

GE 159 Plastics Avenue Pittsfield, MA 01201 USA

Transmitted via Overnight Courier

September 9, 2005

Mr. Dean Tagliaferro
U.S. Environmental Protection Agency
Region I – New England
10 Lyman Street, Suite 2
Pittsfield, MA 01201

Ms. Susan Steenstrup
Bureau of Waste Site Cleanup
Department of Environmental Protection
436 Dwight Street
Springfield, MA 01103

Re: GE-Pittsfield/Housatonic River Site

Monthly Status Report Pursuant to Consent Decree for August 2005 (GECD900)

Dear Mr. Tagliaferro and Ms. Steenstrup:

Enclosed are copies of General Electric's (GE's) monthly progress report for August 2005 activities conducted by GE at the GE-Pittsfield/Housatonic River Site. This monthly report is submitted pursuant to Paragraph 67 of the Consent Decree (CD) for this Site, which was entered by the U.S. District Court on October 27, 2000.

The enclosed monthly report includes not only the activities conducted by GE under the CD, but also other activities conducted by GE at the GE-Pittsfield/Housatonic River Site (as defined in the CD). The report is formatted to apply to the various areas of the Site as defined in the CD, and to provide for each area, the information specified in Paragraph 67 of the CD. The activities conducted specifically pursuant to or in connection with the CD are marked with an asterisk. GE is submitting a separate monthly report to the Massachusetts Department of Environmental Protection (MDEP), with a copy to the United States Environmental Protection Agency (EPA), describing the activities conducted by GE at properties outside the CD Site pursuant to GE's November 2000 Administrative Consent Order from MDEP.

The enclosed monthly report includes, where applicable, tables that list the samples collected during the subject month, summarize the analytical results received during that month from sampling or other testing activities, and summarize other groundwater monitoring and oil recovery information obtained during that month. Also, enclosed for each of you (and for Weston) is a CD-ROM that contains these same tables of the analytical data and monitoring information in electronic form.

Please call Andrew Silfer or me if you have any questions.

Sincerely,

John F. Novotny, P.E.

Manager - Facilities and Brownfields Programs

John F. Nanatny / NA

Enclosure

V:\GE Pittsfield General\Reports and Presentations\Monthly Reports\2005\08-05 CD Monthly\Letter.doc

cc: Robert Cianciarulo, EPA (cover letter only)

Tim Conway, EPA (cover letter only)

Sharon Hayes, EPA

William Lovely, EPA (Items 7, 8, 9, 10, 11, 12, 16/17, 22, 23, and 25 only)

Rose Howell, EPA (cover letter only)

Holly Inglis, EPA (hard copy and CD-ROM of report)

Susan Svirsky, EPA (Items 7, 15, and 20 only)

K.C. Mitkevicius, USACE (CD-ROM of report)

Thomas Angus, MDEP (cover letter only)

Robert Bell, MDEP (cover letter only)

Anna Symington, MDEP (cover letter only)

Nancy E. Harper, MA AG

Susan Peterson, CT DEP

Field Supervisor, US FWS, DOI

Kenneth Finkelstein, Ph.D., NOAA (Items 13, 14, and 15 only)

Dale Young, MA EOEA

Mayor James Ruberto, City of Pittsfield

Thomas Hickey, Director, Pittsfield Economic Development Authority

Linda Palmieri, Weston (hard copy of report, CD-ROM of report, CD-ROM of data)

Richard Nasman, P.E., Berkshire Gas (CD-ROM of report)

Michael Carroll GE (CD-ROM of report)

Andrew Silfer, GE (cover letter only)

Rod McLaren, GE (CD-ROM of report)

James Nuss, BBL

James Bieke, Goodwin Procter

Jim Rhea, QEA (narrative only)

Teresa Bowers, Gradient

Public Information Repositories (1 hard copy, 5 copies of CD-ROM)

GE Internal Repository (1 hard copy)

(w/o separate CD-ROM, except where noted)

AUGUST 2005

MONTHLY STATUS REPORT PURSUANT TO CONSENT DECREE FOR GE-PITTSFIELD/HOUSATONIC RIVER SITE

GENERAL ELECTRIC COMPANY

PITTSFIELD, MASSACHUSETTS

Background

The General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and other governmental entities have entered into a Consent Decree (CD) for the GE-Pittsfield/Housatonic River Site, which was entered by the U.S. Court on October 27, 2000. In accordance with Paragraph 67 of the CD, GE has prepared this monthly report, which summarizes the status of activities conducted by GE at the GE-Pittsfield/Housatonic River Site ("Site") (as defined in the CD).

This report covers activities in the areas listed below (as defined in the CD and/or the accompanying Statement of Work for Removal Actions Outside the River [SOW]). Only those areas that have had work activities for the month subject to reporting are included. The specific activities conducted pursuant to or in connection with the CD are noted with an asterisk.

General Activities (GECD900)

GE Plant Area (non-groundwater)

- 1. 20s, 30s, 40s Complexes (GECD120)
- 2. East Street Area 2 South (GECD150)
- 3. East Street Area 2 North (GECD140)
- 4. East Street Area 1 North (GECD130)
- 5. Hill 78 and Building 71 Consolidation Areas (GECD210/220)
- 6. Hill 78 Area Remainder (GECD160)
- 7. Unkamet Brook Area (GECD170)

Former Oxbow Areas (non-groundwater)

- 8. Former Oxbow Areas A & C (GECD410)
- 9. Lyman Street Area (GECD430)
- 10. Newell Street Area I (GECD440)
- 11. Newell Street Area II (GECD450)
- 12. Former Oxbow Areas J & K (GECD420)

Housatonic River

- 13. Upper ½-Mile Reach (GECD800)
- 14. 1½-Mile Reach (only for activities, if any, conducted by GE) (GECD820)
- 15. Rest of the River (GECD850)

Housatonic River Floodplain

- 16. Current Residential Properties Adjacent to 1½-Mile Reach (Actual/Potential Lawns) (GECD710)
- 17. Non-Residential Properties Adjacent to 1½-Mile Reach (excluding banks) (GECD720)
- 18. Current Residential Properties Downstream of Confluence (Actual/Potential Lawns) (GECD730)

Other Areas

- 19. Allendale School Property (GECD500)
- 20. Silver Lake Area (GECD600)

Groundwater Management Areas (GMAs)

- 21. Plant Site 1 (GECD310)
- 22. Former Oxbows J & K (GECD320)
- 23. Plant Site 2 (GECD330)
- 24. Plant Site 3 (GECD340)
- 25. Former Oxbows A&C (GECD350)

GENERAL ACTIVITIES GE-PITTSFIELD/HOUSATONIC RIVER SITE (GECD900) AUGUST 2005

a. Activities Undertaken/Completed

Continued GE-EPA electronic data exchanges for the Housatonic River Watershed and Areas Outside the River.*

b. Sampling/Test Results Received

- Sample results were received for routine sampling conducted pursuant to GE's NPDES Permit for the GE facility. Sampling records and results are provided in Attachment A to this report.
- NPDES Discharge Monitoring Reports (DMRs) for the period of July 1 through July 30, 2005, are provided in Attachment B to this report.
- A report titled *Toxicity Evaluation of Wastewaters Discharged from the General Electric Plant; Pittsfield, Massachusetts (Samples Collected in August 2005)* was prepared for GE by SGS Environmental Services, Inc. (SGS). A copy of that report is provided in Attachment C.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue discussions with Western Massachusetts Electric Company (WMECo) regarding subordination agreements for WMECo easements on GE properties that will be subject to Grants of Environmental Restrictions and Easements (EREs).*
- Continue NPDES sampling and monitoring activities.
- Attend public, Citizens Coordinating Council (CCC), and Pittsfield Economic Development Authority (PEDA) meetings, as appropriate.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

ITEM 1 PLANT AREA 20s, 30s, 40s COMPLEXES (GECD120) AUGUST 2005

a. Activities Undertaken/Completed

- Continued demolition activities at Buildings 42 and 43.
- Conducted wipe sampling as identified in Table 1-1.
- Conducted air monitoring for particulates and PCBs, as identified in Table 1-1
- Collected and tankered approximately 2,500 gallons of water from the Building 31W oil/water separator to Building 64 G for treatment.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Continue demolition activities at Buildings 42 and 43.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

None

f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval of the Supplemental Building Characterization Report and Building Debris Stockpile Proposal for 40s Complex (August 18, 2005).

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Building 31 VAC Truck Wipe Sampling	Bldg.31-VAC-W1	8/17/05	Wipe	SGS	PCB	8/22/05
Building 31 VAC Truck Wipe Sampling	Bldg.31-VAC-W10	8/17/05	Wipe	SGS	PCB	8/19/05
Building 31 VAC Truck Wipe Sampling	Bldg.31-VAC-W11	8/17/05	Wipe	SGS	PCB	8/19/05
Building 31 VAC Truck Wipe Sampling	Bldg.31-VAC-W2	8/17/05	Wipe	SGS	PCB	8/22/05
Building 31 VAC Truck Wipe Sampling	Bldg.31-VAC-W3	8/17/05	Wipe	SGS	PCB	8/19/05
Building 31 VAC Truck Wipe Sampling	Bldg.31-VAC-W4	8/17/05	Wipe	SGS	PCB	8/19/05
Building 31 VAC Truck Wipe Sampling	Bldg.31-VAC-W5	8/17/05	Wipe	SGS	PCB	8/19/05
Building 31 VAC Truck Wipe Sampling	Bldg.31-VAC-W6	8/17/05	Wipe	SGS	PCB	8/19/05
Building 31 VAC Truck Wipe Sampling	Bldg.31-VAC-W7	8/17/05	Wipe	SGS	PCB	8/19/05
Building 31 VAC Truck Wipe Sampling	Bldg.31-VAC-W8	8/17/05	Wipe	SGS	PCB	8/19/05
Building 31 VAC Truck Wipe Sampling	Bldg.31-VAC-W9	8/17/05	Wipe	SGS	PCB	8/19/05
Building 31 VAC Truck Wipe Sampling - Truck 489	Bldg.31-VAC489-W1	8/18/05	Wipe	SGS	PCB	8/22/05
Building 31 VAC Truck Wipe Sampling - Truck 490	Bldg.31-VAC489-W2	8/18/05	Wipe	SGS	PCB	8/22/05
Building 31 VAC Truck Wipe Sampling - Truck 491	Bldg.31-VAC489-W3	8/18/05	Wipe	SGS	PCB	8/22/05
Building 31 VAC Truck Wipe Sampling - Truck 492	Bldg.31-VAC489-W4	8/18/05	Wipe	SGS	PCB	8/22/05
Building 31 VAC Truck Wipe Sampling - Truck 493	Bldg.31-VAC489-W5	8/18/05	Wipe	SGS	PCB	8/22/05
Building 31 VAC Truck Wipe Sampling - Truck 494	Bldg.31-VAC489-W6	8/18/05	Wipe	SGS	PCB	8/22/05
Building 31 VAC Truck Wipe Sampling - Truck 495	Bldg.31-VAC489-W7	8/18/05	Wipe	SGS	PCB	8/22/05
Building 31W Bucket Wipe Sampling	BLDG-31W-BUCKETWIPE1	8/29/05	Wipe	SGS	PCB	8/31/05
Building 31W Bucket Wipe Sampling	BLDG-31W-BUCKETWIPE2	8/29/05	Wipe	SGS	PCB	8/31/05
Building 31W Bucket Wipe Sampling	BLDG-31W-BUCKETWIPE3	8/29/05	Wipe	SGS	PCB	8/31/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Background Location	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Background Location	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Background Location	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/5/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/5/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/5/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/5/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Background Location	8/5/05	Air	Berkshire Environmental	Particulate Matter	8/9/05

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Background Location	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Background Location	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Background Location	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Background Location	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/15/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/15/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/15/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/15/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Background Location	8/15/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/16/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/16/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/16/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/16/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Background Location	8/16/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/17/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/17/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/17/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/17/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling Ambient Air Particulate Matter Sampling	Background Location	8/17/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/18/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
. •	MC3 - Near Bldg. 16 & 19	8/18/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling Ambient Air Particulate Matter Sampling		8/18/05	Air	Berkshire Environmental		8/24/05
, ,	M2 - South of Bldg. 5	8/18/05	Air		Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue			Berkshire Environmental	Particulate Matter	
Ambient Air Particulate Matter Sampling	Background Location	8/18/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/19/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/19/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/19/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/19/05	Air	Berkshire Environmental	Particulate Matter	8/24/05

 $\label{thm:continuity} $$V:\GE_{Pittsfield_General\Reports}$ and $Presentations\Monthly \ Reports\2005\08-05\ CD\ Monthly\Tracking\ Logs\Tracking.xls $$TABLE\ 1-1$ 2 of 3$

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Ambient Air Particulate Matter Sampling	Background Location	8/19/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
PCB Ambient Air Sampling	W3 - West of 40s Complex	7/19-20/05	Air	Berkshire Environmental	PCB	8/7/05
PCB Ambient Air Sampling	S2 - Woodlawn Avenue	7/19-20/05	Air	Berkshire Environmental	PCB	8/7/05
PCB Ambient Air Sampling	M2 - South of Bldg. 5	7/19-20/05	Air	Berkshire Environmental	PCB	8/7/05
PCB Ambient Air Sampling	MC3 - Near Bldg. 16 & 19	7/19-20/05	Air	Berkshire Environmental	PCB	8/7/05
PCB Ambient Air Sampling	MC3-CO-Colocated - Near Bldgs. 16 & 19	7/19-20/05	Air	Berkshire Environmental	PCB	8/7/05
PCB Ambient Air Sampling	BK3-Background - North of Bldg 9B, b/w 9B & NY Avenue	7/19-20/05	Air	Berkshire Environmental	PCB	8/7/05
PCB Ambient Air Sampling	W3 - West of 40s Complex	8/25-26/05	Air	Berkshire Environmental	PCB	9/2/05
PCB Ambient Air Sampling	S2 - Woodlawn Avenue	8/25-26/05	Air	Berkshire Environmental	PCB	9/2/05
PCB Ambient Air Sampling	M2 - South of Bldg. 5	8/25-26/05	Air	Berkshire Environmental	PCB	9/2/05
PCB Ambient Air Sampling	MC3 - Near Bldg. 16 & 19	8/25-26/05	Air	Berkshire Environmental	PCB	9/2/05
PCB Ambient Air Sampling	MC3-CO-Colocated - Near Bldgs. 16 & 19	8/25-26/05	Air	Berkshire Environmental	PCB	9/2/05
PCB Ambient Air Sampling	BK3-Background - East of Building 9B	8/25-26/05	Air	Berkshire Environmental	PCB	9/2/05

TABLE 1-2 PCB DATA RECEIVED DURING AUGUST 2005

BUILDING 31 VAC TRUCK WIPE SAMPLING 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in mg/100cm²)

Sample ID	Date Collected	Aroclor-1016, -1221, -1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
		, ,			
BLDG.31-VAC489-W1	8/18/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC489-W2	8/18/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC489-W3	8/18/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC489-W4	8/18/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC489-W5	8/18/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC489-W6	8/18/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC489-W7	8/18/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC-W1	8/17/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC-W2	8/17/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC-W3	8/17/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC-W4	8/17/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC-W5	8/17/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC-W6	8/17/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC-W7	8/17/2005	ND(1.0)	1.4	0.95 J	2.35
BLDG.31-VAC-W8	8/17/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC-W9	8/17/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC-W10	8/17/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
BLDG.31-VAC-W11	8/17/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

J - Indicates an estimated value less than the practical quantitation limit (PQL).

TABLE 1-3 **PCB DATA RECEIVED DURING AUGUST 2005**

BUILDING 31W BUCKET WIPE SAMPLING 20s, 30s, 40s COMPLEX **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS**

(Results are presented in mg/100cm²)

	Date								
Sample ID	Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
BLDG-31W-BUCKETWIPE1	8/29/2005	ND(1.0)	ND(1.0)						
BLDG-31W-BUCKETWIPE2	8/29/2005	ND(1.0)	ND(1.0)						
BLDG-31W-BUCKETWIPE3	8/29/2005	ND(1.0)	ND(1.0)						

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 1-4 AMBIENT AIR PCB DATA RECEIVED DURING AUGUST 2005

40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

	W3 - West of 40s Complex (µg/m3)	Woodlawn	M2 - South of Bldg. 5 (μg/m3)	MC3 - Near Bldg. 16 & 19 (μg/m3)	MC3-CO Colocated - near Bldgs. 16 & 19 (µg/m3)	BK3-Background - North of Bldg 9B, b/w 9B & NY Avenue (µg/m3)	BK3-Background - East of Building 9B (µg/m3)
07/19 - 07/20/05	0.0034	0.0056	0.0089	0.0212	0.0029	0.0118	NA
08/25 - 08/26/05	0.0064	0.0046	0.0049	0.0034	0.0014 ¹	NA	0.0018
Notification Level	0.05	0.05	0.05	0.05	0.05	0.05	0.05

Note: The Laboratory Control Sample and Blank Spike Duplicate associated with samples from July 19 and 20, 2005 at all locations exhibited recoveries less than the control limits.

¹ Surrogate spike recoveries associated with this sample exhibited recoveries outside of the control limits. NA - Not Analyzed.

ITEM 2 PLANT AREA EAST STREET AREA 2-SOUTH (GECD150) AUGUST 2005

a. Activities Undertaken/Completed

Performed sludge sampling at Building 64T (see Table 2-1).

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted Addendum to Interim Letter Report – Proposed Additional RD/RA-Related Investigations (August 15, 2005).*

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue routine process sampling at Buildings 64G and/or 64T.
- Initiate additional sampling activities proposed in GE's October 22, 2004 Interim Letter Report (approved by EPA on August 2, 2005).*
- Continue development of Final Completion Report for City Recreational Area.*
- Initiate and complete the additional RD/RA-related sampling activities proposed in GE's August 15, 2005 Addendum to Interim Letter Report.*

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval of the October 22, 2004 Interim Letter Report – Proposed Additional RD/RA-Related Investigations (August 2, 2005).*

EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Building 64T Filter Cake Sampling	H5-64T-01	8/3/05	Solid	SGS	PCB	8/15/05

TABLE 2-2 PCB DATA RECEIVED DURING AUGUST 2005

BUILDING 64T FILTER CAKE SAMPLING EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample ID	Date Collected	Aroclor-1016, -1221, -1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
H5-64T-01	8/3/2005	ND(1.2)	10	5.0	15

Notes:

- 1. Sample was collected by General Electric Company and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

ITEM 3 PLANT AREA EAST STREET AREA 2-NORTH (GECD140) AUGUST 2005

a. Activities Undertaken/Completed

- Completed equipment draining and dismantling activities at Buildings 1, 2, and 3.
- Conducted sampling of oil and/or other liquids from equipment in Buildings 1, 2, and 3, as identified in Table 3-1.
- Completed demolition of Buildings 4, 5, and 6.
- Continued asbestos removal activities at Buildings 15, 15A, 15B, and 15W.
- Initiated asbestos removal activities at Buildings 1, 2, 3, and 3B.
- Conducted air monitoring for PCBs and particulate matter as identified in Table 3-1.
- Distributed a Request for Proposal (RFP) to prospective contractors for the performance of demolition and site restoration activities at Buildings 15, 15A, 15B, and 15W (August 5, 2005).
- Collected and tankered approximately 100 gallons of water from the Building 14H water main cutoff, and 5,000 gallons from Building 9 (groundwater) to Building 64G for treatment.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted a letter to EPA and accompanying figure notifying EPA of the approximate PCB and particulate ambient air monitoring station locations at Buildings 15, 15A, 15B, and 15W (August 15, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Complete site restoration activities at Buildings 4, 5, and 6.
- Continue asbestos removal activities at Buildings 15, 15A, 15B, and 15W.
- Initiate equipment/liquids removal activities at Buildings 15, 15A, 15B, and 15W.

ITEM 3 (cont'd) PLANT AREA EAST STREET AREA 2-NORTH (GECD140) AUGUST 2005

d. Upcoming Scheduled and Anticipated Activities (next six weeks) (cont'd)

- Continue asbestos removal activities at Buildings 1, 2, 3, and 3B.
- Award contract for the demolition of Buildings 15, 15A, 15B, and 15W.
- Initiate preparation of, and potentially distribute, an RFP to prospective contractors for the performance of demolition and site restoration activities at Buildings 1, 2, 3, and 3B.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

Received EPA approval to continue to provide verbal notification, followed by written notification, of all TSCA exceedances encountered during the equipment draining activities at Buildings 1, 2, and 3.

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Receive
Buildings 1, 2, 3 Oil Sampling	71173	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71374	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71375	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71376	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71377	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71379	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71380	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71381	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71482	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71483	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71484	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71485	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71486	8/1/05	Oil	SGS	РСВ	
Buildings 1, 2, 3 Oil Sampling	71487	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71488	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71489	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	715100	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	715100	8/2/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	715101	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	715102	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	715103	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	715104	8/1/05	Oil	SGS	PCB	
				SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71591	8/3/05	Oil		PCB	
Buildings 1, 2, 3 Oil Sampling	71592	8/2/05	Oil	SGS		
Buildings 1, 2, 3 Oil Sampling	71593	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71594	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71595	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71596	8/2/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71597	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71598	8/2/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	71599	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718105	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718106	8/2/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718107-1	8/2/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718107-2	8/2/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718108	8/10/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718109	8/10/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718110	8/10/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718111	8/2/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718112	8/2/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718113	8/10/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718114	8/1/05	Oil	SGS	РСВ	
Buildings 1, 2, 3 Oil Sampling	718115-1	8/2/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718115-2	8/2/05	Oil	SGS	PCB	

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Buildings 1, 2, 3 Oil Sampling	718116	8/2/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718118	8/1/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718118	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	718119	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	719120	8/5/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	719121	8/5/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720122	8/5/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720123	8/5/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720124	8/5/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720125	8/5/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720126	8/10/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720127	8/5/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720128	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720129	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720130	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720131	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720132	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720133	8/10/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720134	8/10/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720135	8/10/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	720137	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	721138	8/10/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	721139	8/10/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	721140	8/10/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	721141	8/10/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	722142	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	722143	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	723144	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	723145	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	723146	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	725147	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	725148	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	725149	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	725150	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	725151	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	725152	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	725153	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	725154	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	725155	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	725156	8/4/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	725157	8/5/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	726158	8/5/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	726159	8/5/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	726160	8/5/05	Oil	SGS	PCB	

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Buildings 1, 2, 3 Oil Sampling	726161	8/5/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	726162	8/10/05	Oil	SGS	PCB, VOC, SVOC, RCRA Metals, Flashpoint	8/24/05
Buildings 1, 2, 3 Oil Sampling	C1060-OIL-1	8/9/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	C1366-1	8/3/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	F1734-1	8/22/05	Oil/Liquid	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	F1734-2	8/22/05	Oil/Liquid	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	F1734-3	8/22/05	Oil/Liquid	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	F1734-4	8/22/05	Oil/Liquid	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	F1735-1	8/22/05	Water/Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	F1735-2	8/22/05	Water/Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	F1735-3	8/22/05	Water/Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	72605-LQ-1	8/25/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	72705-OIL-1	8/25/05	Oil	SGS	PCB, VOC, SVOC, Metals	
Buildings 1, 2, 3 Oil Sampling	728168-OIL-1	8/24/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	729170-OIL-1	8/25/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	801171-OIL-1	8/25/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	802173-OIL-1	8/25/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	802174-OIL-1	8/25/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	802175-OIL-1	8/25/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	80402-OIL-1	8/25/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	810176-OIL-1	8/24/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	816178-OIL-1	8/24/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	C0333-C0343-OIL-1	8/24/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	C1067-OIL-1	8/25/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	C1074-OIL-1	8/25/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	C1091-OIL-1	8/25/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	C1365-OIL-1	8/24/05	Oil	SGS	PCB	
Buildings 1, 2, 3 Oil Sampling	C1370-OIL-1	8/24/05	Oil	SGS	РСВ	
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Background Location	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Background Location	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Background Location	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling Ambient Air Particulate Matter Sampling	Background Location	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\08-05 CD Monthly\Tracking Logs\Tracking.xls TABLE 3-1

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Background Location	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Background Location	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Background Location	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
PCB Ambient Air Sampling	S2 - Woodlawn Avenue	8/25-26/05	Air	Berkshire Environmental	PCB	9/6/05
PCB Ambient Air Sampling	M2 - South of Bldg. 5	8/25-26/05	Air	Berkshire Environmental	PCB	9/6/05
PCB Ambient Air Sampling	MC3 - Near Bldg. 16 & 19	8/25-26/05	Air	Berkshire Environmental	PCB	9/6/05
PCB Ambient Air Sampling	MC3-CO-Colocated - Near Bldgs. 16 & 19	8/25-26/05	Air	Berkshire Environmental	PCB	9/6/05
PCB Ambient Air Sampling	BK3-Background - East of Building 9B	8/25-26/05	Air	Berkshire Environmental	PCB	9/6/05

TABLE 3-2 DATA RECEIVED DURING AUGUST 2005

BUILDINGS 1, 2, 3 OIL SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

	Sample ID:	726162
Parameter	Date Collected:	08/10/05
Volatile Organics		
None Detected		
PCBs-Unfiltered		
Aroclor-1254		0.000054 J
Aroclor-1260		0.000069
Total PCBs		0.000123
Semivolatile Orga	nics	
None Detected		
Inorganics-Unfilte	red	
Barium		0.0170
Mercury	`	0.00210
Conventional Para	ameters	
Flash Point (°F)		>180

Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, semivolatiles, metals, and flash point.
- 2. Only detected constituents are summarized.
- -- Indicates that all constituents for the parameter group were not detected.

Data Qualifiers:

Organics (volatiles, PCBs, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

TABLE 3-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING AUGUST 2005

BUILDINGS 4, 5, AND 6 DEMOLITION ACTIVITIES EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
08/01/05 ¹	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	NA	NA	NA	NA
08/02/05	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5	0.022* 0.047*	0.013*	11:45 11:45	WNW
08/03/05	S2 - Woodlawn Avenue MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5	0.050 0.024* 0.037*	0.032*	11:45 11:30 11:30	WNW
08/04/05	S2 - Woodlawn Avenue MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	0.050 0.029* 0.041* 0.060	0.051*	11:30 11:15 11:00 11:00	Variable
08/05/05 ²	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	NA NA	NA	NA NA	NA
08/08/05	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	0.052* 0.070* 0.097	0.064*	10:45 10:30 11:15	SSW
08/09/05	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	0.037* 0.051* 0.070	0.055*	11:45 11:45 12:00	SSW
08/10/05	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	0.030* 0.047* 0.058	0.011*	11:15 11:15 11:15	Variable, SSW
08/11/05	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	0.035* 0.066* 0.059	0.069*	11:00 11:00 11:00	WNW
08/12/05 ²	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	NA	NA	NA	NA
08/15/05 - 08/19/05 ²	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	NA	NA	NA	NA
08/22/05	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	0.009* 0.024* 0.013	0.032*	10:00 10:00 10:30	NNW
08/23/05	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	0.009* 0.017* 0.009	0.033*	11:45 11:45 11:45	WNW
08/24/05	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	0.012* 0.016* 0.012	0.006*	12:00 12:00 12:00	NNW
08/25/05	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	0.010* 0.019* 0.024	0.027*	10:30 10:15 11:00	NNE
08/26/05 ²	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	NA	NA	NA	NA
08/29/05 ¹	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	NA	NA	NA	NA
08/30/05 ¹	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	NA	NA	NA	NA

TABLE 3-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING AUGUST 2005

BUILDINGS 4, 5, AND 6 DEMOLITION ACTIVITIES EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
08/31/05 ¹	MC3 - Near Bldg. 16 & 19 M2 - South of Bldg. 5 S2 - Woodlawn Avenue	NA	NA	NA	NA
Notification Level	SE WOOddwii / Wolldo	0.120			

Notes:

NA - Not Available.

Background monitoring location east of Building 9B, between Building 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

^{*} Measured with DR-2000 or DR-4000. All others measured with pDR-1000.

¹ Sampling was not performed due to precipitation/threat of precipitation.

 $^{^{\}rm 2}$ Sampling was not performed due to lack of site activity.

TABLE 3-4 AMBIENT AIR PCB DATA RECEIVED DURING AUGUST 2005

BUILDINGS 4, 5, AND 6 DEMOLITION ACTIVITIES EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	S2-Woodlawn Avenue (µg/m3)		MC3-Near Bldgs. 16 & 19 (μg/m3)	MC3-CO-Colocated - near Bldgs. 16 & 19 (μg/m3)	BK3-Background - East of Building 9B (µg/m3)
08/25 - 08/26/05	0.0046	0.0049	0.0034	0.0014 ¹	0.0018
Notification Level	0.05	0.05	0.05	0.05	0.05

¹ Surrogate spike recoveries associated with this sample exhibited recoveries outside of the control limits.

ITEM 4 PLANT AREA EAST STREET AREA 1-NORTH (GECD130) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Conducted oil sampling, as identified in Table 4-1.
- Executed ERE for GE-owned properties (August 22, 2005).
- Submitted executed ERE for GE-owned properties, together with survey plans, final title commitment, and releases and terminations from easement holders, to EPA and MDEP (August 24, 2005).
- Discussed draft of Final Completion Report with EPA.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Participate in pre-certification inspection (on September 7, 2005).
- Following EPA approval and MDEP acceptance of ERE, record ERE.
- Submit Final Completion Report after ERE is recorded and pre-certification inspection is held.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Sample						Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
East St. Area 1 North and South Oil Sampling	Bldg.78-081705-OIL-C1	8/17/05	Oil	SGS	PCB, VOC, SVOC, RCRA Metals, Flashpoint	8/25/05

TABLE 4-2 DATA RECEIVED DURING AUGUST 2005

OIL SAMPLING EAST STREET AREA 1 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	BLDG.78-081705-OIL-C1 08/17/05
Volatile Organic		00/11/03
None Detected		
PCBs	<u>'</u>	
Aroclor-1260		200
Total PCBs		200
Semivolatile Or	ganics	
None Detected		
Inorganics		
Arsenic		0.380 B
Barium		3.50
Chromium		1.80
Lead		0.490 B
Selenium		2.40 B
Conventional Page 1	arameters	
Flash Point (°F)		>180

Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, semivolatiles, metals, and flash point.
- Only detected constituents are summarized.
- -- Indicates that all constituents for the parameter group were not detected.

