE MEASUREMEI	NT							,		
	PERMIT REQUIREMEN	п									
	SAMPLE MEASUREMEN	NT TW									
	PERMIT REQUIREMEN	T CONTRACTOR									
	SAMPLE MEASUREMEN	ит									
	PERMIT REQUIREMEN	Τ									
			nder penalty of law that this document and all attachments were under my direction or supervision in accordance with a system designed						Ε	DATE	
Michael T. Carroll Mgr. Pittsfield Remediation	nared under my direction or sup issure that qualified personnel pi nitted. Based on my inquiry of lose persons directly responsible nitted is, to the best of my know	roperly gather and evaluate the person or persons who e for gathering the informat	the information manage the syste ion, the informat	m,	ce 1				9 2/		
TYPED OR PRINTED	l am	aware that there are significan	e that there are significant penalties for submitting false information, the possibility of fine and imprisonment for knowing violations.			SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT			3	YEAR M	O DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

MONTHLY DRY WEATHER TESTING. COMPOSITE PROPORTIONATE TO FLOW FOR JULY, AUG., SEPT. REPORT ACUTE AND SEE DMR SUMC FOR QUARTERLY WET WEATHER ACUTE CHRONIC. SUBMIT THIS DMR WITH A NODI '7' WHEN SUBMITTING

EPA Form 3320-1 (Rev. 3/99) Previous editions may be used.

This is a 4-part form.

PAGE

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f Different)

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM 100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTSFIELD

MA 01201 ATTN: MICHAEL T CARROLL, FHERE

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MACCOCARS1 PERMIT NUMBER

CHIM DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY - FROM TO 05 05 09

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W). F - FINAL

TOXICS: 001, 004, 005, 007, 009, 011

*** NO DISCHARGE | | ***

NOTE: Read instructions before completing this form.

PARAMETER		QUA	QUANTITY OR LOADING			QUALITY OR CONCENTRATION				FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
DAEL STATRE 48HR	AC SAMPLE MEASUREMENT	*****	共长长长长		100	***	****	(23)	0	01/30	CP
DM3D 1 0 0	PERMIT REQUIREMENT	***	******	***	REPORT DAILY MN	***	水林林林林	PER-		TRLY	сонгс
	SAMPLE MEASUREMENT	-									
# 12 	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT	•				***************************************	***************************************				
	PERMIT REQUIREMENT		•								
	SAMPLE MEASUREMENT	-	,	,							
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT								,	4. e	
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										+
	PERMIT REQUIREMENT						4*				
	SAMPLE MEASUREMENT						-4.100				9
	PERMIT REQUIREMENT				The state of the s	*					
AME/TITLE PRINCIPAL EXECUTIVE OFFICER I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed				T TEL			TELEPHON	E	DA	TE	
Michael T. Carroll Mgr. Pittsfield Remedia	re that qualified personnel pro ted. Based on my inquiry of t e persons directly responsible	operly gather and evaluate he person or persons who for gathering the informat	the information manage the system ion, the information	n, M. S	M.T. Carroll		413 448-5902		2005	12/	
TYPED OR PRINTED	vare that there are significant	re best of my knowledge and belief, true, accurate, and complete. here are significant penalities for submitting false information, ibility of fine and imprisonment for knowing violations.			SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT				YEAR M	O DAY	
0 SEEPS AND LOSS TO LOSS TO SEED AND LOS					OFFICER ON MOTHONIZED MOENT C			A NUMBER			- 1000

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

QUARTERLY WET WEATHER ACUTE. COMPOSITE PROPORTIONATE TO FLOW. SEE DMR SUMB FOR DRY WEATHER TESTING. SUBMIT THIS DMR WITH A NODI '9' WHEN SUBMITTING DRY WEATHER ON DMR SUMB

PAGE

Attachment C

Toxicity Evaluation of Wastewaters
Discharged From the General Electric
Plant; Pittsfield, Massachusetts
[Samples Collected in September 2005]

NPDES Permit No. MA000 3891 SGS ID number: TA5-I0-P243 September 28, 2005 Page 1

Toxicity Evaluation of Wastewaters Discharged from The General Electric Plant Pittsfield, Massachusetts

Samples collected in September 2005

Submitted to:

General Electric
Area Environmental & Facility Programs
100 Woodlawn Avenue
Pittsfield, Massachusetts 01201

SGS Sample ID: TA5-I0-P243

Study Director: Ken Holliday

28 September 2005

SGS Environmental Services
1258 Greenbrier Street
Charleston, West Virginia 25311-1002
Tel: 304.346.0725 Fax: 304.346.0761
www.sgs.com

Signatures and Approval

Submitted by:

SGS Environmental Services

1258 Greenbrier Street

Charleston, West Virginia 25311-1002

Tel: 304.346.0725 Fax: 304.346.0761

www.sgs.com

Ken Hølliday

Study Director

Ken.holliday@sgs.com

September 28, 2005

Date

Titshina L. Mims

Technical Writer

September 28, 2005

Date

Barbara Hensley

Project Manager

Barbara.hensley@sgs.com

September 28, 2005

Date

Whole Effluent Toxicity Test Report Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Execu	ıtod.	on:	
EXELL	ucu	OH.	

September 28, 2005

Date

Authorized signature

Jeannie Milholland

Name

QA/QC Manager

Title

SGS Environmental Services

Laboratory

Table of Contents

	<u>Page</u>
Signatures and Approval	2
Whole Effluent Toxicity Test Report Certification	3
Summary	6
1.0 Introduction	7
1.1 Background	7
1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977)	8
1.3 Objective of the General Electric Study	8
2.0 Materials and Methods	9
2.1 Protocol	9
2.2 Effluent Sample	9
2.3 Dilution Water	10
2.4 Reference Control Water	10
2.5 Test Organisms	11
2.6 Test Procedures	11
2.7 Test Monitoring	12
2.8 Reference Toxicity Tests	13
3.0 Statistics	14
Flowchart for determination of the LC50	15
4.0 Results	16
4.1 Effluent Toxicity Test	16
4.2 Reference Toxicity Test	16
Reference Documents	17
Appendix I - References	22
Appendix II – Chain of Custody	40
Appendix III - Bench Data	42
Appendix IV - U.S. EPA Region I Toxicity Test Summary	48

List of Tables

		Page
Table 1	Methods and detection limits of chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)	18
Table 2	Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)	19
Table 3	The water quality measurements recorded during the 48-hour static toxicity test exposing <i>Daphnia pulex</i> to General Electric Pittsfield Plant effluent	20
Table 4	Cumulative percent mortalities recorded during the 48-hour static toxicity test exposing <i>Daphnia pulex</i> to General Electric Pittsfield Plant effluent	21

Summary

Static Acute Toxicity Test with *Daphnia pulex*

Sponsor:

General Electric

Protocol Title:

Acute Aquatic Toxicity Testing, SGS Document

Control Number 7002, version 5.0

SGS Study Number:

TA5-I0-P243

Test Material:

Composite effluent from the General Electric

Company located in Pittsfield, Massachusetts

GE Sample ID:

A6726C

Dilution Water:

Water from the Housatonic River (grab sample)

GE Sample ID:

A6725R

Dates Collected:

September 11, 2005 to September 12, 2005

Date Received:

September 13, 2005

Test Dates:

September 13, 2005 to September 15, 2005

Test Concentrations:

100% effluent 75% effluent 50% effluent 35% effluent 15% effluent 5% effluent

dilution water control reference control

secondary reference control (sodium thiosulfate)

Results:

The 48-hour LC50 value was determined to be >100% effluent. The No-Observed-Acute-

Effect-Level (NOAEL) was observed to be 100%

effluent.

1.0 Introduction

1.1 Background

In 1972, amendments were made to the Clean Water Act (CWA) prohibiting the discharge of any pollutant from a point source to waters of the United States, unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Since the passing of the 1972 amendments to the CWA, significant progress has been made in cleaning up industrial process wastewater and municipal sewage.

The purpose of the National Pollutant Discharge Elimination System (NPDES) Program is to protect human health and the environment. The Clean Water Act requires that all point sources discharging pollutants into waters of the United States must obtain an NPDES permit. By point sources, EPA means discrete conveyances such as pipes or man made ditches.

For many years, discharge limits were based on available technology for wastewater treatment. However, in 1984, the U.S. Environmental Protection Agency (EPA) released a national policy statement entitled "Policy for the Development of Water Quality-Based Permit Limitations for Toxic Pollutants" (U.S. EPA, 1984) which addresses the control of toxic pollutants beyond technology-based requirements in order to meet water quality standards. To implement the new policy, guidance was provided to the respective state and regional permit personnel in the EPA's "Technical Support Document for Water Quality-Based Toxics Control" (U.S. EPA, 1985; U.S. EPA, 1991). The EPA's policy statement and the support document recommended that, where appropriate, permit limits should be based on effluent toxicity as measured in aquatic toxicity tests.

1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977)

The Clean Water Act is a 1977 amendment to the Federal Water Pollution Control Act of 1972, which set the basic structure for regulating discharges of pollutants to waters of the United States. The law gave EPA the authority to set effluent standards on an industry basis (technology-based) and continued the requirements to set water quality standards for all contaminants in surface waters. The CWA makes it unlawful for any person to discharge any pollutant from a point source into navigable waters unless a permit (NPDES) is obtained under the Act. The 1977 amendments focused on toxic pollutants. In 1987, the CWA was reauthorized and again focused on toxic substances, authorized citizen suit provisions, and funded sewage treatment plants (POTWs) under the Construction Grants Program. The CWA provisions for the delegation by EPA of many permitting, administrative, and enforcement aspects of the law to state governments. In states with the authority to implement CWA programs, EPA still retains oversight responsibilities.

1.3 Objective of the General Electric Study

The objective of this study was to measure the acute toxicity of the composite wastewater discharged by the General Electric facility located in Pittsfield, Massachusetts, using *Daphnia pulex* under static conditions. Whereas *D. pulex* are not considered locally important, they are routinely used by regulatory agencies and contract laboratories nationwide for toxicity testing. A toxicity test was conducted from September 13, 2005 to September 15, 2005 at SGS Environmental Services, Charleston, West Virginia. All original raw data and the final report produced for this study are stored in SGS's archives at the above location.

2.0 Materials and Methods

2.1 Protocol

Procedures used in this acute toxicity test followed those described in the SGS Standard Operating Procedure (SOP) entitled *Acute Aquatic Toxicity Testing*, SGS document control number 7002, version 5.0. This SOP generally follows the standard methodology presented in *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (5th Edition EPA-821-R-02-012 U.S. EPA, Cincinnati, Ohio.) Additional SOPs used in this study are outlined below:

Title	Document Number	Version
Culture Waters for Aquatic Toxicity Testing	7005	4.0
Culture of <i>Daphnia</i>	7006	5.0
Reference Toxicant Testing	7008	5.0
Sample Handling for Aquatic Toxicity Testing	7009	4.0

Copies of these documents are included in the References section of this report.

2.2 Effluent Sample

The effluent sample (A6726C) was collected by GE personnel September 11, 2005 to September 12, 2005. Upon receipt at SGS on September 13, 2005, the sample temperature was 3.8° C. The effluent sample was characterized as having

Parameter	Result
Total Hardness	340
Alkalinity (as CaCO ₃)	167
pH	7.09
Specific Conductance	1238
Dissolved Oxygen Concentration*	8.32

The effluent sample was observed to be clear and colorless.

2.3 Dilution Water

Dilution water consisted of receiving water collected from the Housatonic River. The receiving water (A6725R) was collected by General Electric personnel on September 12, 2005. Upon receipt at SGS on September 13, 2005, the sample temperature was 3.8° C. The dilution water was characterized as having

Parameter	Result
Total Hardness	310
Alkalinity (as CaCO₃)	193
pH	7.25
Specific Conductance	443
Dissolved Oxygen Concentration*	8.51

^{*}Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 20°C).

The dilution water sample was observed to be slightly cloudy with a straw color.

2.4 Reference Control Water

Water used in the reference control vessels was deionized (DI) water adjusted to the appropriate hardness (moderately hard reconstituted water) by the addition of reagent grade chemicals (U.S. EPA, 1993). Characterization of this water resulted in:

Parameter	Result
Total Hardness	100
Alkalinity (as CaCO₃)	63
pH	7.08
Specific Conductance	314
Dissolved Oxygen	8.74

^{*}Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 20°C).

2.5 Test Organisms

Daphnids (*Daphnia pulex*), less than 24-hours old, were obtained from SGS laboratory cultures maintained in Charleston. The culture system consisted of twenty-four (24) 100 ml disposable plastic beakers each containing 80 ml of culture medium and one (1) daphnid. The culture medium was deionized (DI) water for which the hardness was raised by addition of reagent grade chemicals (U.S. EPA, 1993). Prior to use, the culture water was characterized:

Parameter	Result					
Total Hardness	within range of 80-110 mg/L					
Alkalinity (as CaCO₃)	within range of 60-70 mg/L					
pH	within range of 7.0 to 7.2					

The culture area was maintained at a temperature of 20° C (\pm 1° C) with a regulated photoperiod of 16 hours of light and 8 hours of darkness.

Daphnid cultures were fed a combination of green algae ($Selanastrum \, capricorium$), approximately 4.0 x 10^7 cells/ml) and YCT (yeast, cereal leaves and trout chow). Approximately 1.0 ml of algae and 0.5 ml of YCT was added to each culture vessel daily. Three times per week, daphnids are transferred to fresh culture media.

Approximately twenty-four hours before test initiation, all immature daphnids were removed from the culture flasks. Offspring produced during the period were used in the toxicity test.

2.6 Test Procedures

A subsample of the effluent and the dilution water (approximately 2250 ml) was analyzed by SGS for total phosphorus, chloride, total suspended solids, and total solids. The 48-hour toxicity test was conducted at concentrations of 100%, 75%, 50%, 35%, 15% and 5% effluent. Test concentrations were prepared by

diluting the appropriate volume of effluent with dilution water to a total volume of 250 ml. Test solutions were then divided into replicate (5 replicates per concentration) 30 ml medicine cups, each containing 20 ml of test solution. One set of five control beakers (containing Housatonic River water) and one set of five reference control beakers (containing moderately hard reconstituted water) were established and maintained under the same conditions as the exposure concentrations. A secondary set of five reference control beakers (containing sodium thiosulfate) was also maintained. Test solutions were placed in an incubator to maintain solution temperature of 20°C (\pm 1°C). Light was provided on a 16-hour light and 8-hour dark photoperiod. Florescent bulbs provided an illumination of 90 to 100 foot-candles in the test area.

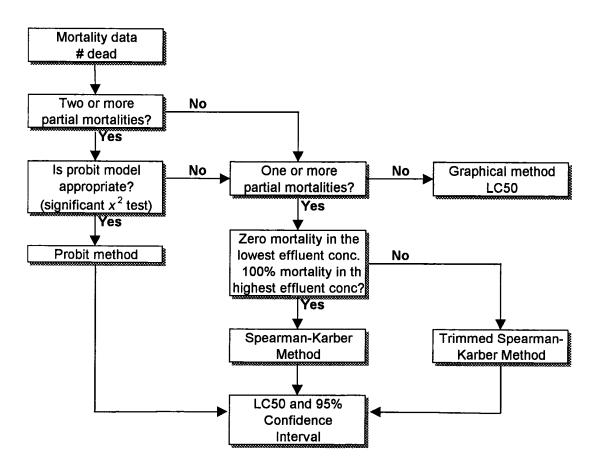
Prior to test initiation, daphnids less than 24-hours old were culled individually with a plastic pipette and placed into a 1000 ml holding beaker containing approximately 500 ml of reference water. The test was initiated when daphnids were individually transferred from the holding beaker to the test solutions (4 daphnids per replicate). The daphnids were fed prior to test initiation but were not fed during the exposure period.

2.7 Test Monitoring

The number of mortalities and observations in each replicate vessel were recorded at 24 and 48 hours of exposure and observed mortalities were removed from the test solutions. Biological observations and observations from the physical characteristics of each replicate test solution and control were also made and recorded at 0, 24 and 48 hours. Dissolved oxygen concentrations pH and temperature were measured at test initiation and at 24-hour intervals thereafter, in one replicate vessel (a) for each test concentration in which there were surviving organisms.

Total hardness concentrations were measured by the EDTA titrimetric method and total alkalinity concentrations were determined by potentiometric titration to an endpoint of pH 4.5 (APHA, 1989). Total residual chorine was measured by Hach test. Concentrations of ammonia were determined using a Buchi model 212 distillation unit and titrated automatically with a Brinkman titroprocessor. Specific conductivity was measured with a Cole Palmer Model 71250 salinity-conductivity-temperature meter and probe; pH was measured with a Fisher Scientific Accumet 910 pH meter and combination electrode; dissolved oxygen concentration was measured with an YSI Model 59 dissolved oxygen meter. Daily temperature measurements were performed with a Princo mercury thermometer and a Fisher minimum-maximum thermometer. Light intensity was measured with a General Electric type 217 light meter.

2.8 Reference Toxicity Test


A 48-hour reference toxicity test exposing *Daphnia pulex* to sodium chloride (NaCl) was conducted from September 13, 2005 to September 15, 2005. The reference test was conducted to establish the health of the test organisms. The reference toxicity test included five NaCl concentrations and a dilution water control (moderately hard reconstituted water). The nominal NaCl concentrations for the test with *Daphnia pulex* ranged from 625 to 10,000 mg of NaCl/L. Test methods were the same as those described above for the effluent test.

3.0 Statistics

The concentration-response relationships observed were characterized by the median lethal concentrations (LC50), which is the concentration that is calculated to be lethal to 50 percent of the organisms within the test period. If no concentration caused mortality of 50%, then the LC50 value was determined to be greater than the highest concentration tested and no statistical analysis were performed. If at least one concentration caused mortality of greater than 50% of the test population, then a computer program (TOXSTAT 3.5) was used to calculate the LC50 value. Three statistical methods were available in the computer program: probit analysis, the Trimmed Spearman-Karber, and the Spearman-Karber methods. The graphical method is available if appropriate. Generally, to choose the best estimate of the LC50 value for a particular data set, the U.S. EPA flow chart on page 15 was followed.

The No-Observable-Acute-Effect-Level (NOAEL) was estimated for the acute toxicity test, and is defined as the highest concentration of effluent that produced $\geq 90\%$ survival.

Flowchart 1. Determination of the LC50 from a Multi-Effluent-Concentration Acute Toxicity Test

Flowchart for determination of the LC50 for multi-effluent-concentration acute toxicity tests.

4.0 Results

4.1 Effluent Toxicity Test

The methods and detection limits of chemical analyses performed on the composite effluent sample and dilution water are summarized in Table 1. Results of the characterization and analysis of the effluent and the dilution water are presented in Table 2. Water quality parameters measured during the toxicity test are presented in Table 3. Daily and continuous monitoring of the test solutions established the temperature ranged from 19°C to 21°C throughout the exposure period. The effluent concentration was tested (expressed as %) and the corresponding percent mortalities recorded during the 48-hour toxicity test are presented in Table 4. Significant toxicity was not demonstrated in this examination. Based on the results of this study, the 48-hour LC₅₀ value was >100% effluent. The NOAEL value for this study was determined to be 100% effluent.

4.2 Reference Toxicity Test

SGS uses sodium chloride (NaCl) as a reference toxicant. The reference test was conducted from September 13, 2005 to September 15, 2005, and the resulting 48-hour LC50 was estimated by Trimmed Spearman-Karber Method to be 2176 mg NaCl/L (95% confidence intervals of 1849 to 2560 mg NaCl/L).

References

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17th Edition.
- U.S. Environmental Protection Agency. 1984. Development of water Quality-Based Permit Limitations for Toxic Pollutants. Federal Register 49(48): 90160-90190.
- U.S. Environmental Protection Agency. 1985. Technical Support Document for Water Quality-Based Toxics Control. Office of Water, Washington, DC.
- U.S. Environmental Protection Agency. 1991. Technical Support Document for Water Quality-Based Toxics Control. Office of Water, Washington, DC.
- U.S. Environmental Protection Agency. 5th Edition. *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*. EPA-821-R-02-012.

NPDES Permit No. MA000 3891 SGS ID number: TA5-I0-P243 September 28, 2005 Page 18

Table 1. Methods and detection limits of chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River).