Data Qualifiers:

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitiation limit (PQL).

ITEM 5 PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

- Initiated construction of the baseliner system for the third cell of the Building 71 OPCA, including performance of testing as identified in Table 5-1.
- Conducted ambient air monitoring for particulates and PCBs.
- Continued transfer of leachate from Building 71 OPCA to Building 64G for treatment. The total amount transferred in August 2005 was 55,000 gallons (see Table 5-4).
- Transferred to the OPCAs soils and sediments from removal activities at the 1½ Mile Reach and 1½ Mile floodplain properties; demolition materials from the 40s Complex and Buildings 4, 5, and 6; excavated materials from Newell Street Area I (Moldmaster property) and Newell Street Area II removal activities; and various facility-related materials.
- Initiated construction of the Building 71 OPCA final cover system for Cells 1 and 2.
- Conducted direct shear interface friction testing of the cover system components for a portion of the Building 71 OPCA final cover. A copy of the technical results is provided as Attachment E to this report consistent with the August 12, 2005 letter to EPA.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted revised technical specifications and drawings for the proposed 2005 Building 71 OPCA cover construction activities (August 12, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue transfer to the OPCAs of building demolition debris from various ongoing demolition projects, excavated material from removal activities in the 1½ Mile Reach and 1½ Mile floodplain properties, and excavated materials from Newell Street Area II removal activities.

ITEM 5 (cont'd) PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) AUGUST 2005

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval of the proposed 2005 Building 71 OPCA cover construction activities (August 25, 2005).

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Cell 3 Construction 71 OPCA	1645018-A	8/9/05	Solid	Geotesting	Shear Testing	
Cell 3 Construction 71 OPCA	1645018-B	8/9/05	Solid	Geotesting	Ply Adhesion & Transmissivity Testing	
Cell 3 Construction 71 OPCA	7633	8/9/05	Solid	Geotesting	Shear Testing	
Cell 3 Construction 71 OPCA	GenFill-A	8/9/05	Solid	Geotesting	Shear Testing	
Cell 3 Construction 71 OPCA	GenFill-B	8/9/05	Solid	Geotesting	Shear Testing	
Cell 3 Construction 71 OPCA	GT-6-05-0795-5A	8/9/05	Solid	Geotesting	Shear Testing	
Cell 3 Construction 71 OPCA	GT-6-05-0795-5B	8/9/05	Solid	Geotesting	Conformance Testing	
Cell 3 Construction 71 OPCA	Subgrade -A	8/9/05	Solid	Geotesting	Shear Testing	
Cell 3 Construction 71 OPCA	Subgrade-B	8/9/05	Solid	Geotesting	Shear Testing	
Ambient Air Particulate Matter Sampling	North of OPCAs	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Background Location	8/2/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Background Location	8/3/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Background Location	8/4/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/5/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/5/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/5/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/5/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/5/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	Background Location	8/5/05	Air	Berkshire Environmental	Particulate Matter	8/9/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Background Location	8/8/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Ambient Air Particulate Matter Sampling	Background Location	8/9/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Background Location	8/10/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Background Location	8/11/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/12/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/12/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/12/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/12/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/12/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Background Location	8/12/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/15/05	Air	Berkshire Environmental	Particulate Matter	8/18/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/15/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/15/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/15/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/15/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Background Location	8/15/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/16/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/16/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/16/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/16/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/16/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Background Location	8/16/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/17/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/17/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/17/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/17/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/17/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Background Location	8/17/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/18/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/18/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/18/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/18/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/18/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Background Location	8/18/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/19/05	Air	Berkshire Environmental	Particulate Matter	8/24/05

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/19/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/19/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/19/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/19/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	Background Location	8/19/05	Air	Berkshire Environmental	Particulate Matter	8/24/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/22/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/23/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/24/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/25/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	North of OPCAs	8/26/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	8/26/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	8/26/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	8/26/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	West of OPCAs	8/26/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
Ambient Air Particulate Matter Sampling	Background Location	8/26/05	Air	Berkshire Environmental	Particulate Matter	8/31/05
PCB Ambient Air Sampling	Southwest of OPCAs	08/2-3/05	Air	Berkshire Environmental	PCB	8/11/05
PCB Ambient Air Sampling	Southwest of OPCAs Co-located	08/2-3/05	Air	Berkshire Environmental	PCB	8/11/05
PCB Ambient Air Sampling	West of OPCAs	08/2-3/05	Air	Berkshire Environmental	PCB	8/11/05
PCB Ambient Air Sampling	North of OPCAs	08/2-3/05	Air	Berkshire Environmental	PCB	8/11/05
PCB Ambient Air Sampling	Southeast of OPCAs	08/2-3/05	Air	Berkshire Environmental	PCB	8/11/05
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	08/2-3/05	Air	Berkshire Environmental	PCB	8/11/05
PCB Ambient Air Sampling	Background East of Building 9B	08/2-3/05	Air	Berkshire Environmental	PCB	8/11/05
	3				-	-

TABLE 5-2 AMBIENT AIR PCB DATA RECEIVED DURING AUGUST 2005

PCB AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Southwest of OPCAs (μg/m³)	Southwest of OPCAs colocated (µg/m³)	West of OPCAs (μg/m³)	North of OPCAs (µg/m³)	Southeast of OPCAs (µg/m³)	Pittsfield Generating (PGE) (µg/m³)	Background East of Building 9B (μg/m³)
08/02 - 08/03/05	0.0037	0.0030	0.0029	0.0010	0.0097	0.0050 ¹	0.0012
Notification Level	0.05	0.05	0.05	0.05	0.05	0.05	0.05

¹ Surrogate spike recoveries associated with this sample exhibited recoveries outside of the control limits.

TABLE 5-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING AUGUST 2005

PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
08/01/05 ¹	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
08/02/05	North of OPCAs	0.043	0.013*	11:45	WNW
	Pittsfield Generating Co.	0.035*		11:45	
	Southeast of OPCAs	0.040		11:45	
	Southwest of OPCAs	0.026*		11:45	
	West of OPCAs	0.025		11:45	
08/03/05	North of OPCAs	0.049	0.032*	11:30	WNW
	Pittsfield Generating Co.	0.033*		11:30	
	Southeast of OPCAs	0.055		9:45 ²	
	Southwest of OPCAs	0.034*		11:30	
	West of OPCAs	0.026		11:30	
08/04/05 ³	North of OPCAs	0.050	0.051*	12:00	Variable
	Pittsfield Generating Co.	0.035*		11:30	
	Southeast of OPCAs	0.052		8:45 ⁴	
	Southwest of OPCAs	0.066*		11:15	
	West of OPCAs	0.032		12:00	
08/05/05 ³	North of OPCAs	0.107	0.111*	10:45	WNW
	Pittsfield Generating Co.	0.051*		10:15	
	Southeast of OPCAs	0.086		10:45	
	Southwest of OPCAs	0.106*		10:00	
	West of OPCAs	0.063		10:45	
08/08/05	North of OPCAs	NA ⁵	0.064*	NA ⁵	SSW
	Pittsfield Generating Co.	0.050*		10:45	
	Southeast of OPCAs	0.068		10:45	
	Southwest of OPCAs	0.119*		10:15	
	West of OPCAs	0.082		7:45	
08/09/05 ³	North of OPCAs	NA ⁵	0.055*	NA ⁵	SSW
	Pittsfield Generating Co.	0.040*		11:00	
	Southeast of OPCAs	0.053		11:15	
	Southwest of OPCAs	0.087*		10:45	
	West of OPCAs	0.069		11:15	
08/10/05	North of OPCAs	NA ⁵	0.011*	NA ⁵	Variable, SSW
	Pittsfield Generating Co.	0.034*		11:15	,
	Southeast of OPCAs	0.043		11:15	
	Southwest of OPCAs	0.059*		9:00 ⁶	
	West of OPCAs	0.046		8:45 ⁶	
08/11/05	North of OPCAs	0.022	0.069*	11:15	WNW
	Pittsfield Generating Co.	0.035*		11:00	
	Southeast of OPCAs	0.068		11:00	
	Southwest of OPCAs	0.065*		10:45	
	West of OPCAs	0.059		11:15	
08/12/05	North of OPCAs	0.023	0.031*	10:45	Variable, SSW
332.00	Pittsfield Generating Co.	0.029*	3.301	10:30	
	Southeast of OPCAs	0.044		10:00	
	Southwest of OPCAs	0.044*		10:45	
	West of OPCAs	0.045		10:45	
	WOOLDI OF OAS	0.040	1	10.70	l

TABLE 5-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING AUGUST 2005

PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
08/15/05	North of OPCAs	0.018	0.044*	11:00	Variable
	Pittsfield Generating Co.	0.020*		11:00	
	Southeast of OPCAs	0.018		11:00	
	Southwest of OPCAs	0.025*		10:45	
	West of OPCAs	0.020		11:15	
08/16/05	North of OPCAs	0.030	0.024*	11:00	Variable
	Pittsfield Generating Co.	0.021*		11:00	
	Southeast of OPCAs	0.030		11:00	
	Southwest of OPCAs	0.034*		11:00	
	West of OPCAs	0.027		11:00	
08/17/05	North of OPCAs	0.039	0.017*	11:00	WNW
	Pittsfield Generating Co.	0.025*		11:15	
	Southeast of OPCAs	0.038		11:00	
	Southwest of OPCAs	0.022*		11:00	
	West of OPCAs	0.025		11:00	
08/18/05	North of OPCAs	0.033	0.058*	10:45	Variable
	Pittsfield Generating Co.	0.013*		11:00	
	Southeast of OPCAs	0.044		11:00	
	Southwest of OPCAs	0.014*		10:45	
	West of OPCAs	0.012		11:00	
08/19/05	North of OPCAs	0.026	0.023*	9:45 ⁷	Variable
	Pittsfield Generating Co.	0.023*		10:00 ⁷	
	Southeast of OPCAs	0.038		9:45 ⁷	
	Southwest of OPCAs	0.023*		10:00 ⁷	
	West of OPCAs	0.017		9:45 ⁷	
08/22/05	North of OPCAs	0.065	0.032*	10:30	NNW
	Pittsfield Generating Co.	0.017*		10:15	
	Southeast of OPCAs	0.081		10:30	
	Southwest of OPCAs	0.012*		10:00	
	West of OPCAs	0.014		10:30	
08/23/05	North of OPCAs	0.005	0.033*	10:45	WNW
	Pittsfield Generating Co.	0.019*		11:00	
	Southeast of OPCAs	0.052		11:00	
	Southwest of OPCAs	0.012*		11:00	
	West of OPCAs	0.012		11:00	
08/24/05	North of OPCAs	0.024	0.006*	11:30	NNW
	Pittsfield Generating Co.	0.018*		11:45	
	Southeast of OPCAs	0.046 ⁸		10:45 ⁸	
	Southwest of OPCAs	0.008*		11:45	
	West of OPCAs	0.040		11:45	
08/25/05	North of OPCAs	0.030	0.027*	11:15	NNE
	Pittsfield Generating Co.	0.017*		11:30	
	Southeast of OPCAs	0.053 ⁸		10:00 ⁸	
	Southwest of OPCAs	0.010*		10:45	
	West of OPCAs	0.054		11:15	
08/26/05	North of OPCAs	0.020	0.044*	10:30	Variable
	Pittsfield Generating Co.	0.015*		10:30	
	Southeast of OPCAs	0.045		10:30	
	Southwest of OPCAs	0.014*		10:15	
	22221110000010101010	0.017	İ	10:30	

TABLE 5-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING AUGUST 2005

PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m³)	Background Site Concentration (mg/m³)	Average Period (Hours:Min)	Predominant Wind Direction
08/29/05 ¹	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
08/30/05 ¹	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
08/31/05 ¹	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
Notification Level	-	0.120			

Notes:

NA - Not Available.

Background monitoring location east of Building 9B, between Building 9B and New York Avenue.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

^{*} Measured with DR-2000 or DR-4000. All others measured with pDR-1000.

¹ Sampling was not performed due to precipitation/threat of precipitation.

² Sampling data were modified to delete invalid recordings due to interference from an insect.

³ Site activity limited to landfill capping and cell construction. Sampling performed at request of BBL.

⁴ Sampling period was shortened due to equipment re-calibration.

⁵ Data not valid due to equipment malfunction. The data from 8/8 and 8/9 appeared high and inconsistent with other values around the site, so a duplicate pDR-1000 was placed at the OPCA N site during the day on 8/10. The duplicate monitor recorded values substantially lower than the values indicated by the original, and more consistent with data being recorded at other locations. The original faulty pDR was removed and sent in for repairs.

⁶ Sampling period was shortened due to technician error.

⁷ Sampling period was shortened due to precipitation/threat of precipitation.

⁸ Sampling data were modified to delete invalid recordings in the morning.

TABLE 5-4

BUILDING 71 CONSOLIDATION AREA LEACHATE TRANSFER SUMMARY PLANT AREA - HILL 78 & BUILDING 71 CONSOLIDATION AREAS

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

Month / Year	Total Volume of Leachate Transferred (Gallons)			
August 2004	214,000			
September 2004	230,000			
October 2004	177,000			
November 2004	138,000			
December 2004	146,000			
January 2005	136,000			
February 2005	116,500			
March 2005	174,500			
April 2005	192,000			
May 2005	89,500			
June 2005	130,000			
July 2005	127,500			
August 2005	55,000			

Leachate is transferred from the Building 71 On-Plant Consolidation Area to Building 64G for treatment.

ITEM 6 PLANT AREA HILL 78 AREA - REMAINDER (GECD160 AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Continued compilation and validation of pre-design investigation analytical results for Pre-Design Investigation Report.
- Conducted preliminary evaluation of City of Pittsfield storm drains and sewer lines extending beneath Hill 78. Results will be included in Pre-Design Investigation Report.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Submit Pre-Design Investigation Report (due September 8, 2005).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

ITEM 7 PLANT AREA UNKAMET BROOK AREA (GECD170) AUGUST 2005

a. Activities Undertaken/Completed

- Completed demolition of GE Advanced Materials Plant Site 1 buildings.
- Completed off-site disposal of waste materials associated with demolition of GE Advanced Materials Plant Site 1 buildings.
- Conducted shear wipe sampling (see Table 7-1).
- Collected and tankered approximately 2,500 gallons of water from the Building 119W oil/water separator cleanout to Building 64G for treatment.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted letter to EPA summarizing investigations conducted and data obtained at Parcel L12-1-2 and adjacent portion of Merrill Road easement, which were previously and are again in use as a gasoline service station, and proposing to exclude that property from the Unkamet Brook Area under the CD and from pre-design investigations under the CD (August 15, 2005).*

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Submit Pre-Design Investigation Report (due September 7, 2005).*

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

TABLE 7-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2005

UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
GE Advanced Materials SABRE Shear Wipe Sampling	GEAM-SHEAR-W1	8/23/05	Wipe	SGS	PCB	8/26/05
GE Advanced Materials SABRE Shear Wipe Sampling	GEAM-SHEAR-W2	8/23/05	Wipe	SGS	PCB	8/26/05
GE Advanced Materials SABRE Shear Wipe Sampling	GEAM-SHEAR-W3	8/23/05	Wipe	SGS	PCB	8/26/05
GE Advanced Materials SABRE Shear Wipe Sampling	GEAM-SHEAR-W4	8/23/05	Wipe	SGS	PCB	8/26/05
GE Advanced Materials SABRE Shear Wipe Sampling	GEAM-SHEAR-W5	8/23/05	Wipe	SGS	PCB	8/26/05
GE Advanced Materials SABRE Shear Wipe Sampling	GEAM-SHEAR-W6	8/23/05	Wipe	SGS	PCB	8/26/05
GE Advanced Materials SABRE Shear Wipe Sampling	GEAM-SHEAR-W7	8/23/05	Wipe	SGS	PCB	8/26/05
GE Advanced Materials SABRE Shear Wipe Sampling	GEAM-SHEAR-W8	8/23/05	Wipe	SGS	PCB	8/26/05
GE Advanced Materials SABRE Shear Wipe Sampling	GEAM-SHEAR-W9	8/23/05	Wipe	SGS	PCB	8/26/05

TABLE 7-2 PCB DATA RECEIVED DURING AUGUST 2005

GE ADVANCED MATERIALS SABRE SHEAR WIPE SAMPLING UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in mg/100cm²)

	Date								
Sample ID	Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
GEAM-SHEAR-W1	8/23/2005	ND(1.0)	ND(1.0)						
GEAM-SHEAR-W2	8/23/2005	ND(1.0)	ND(1.0)						
GEAM-SHEAR-W3	8/23/2005	ND(1.0)	ND(1.0)						
GEAM-SHEAR-W4	8/23/2005	ND(1.0)	ND(1.0)						
GEAM-SHEAR-W5	8/23/2005	ND(1.0)	ND(1.0)						
GEAM-SHEAR-W6	8/23/2005	ND(1.0)	ND(1.0)						
GEAM-SHEAR-W7	8/23/2005	ND(1.0)	ND(1.0)						
GEAM-SHEAR-W8	8/23/2005	ND(1.0)	ND(1.0)						
GEAM-SHEAR-W9	8/23/2005	ND(1.0)	ND(1.0)						

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

ITEM 8 FORMER OXBOW AREAS A & C (GECD410) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

None

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Prepare an addendum to the Final RD/RA Work Plan and submit to EPA (due to EPA on or before September 27, 2005).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

Received EPA's conditional approval letter for Final RD/RA Work Plan (August 30, 2005).

ITEM 9 LYMAN STREET AREA (GECD430) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Continued preparation of Final RD/RA Work Plan.

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Submit Final RD/RA Work Plan (due to EPA on or before September 2, 2005).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

ITEM 10 NEWELL STREET AREA I (GECD440) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Initiated remediation on Parcel J9-23-13.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Record ERE and Notice of Completion for Parcel J9-23-24 following receipt of EPA approval and MDEP acceptance of same.
- Initiate remediation of Parcels J9-23-19, -20, and -21 following resolution of issues with property owner.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

ITEM 11 NEWELL STREET AREA II (GECD450) AUGUST 2005

a. Activities Undertaken/Completed

- Continued soil remediation.*
- During soil removal activities, encountered drums in subsurface soil at Parcel J9-23-8, some of which were crushed or in pieces and some of which appeared to be intact or partially intact. In response, GE: (1) properly removed the drums; (2) sent the crushed drums and drums containing solid material to GE's OPCAs for disposition there; and (3) overpacked the intact or partially intact drums that contained liquid material, sent those drums to GE's on-plant TSCA storage area, and implemented a program to characterize their contents to facilitate the appropriate off-site disposition of these drums.
- Conducted auger wipe sampling and topsoil sampling, as identified in Table 11-1.

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted analytical results for proposed backfill source (August 15, 2005).*

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Submit analytical results for proposed topsoil source once received from the laboratory.*
- Based on sampling results for liquid contents of drums from Parcel J9-23-8 that contained liquid, arrange for appropriate off-site disposal of those drums.
- Submit plan for geophysical survey to identify other areas within Parcel J9-23-8 where buried drums may potentially be present. Based on results, discuss further activities with EPA.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

Issues relating to drums at Parcel J9-23-8 are under discussion with EPA.

f. Proposed/Approved Work Plan Modifications

TABLE 11-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2005

NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
SJB Auger Wipe Sampling	SJBA-Wipe-1	8/16/05	Wipe	SGS	PCB	8/18/05
SJB Auger Wipe Sampling	SJBA-Wipe-1-R1	8/25/05	Wipe	SGS	PCB	8/30/05
SJB Auger Wipe Sampling	SJBA-Wipe-2	8/16/05	Wipe	SGS	PCB	8/18/05
SJB Auger Wipe Sampling	SJBA-Wipe-2-R1	8/25/05	Wipe	SGS	PCB	8/30/05
SJB Auger Wipe Sampling	SJBA-Wipe-3	8/16/05	Wipe	SGS	PCB	8/18/05
SJB Auger Wipe Sampling	SJBA-Wipe-3-R1	8/25/05	Wipe	SGS	PCB	8/30/05
Top Soil Sampling	NSAII-TOPSOIL-1	8/24/05	Soil	SGS	PCB, VOC, SVOC, Metals	

TABLE 11-2 DATA RECEIVED DURING AUGUST 2005

SJB AUGER WIPE SAMPLING NEWELL STREET AREA II GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in mg/100cm²)

Sample ID	Date Collected	Aroclor-1016, -1221, -1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
SJBA-WIPE-1	8/16/2005	ND(1.0)	28	14	42
SJBA-WIPE-1-R1	8/25/2005	ND(1.0)	4.3	ND(1.0)	4.3
SJBA-WIPE-2	8/16/2005	ND(1.0)	4.7	1.5	6.2
SJBA-WIPE-2-R1	8/25/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
SJBA-WIPE-3	8/16/2005	ND(1.0)	21	5.1	26.1
SJBA-WIPE-3-R1	8/25/2005	ND(1.0)	14	ND(1.0)	14

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

ITEM 12 FORMER OXBOW AREAS J & K (GECD420) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

Continued preparation of Final RD/RA Work Plan.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Submit Final RD/RA Work Plan (due to EPA on or before September 14, 2005).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

ITEM 13 HOUSATONIC RIVER AREA UPPER ½ MILE REACH (GECD800) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Conducted fall 2005 restored bank vegetation inspection and 2005 aquatic habitat structures inspection.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

Submitted draft proposal for modification of restored bank vegetation monitoring program.

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Submit draft trip reports detailing results of fall 2005 restored bank vegetation inspection and 2005 aquatic habitat structures inspection.
- Submit revised draft proposal for modification of restored bank vegetation monitoring program incorporating Trustee comments.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

- Seepage meter monitoring has not occurred due to increased water levels. EPA and GE have agreed to postpone installation of seepage meters until after the completion of EPA activities in the 1½ Mile Reach.
- Issues relating to total organic carbon (TOC) content in isolation layer remain unresolved. EPA and GE have agreed that GE's report on those issues will be deferred until after the seepage meter data are available. The Final Completion Report for Upper ½ Mile Reach Removal Action will be submitted following resolution of those issues.

f. Proposed/Approved Work Plan Modifications

ITEM 14 HOUSATONIC RIVER AREA 1½-MILE REACH (GECD820) AUGUST 2005

(Note: This item is limited to activities conducted by GE and does not include EPA's work on the 1½-Mile Reach Removal Action)

a. Activities Undertaken/Completed

On August 30, 2005, BBL (on GE's behalf) performed a round of water column monitoring at nine locations along the Housatonic River between Coltsville, MA and Great Barrington, MA. Two of these locations are situated in the 1½-Mile Reach: Lyman Street Bridge (Location 4) and Pomeroy Avenue Bridge (Location 6A). A composite grab sample was collected at each location and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a (see Table 14-1). (The other seven locations are discussed under Item 15 below.)

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue Housatonic River monthly water column monitoring.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

TABLE 14-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2005

HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Monthly Water Column Sampling	LOCATION-4	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	LOCATION-4	7/28/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/12/05
Monthly Water Column Sampling	LOCATION-6A	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	

TABLE 14-2 SAMPLE DATA RECEIVED DURING AUGUST 2005

MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

		Date	Aroclor-1016, -1221,							
Sample ID	Location	Collected	-1232, -1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs	POC	TSS	Chlorophyll (a)
LOCATION-4	Lyman Street Bridge	07/28/05	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.621	3.60	0.0034

Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc. and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).
- 2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

ITEM 15 HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) AUGUST 2005

a. Activities Undertaken/Completed

- On August 30, 2005, BBL (on GE's behalf) performed a round of water column monitoring at nine locations along the Housatonic River between Coltsville and Great Barrington, MA. Two locations are situated in the 1½-Mile Reach of the Housatonic River and were discussed in Item 14. Of the remaining seven locations, two are located upstream of the 1½-Mile Reach: Hubbard Avenue Bridge (Location 1) and Newell Street Bridge (Location 2). The five remaining locations are situated in the Rest of the River: Holmes Road Bridge (Location 7); New Lenox Road Bridge (Location 9); Woods Pond Headwaters (Location 10); Schweitzer Bridge (Location 12); and Division Street Bridge (Location 13). Sampling activities were performed at all these locations on August 30, 2005 from downstream to upstream. Composite grab samples were collected at each location sampled and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a (see Table 15-1).
- Continued work on development of Interim Media Protection Goals (IMPG) Proposal.*
- Performed routine maintenance activities at Woods Pond Dam.*
- Continued work on repairs to gate stem at Rising Pond Dam.*
- In conjunction with EPA, collected cross-section (geometry) data for numerous transects located on the Housatonic River between Woods Pond Dam and Rising Pond Dam. These data will be used to expand EPA's current model of the Housatonic River from Woods Pond Dam downstream to Rising Pond Dam.*

b. Sampling/Test Results

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue Housatonic River monthly water column monitoring.
- Submit IMPG Proposal (due September 6, 2005).*

ITEM 15 (cont'd) HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) AUGUST 2005

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u> (cont'd)

- Submit report from Academy of Natural Sciences of Philadelphia (on GE's behalf) on 2004 fish sampling and 2005 benthic insect sampling in Connecticut portion of River.
- Complete additional routine maintenance activities at Woods Pond Dam.*
- Continue work on repairs to gate stem at Rising Pond Dam.*
- Continue work with EPA to collect cross-section (geometry) data for transects located on the Housatonic River between Woods Pond Dam and Rising Pond Dam, for use in expanding EPA's current model of the Housatonic River from Woods Pond Dam downstream to Rising Pond Dam.* (The data from this work will be reported in the monthly status report for September 2005.)

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

TABLE 15-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2005

HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Monthly Water Column Sampling	HR-D1 (LOCATION-12)	7/28/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/12/05
Monthly Water Column Sampling	HR-D1 (LOCATION-12)	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	LOCATION-1	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	LOCATION-1	7/28/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/12/05
Monthly Water Column Sampling	LOCATION-10	7/28/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/12/05
Monthly Water Column Sampling	LOCATION-10	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	LOCATION-12	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	LOCATION-12	7/28/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/12/05
Monthly Water Column Sampling	LOCATION-13	7/28/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/12/05
Monthly Water Column Sampling	LOCATION-13	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	LOCATION-2	7/28/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/12/05
Monthly Water Column Sampling	LOCATION-2	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	LOCATION-7	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	LOCATION-7	7/28/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/12/05
Monthly Water Column Sampling	LOCATION-9	8/30/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	LOCATION-9	7/28/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	8/12/05

Note:

1. Field duplicate sample locations are presented in parenthesis.

TABLE 15-2 SAMPLE DATA RECEIVED DURING AUGUST 2005

MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

		Date	Aroclor-1016, -1221,							
Sample ID	Location	Collected	-1232, -1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs	POC	TSS	Chlorophyll (a)
LOCATION-1	Hubbard Avenue Bridge	7/28/2005	ND(0.0000230)	ND(0.0000230)	ND(0.0000230)	ND(0.0000230)	ND(0.0000230)	0.134	3.94	0.0015
LOCATION-2	Newell Street Bridge	7/28/2005	ND(0.0000240)	ND(0.0000240)	ND(0.0000240)	ND(0.0000240)	ND(0.0000240)	0.456	3.35	0.0064
LOCATION-7	Holmes Road Bridge	7/28/2005	ND(0.0000240)	ND(0.0000240)	ND(0.0000240)	ND(0.0000240)	ND(0.0000240)	0.452	7.79	0.0019
LOCATION-9	New Lenox Road Bridge	7/28/2005	ND(0.0000230)	0.0000330 PE	0.0000370 AF	0.0000710	0.000141	0.607	6.60	0.0061
LOCATION-10	Headwaters of Woods Pond	7/28/2005	ND(0.0000220)	0.0000420 PE	0.0000480 AF	0.0000760	0.000166	0.130	3.70	0.0062
LOCATION-12	Schweitzer Bridge	7/28/2005	ND(0.0000230)	0.0000250 PE	0.0000270 AF	0.0000470	0.0000990	0.540	6.20	0.0051
		7/28/2005	[ND(0.0000230)]	[0.0000300 PE]	[0.0000300 AF]	[0.0000490]	[0.000109]	[0.123]	[4.10]	[0.0044]
LOCATION-13	Division Street Bridge	7/28/2005	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.332	7.20	0.0024

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc. and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).
- 2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. Field duplicate sample results are presented in brackets.

Data Qualifiers:

AF - Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

PE - Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

ITEMS 16 & 17 HOUSATONIC RIVER FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1½-MILE REACH (GECD710 AND GECD720) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Continued remediation at the Group 3A/3B floodplain properties.
- Selected Sevenson Environmental Services, Inc. as the Remediation Contractor for the Group 3C and 3D floodplain properties.
- Initiated remediation at the Group 3D floodplain properties.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

- Submitted Supplemental Information Package for the Group 3C and 3D floodplain properties (August 16, 2005).
- Submitted the RD/RA Work Plan for the Phase 4 Floodplain Properties (August 26, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue remediation at Group 3A, 3B, and 3D properties.
- Initiate remediation at the Group 3C properties.
- Select Remediation Contractor for Phase 4 properties.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

GE will discuss with EPA a schedule for pre-certification inspection and submittal of a Final Completion Report for Phase 1 and Phase 2 properties and ERE for City property in Phase 2.