Parameters	Method	Detection Limits
Ammonia Nitrogen as N	EPA 350.2	1.0 mg/L
Chloride	EPA 325.2	1.0 mg/L
Total Organic Carbon	EPA 415.1	1.0 mg/L
Total Solids	EPA 160.3	10.0 mg/L
Phosphorus, Total as P	Standard Methods 4500-P	0.020 mg/L
Total Residual Chlorine	Standard Methods 4500-Cl G	0.01 mg/L
Total Suspended Solids	EPA 160.2	5.0 mg/L

Results of the characterization and analyses of the General Table 2. **Electric Pittsfield Plant effluent and the dilution water** (Housatonic River).

Parameter	Effluent (A6726C)	Housatonic River (A6725R)
Temperature	20.2°C	20.2°C
рH	7.09	7.25
Alkalinity (as CaCO ₃)	340 mg/L	193 mg/L
Hardness (as CaCO₃)	340 mg/L	310 mg/L
Dissolved Oxygen	8.32 mg/L	8.51 mg/L
Specific Conductivity	1238 μmhos/cm	443 μmhos/cm
Salinity	N/A	N/A
Total Residual Chlorine	ND	ND
Ammonia as N (0-Hour)	ND	ND
Total Phosphorus as P	ND	ND
Chloride	160 mg/L	26 mg/L
Total Suspended Solids	ND	ND
Total Solids	630 mg/L	250 mg/L
Total Organic Carbon	ND	1.6 mg/L

Dissolved oxygen concentrations recorded after samples were aerated and warmed to approximately 20°C.

N/A = not applicable ND = non detectable

Table 3. The water quality measurements recorded during the 48-hour static toxicity test exposing *Daphnia pulex* to General Electric Pittsfield Plant effluent.

		рН		0	Dissolved Oxygen (mg/L)			Temperature (°C)		
Matrix ↓	0	24	48	0	24	48	0	24	48	
Reference Control	7.08	7.12	7.15	8.74	8.70	8.67	20.2	20.8	19.5	
Secondary Ref Control	7.13	7.19	7.18	8.77	8.75	8.70	20.2	20.8	19.5	
Dilution Water Control	7.25	7.29	7.30	8.51	8.47	8.40	20.2	20.8	19.5	
5% Effluent	7.23	7.26	7.28	8.50	8.46	8.41	20.2	20.8	19.5	
15% Effluent	7.20	7.19	7.24	8.45	8.37	8.40	20.2	20.8	19.5	
35% Effluent	7.17	7.19	7.26	8.40	8.35	8.38	20.2	20.8	19.5	
50% Effluent	7.15	7.21	7.26	8.36	8.31	8.32	20.2	20.8	19.5	
75% Effluent	7.10	7.14	7.19	8.34	8.27	8.31	20.2	20.8	19.5	
100% Effluent	7.09	7.13	7.17	8.32	8.30	8.26	20.2	20.8	19.5	

Dissolved oxygen, pH and temperature were measured in one replicate test chamber (A) for each concentration and controls.

The appearance of the effluent was clear, with some sediment.

Reference Control

= moderately hard synthetic water

Secondary Control

= moderately hard synthetic water and 0.1 N sodium thiosulfate

(Na₂S₂O₃)

Dilution Water Control

= receiving water collected from the Housatonic River

NPDES Permit No. MA000 3891 SGS ID number: TA5-I0-P243 September 28, 2005 Page 21

Table 4. Cumulative percent mortalities recorded during the 48-hour static toxicity test exposing *Daphnia pulex* to General Electric Pittsfield Plant effluent.

				C		tive Deve			124	<i>(</i> 0/)		
			2	4-Ho		itive Perc	епт м	ent Mortality (%) 48-Hour				
Test Matrix ↓	A	В	С	D	E	Mean	A	В	С	D	E	Mean
Reference Control	0	0	0	0	0	0	0	0	0	0	0	0
Secondary Ref Control	0	0	0	0	0	0	0	0	0	0	0	0
Dilution Water Control	0	0	0	0	0	0	0	0	0	0	0	0
5% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
15% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
35% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
50% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
75% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
100% Effluent	0	0	0	0	0	0	0	0	0	0	0	0

Reference Control
Na₂S₂O₃ Control
Dilution Water Control

= moderately hard synthetic water

= moderately hard synthetic water and sodium thiosulfate (0.1 N)

lution Water Control = receiving water collected from the Housatonic River

Appendix I References

23

Document Title:

Acute Aquatic Toxicity Testing

Method Reference:

SGS/USEPA

Document File Name: Revision Number:

7002-05.DOC

Effective Date:

5.0

Review Date

May 17, 2005 May 17, 2005

Document Control Number:

7002.05

Page 1 of 6

Approved by: Supervisor

5-17-05 Date

1.0 SUMMARY

A 24-, 48-, or 96-hour test to determine the toxicity to freshwater aquatic animals of

2.0 **REFERENCES**

- Weber, Cornelius I., Methods for Measuring the Acute Toxicity of Effluents and 2.1 Receiving Waters to Freshwater and Marine Organisms., Fifth Edition. EPA-821-R-02-012. U.S.EPA, Cincinnati, Ohio.
- Reporting and Testing Guidance for Biomonitoring Required by the Ohio 2.2 Environmental Protection Agency, October, 1991.
- Toxics Management Program's Guidance for Conduction and Reporting the 2.3 Results of Toxicity Tests in Fulfillment of VPDES Permit Requirements, Revised

3.0 **SCREENING**

3.1 **Test Duration**

24 Hours, 48 Hours or 96 Hours.

3.2 **Test Preparation**

Measure the pH, D.O. and total residual chlorine of the 100% effluent and the control water. If the effluent pH falls outside of the range of 6.0-9.0, two parallel tests are set up in which one effluent is adjusted and the other is not. The pH is adjusted to 7.0 using additions of 1N NaOH and HCl, (other pH adjustment endpoints may be utilized depending on local requirements). The measured amount of acid or base is recorded on the bench sheet. If the D.O. is below 40% saturation or above 100% saturation, the effluent is aerated prior to test initiation. If the total chlorine is above 0.1 mg/L, two parallel tests are set up in which one effluent is dechlorinated and the other

Document Title:

Acute Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7002-05.DOC

Revision Number:

5.0

Effective Date: Review Date

May 17, 2005 May 17, 2005

Page 2 of 6

Document Control Number:

7002.05

is not (Dechlorination may be prohibited; permit is checked to determine if dechlorination is allowed). The effluent is dechlorinated by the addition of anhydrous sodium thiosulfate. The measured amount is recorded on the bench sheet. Care is taken to add the least amount of sodium thiosulfate needed to decrease the TRC level below 0.10 mg/L. Typically, adjustment of effluent is unnecessary.

- 3.2.2 Twenty organisms per concentration are used in acute screening tests.
- 3.2.3 This is a static, non-renewal test, using *Ceriodaphnia dubia, Daphnia pulex, Daphnia magna*, or *Pimephales promelas* (Fathead minnow).
- 3.2.4 Water quality (D.O., pH, conductivity, hardness, alkalinity and TRC), is measured at the time of test initiation. At test termination, temperature, D.O. conductivity and pH are measured. The final mortality and percent effected counts are recorded. Temperature is maintained at 25°± 1°C for Daphnia, and 20° ± 1°C for fathead minnows. Facilities exist to perform both fish and Daphnia tests at either temperature.
- 3.3 Test Results

No statistical analysis is performed on screening data.

4.0 DEFINITIVE TEST

- 4.1 Pimephales promelas (Fathead Minnows)
 - 4.1.1 Test Duration

48-Hours or 96-Hours

- 4.1.2 Static non-renewal
- 4.1.3 Test Preparation
 - 4.1.3.1 This test is comprised of a control and an effluent dilution series usually consisting of 100%, 50%, 25%, 12.5% and 6.25% (unless otherwise indicated).
 - 4.1.3.2 The sample is brought up to test temperature in a room temperature water bath. Chemical parameters are checked and recorded. If the pH, D.O. or chlorine fall outside the acceptable

Document Title:

Acute Aquatic Toxicity Testing

Method Reference: Document File Name:

SGS/USEPA 7002-05.DOC

Revision Number:

5.0

Effective Date: Review Date May 17, 2005 May 17, 2005

Document Control Number:

7002.05

Page 3 of 6

testing range, the effluent may be adjusted (see screening; Test Preparation).

- 4.1.3.3 The dilutions are prepared in calibrated graduated cylinders using moderately hard synthetic water as dilution water. Other dilution water may be used if specified.
- 4.1.3.4 Approximately 400 ml of test solution is placed in each of two 800 ml disposable plastic beakers.

4.1.4 Loading

Ten (10) organisms are placed in each beaker. SGSuses fish which are less than 14 days old and are hatched within the same 24 hour period. A loading limit of 0.8 g/l is observed. Fish are loaded by first transferring them to a shallow dish where they are easily transferred into the test solutions with wide-bore pipettes.

4.1.5 Test Temperature

20° C (± 1)

4.1.6 Daily Procedures

- 4.1.6.1 At the end of each 24 hours, the pH, D.O. and temperatures are checked and recorded. At this time mortalities are also recorded.
- 4.1.6.2 If a 96 hour static acute test is required, the test solution may be renewed at 48 hours. Renewal is accomplished by siphoning old test solution and debris and replacing with fresh solution of the appropriate concentration.
- 4.1.6.3 At the end of 48 hours or 96 hours the final mortalities and percent affected are recorded along with the final water qualities (D.O., pH, conductivity).

4.1.7 Feeding

Organisms are allowed to feed only prior to test initiation, and prior to renewal at 48 hours in a 96 hour test.

Document Title:

Acute Aquatic Toxicity Testing

Method Reference: Document File Name:

SGS/USEPA 7002-05.DOC

Revision Number:

5.0

Effective Date: Review Date

May 17, 2005 May 17, 2005

Document Control Number:

地位的資本

7002.05

Page 4 of 6

4.2 Ceriodaphnia dubia, Daphnia magna, and Daphnia pulex

4.2.1 Test Duration

48-Hours

- 4.2.2 Static Non-renewal
- 4.2.3 Test Preparation
 - 4.2.3.1 This test is comprised of a control and a dilution series consisting of 100%, 50%, 25%, 12.5% and 6.25% of the effluent (unless otherwise indicated).
 - 4.2.3.2 The sample is brought up to test temperature in a room temperature waterbath. Chemical parameters are checked and recorded. If the pH, D.O. or chlorine fall outside the acceptable testing range, the effluent may be adjusted (see screening; Test Preparation).
 - 4.2.3.3 The dilutions are prepared in beakers using moderately hard synthetic water (see Section II; Dilution Waters and Culture Media), unless other dilution water is specified. At least 25 ml. of each dilution are placed in five 30 ml. testing vessels.

4.2.4 Loading

4.2.4.1 Four organisms are placed in each vessel. The *Daphnids* are loaded with a disposable polyethylene transfer pipette and are gently released below the surface of the water to avoid the risk of injury.

4.2.5 Test Temperature

The test is conducted in a constant temperature incubator at $25^{\circ} \pm 1^{\circ}$ C(To satisfy local requirements tests may be conducted at other temperatures).

Document Title:

Acute Aquatic Toxicity Testing

Method Reference:

SGS/USEPA 7002-05.DOC

Document File Name: **Revision Number:**

Effective Date:

5.0

Review Date

May 17, 2005 May 17, 2005

Document Control Number:

UNCONTROLLED

7002.05

Page 5 of 6

4.2.6 **Daily Procedure**

- 4.2.6.1 At 24 and 48 hours the mortalities and number adversely effected are noted.
- 4.2.6.2 Due to the fragile structure of Daphnia organisms, dissolved oxygen, hardness alkalinity, specific conductance and pH readings are not taken after the organisms have been added to the sample. These analyses could cause injury to the Daphnia organisms.

4.2.7 Photoperiod

16 hours light, 8 hours dark.

4.2.8 Feeding

Organisms are allowed to feed prior to test initiation; they are not fed for the duration of the test

5.0 **TEST DATA**

- Pimephales promelas, Ceriodaphnia dubia, Daphnia magna and Daphnia pulex 5.1
 - Mortality and adverse effects are used as the endpoints for a definitive test. 5.1.1
 - 5.1.2 Chemical parameters checked before test initiation, at 24 hours, 48 hours, 72 hours and 96 hours.
 - 5.1.3 Mortalities recorded at 24 hours, 48 hours, 72 hours and 96 hours.
 - 5.1.4 Any atypical behavior or complications are recorded.

6.0 **DATA ANALYSIS**

6.1 Introduction

Data from acute effluent toxicity tests are used to estimate the LC50 and EC50. The LC50 is a point estimate of the effluent concentration that is expected to cause lethality to 50% of the test organisms. The EC50 is a point estimate of the effluent concentration that is expected to cause and adverse effects to 50% of the test organisms.

Document Title:

Acute Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7002-05.DOC

Revision Number:

5.0

Effective Date: Review Date

May 17, 2005

May 17, 2005

Document Control Number:

7002.05

Page 6 of 6

6.2 Methods for Estimating the LC50 & EC50

- 6.2.1 The flow chart (Figure 6) on page 73 of the manual, Methods for Measuring the Acute Toxicity of Effluents and Receiving Water to Freshwater and Marine Organisms (Fifth Edition), EPA-821-R-02-012, Appendix A is observed for determination of the LC50 for multi-concentration acute toxicity tests.
- 6.2.2 Several statistics packages, including Toxstat® 3.4, are available for data analysis.

7.0 REPORT PREPARATION

- 7.1 SGS Acute Toxicity Test Reports Typically Contain the Following Information:
 - 7.1.1 Test background information Includes client, NPDES or state permit number, sampling point reference number, date collected and received, collector's name, type and date of test, dilution water used, test results, and chain of custody forms.
 - 7.1.2 Results LC50 & EC50 values and analysis method used; Any comments concerning the test results.
 - 7.1.3 Initial Characterization of the Effluent Sample Raw Data Sheets: Includes dissolved oxygen (DO), pH, specific conductivity, hardness, alkalinity and a description of the sample source.
 - 7.1.4 Reference Toxicity Data

Document Title:

Culture Waters for Aquatic Toxicity Testing

Method Reference: Document File Name:

SGS/USEPA 7005-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998 May 17, 2005

Page 1 of 3

Document Control Number:

7005.04

1.0 Summary

> This document describes the preparation of various waters used for the culture of aquatic organisms.

Moderately-Hard Synthetic Water 2.0

- Place 19 liter of de-ionized, or equivalent, water in a properly cleaned and labeled 2.1 plastic carbov.
- Add 1.20 g of MgSO₄, 1.92 g NaHCO₃ and 0.08g KCl to the carboy. 2.2
- 2.3 Aerate overnight.
- Add 1.20 g of CaSO₄ 2H₂O to 1 liter of de-ionized or equivalent water in a separate 2.4 flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 19 liter above and mix well.
- 2.5 Aerate vigorously for 24 hours to stabilize the medium.

3.0 **Hard Synthetic Water**

- Place 9 liter of de-ionized, or equivalent, water in a properly cleaned and labeled 3.1 plastic carboy.
- 3.2 Add 1.20 g of MgSO₄, 1.92 g NaHCO₃ and 0.08g KCl to the carboy.
- 3.3 Aerate overnight.
- Add 1.20 g of CaSO₄ 2H₂O to 1 liter of de-ionized, or equivalent water in a 3.4 separate flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 9 liter above and mix well.
- 3.5 Aerate vigorously for 24 hours to stabilize the medium.

Document Title:

Culture Waters for Aquatic Toxicity Testing

Method Reference: Document File Name:

SGS/USEPA 7005-04.DOC

Revision Number:

4.0

Effective Date: **Review Date:**

October 20, 1998

May 17, 2005

Page 2 of 3

Document Control Number:

7005.04

4.0 **Synthetic Water Solutions**

4.1 **KCL Stock Solution**

- 4.1.1 Place 8 g of crystalline, reagent grade KCL in a 1 liter volumetric flask.
- 4.1.2 Bring the volume to one liter with distilled water.
- 4.1.3 Aerate vigorously for several hours before using.
- 4.1.4 Store in a 1 liter polyethylene bottle.

4.2 MgSO₄ Stock Solution

- Place 120 g of regent water, anhydrous MgSO₄ powder in a 1 liter volumetric flask.
- 4.2.2 Bring the volume to one liter with distilled water.
- 4.2.3 Aerate vigorously for several hours before using.
- 4.2.4 Store in a 1 liter polyethylene bottle.

4.3 NaHCO₃ Stock Solution

- Place 96 g of reagent grade NaHCO₃ powder in a 1 liter volumetric flask.
- 4.3.2 Bring the volume to 1 liter with distilled water
- 4.3.3 Aerate vigorously for several hours before using.
- 4.3.4 Store in a 1 liter polyethylene bottle.

5.0 **Activated Carbon Treated Tap Water Diluent**

- Fill a 5-gallon carboy with water from the treatment system using the attached 5.1 hose. Water should be allowed to flow slowly through the hose into the sink for 2-3 minutes before filling the carboy. Flow rate to fill the carboy should be slow.
- One or two long airstones are placed in the filled carboy. Water is aerated 5.2 vigorously for 48-hours.
- Total residual chlorine must be checked on water from newly filled carboys before 5.3 using.
- Alkalinity, hardness and pH are checked on samples from dechlorinated water 5.4 carboys according to the Laboratory Procedure Checklist.
- Log information on the Dechlorinated Tap Water and Cechlorimeter log sheet 5.5 including the carboy number and date filled.

Document Title:

Culture Waters for Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7005-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998 May 17, 2005

Page 3 of 3

CALIDATIONLED

Document Control Number:

7005.04

6.0 Synthetic Sea Water Preparation

- 6.1 Fill a clean carboy with dechlorinated water to approximately the 25-gallon mark.
- The newly filled carboy should be checked for the presence of chlorine and the results recorded on the saltwater carboy log sheet. If chlorine is present, two 4-inch airstones (adjusted to a moderately heavy air flow) should be introduced and the water aerated until a level of <0.01 mg/L is reached.
- 6.3 A sufficient amount of synthetic salt is added to the carboy to obtain the required salinity (usually 20 ppt).
- 6.4 All information should be logged on the Saltwater Carboy log sheet.

Document Title:

Culture of Daphnia

Method Reference:

SGS/USEPA 7006-05.DOC

Document File Name: **Revision Number:**

5.0

Effective Date:

March 12, 2001

Review Date:

May 17, 2005

Document Control Number: 7006

CAMPANIED LLED

Page 1 of 3

Approved by: Supervisor

Approved by: Samuel Satterner

QAQC Officer

1.0 Summary

This document describes the procedure for the culture of Ceriodaphnia dubia, Daphnia pulex, Daphnia magna that are used in aquatic toxicity testing.

Mass Stock Cultures of Ceriodaphnia dubia, Daphnia pulex, and Daphnia magna 2.0

- Stock cultures are maintained in 1000 ml beakers/jars with 900 mls of culture 2.1 media at 20 ± 1° C. These cultures are maintained only as a back-up source of organisms.
- 2.2 Culture media for Ceriodaphnia dubia and Daphnia pulex is moderately-hard synthetic water. Culture media for Daphnia magna is hard synthetic water (see document control number 7005.04, "Culture Waters for Aquatic Toxicity Testing").
- 2.3 Many cultures are maintained simultaneously with an informal rotation cycle. New cultures are started with young produced by individual cultures. These cultures are maintained for approximately 3 weeks after which they are discarded.
- 2.4 Cultures are fed YCT (yeast, cerophyll, digested trout chow/flake food) and algae (Selanastrum capricorium) on Monday, Wednesday and Friday. Feeding, as well as culture rotation, temperature and all other relevant data is recorded by species in a log book.
- Stock cultures are also fed algae and YCT. These feedings are recorded in the 2.5 log book.