ITEMS 16 & 17 (cont'd) HOUSATONIC RIVER FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1½-MILE REACH (GECD710 AND GECD720) AUGUST 2005

f. Proposed/Approved Work Plan Modifications

- Received conditional approval from EPA of the *Supplemental Pre-Design Investigation Report* Phase 4 Floodplain Properties, Group 4A (August 3, 2005).
- Received EPA approval of GE's Supplemental Information Package for the Group 3C and 3D floodplain properties (letter dated August 19, 2005, received by GE August 30, 2005)

ITEM 18 HOUSATONIC RIVER FLOODPLAIN CURRENT RESIDENTIAL PROPERTIES DOWNSTREAM OF CONFLUENCE (ACTUAL/POTENTIAL LAWNS) (GECD730) AUGUST 2005

a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

None

e. General Progress/Unresolved Issues/Potential Schedule Impacts

Awaiting EPA approval of GE's Pre-Design Investigation Work Plan (submitted on February 26, 2002). (Based on discussions with EPA, it appears that this pre-design sampling will be deferred for some period of time.)*

f. Proposed/Approved Work Plan Modifications

ITEM 20 OTHER AREAS SILVER LAKE AREA (GECD600) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Performed water level monitoring at Silver Lake staff gauge and monitoring wells surrounding the lake (see Item 21.a).
- Continued performance of Stage 3 of the Bench-Scale study for sediments in accordance with the Bench-Scale Study Work Plan.
- Conducted monthly bench-scale overburden water sampling for PCB analysis (see Table 20-1).

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled Activities (next six weeks)</u>

- Continue water level monitoring at well pairs surrounding the lake.
- Continue Bench-Scale study for sediments in accordance with the Bench-Scale Study Work Plan.
- Initiate supplemental soil sampling at certain properties adjacent to lake in accordance with GE's Second Interim Pre-Design Investigation Report for Soils Adjacent to Silver Lake, as conditionally approved by EPA.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

Received conditional approval from EPA for GE's Second Interim Pre-Design Investigation Report for Soils Adjacent to Silver Lake (August 30, 2005)

TABLE 20-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2005

SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Silver Lake Bench Scale Study	SL-BS-D10-1	8/17/05	Water	NEA	PCB	8/24/05
Silver Lake Bench Scale Study	SL-BS-D11-1	8/17/05	Water	NEA	PCB	8/24/05
Silver Lake Bench Scale Study	SL-BS-D12-1	8/17/05	Water	NEA	PCB	8/24/05
Silver Lake Bench Scale Study	SL-BS-D14-1	8/17/05	Water	NEA	PCB	8/24/05
Silver Lake Bench Scale Study	SL-BS-D16-1	8/17/05	Water	NEA	PCB	8/24/05

TABLE 20-2 PCB DATA RECEIVED DURING AUGUST 2005

SILVER LAKE BENCH SCALE STUDY SILVER LAKE AREA

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	Date								
Sample ID	Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
SL-BS-D10-1	8/17/2005	ND(0.000031)							
SL-BS-D11-1	8/17/2005	ND(0.000031)							
SL-BS-D12-1	8/17/2005	ND(0.000026)							
SL-BS-D14-1	8/17/2005	ND(0.000031)							
SL-BS-D16-1	8/17/2005	ND(0.000027)							

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to Northeast Analytical, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

ITEM 21 GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

General

- Conducted routine groundwater elevation and NAPL monitoring.
- Finalized the Spring 2005 NAPL Monitoring Report.

East Street Area 1-North and South:

- Continued automated groundwater and NAPL pumping at North Side and South Side Caissons. Approximately 1 gallon of LNAPL was recovered from the North Side Caisson, and approximately 1 gallon of LNAPL was recovered from the South Side Caisson in August.
- Collected approximately 0.056 liter (0.015 gallon) of LNAPL from wells in this area in August.
- Performed inspection of stormwater and sanitary sewer lines along East Street, Newell Street, Fasce Street, and Lombard Street. No signs of NAPL observed.

East Street Area 2-South:

- Continued automated groundwater and LNAPL removal activities. A total of approximately 3,732,008 gallons of groundwater was recovered from pumping systems 64R, 64S, 64V, 64X, RW-1(S), RW-1(X), and RW-2(X). In addition, approximately 1,101 gallons of LNAPL were removed from pumping systems 64R, 64V, RW-1(S), RW-1(X), 64X, and 64S Caisson.
- Continued automated DNAPL removal activities. Removed approximately 51 gallons of DNAPL from pumping system RW-3(X).
- Continued routine well monitoring and manual NAPL removal activities. Approximately 9.15 liters (2.41 gallons) of LNAPL were removed from wells in this area during August.
- Treated/discharged 3,135,051 gallons of water through 64G Groundwater Treatment Facility.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) AUGUST 2005

a. Activities Undertaken/Completed (cont'd)

East Street Area 2-North:

- Continued routine well monitoring and NAPL removal activities. Recoverable quantities of NAPL were not encountered in this area during August.

20s, 30s, and 40s Complexes:

- Continued routine well monitoring and manual NAPL removal activities. Recoverable quantities of NAPL were not encountered in this area during August.

Lyman Street Area:

- Continued automated groundwater and NAPL removal activities. No LNAPL was removed from System RW-3 during August.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 1.32 liters (0.35 gallon) of DNAPL were removed from wells in this area.

Newell Street Area II:

- The automated DNAPL recovery systems for Newell Street Area II were shut down on July 25, 2005 pursuant to EPA approval of GE's June 7, 2005 and June 23, 2005 proposals. Each system has been disconnected from the associated recovery wells and the System 1 control shed has been removed. Pipelines scheduled for replacement have been drained and removed. Two replacement recovery wells (N2SC-1I(R) and N2SC-3I(R)) have been installed and developed. The upgraded recovery system will be completed and activated approximately 2 to 3 months after completion of the EPA-approved soil remediation activities in this area.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 0.099 liter (0.026 gallon) of DNAPL was removed from wells in this area during August.

Silver Lake Area:

- Continued routine monitoring of monitoring well pairs around lake and staff gauge in lake.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) AUGUST 2005

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted the Spring 2005 NAPL Monitoring Report (August 30, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine monitoring activities.
- Continue upgrades to the automated DNAPL recovery system at Newell Street Area II, including incorporation of replacement wells N2SC-1I(R) and N2SC-3I(R).
- Conduct NAPL bailing round prior to fall 2005 semiannual NAPL monitoring event.
- Conduct fall 2005 groundwater elevation/NAPL monitoring event.
- Initiate fall 2005 interim groundwater quality monitoring activities, including pre-sampling inspection and repair of wells, where necessary.
- Following EPA approval of proposed activities contained in GE's Spring 2005 NAPL Monitoring Report, GE will:
 - Install LNAPL monitoring wells GMA1-22, GMA1-23, and GMA1-24 in East Street Area 2-South.
 - Remove oil skimmer from well 40R and place it in well GMA1-17W.
 - Decommission 31 wells at the Lyman Street Area.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

Several program modifications were proposed in the Spring 2005 NAPL Monitoring Report (see Item 21.d above).

TABLE 21-1

AUTOMATED LNAPL & GROUNDWATER RECOVERY SYSTEMS MONTHLY SUMMARY EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

Caisson	Month	Vol. LNAPL Collected (gallon)	Vol. Water Recovered (gallon)	Percent Downtime
Northside	August 2004	2.0	16,300	
	September 2004	4.0	24,300	
	October 2004	0.0	25,000	0.30
	November 2004	0.0	18,300	0.31 - Power Outage
	December 2004	35.0	32,200	
	January 2005	2.0	32,600	
	February 2005	3.0	24,700	
	March 2005	1.0	34,700	
	April 2005	0.0	37,100	1.72 - Power Outage
	May 2005	20.0	16,300	
	June 2005	22.0	21,000	8.57 - Maintenance
	July 2005	0.0	16,600	
	August 2005	1.0	16,000	
Southside	August 2004	0.0	67,300	
	September 2004	0.0	102,700	
	October 2004	2.0	82,700	0.30
	November 2004	2.0	69,600	0.31 - Power Outage
	December 2005	4.0	98,300	
	January 2005	1.0	77,400	
	February 2005	1.0	76,500	
	March 2005	1.0	98,200	
	April 2005	0.0	99,900	1.72 - Power Outage
	May 2005	0.0	86,600	
	June 2005	2.0	100,300	
	July 2005	0.0	45,800	
	August 2005	1.0	37,100	

TABLE 21-2 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL EAST STREET AREA 1 - NORTH & SOUTH

GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	August 2005 Removal (liters)
34	8/31/2005	6.79	6.78	0.01	0.006	0.006
72	8/31/2005	7.78	7.70	0.08	0.049	0.049

Total Manual LNAPL Removal for August 2005: 0.056 liters

Note: 0.015 gallons

1. ft BMP - feet Below Measuring Point.

TABLE 21-3 ROUTINE WELL MONITORING EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected	
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.	
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)	
GMA 1 - East Str	GMA 1 - East Street Area 1 - North									
North Caisson	997.84	8/2/2005	18.32	18.29	0.03		19.80	0.00	979.55	
North Caisson	997.84	8/10/2005	17.36	17.35	0.01		19.80	0.00	980.49	
North Caisson	997.84	8/16/2005	16.95	16.93	0.02		19.80	0.00	980.91	
North Caisson	997.84	8/24/2005	17.58	17.57	0.01		19.80	0.00	980.27	
North Caisson	997.84	8/31/2005	18.50	18.45	0.05	-	19.80	0.00	979.39	
GMA 1 - East Str	eet Area 1 - S	South								
31R	1,000.23	8/31/2005	10.5		0.00		15.05	0.00	989.73	
33	999.50	8/31/2005	8.21		0.00		21.35	0.00	NA	
34	999.90	8/31/2005	6.79	6.78	0.01		21.05	0.00	993.12	
37R	988.79	8/31/2005	10.54	-	0.00		17.48	0.00	978.25	
72	1000.62	8/31/2005	7.78	7.70	0.08		21.98	0.00	992.91	
72R	1000.92	8/31/2005	7.50		0.00		13.30	0.00	993.42	
80	989.98	8/31/2005	7.80		0.00		24.80	0.00	982.18	
89	993.89	8/31/2005	6.24		0.00		9.09	0.00	987.65	
90	987.65	8/31/2005	5.80		0.00		12.35	0.00	981.85	
139R	986.91	8/31/2005	12.98		0.00		14.18	0.00	973.93	
ES1-13	999.93	8/31/2005	7.50		0.00		7.50		992.43	
ES1-23R	989.94	8/31/2005	14.00		0.00		14.00		975.94	
ES1-24	990.61	8/31/2005	12.48	-	0.00		12.48		978.13	
GMA1-7	985.81	8/31/2005	12.10	-	0.00		14.86	0.00	973.71	
GMA1-18	998.29	8/31/2005	9.99		0.00		13.58	0.00	988.30	
South Caisson	1001.11	8/2/2005	10.20	10.18	0.02		15.00	0.00	990.93	
South Caisson	1001.11	8/10/2005	11.28	11.26	0.02	-	15.00	0.00	989.85	
South Caisson	1001.11	8/16/2005	13.40	13.38	0.02		15.00	0.00	987.73	
South Caisson	1001.11	8/24/2005	13.90	13.84	0.06		15.00	0.00	987.27	
South Caisson	1001.11	8/31/2005	14.42	14.38	0.04		15.00	0.00	986.73	

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.

TABLE 21-4 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS August 2005

	August 2005								
Recovery		Oil	Water						
System		Collected	Recovered	Percent					
Location	Month	(gallon)	(gallon)	Downtime					
40R	August 2004 September 2004 October 2004 November 2004 December 2004 January 2005	0 0 0 0		0.30 - Power Outage 0.31 - Power Outage					
	February 2005 March 2005 April 2005 May 2005 June 2005 July 2005 August 2005	0 0 0 0 0 0		1.72 - Power Outage 0.96 - Maintenance 0.36 - Power Outage					
64R	August 2004 September 2004 October 2004 November 2004 December 2004 January 2005 February 2005	250 350 175 150 350 575 400	330,800 675,600 472,200 566,100 630,500 357,900 228,400	0.30 - Power Outage 0.31 - Power Outage					
	March 2005 April 2005 May 2005 June 2005 July 2005 August 2005	175 575 550 325 225 250	292,400 1,071,000 931,300 643,200 260,800 73,300	1.72 - Power Outage 0.96 - Maintenance 0.36 - Power Outage					
64S System	August 2004 September 2004 October 2004 November 2004 December 2004 January 2005 February 2005	230 479 324 625 91 75 97	240,781 681,275 1,034,272 902,053 1,147,526 844,225 821,010	0.30 - Power Outage 0.31 - Power Outage					
	March 2005 April 2005 May 2005 June 2005 July 2005 August 2005	282 499 300 275 10 218	905,525 1,039,179 660,761 527,949 330,937 271,691	1.72 - Power Outage 0.96 - Maintenance 0.36 - Power Outage 13.73 - Maintenance					
64V ¹	August 2004 September 2004 October 2004 November 2004 December 2004 January 2005 February 2005 March 2005	772 1,170 920 551 832 747 622 675	875,900 1,385,900 1,221,100 1,108,200 1,460,100 1,103,300 1,095,400 1,342,900	0.30 - Power Outage 0.31 - Power Outage					
	April 2005 May 2005 June 2005 July 2005 August 2005	785 254 515 465 581	1,221,000 996,400 1,177,700 922,700 993,100	1.72 - Power Outage 0.96 - Maintenance 0.36 - Power Outage					

TABLE 21-4 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS August 2005

August 2005								
Recovery		Oil	Water					
System		Collected	Recovered	Percent				
Location	Month	(gallon)	(gallon)	Downtime				
64X	August 2004	31	388,800					
	September 2004	51	518,400					
	October 2004	5	403,200	0.30 - Power Outage				
	November 2004	10	388,800	0.31 - Power Outage				
	December 2004	10	518,400					
	January 2005	5	388,800					
	February 2005	5	403,200					
	March 2005	5	532,800					
	April 2005	0	417,600	1.72 - Power Outage				
	May 2005	0	374,400	0.96 - Maintenance				
	June 2005	5 15	504,000	3.21 - Maint. & Power Outage				
	July 2005	20	417,600	3.45 - Maintenance				
	August 2005		489,600					
RW-2(X)	August 2004	0	1,020,000					
	September 2004	0	1,138,800	0.93				
	October 2004	0	911,800	0.30 - Power Outage				
	November 2004	0	836,300	0.31 - Power Outage				
	December 2004	0	1,111,700					
	January 2005 February 2005	0 0	822,500					
	March 2005	0	825,200 1,019,600					
	April 2005	0	859,500	1.72 - Power Outage				
	May 2005	0	730,600	0.96 - Maintenance				
	June 2005	ő	972,100	3.21 - Maint. & Power Outage				
	July 2005	0	747,100	3				
	August 2005	0	982,100					
RW-1(S) ²	August 2004	158	709,815					
1(0)	September 2004	159	914,647	9.72				
	October 2004	1	1,092,740	0.30 - Power Outage				
	November 2004	0	977,271	0.31 - Power Outage				
	December 2004	11	1,362,634	0.35 - Maintenance				
	January 2005	50	998,655					
	February 2005	41	934,203					
	March 2005	43	1,117,949					
	April 2005	1	864,198	22.41 - Maint. & Power Outage				
	May 2005	0	912,416	0.96 - Maintenance				
	June 2005	0	1,107,860	0.36 - Power Outage				
	July 2005	17	813,490					
	August 2005	32	780,217	1.96 - Maintenance				
RW-1(X)	August 2004	0	473,200					
. ,	September 2004	10	500,500					
	October 2004	0	501,400	0.30 - Power Outage				
	November 2004	0	402,900	0.31 - Power Outage				
	December 2004	0	443,700	4.17 - Maintenance				
	January 2005	0	389,000					
	February 2005	0	330,400					
	March 2005	0	399,300	4.70 Days - Octo				
	April 2005	0	354,700	1.72 - Power Outage				
	May 2005 June 2005	0 0	233,700 328,300	0.96 - Maintenance 3.21 - Maint. & Power Outage				
	July 2005	0	109,800	5.21 - Iviairit. & Power Outage				
	August 2005	0	142,000					
	August 2000	U	142,000					

TABLE 21-4 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS August 2005

		3		
Recovery System Location	Month	Oil Collected (gallon)	Water Recovered (gallon)	Percent Downtime
RW-3(X)	August 2004	47		
	September 2004	67		
	October 2004	52		0.30 - Power Outage
	November 2004	46		0.31 - Power Outage
	December 2004	66		
	January 2005	53		
	February 2005	37		
	March 2005	64		
	April 2005	53		1.72 - Power Outage
	May 2005	51		0.96 - Maintenance
	June 2005	62		0.36 - Power Outage
	July 2005	44		
	August 2005	51		11.76 - Maintenance

Summary of Total Automated Removal							
Water:	3,732,008	Gallons					
LNAPL:	1,101	Gallons					
DNAPL:	51	Gallons					

- 1. The flow meter at recovery well 64V was reset in December 2004.
- 2. The flow meter at recovery well RW-1(S) was reset in February 2005.

TABLE 21-5 WELL MONITORING AND RECOVERY OF LNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	August 2005 Removal (liters)
13	8/23/2005	18.30	18.22	0.08	0.049	0.049
14	8/23/2005	18.80	18.25	0.55	0.339	0.339
25R	8/23/2005	23.30	22.08	1.22	0.753	0.753
26RR	8/23/2005	24.6	23.55	1.05	0.648	0.648
48	8/23/2005	18.22	16.34	1.88	1.160	1.160
55	8/23/2005	18.10	16.90	1.20	0.740	0.740
95-04	8/23/2005	17.30	15.20	2.10	0.326	0.326
95-07	8/23/2005	23.35	20.45	2.90	0.450	0.450
GMA1-15	8/23/2005	15.91	15.55	0.36	0.222	0.222
GMA1-17E	8/23/2005	16.95	16.64	0.31	0.191	0.191
GMA1-17W	8/23/2005	20.65	16.55	4.10	2.530	2.530
GMA1-19	8/4/2005	11.95	11.15	0.80	0.494	1.740
	8/11/2005	12.30	11.58	0.72	0.444	
	8/18/2005	12.60	11.68	0.92	0.568	
	8/23/2005	11.43	11.25	0.18	0.111	
	9/1/2005	11.35	11.15	0.20	0.123	

Total LNAPL Removal East Street Area 2 - South for August 2005: 9.148 liters 2.414 gallons

Total LNAPL Removal East Street Area 2 - North for August 2005: 0.000 liters 0.000 gallons

Total LNAPL Removal 20's, 30's & 40's Complexes for August 2005: 0.000 liters

0.000 gallons

Total LNAPL Removal for August 2005: 9.148 liters
Note: 2.414 gallons

1. ft BMP - feet Below Measuring Point.

TABLE 21-6 64G TREATMENT PLANT DISCHARGE DATA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

Date	Housatonic River Discharge (gallons)	Recharge Pond Discharge (gallons)	Total Discharge (gallons)
August 2004	4,844,107	310,199	5,154,306
September 2004	5,075,190	248,505	5,323,695
October 2004	6,097,384	260,847	6,358,231
November 2004	5,521,300	180,462	5,701,762
December 2004	5,656,177	152,428	5,808,605
January 2005	5,650,380	112,791	5,763,171
February 2005	4,576,005	195,380	4,771,385
March 2005	5,005,313	235,153	5,240,466
April 2005	5,759,380	172,867	5,932,247
May 2005	4,962,650	288,751	5,251,401
June 2005	4,057,780	318,355	4,376,135
July 2005	3,212,250	389,015	3,601,265
August 2005	2,778,090	356,961	3,135,051

After treatment, the majority of the water processed at GE's Building 64G groundwater treatment facility is discharged to the Housatonic River through NPDES-permitted Outfall 005. However, as part of GE's overall efforts to contain NAPL within the site and to optimize NAPL recovery operations, a portion of the treated water discharged from the 64G facility is routed to GE's onsite recharge pond located in East Street Area 2-South.

TABLE 21-7 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

	Magazzzina		Denth	Dontle to	LNADI	Donth to	Tetal	DNADL	Compostad
Well	Measuring Point Elev.	Date	Depth to Water	Depth to LNAPL	LNAPL Thickness	Depth to DNAPL	Total Depth	DNAPL Thickness	Corrected Water Elev.
Name	(feet)	Date	(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
30's Complex	(ieet)		(IL DIVII)	(IL DIVII)	(icci)	(It Divil)	(It Divil)	(icet)	(ieet)
95-15	986.38	8/25/2005	8.92		0.00		16.70	0.00	977.46
GMA1-10	984.86	8/25/2005	8.41		0.00		19.80	0.00	976.45
GMA1-12	992.26	8/25/2005	16.50		0.00		22.13	0.00	975.76
RF-02	982.43	8/25/2005	6.61		0.00		18.29	0.00	975.82
RF-03	985.40	8/25/2005	8.96		0.00		18.44	0.00	976.44
RF-03D	985.31	8/25/2005	8.36		0.00		36.00	0.00	976.95
RF-16	987.91	8/25/2005	10.20		0.00		20.70	0.00	977.71
40s Complex									
95-17	1,007.67	8/25/2005	24.55		0.00		28.35	0.00	983.12
RF-4	1,011.99	8/25/2005	16.02		0.00		23.99	0.00	995.97
East Street Ar	ea 2 - South								
13	990.88	8/23/2005	18.30	18.22	80.0		22.45	0.00	972.65
14	991.61	8/23/2005	18.80	18.25	0.55		25.70	0.00	973.32
19	983.59	8/4/2005	10.98		0.00		19.90	0.00	972.61
19	983.59	8/11/2005	11.55		0.00		19.95	0.00	972.04
19	983.59	8/18/2005	11.64		0.00		19.95	0.00	971.95
19	983.59	8/23/2005	10.80		0.00		19.92	0.00	972.79
19	983.59	9/1/2005	10.86		0.00		19.89	0.00	972.73
25R	998.31	8/23/2005	23.30	22.08	1.22		30.80	0.00	976.14
26RR	1,000.58	8/23/2005	24.60	23.55	1.05		28.54	0.00	976.96
40R	991.60	8/2/2005	18.40		0.00		NM	0.00	973.20
40R	991.60	8/10/2005	18.75	47.40	0.00		NM	0.00	972.85
40R	991.60	8/16/2005	17.45	17.40 P	0.05		NM	0.00	974.20
40R	991.60	8/24/2005	17.50		< 0.01		NM	0.00	974.10
40R 48	991.60 992.39	8/31/2005 8/23/2005	17.80 18.22	17.70 16.34	0.10 1.88		NM 22.68	0.00	973.89 975.92
49R	988.71	8/23/2005	16.22	10.34	0.00		24.90	0.00	973.92
49RR	989.80	8/23/2005	17.31		0.00		23.08	0.00	972.49
55	989.45	8/23/2005	18.10	16.90	1.20		30.05	0.00	972.47
64R	993.37	8/2/2005	16.92	P	< 0.01		19.00	0.00	976.45
64R	993.37	8/10/2005	17.15	17.14	0.01		19.00	0.00	976.23
64R	993.37	8/16/2005	17.10	17.09	0.01		19.00	0.00	976.28
64R	993.37	8/24/2005	17.25	17.24	0.01		19.00	0.00	976.13
64R	993.37	8/31/2005	17.20	17.19	0.01		19.00	0.00	976.18
64S	984.48	8/2/2005	20.25	Р	< 0.01		28.70	0.00	964.23
64S	984.48	8/10/2005	20.55		0.00		28.70	0.00	963.93
64S	984.48	8/16/2005	20.58		0.00		28.70	0.00	963.90
64S	984.48	8/24/2005	19.90	Р	< 0.01		28.70	0.00	964.58
64S	984.48	8/31/2005	19.72	Р	< 0.01		28.70	0.00	964.76
64S Caisson	NA	8/2/2005	9.80	Р	< 0.01		14.55	0.00	NA
64S Caisson	NA	8/10/2005	10.20	Р	< 0.01		14.55	0.00	NA
64S Caisson	NA	8/16/2005	10.71	10.70	0.01		14.55	0.00	NA
64S Caisson	NA	8/24/2005	10.38	10.36	0.02		14.55	0.00	NA
64S Caisson	NA	8/31/2005	10.40	10.29	0.11		14.55	0.00	NA
64V	987.29	8/2/2005	22.10	21.60	0.50	Р	29.60	< 0.01	965.66
64V	987.29	8/10/2005	21.90	21.50	0.40		29.60	0.00	965.76
64V	987.29	8/16/2005	21.90	21.60	0.30	Р	29.60	< 0.01	965.67
64V	987.29	8/24/2005	22.00	21.40	0.60	Р	29.60	< 0.01	965.85
64V	987.29	8/31/2005	21.90	21.30	0.60		29.60	0.00	965.95
64X(N)	984.83	8/2/2005	12.56	12.55	0.01		15.85	0.00	972.28
64X(N) 64X(N)	984.83 984.83	8/10/2005 8/16/2005	13.12 12.80	13.10 12.78	0.02 0.02		15.85 15.85	0.00	971.73
	UX/LXX	エス/エロ/フロロケー	17.80	1 1//X	0.02		コカスカ	()()()	972.05

TABLE 21-7 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
64X(N)	984.83	8/31/2005	12.91	12.90	0.01		15.85	0.00	971.93
64X(S)	981.56	8/2/2005	15.27	15.25	0.02		23.82	0.00	966.31
64X(S)	981.56	8/10/2005	15.95	15.90	0.05		23.82	0.00	965.66
64X(S)	981.56	8/16/2005	15.80	15.74	0.06		23.82	0.00	965.82
64X(S)	981.56	8/24/2005	14.15	Р	< 0.01		23.82	0.00	967.41
64X(S)	981.56	8/31/2005	15.59	15.57	0.02		23.82	0.00	965.99
64X(W)	984.87	8/2/2005	18.46	18.43	0.03		24.35	0.00	966.44
64X(W)	984.87	8/10/2005	19.12	19.10	0.02		24.35	0.00	965.77
64X(W)	984.87	8/16/2005	18.96	18.92	0.04		24.35	0.00	965.95
64X(W)	984.87	8/24/2005	17.45	17.38	0.07		24.35	0.00	967.49
64X(W)	984.87	8/31/2005	18.88	18.79	0.09		24.35	0.00	966.07
95-01	983.77	8/23/2005	10.90		0.00		17.20	0.00	972.87
95-04	988.70	8/23/2005	17.30	15.20	2.10		21.75	0.00	973.35
95-07	994.91	8/23/2005	23.35	20.45	2.90		29.50	0.00	974.26
3-6C-EB-22	986.94	8/23/2005	13.51		0.00		20.01	0.00	973.43
E2SC-23	992.07	8/23/2005	18.25		0.00		21.15	0.00	973.82
E2SC-24	987.90	8/23/2005	15.08		0.00		21.60	0.00	972.82
ES2-06	986.00	8/23/2005	12.78		0.00		34.30	0.00	973.22
GMA1-13	991.41	8/23/2005	18.85		0.00		27.15	0.00	972.56
GMA1-14	997.43	8/23/2005	20.70		0.00		23.48	0.00	976.73
GMA1-15	988.59	8/23/2005	15.91	15.55	0.36		17.83	0.00	973.01
GMA1-16	986.82	8/23/2005	13.90	13.72	0.18		20.02	0.00	973.09
GMA1-17E	993.03	8/23/2005	16.95	16.64	0.31		17.30	0.00	976.37
GMA1-17W	992.63	8/23/2005	20.65	16.55	4.10		23.25	0.00	975.79
GMA1-19	984.28	8/4/2005	11.95	11.15	0.80		17.13	0.00	973.07
GMA1-19	984.28	8/11/2005	12.30	11.58	0.72		17.13	0.00	972.65
GMA1-19	984.28	8/18/2005	12.60	11.68	0.92		17.13	0.00	972.54
GMA1-19	984.28	8/23/2005	11.43	11.25	0.18		17.14	0.00	973.02
GMA1-19	984.28	9/1/2005	11.35	11.15	0.20		17.13	0.00	973.12
GMA1-20	983.49	8/4/2005	10.63		0.00		17.30	0.00	972.86
GMA1-20	983.49	8/11/2005	11.15		0.00		17.30	0.00	972.34
GMA1-20	983.49	8/18/2005	11.22		0.00		17.30	0.00	972.27
GMA1-20	983.49	8/23/2005	10.30		0.00		17.30	0.00	973.19
GMA1-20	983.49		Area floode	d could not			17.30	0.00	NA
GMA1-21	985.68	8/4/2005	12.80		0.00		19.54	0.00	972.88
GMA1-21	985.68	8/11/2005	13.30		0.00		19.52	0.00	972.38
GMA1-21	985.68	8/18/2005	13.38		0.00		19.53	0.00	972.30
GMA1-21	985.68	8/23/2005	12.76		0.00		19.53	0.00	972.92
GMA1-21	985.68	9/1/2005	12.71		0.00		19.53	0.00	972.97
HR-G2-MW-1		8/23/2005	9.25		0.00		18.25	0.00	973.35
HR-G2-MW-2	981.39	8/23/2005	9.05		0.00		17.67	0.00	972.34
HR-G2-MW-3	987.14	8/23/2005	14.01		0.00		22.00	0.00	973.13
HR-G2-RW-1	976.88	8/23/2005	4.37		0.00		18.70	0.00	973.62
RW-1(S)	987.23	8/2/2005	19.45	19.30	0.15		28.60	0.00	967.92
RW-1(S)	987.23	8/10/2005	19.90	19.20	0.70		28.60	0.00	967.98
RW-1(S)	987.23	8/16/2005	19.40	19.00	0.40		28.60	0.00	968.20
RW-1(S)	987.23	8/24/2005	18.70	18.68	0.02		28.60	0.00	968.55
RW-1(S)	987.23	8/31/2005	19.30	19.15	0.15		28.60	0.00	968.07
RW-1(X)	982.68	8/2/2005	12.00		0.00		20.80	0.00	970.68
RW-1(X)	982.68	8/10/2005	14.15		0.00		20.80	0.00	968.53
RW-1(X)	982.68	8/16/2005	14.20		0.00		20.80	0.00	968.48
RW-1(X)	982.68	8/24/2005	14.20		0.00		20.80	0.00	968.48
RW-1(X)	982.68	8/31/2005	14.02		0.00		20.80	0.00	968.66
RW-2(X)	985.96	8/2/2005	14.85		0.00		15.30	0.00	971.11

TABLE 21-7 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s. 30s. & 40s COMPLEXES **GROUNDWATER MANAGEMENT AREA 1**

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
RW-2(X)	985.96	8/10/2005	16.65		0.00		15.30	0.00	969.31
RW-2(X)	985.96	8/16/2005	15.55		0.00		15.30	0.00	970.41
RW-2(X)	985.96	8/24/2005	13.72		0.00		15.30	0.00	972.24
RW-2(X)	985.96	8/31/2005	15.75		0.00		15.30	0.00	970.21
RW-3(X)	980.28	8/2/2005	9.10		0.00	41.78	44.40	2.62	971.18
RW-3(X)	980.28	8/10/2005	9.55		0.00	42.10	44.40	2.30	970.73
RW-3(X)	980.28	8/16/2005	9.69		0.00	41.90	44.40	2.50	970.59
RW-3(X)	980.28	8/24/2005	8.20		0.00	41.80	44.40	2.60	972.08
RW-3(X)	980.28	8/31/2005	8.25		0.00	41.75	44.40	2.65	972.03
Housatonic R	iver								
SG-HR-1	990.73	8/4/2005	18.78	See Note 7	regarding d	epth to wate	er		971.95
SG-HR-1	990.73	8/11/2005	19.92	See Note 7 regarding depth to water					970.81
SG-HR-1	990.73	8/18/2005	19.99	See Note 7 regarding depth to water			970.74		
SG-HR-1	990.73	8/25/2005	16.10	See Note 7 regarding depth to water			974.63		
SG-HR-1	990.73	8/31/2005	18.50	See Note 7	regarding d	epth to wate	er		972.23

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as
- 6. Well HR-G2-RW-1 is constructed at an angle of 41.67 degrees from vertical. Depth to water data reflect measurements collected along the angled well casing. Groundwater elevations are corrected to account for the angle of the well casing.
- 7. A survey reference point (SG-HR-1) was established on the Newell Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface
 8. A weighted bailer has been installed at this location to remove accumulations of DNAPL. The DNAPL
- thickness reported is that measured within the bailer upon the initial retrieval.