Individual Cultures of Ceriodaphnia dubia, Daphnia pulex, Daphnia magna 3.0

- Cultures of Daphnia magna and Daphnia pulex are maintained in 100 ml plastic 3.1 beakers. Twenty-four (24) beakers with one organism each are kept at all times to ensure continuous availability of neonates for testing. Cultures of individual Ceriodaphnia dubia are maintained in 30 ml sterile plastic medicine cups. One to two cultures of approximately 100 organisms each are kept at all times.
- Cultures are renewed three times per week. Organisms are fed daily. 3.2

Document Title:

Culture of Daphnia

Method Reference:

Document File Name:

SGS/USEPA 7006-05.DOC

Revision Number:

5.0

Effective Date: Review Date:

March 12, 2001

May 17, 2005

Document Control Number:

LAMI DATE DE LES

7006

Page 2 of 3

4.0 Obtaining Neonates for Testing

- 4.1 Cultures of *Ceriodaphnia* are started by placing one neonate into a 30 ml disposable plastic cup containing approximately 20 ml of Moderately Hard Synthetic Water. New *Ceriodaphnia* cultures are started every ten to fourteen days. *D. magna* and *D. pulex* are replaced whenever mortality occurs.
- 4.2 The individual cultures are transferred to fresh media three times per week. Synthetic water, algae and YCT are mixed prior to pouring into culture vessel to ensure uniformity of media. The old media and neonates are kept for stock cultures for several weeks and then discarded.
- 4.3 To assure neonates for chronic tests are of a very similar age, transfer of individual brood stock to fresh media should be made the morning of the test. The cultures are then checked approximately every two hours to find an adequate number of neonates all released with an 8 hour period. For acute tests, individuals are either transferred less than 24 hours before a test or the young are separated from adults less than 24 hours before a test.
- 4.4 Young used in chronic testing are obtained from adults who have produced at least three broods, with no less than 8 neonates in their third or subsequent brood. Neonates are then distributed in a "blocking" procedure, i.e., neonates from the same organism are placed in one replication of each concentration.

5.0 DAPHNIA Food

5.1 Digested Flake Food

- 5.1.1 Add 5g flake food to 1 L deionized water. Mix well in a blender and place in a 2 L separatory funnel. To digest, aerate this mixture at room temperature for one week.
- 5.1.2 At end of the digestion period, remove aeration and allow to settle.
- 5.1.3 Drain sediment. Place supernatant in a beaker and allow to settle in refrigerator overnight.
- 5.1.4 Filter through fine mesh.

34

SGS Environmental Services Inc. **Standard Operating Procedure**

Document Title:

Culture of Daphnia

Method Reference:

SGS/USEPA

Document File Name: 7006-05.DOC **Revision Number:**

5.0

Effective Date: Review Date:

March 12, 2001

May 17, 2005

Page 3 of 3

Document Control Number:

7006

5.2 Cerophyll®

- 5.2.1 Add 5g Cerophyll® to 1 L deionized water. Mix in a blender on high speed for 5 minutes.
- 5.2.2 Remove from blender and allow to settle in refrigerator overnight.
- 5.2.3 Retain supernatant for combined YCT food.
- 5.3 Yeast
 - 5.3.1 Add 5g dry yeast to 1 L deionized water. Mix in a blender at low speed.
 - 5.3.2 Do not allow mixture to settle.
- 5.4 Combined YCT Food
 - 5.4.1 Mix equal parts of each of the above preparations in large clean beakers.
 - 5.4.2 Pour well mixed YCT into small screw cap bottles. Freeze until needed.

Document Title:

Reference Toxicant Testing

Method Reference:

SGS/USEPA 7008-05.DOC

Document File Name: Revision Number:

5.0

Effective Date:

July 31, 2001

Review Date

May 17, 2005

Page 1 of 3

Document Control Number: 7008

Approved by: Supervisor Date

Approved by: Season Season Date

Approved by: Season Date

1.0 Summary

To insure that healthy organisms are used in testing, SGS performs monthly QA/QC tests on all in-house cultured organisms. SGS uses sodium chloride as a reference toxicant.

2.0 **Apparatus**

- 2.1 Disposible plastic beakers
- 2.2 Disposible plastic medicine cups
- 2.3 **Pipettes**
- 2.4 pH meter
- 2.5 Dissolved oxygen (DO) meter

3.0 Reagents

- Moderately hard synthetic water (refer to document control number 7005, Culture 3.1 Waters for Aquatic Toxicity Testing)
- Sodium Chloride (NaCl), reagent grade, Baker 3.2

4.0 Method

Pimephales promelas (fathead minnows) 4.1

- 48-hour static acute toxicity tests are run at 20°C (±1°C) using fish that are from 1 to 14 days old.
- This test consists of a control and a dilution series of 10g/L, 9g/L, 8g/L, 7g/L, and 6g/L, of sodium chloride. Other dilution series may be used.

Document Title:

Reference Toxicant Testing

Method Reference:

SGS/USEPA 7008-05.DOC

Document File Name: **Revision Number:**

Effective Date:

5.0

Review Date

July 31, 2001 May 17, 2005

Document Control Number:

IMGONTROLLED

7008

Page 2 of 3

- 4.1.3 The dilutions are prepared in 800 ml disposable plastic beakers using moderately hard synthetic water. 500 mls of test solution is placed in each of two replications. Water quality values are measured and recorded at this time.
- Ten organisms are placed in each replicate. Fish are loaded by first 4.1.4 siphoning them into a shallow pan from which they are transferred to the beakers with a large bore pipette.
- The test is terminated at 48 hours. At this time, mortalities are recorded 4.1.5 along with final water quality data.

Daphnids (Ceriodaphnia dubia, Daphnia magna, Daphnia pulex) 4.2

- 48-hour static acute tests are performed at 25°C (±1°C) using organisms 4.2.1 less than 24 hours old
- These tests consist of a control and a five dilution series. 4.2.2 The concentration of the reference toxicant is varied depending on species.
 - 4.2.2.1 Ceriodaphnia dubia, Daphnia pulex:

dilutions of 3.0 g/L, 2.5 g/L, 2.0 g/L, 1.5 g/L, 1.0 g/L

4.2.2.2 Daphnia magna:

dilutions of 5.0 g/L, 4.0 g/L, 3.0 g/L, 2.0 g/L, 1.0 g/L

- 4.2.3 Dilutions are prepared using moderately hard synthetic water. 20 mls of each dilution are placed in each of 5 plastic medicine cups.
- 4.2.4 Four organisms are placed in each test vessel. The Daphnids are loaded with a disposable plastic pipette. Organisms are gently released below the surface of the water to minimize risk of injury.
- The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

5.0 **Data Analysis**

5.1 Toxicity tests are conducted on a monthly basis.

Document Title:

Reference Toxicant Testing

Method Reference:
Document File Name:

SGS/USEPA 7008-05.DOC

Revision Number:

5.0

Effective Date: Review Date

July 31, 2001 May 17, 2005

Document Control Number:

7008

INCONTROLLED

Page 3 of 3

- 5.2 The median lethal concentration (LC₅₀) is calculated according to EPA protocols.
- 5.3 Results from these tests are incorporated into Q-sum charts. These records are kept in monthly files.

6.0 Definitions

6.1 Median lethal concentrations (LC₅₀) -- the concentration that is calculated to be lethal to 50 percent of the organisms within the test period.

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference: Document File Name:

SGS/USEPA 7009-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998

May 17, 2005

Page 1 of 3

Document Control Number:

7009.04

Approved by: Supervisor Date

Approved by: Securin fattern 517-05

Approved by: Date

1.0 Summary

This document describes the manner in which sample waters (effluents, wastewaters, etc.) are handled from point of collection to testing.

2.0 Sample Handling

2.1 Sampling Personnel

SGS's sampling personnel are trained and experienced in the techniques for collecting samples according to NPDES permit requirements. This includes the use of automatic sampling equipment and the measurement of various field parameters.

2.2 Sample Containers

Sample containers used by SGS are disposable plastic cubitainers®.

2.3 Sample Collection Points

For NPDES permit required tests, the sample will be collected at the point specified in the discharge permit unless otherwise directed by the regulatory agency.

2.4 Sample Shipment

Samples are placed on ice (sufficient to maintain 0-4°C) in a cooler and are transported as quickly as possible to the laboratory.

2.5 Laboratory Handling of Samples

Upon delivery to the laboratory, the effluent samples are inspected, given a sample control number and stored at 4° C until used for testing.

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7009-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998 May 17, 2005

Document Control Number:

7009.04

Page 2 of 3

2.6 Sample Holding Time

Samples will be tested within 24 hours upon receipt in the laboratory. The maximum lapsed time for collection of a grab or composite sample and the initiation of test, or for test solution renewal, will not exceed 36-hours for Chronic and Acute Testing.

3.0 LABORATORY ENVIRONMENT

3.1 Laboratory Arrangement

The aquatic toxicity testing laboratory is divided into two separate areas: (1) the culturing laboratory and (2) the testing laboratory. See attached diagram for details of laboratory layout.

3.2 Temperature

The aquatic toxicity testing laboratory air temperature is maintained at 20 \pm 1° C throughout the year by a central heating and cooling system which is regulated by thermostats. Temperatures are continuously recorded by thermographs.

3.3 Water

Several waters are available for use in the laboratory. SGS has access to municipally supplied water, well water and reagent water from which synthetic water is prepared. Waters used for culturing and testing are analyzed semiannually for priority pollutants and other contaminants. A detailed report is available.

3.4 Lighting

Ambient laboratory lighting is regulated with a 16 hour day/8 hour night photoperiod controlled by an electronic timing system in the culturing and testing areas.

4.0 LABORATORY EQUIPMENT

4.1 General

Instruments used for the measurement of physical and chemical parameters are calibrated prior to use in testing. Any instrument that exceeds the calibration limits is taken out of service and corrective action is taken.

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference:

SGS/USEPA

Document File Name: **Revision Number:**

7009-04.DOC

Effective Date:

4.0

Review Date:

October 20, 1998 May 17, 2005

Document Control Number:

7009.04

Page 3 of 3

4.2 **Balances**

Analytical balances are calibrated against standard weights prior to use. calibration results and adjustments are recorded in bound books. All

4.3 Water Quality Meters

Meters are calibrated prior to use using known standards and the manufacturer's instructions. Records of calibration are kept in logbooks. Detailed procedures for the operation of these meters are found in SOP's for each specific instrument.

4.4 Reagents

All reagents are stored in a separate area. Expired reagents and chemicals are discarded.

4.5 **Test Containers**

All test containers are either clean reusable glassware or new, disposable plastic beakers.

EQUIPMENT CLEANING PROCEDURES 5.0

- Equipment used in culturing or testing is washed in the following manner: 5.1
 - Soak 15 minutes and scrub with detergent in tap water. 5.1.1
 - 5.1.2 Rinse three times with tap water.
 - 5.1.3 Rinse once with 20% nitric acid.
 - 5.1.4 Rinse twice with deionized water.
 - Rinse once with full-strength, pesticide-grade acetone. 5.1.5
 - 5.1.6 Rinse well with deionized water.
 - 5.1.7 Invert and air dry.
 - 5.1.8 All equipment and test chambers are rinsed with deionized water immediately prior to use for each test.

Appendix II Chain of Custody

100 Woodlawn Ave. Pittsfield, MA 01201 Chain of Custody Record General Electric Co.

Chain of Custody #: $\partial \mathcal{B} G \partial \mathcal{H} Z \partial \mathcal{S}$

TA5-IO-P243-1/2

Split Sample AD TOX Sept 2005 D/V Weather Acute Aquatic Toxicity for $S_{ID}t_{D}t_{D}$

							1 # XPL' 2	Sept 2005
	Project #		Analytical Lab:			Sampled Bv:		
	NPDES PERMIT	CT&E	CT&E Environmental Services	ices Inc.		(Print) Mark Wasnewsky	sky	
	Sample #	Date	Time	Containers	ers	1	Preservative	Domorfo
	A6726C	#6726C 9/11 to 9/12/05		100 m	1 Gallon plastic	Definitive Test(LC50 and NOAEL), Static acute toxicity, 48 hr w/ Daphnia pulex		(See below)
		g g	#	88 AM	1000 ml. plastic	Chloride, TSS, Total Solids, Alkalinity Specific Conductance, GL2	Chilled	
		ę ę	H H	444	500 ml. plastic	Total Phosphorus, TOC, NH3	H2S04	
2	A6725R	9/12/05	1.8	815m	1 Gallon plastic	Housatonic River water dilution water for definitive test	Chilled	
			7	1	1000 ml. plastic	Chloride, TSS, Total Solids, Alkalinity Specific Conductance. CL2	Chilled	
			7	S HOW	500 ml. plastic	Total Phosphorus, TOC, NH3	H2S04	
=	Relinguished By:	Mon	Date/Time		Rece	Received By:		
	Relinquished By:		Date/Time		Recei	Received By:		
	Additional Comments: 1 is a 24-hour composite. 001- 745 004	he effluent sa The sample o	imple being analyzed for sollection times for eac 005-64T. $760 \mu M$	1 7 7 7	r toxicity is a flow-proportic houtfall are as follows: 005-646- 700	15 \	205	11.05 UPS
	The time of compositin	The time of compositing the final flow-proportioned sample was	ioned sample	was	1/00 A.M.	•	Š	3.8.6

Appendix III Bench Data

General Electric - 48-hour Acute Biotoxicity Bench Sheet

Lab. No.: TAS-10-P243-002 Date Received: 04/13/05 Date Analyzed: 04/13/05 Temp. Range: Analyst(s): <24 HRS Age: Housatonic River Water 11,00 Time: COMPOSITE Daphnia pulex 48-Hour Static Acute ACUTE 20/11/60 DRY WEATHER General Electric アアアランドアンド Source of dilution water: Sample Date: Test Species: Type of Test: Source: Project: Client:

09/15/05 Ending 1380 Beginning 0a/13/05 Date: Time:

2/4

Total Chlorine:

Ç

Concentration→	Housatonic River Control	MHSW	MHSW Na ₂ S ₂ O ₃ Control	Effluent 5%	Effluent 15%	Effluent 35%	Effluent 50%	Effluent 75%	Effluent 100%	
START										
Temperature	7.02	20%	20.2	7.92	70.7	70.2	20.0	70.0	2.0	
Hardness	310	001	110				7.00	ì	2.00	
D.O.	8.S/	7 t.8	44.8	8.50	127. 8	a 22	02%	7,00	>450 000	_
pH	J 25	7.08	7.13	77.5	2 20	1 L	11.1	121	100	
Alkalinity	193	63	6.5	7	1		7	1.0	7.02	7 : (
Sp. Conduct.	イングン	314	219	ntn	CAN	755	010	2	* 10 0 10 10 10 10 10 10 10 10 10 10 10 1	\$ 10+ K#
24 HOUR					700		115	700	252	
No. Surviving	29	88	20	20	20	20	8	20		
Temperature	20.8	20.8	20.8	20.02	20.02	0 %	2 2	2 6	9 ,	
D.O.	450	0 70	100	200	7 .	0:00	0.0	80.0	6.6	
	1.01	2 0	4	3	8.5 +	8.5>	8.3(8.27	6.30	
LID (1.2.1	7.12	7.19	7.76	91.F	7.19	7.2(b) E	7.12	
Sp. Conduct.	447	317	326	487	244	795	972	E 2 01	1756	
48 HOUR							/41	+ 1 2	1637	
No. Surviving	92	20	20	20	8	202	20	20	ŗ	
Temperature	5.61	14.0	14.0	19.5	2.6/	19.5	16.0	16.0	3 2	
D.0.	8.40	₹9.8	8.70	17:3	05.80	87.8	0 27	140	2/20	
H	30 د ل	31.4	7.18	7.28	7.24	7.26	220	7.5	94.0	
Sp. Conduct.	0 h h	322	330	493	580	144	978	2601	50.2	
							04.	2123	2 3 2	

Method Reference: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fifth Edition. EPA-821-R-02-012 U.S.EPA,

Washington, DC. f:\public\forms\bioassay\GE bench sheet-acute.doc

Acute Biotoxicity Bench Sheet

Client: Q	<u>C</u>					
Project: Re	Gevence Toxi	cant		Lat	D. No.:	
Sample Date:	cl	Time:			Date Received Date Analyzed	
Source of dilution Test Species:	n water:Mode	rately Ham	d Syn		Analyst: <u>KH</u> Water	
Type of Test:	40	CUTE	Age: _		Temp. R	ange: °C
Total Chlorine:	- n/d				Beginning	Ending
				Date:	09/13/05	09/15/05
				Time:	1500	1500

Concentration	Control	0.35	T	T		
START		625	1250	2500	5,000	10,000
Temperature	20.7	20.7	T		T	
Hardness	100	20. 7	20.7	20.7	20.7	20.7
D.O.	8.8					110
рН	70	8.8	8.8	8.8	6.8	8.8
Alkalinity		7.1	7.2	7.2	7.2	7.2
Sp. Conduct.	64					75
24 HOUR	317	1920	2810	5640	9730	13290
Temperature	20.1					
No. Surviving		20.1	20.1	20.1	20.1	20.1
18 HOUR	20	20	20	16	4	0
emperature	20.4		· · · · · · · · · · · · · · · · · · ·			
lo. Surviving	20 4	20.4	20.4	20.4	20.4	20.4
	w	20	14	7	0	0

Note: All results expressed in mg/L unless otherwise designated. < = less than

Note: Number in parenthesis equals number not adversely effected (EC_{50}). This number is used in calculating

Note: Due to fragile structure of *Daphnia* organisms, dissolved oxygen (DO), hardness, alkalinity, specific conductance, and pH reading could not be taken after the organisms are added to the sample. Doing so would

Method Reference: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fifth Edition. EPA-821-R-02-012 U.S.EPA, Washington, DC

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

DATE: 9/13/05 TEST NUMBER: ~ CHEMICAL: NaCl

DURATION: 48 HOURS

SPECIES: PULEX

RAW DATA:

CONCENTRATION (MG/L) 625.001250.002500.005000.00******

NUMBER EXPOSED: 20 20 20 20 20 20 20 20 20 20 MORTALITIES: 0 1 13 20 20 SPEARMAN-KARBER TRIM: 0.00%

SPEARMAN-KARBER ESTIMATES: LC50: 2176.38 95% LOWER CONFIDENCE: 1849.85 95% UPPER CONFIDENCE: 2560.54

Appendix IV U.S. EPA Region I Toxicity Test Summary

Toxicity Test Summary Sheet

racility Name:	General Elec		Test Sta	irt Date:	Septem	ber 13.	2005
NPDES Permit N	umber: <u>M</u> A	000 3891	_ Pipe Number:	001, 005	-64T, 00	05-64G,	
				09A, 09E			
Test Type ☑ Acute ☐ Chronic ☐ Modified* ☐ 24-hour Screening	Test Spe ☐ Fathead r ☐ Ceriodaph ☐ Daphnia p ☐ Mysid Shr ☐ Menidia ☐ Sea Urchi ☐ Champia ☐ Selenastr ☐ Other	minnow hnia pulex rimp in	Sample Type ☐ Prechlorinated ☐ Dechlorine ☐ Chlorine ☐ Spiked at lab ☑ Chlorinated or site ☐ Unchlorinated] []]]	Sample Grab Compo Flow ti Cother		<u>i</u>
Dilution Water X Receiving water from toxicity River); Alternate sur characteristic Synthetic water and reagent or artificial se	X Receiving waters collected at a point upstream of or away from the discharge, free from toxicity or other sources of contamination (Receiving water name: Housatonic River); Alternate surface water of known quality and a harness, etc. to generally reflect the characteristics of the receiving water; Synthetic water prepared using either Millipore Mill-Q or equivalent deionized water and reagent grade chemicals; or deionized water combined with mineral water; or artificial sea salts mixed with deionized water; Deionized water and hypersaline brine; or						
Effluent sampling	date(s):	September	11, 2005 to Se	ptember	12, 200)5	
Effluent concentra		(in %):	100 75 t limit concentrati	50	35 N/A	<u> 15 _</u>	5
Was effluent salin If yes, to what va With sea salts?	lue? N/A N/A	ppt Hypersaline	brine solution? _				
Actual effluent cor (In %): N/A Reference Toxicar	N/A N/A	N/A	N/A N/A		ber 15,	2005	
N/A= not applicable							

Permit Limits & Test Results

Test Acceptability Criteria

MEAN CONTROL SURVIVAL:	100%	MEAN CONTROL REPRODUCTION:N/A
MEAN CONTROL WEIGHT: _	N/A	MEAN CONTROL CELL COUNT:N/A

s		Results
N/A	48-hr LC50	>100%
	•	N/A
	Lower Value	N/A
	Data Analysis	
		N/A
	· · -	100%
N/A		N/A
		N/A
		N/A
N/A	IC50	N/A
	N/A N/A N/A N/A N/A	N/A 48-hr LC50 Upper Value Lower Value Data Analysis Method used: A-NOEC N/A C-NOEC LOEC N/A IC25

N/A = not applicable

Attachment D

Chronic Effects of the Process Wastewaters
Discharged From the General Electric
Plant; Pittsfield, Massachusetts
[Samples Collected in September 2005]

Chronic Effects of the Process Wastewaters Discharged from the General Electric Plant Pittsfield, Massachusetts

Samples collected in September 2005

Submitted to:

General Electric
Area Environmental & Facility Programs
100 Woodlawn Avenue
Pittsfield, Massachusetts 01201

SGS Sample ID: TA5-I0-P242

Study Director: Ken Holliday

28 September 2005

SGS Environmental Services
1258 Greenbrier Street
Charleston, West Virginia 25311-1002
Tel: 304.346.0725 Fax: 304.346.0761
www.sgs.com

Signatures and Approval

Submitted by:

SGS Environmental Services

1258 Greenbrier Street

Charleston, West Virginia 25311-1002

Tel: 304.346.0725 Fax: 304.346.0761

www.sgs.com

Ken Holliday

Study Director

Ken.holliday@sgs.com

28 September 2005

Date

Titshina L. Mims

Technical Writer

28 September 2005

Date

Barbara Hensley

Project Manager

Barbara.hensley@sgs.com

28 September 2005

Date

Whole Effluent Toxicity Test Report Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: 28

28 September 2005

Date

Authorized signature

Jeannie Milholland

Name

QA/QC Manager

Title

SGS Environmental Services

Laboratory

Jeannie.milholland@sgs.com

Table of Contents

	Page
Signatures and Approval	2
WET Test Report Certification	3
List of Tables	5
Executive Summary	6
Summary of Test Conditions and Test Results	7
1.0 Introduction	10
1.1 Background	10
1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977)	11
1.3 The Chronic Toxicity Test	11
1.4 Objective of the General Electric Study	11
2.0 Materials and Methods	13
2.1 Protocol	13
2.2 Effluent Sample	13
2.3 Dilution Water	15
2.4 Reference Control Water	16
2.5 Secondary Reference Control	16
2.6 Test Organisms	16
2.7 Test Procedures	17
2.8 Test Monitoring	18
2.9 Reference Toxicity Tests	19
3.0 Statistics	20
Flowchart for Statistical Analysis of Data	21
4.0 Results	22
4.1 Effluent Toxicity Test	22
4.2 Reference Toxicity Test	23
5.0 Reference Documents	23
Appendix I – References	30
Appendix II – Chain of Custody	49
Appendix III - Bench Data	53
Appendix IV – Statistical Sheets	71

Table of Contents

		Page
Appendix V - U	.S. EPA Region I Toxicity Test Summary	76
Appendix VI - 3	7-day Reference Toxicant Test Data	79
	List of Tables	Page
Table 1	Methods used for the chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)	24
Table 2a	Sample #1: Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River) for the 7-day short-term chronic toxicity test with Ceriodaphnia dubia	25
Table 2b	Sample #2: Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River) for the 7-day short-term chronic toxicity test with Ceriodaphnia dubia	26
Table 2c	Sample #3: Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River) for the 7-day short-term chronic toxicity test with Ceriodaphnia dubia	27
Table 3	The water quality measurements recorded during the 7-day short-term chronic toxicity test exposing <i>Ceriodaphnia dubia</i> to General Electric Pittsfield Plant effluent	28
Table 4	Summary of the mean survival and reproduction recorded during the 7-day short-term chronic toxicity test exposing <i>Ceriodaphnia dubia</i> to General Electric Pittsfield Plant effluent	29

Executive Summary

The following is a summary of the toxicity results exposing *Ceriodaphnia dubia* to effluent collected from the General Electric Company, Pittsfield, Massachusetts. Effluent samples were collected from September 11, 2005 to September 16, 2005. The freshwater species, *Ceriodaphnia dubia*, was exposed to the effluent under static-renewal conditions. Acute endpoints were derived 48-hours into the chronic studies.

Acute Toxicity Evaluation

	Exposure	LC ₅₀	NOAEL
Species	Period	% effluent	% effluent
Ceriodaphnia dubia	48 hours	>100%	100%

Chronic Toxicity Evaluation

	11	Exposure	NOCEL %	LOCEL %	MAWC %
Species	Endpoint	Period	Effluent	Effluent	Effluent
Ceriodaphnia dubia	Survival	7 days	100%	>100%	≥100%
Ceriodaphnia dubia	Reproduction	7 days	100%	>100%	≥100%

Summary of Test Conditions and Test Results

Static Renewal Short-Term Toxicity Test with Ceriodaphnia dubia

Sponsor:

General Electric

Protocol Title:

Chronic Aquatic Toxicity Testing, SGS Document

Control Number 7003, version 5.0

Study Number:

TA5-I0-P242

Test Material:

Composite effluent from the General Electric

Company located in Pittsfield, Massachusetts

GE Sample ID:

A6726C, A6728C and A6730C

Dilution Water:

Water from the Housatonic River

Dilution Water ID:

A6725R, A6727R and A6729R

Dates Collected:

Dilution Water
09/12/05
(A6725R)
09/14/05
(A6727R)
09/16/05
(A6729R)

Dates Received:

09/13/05, 09/15/05, 09/17/05

Test Dates:

09/13/05 to 09/20/05

Test Concentrations:

100% effluent 75% effluent 50% effluent 25% effluent 12.5% effluent 6.25% effluent

Dilution water control (Housatonic River) Reference control (moderately hard

reconstituted water)

Secondary reference control (sodium thiosulfate)

Test Type:

Chronic static renewal

Temperature:

25°C (± 1°C)

Light Intensity:

90 to 100 foot-candles

Photoperiod:

16 hours light, 8 hours dark

Size of Test Chamber:

30 ml medicine cups

Test Solution Volume:

20 ml per medicine cup

Renewal of solutions:

Test solutions were renewed daily using the

most recently collected effluent sample.

Age of Organisms:

The test organisms were less than 24-hours old and were all hatched within an 8-hour period of

each other.

Number of Neonates

per test chamber:

1 daphnid per test chamber (replicate)

Number of Replicate Test Chambers per

treatment:

10 test chambers (replicates) per concentration

Feeding regime:

Daphnid cultures were fed a combination of green algae (Selenastrum capricorium) and YCT

(yeast, cereal leaves and trout chow).

Aeration:

The effluent sample was supersaturated by

aeration prior to use in the test.

Results:

 LC_{50}

The 48-hour LC₅₀ value was determined

to be >100% effluent.

NOAEL The No-Observed-Acute-Effect-Level (NOAEL), based on survival, was observed to be 100% effluent

NOCEL The No-Observed-Chronic-Effect-Level, based on reproduction, was determined

to be 100% effluent

LOCEL The Lowest-Observed-Chronic-Effect-Level, based on reproduction, was determined to be >100% effluent

MAWC The Maximum Acceptable Wastewater Concentration was calculated to be ≥100% effluent.

1.0 Introduction

1.1 Background

In 1972, amendments were made to the Clean Water Act (CWA) prohibiting the discharge of any pollutant from a point source to waters of the United States, unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Since the passing of the 1972 amendments to the CWA, significant progress has been made in cleaning up industrial process wastewater and municipal sewage.

The purpose of the National Pollutant Discharge Elimination System (NPDES) Program is to protect human health and the environment. The Clean Water Act requires that all point sources discharging pollutants into waters of the United States must obtain an NPDES permit. By point sources, EPA means discrete conveyances such as pipes or man made ditches.

For many years, discharge limits were based on available technology for wastewater treatment. However, in 1984, the U.S. Environmental Protection Agency (EPA) released a national policy statement entitled "Policy for the Development of Water Quality-Based Permit Limitations for Toxic Pollutants" (U.S. EPA, 1984) which addresses the control of toxic pollutants beyond technology-based requirements in order to meet water quality standards. To implement the new policy, guidance was provided to the respective state and regional permit personnel in the EPA's "Technical Support Document for Water Quality-Based Toxics Control" (U.S. EPA, 1985; U.S. EPA, 1991). The EPA's policy statement and the support document recommended that, where appropriate, permit limits should be based on effluent toxicity as measured in aquatic toxicity tests.

1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977)

The Clean Water Act is a 1977 amendment to the Federal Water Pollution Control Act of 1972, which set the basic structure for regulating discharges of pollutants to waters of the United States. The law gave EPA the authority to set effluent standards on an industry basis (technology-based) and continued the requirements to set water quality standards for all contaminants in surface waters. The CWA makes it unlawful for any person to discharge any pollutant from a point source into navigable waters unless a permit (NPDES) is obtained under the Act. The 1977 amendments focused on toxic pollutants. In 1987, the CWA was reauthorized and again focused on toxic substances, authorized citizen suit provisions, and funded sewage treatment plants (POTWs) under the Construction Grants Program. The CWA provisions for the delegation by EPA of many permitting, administrative, and enforcement aspects of the law to state governments. In states with the authority to implement CWA programs, EPA still retains oversight responsibilities.

1.3 The Chronic Toxicity Test

The acute toxicity test is used for predicting the maximum allowable concentrations of industrial wastewaters that can be discharged into a receiving system. Chronic toxicity tests produce data that is useful in predicting the wastewater concentrations not likely to harm a resident population of invertebrates or fish.

1.4 Objective of the General Electric Study

The objective of this study was to measure the chronic toxicity of the composite process wastewater discharged by the General Electric facility located in Pittsfield, Massachusetts, using *Ceriodaphnia dubia* under static renewal conditions. Whereas *Ceriodaphnia dubia* are not considered locally important, they are routinely used by regulatory agencies and contract laboratories nationwide for toxicity testing. A short-term chronic toxicity test was conducted from

September 13, 2005 to September 20, 2005 at SGS Environmental Services, Charleston, West Virginia. All original raw data and the final report produced for this study are stored in SGS's archives at the above location.

2.0 Materials and Methods

2.1 Protocol

Procedures used in this chronic toxicity test followed those described in the SGS Standard Operating Procedure (SOP) entitled *Chronic Aquatic Toxicity Testing*, SGS document control number 7003, version 5.0. This SOP generally follows the standard methodology described by the U.S. Environmental Protection Agency.

Additional SOPs used in this study are outlined below:

Title	Document Number	Version
Culture Waters for Aquatic Toxicity Testing	7005	4.0
Daphnia, Culture of	7006	5.0
Reference Toxicant Testing	7008	5.0
Sample Handling for Aquatic Toxicity Testing	7009	4.0

Copies of these documents are included in the References section of this report.

2.2 Effluent Sample

The first effluent sample (A6726C) was collected by GE personnel from September 11, 2005 to September 12, 2005, and was used to initiate the short-term chronic test and renewal of the test solutions on Day 1 and Day 2. Upon receipt at SGS on September 13, 2005, the sample temperature was 3.8°C. The effluent sample was characterized as having

Sample #1 - collected from 09/11/05 to 09/12/05

Parameter	Result				
Total Hardness	380				
Alkalinity (as CaCO ₃)	340				
pH	7.41				

Sample #1 - collected from 09/11/05 to 09/12/05

san an ann an					
Parameter	Result				
Specific Conductance	1255				
Dissolved Oxygen Concentration*	8.12				
Appearance	Clear				

The second effluent sample (A6728C) was collected by GE personnel from September 13, 2005 to September 14, 2005, and was used for renewal of test solutions on Day 3 and Day 4. Upon receipt at SGS on September 15, 2005, the sample temperature was 3.8°C. The effluent sample was characterized as having

Sample #2 – collected from 09/13/05 to 09/14/05

Parameter	Result			
Total Hardness	390			
Alkalinity (as CaCO₃)	304			
pH	7.53			
Specific Conductance	1214			
Dissolved Oxygen Concentration*	8.08			
Appearance	Clear			

The third effluent sample (A6730C) was collected by GE personnel from September 15, 2005 to September 16, 2005, and was used for renewal of test solutions on Days 5, 6 and 7. Upon receipt at SGS on September 17, 2005, the sample temperature was 3.9°C. The effluent sample was characterized as having

Sample #3 - collected from 09/15/05 to 09/16/05

Parameter	Result			
Total Hardness	430			
Alkalinity (as CaCO₃)	331			
pH	7.52			
Specific Conductance	1234			
Dissolved Oxygen Concentration*	8.09			
Appearance	Clear			

^{*}Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 20°C).

2.3 Dilution Water

Dilution water consisted of receiving water collected from the Housatonic River and was collected as a "grab" sample. The first dilution water sample (A6725R) was collected by General Electric personnel on September 12, 2005, and was used with the Day 1 and Day 2 test. Upon receipt at SGS, the sample temperature was 3.8°C. The dilution water sample was characterized as having

Dilution Water #1	Collected 09/12/05
Parameter	Result
Total Hardness	230
Alkalinity (as CaCO₃)	163
pH	7.38
Specific Conductance	448
Dissolved Oxygen Concentr	ation* 8.39
Appearance:	Slight yellow
• •	color

The second dilution water sample (A6727R) was collected by General Electric personnel on September 14, 2005, and was used with the Day 3 and Day 4 tests. Upon receipt at SGS, the sample temperature was 3.8°C. The dilution water sample was characterized as having

Dilution Water #2	Collected 09/14/05
Parameter	Result
Total Hardness	220
Alkalinity (as CaCO₃)	177
pH	6.77
Specific Conductance	442
Dissolved Oxygen Concentr	ration* 8.27
Appearance:	Slight yellow
• •	color

The third dilution water sample (A6729R) was collected by General Electric personnel on September 16, 2005, and was used with the Day 5, 6 and 7 tests. Upon receipt at SGS, the sample temperature was 3.9°C. The dilution water sample was characterized as having

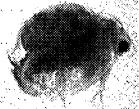
Dilution Water #3	Collected 09/16/05		
Parameter	Result		
Total Hardness	270		
Alkalinity (as CaCO₃)	140		
pH	6.96		
Specific Conductance	376		
Dissolved Oxygen Concent	ration* 8.27		
Appearance:	Slight yellow		
• •	color		

^{*}Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 25°C).

2.4 Reference Control Water

Water used in the reference control vessels was deionized (DI) water adjusted to the appropriate hardness (moderately hard reconstituted water) by the addition of reagent grade chemicals (U.S. EPA, 1993). Characterization of this water resulted in:

Parameter	Result
Total Hardness	100 - 110
Alkalinity (as CaCO ₃)	64 - 67
pH	7.03 - 7.10
Specific Conductance	308 - 320


Secondary Reference Control

A secondary reference control consisted of deionized (DI) water adjusted to the appropriate hardness (moderately hard reconstituted water) and sodium thiosulfate (0.1 N).

2.6 Test Organisms

Ceriodaphnia dubia→

Daphnids (Ceriodaphnia dubia), less than 24-hours old, were obtained from SGS laboratory cultures maintained in Charleston. The culture system consisted of twenty-four (24) 100 ml disposable plastic beakers each containing 80 ml of culture medium

and one (1) daphnid. The culture medium was deionized (DI) water for which the hardness was raised by addition of reagent grade chemicals (U.S. EPA, 1993). Prior to use, the culture water was characterized:

Parameter Result Total Hardness Within range of 80-110 mg/L Alkalinity (as CaCO₃) Within range of 60-75 mg/L PH Within range of 7.0 to 7.2

The culture area was maintained at a temperature of 25° C ($\pm 1^{\circ}$ C) with a regulated photoperiod of 16 hours of light and 8 hours of darkness.

Daphnid cultures were fed a combination of green algae ($Selenastrum \, capricorium$), approximately $4.0 \times 10^7 \, cells/ml$ and YCT (yeast, cereal leaves and trout chow). Approximately 1.0 ml of algae and 0.5 ml of YCT was added to each culture vessel daily. Three times per week, daphnids are transferred to fresh culture media.

Approximately twenty-four hours before test initiation, all immature daphnids were removed from the culture flasks. Offspring produced during the period were used in the toxicity test. All Ceriodaphnia dubia were used in the test were ≤24 hours old and all were produced within an 8-hour period.

2.7 Test Procedures

A subsample of the effluent and the dilution water (approximately 2250 ml), from each of the three sampling events, was analyzed by SGS for total phosphorus, chloride, total suspended solids, and total solids. The short-term chronic toxicity test was conducted at concentrations of 100%, 75%, 50%, 25%, 12.5% and 6.25% effluent. Test concentrations were prepared from this solution by diluting the appropriate volume of effluent with dilution water to a total volume of 800 ml. Test solutions were then divided into replicate (10

replicates per concentration) 30 ml medicine cups, each containing 20 ml of test solution. One set of ten control beakers (containing Housatonic River water), one set of ten reference control beakers (containing moderately hard reconstituted water), and one set of ten secondary reference control beakers (containing moderately hard reconstituted water and sodium thiosulfate) were established and maintained under the same conditions as the exposure concentrations. Test solutions were placed in an incubator to maintain solution temperature of 25° C (\pm 1° C). Light was provided on a 16-hour light and 8-hour dark photoperiod. Florescent bulbs provided an illumination of 90 to 100 footcandles in the test area.

Prior to test initiation, daphnids less than 24-hours old were culled individually with a plastic pipette and placed into a 1000 ml holding beaker containing approximately 500 ml of reference water. The test was initiated when daphnids were individually transferred from the holding beaker to the test solutions (5 daphnids per replicate). The renewal of the test solutions was conducted daily by transferring the adult organisms to freshly prepared solutions. The daphnids were fed prior to test initiation and immediately following renewal of the test solutions.

2.8 Test Monitoring

The number of mortalities and observations in each replicate vessel were recorded at 0, 24, 48, 72, 96, 120, 144 and 168 hours of exposure and observed mortalities were removed from the test solutions. Biological observations and observations from the physical characteristics of each replicate test solution and control were also made and recorded at 0, 24, 48, 72, 96, 120, 144 and 168 hours. Dissolved oxygen concentrations pH and temperature were measured at test initiation and at 24-hour intervals thereafter, in one replicate vessel (a) for each test concentration in which there were surviving organisms.

Total hardness concentrations were measured by the EDTA titrimetric method and total alkalinity concentrations were determined by potentiometric titration to an endpoint of pH 4.5 (APHA, 1989). Total residual chorine was measured by Hach test. Concentrations of ammonia were determined using a Buchi model 212 distillation unit and titrated automatically with a Brinkman titroprocessor. Specific conductivity was measured with a Cole Palmer Model 71250 salinity-conductivity-temperature meter and probe; pH was measured with a Fisher Scientific Accumet 910 pH meter and combination electrode; dissolved oxygen concentration was measured with an YSI Model 59 dissolved oxygen meter. Daily temperature measurements were performed with a Princo mercury thermometer and a Fisher minimum-maximum thermometer. Light intensity was measured with a General Electric type 217 light meter.

2.9 Reference Toxicity Test

A chronic reference toxicity test exposing *Ceriodaphnia dubia* to sodium chloride (NaCl) was conducted from September 12, 2005 to September 19, 2005. The reference test was conducted to establish the health of the test organisms. The reference toxicity test included five NaCl concentrations and a dilution water control (moderately hard reconstituted water). The nominal NaCl concentrations for the test with *Ceriodaphnia dubia* was 500, 1000, 2000, 3000 and 4000 mg of NaCl/L. Test methods were the same as those described above for the effluent test.

3.0 Statistics

All data generated during the test was tabulated, summarized and analyzed by

SGS. The data generated at the end of 48 hours were analyzed and when

appropriate a median lethal concentration (LC₅₀) was calculated. This value was

derived using a computerized statistical method (TOXSTAT 3.5), which was also

used to calculate confidence levels were possible for each test organism.

If partial mortalities were observed in at least two concentrations, the probit

analysis, which yields LC₅₀ values and 95 percent confidence levels, was used.

When fewer than two partial mortalities were observed, the moving average

method, binomial method, or non-linear interpolation, was used to generate

 $LC_{50}s$. The final report specifies the statistical methods used.

The Shapiro-Wilk's test and Bartlett's test are performed on all other chronic

data to test for normality of data distribution and homogeneity of variance

between treatments.