TABLE 21-8 ACTIVE RECOVERY SYSTEMS MONTHLY SUMMARY LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

	Volume Water	RW-1 DNAPL	RW-1R LNAPL	RW-3 LNAPL
	Pumped	Recovered	Recovered	Recovered
Month / Year	(gallon)	(gallon)	(gallon)	(gallon)
July 2003	244,776			10
August 2003	290,984			10
September 2003	309,162			20
October 2003	485,653			20
November 2003	363,979			10
December 2003	490,517			
January 2004	299,584			
February 2004	305,485			
March 2004	409,514			
April 2004	344,707			1
May 2004	307,361			
June 2004	410,230			
July 2004	328,363			
August 2004	310,473			
September 2004	499,209		1	20
October 2004	426,078			
November 2004	421,409			12
December 2004	539,528			10
January 2005	443,634			10
February 2005	409,113			5
March 2005	455,192			5
April 2005	425,145			5
May 2005	357,497			
June 2005	422,006			10
July 2005	310,647		5	10
August 2005	302,572			

- 1. Volume of water pumped is total from Wells RW-1R, RW-2, and RW-3.
- 2. -- indicates LNAPL or DNAPL was not recovered by the system.
- 3. There was no downtime during August 2005.

TABLE 21-9 MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

Well Name	Date	Depth to Water (ft BMP)	Depth to DNAPL (ft BMP)	DNAPL Thickness (feet)	DNAPL Removed (liters)	August 2005 Removal (liters)
LS-30	8/29/2005	13.80	21.65	0.57	0.352	0.352
LS-38	8/29/2005	15.08	25.02	0.03	0.019	0.019
LSSC-07	8/4/2005	10.18	24.70	0.38	0.234	0.925
	8/11/2005	10.74	24.8	0.28	0.173	
	8/18/2005	10.81	24.7	0.38	0.234	
	8/25/2005	8.25	24.8	0.28	0.173	
	8/29/2005	10.24	24.9	0.18	0.111	
LSSC-08I	8/11/2005	12.18	23.34	0.02	0.012	0.025
	8/25/2005	8.70	23.36	0.02	0.012	

Total Manual DNAPL Removal for August 2005: 1.320 liters 0.348 gallons

1. ft BMP - feet Below Measuring Point.

TABLE 21-10 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
E-07	982.87	8/29/2005	8.04		0.00		19.70	0.00	974.83
EPA-01	983.04	8/29/2005	10.96		0.00		22.65	0.00	972.08
LS-24	986.58	8/29/2005	Unable to gau	ge; pile of bric	ks on well		15.10	0.00	NA
LS-30	986.440	8/29/2005	13.80		0.000	21.65	22.22	0.57	972.64
LS-31	987.090	8/29/2005	13.72		0.000	22.92	23.32	0.40	973.37
LS-38	986.95	8/29/2005	15.08		0.00	25.02	25.05	0.03	971.87
LS-44	980.78	8/29/2005	8.71		0.00		24.80	0.00	972.07
LSSC-07	982.48	8/4/2005	10.18		0.00	24.70	25.08	0.38	972.30
LSSC-07	982.48	8/11/2005	10.74		0.00	24.8	25.08	0.28	971.74
LSSC-07	982.48	8/18/2005	10.81		0.00	24.7	25.08	0.38	971.67
LSSC-07	982.48	8/25/2005	8.25		0.00	24.8	25.08	0.28	974.23
LSSC-07	982.48	8/29/2005	10.24		0.00	24.9	25.08	0.18	972.24
LSSC-08I	983.13	8/4/2005	11.42		0.00		23.39	0.00	971.71
LSSC-08I	983.13	8/11/2005	12.18		0.00	23.34	23.36	0.02	970.95
LSSC-08I	983.13	8/18/2005	12.18		0.00		23.36	0.00	970.95
LSSC-08I	983.13	8/25/2005	8.70		0.00	23.36	23.38	0.02	974.43
LSSC-08I	983.13	8/29/2005	11.44		0.00		23.38	0.00	971.69
LSSC-08S	983.11	8/29/2005	11.22		0.00		14.68	0.00	971.89
LSSC-16I	980.88	8/29/2005	8.62		0.00		28.53	0.00	972.26
LSSC-18	987.32	8/29/2005	14.64		0.00		18.57	0.00	972.68
LSSC-32	980.68	8/29/2005	8.36		0.00		35.24	0.00	972.32
LSSC-33	980.49	8/29/2005	8.20		0.00		29.75	0.00	972.29
MW-6R	985.14	8/29/2005	11.94		0.00		13.93	0.00	973.20
RW-1	984.88	8/2/2005	12.41		0.00	Р	21.00	< 0.01	972.47
RW-1	984.88	8/10/2005	12.78		0.00	P	21.00	< 0.01	972.10
RW-1	984.88	8/16/2005	12.60		0.00		21.00	0.00	972.28
RW-1	984.88	8/24/2005	12.15		0.00	Р	21.00	< 0.01	972.73
RW-1	984.88	8/31/2005	12.40		0.00	P	21.00	< 0.01	972.48
RW-1 (R)	985.07	8/2/2005	15.65		0.00	P	20.42	< 0.01	969.42
RW-1 (R)	985.07	8/10/2005	15.55		0.00	P	20.42	< 0.01	969.52
RW-1 (R)	985.07	8/16/2005	15.92		0.00		20.42	0.00	969.15
RW-1 (R)	985.07	8/24/2005	15.80		0.00	20.32	20.42	0.10	969.27
RW-1 (R)	985.07	8/31/2005	15.90		0.00	P	20.42	< 0.01	969.17
RW-2	987.82	8/2/2005	14.45		0.00		21.75	0.00	973.37
RW-2	987.82	8/10/2005	15.00		0.00		21.75	0.00	972.82
RW-2	987.82	8/16/2005	15.00		0.00		21.75	0.00	972.82
RW-2	987.82	8/24/2005	13.60		0.00		21.75	0.00	974.22
RW-2	987.82	8/31/2005	14.41		0.00		21.75	0.00	973.41
RW-3	984.08	8/2/2005	16.60	16.55	0.05		21.57	0.00	967.53
RW-3	984.08	8/10/2005	16.50	16.45	0.05		21.57	0.00	967.63
RW-3	984.08	8/16/2005	16.20	16.19	0.03		21.57	0.00	967.89
RW-3	984.08	8/24/2005	16.30	16.19	0.01		21.57	0.00	967.80
RW-3	984.08	8/31/2005	16.60	16.49	0.02		21.57	0.00	967.58
K44-9	904.00	0/31/2003	10.00	10.49	0.11		21.01	0.00	00.10E

TABLE 21-10 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
Housatonic River (Lyman Street Bridge)									
BM-2A	986.32	8/4/2005	14.25	See Note 5 re	garding depth	to water			972.07
BM-2A	986.32	8/11/2005	15.90	See Note 5 re	garding depth	to water			970.42
BM-2A	986.32	8/18/2005	15.82	See Note 5 re	garding depth	to water			970.50
BM-2A	986.32	8/25/2005	11.51	See Note 5 re	garding depth	to water			974.81
BM-2A	986.32	8/31/2005	13.76	See Note 5 re	garding depth	to water			972.56

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 5. A survey reference point (BM-2A) was established on the Lyman Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

TABLE 21-11 ACTIVE DNAPL RECOVERY SYSTEMS MONTHLY SUMMARY NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

Recovery System	Date	Total Gallons Recovered
System 1 ⁽¹⁾	August 2004	14.6
	September 2004	16.5
	October 2004	11.0
	November 2004	15.4
	December 2004	15.4
	January 2005 (3)	8.8
	February 2005	13.2
	March 2005	17.3
	April 2005	24.2
	May 2005	9.9
	June 2005	18.7
	July 2005	14.3
	August 2005	(4)
System 2 ⁽²⁾	August 2004	226.0
	September 2004	129.6
	October 2004	78.2
	November 2004	81.0
	December 2004	64.8
	January 2005 (3)	157.2
	February 2005	126.9
	March 2005	16.2
	April 2005	16.2
	May 2005	145.8
	June 2005	32.4
	July 2005	48.6
	August 2005	(4)
Total Automated D	NAPL Removal for August 2005:	0.0 Gallons

- 1. System 1 wells are NS-15, NS-30, and NS-32.
- 2. System 2 wells are N2SC-01I, N2SC-03I, and N2SC-14.
- 3. In January 2005, System 2 malfunctioned during weeks 2 and 3 pumping mostly water. The volume reported for those two weeks is an estimated quantity that was included in the total volume removed.
- 4. The DNAPL recovery systems for the Newell Street Area II were shut down on July 25, 2005. The upgraded systems will be completed and activated approximately 2 to 3 months after completion of the EPA-approved soil remediation activities in this area.

TABLE 21-12 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

CONSENT DECREE MONTHLY STATUS REPORT GROUNDWATER MANAGEMENT AREA 1 - NEWELL STREET AREA II MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL August 2005

Well Name	Date	Depth to Water (ft BMP)	Depth to DNAPL (ft BMP)	DNAPL Thickness (feet)	DNAPL Removed (liters)	August 2005 Removal (liters)
N2SC-02	8/29/2005	13.45		0.00	0.006	0.006
N2SC-07	8/29/2005	12.70	38	0.15	0.093	0.093
N2SC-08	8/29/2005	12.95	40.5	2.08	1.283	1.283

Total DNAPL Removal for August 2005: 0.099 liters 0.026 gallons

Note:

1. ft BMP - feet Below Measuring Point.

TABLE 21-13 ROUTINE WELL MONITORING NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
N2SC-01I(R)	NA	8/12/2005	13.77		0.00		39.12	0.00	NA
N2SC-01I(R)	NA	8/26/2005	11.75		0.00		38.62	0.00	NA
N2SC-02	985.56	8/29/2005	13.45		0.00		40.52	0.00	972.11
N2SC-03I(R)	NA	8/12/2005	14.02		0.00	Р	39.90	< 0.01	NA
N2SC-03I(R)	NA	8/29/2005	13.69		0.00		39.21	0.00	NA
N2SC-07	984.61	8/29/2005	12.70		0.00	38	38.15	0.15	971.91
N2SC-08	986.07	8/29/2005	12.95		0.00	40.5	42.58	2.08	973.12

Note:

1. ft BMP - feet Below Measuring Point.

TABLE 21-14 ROUTINE WELL MONITORING SILVER LAKE AREA

GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)	
Monitoring Wells		Silver Lake	(IL DIVIE)	(IL DIVIF)	(leet)	(IL DIVIE)	(IL DIVIE)	(leet)	(leet)	
SLGW-01D	983.13	8/31/2005	5.46		0.00		36.9	0.00	977.67	
SLGW-01S	982.94	8/31/2005	7.00		0.00		16.24	0.00	975.94	
SLGW-02D	985.10	8/31/2005	8.10		0.00		36.84	0.00	977.00	
SLGW-02S	985.39	8/31/2005	Dry at 8.35	ft	0.00			0.00	NA	
SLGW-03D	979.14	8/31/2005	2.30		0.00		32.05	0.00	976.84	
SLGW-03S	980.21	8/31/2005	4.21		0.00		14.61	0.00	976.00	
SLGW-04D	983.51	8/31/2005	7.10		0.00		37.1	0.00	976.41	
SLGW-04S	984.02	8/31/2005	8.11		0.00		16.68	0.00	975.91	
SLGW-05D	979.30	8/31/2005	3.56	I	0.00		34.9	0.00	975.74	
SLGW-05S	979.12	8/31/2005	3.70	I	0.00		11.66	0.00	975.42	
SLGW-06D	981.63	8/31/2005	6.52	-	0.00		34.96	0.00	975.11	
SLGW-06S	981.66	8/31/2005	5.80		0.00		13.75	0.00	975.86	
Staff Gauge with	nin Silver Lak	е								
Silver Lake Gauge	NA	8/4/2005	4.72	See Note 4	regarding d	epth to wat	er		NA	
Silver Lake Gauge	NA	8/11/2005	4.71	See Note 4	regarding d	epth to wat	er		NA	
Silver Lake Gauge	NA	8/18/2005	4.62	See Note 4	See Note 4 regarding depth to water					
Silver Lake Gauge	NA	8/25/2005	4.71	See Note 4	See Note 4 regarding depth to water					
Silver Lake Gauge	NA	8/31/2005	4.38	See Note 4	regarding d	epth to wat	er		NA	

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. A new Silver Lake Gauge has been installed and will be surveyed to obtain a new horizontal datum. "Depth to Water" values provided refer to feet above the datum, rather than feet below the measuring point.
- 5. Additional groundwater elevation data was collected from wells near Silver Lake that are located in the 30s Complex and at the Lyman Street Area. Those results are presented in the monitoring tables for those Removal Action Areas.

ITEM 22 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS J & K (GMA 2) (GECD320) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Conducted monthly river elevation monitoring.

b. Sampling/Test Results Received

See attached table.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Conduct monthly river elevation monitoring.
- Conduct annual interim groundwater monitoring in October 2005.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

None

TABLE 22-1 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 2

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
Housatonic R	iver (Foot Bri	dge)							
GMA2-SG-1	989.82	8/31/2005	17.25	See Note 1		972.57			

Note:

1. A survey reference point was established on the Oxbow J & K foot bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

ITEM 23 GROUNDWATER MANAGEMENT AREAS PLANT SITE 2 (GMA 3) (GECD330) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Conducted routine groundwater elevation monitoring and NAPL monitoring/removal activities, including completion of summer 2005 quarterly monitoring round. Approximately 70.5 liters (18.6 gallons) of LNAPL were removed by the automatic skimmer located in well 51-21 and 12.3 additional liters (3.2 gallons) of LNAPL were manually removed from the wells in this area (see Table 23-1).
- Inspected existing surface water staff gauges.
- Finalized Spring 2005 Baseline Groundwater Quality and NAPL Monitoring Interim Report.

b. Sampling/Test Results Received

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted Spring 2005 Baseline Groundwater Quality and NAPL Monitoring Interim Report (August 30, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Redevelop well 16C-R.
- Inspect wells 39D, 51-17, GMA3-6, OBG-2, UB-PZ-1, and UB-PZ-2, which were not located or were found to be damaged during recent monitoring rounds.
- Repair/replace monitoring wells and staff gauges, as necessary.
- Continue ongoing groundwater and NAPL monitoring and recovery activities.
- Conduct NAPL bailing round prior to fall 2005 semiannual monitoring event.
- Conduct fall 2005 groundwater elevation/NAPL monitoring event.
- Conduct fall 2005 baseline groundwater sampling activities.

ITEM 23 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 2 (GMA 3) (GECD330) AUGUST 2005

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u> (cont'd)

- Following EPA approval of proposed activities contained in GE's Spring 2005 Baseline Groundwater Quality and NAPL Monitoring Interim Report:
 - Sample wells 30B-R and 114A as part of the fall 2005 sampling round.
 - Collect a groundwater sample from well 51-8 and, if necessary, a NAPL-saturated soil sample.
 - Perform desktop modeling of the potential volatilization of constituents observed at well 51-8.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

Several program modifications were proposed in the Spring 2005 Baseline Groundwater Quality and NAPL Monitoring Interim Report (see Item 23.d above).

TABLE 23-1 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

		Depth	Depth to	LNAPL	LNAPL	August 2005
Well	Date	to Water	LNAPL	Thickness	Removed	Removal
Name		(ft BMP)	(ft BMP)	(feet)	(liters)	(liters)
51-05	8/24/2005	12.10	11.18	0.92	0.568	0.568
51-08	8/4/2005	12.60	11.24	1.36	0.839	3.497
	8/11/2005	12.80	11.40	1.40	0.864	
	8/18/2005	12.90	11.50	1.40	0.869	
	8/24/2005	13.10	11.60	1.50	0.925	
51-09	9/1/2005	13.20	11.74	1.46	0.901	0.901
51-15	8/24/2005	11.45	10.98	0.47	0.290	0.290
51-16R	8/24/2005	11.76	10.97	0.79	0.487	0.487
51-19	8/24/2005	12.40	11.10	1.30	0.802	0.802
51-21	8/2/2005	15.75	Р	< 0.01	4.548	70.494
	8/10/2005	15.95	Р	< 0.01	12.507	
	8/16/2005	16.03	16.01	0.02	11.370	
	8/24/2005	16.18	16.16	0.02	5.685	
	8/31/2005	16.21	Р	< 0.01	36.384	
59-03R	8/24/2005	13.03	12.13	0.90	0.555	0.555
GMA3-10	8/4/2005	12.30	11.60	0.70	0.432	1.783
	8/11/2005	12.26	11.70	0.56	0.345	
	8/18/2005	12.30	11.80	0.50	0.308	
	8/24/2005	12.53	11.90	0.63	0.389	
	9/1/2005	12.55	12.05	0.50	0.308	
GMA3-12	8/4/2005	12.24	11.97	0.27	0.667	3.337
	8/24/2005	12.65	12.30	0.35	0.865	
	9/1/2005	13.10	12.37	0.73	1.804	
GMA3-13	8/11/2005	11.91	11.90	0.01	0.006	0.012
	8/18/2005	12.01	12.00	0.01	0.006	<u> </u>
UB-PZ-3	8/24/2005	13.10	12.80	0.30	0.047	0.047

Total Automated LNAPL Removal at well 51-21 for August 2005: 70.494 liters

18.60 Gallons

Total Manual LNAPL Removal at all other wells for August 2005: 12.279 liters

3.24 Gallons

Total LNAPL Removed for August 2005: 82.773 liters 21.84 Gallons

Notes:

1. ft BMP - feet Below Measuring Point.

2. P indicates that LNAPL or DNAPL is present at a thickness that is < 0.01 feet. The corresponding thickness is recorded as such.

TABLE 23-2 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

			D	D. d.	LNIADI	D. d.	T.4.1	DNADI	0
VA.Z. 11	Measuring	D. ()	Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
51-05	996.44	8/24/2005	12.10	11.18	0.92		12.53	0.00	985.20
51-06	997.36	8/24/2005	11.60		0.00		14.64	0.00	985.76
51-07	997.08		Dry at 11.24 ft		0.00			0.00	NA
51-08	997.08	8/4/2005	12.60	11.24	1.36		14.66	0.00	985.74
51-08	997.08	8/11/2005	12.80	11.40	1.40		14.66	0.00	985.58
51-08	997.08	8/18/2005	12.90	11.50	1.40		14.66	0.00	985.48
51-08	997.08	8/24/2005	13.10	11.60	1.50		14.66	0.00	985.38
51-09	997.70		Dry at 11.60 ft		0.00			0.00	NA
51-09	997.70	9/1/2005	13.20	11.74	1.46		14.66	0.00	985.86
51-11	994.37	8/24/2005	9.62		0.00		13.52	0.00	984.75
51-12	996.55	8/24/2005	8.00		0.00		13.31	0.00	988.55
51-13	997.42		Dry at 10.04 ft		0.00			0.00	NA
51-14	996.77	8/24/2005	11.62		0.00		14.97	0.00	985.15
51-15	996.43	8/24/2005	11.45	10.98	0.47		14.50	0.00	985.42
51-16R	996.39	8/24/2005	11.76	10.97	0.79		14.54	0.00	985.36
51-17	996.43	8/24/2005	Well has been	paved over					NA
51-18	997.12	8/24/2005	11.75		0.00		12.56	0.00	985.37
51-19	996.43	8/24/2005	12.40	11.10	1.30		14.02	0.00	NA
51-21	1001.49	8/2/2005	15.75	Р	< 0.01		NM	0.00	985.74
51-21	1001.49	8/10/2005	15.95	Р	< 0.01	-	NM	0.00	985.54
51-21	1001.49	8/16/2005	16.03	16.01	0.02		NM	0.00	985.48
51-21	1001.49	8/24/2005	16.18	16.16	0.02		NM	0.00	985.33
51-21	1001.49	8/31/2005	16.21	Р	< 0.01		NM	0.00	985.28
59-01	997.52	8/24/2005	Dry at 11.40 ft		0.00	-		0.00	NA
59-03R	997.64	8/24/2005	13.03	12.13	0.90	-	17.05	0.00	985.45
59-07	997.96	8/24/2005	12.46	12.44	0.02	-	23.52	0.00	985.52
GMA3-10	997.54	8/4/2005	12.30	11.60	0.70		18.00	0.00	985.89
GMA3-10	997.54	8/11/2005	12.26	11.70	0.56		18.00	0.00	985.80
GMA3-10	997.54	8/18/2005	12.30	11.80	0.50		18.02	0.00	985.71
GMA3-10	997.54	8/24/2005	12.53	11.90	0.63		18.02	0.00	985.60
GMA3-10	997.54	9/1/2005	12.55	12.05	0.50		18.00	0.00	985.46
GMA3-11	997.25	8/24/2005	11.42		0.00		18.38	0.00	985.83
GMA3-12	997.84	8/4/2005	12.24	11.97	0.27		21.24	0.00	985.85
GMA3-12	997.84	8/11/2005	12.30	12.06	0.24		21.20	0.00	985.76
GMA3-12	997.84	8/18/2005	12.40	12.20	0.20		21.24	0.00	985.63
GMA3-12	997.84	8/24/2005	12.65	12.30	0.35		21.24	0.00	985.52
GMA3-12	997.84	9/1/2005	13.10	12.37	0.73		21.25	0.00	985.42
GMA3-13	997.73	8/4/2005	11.78		0.00		17.80	0.00	985.95
GMA3-13	997.73	8/11/2005	11.91	11.90	0.01		17.82	0.00	985.83
GMA3-13	997.73	8/18/2005	12.01	12.00	0.01		17.80	0.00	985.73
GMA3-13	997.73	8/24/2005	12.11		0.00		17.81	0.00	985.62
GMA3-13	997.73	9/1/2005	12.71		0.00		17.81	0.00	985.02
GMA3-14	997.42	8/24/2005	11.10		0.00		17.05	0.00	986.32
UB-MW-10	995.99	8/24/2005	10.60		0.00		15.30	0.00	985.39
UB-PZ-3	998.15	8/24/2005	13.10	12.80	0.30		13.40	0.00	985.33

- ft BMP feet Below Measuring Point.
 --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.

ITEM 24 GROUNDWATER MANAGEMENT AREAS PLANT SITE 3 (GMA 4) (GECD340) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

- Conducted routine groundwater elevation monitoring at well GMA4-3.
- Finalized Spring 2005 Groundwater Quality Monitoring Interim Report.

b. Sampling/Test Results Received

See attached table.

c. Work Plans/Reports/Documents Submitted

Submitted Spring 2005 Groundwater Quality Monitoring Interim Report (August 30, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine monitoring at well GMA4-3.
- Conduct fall 2005 groundwater elevation monitoring event.
- Conduct fall 2005 interim groundwater quality sampling activities (see Item 24.f).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

In the Spring 2005 Groundwater Quality Monitoring Interim Report, GE proposed that wells GMA4-5 and H78B-13R no longer be sampled under the interim groundwater monitoring program.

TABLE 24-1 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 4

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS August 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
GMA4-3	1,003.95	8/24/2005	18.32		0.00		26.25	0.00	985.63

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.

ITEM 25 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS A & C (GMA 5) (GECD350) AUGUST 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Conduct semi-annual groundwater elevation monitoring in October 2005.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

EPA's November 10, 2004 letter to GE states that interim groundwater quality sampling activities are to be postponed until groundwater elevation monitoring data demonstrate that groundwater flow is not being artificially influenced by the temporary dam that is being maintained as part of the remediation along the 1 and ½ Mile Reach of the Housatonic River. Since those remediation activities are ongoing, and the temporary dam is still in place, no groundwater sampling will be conducted at GMA5 in fall 2005.