Concentrations above the NOECL for survival were excluded from the hypothesis

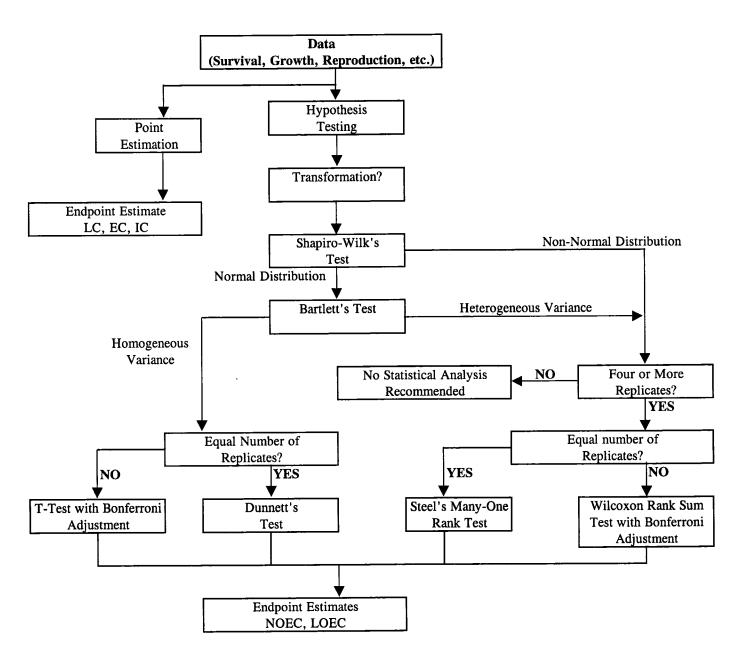
tests for reproduction and growth. If assumptions of parametric analysis

(Shapiro-Wilk's test and Bartlett's test) are met, the reproduction data will be

analyzed using Dunnett's procedure or the T-test with Bonferroni Adjustment. If

assumptions are not met, Steel's Many-One Rank test or Wilcoxon Rank Sum

test with Bonferroni Adjustment (non-parametric analyses) are used to analyze


data. Fisher's Exact is used to analyze Ceriodaphnia survival data. The final

report specifies the statistical methods used.

Generally, to choose the best estimate values for a particular data set, the U.S.

EPA flow chart on page 21 was followed.

Flowchart for Statistical Analysis of Data

4.0 Results

4.1 Effluent Toxicity Test

The methods and detection limits of chemical analyses performed on the composite effluent sample and dilution water are summarized in Table 1. Results of the characterization and analysis of the effluent and the dilution water are presented in Table 2. Water quality parameters measured during the toxicity test are presented in Table 3. Daily and continuous monitoring of the test solutions established the temperature ranged from 24°C to 26°C throughout the exposure period. The effluent concentration was tested (expressed as %) and the corresponding percent mortalities recorded during the 48-hour toxicity test are presented in Table 4.

The percent survival and number of offspring produced during the 7-day exposure to C. dubia are presented in Table 4. The 48-hour LC_{50} value was determined to be >100% effluent, since no concentrations caused \geq 50% mortality during the first 48 hours of the study. At test termination, 100% survival was observed among C. dubia exposed to all effluent concentrations and the controls. Based on statistical analysis of the survival data, the NOCEL was determined to be 100% effluent.

By day seven, ≥60% of the reference control organisms had produced at least three broods with a minimum of 15 young per female.

	Mean Number of Offspring per Effluent Concentration								
	Effluent Concentration (%)				Dilution water	Reference	Secondary Reference		
	6.25	12.5	25	50	75	100	Control	Control	Control
Mean →	27.4	28.9	28.7	29.7	28.2	30.3	27.2	27.5	26.9

(Secondary reference control = sodium thiosulfate)

Statistical analyses of *C. dubia* reproduction using Dunnett's did not established a difference between the 100% effluent concentration and the control group. The NOCEL, based on reproduction, was therefore determined to be 100% effluent. The Lowest-Observed-Chronic-Effect-Level (LOCEL), based on reproduction, was determined to be >100% effluent. The Maximum-Acceptable-Wastewater-Concentration (MAWC) was calculated to be 100% effluent.

4.2 Reference Toxicity Test

SGS uses sodium chloride (NaCl) as a reference toxicant. The reference test was conducted from September 06, 2005 to September 08, 2005, and the resulting 48-hour LC_{50} was estimated by Spearman-Karber Trim to be 1534 mg of NaCl/L (95% confidence intervals of 1290 to 1823 mg NaCl/L).

5.0 References

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17th Edition.
- U.S. Environmental Protection Agency. 1984. *Development of water Quality-Based Permit Limitations for Toxic Pollutants*. Federal Register 49(48): 90160-90190.
- U.S. Environmental Protection Agency. 1985. *Technical Support Document for Water Quality-Based Toxics Control*. Office of Water, Washington, DC.
- U.S. Environmental Protection Agency. 1991. Technical Support Document for Water Quality-Based Toxics Control. Office of Water, Washington, DC.
- Weber, Cornelius I., et al., Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition. EPA-821-R-02-013. U.S.EPA, Cincinnati, Ohio.

NPDES Permit No. MA000 3891 SGS ID number: TA5-I0-P242 September 28, 2005 Page 24

Table 1. Methods and detection limits of chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River).

<u>Parameters</u>	Method	Detection Limits
Ammonia Nitrogen as N	EPA 350.2	1.0 mg/L
Chloride	EPA 325.2	1.0 mg/L
Total Organic Carbon	EPA 415.1	1.0 mg/L
Total Solids	EPA 160.3	10.0 mg/L
Phosphorus, Total as P	EPA 365.2	0.02 mg/L
Total Residual Chlorine	Standard Methods 4500-Cl G	0.01 mg/L
Total Suspended Solids	EPA 160.2	5.0 mg/L

Sample #1 - collected from 09/11/05 to 09/12/05 Table 2a. Dilution water collected on 09/12/05 Results of the characterization and analyses of the General **Electric Pittsfield Plant effluent and the dilution water** (Housatonic River).

Parameter	Effluent (A6726C)	Housatonic River (A6725R)
Temperature	24.7°C	24.7°C
рН	7.41	7.38
Alkalinity (as CaCO₃)	340 mg/L	163 mg/L
Hardness (as CaCO₃)	380 mg/L	230 mg/L
Dissolved Oxygen	8.12 mg/L	8.39 mg/L
Specific Conductivity	1255 μmhos/cm	448 μmhos/cm
Salinity	N/A	N/A
Total Residual Chlorine	ND	ND
Ammonia as N (0-Hour)	ND	ND
Total Phosphorus as P	ND	ND
Chloride	160 mg/L	26 mg/L
Total Suspended Solids	ND	ND
Total Solids	630 mg/L	250 mg/L
Total Organic Carbon	ND	1.6 mg/L
Description	clear	slight yellow color

^{*}Dissolved oxygen concentrations recorded after samples were aerated and warmed to approximately 20°C.

N/A = not applicable ND = non detectable

NPDES Permit No. MA000 3891 SGS ID number: TA5-I0-P242 September 28, 2005 Page 26

Sample #2 - collected from 09/13/05 to 09/14/05 Table 2b. Dilution water collected on 09/14/05 Results of the characterization and analyses of the General **Electric Pittsfield Plant effluent and the dilution water** (Housatonic River).

Parameter	Effluent (A6728C)	Housatonic River (A6727R)
Temperature	25.2°C	25.2°C
рН	7.53	6.77
Alkalinity (as CaCO₃)	304	177
Hardness (as CaCO₃)	390	220
Dissolved Oxygen	8.08	8.27
Specific Conductivity	1214	442
Salinity	N/A	N/A
Total Residual Chlorine	ND	ND
Ammonia as N (0-Hour)	ND	ND
Total Phosphorus as P	0.024 mg/L	ND
Chloride	160 mg/L	24 mg/L
Total Suspended Solids	ND	ND
Total Solids	640 mg/L	250 mg/L
Total Organic Carbon	1.1 mg/L	1.6 mg/L
Description	Clear	Slight yellow color

Dissolved oxygen concentrations recorded after samples were aerated and warmed to approximately 20°C.

N/A = not applicable ND = non detectable

NPDES Permit No. MA000 3891 SGS ID number: TA5-I0-P242 September 28, 2005 Page 27

Table 2c. Sample #3 – collected from 09/15/05 to 09/16/05
Dilution water collected on 09/16/05
Results of the characterization and analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River).

(Housatonic River).	Effluent	Housatonic River
Parameter	(A6730C)	(A6729R)
Temperature	25.4°C	25.4°C
рН	7.52	6.96
Alkalinity (as CaCO₃)	331	140
Hardness (as CaCO₃)	430	270
Dissolved Oxygen	8.09	8.27
Specific Conductivity	1234	376
Salinity	N/A	N/A
Total Residual Chlorine	ND	ND
Ammonia as N (0-Hour)	ND	ND
Total Phosphorus as P	ND	ND
Chloride	160 mg/L	22 mg/L
Total Suspended Solids	5.0 mg/L	5.0 mg/L
Total Solids	640 mg/L	180 mg/L
Total Organic Carbon	3.3 mg/L	3.8 mg/L
Description	Clear	Slight yellow color
Description The second of the		

Dissolved oxygen concentrations recorded after samples were aerated and warmed to approximately 20° C. N/A = not applicable ND = non detectable

Table 3. The water quality measurements (ranges) recorded during the 7-day short-term chronic toxicity test exposing Ceriodaphnia dubia to General Electric Pittsfield Plant effluent.

Sample ↓	рН	Dissolved Oxygen mg/L	Temperature (°C)	Conductivity μmhos/cm
Dilution Water Control	6.72-7.44	8.27-8.39	24.5-25.8	350-448
Reference Control	7.04-7.11	8.72-8.84	24.5-25.8	314-324
Na ₂ S ₂ O ₃ Control	7.09-7.14	8.74-8.86	24.5-25.8	320-329
6.25% effluent	6.79-7.42	8.24-8.34	24.5-25.8	429-553
12.5% effluent	6.88-7.41	8.24-8.30	24.5-25.8	513-680
25% effluent	7.09-7.44	8.20-8.26	24.5-25.8	689-773
50% effluent	7.21-7.49	8.15-8.25	24.5-25.8	814-982
75% effluent	7.37-7.53	8.13-8.24	24.5-25.8	1016-1162
100% effluent	7.37-7.59	8.08-8.19	24.5-25.8	1187-1255

Dilution Water Control Reference Control

Na₂S₂O₃ Control

= receiving water collected from the Housatonic River

= moderately hard synthetic water

= moderately hard synthetic water and sodium thiosulfate (0.1 N)

Table 4. Summary of the mean survival and reproduction recorded during the 7-day short-term chronic toxicity test exposing *Ceriodaphnia dubia* to General Electric Pittsfield Plant effluent.

Effluent Concentration				Days				_
(%)	1	2	3	4	5	6	7	_
Reference Control	100%	100%	100%	100%	100%	100%	100%	_
Na ₂ S ₂ O ₃ Control	100%	100%	100%	100%	100%	100%	100%	
Control	100%	100%	100%	100%	100%	100%	100%	
6.25	100%	100%	100%	100%	100%	100%	100%	
12.5	100%	100%	100%	100%	100%	100%	100%	
25	100%	100%	100%	100%	100%	100%	100%	
50	100%	100%	100%	100%	100%	100%	100%	
75	100%	100%	100%	100%	100%	100%	100%	
100	100%	100%	100%	100%	100%	100%	100%	
	Num	ber of (Offsprin	g Produ	ıced			ı
Reference Control	0	0	0	47	34	84	110	
Na ₂ S ₂ O ₃ Control	0	0	0	47	48	80	94	
Control	0	0	0	48	23	108	93	
6.25	0	0	0	46	45	75	108	
12.5	0	0	0	50	62	63	114	
25	0	0	0	52	46	68	121	
50	0	0	0	50	39	90	118	
75	0	0	0	51	41	101	89	
100	0	0	0	51	65	65	122	

Actual number of mortalities (if any) is presented in parentheses.

Reference Control

= moderately hard synthetic water

Na₂S₂O₃ Control

= moderately hard synthetic water and sodium thiosulfate (0.1 N)

Dilution Water Control = re

= receiving water collected from the Housatonic River

NPDES Permit No. MA000 3891 SGS ID number: TA5-I0-P242 September 28, 2005 Page 3 ()

Appendix I References

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference:

SGS/USEPA

Document File Name:

7003-05.DOC

Revision Number:

5.0

Effective Date: Review Date:

May 17, 2005

May 17, 2005

UNCONTROLLED

COPY

Page 1 of 7

Document Control Number:

7003.05

Approved by:

by: Superior

Date

Approved by:

payve Joller

5-17-05

1.0 INTRODUCTION

- 1.1 This method estimates the chronic toxicity of whole effluents and receiving water to *Pimephales promelas*, fathead minnow, and *Ceriodaphnia dubia* in a seven-day, static-renewal test. Growth, survival, and reproduction are used as endpoints to measure toxicity.
- 1.2 The sample is brought up to test temperature in a room temperature water bath. Chemical parameters are checked and recorded. If the pH, D.O. or chlorine fall outside the acceptable testing range, the effluent may be adjusted (see screening; Test Preparation).
- 1.3 24 hour composite samples are used in chronic testing. Some tests use three samples collected over the seven day period in which the test is set up and daily renewals are made. Other tests require a fresh sample daily for seven days.
 - 1.3.1 The first sample is used for test initiation on day 1 and test solution renewal on day 2. The second sample is used for renewals on days 3 and 4, and the third sample is used for renewals on days 5, 6. Samples held over night are kept at 4° C until needed.
 - 1.3.2 A fresh sample is collected and used for solution renewal each day.

2.0 PIMEPHALES PROMELAS LARVAL SURVIVAL AND GROWTH TEST

2.1 Test Duration

7 Days

- 2.2 Static Renewal
- 2.3 Endpoints

Survival and Growth

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference: **Document File Name:**

Revision Number:

5.0

Effective Date: Review Date:

May 17, 2005

May 17, 2005

Document Control Number:

7003.05

COPY

Page 2 of 7

2.4 **Test Preparation**

- 2.4.1 The screening test consists of a control and a 100%. The definitive test consists of a control and a dilution series consisting of 100%, 50%, 25%, 12.5% and 6.25% of the effluent(unless otherwise requested). Samples taken at points downstream may be included if a permit requires it.
- 2.4.2 The sample is brought up to test temperature(25°C) in a waterbath. Chemical parameters (alkalinity, hardness, pH, D.O., and conductivity) are checked and recorded. If the pH, D.O. or chlorine fall outside the acceptable testing range, the effluent may be adjusted (see screening; Test Preparation).
- The dilutions are prepared in graduated cylinders using moderately hard synthetic water (unless other dilution water is specified by the permit).
- 250 ml of each dilution are poured into four(4) beakers. Containers are disposable 800 ml HDPE plastic beakers.

2.5 Loading

- 2.5.1 Ten organisms, less than 24 hours old, are placed in each beaker. Fish are loaded by first transferring them to a shallow dish from which they are easily transferred with a large bore pipette.
- 2.5.2 The test chambers are positioned randomly at the beginning of the test. This randomization is maintained throughout the test.

2.6 **Test Temperature**

The test is conducted in a constant temperature incubator at 25°C ± 1°

2.7 **Renewal Procedure**

- 2.7.1 At 24 hours, the water quality parameters and temperatures are checked and recorded. At this time mortalities are also recorded and removed.
- 2.7.2 New concentrations are prepared (as in day 1) and the renewal water qualities and temperatures are recorded.
- 2.7.3 The test vessels are gently emptied. Extreme care is taken not to lose any fish. At this time uneaten artemia and other debris are removed from the

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7003-05.DOC

Revision Number:

5.0

Effective Date:

May 17, 2005

Review Date:

May 17, 2005

Document Control Number:

7003.05

Page 3 of 7

bottom of the test chambers using a disposable pipet. New dilutions are slowly added.

2.7.4 Accidental removal of fish is noted on the bench sheet.

2.8 Feeding

- 2.8.1 The fish in each chamber are fed 0.15 ml of an *artemia* suspension two (2) times daily. Accuracy and consistency is assured by dispensing *artemia* suspension with an automatic pipette. The *artemia* suspension consists of concentrated newly hatched brine shrimp. This feeding will supply each chamber with sufficient food to ensure a small excess.
- 2.8.2 Fish are not fed during the final 12 hours of the test.

2.9 Termination of the Test

- 2.9.1 Seven days after test initiation the test is terminated. At this time final water qualities are measured and recorded along with mortalities.
- 2.9.2 Surviving larvae from each test chamber are rinsed with D.I. water and are placed on pre-weighed tin trays. The fish are euthanised before drying. The fish are dried at 100° C for a minimum of 2 hours and are then placed in a desiccator until the time of weighing. Weights are measured to the nearest 0.01 mg.

2.10 Acceptability of Test Results

Survival in the controls must be at least 80%. The average dry weight of control larvae must be greater than or equal to 0.250 mg.

3.0 CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION TEST

3.1 Test Duration

Until 60% of the control has three broods.

3.2 Static Renewal

3.3 Test Endpoints

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference:

SGS/USEPA 7003-05.DOC

Document File Name: Revision Number:

5.0

Effective Date:

May 17, 2005

Review Date:

May 17, 2005

Document Control Number:

7003.05

Page 4 of 7

Survival and Reproduction

3.4 Test Preparation

- 3.4.1 A screening test consists of a control and a 100%.
- 3.4.2 A definitive test consists of a control and a dilution series consisting of 100%, 50%, 25%, 12.5% and 6.25% of the effluent (unless otherwise requested) and River Sample Points, if provided.

3.5 Feeding

0.1 ml each of YCT and concentrated algae is placed in the test vessel prior to loading or transferring of the organisms. This is done to prevent undue stress to the organisms.

3.6 Loading

- 3.6.1 Neonates are obtained from adults that have eight or more young in their third or subsequent broods.
- 3.6.2 Neonates used in the test are all within 8 hours of each other in age. At the time of test initiation the neonates are \leq 24 hours.
- 3.6.3 One neonate is placed in each test vessel. Test vessels are 30 ml disposable medicine cups. SGS uses a fibrotic illuminator during loading and renewals.

3.7 Test Temperature

25°C ± 1° C

3.8 Renewal

- 3.8.1 New test solutions are prepared and placed in new test vessels daily. Renewal water quality is measured prior to transfer. The test organisms are transferred to the new test solutions using a small bore pipette.
- 3.8.2 Neonates are counted at the time of transfer, but are not transferred. This number, along with any adult mortalities, is recorded.

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7003-05.DOC

Revision Number:

5.0

Effective Date: Review Date:

May 17, 2005

May 17, 2005

Document Control Number:

7003.05

Page 5 of 7

3.9 Termination of the Test

- 3.9.1 The test is terminated when sixty percent (60%) of the control has had three broods.
- 3.9.2 At this time neonates are counted and recorded.

3.10 Acceptability of Test Results

- 3.10.1 Survival of the control adults must be at least 80%.
- 3.10.2 80% or greater survival and an average of 15 or more young/surviving female in the control solutions.

4.0 TEST DATA

- 4.1 Mortalities are recorded daily.
- 4.2 Water quality parameters are recorded before test initiation, at 24 hour intervals, (renewal of dilutions) and at the time of test termination.
- 4.3 Final dry weight of the *Pimephales promelas* are recorded.
- 4.4 Neonates are counted and recorded daily in the Ceriodaphnia dubia test.
- 4.5 Any unusual observations or complications noted during the test.

5.0 DATA ANALYSIS

5.1 Introduction

The data collected is first tabulated and summarized. A hypothesis test approach is used to calculate LOEC (Lowest Observed Effect Concentration) and NOEC (No Observed Effect Concentration) values for survival, growth and reproduction.

5.2 Methods for estimating the NOEC and LOEC of Survival Data

Note: Concentrations at which there is no survival in any of the test chambers are excluded from statistical analysis.

5.2.1 Fisher's Exact Test - used for Ceriodaphnia dubia survival data.

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7003-05.DOC

Revision Number:

5.0

Effective Date:

May 17, 2005

Review Date:

May 17, 2005

Document Control Number:

7003.05

UNCONTROLLE

" I'V

Page 6 of 7

- 5.2.2 **Shapiro-Wilk's Test and Bartlett's Test** tests for normality and homogeneity of variance respectively, are performed first using no transformation.
- 5.2.3 **Dunnett's Procedure** parametric procedure; used if data meets both the normality and homogeneity assumptions.
- 5.2.4 **Steel's Many-One Rank Test** non-parametric procedure; used if either the normality or homogeneity test fail.
- 5.2.5 **Bonferroni T-test** parametric analysis; used when unequal number of replicates occur.
- 5.2.6 **Wilcoxon Rank Sum Test with the Bonferroni adjustments** non-parametric analysis; used when unequal number of replicates occur.
- 5.2.7 **t-Test** used to compare Control with River Sample Points. Used for screening tests.

6.0 REPORT PREPARATION

- 6.1 SGS chronic toxicity test reports contain the following information:
 - 6.1.1 Summary Page Includes client, NPDES permit number, date collected, type and date of test, dilution water used, summary of test procedure and results.
 - 6.1.2 Logistical Information When the sample was collected and by whom, when the sample arrived at the laboratory, start time of test, any other pertinent information.
 - 6.1.3 Results Values obtained from test, statistical methods utilized to calculate the results.
 - 6.1.4 Initial Characteristics of Effluent Includes dissolved oxygen, pH, specific conductivity, hardness, alkalinity, temperature and total residual chlorine when indicated.
 - 6.1.5 Data Summary Summarizes percent survival per concentration, mean dry weight per concentration, mean young produced per concentration.
 - 6.1.6 Statistical Data Print Outs.

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7003-05.DOC

Revision Number:

5.0

Effective Date: Review Date:

May 17, 2005

May 17, 2005

Document Control Number:

7003.05

Page 7 of 7

6.1.7 Chain of Custody

7.0 References

- 7.1 Weber, Cornelius I., et al., Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms., Fourth Edition. EPA-821-R-02-013. U.S.EPA, Cincinnati, Ohio.
- 7.2 Reporting and Testing Guidance for Biomonitoring Required by the Ohio Environmental Protection Agency, October, 1991.

Document Title:

Culture Waters for Aquatic Toxicity Testing

Method Reference: Document File Name:

SGS/USEPA 7005-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998 May 17, 2005

Document Control Number:

UMGGNINGLED

7005.04

Page 1 of 3

5-17-5 Date

1.0 Summarv

> This document describes the preparation of various waters used for the culture of aquatic organisms.

2.0 **Moderately-Hard Synthetic Water**

- Place 19 liter of de-ionized, or equivalent, water in a properly cleaned and labeled 2.1 plastic carbov.
- 2.2 Add 1.20 g of MgSO₄, 1.92 g NaHCO₃ and 0.08g KCI to the carboy.
- 2.3 Aerate overnight.
- Add 1.20 g of CaSO₄ 2H₂O to 1 liter of de-ionized or equivalent water in a separate 2.4 flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 19 liter above and mix well.
- 2.5 Aerate vigorously for 24 hours to stabilize the medium.

3.0 **Hard Synthetic Water**

- Place 9 liter of de-ionized, or equivalent, water in a properly cleaned and labeled 3.1 plastic carboy.
- 3.2 Add 1.20 g of MgSO₄, 1.92 g NaHCO₃ and 0.08g KCl to the carboy.
- 3.3 Aerate overnight.
- Add 1.20 g of CaSO₄2H₂ to 1 liter of de-ionized, or equivalent water in a 3.4 separate flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 9 liter above and mix well.
- 3.5 Aerate vigorously for 24 hours to stabilize the medium.

Document Title:

Culture Waters for Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7005-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998

May 17, 2005

Document Control Number:

INCOMPRE

7005.04

Page 2 of 3

4.0 Synthetic Water Solutions

- 4.1 KCL Stock Solution
 - 4.1.1 Place 8 g of crystalline, reagent grade KCL in a 1 liter volumetric flask.
 - 4.1.2 Bring the volume to one liter with distilled water.
 - 4.1.3 Aerate vigorously for several hours before using.
 - 4.1.4 Store in a 1 liter polyethylene bottle.
- 4.2 MgSO₄ Stock Solution
 - 4.2.1 Place 120 g of regent water, anhydrous MgSO₄ powder in a 1 liter volumetric flask.
 - 4.2.2 Bring the volume to one liter with distilled water.
 - 4.2.3 Aerate vigorously for several hours before using.
 - 4.2.4 Store in a 1 liter polyethylene bottle.
- 4.3 NaHCO₃ Stock Solution
 - 4.3.1 Place 96 g of reagent grade NaHCO₃ powder in a 1 liter volumetric flask.
 - 4.3.2 Bring the volume to 1 liter with distilled water
 - 4.3.3 Aerate vigorously for several hours before using.
 - 4.3.4 Store in a 1 liter polyethylene bottle.

5.0 Activated Carbon Treated Tap Water Diluent

- 5.1 Fill a 5-gallon carboy with water from the treatment system using the attached hose. Water should be allowed to flow slowly through the hose into the sink for 2-3 minutes before filling the carboy. Flow rate to fill the carboy should be slow.
- 5.2 One or two long airstones are placed in the filled carboy. Water is aerated vigorously for 48-hours.
- 5.3 Total residual chlorine must be checked on water from newly filled carboys before using.
- 5.4 Alkalinity, hardness and pH are checked on samples from dechlorinated water carboys according to the Laboratory Procedure Checklist.
- 5.5 Log information on the Dechlorinated Tap Water and Cechlorimeter log sheet including the carboy number and date filled.

Document Title:

Culture Waters for Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7005-04.DOC

Revision Number:

4.0

Effective Date:

October 20, 1998

Review Date:

May 17, 2005

Document Control Number:

JMCANTROLLED

7005.04

Page 3 of 3

6.0 Synthetic Sea Water Preparation

- 6.1 Fill a clean carboy with dechlorinated water to approximately the 25-gallon mark.
- The newly filled carboy should be checked for the presence of chlorine and the results recorded on the saltwater carboy log sheet. If chlorine is present, two 4-inch airstones (adjusted to a moderately heavy air flow) should be introduced and the water aerated until a level of <0.01 mg/L is reached.
- 6.3 A sufficient amount of synthetic salt is added to the carboy to obtain the required salinity (usually 20 ppt).
- 6.4 All information should be logged on the Saltwater Carboy log sheet.

Document Title:

Culture of Daphnia

Method Reference:

SGS/USEPA Document File Name: 7006-05.DOC

Revision Number:

5.0

Effective Date: Review Date:

March 12, 2001 May 17, 2005

JAKA MACALED	
12 11 W	

Page 1 of 3

Document Control Number:

7006

Approved by: Supervisor

Approved by: Source Latterner

PA/QC Officer

1.0 Summary

This document describes the procedure for the culture of Ceriodaphnia dubia, Daphnia pulex, Daphnia magna that are used in aquatic toxicity testing.

Mass Stock Cultures of Ceriodaphnia dubia, Daphnia pulex, and Daphnia magna 2.0

- Stock cultures are maintained in 1000 ml beakers/jars with 900 mls of culture 2.1 media at 20 \pm 1 $^{\circ}$ C. These cultures are maintained only as a back-up source of organisms.
- Culture media for Ceriodaphnia dubia and Daphnia pulex is moderately-hard 2.2 synthetic water. Culture media for Daphnia magna is hard synthetic water (see document control number 7005.04, "Culture Waters for Aquatic Toxicity Testing").
- Many cultures are maintained simultaneously with an informal rotation cycle. New 2.3 cultures are started with young produced by individual cultures. These cultures are maintained for approximately 3 weeks after which they are discarded.
- Cultures are fed YCT (yeast, cerophyll, digested trout chow/flake food) and algae 2.4 (Selanastrum capricorium) on Monday, Wednesday and Friday. Feeding, as well as culture rotation, temperature and all other relevant data is recorded by species in a log book.
- Stock cultures are also fed algae and YCT. These feedings are recorded in the 2.5 log book.

Individual Cultures of Ceriodaphnia dubia, Daphnia pulex, Daphnia magna 3.0

- Cultures of Daphnia magna and Daphnia pulex are maintained in 100 ml plastic 3.1 beakers. Twenty-four (24) beakers with one organism each are kept at all times to ensure continuous availability of neonates for testing. Cultures of individual Ceriodaphnia dubia are maintained in 30 ml sterile plastic medicine cups. One to two cultures of approximately 100 organisms each are kept at all times.
- Cultures are renewed three times per week. Organisms are fed daily. 3.2

Document Title:

Culture of Daphnia

Method Reference:
Document File Name:

SGS/USEPA 7006-05.DQC

Revision Number:

5.0

Effective Date: Review Date:

March 12, 2001 May 17, 2005

Document Control Number:

7006

UMEXANTROLLED

V

Page 2 of 3

4.0 Obtaining Neonates for Testing

- 4.1 Cultures of *Ceriodaphnia* are started by placing one neonate into a 30 ml disposable plastic cup containing approximately 20 ml of Moderately Hard Synthetic Water. New *Ceriodaphnia* cultures are started every ten to fourteen days. *D. magna* and *D. pulex* are replaced whenever mortality occurs.
- 4.2 The individual cultures are transferred to fresh media three times per week. Synthetic water, algae and YCT are mixed prior to pouring into culture vessel to ensure uniformity of media. The old media and neonates are kept for stock cultures for several weeks and then discarded.
- 4.3 To assure neonates for chronic tests are of a very similar age, transfer of individual brood stock to fresh media should be made the morning of the test. The cultures are then checked approximately every two hours to find an adequate number of neonates all released with an 8 hour period. For acute tests, individuals are either transferred less than 24 hours before a test or the young are separated from adults less than 24 hours before a test.
- Young used in chronic testing are obtained from adults who have produced at least three broods, with no less than 8 neonates in their third or subsequent brood. Neonates are then distributed in a "blocking" procedure, i.e., neonates from the same organism are placed in one replication of each concentration.

5.0 DAPHNIA Food

- 5.1 Digested Flake Food
 - 5.1.1 Add 5g flake food to 1 L deionized water. Mix well in a blender and place in a 2 L separatory funnel. To digest, aerate this mixture at room temperature for one week.
 - 5.1.2 At end of the digestion period, remove aeration and allow to settle.
 - 5.1.3 Drain sediment. Place supernatant in a beaker and allow to settle in refrigerator overnight.
 - 5.1.4 Filter through fine mesh.

Document Title:

Culture of Daphnia

Method Reference:
Document File Name:

SGS/USEPA 7006-05.DOC

Revision Number:

5.0

Effective Date: Review Date:

March 12, 2001 May 17, 2005

Page 3 of 3

Document Control Number:

7006

5.2 Cerophyli®

- 5.2.1 Add 5g Cerophyll® to 1 L deionized water. Mix in a blender on high speed for 5 minutes.
- 5.2.2 Remove from blender and allow to settle in refrigerator overnight.
- 5.2.3 Retain supernatant for combined YCT food.
- 5.3 Yeast
 - 5.3.1 Add 5g dry yeast to 1 L deionized water. Mix in a blender at low speed.
 - 5.3.2 Do not allow mixture to settle.
- 5.4 Combined YCT Food
 - 5.4.1 Mix equal parts of each of the above preparations in large clean beakers.
 - 5.4.2 Pour well mixed YCT into small screw cap bottles. Freeze until needed.

Document Title:

Reference Toxicant Testing

Method Reference: Document File Name:

SGS/USEPA 7008-05.DOC

Revision Number:

5.0

Effective Date: Review Date

July 31, 2001

May 17, 2005

Page 1 of 3

Document Control Number: 7008

Approved by: Supervisor Date

Approved by: Season Fattern 5-17-05

Approved by: Date

1.0 Summary

To insure that healthy organisms are used in testing, SGS performs monthly QA/QC tests on all in-house cultured organisms. SGS uses sodium chloride as a reference toxicant.

2.0 **Apparatus**

- 2.1 Disposible plastic beakers
- 2.2 Disposible plastic medicine cups
- 2.3 **Pipettes**
- 2.4 pH meter
- 2.5 Dissolved oxygen (DO) meter

3.0 Reagents

- Moderately hard synthetic water (refer to document control number 7005, Culture 3.1 Waters for Aquatic Toxicity Testing)
- 3.2 Sodium Chloride (NaCl), reagent grade, Baker

4.0 Method

4.1 Pimephales promelas (fathead minnows)

- 4.1.1 48-hour static acute toxicity tests are run at 20°C (±1°C) using fish that are from 1 to 14 days old.
- 4.1.2 This test consists of a control and a dilution series of 10g/L, 9g/L, 8g/L, 7g/L, and 6g/L, of sodium chloride. Other dilution series may be used.

Document Title:

Reference Toxicant Testing

Method Reference:
Document File Name:

SGS/USEPA 7008-05.DOC

Revision Number:

5.0

Effective Date:
Review Date

July 31, 2001

May 17, 2005

HMCOMTROLLED

Document Control Number:

7008

Page 2 of 3

- 4.1.3 The dilutions are prepared in 800 ml disposable plastic beakers using moderately hard synthetic water. 500 mls of test solution is placed in each of two replications. Water quality values are measured and recorded at this time.
- 4.1.4 Ten organisms are placed in each replicate. Fish are loaded by first siphoning them into a shallow pan from which they are transferred to the beakers with a large bore pipette.
- 4.1.5 The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

4.2 Daphnids (Ceriodaphnia dubia, Daphnia magna, Daphnia pulex)

- 4.2.1 48-hour static acute tests are performed at 25°C (±1°C) using organisms less than 24 hours old.
- 4.2.2 These tests consist of a control and a five dilution series. The concentration of the reference toxicant is varied depending on species.
 - 4.2.2.1 Ceriodaphnia dubia, Daphnia pulex:

dilutions of 3.0 g/L, 2.5 g/L, 2.0 g/L, 1.5 g/L, 1.0 g/L

4.2.2.2 Daphnia magna:

dilutions of 5.0 g/L, 4.0 g/L, 3.0 g/L, 2.0 g/L, 1.0 g/L

- 4.2.3 Dilutions are prepared using moderately hard synthetic water. 20 mls of each dilution are placed in each of 5 plastic medicine cups.
- 4.2.4 Four organisms are placed in each test vessel. The *Daphnids* are loaded with a disposable plastic pipette. Organisms are gently released below the surface of the water to minimize risk of injury.
- 4.2.5 The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

5.0 Data Analysis

5.1 Toxicity tests are conducted on a monthly basis.

46

Document Title:

Reference Toxicant Testing

Method Reference:
Document File Name:

SGS/USEPA 7008-05.DOC

Revision Number:

5.0

Effective Date: Review Date

5.0 July 31, 2001

May 17, 2005

Document Control Number:

7008

Page 3 of 3

- 5.2 The median lethal concentration (LC₅₀) is calculated according to EPA protocols.
- 5.3 Results from these tests are incorporated into Q-sum charts. These records are kept in monthly files.

6.0 Definitions

6.1 Median lethal concentrations (LC₅₀) -- the concentration that is calculated to be lethal to 50 percent of the organisms within the test period.

47

SGS Environmental Services Inc. **Standard Operating Procedure**

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference: Document File Name:

SGS/USEPA 7009-04.DOC

Revision Number:

4.0

Effective Date:

October 20, 1998

Review Date: May 17, 2005

Document Control Number:

1194 R IN 1780) 1 L 29

7009.04

Page 1 of 3

Approved by: Supervisor Date

Approved by: Security Fattern 51705

AAVQC Officer Date

1.0 Summary

This document describes the manner in which sample waters (effluents, wastewaters, etc.) are handled from point of collection to testing.

2.0 Sample Handling

2.1 Sampling Personnel

SGS's sampling personnel are trained and experienced in the techniques for collecting samples according to NPDES permit requirements. This includes the use of automatic sampling equipment and the measurement of various field parameters.

2.2 Sample Containers

Sample containers used by SGS are disposable plastic cubitainers®.

2.3 Sample Collection Points

For NPDES permit required tests, the sample will be collected at the point specified in the discharge permit unless otherwise directed by the regulatory agency.

2.4 Sample Shipment

Samples are placed on ice (sufficient to maintain 0-4°C) in a cooler and are transported as quickly as possible to the laboratory.

2.5 Laboratory Handling of Samples

Upon delivery to the laboratory, the effluent samples are inspected, given a sample control number and stored at 4° C until used for testing.

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7009-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998

May 17, 2005

Document Control Number:

7009.04

Page 2 of 3

2.6 Sample Holding Time

Samples will be tested within 24 hours upon receipt in the laboratory. The maximum lapsed time for collection of a grab or composite sample and the initiation of test, or for test solution renewal, will not exceed 36-hours for Chronic and Acute Testing.

3.0 LABORATORY ENVIRONMENT

3.1 Laboratory Arrangement

The aquatic toxicity testing laboratory is divided into two separate areas: (1) the culturing laboratory and (2) the testing laboratory. See attached diagram for details of laboratory layout.

3.2 Temperature

The aquatic toxicity testing laboratory air temperature is maintained at 20 \pm 1° C throughout the year by a central heating and cooling system which is regulated by thermostats. Temperatures are continuously recorded by thermographs.

3.3 Water

Several waters are available for use in the laboratory. SGS has access to municipally supplied water, well water and reagent water from which synthetic water is prepared. Waters used for culturing and testing are analyzed semiannually for priority pollutants and other contaminants. A detailed report is available.

3.4 Lighting

Ambient laboratory lighting is regulated with a 16 hour day/8 hour night photoperiod controlled by an electronic timing system in the culturing and testing areas.

4.0 LABORATORY EQUIPMENT

4.1 General

Instruments used for the measurement of physical and chemical parameters are calibrated prior to use in testing. Any instrument that exceeds the calibration limits is taken out of service and corrective action is taken.

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA

Revision Number:

7009-04.DOC 4.0

Effective Date:

October 20, 1998

Review Date:

May 17, 2005

Document Control Number:

7009.04

Page 3 of 3

4.2 Balances

Analytical balances are calibrated against standard weights prior to use. All calibration results and adjustments are recorded in bound books.

4.3 Water Quality Meters

Meters are calibrated prior to use using known standards and the manufacturer's instructions. Records of calibration are kept in logbooks. Detailed procedures for the operation of these meters are found in SOP's for each specific instrument.

4.4 Reagents

All reagents are stored in a separate area. Expired reagents and chemicals are discarded.

4.5 Test Containers

All test containers are either clean reusable glassware or new, disposable plastic beakers.

5.0 EQUIPMENT CLEANING PROCEDURES

- 5.1 Equipment used in culturing or testing is washed in the following manner:
 - 5.1.1 Soak 15 minutes and scrub with detergent in tap water.
 - 5.1.2 Rinse three times with tap water.
 - 5.1.3 Rinse once with 20% nitric acid.
 - 5.1.4 Rinse twice with deionized water.
 - 5.1.5 Rinse once with full-strength, pesticide-grade acetone.
 - 5.1.6 Rinse well with deionized water.
 - 5.1.7 Invert and air dry.
 - 5.1.8 All equipment and test chambers are rinsed with deionized water immediately prior to use for each test.

Appendix II Chains of Custody

100 Woodlawn Ave. Pittsfield, MA 01201 Chain of Custody Record General Electric Co.

Sept 2015 Chronic Toxicity . Comp. # 1

TAS-IO-P343-1/3 Chain of Custody #: 086 09 1205 Split Smyle C, 70 × 1 + AD 70 ×

	Desired #							Sept	Sept 2005
	NPDES PERMIT	CT&E	Analytical Lab: CT&E Environmental Services Inc.	Lab: Services Inc.		Sampled By:		175	
	Sample #	Date	Time	e Containers	ners	72	2	Preservative 5	Romarte
_	A6736C	59/21/b on 11/b		100AM	1 Gallon plastic	Definitive Test(NOCEL), Static reproductive chronic toxicky, 7-day w/Cerlodaphnia	oductive shnia	Chilled	(See below)
	A6726C	9/11/69/11/6	17 5	MADO	1000 ml. plastic	Chloride, TSS,Total Solids, Alkalinity Specific Conductance, CL2	wity	Chilled	
	A6726 C	9/11 to 9/12/05	17 50	00 AM	500 ml. plastic	Total Phosphorus, TOC, NH3		H2S04	
2	AGIBSR	9/12/05	818	T. T.	1 Gallon plastic	Housatonic River water dilution water for chronic test		Chilled	
7	AGTSK	9/12/05	818	AM	1000 ml. plastic	Chloride, TSS,Total Solids, Alkalinity Specific Conductance, CL2	nity	Chilled	
2	A6725R	9/12/05	815	M	500 ml. plastic	Total Phosphorus, TOC, NH3		H2S04	
		-			<				
	Relinquished By:	hyonh	9/19/03	\		pived By:	Day		1332
**	Refinquished By:	/	Date/T/me		Rece	ed By	Tin o] ,	11.75
4 .4	Additional Comments: The effluent sample being analyzed is a 24-hour composite. The sample collection times for $001 \cdot 745 \times 1004$	The effluent sample being The sample collection 005-64T.	mple being analyzed sollection times for eactors.	each outfal	I for toxicity is a flow-proportionach outfall are as follows: $005-64G - 760_{AM} 007.$	rtioned co	Ifall sample	San .	0
	The time of compositing the final flow-proportioned samp	g the final flow-proporti	ioned sam	, K	// 00 A.M.			\	3.8°

Chain of Custody Record

General Electric Co.