Attachment A

NPDES Sampling Records and Results
August 2005

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2005

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
NPDES Sampling	001-A6648	8/1/05	Water	SGS	Oil & Grease	8/11/05
NPDES Sampling	001-A6650	8/1/05	Water	SGS	PCB	8/11/05
NPDES Sampling	001-A6651	8/1/05	Water	SGS	TSS	8/11/05
NPDES Sampling	005-A6646/A6647	7/26/05	Water	SGS	PCB	8/2/05
NPDES Sampling	005-A6654/A6657	8/1/05	Water	SGS	PCB, TSS, BOD	8/9/05
NPDES Sampling	005-A6662/A6665	8/8/05	Water	SGS	PCB	8/23/05
NPDES Sampling	005-A6678/A6679	8/15/05	Water	SGS	PCB	
NPDES Sampling	005-A6699/A6700	8/23/05	Water	SGS	PCB	
NPDES Sampling	005-A6706/A6709	8/29/05	Water	SGS	PCB	
NPDES Sampling	06A-A6711	8/30/05	Water	SGS	Oil & Grease	
NPDES Sampling	06A-A6713	8/30/05	Water	SGS	PCB	
NPDES Sampling	09B-A6658	8/4/05	Water	SGS	TSS, BOD	8/23/05
NPDES Sampling	09B-A6666	8/8/05	Water	SGS	TSS, BOD	8/23/05
NPDES Sampling	09B-A6682	8/15/05	Water	SGS	TSS, BOD	
NPDES Sampling	09B-A6710	8/29/05	Water	SGS	TSS, BOD	
NPDES Sampling	09C-A6673	8/14/05	Water	SGS	Oil & Grease	
NPDES Sampling	09C-A6701	8/28/05	Water	SGS	Oil & Grease	
NPDES Sampling	64G-A6643	7/25/05	Water	SGS	Oil & Grease	8/2/05
NPDES Sampling	64G-A6655	8/1/05	Water	SGS	Oil & Grease	8/9/05
NPDES Sampling	64G-A6663	8/8/05	Water	SGS	Oil & Grease	8/23/05
NPDES Sampling	64G-A6680	8/15/05	Water	SGS	Oil & Grease	
NPDES Sampling	64G-A6691	8/19/05	Water	SGS	Oil & Grease	8/24/05
NPDES Sampling	64G-A6696	8/22/05	Water	SGS	Oil & Grease	
NPDES Sampling	64G-A6707	8/29/05	Water	SGS	Oil & Grease	
NPDES Sampling	64T-A6641	7/25/05	Water	SGS	Oil & Grease	8/2/05
NPDES Sampling	64T-A6652	8/1/05	Water	SGS	Oil & Grease	8/9/05
NPDES Sampling	64T-A6660	8/8/05	Water	SGS	Oil & Grease	8/23/05
NPDES Sampling	64T-A6676	8/15/05	Water	SGS	Oil & Grease	
NPDES Sampling	64T-A6688	8/19/05	Water	SGS	Oil & Grease	8/24/05
NPDES Sampling	64T-A6694	8/22/05	Water	SGS	Oil & Grease	
NPDES Sampling	64T-A6704	8/29/05	Water	SGS	Oil & Grease	
NPDES Sampling	A6667R	8/15/05	Water	SGS	Acute Toxicity Test	8/31/05
NPDES Sampling	A6667R	8/15/05	Water	SGS	Chronic Toxicity Test	8/31/05
NPDES Sampling	A6667RCN	8/15/05	Water	SGS	CN	
NPDES Sampling	A6667RTM	8/15/05	Water	SGS	Metals (10)	

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\08-05 CD Monthly\Tracking Logs\Tracking.xls TABLE A-1

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING AUGUST 2005

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

						Date
Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Received
NPDES Sampling	A6668C	8/15/05	Water	SGS	Acute Toxicity Test	8/31/05
NPDES Sampling	A6668C	8/15/05	Water	SGS	Chronic Toxicity Test	8/31/05
NPDES Sampling	A6668CCN	8/15/05	Water	SGS	CN	
NPDES Sampling	A6668CDM	8/15/05	Water	SGS	Filtered Metals (8)	
NPDES Sampling	A6668CTM	8/15/05	Water	SGS	Metals (10)	
NPDES Sampling	A6669R	8/17/05	Water	SGS	Chronic Toxicity Test	8/31/05
NPDES Sampling	A6669RCN	8/17/05	Water	SGS	CN	8/23/05
NPDES Sampling	A6669RTM	8/17/05	Water	SGS	Metals (10)	8/23/05
NPDES Sampling	A6670C	8/17/05	Water	SGS	Chronic Toxicity Test	8/31/05
NPDES Sampling	A6670CCN	8/17/05	Water	SGS	CN	8/23/05
NPDES Sampling	A6670CDM	8/17/05	Water	SGS	Filtered Metals (8)	8/23/05
NPDES Sampling	A6670CTM	8/17/05	Water	SGS	Metals (10)	8/23/05
NPDES Sampling	A6671R	8/19/05	Water	SGS	Chronic Toxicity Test	8/31/05
NPDES Sampling	A6671RCN	8/19/05	Water	SGS	CN	8/24/05
NPDES Sampling	A6671RTM	8/19/05	Water	SGS	Metals (10)	8/24/05
NPDES Sampling	A6672C	8/19/05	Water	SGS	Chronic Toxicity Test	8/31/05
NPDES Sampling	A6672CCN	8/19/05	Water	SGS	CN	8/24/05
NPDES Sampling	A6672CDM	8/19/05	Water	SGS	Filtered Metals (8)	8/24/05
NPDES Sampling	A6672CTM	8/19/05	Water	SGS	Metals (10)	8/24/05
NPDES Sampling	AUG05WK1	8/1/05	Water	SGS	Cu, Pb, Zn	8/9/05
NPDES Sampling	AUG05WK2	8/8/05	Water	SGS	Cu, Pb, Zn	8/23/05
NPDES Sampling	AUG05WK4	8/23/05	Water	SGS	Cu, Pb, Zn	
NPDES Sampling	JUL05WK5	7/26/05	Water	SGS	Cu, Pb, Zn	8/2/05
NPDES Sampling	SEP05WK1	8/29/05	Water	SGS	Cu, Pb, Zn	

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	Sample ID:	001-A6648	001-A6650	001-A6651	005-A6646/A6647	005-A6654/A6657	005-A6662/A6665	09B-A6658
Parameter	Date Collected:	08/01/05	08/01/05	08/01/05	07/26/05	08/01/05	08/08/05	08/04/05
PCBs-Unfiltered								
Aroclor-1254		NA	0.000024 J	NA	ND(0.000065)	ND(0.000065)	ND(0.000065)	NA
Total PCBs		NA	0.000024 J	NA	ND(0.000065)	ND(0.000065)	ND(0.000065)	NA
Inorganics-Unfiltered	•			•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Aluminum		NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA
Cyanide		NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA
Inorganics-Filtered								
Aluminum		NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA
Conventionals								
Biological Oxygen Dema	nd (5-day)	NA	NA	NA	NA	ND(2.0)	NA	2.8
Oil & Grease		1.7 B	NA	NA	NA	NA	NA	NA
Total Suspended Solids		NA	NA	8.00	NA	ND(5.00)	NA	7.00

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	Sample ID:	09B-A6666	64G-A6643	64G-A6655	64G-A6663	64G-A6691	64T-A6641	64T-A6652	64T-A6660
Parameter	Date Collected:	08/08/05	07/25/05	08/01/05	08/08/05	08/19/05	07/25/05	08/01/05	08/08/05
PCBs-Unfiltered									
Aroclor-1254		NA							
Total PCBs		NA							
Inorganics-Unfiltered									
Aluminum		NA							
Cadmium		NA							
Calcium		NA							
Chromium		NA							
Copper		NA							
Cyanide		NA							
Lead		NA							
Magnesium		NA							
Nickel		NA							
Silver		NA							
Zinc		NA							
Inorganics-Filtered									
Aluminum		NA							
Cadmium		NA							
Chromium		NA							
Copper		NA							
Lead		NA							
Nickel		NA							
Silver		NA							
Zinc		NA							
Conventionals									
Biological Oxygen Dema	nd (5-day)	ND(2.0)	NA						
Oil & Grease		NA	ND(5.0)	1.6 B	0.60 B	0.50 B	0.50 B	3.0 B	1.9 B
Total Suspended Solids		9.00	NA						

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

San	nple ID:	64T-A6688	A6669RCN	A6669RTM	A6670CCN	A6670CDM	A6670CTM	A6671RCN	A6671RTM
Parameter Date Co	llected:	08/19/05	08/17/05	08/17/05	08/17/05	08/17/05	08/17/05	08/19/05	08/19/05
PCBs-Unfiltered									
Aroclor-1254		NA	NA	NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA	NA	NA
Inorganics-Unfiltered									
Aluminum		NA	NA	ND(0.100)	NA	NA	0.120	NA	ND(0.100)
Cadmium		NA	NA	ND(0.00100)	NA	NA	ND(0.00100)	NA	ND(0.00100)
Calcium		NA	NA	38.0	NA	NA	49.0	NA	41.0
Chromium		NA	NA	ND(0.00500)	NA	NA	0.000900 B	NA	ND(0.00500)
Copper		NA	NA	0.00310 B	NA	NA	0.0270	NA	ND(0.00500)
Cyanide		NA	0.00620 B	NA	0.0390	NA	NA	0.00520 B	NA
Lead		NA	NA	ND(0.00500)	NA	NA	0.00310 B	NA	ND(0.00500)
Magnesium		NA	NA	13.0	NA	NA	19.0	NA	14.0
Nickel		NA	NA	ND(0.00500)	NA	NA	0.00210 B	NA	ND(0.00500)
Silver		NA	NA	ND(0.00500)	NA	NA	ND(0.00500)	NA	ND(0.00500)
Zinc		NA	NA	0.00860 B	NA	NA	0.0280	NA	0.00470 B
Inorganics-Filtered									
Aluminum		NA	NA	NA	NA	ND(0.100)	NA	NA	NA
Cadmium		NA	NA	NA	NA	ND(0.00100)	NA	NA	NA
Chromium		NA	NA	NA	NA	0.000950 B	NA	NA	NA
Copper		NA	NA	NA	NA	0.0230	NA	NA	NA
Lead		NA	NA	NA	NA	ND(0.00500)	NA	NA	NA
Nickel		NA	NA	NA	NA	ND(0.00500)	NA	NA	NA
Silver		NA	NA	NA	NA	ND(0.00500)	NA	NA	NA
Zinc		NA	NA	NA	NA	0.0250	NA	NA	NA
Conventionals									
Biological Oxygen Demand (5-day	y)	NA	NA	NA	NA	NA	NA	NA	NA
Oil & Grease		0.80 B	NA	NA	NA	NA	NA	NA	NA
Total Suspended Solids		NA	NA	NA	NA	NA	NA	NA	NA

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

	Sample ID:	A6672CCN	A6672CDM	A6672CTM	AUG05WK1	AUG05WK2	JUL05WK5
Parameter I	Date Collected:	08/19/05	08/19/05	08/19/05	08/01/05	08/08/05	07/26/05
PCBs-Unfiltered							
Aroclor-1254		NA	NA	NA	NA	NA	NA
Total PCBs		NA	NA	NA	NA	NA	NA
Inorganics-Unfiltered							
Aluminum		NA	NA	0.0430 B	NA	NA	NA
Cadmium		NA	NA	ND(0.00100)	NA	NA	NA
Calcium		NA	NA	72.0	NA	NA	NA
Chromium		NA	NA	ND(0.00500)	NA	NA	NA
Copper		NA	NA	0.0120	0.00880	0.0140	0.00770
Cyanide		0.0520	NA	NA	NA	NA	NA
Lead		NA	NA	ND(0.00500)	ND(0.00500)	ND(0.00500)	ND(0.00500)
Magnesium		NA	NA	29.0	NA	NA	NA
Nickel		NA	NA	ND(0.00500)	NA	NA	NA
Silver		NA	NA	ND(0.00500)	NA	NA	NA
Zinc		NA	NA	0.0120 B	0.0170 B	0.0120 B	0.0100 B
Inorganics-Filtered							
Aluminum		NA	ND(0.100)	NA	NA	NA	NA
Cadmium		NA	ND(0.00100)	NA	NA	NA	NA
Chromium		NA	ND(0.00500)	NA	NA	NA	NA
Copper		NA	0.0100	NA	NA	NA	NA
Lead		NA	ND(0.00500)	NA	NA	NA	NA
Nickel		NA	ND(0.00500)	NA	NA	NA	NA
Silver		NA	ND(0.00500)	NA	NA	NA	NA
Zinc		NA	0.0230	NA	NA	NA	NA
Conventionals							
Biological Oxygen Demar	nd (5-day)	NA	NA	NA	NA	NA	NA
Oil & Grease		NA	NA	NA	NA	NA	NA
Total Suspended Solids		NA	NA	NA	NA	NA	NA

Notes:

- 1. Samples were collected by General Electric Company and submitted to SGS Environmental Services, Inc. for analysis of PCBs, cyanide, TSS, BOD, oil & grease, and metals (filtered and unfiltered).
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 4. With the exception of inorganics and conventional parameters, only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics and Conventional Parameters

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

Attachment B

NPDES Discharge Monitoring Reports
July 2005

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f Different)

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTSFIELD

MA 01201 frent Name to Ace

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

TO

01

MA0003891 PERMIT NUMBER

YEAR MO DAY

OZ

05

FROM

005 DISCHARGE NUMBER

YEAR MO DAY

07

31

05

MAJOR (SUBR W) F - FINAL

WATERS TO HOUSATONIC RIVER

*** NO DISCHARGE |

Form Approved.

OMB No. 2040-0004

PARAMETER		QUANTITY OR LOADING			QUALITY OR CONCENTRATION				NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
SUD. S-DAY	SAMPLE MEASUREMENT	0	0	(26)	李爷爷爷爷	特殊特殊特殊	特特特特特		0	01/30	CP
DOSLO T O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	70 MO AVG	195 DAILY MX	LBS/DY LBS/DY	各种有种化等。	THE WATER AS	*****	***** *****		INCE/	COME
BULIDS, TOTAL BUSPENDED	SAMPLE MEASUREMENT	0	0	(26)	外转移转移	本於於於於於	. 黄粉黄绿杏香		0	01/30	CP
DOSSO T O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	BB . BVA CM	270 DATLY MX		*****	Someth State of	建水水水水	各种种子 新种种种		MOTEV	COMPL
DIL & GREAGE	SAMPLE MEASUREMENT	新传染格於格	6.1	LBS/DY	*******	长松谷长松长	1.6	(19) MG/L	0	01/07	GF
30556 T O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	संस्थानसम्बद्धाः व	135 DAILY MX	LBS/DY	非安全的	并对用这个书	AS DATEY TOX	MG/L		JEEKL'S	ORAB
POLYCHLORINATED BIPHENYLS (PCBS)	SAMPLE MEASUREMENT	0.00001	0.00004	LBS/DY	水谷奈林谷谷	格林松林林	特殊特殊特殊		0	01/07	СР
39516 T O O BEE COMMENTS BELOW	PERMIT REQUIREMENT	0.01 MD AVG	O. G3. DAILY MX	LBS/DY	非常重杂中的	*****	· 明然外外的中	安安安女 李安安女	T.	PEENLY	ENDME!
	SAMPLE MEASUREMENT	0.139	0.368	MGD (O3)	*******	华华林终桥桥,	经长棒基格格		0	99/99	RC
SCOSO T O O SEE COMMENTS BELOW	REQUIREMENT	2.09 MD AVG	2 09 DATLY MX	MGD	न अभागा अन्तर	ा अभागान्य	क्षा कर क्षेत्रक है। कि	本本本本		DOMITAN LUCKS	RCCRR1
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
NAME/TITLE PRINCIPAL EXECUTIVE			his document and all attac servision in accordance wit		4	- 1		TELEPHON	IE	DA	TE

Mgr. Pittsfield Remediation Prog.

TYPED OR PRINTED

or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

413 448-5902 2005 NUMBER YEAR MO DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 8 + 9 OF PERMIT FOR SAMPLING REQUIREMENTS. SEE DMR(S) 0649 + 064T FOR FURTHER PARAMETERS PERMITTEE NAME/ADDRESS (Include Facility Name/Location (Different)

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTEFIELD ATTN: MICHAEL T CARROLL, EHS&F

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

TO 05 07

YEAR MO DAY YEAR MO DAY

MA00003891 PERMIT NUMBER

FROM 05 07 01

044 0 DISCHARGE NUMBER

31

MAJOR (SUBR W) F - FINAL

GROUNDWATER TREATMENT (005)

*** NO DISCHARGE | ***
NOTE: Read instructions before completing this form.

Form Approved. OMB No. 2040-0004

PARAMETER			QU.	ANTITY OR LOADIN	ıg .	QUALIT	Y OR CONCENTR	ATION		NO.	FREQUENCY	SAMPLE TYPE
		$\sqrt{\ }$	AVERAGE	MAXIMUM	UNITS	. MINIMUM	AVERAGE .	MAXIMUM	UNITS	EX	ANALYSIS	
PB	SAMPL MEASUREN	4 16 16	*****	****		73	*****	7.5	(12)	0	99/99	RCDR
00400 T O O SEE COMMENTS BELOW	PERMIT REQUIREN	0.0000000000000000000000000000000000000	· 游书· · · · · · · · · · · · · · · · · ·	******	***	6.0 MINIMUM	************	7.0 MAXIMUM	SU SU		HEEKLY	HANG(
BASE NEUTRALS & ACII (METHOD 625), TOTAL	the second second second second		*****	*****		*****	NODI [9]	NOD1 [9]	(19)			
76030 T O O SEE COMMENTS BELOW	PERMIT REQUIREM		对非非种种	4.4.4.4.4.4	****	****	REPORT -	REPORT DAILY MX	MG/L		STRLY	GRAB
COCYMS)	SAMPL MEASUREN	7 5 6 6 6 7	****	***		*****	NODI [9]	NODI [9]	(17)			
78732 T O O SEE COMMENTS BELOW	PERMIT REQUIREN	.000000000m	教育并非社 社	*****	***	举事事事事	REPORT MO AVG	REPORT DAILY MX	MGZL		TRLY	GRAB .
	SAMPL MEASUREN											
	PERMIT REQUIREN	20100000000000000000000000000000000000		The second secon				The state of the s			an giberi	
	SAMPL MEASUREN				- A. S.							
	PERMIT REQUIREM	500,000,000,000	61.7									
	SAMPL MEASUREN	0.6										
	PERMIT REQUIREM	((((((((((((((((((((((((((((((((((((((r silvens Details see						Committee for the Committee fo
	SAMPL MEASUREN	Acres 14 15										
	PERMIT REQUIREM											New Street
NAME/TITLE PRINCIPAL EXECUTIVE	The state of the s	prepared i	under my direction or sup-	is document and all attachr	a system deden					NE DATE		TE
Michael T. Carroll Mgr. Pittsfield Remediatio	n Prog.	lo assure (submitted, or those po submitted I am awar	hat qualified personnel pr Based on my inquiry of i crooms directly responsible is, to the best of my know e that there are significant	operly gather and evaluate the person or persons who no for gathering the information accurately and belief, true, accurately for a knowledge of the person	the information names the syste on, the informat rate, and comple	m. DU. 1	URE OF PRINCIPAL E	41	3 448-59		2005 8	100
TYPED OR PRINTED COMMENTS AND EXPLANATION OF A	100	including t	the possibility of fine and i	mprisonment for knowing v	riolations.	OFFIC	ER OR AUTHORIZED	AGENT COL	NUMBER	1	YEAR M	O DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments, here)

SEE COMMENTS FOR 0051. SEE PAGE 8 + 9 OF PERMIT PERMITTEE NAME/ADDRESS (Include Facility Name/ Location (Different)

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

064 T DISCHARGE NUMBER

MAJOR

(SUBR W) F - FINAL

WASTEWATER TREATMENT (005)

*** NO DISCHARGE | | *** NOTE: Read instructions before completing this form.

Form Approved.

OMB No. 2040-0004

PITTSFIELD MA 01201 r	a de la companya del companya de la companya del companya de la co
는 10 MB 10 HEAD TO BE MENT OF THE CONTROL OF SECURITION OF THE TOTAL CONTROL OF THE CONTROL OF THE CONTROL OF T	MONITORING PERIOD
FACILITY GENERAL ELECTRIC COMPANY	YEAR MO DAY YEAR MO DAY
LOCATIONPITTSFIELD MA 01201 FROM	05 07 01 TO 05 07 31
ATTN: MICHAEL T CARROLL, EHS&F	

PARAMETER		QU	NTITY OR LOADIN	iG ,	QUALI	NO.	FREQUENCY	SAMPLE			
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
	SAMPLE MEASUREMENT	*****	*****		6.8	*****	7.8	(12)	o	99/99	RCDR
00400 T 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMENT	***	****	***	6.0 MINIMUM	非特殊各种	9.0 MAXIMUM	SU SU		WEEKLY	RANG-
DIBENZOFURAN	SAMPLE MEASUREMENT	******	****		****	NODI [6]	NODI [6]	(22)			
BIBOS T O O	PERMIT REQUIREMENT	*****	*************************************	********	有非存录中的	REPORT MO AVG	REPORT DATLY MO	PPT		MONTH	COMPO
	SAMPLE MEASUREMENT			Į.						23	
*	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT	e tomore de la ligación de la ligaci				4 1 (20) (44) (42) 2 (20) (44) (42)			¥ 4.		
	SAMPLE MEASUREMENT									9	
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT) ja					
	PERMIT REQUIREMENT				September 1980		Transport				
	SAMPLE: MEASUREMENT									63	
	PERMIT REQUIREMENT				100 (100 m) (100 m) (100 m)						h seatons in the seat
NAME/TITLE PRINCIPAL EXECUTIVE	prepared	under my direction or sup	ils document and all attach ervision in accordance with	a system design		Asja za sa		TELEPHON	IE .	DA	TE
Michael T. Carroll Mgr. Pittsfield Remediation	or those p	d. Based on my inquiry of sersons directly responsible	operly gather and evaluate the person or persons who i for gathering the informat ledge and belief, true, accu	nanage the syste ion, the informat	m, M	Can	CC 41	3 448-59	02	2005	3 24
TYPED OR PRINTED	re that there are significant penalties for submitting false information, the possibility of fine and imprisonment for knowing violations.						EA NUMBER		, 11	O DAY	

SEE COMMENTS FOR COS1. SEE PAGE 8 + 9 OF PERMIT.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (Different)

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTSFIELD MA 01201 ATTN: MICHAEL T CARROLL, EHS&F

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

TO

MA0003891 PERMIT NUMBER

YEAR MO DAY

007 1 DISCHARGE NUMBER

31

YEAR MO

05 07

MAJOR (SUBR W) F - FINAL

DISCHARGE TO HOUSATONIC RIVER

*** NO DISCHARGE N *** NOTE: Read instructions before completing this form.

Form Approved. OMB No. 2040-0004

PARAMETER		QUANTITY OR LOADING			QUALITY OR CONCENTRATION					FREQUENCY	SAMPL
		AVERAGE	MAXIMUM	UNITS	, MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
TEMPERATURE, WATER DEG. FAHRENHEIT	SAMPLE MEASUREMENT	****	*****		******			(15)		100	
OCO11 W O O	PERMIT REQUIREMENT	机长性环体长	非常性性杂种 。我	***	******	70 MD AVG	75 DATLY M	DEG. F		ONCE/	GRAB
!•	SAMPLE MEASUREMENT	*****	****			***		(12)			
00400 W O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	*****	तक्षक्षक	**** ****	6.0 MINIMUM	*******	9 0 MAXIMUM	SU		MEEKLY	RAND
OLYCHLORINATED)IPHENYLS (PCBS)	SAMPLE MEASUREMENT	*****	*****	Mr.	****			(51)			
17516 W O O EE COMMENTS BELOW	PERMIT REQUIREMENT	*****	非有条件的 4	*** ****	41-31-41-41-41-	REPORT MD AVG	REPORT DAILY MY	PPB		atel y	GRAB
LOW, IN CONDUIT OR HRU TREATMENT PLANT	SAMPLE MEASUREMENT			(03)	非共和市共和	****	****	-			
COSO W O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	REPORT MO AVG	REPORT DAILY MX	MGD	******	सम्बद्धः सम्बद्ध	*******	****		MONTH	CALC
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT									=	
	SAMPLE MEASUREMENT									7.24	
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT									11	
NAME/TITLE PRINCIPAL EXECUTIVE OFFICER 1 certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed			,		TELEPHON	E	DA	TE			
Michael T, Carroll Mgr. Pittsfield Remediatio	n Prog. to assure to assure to assure to submitted or those possibilities.	that qualified personnel pro Based on my Inquiry of the ersons directly responsible is, to the best of my know	perfy gather and evaluate he person or persons who n for gathering the informati edge and belief, true, accur	the information nanage the system on, the informatio	<u> </u>	Carre		13 ,448-59	02	2005	8 24
TYPED OR PRINTED	Lamawar	e that there are significant	e that there are significant penalties for submitting false information, the possibility of fine and imprisonment for knowing violations.			URE OF PRINCIPAL E ER OR AUTHORIZED	AGENT AF	EA NUMBER	1	YEAR N	O DA

SAMPLE AT MANHOLE PRIOR TO CITY STORM DRAIN

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

FITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATION PITTSFIELD MA 01201

ATTN: MICHAEL T CARROLL, EHS&F

NATIONAL POLLUTANT DISCHARGE FLIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

168E0009W PERMIT NUMBER

05

YEAR MO DAY

07 01

009 1 DISCHARGE NUMBER

YEAR MO DAY

05 07

31

MAJOR (SUBR W) F - FINAL

PROCESSES TO UNKAMET BROOK

*** NO DISCHARGE ! ! *** NOTE: Read instructions before completing this form.

Form Approved.

OMB No. 2040-0004

PARAMETER		QUANTITY OR LOADING			QUALITY OR CONCENTRATION					FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
BOD, 5-DAY (20 DEG C)	SAMPLE MEASUREMENT	0.04	0.1	(26)	*****	*****	****		0	01/DV	СР
OCO10 V O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	106 MD AVG	438 DATLY MX	LBS/DY LBS/DY	*********	के के से में के के	संभागिक संभाव	松松林·		NEEKLY	COMPO
PH	SAMPLE MEASUREMENT	*****	***		7.3	特殊转换	7.4	(12)	0	01/01/	GR
00400 V O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	*****	计算标准计算 。原	***	6.0 MINIMUM	经长长并有 在	9:0 MAXIMUM	SU		HEEKLY	RANG-
SOLIDS: TOTAL SUSPENDED	SAMPLE MEASUREMENT	0.5	1.2	(26)	****	*****	*****		0	01/DV	CP
00530 V 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMENT	ALG MD AVG	976 DAILY MX	LBS/DY LBS/DY	**************************************	华华州市中共	非米林书长录 。	****		NEERLY	COMPO
DIL & GREASE	SAMPLE MEASUREMENT	*****	4.6	(26) LBS/DY	*****	***	1.4	(19)	0	01/DW	GR
00556 V O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	****	438. DAILY MX	LBS/DY	*****	**************************************	15 DAILY MX	MG/L MG/L	u.	HEEKLY	GRAB
POLYCHLORINATED BIPHENYLS (PCBS)	SAMPLE MEASUREMENT	****	****		*****	NODI [9]	NODI [9]	(19)			
39516 V O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	经银币价值量	नानाज कर्मक व	*** ****	भागनाम मन	REPORT MO AVG	REPORT DAILY MX	MG/L		RTELLY	GRAN
THRU TREATMENT PLANT	SAMPLE MEASUREMENT	0.003	0.056	(O3)	****	物物物物物物	****		0	99/99	RC
50050 V G O SEE COMMENTS BELOW	PERMIT REQUIREMENT	REPORT MD AVG	REPORT DAILY MX		*****	外分析并分类	等等表示 等。	本於於本 女子母孫	10.00	CONTIN	RCORD
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT				1.5				137		

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER

TYPED OR PRINTED

Michael T. Carroll Mar. Pittsfield Remediation Prog.

prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information. including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

448-5902 2005 NUMBER YEAR MO

TELEPHONE

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 11 OF PERMIT. SEE DMRS 009A + 009B. REPORT SUM OF LOAD 09A + 09B. FOR BOD, TSS. FLOW. SAMPLE AT DISCHARGE POINT TO BROOK FOR PH, DIL & GREASE, AND PCB

DATE

PERMITTEE NAME/ADDRESS (Include Facility Name/ Location & Different)

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

ATTN: MICHAEL T CARROLL, EHS&F

LOCATION PITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA00003891 PERMIT NUMBER

MAG DISCHARGE NUMBER

MAJOR (SUBR W) F - FINAL

09A SAMPLE POINT BEFORE 009

*** NO DISCHARGE > NOTE: Read instructions before completing this form.

Form Approved.

OMB No. 2040-0004

	11 11 6	M	ONITO	RING	PERIOD	phi y
73	YEAR	MO	DAY	3.15	YEAR MO	DAY
FROM	05	07	· 01	то	YEAR MO	31

PARAMETER		QU	JANTITY OR LOAD!	NG	QUALIT	Y OR CONCENTRA	ATION		NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	, MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
BOD: 5-DAY (20 DEG. C)	SAMPLE MEASUREMENT			(26)	*****	*****	***				
OCIO V O O SEE COMMENTS BELOW	PERMIT TEQUIREMENT	LOG MD AVG	438 DAILY MX	LBS/DY	· 自身等等等等	*********	。 在中部中的	****		HEEKLY	COMPO
SCLIDS, TOTAL SUSPENDED	SAMPLE MEASUREMENT			(26)	*****	*****	*****				
OOB3O V O O SEE COMMENTS BELOW	PERMIT :	E12 MD AVG	DAILY MX	LBS/DY	李爷爷外孙林。	计等等特别等	非性动性性性	· · · · · · · · · · · · · · · · · · ·	\$200 K	MEEKLY	COMPO
FLOW, IN CONDUIT OR THRU TREATMENT PLANT	SAMPLE MEASUREMENT			(03)	*****	****	****				
SOOSO V O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	REPORT MO AVO	REPORT DAILY MX	MGD	*****	*******	************************************	松林林林 松林林林		CONTIN	RCORD
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT								w		
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT		and the second of the second o								
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT									6 at 10 at 1	
	SAMPLE MEASUREMENT										
NAME/TITLE PRINCIPAL EXECUTIVE	PERMIT REQUIREMENT		100 mm								

NAME/TITLE PRINCIPAL EXECUTIVE OFFICER

Michael T. Carroll Mgr. Pittsfield Remediation Prog

TYPED OR PRINTED

prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel property gather and evaluate the information. submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and bellef, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT

TELEPHONE DATE 413 448-5902 2005 NUMBER YEAR MO DAY

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 11 OF PERMIT:

SEE DMR 0091.

SAMPLE AT 09A

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different) NAME GENERAL ELECTRIC CORPORATION ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY LOCATIONP ITTSFIELD

MA 01201

ATTN: MICHAEL T CARROLL, EHS&F

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT IDMRI

MONITORING PERIOD

05 07 01 TO 05 07

MA0003891 PERMIT NUMBER

FROM

YEAR MO DAY

009 B DISCHARGE NUMBER

YEAR MO

31

MAJOR (SUBR W) F - FINAL

098 SAMPLE POINT PRIOR TO 009

Form Approved.

OMB No. 2040-0004

*** NO D'ISCHARGE I NOTE: Read instructions before completing this form.

PARAMETER		QU	ANTITY OR LOAD!	NG	QUALIT	Y OR CONCENTR	ATION		NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM 1	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE CD
CO DEG. C)	SAMPLE MEASUREMENT	0.04	0./	(LESSIOY	****	******	****	*	0	01/14	v ep
30310 V O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	106 AVE 70	DATUE MX	LBS/DY	计算等并存储	********	भे अध्यक्ति सम्बद्ध	化松松松 松松松松	and the	DEEKLY	COMPC 490
SOLIDS: TOTAL SUSPENDED	SAMPLE MEASUREMENT	0.5	1.2	(LES/DY	*****	特技特技特	长滑作作体体		0	OI/DW	CP
DOSSO V O O DEE COMMENTS BELOW	PERMIT REQUIREMENT	MOLOZOB	DA DASOMX	LBS/DY	*****	新教业的集件	并作品的标准	****	والواسس	JEEKIL Y	COMPC
	SAMPLE MEASUREMENT	0,003	0,056	(MOSD)	*****	****	****		0	99/00	BC
GOOSO V O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	REPORT MO AVO	REPORT DATLY MX	MGD	作物体的中华	******	्रभाक्षात्र अन्त्र क्ष् भावत्र	****		CONTINUOUS	RCORL
	SAMPLE MEASUREMENT										
	PERMIT. REQUIREMENT						A TWO IS A STATE OF THE STATE O		100 M		
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT	e la company de la company de la company de la company de la company de la company de la company de	1247-1142-127		Gagar Hyrasing					19.12	
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT								in the same		
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT								1000		
NAME/TITE PRINCIPAL EXECUTIVE Migr. Pittsfield Remediation	n Prog. to assure	under my direction or sup that qualified personnel p	his document and all attach servision in accordance with roperly gather and evaluate	a system designed	THE RESERVE		The second second	TELEPHON	the same of the same of	DA.	
	submitte or those submitte	d. Based on my inquiry of persons directly responsible d is, to the best of my kno- tre that there are significant.	the person or persons who a for gathering the informat whedge and belief, true, accurately for an artistic for artist for artistic for artistic for artistic for artistic for artistic for ar	manage the system, lon, the information trate, and complete	" [/ .]]	Lawll URE OF PRINCIPAL E	XECUTIVE	3 448-59 L	O.Z	2005 6	24
TYPED OR PRINTED OMMENTS AND EXPLANATION OF	Including	the possibility of fine and	imprisonment for knowing	violations.	OFFIC	ER OR AUTHORIZED	AGENT COD	NUMBER	1	YEAR M	O DAY

SEE PAGE 11 OF PERMIT. SEE DMR 0091; SAMPLE AT 09B

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f Different)

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTSFIELD MA D1201

ATTN: MICHAEL T CARROLL, EHS&F

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

MACOOGB91 PERMIT NUMBER

YEAR MO DAY

07 O1 TO

SUM A
DISCHARGE NUMBER

31

YEAR MO DAY

05 207

MAJOR (SUBR W) F - FINAL

METALS: 001, 004, 005, 007, 009, 011

Form Approved. OMB No. 2040-0004

*** NO DISCHARGE | | ***
NOTE: Read instructions before completing this form.

PARAMETER		QUA	NTITY OR LOAD!	NG 5	QUALIT	Y OR CONCENTRA	ATION	$F_{a} = \int_{0}^{\infty} F(x) dx$	NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
PHOSPHORUS, TOTAL (AS P)	SAMPLE MEASUREMENT	*****	0.1	(263	******	*****	*****		0	03/30	CP
00665 1 0 0 FFLUENT GROSS VALUE		中非共共共和	REPORT DAILY MX	LBS/DY LBS/DY	有有条件有事 。	*****	一种有头种种种	**** ****		ONCE/S MONTH	carira
VICKEL TOTAL RECOVERABLE	SAMPLE MEASUREMENT	*****	0.01	(26)	****	*****	安林林林林		0	03/30	СР
01074 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	计分分并分分	REPORT DAILY MX	LBS/DY LBS/DY	***************************************	****	******	****	100	UNCE/ MONTH	COMPO
BILVER TOTAL REGOVERABLE	SAMPLE MEASUREMENT	*****	0.002	(26)	*****	******	*****		0	03/30	CP
01079 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	神经外种体体	REPORT DAILY MX	LBS/DY	****	· 特别的特殊的	本本本本本本	****		DNCE/ MONTH	COMPO
ZINC TOTAL RECOVERABLE	SAMPLE MEASUREMENT	并外外外并有	0.1	(26)	*****	非非共和共	****		0	01/07	CP
01074 1 0 0 EFFLUENT GROSS VALUE	£0000000000000000000000000000000000000	李子子子子	REPORT DAILY MX	LBS/DY LBS/DY	新共共外的 体	外部并非常有。	्रात्तिक संस्थान सम्ब	****		MEENLY	COMPO
ALUMINUM, TOTAL (AS AL)	SAMPLE MEASUREMENT	******	0.2	(26)	*****	*****	****		0	03/30	СР
011105 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	并分替分析	REFORT DATLY MX	LBS/DY LBS/DY	*****	特殊的特殊的	*******	****	Total Control	ONCE? MONTH	COMPO
CALMIUM TOTAL RECOVERABLE	SAMPLE MEASUREMENT	*****	0.001	(26)	*****	*****	*****		0	03/30	СР
OLII3 I O O EFFLUENT GROSS VALUE	PERMIT REQUIREMENT	非常保持事	REPORT DAILY MX	LBS/DY LBS/DY	****	公司 (1) (1) (1)	1/4/4/4/4/4	不安协会 外科科特		ONGE/ MONTH	COMPO
TOTAL RECOVERABLE	SAMPLE MEASUREMENT	******	0.01	(26)	*****	*****	****		0	01/07	СР
01914 1 0 0 EFFLUENT GROSS VALUE	00.000000000000000000000000000000000000	· 神·宋·中·李·华	DAILY MX	LBS/DY LBS/DY	****	संस्थान के बहुत्त्व संस्थान के बहुत्त्व	中华苏州南北	****		VEEWLY	COMED
NAME/TITLE PRINCIPAL EXECUTIVE	prepared	nder penalty of law that thi under my direction or supe	rvision in accordance with	n a system designed		1/		TELEPHON	IE.	DA	TE
Michael T. Carroll Mgr. Pittsfield Remediation	or those possibilitied submitted submitted	hat qualified personnel pro . Based on my inquiry of the ersons directly responsible i is, to the best of my knowl e that there are significant	ne person or persons who for gathering the informa- edge and belief, true, accu- penalties for substitute.	manage the system, tion, the information arate, and complete.	T Make	URE OF PRINCIPAL E)	41	3 1448-59	02	2005 8	24
TYPED OR PRINTED OMMENTS AND EXPLANATION OF	including	the possibility of fine and in	prisonment for knowing	violations.		ER OR AUTHORIZED		A NUMBER		YEAR M	

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)
COMPOSITE PROPORTIONATE TO FLOW.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (/ D(ferent)

NAME GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

FACILITY GENERAL ELEC

LOCATIONPITTSFIELD ATTHE MICHAEL T C NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA00003891 PERMIT NUMBER

CILIN A DISCHARGE NUMBER

MAJOR

(SUBR W) F - FINAL

METALS: 001, 004, 005, 007, 009, 011

Form Approved.

OMB No. 2040-0004

*** NO DISCHARGE | ***
NOTE: Read Instructions before completing this form.

		01201		(4.4	N	IONITO	RING	PERIO	D'	
CTRIC	COMPANY			YEAR	МО	DAY	- 141	YEAR	MO	DAY
	MA	01201	FROM	05	07	01	TO	05	07	31
CARRI	I. FHERF	自爆化 为在为。		1 11 11 11	N 12 7	150	17.	2	\$ y	1167

PARAMETER	/	QUA	NTITY OR LOAD!	NG .	QUALIT	Y OR CONCENTRA	ATION		NO.	FREQUENCY	SAMILE
		AVERAGE	MAXIMUM	UNITS	, MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
CHROMIUM TOTAL RECOVERABLE	SAMPLE MEASUREMEN	*****	0.002	(59)	****	****	******		0	03/30	CP
01118 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMEN	T 特殊非体统体	REPORT DAILY MX	LBS/DY	(4) (4) (4) (4) (4)	特殊特殊特殊	*************************************	*****	Q 75	ONCE?	COMPC
COPPER TOTAL RECOVERABLE	SAMPLE MEASUREMEN	*****	0.03	(26)	****	****	****		0	01/07	CP CP
01119 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMEN	T 经米米米米	REPORT DAILY MX	LBS/DY	- अन्तर्भक्तिकान्त्रम	中华事件等等。	海南部等制电	化铁铁铁 铁铁铁铁		IEEKL.	ACOMEC
CYANIBE, TOTAL RECOVERABLE	SAMPLE MEASUREMEN	******	0.09	(26) LBS/DY	****	******	*****		0	03/30	CP CP
78248 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMEN	T 特殊基本	REPORT DAILY MX		小林桥林林林	******	****	中华安安 李安安安		DNCEZ	GRAB
	SAMPLE MEASUREMEI	VT									
	PERMIT REQUIREMEN	т							i u		
	SAMPLE MEASUREMEI	ντ									
	PERMIT REQUIREMEN	п									destruction of the second
	SAMPLE MEASUREMEI	11/									
	PERMIT REQUIREMEN	п							(1000) (1000) (1000)		
	SAMPLE MEASUREME	भा									
	PERMIT REQUIREMEN										
NAME/TITLE PRINCIPAL EXECUTIVE	prej	rtily under penalty of law that U pared under my direction or sup	ervision in accordance wi	th a system designed		Λ		TELEPHON	ΙE	, D	ATE
Michael T. Carroll Mgr. Pittsfield Remediatio	ssure that qualified personnel pr mitted. Based on my inquiry of hose persons directly responsible mitted is, to the best of my know	the person or persons who for gathering the information ledge and belief, true, acc	o manage the system ation, the informatio curate, and complete	n //- (; 3	Carel		3 ,448-59	02	2005	8 24	
TYPED OR PRINTED	i aware that there are significan uding the possibility of fine and	penalties for submitting	false information.	RIGNATURE OF PRINCIPAL EXECUTIVE			A NUMBE	B	2	MO DAY	

COMPOSITE PROPORTIONATE TO FLOW:

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f Different)

GENERAL ELECTRIC CORPORATION

ADDRESS ATTN: JEFFREY G. RUEBEBAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY LOCATIONPITTSFIELD

MA 01201

ATTN: MICHAEL T CARROLL, FHENE

NATIONAL POLLUTANT DISCHARGE FLIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

SUM B DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY FROM 05 07 01 TO 05 07 31 Form Approved. OMB No. 2040-0004

MAJOR (SUBR W) F - FINAL

TOXICS: 001, 004, 005, 007, 009, 011

*** NO DISCHARGE |__| ***

PARAMETER			QUA	NTITY OR LOADIN	IG .	QUAL	TY OR CONCENTR	ATION		NO.	FREQUENCY	SAMPL
	<u> </u>	\searrow †	"AVERAGE	MAXIMUM	UNITS	. MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	OF ANALYSIS	TYPE
NOEL STAT 7DAY CHR C ERIODAPHNIA	SAMP MEASURE	The second second	*****	*****		100	共和非共和	*****	(% 23)	0	01/30	СР
TBD3B 1 0 0 EFFLUENT GROSS VALUE	PERM REQUIRE	CONTRACTOR SECURITION	然为体验 有40	नी के के से से प्रकार	*** ****	REPORT DAILY MN	非非非非非	*****	PER- CENT		DNCE/ MONTH	COMP
VCAEL STAT 48HR ACU CERIODAPHNIA	SAMP MEASURE		排井存款的	*****		NODI [8]	*****	****	(53)	14.12		
TDAGE 1 0 0 EFFLUENT GROSS VALUE	PERM REQUIRE		神女女女女	्र अन्तरकार अन्तर ्श	***	REPORT DAILY MN	*****	新华州市 中亚	PER- CENT		ONCE/ HONTH	COMPI
NUAEL STATRE 48HR AC J.D. PULEX	SAMP MEASURE	100	******	*****		100	*****	****	%23)	0	01/30	CP
TDMGD 1 0 0 EFFLUENT GROSS VALUE	PERM REQUIRE	CO. 1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (*****	不补偿的分别 湖	*** ****	35 DAILY MN	*****	**************************************	'ER- GENT		INCEZ MONTH	COMP
	SAMP MEASURE								34,000			
	PERM REQUIRE		Appendix of the control of the contr				1	Section 1. Control of the second			4, 223, 245	
	SAMP MEASURE								1			
	PERM REQUIRE	(5) (5) (5) (5) (5) (6) (6) (6) (6) (6) (6) (6) (6) (6) (6										
	SAMP MEASURE											
	PERM REQUIRE	100000000000000000000000000000000000000								- u u-		
	SAMP MEASURE											
	PERM REQUIRE											
NAME/TITLE PRINCIPAL EXECUTIVE	OFFICER	I certify an	nder penalty of law that the	s document and all attachs	nents were				TELEPHON	F	DA	TE
Michael T. Carroll submitted. Mgr. Pittsfield Remediation Prog. or those pe			hat qualified personnel pro Based on my inquiry of the ersons directly responsible is, to the best of my know	perly gather and evaluate he person or persons who n for gathering the informati edge and belief, true	the information namage the system on, the informat	n. W-7.	Cand	41	448-59			8 2 9
TYPED OR PRINTED		I am awar Including	e that there are significant the possibility of fine and in	penalties for submitting fal aprisonment for knowing a	se information, loistions.		TURE OF PRINCIPAL EXECUTIVE		NUMBER		YEAR M	1

MONTHLY DRY WEATHER TESTING. COMPOSITE PROPORTIONATE TO FLOW FOR JULY, AUG., SEPT. REPORT ACUTE AND SEE DMR SUMC FOR QUARTERLY WET WEATHER ACUTE. CHRONIC.

SUBMIT THIS DMR WITH A NODI '9' WHEN SUBMITTING

WIT WEATHER RESULTS ON DIR SUMO

00232/0501134-partform.

OF

Attachment C

Toxicity Evaluation of Wastewaters
Discharged From the General Electric
Plant; Pittsfield, Massachusetts
[Samples Collected in August 2005]

NPDES Permit No. MA000 3891 SGS ID number: TA5-H0-P334 September 02, 2005 Page 1

Toxicity Evaluation of Wastewaters Discharged from The General Electric Plant Pittsfield, Massachusetts

Samples collected in August 2005

Submitted to:

General Electric Area Environmental & Facility Programs 100 Woodlawn Avenue Pittsfield, Massachusetts 01201

SGS Sample ID: TA5-H0-P334

Study Director: Ken Holliday

02 September 2005

SGS Environmental Services
1258 Greenbrier Street
Charleston, West Virginia 25311-1002
Tel: 304.346.0725 Fax: 304.346.0761
www.sgs.com

Signatures and Approval

Submitted by:

SGS Environmental Services

1258 Greenbrier Street

Charleston, West Virginia 25311-1002

Tel: 304.346.0725 Fax: 304.346.0761

www.sgs.com

Ken Holliday

Study Director

ken_holliday@sgs.com

September 02, 2005

Date

Titshina L. Mims

Technical Writer

September 02, 2005

Date

Barbara Hensley

Project Manager

barbara_hensley@sgs.com

September 02, 2005_

Date

Whole Effluent Toxicity Test Report Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Execu	hatı	on:
	1161	() ! ! .

September 02, 2005

Date

Authorized signature

Jĕannie Latterner

Name

QA/QC Manager

Title

SGS Environmental Services

Laboratory

Table of Contents

	<u>Page</u>
Signatures and Approval	2
Whole Effluent Toxicity Test Report Certification	3
Summary	6
1.0 Introduction	7
1.1 Background	7
1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977)	8
1.3 Objective of the General Electric Study	8
2.0 Materials and Methods	9
2.1 Protocol	9
2.2 Effluent Sample	9
2.3 Dilution Water	10
2.4 Reference Control Water	10
2.5 Test Organisms	11
2.6 Test Procedures	11
2.7 Test Monitoring	12
2.8 Reference Toxicity Tests	13
3.0 Statistics	14
Flowchart for determination of the LC50	15
4.0 Results	16
4.1 Effluent Toxicity Test	16
4.2 Reference Toxicity Test	16
Reference Documents	17
Appendix I - References	22
Appendix II – Chain of Custody	40
Appendix III - Bench Data	42
Appendix IV - U.S. EPA Region I Toxicity Test Summary	48

List of Tables

		Page
		18
Table 1	Methods and detection limits of chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)	
Table 2	Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)	19
Table 3	The water quality measurements recorded during the 48-hour static toxicity test exposing <i>Daphnia pulex</i> to General Electric Pittsfield Plant effluent	20
Table 4	Cumulative percent mortalities recorded during the 48-hour static toxicity test exposing <i>Daphnia pulex</i> to General Electric Pittsfield Plant effluent	21

Summary

Static Acute Toxicity Test with *Daphnia pulex*

Sponsor:

General Electric

Protocol Title:

Acute Aquatic Toxicity Testing, SGS Document

Control Number 7002, version 5.0

SGS Study Number:

TA5-H0-P334

Test Material:

Composite effluent from the General Electric

Company located in Pittsfield, Massachusetts

GE Sample ID:

A6668C

Dilution Water:

Water from the Housatonic River (grab sample)

GE Sample ID:

A6667R

Dates Collected:

August 14, 2005 to August 15, 2005

Date Received:

August 16, 2005

Test Dates:

August 16, 2005 to August 18, 2005

Test Concentrations:

100% effluent 75% effluent 50% effluent 35% effluent 15% effluent 5% effluent

dilution water control reference control

secondary reference control (sodium thiosulfate)

Results:

The 48-hour LC50 value was determined to be

>100% effluent. The No-Observed-Acute-

Effect-Level (NOAEL) was observed to be 100%

effluent.

1.0 Introduction

1.1 Background

In 1972, amendments were made to the Clean Water Act (CWA) prohibiting the discharge of any pollutant from a point source to waters of the United States, unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Since the passing of the 1972 amendments to the CWA, significant progress has been made in cleaning up industrial process wastewater and municipal sewage.

The purpose of the National Pollutant Discharge Elimination System (NPDES) Program is to protect human health and the environment. The Clean Water Act requires that all point sources discharging pollutants into waters of the United States must obtain an NPDES permit. By point sources, EPA means discrete conveyances such as pipes or man made ditches.

For many years, discharge limits were based on available technology for wastewater treatment. However, in 1984, the U.S. Environmental Protection Agency (EPA) released a national policy statement entitled "Policy for the Development of Water Quality-Based Permit Limitations for Toxic Pollutants" (U.S. EPA, 1984) which addresses the control of toxic pollutants beyond technology-based requirements in order to meet water quality standards. To implement the new policy, guidance was provided to the respective state and regional permit personnel in the EPA's "Technical Support Document for Water Quality-Based Toxics Control" (U.S. EPA, 1985; U.S. EPA, 1991). The EPA's policy statement and the support document recommended that, where appropriate, permit limits should be based on effluent toxicity as measured in aquatic toxicity tests.

1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977)

The Clean Water Act is a 1977 amendment to the Federal Water Pollution Control Act of 1972, which set the basic structure for regulating discharges of pollutants to waters of the United States. The law gave EPA the authority to set effluent standards on an industry basis (technology-based) and continued the requirements to set water quality standards for all contaminants in surface waters. The CWA makes it unlawful for any person to discharge any pollutant from a point source into navigable waters unless a permit (NPDES) is obtained under the Act. The 1977 amendments focused on toxic pollutants. In 1987, the CWA was reauthorized and again focused on toxic substances, authorized citizen suit provisions, and funded sewage treatment plants (POTWs) under the Construction Grants Program. The CWA provisions for the delegation by EPA of many permitting, administrative, and enforcement aspects of the law to state governments. In states with the authority to implement CWA programs, EPA still retains oversight responsibilities.

1.3 Objective of the General Electric Study

The objective of this study was to measure the acute toxicity of the composite wastewater discharged by the General Electric facility located in Pittsfield, Massachusetts, using *Daphnia pulex* under static conditions. Whereas *D. pulex* are not considered locally important, they are routinely used by regulatory agencies and contract laboratories nationwide for toxicity testing. A toxicity test was conducted from August 16, 2005 to August 18, 2005 at SGS Environmental Services, Charleston, West Virginia. All original raw data and the final report produced for this study are stored in SGS's archives at the above location.

2.0 Materials and Methods

2.1 Protocol

Procedures used in this acute toxicity test followed those described in the SGS Standard Operating Procedure (SOP) entitled *Acute Aquatic Toxicity Testing*, SGS document control number 7002, version 5.0. This SOP generally follows the standard methodology presented in *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (5th Edition EPA-821-R-02-012 U.S. EPA, Cincinnati, Ohio.) Additional SOPs used in this study are outlined below:

Title	Document Number	Version
Culture Waters for Aquatic Toxicity Testing	7005	4.0
Culture of <i>Daphnia</i>	7006	5.0
Reference Toxicant Testing	7008	5.0
Sample Handling for Aquatic Toxicity Testing	7009	4.0

Copies of these documents are included in the References section of this report.

2.2 Effluent Sample

The effluent sample (A6668C) was collected by GE personnel August 14, 2005 to August 15, 2005. Upon receipt at SGS on August 16, 2005, the sample temperature was 4.0° C. The effluent sample was characterized as having

Parameter	Result
Total Hardness	300
Alkalinity (as CaCO₃)	161
pH	6.72
Specific Conductance	722
Dissolved Oxygen Concentration*	8.04

^{*}Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 20°C).

The effluent sample was observed to be clear and colorless.

2.3 Dilution Water

Dilution water consisted of receiving water collected from the Housatonic River. The receiving water (A6667R) was collected by General Electric personnel on August 15, 2005. Upon receipt at SGS on August 16, 2005, the sample temperature was 4.0°C. The dilution water was characterized as having

Parameter	Result
Total Hardness	260
Alkalinity (as CaCO₃)	156
pH	6.82
Specific Conductance	402
Dissolved Oxygen Concentration*	8.75

^{*}Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 20°C).

The dilution water sample was observed to be slightly cloudy with a straw color.

2.4 Reference Control Water

Water used in the reference control vessels was deionized (DI) water adjusted to the appropriate hardness (moderately hard reconstituted water) by the addition of reagent grade chemicals (U.S. EPA, 1993). Characterization of this water resulted in:

Parameter	Result
Total Hardness	100
Alkalinity (as CaCO ₃)	67
pH	7.08
Specific Conductance	307
Dissolved Oxygen	8.74

2.5 Test Organisms

Daphnids (*Daphnia pulex*), less than 24-hours old, were obtained from SGS laboratory cultures maintained in Charleston. The culture system consisted of twenty-four (24) 100 ml disposable plastic beakers each containing 80 ml of culture medium and one (1) daphnid. The culture medium was deionized (DI) water for which the hardness was raised by addition of reagent grade chemicals (U.S. EPA, 1993). Prior to use, the culture water was characterized:

Parameter	Result					
Total Hardness	within range of 80-110 mg/L					
Alkalinity (as CaCO ₃)	within range of 60-70 mg/L					
pH	within range of 7.0 to 7.2					

The culture area was maintained at a temperature of 20° C (\pm 1° C) with a regulated photoperiod of 16 hours of light and 8 hours of darkness.

Daphnid cultures were fed a combination of green algae ($Selanastrum \, capricorium$), approximately 4.0 x 10^7 cells/ml) and YCT (yeast, cereal leaves and trout chow). Approximately 1.0 ml of algae and 0.5 ml of YCT was added to each culture vessel daily. Three times per week, daphnids are transferred to fresh culture media.

Approximately twenty-four hours before test initiation, all immature daphnids were removed from the culture flasks. Offspring produced during the period were used in the toxicity test.

2.6 Test Procedures

A subsample of the effluent and the dilution water (approximately 2250 ml) was analyzed by SGS for total phosphorus, chloride, total suspended solids, and total solids. The 48-hour toxicity test was conducted at concentrations of 100%, 75%, 50%, 35%, 15% and 5% effluent. Test concentrations were prepared by

diluting the appropriate volume of effluent with dilution water to a total volume of 250 ml. Test solutions were then divided into replicate (5 replicates per concentration) 30 ml medicine cups, each containing 20 ml of test solution. One set of five control beakers (containing Housatonic River water) and one set of five reference control beakers (containing moderately hard reconstituted water) were established and maintained under the same conditions as the exposure concentrations. A secondary set of five reference control beakers (containing sodium thiosulfate) was also maintained. Test solutions were placed in an incubator to maintain solution temperature of 20° C (\pm 1° C). Light was provided on a 16-hour light and 8-hour dark photoperiod. Florescent bulbs provided an illumination of 90 to 100 foot-candles in the test area.

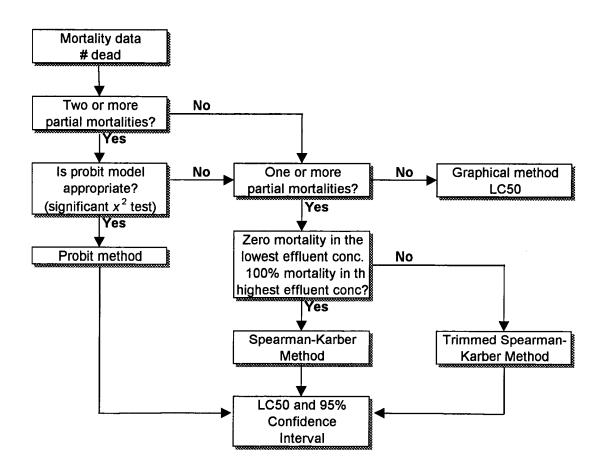
Prior to test initiation, daphnids less than 24-hours old were culled individually with a plastic pipette and placed into a 1000 ml holding beaker containing approximately 500 ml of reference water. The test was initiated when daphnids were individually transferred from the holding beaker to the test solutions (4 daphnids per replicate). The daphnids were fed prior to test initiation but were not fed during the exposure period.

2.7 Test Monitoring

The number of mortalities and observations in each replicate vessel were recorded at 24 and 48 hours of exposure and observed mortalities were removed from the test solutions. Biological observations and observations from the physical characteristics of each replicate test solution and control were also made and recorded at 0, 24 and 48 hours. Dissolved oxygen concentrations pH and temperature were measured at test initiation and at 24-hour intervals thereafter, in one replicate vessel (a) for each test concentration in which there were surviving organisms.

Total hardness concentrations were measured by the EDTA titrimetric method and total alkalinity concentrations were determined by potentiometric titration to an endpoint of pH 4.5 (APHA, 1989). Total residual chorine was measured by Hach test. Concentrations of ammonia were determined using a Buchi model 212 distillation unit and titrated automatically with a Brinkman titroprocessor. Specific conductivity was measured with a Cole Palmer Model 71250 salinity-conductivity-temperature meter and probe; pH was measured with a Fisher Scientific Accumet 910 pH meter and combination electrode; dissolved oxygen concentration was measured with an YSI Model 59 dissolved oxygen meter. Daily temperature measurements were performed with a Princo mercury thermometer and a Fisher minimum-maximum thermometer. Light intensity was measured with a General Electric type 217 light meter.

2.8 Reference Toxicity Test


A 48-hour reference toxicity test exposing *Daphnia pulex* to sodium chloride (NaCl) was conducted from August 16, 2005 to August 18, 2005. The reference test was conducted to establish the health of the test organisms. The reference toxicity test included five NaCl concentrations and a dilution water control (moderately hard reconstituted water). The nominal NaCl concentrations for the test with *Daphnia pulex* ranged from 625 to 10,000 mg of NaCl/L. Test methods were the same as those described above for the effluent test.

3.0 Statistics

The concentration-response relationships observed were characterized by the median lethal concentrations (LC50), which is the concentration that is calculated to be lethal to 50 percent of the organisms within the test period. If no concentration caused mortality of 50%, then the LC50 value was determined to be greater than the highest concentration tested and no statistical analysis were performed. If at least one concentration caused mortality of greater than 50% of the test population, then a computer program (TOXSTAT 3.5) was used to calculate the LC50 value. Three statistical methods were available in the computer program: probit analysis, the Trimmed Spearman-Karber, and the Spearman-Karber methods. The graphical method is available if appropriate. Generally, to choose the best estimate of the LC50 value for a particular data set, the U.S. EPA flow chart on page 15 was followed.

The No-Observable-Acute-Effect-Level (NOAEL) was estimated for the acute toxicity test, and is defined as the highest concentration of effluent that produced $\geq 90\%$ survival.

Flowchart 1. Determination of the LC50 from a Multi-Effluent-Concentration Acute Toxicity Test

Flowchart for determination of the LC50 for multi-effluent-concentration acute toxicity tests.

4.0 Results

4.1 Effluent Toxicity Test

The methods and detection limits of chemical analyses performed on the composite effluent sample and dilution water are summarized in Table 1. Results of the characterization and analysis of the effluent and the dilution water are presented in Table 2. Water quality parameters measured during the toxicity test are presented in Table 3. Daily and continuous monitoring of the test solutions established the temperature ranged from 19°C to 21°C throughout the exposure period. The effluent concentration was tested (expressed as %) and the corresponding percent mortalities recorded during the 48-hour toxicity test are presented in Table 4. Significant toxicity was not demonstrated in this examination. Based on the results of this study, the 48-hour LC₅₀ value was >100% effluent. The NOAEL value for this study was determined to be 100% effluent.

4.2 Reference Toxicity Test

SGS uses sodium chloride (NaCl) as a reference toxicant. The reference test was conducted from August 16, 2005 to August 18, 2005, and the resulting 48-hour LC50 was estimated by Trimmed Spearman-Karber Method to be 2176 mg NaCl/L (95% confidence intervals of 1821 to 2601 mg NaCl/L).

References

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17th Edition.
- U.S. Environmental Protection Agency. 1984. Development of water Quality-Based Permit Limitations for Toxic Pollutants. Federal Register 49(48): 90160-90190.
- U.S. Environmental Protection Agency. 1985. Technical Support Document for Water Quality-Based Toxics Control. Office of Water, Washington, DC.
- U.S. Environmental Protection Agency. 1991. Technical Support Document for Water Quality-Based Toxics Control. Office of Water, Washington, DC.
- U.S. Environmental Protection Agency. 5th Edition. *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms*. EPA-821-R-02-012.

Table 1. Methods and detection limits of chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River).

<u>Parameters</u>	Method	Detection Limits
Ammonia Nitrogen as N	EPA 350.2	1.0 mg/L
Chloride	EPA 325.2	1.0 mg/L
Total Organic Carbon	EPA 415.1	1.0 mg/L
Total Solids	EPA 160.3	10.0 mg/L
Phosphorus, Total as P	Standard Methods 4500-P	0.020 mg/L
Total Residual Chlorine	Standard Methods 4500-Cl G	0.01 mg/L
Total Suspended Solids	EPA 160.2	5.0 mg/L

Results of the characterization and analyses of the General Table 2. **Electric Pittsfield Plant effluent and the dilution water** (Housatonic River).