100 Woodlawn Ave. Pittsfield, MA 01201

Chain of Custody #: 1266091405

TAS-IO-P242-3/4

Sept 2005 Chronic Toxicity . Comp. # 22

Project # NPDES PERMIT	CT&E	Analytical Lab: CT&E Environmental Services Inc.		Sampled By: (Print) Mork Wasnews	sky	
Sample #	Date	Time Containers	Iners	Parameters to be Analyzed	Freservative	Remarks
A6728C	9/13 00 9/14/0	5/100Am	1 Gallon plastic	Definitive Test(NOCEL), Static reproductive chronic toxicity, 7-day w/Ceriodaphnia	Chilled	(See below)
AGTAKC	9/13 00 4/14/6	11 00 m	1000 ml. plastic	Chloride, TSS,Total Solids, Alkalinity Specific Conductance, CL2	Chilled	
A6728C	9/13 00 6/14/6	1100 AM	500 ml. plastic	Total Phosphorus, TOC, NH3	H2S04	
	/ /					
A6727R	-50/h1/b	818m	1 Gallon plastic	Housatonic River water dilution water for chronic test	Chilled	adition of the same of the sam
A6727R	9/14/105	8 15pm	1000 ml. plastic	Chloride, TSS,Total Solids, Alkalinity Specific Conductance, GL2	Chilled	
AC727R	9/14/05	8 15 AM	500 ml. plastic	Total Phosphorus, TOC, NH3	H2S04	
	/ /					
Relinquished By:	Morso	alia Jos		AND JAN CAES	Date/Time	20 HI
Relinquished By:	/	Dake/Time	Receive		Date/Time 0-15-05	11.55
Additional Comments: $3 = 24$ hour composite. $3 = 24$ hour $3 = 24$ $3 = $	Additional Comments: The effluent sample being analyzed for toxicity is a flow-proposis a 24-hour composite. The sample collection times for each outfall are as follows: 001- 746 004 004 005-641- 789 005-646- 789 0	times for each outfa	ty is a flow-p II are as foll: 46-700	rtioned composi	ample MPS 09B-	<i>ე</i> ၀
The time of compositi	The time of compositing the final flow-proportioned sample was	oned sample was	1/00 AM	'n		(L) 000

1

3

 $\boldsymbol{\omega}$

Chain of Custody Record
General Electric Co.
100 Woodlawn Ave. Pittsfield, NA 01201

Chain of Custody #: 086091605

145-170-1343-516

Sapt 2005 Chronic Toxicity · Comp. 8 3

			ور	(MO	T	T	T	1118				T	T			T	
			Remarks	(See below)										in Durs	0,15	3935	•
1			tive					Control of						.9	9-16-35 Ban 10-16	3	
	\	14	Professive	Chilled	Chilled	H2504				Chilled	H2S04			S. S.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	UR.	- B60
		MAIN COURSELY		ethe te									age	7			8
	_	192	Definitive Test Mores		Chloride, TSS, Total Solids, Alkalistly Seecille Conduction	M 55 €			E test	77	至				for toxicity is a flow-property		
-	1 /	Promise in the 100 of		chronic taxicity, 7-day w/Cerloda	ride, TSS,Tetal Solida, Alka Seculic Conduction	Total Phospherus, TOC, NH3		Housebooks River water	dilution water for chronic tast Chloride, TSS, Total Solids, Alkalinity	Specific Conductance, GL2	Total Phosphorus, TOC, NH3		1	なる	Him Which	r Each	485
	11/1		A PAGE	axicky, 7.	TSS, Tot	i i		dontatonic River	SS, Total	Fic Conds	hosphon		5	- 1	3		
Sampled Bu	(Print)	7~	Teatified To	Chronic t	Catorida	T S			Ploride, 1	Specif	10 10	9	_		100		\
3			8									+	Man By	1 1		007	; ;
			Gallon	Plastic	1000 mJ.	500 ml. plastic		Calles	1000 ml.	So m.	Pestic	7	*	₹	flower	ach outfall are as follows:	100 A.R.
	ا ن	Containers		- 1				40	\$ -						city is a		0//
ä	CT&E Environmental Services Inc.		160.	1	100,AM	100 AM	يمرن عدد	1/3	15/21	7	AN		1/2		for toxi	ach out	Was
Analytical L	onmental :		_	7		1	** *** *******************************	1 3	الكر	4 9	0	1	9-11-6	1	alyzed	2 7	sample
*	T&E Envir		1:1	6	501:	165	A					DateTi	9-	Dete/Tim	eing an	on time	tioned
		Date	to	\$\\ !	4	, to 9	· ·	7/2	2						ande b	collecti 005-64	propor
		3	1	1	50/11/00 5/16	10		16	4/16	/ / //	0/0/				luent s		nai flow
_	\dashv	L	10/10	+	4	2		2	-	2			She	\	The off		g the fi
			9		000	0		J.	2R	4 12		٤	Morney	ני ו	ments:	2 2	Positin
PERMIT	Samole		A67.36	,	#6730C	A6730C		A6729R	#6739R	AP. 734R		Hyguished By:			al Com	35	of com
Project #			A	Ľ	7	A		A	A	A	1	inbulifo	11/11/11/10		Additional Comments: The effluent sample being analyzed is a 24 hour comments.	001. 7 40 004 he sample collection times for earliest one of the collection ti	The time of compositing the final flow-proportioned sample
		Į	2	V	ו ח	2		ی	ــــ	و		8/	7.0		₹ .2		E

Appendix III Bench Data

General Electric – 7-Day Chronic Biotoxicity Bench Sheet

Client:

S Lab. No .: 745-10-P242-001/002 Date Received: פא /וז / סי 20/51/00 Temp. Range: Date Analyzed: Analyst(s): KH < 24 hrs Age: Time: 11:00 Housatonic River Ceriodaphnia dubia Source: Effluent cómposite 50/11-11/60 General Electric Source of dilution water: Sample Date: Test Species: Project:

Beginning Date: 7-day chronic Total Chlorine: Type of Test:

Ending 6a/14/05

300

09/13/05 1500

Time:

	River	Housatonic MHSW River Control	MHSW Na ₂ S ₂ O ₃ Control	Effluent 6.25%	Effluent 12.5%	Effluent 25%	Effluent 50%	Effluent 75%	100%
Initial									100
Temperature	£.77	t.77	24.7	24.7	24.7	24.7	24·7	7.67	+ 47
	220	00:	110						×8×
naluiless	0.00	6	1180	120	272	9.70	47.69	20,00	21.8
D.O.	8.51	0.0	10.0	200	12.0	7 " "	זכו	730	17.41
Ha	1.36	10.17	7.60	4.54	7.7	2 7 7	10.6		1000
Alkalinity	163	63	3						246
Sn Conduct	907	317	370	513	080	741	934	188	\$57)

Fnd									
No Cupiting	2	2	01	01	01	9	01	10	0~
No. Survivilly	2	2 3	7 36	200	25.2	2.26	23.3	2.3	23.3
Temperature	25.5	27.7	23.2	72.7	43.7				200
	200	0 30	₽ 4.0	8.25	20.02	<u>ي</u> خ	00	8.1	8
5.0	27.0	2						7	ב ד
7	791	7 99	(†)	イオロ	ار ارج ارج	<u>a</u> T.	9 T	F. +	ř
בת	1					1	00	2	130
Sp Conduct	977	224	333	775	3	+64	8	100	1530
op. collance.							•		

General Electric - 7-Day Chronic Biotoxicity Bench Sheet

Lab. No .: +45 - 10 - P242 - 001 / 00 C ပွ 20/51/20 09/14/05 Temp. Range: Date Received: Date Analyzed: Analyst(s): KH < 24 hrs Age: 10,00 Housatonic River Time: Ceriodaphnia dubia 7-day chronic Effluent composite 09/11-12/05 **General Electric** Source of dilution water: Sample Date: Test Species: Source: Project: Client:

oalislos Ending Beginning 20111/10 Date: 10/Q Total Chlorine:

Type of Test:

1500

500

Time:

Concentration→	Housatonic River Control	MHSW Control	MHSW Na ₂ S ₂ O ₃ Control	Effluent 6.25%	Effluent 12.5%	Effluent 25%	Effluent 50%	Effluent 75%	Effluent 100%
Initial									
Temperature	5.85	25.5	25.5	25.5	25.5	26.5	24.5	27.5	25.5
Hardness	012	100	00)						390
0.0	8.30	8.84	80	47.8	42.8	8.25	52.8	428	8.18
H	77 17	108	713	7.45	14.41	7.42	95'E	7.37	7.54
Alkalinity	83)	49	69						250
Sp. Conduct.	430	377	326	553	244	773	786	1016	1222

End									
No. Surviving	0)	0)	07	01	0)	01	0)	10	0
Temperature	24.6	24.0	24.6	24.6	2.4.6	9.72	24.6	24.6	24.6
0.0	0.2	878	198	77.0	8.71	17.8	8.20	8.21	8.13
E E	#5 r	7.(3	7.74	7.44	3.48	7.45	7.41	7.57	Zh.Ľ
Sp. Conduct.	740	331	341	2.66	040	194	ववत	1037	1237

DAY

57

General Electric - 7-Day Chronic Biotoxicity Bench Sheet

Lab. No.: 745-10-8242-003/004 ပ 04/12/02 09/15/05 Temp. Range: Date Analyzed: Date Received: Analyst(s): KH < 24 hrs Age: 1100 Housatonic River Time: Ceriodaphnia dubia 7-day chronic 04 (15-14/05 Effluent composite General Electric Source of dilution water: Sample Date: Test Species: Type of Test: Source: Project: Client:

Ending oalle/or

09/15/05

Date: Time:

Beginning

Total Chlorine:

58

Concentration→	Housatonic River	MHSW	MHSW Na ₂ S ₂ O ₃	Effluent 6.25%	Effluent 12.5%	Effluent 25%	Effluent 50%	Effluent 75%	Effluent 100%
Initial			7						
Temperature	25.7	7.57	7-32	7-52	7.25	7:57	7.57	7.57	2.32
Hardness	770	011	911						240
D.0.	8.27	5t.8	£ 5.8	42.8	22.8	12.8	0218	21.8	8.08
Hd	¢ + + • 9	2.10	11.6	4، ۲۹	88. 1	7.09	りなと	45.F	7.53
Alkalinity	441	65	£9						304
Sp. Conduct.	442	320	376	225	ともの	Int	198	1(20	1214

End									
No. Surviving	0)	01	10	01	0)	0)	10	01	10
Temperature	<i>9</i> 57	25.60	0'SZ	or 52	932	25.6	352	2.75	9.52
D.0.	8.20	200	8.65	8,19	8.20	8.17	8.17	8.10	11.8
рН	6.79	3.15	7.15	6.63	6.92	11.4	4.27	24.F	7.52
Sp. Conduct.	157	320	334	533	060	250 150	980	1134	(233

DAY

General Electric - 7-Day Chronic Biotoxicity Bench Sheet

Client:

Lab. No.: TAS-10-0241-003/004 S 09/15/05 Date Analyzed: <u>๐๔/ ใษ(๐ร</u> Ending Temp. Range: Date Received: Analyst(s): KH Beginning < 24 hrs Age: Housatonic River Time: Ceriodaphnia dubia 7-day chronic Effluent composite 09/ 13-14/05 **General Electric** Source of dilution water: Total Chlorine: Sample Date: Test Species: Type of Test: Source: Project:

00/11/00

00/10/02 200

Date: Time:

Concentration→	Housatonic River Control	MHSW	MHSW Na ₂ S ₂ O ₃ Control	Effluent 6.25%	Effluent 12.5%	Effluent 25%	Effluent 50%	Effluent 75%	Effluent 100%
Initial									
Temperature	8.62	852	8.52	8.32	8-52	B-52	25.8	8.52	25.8
Hardness	052	011	001						340
D.0.	8.34	74.8	ht.8	8.32	72.8	27.8	8.20	61.8	41.8
Ηd	24.9	40. £	11.6	88.7	40-E	17.6	±5.6	1865 E	7.59
Alkalinity	041	79	47						313
Sp. Conduct.	430	128	£72	210	847	2 t t	456	t501	1204

End									
No. Surviving	01	0)	0)	0)	07	0)	01	0)	0)
Temperature	8.42	24-8	24.8	24.8	24.8	24.8	24.8	24.8	846
D.0.	42.8	8 0.26	8.62	6.27	8.23	8.17	8.19	8.14	8.6
рН	6.81	hrt	7.15	6.93	7.10	57.5	7.42	7.43	7.65
Sp. Conduct,	Ihti	333	339	519	597	240	146	1001	9) 21

General Electric - 7-Day Chronic Biotoxicity Bench Sheet

Client:

Lab. No.: TAS - 10 - 10 242 -005/606
Date Received: 00/45/65 Ç 30/11/00 Temp. Range: Date Analyzed: Analyst(s): KH < 24 hrs Age: Time: (100 Housatonic River Ceriodaphnia dubia 7-day chronic Effluent composite 20/12-16/02 General Electric Source of dilution water: Sample Date: Test Species: Type of Test: Source: Project:

Concentration→	Housatonic River	MHSW	MHSW Na ₂ S ₂ O ₃	Effluent 6.25%	Effluent 12.5%	Effluent 25%	Effluent 50%	Effluent 75%	Effluent 100%
Initial									
Temperature	25.4	J- 52	b 37	75.4	75.4 25.4	5.52	25.4	7.52	25.4
Hardness	240	901	001						430
D.0.	8.27	3t.8	9.75	8.75 8.25	h2.8	17.8	8 اد	71.8	8.09
Hd	95.9	7.07	7.0a	7.10	7.19	67.C	75° E	Sh'E	7.52
Alkalinity	9	64	99	•					531
Sp. Conduct.	948	314	125	458	155	45E	126	2911	1234

00/18/0x Ending

Beginning 09/17/08 8

Total Chlorine:

Date: Time:

End									
No. Surviving	0)	0)	01	(0	(0	10	0)	01	6)
Temperature	25.3	25.3	28.3	5.52	25.3	25.3	28.5	25.3	28.3
D.0.	8.20	19.8	39.68	17.8	17.8	91.8	21.8	8.10	8.13
Hd	7.03	コニ	7.15	3.15	7.23	7.32	24.E	05.F	85. E
Sp. Conduct.	387	319	329	124	5.63	145	926	1152	1246

DAY

Method Reference: Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms., Fourth Edition. EPA-821-R-02-013 U.S.EPA, Washington, DC

General Electric - 7-Day Chronic Biotoxicity Bench Sheet

Lab. No.: 145-10-7242-005/006 Date Received: 04/17/07 Date Analyzed: 04/18/07		Temp. Range: °C	Ending	00/10/02	1500
Lab. No.: TAS Date Recei	Analyst(s): KH	< 24 hrs Temp	Beginning	Date: 04/18/05	Time: 120
Client: General Electric Project: Sample Date: 04/15-16/05 Time: 1100	riuen rtion w	Type of Test: Ceriodaphnia dubia Age: 7-day chronic	Total Chlorine:		

	Housatonic	MINK	MHCW	E661.10.2	- 665				
Concentration→	River	Control	Na,S,O,	6.25%	12 5%	Effluent	Effluent	1	Effluent
	Control		Control		27.71	0/,07	%nc	75%	100%
Initial									
Temperature	1,10								
יכוווסכומות	27.5	7.4.2	24.0	74.7	576	9110	1		
Hardness	250	011	9			44.3	24.5	2.67	スない
		23.7	2						
0.0	20.34	49. A	200	022	100				25
I	77. 0	,	100	20.0	21.4	875	0.45	2.24	0
<u> </u>	+0	7.04	し、のな	=	4 6	229	7.7.		0
Alkalinity	421	7,	-		27.1.	7:21	7.46	7.24	بر ج
7	100	e	- t						
Sp. Conduct.	27.0	211	219	1 1 1 1 1	3				333
		1	250	7	200	- 20 11	270	1001	1121
							-)	1	5

ving 10 1	End									
8.24 8.31 8.35 8.28 8.24 9.20 8.21 8.19 5 7.09 7.09 7.15 7.15 7.33 7.45 7.51 7.59 5 341 326 357 449 593 293 293 054	ving	0	0	01	91	01	2	9		
8.24 8.49 24.9 24.9 24.9 24.9 24.9 2 3.09 7.09 7.12 7.15 7.33 7.45 7.51 7.59 5 3.41 3.26 3.57 44.9 5.93 2.45 7.51 7.59	וועס	070	0110			2	2	é	9	9
8.17 8.75 8.28 8.24 6.20 8.21 8.19 E 7.09 7.09 7.12 7.15 7.33 7.45 7.51 7.59 E	ا ا	7 7. 1	24.7	24.9	24.9	24.9	24.0	0,10	010	
371 326 357 449 593 343 054 6.20 8.21 8.19 E		a ct	0	100	3		1.1.1	14.1	イオン	74.7
371 326 357 449 593 343 0EU 100 100 100 100 100 100 100 100 100 10		21.0	0.71	α.+S	00.78	8.74	a	100	9	
. 371 326 357 449 593 393 05U 1.59		מס	00 1	C			0.40	11.0	z.	0.44
371 326 357 449 593 292 262 1.30		7.0	7.0.1	71.5	ار الم	7.23	77 6	121	1	
. 31 360 357 444 543 242 AEU	t	177	702	203		1	7617	10.	インソ	·62
		.271	260	しなイ	カカエ	222	מסת	מעמ	000	1,00

Method Reference: Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms., Fourth Edition. EPA-821-R-02-013 U.S.EPA, Washington, DC

f:\public\forms\bioassay\GE bench sheet-chronic.doc

General Electric - 7-Day Chronic Biotoxicity Bench Sheet

Lab. No.: 7A5-10- P242-005/606 S 00/17/05 09/10/05 Temp. Range: Date Received: Date Analyzed: Analyst(s): KH < 24 hrs Age: Time: 1100 Housatonic River Ceriodaphnia dubia 7-day chronic 09/12-16/05 Effluent composite General Electric Source of dilution water: Sample Date: Test Species: Type of Test: Source: Project: Client:

50/00/20

1300

Date: Time:

Ending

Beginning

Total Chlorine:

Concentration→	Housatonic River	MHSW	MHSW Na ₂ S ₂ O ₃ Control	Effluent 6.25%	Effluent 12.5%	Effluent 25%	Effluent 50%	Effluent 75%	Effluent 100%
Initial									
Temperature	24.8	872	24.8	24.8	842	24.8	248	248	24.8
Hardness	250	100	100						d 20
D.O.	8.36	78.84	886	6 .34	8.50	8.26	9.24	278	9.16
H	70.1	1). 5	7.14	7.19	87.4	7.41	7.49	55.F	7.58
Alkalinity	132	t9	69						326
Sp. Conduct.	350	324	329	424	513	684	n)8	1029	1184

End									
No. Surviving	01	0)	0)	0)	0)	9)	Ø	10	0
Temperature	7.52	7.52	7.57	28.5	7.52	2.52	25.2	25.2	25.2
D.O.	25.30	8.72	-4.0	B.30	8.26	8.20	17.8	8.20	80.69
F	7.1	77.4	7.14	7.72	7.35	bh. t	25.E	7.61	7.63
Sp. Conduct.	366	23.3	334	740	529	£ 69	821	1059	1194

Method Reference: Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms., Fourth Edition. EPA-821-R-02-013 U.S.EPA, Washington, DC

Page 1 of 3

Lab. No. Client: Effluent/Sample	TAS-10-P242 GB	Test Organism Lot No.	CO	Start Date: End Date:	09/13/05	Time: End Time	1300
Emiddin Oampie	EFFLUENT	Age:	LZ4 hrs	Investigators	X	4	

Conc.						Re	plicate	·				No. of	No. of	Young
Control	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adult
	1 -		ļ	<u> </u>		<u> </u>	<u> </u>							
	2													
	3								T			†		<u> </u>
	4	5	4	5	4	4	5	6	5	5	5			-
	5	0	[]	0	0	0	0	0	0	12	0			
	6	12	0	13	11	16	17	12	13	0	14			
	7	14	13	14	13	0	4	0	9	14	12			
	8			32					T			272	<u> </u>	20.7
	total	31	28	3+	28	20	26	18	27	31	21	214	10	27.2

Conc.	_					Re	plicate					No. of	No. of	Young
2°Control	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adult
	1						1		 	+	 		 	Addit
	2	 			 	 	+		 		 		 	
	3		 		_	 	+	 	+	+	+	 	 	
	4	4	5	4	5	6	4	5	5	4	5	 		
	5	11	0	0	0	0	0	12	11	0	0	 		-
	6	0	13	12	12	15	9	0	0	11	12	<u> </u>		
	7	10	8	15	14	0	13	14	17	13	0			
	8						1	 ``	 `	1.7	 	<u> </u>		
	totai	31	26	31	31	21	26	31	35	28	17	275	10	27.5

Conc.	1					Rep	olicate					No. of	No. of	Young
2°Control+	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adult
] 1										 			
	2			1	 -	+			 	1	+	 		
	3		1	 		 	 	 	 		┼	+		
	4	5	4	5	4	5	5	5	5	4	5			
	5	0	0	11	0	12	0	0	14	It	0	1		
	6	16	11	0	12	0	12	14	0	0	15			
	7	0	13	7	14	12	13	16	6	13	0			
	8													
	total	21	28	23	30	29	30	35	25	28	20	269	10	24.9

Biotoxicity Bench Sheet

Page 2 of 3

Lab. No. TAS-10-P242 Test Organism CD Start Date: 09/15/05 Time: 1300
Client: GE Lot No. End Date: 09/15/05 End Time: 1300
Effluent/Sample EFFWENT Age: <24 hvs Investigators KH

Conc.		L				Rep	olicate					No. of	No. of	Young
6.25%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adult
	1													
	2		 	 			 	 	 			 		
	3	<u> </u>	1	†			 	\dagger	+	 	-	 		
	4	5	4	4	4	5	5	6	4	5	4			
	5	0	0	12	0	13	0	0	9	0	11			
	6	11	15	0	13	0	11	14	0	11	0			
	7	8	6	15	18	15	8	0	11	13	14			
	8				35						<u> </u>			
	total	24	25	31	22	53	24	10	24	29	29	274	10	27.1

Conc.	İ					Rep	licate					No. of	No. of	Young
12.5%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adu
	1	ł												
	2					 		 	†	†	 	 		
	3			1	1	1	 	 	 	†	 -		 	
	4	5	5	4	5	4	5	6	5	5	4		 	
	5	0	0	14	0	13	0	10	12	13	0			
	6	10	14	0	11	0	14	0	0	0	14			
	7	12	18	12	13	13	0	17	1	15	13			
	8											†		
	total	27	37	30	29	30	19	33	18	33	33	Z89	200	28.9

Conc.		L				Re	plicate					No. of	No. of	Young per Adult
25%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	
	1				1									
	2		1	<u> </u>	 	<u> </u>	†			 		<u> </u>		
**	3		† ·			†	+	 	 	ļ-,	 		 	
	4	5	6	5	6	6	5	5	4	5	5			
	5	Ш	0	0	0	0	14	0	13	0	8			
	6	0	10	10	9	9	0	15	0	15	0			
	7	13	15	15	19	5	13	9	14	13	5			
	8													-
******	total	19	31	30	34	20	32	29	31	33	18	287	10	28.7

Biotoxicity Bench Sheet

Page 3 of 3

 Lab. No.
 TA5-10- V242 Test Organism
 CD
 Start Date:
 0a/13/07 Time:
 1300

 Client:
 GE
 Lot No.
 End Date:
 01/29/05 End Time
 1300

 Effluent/Sample
 EFFUENT Age:
 <24 hr</td>
 Investigators

Conc.						Re	plicate					No. of	No. of	Young
50%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adult
	1	1		1										
	2								 		-	 	<u> </u>	
	3			1	 		 	†		 	-	 		
	4	5	6	5	4	5	15	5	5	4	6	 		
	5	15	0	0	0	12	0	12	0	0	0			
	6	0	13	9	11	0	13	0	16	14	14	 		
	7	19	0	11	8	13	В	9	19	15	16			
	8					1		<u> </u>	' '	1	·v			
	total	39	19	25	23	20	26	26	40	33	36	297	10	29.=

Conc.		<u></u>				Re	plicate					No. of	No. of	Young
75%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adult
	1							1	1		1	†	 	71001
	2		 		1	_	 	<u> </u>	+	+	 	 	 	
	3		<u> </u>	 	 	 	+		 	-	 	 	ļ	
	4	5	6	4	6	5	5	5	4	5	ч	 		
	5	14	0	0	0	0	0	15	0	12	0			
	6	0	14	15	15	14	16	0	12	0	15			
	7	11	0	19	0	7	20	5	5	7	15			
	8									1	<u> </u>			
	total	30	10	40	21	26	41	25	21	24	34	282	10	28.2

Conc.		L				Re	plicate					No. of	No. of	Young
100%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adult
	ן י		-			1		1						
	2							1	1	†	1		 	1
	3		1	 	1	†	 	+ -	 	+	+	 		-
	4	4	5	5	5	6	6	5	5	6	4	+	 	
	5	12	0	0	0	13	14	0	0	15	11			<u> </u>
	6	0	12	13	14	0	0	13	13	0	0	1		
	7	12	13	6	a	17	10	13	14	15	13	<u> </u>		<u> </u>
	8								32	` -	'_	1 47		
	total	28	30	24	28	36	30	31	34	36	28	303	10	30.3

Appendix IV Statistical Sheets

File: GE SEPTEMBER 2005
File: GECDREP .905 Transform: NO TRANSFORMATION

Kolmogorov Test for Normality

D = 0.0850 D* = 0.8129

(p-value > 0.100)

Critical D* = 1.035 (alpha = 0.01 , N = 90) = 0.895 (alpha = 0.05 , N = 90)

Data PASS normality test (alpha = 0.01). Continue analysis.

File: GECDREP .905

Transform: NO TRANSFORMATION

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 8.2343

(p-value = 0.4109)

Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

Critical B = 20.0902 (alpha = 0.01, df = 8) = 15.5073 (alpha = 0.05, df = 8)

File: GECDREP .905

Transform: NO TRANSFORMATION

ΑN	$T \cap I$	7 Z	Ta	h	٦	۵
777	\sim $^{\circ}$	<i>-</i>	та	J.	-L	_

SOURCE	DF	SS	MS	F
Between	8	115.6222	14.4528	0.4669
Within (Error)	81	2507.5000	30.9568	
Total	89	2623.1222		·

(p-value = 0.8760)

Critical F = 2.7390 (alpha = 0.01, df = 8.81) = 2.0549 (alpha = 0.05, df = 8.81)

Since F < Critical F FAIL TO REJECT Ho: All equal (alpha = 0.05)

File: GECDREP .905

Transform: NO TRANSFORMATION

	Dunnett's Test -	TABLE 1 OF 2	Ho:Control<	Treatment	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED IN ORIGINAL UNITS	T STAT	SIG 0.05
1 2 3 4 5 6 7 8	CONTROL CONTROL+ 2' CONTROL 6.25% 12.5% 25% 50% 75%	27.1000 26.9000 27.5000 27.1000 28.9000 28.7000 29.7000 28.2000 30.2000	27.1000 26.9000 27.5000 27.1000 28.9000 28.7000 29.7000 28.2000 30.2000	0.0804 -0.1608 0.0000 -0.7234 -0.6430 -1.0449 -0.4421 -1.2459	

Dunnett critical value = 2.4400 (1 Tailed, alpha = 0.05, df [used] = 8,60) (Actual df = 8,81)

Title: GE SEPTEMBER 2005

File: GECDREP .905

Transform: NO TRANSFORMATION

	Dunnett's Test -	TABLE 2	OF 2 Ho	:Control<	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1	CONTROL	10			
2	CONTROL+	10	6.0713	22.4	0.2000
3	2' CONTROL	10	6.0713	22.4	-0.4000
4	6.25%	10	6.0713	22.4	0.0000
5	12.5%	10	6.0713	22.4	-1.8000
6	25%	10	6.0713	22.4	-1.6000
7	50%	10	6.0713	22.4	-2.6000
8	75%	10	6.0713	22.4	-1.1000
9	100%	10	6.0713	22.4	-3.1000

File: GECDREP .905 Transform: NO TRANSFORMATION

GRP	IDENTIFICATION	MEAN	SMOOTHED MEAN	CONCENTRATION
1	CONTROL	27.1000	28.2556	0.0000
2	CONTROL+	26.9000	28.2556	0.0000
3	2' CONTROL	27.5000	28.2556	2.0000
4	6.25%	27.1000	28.2556	6.2500
5	12.5%	28.9000	28.2556	12.5000
6	25%	28.7000	28.2556	25.0000
7	50%	29.7000	28.2556	50.0000
8	75%	28.2000	28.2556	75.0000
9	100%	30.2000	28.2556	100.0000

ICp estimate with p = 25 is > 100.0000

Appendix V U.S. EPA Region I Toxicity Test Summary

Toxicity Test Summary Sheet

Facility Name:	General Electric Co.	Test Sta	art Date: September 13, 2005
NPDES Permit N	umber: MA 000 3891		001, 005-64T, 005-64G,
			09A, 09B
Test Type	Test Species	Sample Typ	e Sample Method
☐ Acute	☐ Fathead minnow	☐ Prechlorinate	
☑ Chronic	□ Ceriodaphnia	□ Dechlorinated	• • • • • • • • • • • • • • • • • • •
☐ Modified*	☑ Ceriodaphnia dubia	☐ Chlorine	☐ Flow thru
☐ 24-hour	☐ Mysid Shrimp	□ Spiked at lab	
Screening	☐ Menidia	☑ Chlorinated o	n-
	☐ Sea Urchin	site	
	☐ Champia	☐ Unchlorinated	1
	□ Selenastrum□ Other		
*Modified (Chronic)	reporting acute values)		
(
Dilution Water			
			way from the discharge, free
	or other sources of co	ntamination (Recei	ving water name: <u>Housatonic</u>
River);			
Alternate su	rrace water of known quies of the resolution	uality and a harnes	ss, etc. to generally reflect the
	ics of the receiving water		or equivalent deionized water
			bined with mineral water;
	sea salts mixed with dei		billed with fillineral water,
	ater and hypersaline br	•	
 other	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
Effluent sampling	g date(s): Septembe	er 11, 2005 to Sept	tember 16, 2005
Effluent concentr	rations tested (in %):	100 75	50 25 12.5 6.25
	*(Pern	nit limit concentrat	ion): <u>N/A</u>
Was effluent sali	nity adjusted? No		1
	alue? N/A ppt		
With sea salts?	. 	ne brine solution?	N/A
			- (V/)
Actual effluent co	oncentrations tested aft	er salinity adjustm	ent
(in %): <u>N/A</u>	<u> N/A</u>	N/A N/A	
Reference Toxica			September 19, 2005

Permit Limits & Test Results

Test Acceptability Criteria

MEAN CONTROL SURVIVAL:	≥90%	MEAN CONTROL REPRODUCTION:	N/A
MEAN CONTROL WEIGHT:	· N/A	MEAN CONTROL CELL COUNT:	NI / A
MEAN CONTROL WEIGHT:	N/A	MEAN CONTROL CELL COUNT:	N/A

Lim	nits	Result	:S
LC ₅₀	N/A	48-hr LC ₅₀	>100%
		Upper Value	N/A
		Lower Value	N/A
		Data Analysis	
		Method used:	N/A
A-NOEC	N/A	A-NOEC	100%
C-NOEC	N/A	C-NOEC	100%
		LOEC	100%
IC25	N/A	IC25	N/A
IC50	N/A	IC50	N/A

N/A = not applicable

Appendix VI 7-Day Chronic Reference Toxicity Test Data

Page 1 of 2

Lab. No. Client:	<u>-</u>	Test Organism Lot No.	_CD	Start Date:	09/11/05	Time:	1500
	NACI	Age:	624 hus	End Date: Investigators	09/19/05	End Time	1500

Conc.]					Rep	olicate					No. of	No. of	Young
Control	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adult
	1						T					 		
	2	 	 		 		+		 	 	 -			
	3		 			-	 	 	 		 			<u> </u>
	4	5	4	3	5	4	5	4	5	ч	3			
	5	0	1	0	10	0	0	0	1	4	9			
	6	11	10	13	0	8	7	8	10	0	0			
	7	13	12	0	10	13	13	14	0	11	14			
	8									 				
	total	29	27	16	25	25	25	26	16	23	26	238	10	23.8

Conc.						Rep	olicate					No. of	No. of	Young
750 mg/L -6.25%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adult
	1					ļ		1						
	2							 	<u> </u>			 		
	3						<u> </u>	1		 	 			
	4	4	3	2	3	4	3	5	4	5	4			
	5	10	9	4	0	0	8	0	0	0	12			
	6	0	0	0	11	11	0	7	11	13	8			
	7	5	14	12	14	13	14	14	14	14	15		-	
ļ	8										1			·
	total	19	26	18	28	28	25	26	29	31	27	257	10	25.7

Conc.						Rep	olicate				1	No. of	No. of	Young
500 mg/L 12.5%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adult
	1					1					T			
	2						 					 	 	
	3		 			 	1				 			
	4	5	4	5	4	5	4	5	ч	5	3		-	
	5	0	0	14	0	13	0	0	0	2	8			
	6	11	10	0	11	0	14	X-12	10	14	0			
	7	12	13	9	0	12	14	1	13	0	15			
	8													
	total	28	27	28	15	30	32	x-17	27	21	26	251	a	25.1

Biotoxicity Bench Sheet

Lab. No.		Total	4.5				Page 2 of 2
Client: Effluent/Sample	NaCI	Test Organism Lot No. Age.	CD <24 hrs	Start Date: End Date: Investigators	69/12/05 09/19/05 V	Time: End Time	1700

Conc.	Day	-	T-2			R	eplicate					No of	No. of	T ::-
- 56 %	Day	'	2	3	4	5	6、	7	8	9	10	Young	Adults	Young
	1	†		 	 			-	 		-	roung	Addits	per Adul
	2		1-	 	+	- 		 	├		 			
	3		 	 	 	 	+	 	 		 	ļ		
	4	3	1	3	3	4	1	0	3	2	7	 		
	5	0	2	0	0	0	0	X-0	0	0	0	 		
	6	3	0	5	6	0	X-0		2	 				
	7	0	X-0	0	1	2	1	-	0	X-1	2			
	8				1		V	1,	U	+ -	0			
	total	6	x-2	8	10	6	 	x-0	5	x-3				
			4				۴	,		17.7	5	47	6	4.7

Conc.	D					Re	plicate					No. of	1	
2000 mg/e	Day 1	'	2	3	4	5	6	7	8	9	10	No. of Young	No. of Adults	Young per Adult
	2		 	+	-	-	 	-	 					Addit
	3			 	-	 	 	 	ļ		 	ļ		
	4	0	0	0	0	0	0	0	0	+		ļ		
	5 6	0	2	1	3	x-0	2	x -2	0	0	0			
	7	X-0	0	0	X-0	-	0		2	x-0	0			
	8	1	0	0	1	1	X-O		0		0			
	total	X-0	2	1	x-3	x-0	x-2	V x-2	Z	V x-1	7	15		

Conc.	D	 				Rep	licate					I No. of	I M	_
400 mg/2 -10044	Day 1	1	2	3	4	5	6	7	8	9	10	No. of Young	No. of Adults	Young per Adult
	2		 	 				ļ		 	-			
	3	X	X	×	×	×	×	Y	-	-	-			
	4			T				-	×	X	X			
	5	\top	11	1	-1-					-1-				
	6	7	1						├-├					
	7	T^{-}												
	8	+	1							1	1,			
	total					-V-			٧	V	V			

Title: CD REFTOX SEPT 2005

File: QCCDREP .905 Transform: NO TRANSFORMATION

Kolmogorov Test for Normality

(p-value = 0.0001)

D = 0.1916 D* = 1.3760

Critical D* = 1.035 (alpha = 0.01 , N = 50) = 0.895 (alpha = 0.05, N = 50)

Data FAIL normality test (alpha = 0.01). Try another transformation.

The first three homogeneity tests are sensitive to non-normality and should not be performed with this data as is. Warning

Title: CD REFTOX SEPT 2005

File: QCCDREP .905 Transform: NO TRANSFORMATION

	Steel's Many-One	Rank Test	- но:	Control.	<treatme< th=""><th>ent</th><th></th></treatme<>	ent	
GROUP	IDENTIFICATION	MEAN IN ORIGINAL UNITS	RANK SUM	CRIT. VALUE	DF	SIG 0.05	
1 2 3 4 5	CONTROL 250 MG/L 500 MG/L 1000 MG/L 2000 MG/L	23.8000 25.7000 25.1000 4.7000 1.5000	123.50 121.00 55.00 55.00	76.00 76.00 76.00 76.00	10.00 10.00 10.00 10.00	- * *	

Critical values are 1 tailed (k = 4)

Title: CD REFTOX SEPT 2005

File: QCCDREP .905 Transform: NO TRANSFORMATION

GRP	IDENTIFICATION	MEAN	SMOOTHED MEAN	CONCENTRATION
1	CONTROL	23.8000	24.8667	0.0000
2	250 MG/L	25.7000	24.8667	250.0000
3	500 MG/L	25.1000	24.8667	500.0000
4	1000 MG/L	4.7000	4.7000	1000.0000
5	2000 MG/L	1.5000	1.5000	2000.0000

ICp estimate with p = 25 is 654.1322

Bootstrap results using 480 iterations:

Mean = 642.9863 Standard Deviation = 20.5419 95% Confidence Interval: (586.9413 , 666.3136)

Acute Biotoxicity Bench Sheet

Client:QC				
Project: leference	Toxicant	La	o. No.:	
Sample Date:	Time:		Date Received Date Analyzed	
Source: NaCl Source of dilution water:	Hoderately Hard	Synthetic W	Analyst: _ KH	•
Test Species: <u>Ceriod</u> Type of Test: <u>48</u> H	our Acute	Age: <24 h	Temp. Ra	ange: °C
Total Chlorine:	n/d		Beginning	Ending
	•	Date:	69/06/05	09/08/05
		Time:	1600	1600

Concentration	Control	500	1000	2000		
START			1 (602)	2000	3000	4000
Temperature	25.8	25.8	28.8	25-8	25-8	7 -0.0
Hardness	100			7.0	23.8	20.8
D.O.	8.7	8.7	8.7	-	4	120
pН	7.1			8.7	8.7	8.7
Alkalinity		7.2	7.2	7.2	7-2	7.2
Sp. Conduct.	63					66
	314	2280	4010	5460	6030	7390
24 HOUR						1 1 2 1
Temperature	24.7	247	24.7	24.7	24.7	24.2
No. Surviving	20	20	20	T		24.7
48 HOUR		<i>w</i>		13	9	0
Temperature	25.4	25.4	25.4	25.4		
No. Surviving	10	20	16	8	25.4	25.4
			10			0

Note: All results expressed in mg/L unless otherwise designated. < = less than

Note: Number in parenthesis equals number not adversely effected (EC_{50}). This number is used in calculating EC_{50} value.

Note: Due to fragile structure of *Daphnia* organisms, dissolved oxygen (DO), hardness, alkalinity, specific conductance, and pH reading could not be taken after the organisms are added to the sample. Doing so would cause injury to the organisms.

Method Reference: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fifth Edition. EPA-821-R-02-012 U.S.EPA, Washington, DC

FOR REFERENCE, CITE:

HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

DATE: 09/06/05 TEST NUMBER: -CHEMICAL: NaCl

DURATION: 48 HOURS

SPECIES: CD

RAW DATA:

CONCENTRATION (MG/L) 500.001000.002000.003000.004000.00

NUMBER EXPOSED: 20 20 20 20 20

MORTALITIES: 0 4 12 20 20

SPEARMAN-KARBER TRIM: 0.00%

SPEARMAN-KARBER ESTIMATES: LC50: 1533.67 95% LOWER CONFIDENCE: 1290.30 95% UPPER CONFIDENCE: 1822.96