Parameter	Effluent (A6668C)	Housatonic River (A6667R)
Temperature	20.5°C	20.5°C
рН	6.72	6.82
Alkalinity (as CaCO₃)	161 mg/L	156 mg/L
Hardness (as CaCO₃)	300 mg/L	260 mg/L
Dissolved Oxygen	8.04 mg/L	8.75 mg/L
Specific Conductivity	722 μmhos/cm	402 μmhos/cm
Salinity	N/A	N/A
Total Residual Chlorine	ND	ND
Ammonia as N (0-Hour)	ND	ND
Total Phosphorus as P	0.12 mg/L	0.021 mg/L
Chloride	80 mg/L	23 mg/L
Total Suspended Solids	17 mg/L	ND
Total Solids	450 mg/L	240 mg/L
Total Organic Carbon	7.6 mg/L	4.1 mg/L

Dissolved oxygen concentrations recorded after samples were aerated and warmed to approximately 20°C.

N/A = not applicable ND = non detectable

Table 3. The water quality measurements recorded during the 48-hour static toxicity test exposing *Daphnia pulex* to General Electric Pittsfield Plant effluent.

Matrix ↓		рН		Dissolved Oxygen (mg/L)			Temperature (°C)		
	0	24	48	0	24	48	0	24	48
Reference Control	7.08	7.15	7.19	8.74	8.67	8.57	20.5	19.7	20.2
Secondary Ref Control	7.13	7.19	7.20	8.80	8.64	8.51	20.5	19.7	20.2
Dilution Water Control	6.82	6.89	6.93	8.75	8.68	8.60	20.5	19.7	20.2
5% Effluent	6.82	6.87	6.90	8.64	8.51	8.40	20.5	19.7	20.2
15% Effluent	6.80	6.85	6.84	8.51	8.43	8.32	20.5	19.7	20.2
35% Effluent	6.77	6.75	6.83	8.40	8.38	8.31	20.5	19.7	20.2
50% Effluent	6.75	6.80	6.84	8.27	8.19	8.20	20.5	19.7	20.2
75% Effluent	6.73	6.79	6.81	8.20	8.17	8.21	20.5	19.7	20.2
100% Effluent	6.72	6.79	6.83	8.04	8.11	8.17	20.5	19.7	20.2

Dissolved oxygen, pH and temperature were measured in one replicate test chamber (A) for each concentration and controls.

The appearance of the effluent was clear, with some sediment.

Reference Control

= moderately hard synthetic water

Secondary Control

= moderately hard synthetic water and 0.1 N sodium thiosulfate

(Na₂S₂O₃)

Dilution Water Control

= receiving water collected from the Housatonic River

Table 4. Cumulative percent mortalities recorded during the 48-hour static toxicity test exposing *Daphnia pulex* to General Electric Pittsfield Plant effluent.

		Cumulative Percent Mortality (%)										
	-		2	4-Ho	ur		48-Hour					
Test Matrix ↓	A	В	С	D	E	Mean	A	В	С	D	E	Mean
Reference Control	0	0	0	0	0	0	0	0	0	0	0	0
Secondary Ref Control	0	0	0	0	0	0	0	0	0	0	0	0
Dilution Water Control	0	0	0	0	0	0	0	0	0	0	0	0
5% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
15% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
35% Effluent	0	0	0	. 0	0	0	0	0	0	0	0	0
50% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
75% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
100% Effluent	0	0	0	0	Ö	0	0	0	0	0	0	0

Reference Control
Na₂S₂O₃ Control
Dilution Water Control

= moderately hard synthetic water

= moderately hard synthetic water and sodium thiosulfate (0.1 N)

Vater Control = receiving water collected from the Housatonic River

Appendix I References

Document Title:

Acute Aquatic Toxicity Testing

Method Reference: **Document File Name:**

SGS/USEPA 7002-05.DOC

Revision Number:

5.0

Effective Date: Review Date

May 17, 2005

May 17, 2005

White Kity Malatel

Page 1 of 6

Document Control Number:

7002.05

Approved by: Supervisor

Approved by: Supervis

5-17-05 Date

1.0 SUMMARY

A 24-, 48-, or 96-hour test to determine the toxicity to freshwater aquatic animals of effluents.

2.0 REFERENCES

- Weber, Cornelius I., Methods for Measuring the Acute Toxicity of Effluents and 2.1 Receiving Waters to Freshwater and Marine Organisms., Fifth Edition. EPA-821-R-02-012. U.S.EPA, Cincinnati, Ohio.
- Reporting and Testing Guidance for Biomonitoring Required by the Ohio 2.2 Environmental Protection Agency, October, 1991.
- 2.3 Toxics Management Program's Guidance for Conduction and Reporting the Results of Toxicity Tests in Fulfillment of VPDES Permit Requirements, Revised July 1992.

3.0 SCREENING

3.1 **Test Duration**

24 Hours, 48 Hours or 96 Hours.

3.2 Test Preparation

Measure the pH, D.O. and total residual chlorine of the 100% effluent and the control water. If the effluent pH falls outside of the range of 6.0-9.0, two parallel tests are set up in which one effluent is adjusted and the other is not. The pH is adjusted to 7.0 using additions of 1N NaOH and HCl, (other pH adjustment endpoints may be utilized depending on local requirements). The measured amount of acid or base is recorded on the bench sheet. If the D.O. is below 40% saturation or above 100% saturation, the effluent is aerated prior to test initiation. If the total chlorine is above 0.1 mg/L, two parallel tests are set up in which one effluent is dechlorinated and the other

Document Title:

Acute Aquatic Toxicity Testing

Method Reference: Document File Name:

SGS/USEPA 7002-05.DOC

Revision Number:

5.0

Effective Date: Review Date

May 17, 2005 May 17, 2005

UNCONTROLLED

Page 2 of 6

Document Control Number:

7002.05

is not (Dechlorination may be prohibited; permit is checked to determine if dechlorination is allowed). The effluent is dechlorinated by the addition of anhydrous sodium thiosulfate. The measured amount is recorded on the bench sheet. Care is taken to add the least amount of sodium thiosulfate needed to decrease the TRC level below 0.10 mg/L. Typically, adjustment of effluent is unnecessary.

- 3.2.2 Twenty organisms per concentration are used in acute screening tests.
- 3.2.3 This is a static, non-renewal test, using *Ceriodaphnia dubia, Daphnia pulex, Daphnia magna*, or *Pimephales promelas* (Fathead minnow).
- 3.2.4 Water quality (D.O., pH, conductivity, hardness, alkalinity and TRC), is measured at the time of test initiation. At test termination, temperature, D.O. conductivity and pH are measured. The final mortality and percent effected counts are recorded. Temperature is maintained at 25°± 1°C for Daphnia, and 20° ± 1°C for fathead minnows. Facilities exist to perform both fish and Daphnia tests at either temperature.
- 3.3 Test Results

No statistical analysis is performed on screening data.

4.0 DEFINITIVE TEST

- 4.1 Pimephales promelas (Fathead Minnows)
 - 4.1.1 Test Duration

48-Hours or 96-Hours

- 4.1.2 Static non-renewal
- 4.1.3 Test Preparation
 - 4.1.3.1 This test is comprised of a control and an effluent dilution series usually consisting of 100%, 50%, 25%, 12.5% and 6.25% (unless otherwise indicated).
 - 4.1.3.2 The sample is brought up to test temperature in a room temperature water bath. Chemical parameters are checked and recorded. If the pH, D.O. or chlorine fall outside the acceptable

Document Title:

Acute Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7002-05.DOC

Revision Number:

5.0

Effective Date: Review Date

May 17, 2005 May 17, 2005

Document Control Number:

Eller Mart Cot LETS

7002.05

Page 3 of 6

testing range, the effluent may be adjusted (see screening; Test Preparation).

- 4.1.3.3 The dilutions are prepared in calibrated graduated cylinders using moderately hard synthetic water as dilution water. Other dilution water may be used if specified.
- 4.1.3.4 Approximately 400 ml of test solution is placed in each of two 800 ml disposable plastic beakers.

4.1.4 Loading

Ten (10) organisms are placed in each beaker. SGSuses fish which are less than 14 days old and are hatched within the same 24 hour period. A loading limit of 0.8 g/l is observed. Fish are loaded by first transferring them to a shallow dish where they are easily transferred into the test solutions with wide-bore pipettes.

4.1.5 Test Temperature

20° C (± 1)

4.1.6 Daily Procedures

- 4.1.6.1 At the end of each 24 hours, the pH, D.O. and temperatures are checked and recorded. At this time mortalities are also recorded.
- 4.1.6.2 If a 96 hour static acute test is required, the test solution may be renewed at 48 hours. Renewal is accomplished by siphoning old test solution and debris and replacing with fresh solution of the appropriate concentration.
- 4.1.6.3 At the end of 48 hours or 96 hours the final mortalities and percent affected are recorded along with the final water qualities (D.O., pH, conductivity).

4.1.7 Feeding

Organisms are allowed to feed only prior to test initiation, and prior to renewal at 48 hours in a 96 hour test.

AEC

SGS Environmental Services Inc. Standard Operating Procedure

Document Title:

Acute Aquatic Toxicity Testing

Method Reference:

SGS/USEPA 7002-05.DOC

Document File Name: Revision Number:

5.0

Effective Date: Review Date

May 17, 2005

May 17, 2005

UMCCAPTECALES.

Page 4 of 6

Document Control Number:

7002.05

- 4.2 Ceriodaphnia dubia, Daphnia magna, and Daphnia pulex
 - 4.2.1 Test Duration

48-Hours

- 4.2.2 Static Non-renewal
- 4.2.3 Test Preparation
 - 4.2.3.1 This test is comprised of a control and a dilution series consisting of 100%, 50%, 25%, 12.5% and 6.25% of the effluent (unless otherwise indicated).
 - 4.2.3.2 The sample is brought up to test temperature in a room temperature waterbath. Chemical parameters are checked and recorded. If the pH, D.O. or chlorine fall outside the acceptable testing range, the effluent may be adjusted (see screening; Test Preparation).
 - 4.2.3.3 The dilutions are prepared in beakers using moderately hard synthetic water (see Section II; Dilution Waters and Culture Media), unless other dilution water is specified. At least 25 ml. of each dilution are placed in five 30 ml. testing vessels.

4.2.4 Loading

4.2.4.1 Four organisms are placed in each vessel. The *Daphnids* are loaded with a disposable polyethylene transfer pipette and are gently released below the surface of the water to avoid the risk of injury.

4.2.5 Test Temperature

The test is conducted in a constant temperature incubator at 25° ±1° C(To satisfy local requirements tests may be conducted at other temperatures).

Document Title:

Acute Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7002-05.DOC

Revision Number:

5.0

Effective Date: Review Date

May 17, 2005

May 17, 2005

Document Control Number:

UNCONTROLLED

7002.05

Page 5 of 6

4.2.6 Daily Procedure

- 4.2.6.1 At 24 and 48 hours the mortalities and number adversely effected are noted.
- 4.2.6.2 Due to the fragile structure of *Daphnia* organisms, dissolved oxygen, hardness alkalinity, specific conductance and pH readings are not taken after the organisms have been added to the sample. These analyses could cause injury to the *Daphnia* organisms.

4.2.7 Photoperiod

16 hours light, 8 hours dark.

4.2.8 Feeding

Organisms are allowed to feed prior to test initiation; they are not fed for the duration of the test.

5.0 TEST DATA

- 5.1 Pimephales promelas, Ceriodaphnia dubia, Daphnia magna and Daphnia pulex
 - 5.1.1 Mortality and adverse effects are used as the endpoints for a definitive test.
 - 5.1.2 Chemical parameters checked before test initiation, at 24 hours, 48 hours, 72 hours and 96 hours.
 - 5.1.3 Mortalities recorded at 24 hours, 48 hours, 72 hours and 96 hours.
 - 5.1.4 Any atypical behavior or complications are recorded.

6.0 DATA ANALYSIS

6.1 Introduction

Data from acute effluent toxicity tests are used to estimate the LC50 and EC50. The LC50 is a point estimate of the effluent concentration that is expected to cause lethality to 50% of the test organisms. The EC50 is a point estimate of the effluent concentration that is expected to cause and adverse effects to 50% of the test organisms.

26

Document Title:

Acute Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7002-05.DOC

Revision Number:

5.0

Effective Date: Review Date

May 17, 2005 May 17, 2005 CHICANTROLLED Compa

Page 6 of 6

Document Control Number:

7002.05

6.2 Methods for Estimating the LC50 & EC50

- 6.2.1 The flow chart (Figure 6) on page 73 of the manual, Methods for Measuring the Acute Toxicity of Effluents and Receiving Water to Freshwater and Marine Organisms (Fifth Edition), EPA-821-R-02-012, Appendix A is observed for determination of the LC50 for multi-concentration acute toxicity tests.
- 6.2.2 Several statistics packages, including Toxstat® 3.4, are available for data analysis.

7.0 REPORT PREPARATION

- 7.1 SGS Acute Toxicity Test Reports Typically Contain the Following Information:
 - 7.1.1 Test background information Includes client, NPDES or state permit number, sampling point reference number, date collected and received, collector's name, type and date of test, dilution water used, test results, and chain of custody forms.
 - 7.1.2 Results LC50 & EC50 values and analysis method used; Any comments concerning the test results.
 - 7.1.3 Initial Characterization of the Effluent Sample Raw Data Sheets: Includes dissolved oxygen (DO), pH, specific conductivity, hardness, alkalinity and a description of the sample source.
 - 7.1.4 Reference Toxicity Data

Document Title:

Culture Waters for Aquatic Toxicity Testing

Method Reference: Document File Name:

SGS/USEPA 7005-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998

May 17, 2005

UNGUNTUCLED

Page 1 of 3

Document Control Number:

7005.04

Approved by:

Supervisor

D-4-

Approved by:

QUOC Officer

5-17-05

1.0 Summary

This document describes the preparation of various waters used for the culture of aquatic organisms.

2.0 Moderately-Hard Synthetic Water

- 2.1 Place 19 liter of de-ionized, or equivalent, water in a properly cleaned and labeled plastic carboy.
- 2.2 Add 1.20 g of MgSO₄, 1.92 g NaHCO₃ and 0.08g KCl to the carboy.
- 2.3 Aerate overnight.
- 2.4 Add 1.20 g of CaSO₄·2H₂O to 1 liter of de-ionized or equivalent water in a separate flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 19 liter above and mix well.
- 2.5 Aerate vigorously for 24 hours to stabilize the medium.

3.0 Hard Synthetic Water

- Place 9 liter of de-ionized, or equivalent, water in a properly cleaned and labeled plastic carboy.
- 3.2 Add 1.20 g of MgSO₄, 1.92 g NaHCO₃ and 0.08g KCl to the carboy.
- 3.3 Aerate overnight.
- 3.4 Add 1.20 g of CaSO₄2H₂O to 1 liter of de-ionized, or equivalent water in a separate flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 9 liter above and mix well.
- 3.5 Aerate vigorously for 24 hours to stabilize the medium.

Document Title:

Culture Waters for Aquatic Toxicity Testing

Method Reference: Document File Name:

SGS/USEPA 7005-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998

May 17, 2005

Page 2 of 3

Document Control Number:

7005.04

4.0 **Synthetic Water Solutions**

4.1 **KCL Stock Solution**

- 4.1.1 Place 8 g of crystalline, reagent grade KCL in a 1 liter volumetric flask.
- 4.1.2 Bring the volume to one liter with distilled water.
- 4.1.3 Aerate vigorously for several hours before using.
- 4.1.4 Store in a 1 liter polyethylene bottle.

4.2 MgSO₄ Stock Solution

- Place 120 g of regent water, anhydrous MgSO₄ powder in a 1 liter 4.2.1 volumetric flask.
- 4.2.2 Bring the volume to one liter with distilled water.
- 4.2.3 Aerate vigorously for several hours before using.
- 4.2.4 Store in a 1 liter polyethylene bottle.

4.3 NaHCO₃ Stock Solution

- Place 96 g of reagent grade NaHCO₃ powder in a 1 liter volumetric flask. 4.3.1
- 4.3.2 Bring the volume to 1 liter with distilled water
- 4.3.3 Aerate vigorously for several hours before using.
- 4.3.4 Store in a 1 liter polyethylene bottle.

Activated Carbon Treated Tap Water Diluent 5.0

- Fill a 5-gallon carboy with water from the treatment system using the attached 5.1 hose. Water should be allowed to flow slowly through the hose into the sink for 2-3 minutes before filling the carboy. Flow rate to fill the carboy should be slow.
- One or two long airstones are placed in the filled carboy. Water is aerated 5.2 vigorously for 48-hours.
- Total residual chlorine must be checked on water from newly filled carboys before 5.3 using.
- Alkalinity, hardness and pH are checked on samples from dechlorinated water 5.4 carboys according to the Laboratory Procedure Checklist.
- Log information on the Dechlorinated Tap Water and Cechlorimeter log sheet 5.5 including the carboy number and date filled.

Document Title:

Culture Waters for Aquatic Toxicity Testing

Method Reference:

Document File Name:

SGS/USEPA 7005-04.DOC

Revision Number:

4.0

Effective Date:

October 20, 1998

Review Date:

May 17, 2005

Document Control Number:

7005.04

Page 3 of 3

6.0 Synthetic Sea Water Preparation

- 6.1 Fill a clean carboy with dechlorinated water to approximately the 25-gallon mark.
- 6.2 The newly filled carboy should be checked for the presence of chlorine and the results recorded on the saltwater carboy log sheet. If chlorine is present, two 4-inch airstones (adjusted to a moderately heavy air flow) should be introduced and the water aerated until a level of <0.01 mg/L is reached.
- 6.3 A sufficient amount of synthetic salt is added to the carboy to obtain the required salinity (usually 20 ppt).
- 6.4 All information should be logged on the Saltwater Carboy log sheet.

Document Title:

Culture of Daphnia

Method Reference: Document File Name:

SGS/USEPA 7006-05.DOC

Revision Number:

5.0

Effective Date: Review Date:

March 12, 2001

May 17, 2005

Page 1 of 3

Document Control Number: 7006

Approved by:

Supervisor

Date

Approved by:

payac Officer

5-17-05

1.0 Summary

This document describes the procedure for the culture of *Ceriodaphnia dubia*, *Daphnia pulex*, *Daphnia magna* that are used in aquatic toxicity testing.

2.0 Mass Stock Cultures of Ceriodaphnia dubia, Daphnia pulex, and Daphnia magna

- 2.1 Stock cultures are maintained in 1000 ml beakers/jars with 900 mls of culture media at 20 \pm 1° C. These cultures are maintained only as a back-up source of organisms.
- 2.2 Culture media for *Ceriodaphnia dubia* and *Daphnia pulex* is moderately-hard synthetic water. Culture media for *Daphnia magna* is hard synthetic water (see document control number 7005.04, "Culture Waters for Aquatic Toxicity Testing").
- 2.3 Many cultures are maintained simultaneously with an informal rotation cycle. New cultures are started with young produced by individual cultures. These cultures are maintained for approximately 3 weeks after which they are discarded.
- 2.4 Cultures are fed YCT (yeast, cerophyll, digested trout chow/flake food) and algae (Selanastrum capricorium) on Monday, Wednesday and Friday. Feeding, as well as culture rotation, temperature and all other relevant data is recorded by species in a log book.
- 2.5 Stock cultures are also fed algae and YCT. These feedings are recorded in the log book.

3.0 Individual Cultures of Ceriodaphnia dubia, Daphnia pulex, Daphnia magna

- 3.1 Cultures of *Daphnia magna* and *Daphnia pulex* are maintained in 100 ml plastic beakers. Twenty-four (24) beakers with one organism each are kept at all times to ensure continuous availability of neonates for testing. Cultures of individual *Ceriodaphnia dubia* are maintained in 30 ml sterile plastic medicine cups. One to two cultures of approximately 100 organisms each are kept at all times.
- 3.2 Cultures are renewed three times per week. Organisms are fed daily.

Document Title:

Culture of Daphnia

Method Reference:

SGS/USEPA 7006-05.DOC

Document File Name: Revision Number:

5.0

Effective Date: Review Date:

March 12, 2001 May 17, 2005

Page 2 of 3

MEDATROLLED

Document Control Number:

7006

4.0 Obtaining Neonates for Testing

- 4.1 Cultures of *Ceriodaphnia* are started by placing one neonate into a 30 ml disposable plastic cup containing approximately 20 ml of Moderately Hard Synthetic Water. New *Ceriodaphnia* cultures are started every ten to fourteen days. *D. magna* and *D. pulex* are replaced whenever mortality occurs.
- 4.2 The individual cultures are transferred to fresh media three times per week. Synthetic water, algae and YCT are mixed prior to pouring into culture vessel to ensure uniformity of media. The old media and neonates are kept for stock cultures for several weeks and then discarded.
- 4.3 To assure neonates for chronic tests are of a very similar age, transfer of individual brood stock to fresh media should be made the morning of the test. The cultures are then checked approximately every two hours to find an adequate number of neonates all released with an 8 hour period. For acute tests, individuals are either transferred less than 24 hours before a test or the young are separated from adults less than 24 hours before a test.
- Young used in chronic testing are obtained from adults who have produced at least three broods, with no less than 8 neonates in their third or subsequent brood. Neonates are then distributed in a "blocking" procedure, i.e., neonates from the same organism are placed in one replication of each concentration.

5.0 DAPHNIA Food

5.1 Digested Flake Food

- 5.1.1 Add 5g flake food to 1 L deionized water. Mix well in a blender and place in a 2 L separatory funnel. To digest, aerate this mixture at room temperature for one week.
- 5.1.2 At end of the digestion period, remove aeration and allow to settle.
- 5.1.3 Drain sediment. Place supernatant in a beaker and allow to settle in refrigerator overnight.
- 5.1.4 Filter through fine mesh.

32

Document Title:

Culture of Daphnia

Method Reference:

SGS/USEPA Document File Name: 7006-05.DOC

Revision Number:

5.0

Effective Date: Review Date:

March 12, 2001

May 17, 2005

Page 3 of 3

Document Control Number:

HALLONICALED

7006

5.2 Cerophyll®

- 5.2.1 Add 5g Cerophyll® to 1 L deionized water. Mix in a blender on high speed for 5 minutes
- 5.2.2 Remove from blender and allow to settle in refrigerator overnight.
- 5.2.3 Retain supernatant for combined YCT food.
- 5.3 Yeast
 - Add 5g dry yeast to 1 L deionized water. Mix in a blender at low speed. 5.3.1
 - 5.3.2 Do not allow mixture to settle.
- 5.4 Combined YCT Food
 - Mix equal parts of each of the above preparations in large clean beakers.
 - 5.4.2 Pour well mixed YCT into small screw cap bottles. Freeze until needed.

Document Title:

Reference Toxicant Testing

Method Reference:

SGS/USEPA

Document File Name: **Revision Number:**

7008-05.DOC 5.0

Effective Date: Review Date

July 31, 2001

May 17, 2005

Page 1 of 3

Document Control Number: 7008

Approved by: Supervisor Date

Approved by: Season Factoria 5-17-05

Approved by: Season Factoria 5-17-05

Date

1.0 Summary

> To insure that healthy organisms are used in testing, SGS performs monthly QA/QC tests on all in-house cultured organisms. SGS uses sodium chloride as a reference toxicant.

2.0 **Apparatus**

- 2.1 Disposible plastic beakers
- 2.2 Disposible plastic medicine cups
- 2.3 **Pipettes**
- 2.4 pH meter
- Dissolved oxygen (DO) meter 2.5

3.0 Reagents

- Moderately hard synthetic water (refer to document control number 7005, Culture 3.1 Waters for Aquatic Toxicity Testing)
- Sodium Chloride (NaCl), reagent grade, Baker 3.2

4.0 Method

Pimephales promelas (fathead minnows) 4.1

- 4.1.1 48-hour static acute toxicity tests are run at 20°C (±1°C) using fish that are from 1 to 14 days old.
- This test consists of a control and a dilution series of 10g/L, 9g/L, 8g/L, 7g/L, and 6g/L, of sodium chloride. Other dilution series may be used.

Document Title:

Reference Toxicant Testing

Method Reference:
Document File Name:

SGS/USEPA 7008-05.DOC

Revision Number:

5.0

Effective Date: Review Date

July 31, 2001 May 17, 2005 MICHAROLLED

Page 2 of 3

Document Control Number:

7008

- 4.1.3 The dilutions are prepared in 800 ml disposable plastic beakers using moderately hard synthetic water. 500 mls of test solution is placed in each of two replications. Water quality values are measured and recorded at this time.
- 4.1.4 Ten organisms are placed in each replicate. Fish are loaded by first siphoning them into a shallow pan from which they are transferred to the beakers with a large bore pipette.
- 4.1.5 The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

4.2 Daphnids (Ceriodaphnia dubia, Daphnia magna, Daphnia pulex)

- 4.2.1 48-hour static acute tests are performed at 25°C (±1°C) using organisms less than 24 hours old.
- 4.2.2 These tests consist of a control and a five dilution series. The concentration of the reference toxicant is varied depending on species.
 - 4.2.2.1 Ceriodaphnia dubia, Daphnia pulex:

dilutions of 3.0 g/L, 2.5 g/L, 2.0 g/L, 1.5 g/L, 1.0 g/L

4.2.2.2 Daphnia magna:

dilutions of 5.0 g/L, 4.0 g/L, 3.0 g/L, 2.0 g/L, 1.0 g/L

- 4.2.3 Dilutions are prepared using moderately hard synthetic water. 20 mls of each dilution are placed in each of 5 plastic medicine cups.
- 4.2.4 Four organisms are placed in each test vessel. The *Daphnids* are loaded with a disposable plastic pipette. Organisms are gently released below the surface of the water to minimize risk of injury.
- 4.2.5 The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

5.0 Data Analysis

5.1 Toxicity tests are conducted on a monthly basis.

35

SGS Environmental Services Inc. Standard Operating Procedure

Document Title:

Reference Toxicant Testing

Method Reference: Document File Name:

SGS/USEPA

Revision Number:

7008-05.DOC 5.0

Effective Date: Review Date

July 31, 2001 May 17, 2005 MADNITADLED

Page 3 of 3

Document Control Number:

7008

- 5.2 The median lethal concentration (LC₅₀) is calculated according to EPA protocols.
- 5.3 Results from these tests are incorporated into Q-sum charts. These records are kept in monthly files.

6.0 Definitions

6.1 Median lethal concentrations (LC_{50}) -- the concentration that is calculated to be lethal to 50 percent of the organisms within the test period.

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference: Document File Name:

SGS/USEPA 7009-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998

May 17, 2005

Page 1 of 3

Document Control Number:

7009.04

Approved by: Supervisor

Approved by: Security Fatterny

AVQC Officer Approved by:

1.0 Summary

This document describes the manner in which sample waters (effluents, wastewaters, etc.) are handled from point of collection to testing.

2.0 Sample Handling

2.1 Sampling Personnel

SGS's sampling personnel are trained and experienced in the techniques for collecting samples according to NPDES permit requirements. This includes the use of automatic sampling equipment and the measurement of various field parameters.

2.2 Sample Containers

Sample containers used by SGS are disposable plastic cubitainers®.

2.3 Sample Collection Points

For NPDES permit required tests, the sample will be collected at the point specified in the discharge permit unless otherwise directed by the regulatory agency.

2.4 Sample Shipment

Samples are placed on ice (sufficient to maintain 0-4°C) in a cooler and are transported as quickly as possible to the laboratory.

2.5 Laboratory Handling of Samples

Upon delivery to the laboratory, the effluent samples are inspected, given a sample control number and stored at 4° C until used for testing.

Document Title:

Sample Handling for Aquatic Toxicity Testing SGS/USEPA

Method Reference:
Document File Name:

7009-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998 May 17, 2005

The state of the s

Page 2 of 3

Document Control Number:

7009.04

2.6 Sample Holding Time

Samples will be tested within 24 hours upon receipt in the laboratory. The maximum lapsed time for collection of a grab or composite sample and the initiation of test, or for test solution renewal, will not exceed 36-hours for Chronic and Acute Testing.

3.0 LABORATORY ENVIRONMENT

3.1 Laboratory Arrangement

The aquatic toxicity testing laboratory is divided into two separate areas: (1) the culturing laboratory and (2) the testing laboratory. See attached diagram for details of laboratory layout.

3.2 Temperature

The aquatic toxicity testing laboratory air temperature is maintained at 20 \pm 1° C throughout the year by a central heating and cooling system which is regulated by thermostats. Temperatures are continuously recorded by thermographs.

3.3 Water

Several waters are available for use in the laboratory. SGS has access to municipally supplied water, well water and reagent water from which synthetic water is prepared. Waters used for culturing and testing are analyzed semiannually for priority pollutants and other contaminants. A detailed report is available.

3.4 Lighting

Ambient laboratory lighting is regulated with a 16 hour day/8 hour night photoperiod controlled by an electronic timing system in the culturing and testing areas.

4.0 LABORATORY EQUIPMENT

4.1 General

Instruments used for the measurement of physical and chemical parameters are calibrated prior to use in testing. Any instrument that exceeds the calibration limits is taken out of service and corrective action is taken.

37

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference:

SGS/USEPA 7009-04.DOC

Document File Name: Revision Number:

4.0

Effective Date:

October 20, 1998

Review Date: May 17, 2005

Document Control Number:

7009.04

Page 3 of 3

4.2 Balances

Analytical balances are calibrated against standard weights prior to use. All calibration results and adjustments are recorded in bound books.

4.3 **Water Quality Meters**

Meters are calibrated prior to use using known standards and the manufacturer's instructions. Records of calibration are kept in logbooks. Detailed procedures for the operation of these meters are found in SOP's for each specific instrument.

4.4 Reagents

All reagents are stored in a separate area. Expired reagents and chemicals are

4.5 **Test Containers**

All test containers are either clean reusable glassware or new, disposable plastic beakers.

5.0 **EQUIPMENT CLEANING PROCEDURES**

- Equipment used in culturing or testing is washed in the following manner: 5.1
 - Soak 15 minutes and scrub with detergent in tap water. 5.1.1
 - 5.1.2 Rinse three times with tap water.
 - 5.1.3 Rinse once with 20% nitric acid.
 - 5.1.4 Rinse twice with deionized water.
 - Rinse once with full-strength, pesticide-grade acetone. 5.1.5
 - 5.1.6 Rinse well with deionized water.
 - 5.1.7 Invert and air dry.
 - 5.1.8 All equipment and test chambers are rinsed with deionized water immediately prior to use for each test.

Appendix II Chain of Custody

TR-F-1334 1/2

Chain of Custody Record General Electric Co. 100 Woodlawn Ave. Pittsfield, MA 01201

Met Weather Acute Aquatic Toxicity for AUG 2665

Chain of Custody #: 0.065081505-01

Split Smple

# You ! O				AW 701 AUG	2002
NPDES PERMIT	Ana CT&E Enviror	Analytical Lab: CT&E Environmental Services Inc.	(Print) MAL MOCHES	9. 3- K.	
Sample #	Date	Time Containers	72	Preservative	Remarks
A668C	50/51/8 of 11/8	1100m	1 Gallon Definitive Test(LC50 and NOAEL), Static plastic acute toxicity, 48 hr w/ Daphnia pulex		(See below)
	to		1000 ml. Chloride, TSS,Total Solids, Alkalinity plastic Specific Conductance, CL2	Chilled	
	to	50x	500 ml. Total Phosphorus, TOC, NH3	H2S04	
A6667R	8/15/05	20 16.	1 Gallon Housatonic River water plastic dilution water for definitive test	Chilled	
		100	1000 ml. Chloride, TSS, Total Solids, Alkalinity plastic Specific Conductance, CL2	Chilled	
		Soo	500 ml. Total Phosphorus, TOC, NH3 plastic	H2S04	
Relinquished By:	ally be	NevTime P-15-05	Received BY:	Date/Time	004/
Relinquished By:	Bate/Time 8-1/S	8-15-05 1430	Received By:		2
Additional Comments: is a 24-hour composite	Additional Comments: The effluent sample being analyzed for is a 24-hour composite. The sample collection times for each	nalyzed for toxicity is se for each outfall are	toxicity is a flow-proportioned composite. Each outfall sample outfall are as follows:	sample	

005-64T. 709AM 005-64G. 759AM 007. 001. 705 004

The time of compositing the final flow-proportioned sample was

09B- 715 AM

we'd 8/10/2900 40°

Appendix III Bench Data

General Electric - 48-hour Acute Biotoxicity Bench Sheet

General Electric

Client:

TAS-40-P322-001/002 ပွ 50/91/80 20/01/80 Temp. Range: Z Date Analyzed: Date Received: Analyst(s): Lab. No.: <24 H 2> Age: Housatonic River Water かニ Time: 48-Hour Static Acute DRY Weather Acute Composite Daphnia pulex 20/51-11/00 Ett Wer + Source of dilution water: Sample Date: Test Species: Type of Test: Source: Project:

		· ,	
	Ending	08/18/65	(11.00
	Beginning	50/41/80	11.00
		Date:	Time:
	n/d	•	
Total Obline	lotal Chlorine:		

Concentration→	Housatonic River Control	MHSW	MHSW Na ₂ S ₂ O ₃ Control	Effluent 5%	Effluent 15%	Effluent 35%	Effluent 50%	Effluent 75%	Effluent 100%	
START										
Temperature	20.5	20.5	20.5	20.5	20.5	20.5	20.00			
Hardness	260	001	110		}		6.07	3	50.5	
D.0.	St. 8	77.00	08.0	17,0	1		,	,	300	
Hu	10.07	100	1 50	0 0	3 .	04.80	412	8.40	8.04	
Albalinity	100	7 100	4:13	70.0	6.80	440	5 t. 9	6.73	6.72	
Caramitty	9	t 9,	65						101	
sp. conduct.	402	307	317	227	444	155	4701	1,80	227	
24 HOUR						X		200	746	
No. Surviving	20	202	29	2	20	26	16	,		
Temperature	1.31	16.7	19.7	16.2	16.2	3 6	9 ;	9 :	67	
D.0.	85.8	208	49 8	, a	0 42	1000	4 9 9	14.4	16.7	
H	000	7	2 5	- 1	0 . 1	0.50	ב	Ø. +	æ E	
Condict	0.0	4 : 12	4 . [4	6.04	6.00	5± 9	6.80	6.79	e: 49	
AR HOLD	4.00	2/0	72.7	740	483	543	620	239	729	
ADDIT OF										
No. Surviving	97	20	8	a,	20	B	20	8	8/	
lemperature	20.2	70.7	7.02	20.2	20.2	70.02	20.2	76.2	20.2	
D.0.	8.60	8.57	8.51	9.40	8.32	20,00	02.8	0.7	a	
ЪН	6.93	4.19	7.20	690	48.9	6.83	48.84	100	1 200	
Sp. Conduct.	617	324	536	444	1441	556	639	06.0	1100	
							,			

Method Reference: *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms.*, Fifth Edition. EPA-821-R-02-012 U.S.EPA, f:\u00e4bulic\forms\bioassay\GE bench sheet-acute.doc

FOR REFERENCE, CITE:

HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

DATE: 08/16/05 TEST NUMBER: -

DURATION: 48 HOURS

SPECIES: PULEX

RAW DATA:

MORTALITIES:

CHEMICAL: NaCl

20 20 20 20 20 0 2 12 20 20

20

SPEARMAN-KARBER TRIM:

0.00%

SPEARMAN-KARBER ESTIMATES: LC50: 2176.38
95% LOWER CONFIDENCE: 1821.37
95% UPPER CONFIDENCE: 2600.58

Acute Biotoxicity Bench Sheet

Client:QC				
Project: Re Caenca	Toxicant	Lai	o. No.:	
Sample Date:	_ .		Date Received	
·	Time:		Date Analyzed	:
Source: NaCl			Analyst: \	<u> </u>
Source of dilution water:	Moderately Hard	Santhefic)		
Test Species: Daphn Type of Test: 48 Ho	· /	Λαοι	Temp. R	ange: °C
Total Chlorine:	1d		Beginning	Ending
		Date:	08/16/05	08/18/05
		Time:	1500	1500

Concentration	Control	625	1250	2800	600-	1
START			1 12.0	230	5000	10,000
Temperature	20.2	70.2	20.2	20.2	20.2	20.2
Hardness	100					110
D.O.	8.8	8.8	8.8	8.8	8.8	8.8
pH	7.1	7.2	7.2	7.2	7.2	7.2
Alkalinity	67		4	7.2	4.2	73
Sp. Conduct.	314	1680	2330	3920	8100	14240
24 HOUR		1 1000	2 330	0 (20	8100	14240
Temperature	20.4	20.6	20.4	20.6	20.4	20.6
No. Surviving	20	20	19	12	2	
48 HOUR			<u> </u>			<u> </u>
Temperature	19.7	19.7	19.7	19.7	19.7	19.77
No. Surviving	20	20	18	8	0	0

Note: All results expressed in mg/L unless otherwise designated. < = less than

Note: Number in parenthesis equals number not adversely effected (EC_{50}). This number is used in calculating EC_{50} value.

Note: Due to fragile structure of *Daphnia* organisms, dissolved oxygen (DO), hardness, alkalinity, specific conductance, and pH reading could not be taken after the organisms are added to the sample. Doing so would cause injury to the organisms.

Method Reference: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fifth Edition. EPA-821-R-02-012 U.S.EPA, Washington, DC

Appendix IV U.S. EPA Region I Toxicity Test Summary

Toxicity Test Summary Sheet

Facility Name:	General E		Test Sta	art Date:	August	16, 200)5
NPDES Permit N	umber: _	MA 000 3891	_ Pipe Number:	001,00	5-64T, 0		
				_09A, 09)B		
Test Type ☑ Acute ☐ Chronic ☐ Modified* ☐ 24-hour Screening	☐ Fathea ☐ Ceriod ☑ Daphn ☐ Mysid ☐ Menidi ☐ Sea Ur ☐ Champ ☐ Selena ☐ Other	ia pulex Shrimp a rchin bia istrum	Sample Typ ☐ Prechlorinated ☐ Dechlorinated ☐ Chlorine ☐ Spiked at lab ☑ Chlorinated of site ☐ Unchlorinated	n-	Samp □ Grab ☑ Comp □ Flow t □ Other	:hru	od
*Modified (Chronic r	eporting acu	te values)					
River); Alternate sui characteristi Synthetic wa and reagent or artificial s	X Receiving waters collected at a point upstream of or away from the discharge, free from toxicity or other sources of contamination (Receiving water name: Housatonic River); Alternate surface water of known quality and a harness, etc. to generally reflect the characteristics of the receiving water; Synthetic water prepared using either Millipore Mill-Q or equivalent deionized water and reagent grade chemicals; or deionized water combined with mineral water; or artificial sea salts mixed with deionized water; Deionized water and hypersaline brine; or						
Effluent sampling	date(s):	August 14,	2005 to Augus	t 15, 20	05		
Effluent concentr	ations test		100 75 t limit concentrat	50 ion):	35 N/A	<u> 15</u>	5
Was effluent salir If yes, to what va With sea salts?	alue? N/	A ppt	brine solution? _	N/A			
Actual effluent co (In %): <u>N/A</u> Reference Toxical	<u>N/A</u>	<u>N/A </u>	salinity adjustme N/AN/A gust 16, 2005 to		t 18, 20	05	_
N/A= not applicable							

Permit Limits & Test Results

Test Acceptability Criteria

MEAN CONTROL SURVIVAL:	100%	MEAN CONTROL REPRODUCTION: N/A
MEAN CONTROL WEIGHT: _	N/A	MEAN CONTROL CELL COUNT: N/A

	Results
48-hr LC50	>100%
Upper Value	N/A
Lower Value _	N/A
Data Analysis	
-	N/A
_	100%
_	N/A
_	N/A
_	N/A
IC50	N/A
	Upper Value Lower Value

N/A = not applicable

Attachment D

Chronic Effects of the Process Wastewaters
Discharged From the General Electric
Plant; Pittsfield, Massachusetts
[Samples Collected in August 2005]

Chronic Effects of the Process Wastewaters Discharged from the General Electric Plant Pittsfield, Massachusetts

Samples collected in August 2005

Submitted to:

General Electric
Area Environmental & Facility Programs
100 Woodlawn Avenue
Pittsfield, Massachusetts 01201

SGS Sample ID: TA5-H0-P333

Study Director: Ken Holliday

08 September 2005

SGS Environmental Services
1258 Greenbrier Street
Charleston, West Virginia 25311-1002
Tel: 304.346.0725 Fax: 304.346.0761
www.sgs.com

Signatures and Approval

Submitted by:

SGS Environmental Services

1258 Greenbrier Street

Charleston, West Virginia 25311-1002

Tel: 304.346.0725 Fax: 304.346.0761

www.sgs.com

Study Director

Ken.holliday@sgs.com

08 September 2005

Titshina L. Mims

Technical Writer

Project Manager

Barbara.hensley@sgs.com

08 September 2005 Date

Whole Effluent Toxicity Test Report Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on:

08 September 2005

Date

Authorized signature

Jeannie Latterner

Name

QA/QC Manager

Title

SGS Environmental Services

Laboratory

Jeannie.milholland@sgs.com

Table of Contents

	Page
Signatures and Approval	2
WET Test Report Certification	3
List of Tables	5
Executive Summary	6
Summary of Test Conditions and Test Results	7
1.0 Introduction	10
1.1 Background	10
1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977)	11
1.3 The Chronic Toxicity Test	11
1.4 Objective of the General Electric Study	11
2.0 Materials and Methods	13
2.1 Protocol	13
2.2 Effluent Sample	13
2.3 Dilution Water	15
2.4 Reference Control Water	16
2.5 Secondary Reference Control	16
2.6 Test Organisms	16
2.7 Test Procedures	17
2.8 Test Monitoring	18
2.9 Reference Toxicity Tests	19
3.0 Statistics	20
Flowchart for Statistical Analysis of Data	21
4.0 Results	22
4.1 Effluent Toxicity Test	22
4.2 Reference Toxicity Test	23
5.0 Reference Documents	23
Appendix I – References	30
Appendix II – Chain of Custody	49
Appendix III - Bench Data	53
Appendix IV – Statistical Sheets	71

Page

Table of Contents

Appendix V -	U.S. EPA Region I Toxicity Test Summary	76
Appendix VI -	- 7-day Reference Toxicant Test Data	79
	List of Tables	Page
Table 1	Methods used for the chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)	24
Table 2a	Sample #1: Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River) for the 7-day short-term chronic toxicity test with Ceriodaphnia dubia	25
Table 2b	Sample #2: Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River) for the 7-day short-term chronic toxicity test with Ceriodaphnia dubia	26
Table 2c	Sample #3: Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River) for the 7-day short-term chronic toxicity test with Ceriodaphnia dubia	27
Table 3	The water quality measurements recorded during the 7-day short-term chronic toxicity test exposing <i>Ceriodaphnia dubia</i> to General Electric Pittsfield Plant effluent	28
Table 4	Summary of the mean survival and reproduction recorded during the 7-day short-term chronic toxicity test exposing <i>Ceriodaphnia dubia</i> to General Electric Pittsfield Plant effluent	29

Executive Summary

The following is a summary of the toxicity results exposing *Ceriodaphnia dubia* to effluent collected from the General Electric Company, Pittsfield, Massachusetts. Effluent samples were collected from August 14, 2005 to August 19, 2005. The freshwater species, *Ceriodaphnia dubia*, was exposed to the effluent under static-renewal conditions. Acute endpoints were derived 48-hours into the chronic studies.

Acute Toxicity Evaluation

Species	Exposure Period	LC ₅₀ % effluent	NOAEL % effluent
Ceriodaphnia dubia	48 hours	>100%	100%

Chronic Toxicity Evaluation

	11.211.211.211.211.211.211.211.211.211.		NOCEL	LOCEL	MAWC
Species	Endpoint	Exposure Period	% _effluent_	% effluent	% effluent
Ceriodaphnia dubia	Survival	7 days	100%	>100%	≥100%
Ceriodaphnia dubia	Reproduction	7 days	100%	>100%	≥100%

Summary of Test Conditions and Test Results

Static Renewal Short-Term Toxicity Test with Ceriodaphnia dubia

Sponsor:

General Electric

Protocol Title:

Chronic Aquatic Toxicity Testing, SGS Document

Control Number 7003, version 5.0

Study Number:

TA5-H0-P333

Test Material:

Composite effluent from the General Electric

Company located in Pittsfield, Massachusetts

GE Sample ID:

A6668C, A6670C and A6672C

Dilution Water:

Water from the Housatonic River

Dilution Water ID:

A6667R, A6669R and A6671R

Dates Collected:

Effluent	Dilution Water
08/14/05 to 08/15/05	08/15/05
(A6668C)	(A6667R)
08/16/05 to 08/17/05	08/17/05
(A6670C)	(A6669R)
08/18/05 to 08/19/05	08/19/05
(A6672C)	(A6671R)

Dates Received:

08/16/05, 08/18/05, 08/20/05

Test Dates:

08/16/05 to 08/23/05

Test Concentrations:

100% effluent 75% effluent 50% effluent 25% effluent 12.5 effluent 6.25% effluent

dilution water control (Housatonic River)

reference control (moderately hard reconstituted

water)

secondary reference control (sodium thiosulfate)

Test Type:

Chronic static renewal

Temperature:

25°C (± 1°C)

Light Intensity:

90 to 100 foot-candles

Photoperiod:

16 hours light, 8 hours dark

Size of Test Chamber:

30 ml medicine cups

Test Solution Volume:

20 ml per medicine cup

Renewal of solutions:

Test solutions were renewed daily using the most recently collected effluent sample.

Age of Organisms:

The test organisms were less than 24-hours old and were all hatched within an 8-hour period of

each other.

Number of Neonates per test chamber:

1 daphnid per test chamber (replicate)

Number of Replicate Test Chambers per

treatment:

10 test chambers (replicates) per concentration

Feeding regime:

Daphnid cultures were fed a combination of green algae (*Selenastrum capricorium*) and YCT (yeast, cereal leaves and trout chow).

Aeration:

The effluent sample was supersaturated by aeration prior to use in the test.

Results:

LC₅₀ The 48-hour LC₅₀ value was determined

to be >100% effluent.

NOAEL The No-Observed-Acute-Effect-Level

(NOAEL), based on survival, was observed to be 100% effluent

NOCEL The No-Observed-Chronic-Effect-Level,

based on reproduction, was determined

to be 100% effluent

LOCEL The Lowest-Observed-Chronic-Effect-Level, based on reproduction, was determined to be >100% effluent

MAWC The Maximum Acceptable Wastewater Concentration was calculated to be ≥100% effluent.

1.0 Introduction

1.1 Background

In 1972, amendments were made to the Clean Water Act (CWA) prohibiting the discharge of any pollutant from a point source to waters of the United States, unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Since the passing of the 1972 amendments to the CWA, significant progress has been made in cleaning up industrial process wastewater and municipal sewage.

The purpose of the National Pollutant Discharge Elimination System (NPDES) Program is to protect human health and the environment. The Clean Water Act requires that all point sources discharging pollutants into waters of the United States must obtain an NPDES permit. By point sources, EPA means discrete conveyances such as pipes or man made ditches.

For many years, discharge limits were based on available technology for wastewater treatment. However, in 1984, the U.S. Environmental Protection Agency (EPA) released a national policy statement entitled "Policy for the Development of Water Quality-Based Permit Limitations for Toxic Pollutants" (U.S. EPA, 1984) which addresses the control of toxic pollutants beyond technology-based requirements in order to meet water quality standards. To implement the new policy, guidance was provided to the respective state and regional permit personnel in the EPA's "Technical Support Document for Water Quality-Based Toxics Control" (U.S. EPA, 1985; U.S. EPA, 1991). The EPA's policy statement and the support document recommended that, where appropriate, permit limits should be based on effluent toxicity as measured in aquatic toxicity tests.

1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977)

The Clean Water Act is a 1977 amendment to the Federal Water Pollution Control Act of 1972, which set the basic structure for regulating discharges of pollutants to waters of the United States. The law gave EPA the authority to set effluent standards on an industry basis (technology-based) and continued the requirements to set water quality standards for all contaminants in surface waters. The CWA makes it unlawful for any person to discharge any pollutant from a point source into navigable waters unless a permit (NPDES) is obtained under the Act. The 1977 amendments focused on toxic pollutants. In 1987, the CWA was reauthorized and again focused on toxic substances, authorized citizen suit provisions, and funded sewage treatment plants (POTWs) under the Construction Grants Program. The CWA provisions for the delegation by EPA of many permitting, administrative, and enforcement aspects of the law to state governments. In states with the authority to implement CWA programs, EPA still retains oversight responsibilities.

1.3 The Chronic Toxicity Test

The acute toxicity test is used for predicting the maximum allowable concentrations of industrial waste waters that can be discharged into a receiving system. Chronic toxicity tests produce data that is useful in predicting the wastewater concentrations not likely to harm a resident population of invertebrates or fish.

1.4 Objective of the General Electric Study

The objective of this study was to measure the chronic toxicity of the composite process wastewater discharged by the General Electric facility located in Pittsfield, Massachusetts, using *Ceriodaphnia dubia* under static renewal conditions. Whereas *Ceriodaphnia dubia* are not considered locally important, they are routinely used by regulatory agencies and contract laboratories nationwide for toxicity testing. A short-term chronic toxicity test was conducted from August

16, 2005 to August 23, 2005 at SGS Environmental Services, Charleston, West Virginia. All original raw data and the final report produced for this study are stored in SGS's archives at the above location.

2.0 Materials and Methods

2.1 Protocol

Procedures used in this chronic toxicity test followed those described in the SGS Standard Operating Procedure (SOP) entitled *Chronic Aquatic Toxicity Testing*, SGS document control number 7003, version 5.0. This SOP generally follows the standard methodology described by the U.S. Environmental Protection Agency.

Additional SOPs used in this study are outlined below:

Title	Document Number	Version
Culture Waters for Aquatic Toxicity Testing	7005	4.0
Daphnia, Culture of	7006	5.0
Reference Toxicant Testing	7008	5.0
Sample Handling for Aquatic Toxicity Testing	7009	4.0

Copies of these documents are included in the References section of this report.

2.2 Effluent Sample

The first effluent sample (A6668C) was collected by GE personnel from August 14, 2005 to August 15, 2005, and was used to initiate the short-term chronic test and renewal of the test solutions on Day 1 and Day 2. Upon receipt at SGS on August 16, 2005, the sample temperature was 4.0°C. The effluent sample was characterized as having

Sample #1 - collected from 08/14/05 to 08/15/05

anna anna anna anna anna anna anna ann	
Parameter	Result
Total Hardness	290
Alkalinity (as CaCO ₃)	152
Ph	6.87

Sample #1 - collected from 08/14/05 to 08/15/05

Parameter	Result	
Specific Conductance	725	
Dissolved Oxygen Concentration*	9.04	
Appearance	Clear	

The second effluent sample (A6670C) was collected by GE personnel from August 16, 2005 to August 17, 2005, and was used for renewal of test solutions on Day 3 and Day 4. Upon receipt at SGS on August 18, 2005, the sample temperature was 3.1°C. The effluent sample was characterized as having

Sample #2 - collected from 08/16/05 to

08/17/05	
Parameter	Result
Total Hardness	350
Alkalinity (as CaCO₃)	193
pH	7.15
Specific Conductance	761
Dissolved Oxygen Concentration*	8.46
Appearance	Clear

The third effluent sample (A6672C) was collected by GE personnel from August 18, 2005 to August 19, 2005, and was used for renewal of test solutions on Days 5, 6 and 7. Upon receipt at SGS on August 20, 2005, the sample temperature was 3.4°C. The effluent sample was characterized as having

Sample #3 – collected from 08/18/05 to 08/19/05

Parameter	Result	
Total Hardness	380	
Alkalinity (as CaCO₃)	322	
pH	7.35	
Specific Conductance	1123	
Dissolved Oxygen Concentration*	8.51	
Appearance	Clear	

^{*}Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 20°C).

2.3 Dilution Water

Dilution water consisted of receiving water collected from the Housatonic River and was collected as a "grab" sample. The first dilution water sample (A6667R) was collected by General Electric personnel on August 15, 2005, and was used with the Day 1 and Day 2 test. Upon receipt at SGS, the sample temperature was 4.0°C. The dilution water sample was characterized as having

Dilution Water #1	Collected 08/15/05
Parameter	Result
Total Hardness	300
Alkalinity (as CaCO₃)	149
pH	6.62
Specific Conductance	416
Dissolved Oxygen Concentr	ation* 8.92
Appearance:	Slight yellow
	color

The second dilution water sample (A6669R) was collected by General Electric personnel on August 17, 2005, and was used with the Day 3 and Day 4 tests. Upon receipt at SGS, the sample temperature was 3.1°C. The dilution water sample was characterized as having

Dilution Water #2	Collected 08/17/05
Parameter	Result
Total Hardness	240
Alkalinity (as CaCO₃)	152
pH	6.80
Specific Conductance	386
Dissolved Oxygen Concentra	tion* 8.80
Appearance:	Slight yellow
	color

The third dilution water sample (A6671R) was collected by General Electric personnel on August 19, 2005, and was used with the Day 5, 6 and 7 tests. Upon receipt at SGS, the sample temperature was 3.4°C. The dilution water sample was characterized as having

Dilution Water #3	Collected 08/19/05
Parameter	Result
Total Hardness	390
Alkalinity (as CaCO₃)	301
pH	7.43
Specific Conductance	414
Dissolved Oxygen Concentr	ation* 8.46
Appearance:	Slight yellow
• •	color

^{*}Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 25°C).

2.4 Reference Control Water

Water used in the reference control vessels was deionized (DI) water adjusted to the appropriate hardness (moderately hard reconstituted water) by the addition of reagent grade chemicals (U.S. EPA, 1993). Characterization of this water resulted in:

Parameter	Result
Total Hardness	100 - 110
Alkalinity (as CaCO₃)	64 - 67
pH	7.03 - 7.10
Specific Conductance	308 - 320

2.5 Secondary Reference Control

A secondary reference control consisted of deionized (DI) water adjusted to the appropriate hardness (moderately hard reconstituted water) and sodium thiosulfate (0.1 N).

2.6 Test Organisms

Ceriodaphnia dubia→

Daphnids (*Ceriodaphnia dubia*), less than 24-hours old, were obtained from SGS laboratory cultures maintained in Charleston. The culture system consisted of twenty-four

(24) 100 ml disposable plastic beakers each containing 80 ml of culture medium

and one (1) daphnid. The culture medium was deionized (DI) water for which the hardness was raised by addition of reagent grade chemicals (U.S. EPA, 1993). Prior to use, the culture water was characterized:

Parameter

Result

Total Hardness Alkalinity (as CaCO₃) PH within range of 80-110 mg/L within range of 60-75 mg/L within range of 7.0 to 7.2

The culture area was maintained at a temperature of 25°C (\pm 1°C) with a regulated photoperiod of 16 hours of light and 8 hours of darkness.

Daphnid cultures were fed a combination of green algae ($Selenastrum \, capricorium$), approximately 4.0 x 10^7 cells/ml and YCT (yeast, cereal leaves and trout chow). Approximately 1.0 ml of algae and 0.5 ml of YCT was added to each culture vessel daily. Three times per week, daphnids are transferred to fresh culture media.

Approximately twenty-four hours before test initiation, all immature daphnids were removed from the culture flasks. Offspring produced during the period were used in the toxicity test. All Ceriodaphnia dubia were used in the test were ≤24 hours old and all were produced within an 8-hour period.

2.7 Test Procedures

A subsample of the effluent and the dilution water (approximately 2250 ml), from each of the three sampling events, was analyzed by SGS for total phosphorus, chloride, total suspended solids, and total solids. The short-term chronic toxicity test was conducted at concentrations of 100%, 75%, 50%, 25%, 12.5% and 6.25% effluent. Test concentrations were prepared from this solution by diluting the appropriate volume of effluent with dilution water to a total volume of 800 ml. Test solutions were then divided into replicate (10

replicates per concentration) 30 ml medicine cups, each containing 20 ml of test solution. One set of ten control beakers (containing Housatonic River water), one set of ten reference control beakers (containing moderately hard reconstituted water), and one set of ten secondary reference control beakers (containing moderately hard reconstituted water and sodium thiosulfate) were established and maintained under the same conditions as the exposure concentrations. Test solutions were placed in an incubator to maintain solution temperature of 25° C (\pm 1°C). Light was provided on a 16-hour light and 8-hour dark photoperiod. Florescent bulbs provided an illumination of 90 to 100 footcandles in the test area.

Prior to test initiation, daphnids less than 24-hours old were culled individually with a plastic pipette and placed into a 1000 ml holding beaker containing approximately 500 ml of reference water. The test was initiated when daphnids were individually transferred from the holding beaker to the test solutions (5 daphnids per replicate). The renewal of the test solutions was conducted daily by transferring the adult organisms to freshly prepared solutions. The daphnids were fed prior to test initiation and immediately following renewal of the test solutions.

2.8 Test Monitoring

The number of mortalities and observations in each replicate vessel were recorded at 0, 24, 48, 72, 96, 120, 144 and 168 hours of exposure and observed mortalities were removed from the test solutions. Biological observations and observations from the physical characteristics of each replicate test solution and control were also made and recorded at 0, 24, 48, 72, 96, 120, 144 and 168 hours. Dissolved oxygen concentrations pH and temperature were measured at test initiation and at 24-hour intervals thereafter, in one replicate vessel (a) for each test concentration in which there were surviving organisms.

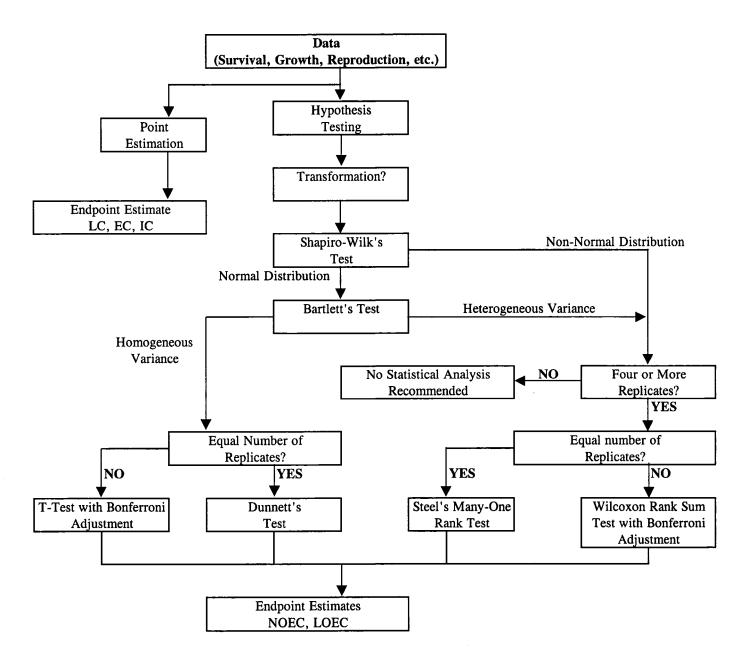
Total hardness concentrations were measured by the EDTA titrimetric method and total alkalinity concentrations were determined by potentiometric titration to an endpoint of pH 4.5 (APHA, 1989). Total residual chorine was measured by Hach test. Concentrations of ammonia were determined using a Buchi model 212 distillation unit and titrated automatically with a Brinkman titroprocessor. Specific conductivity was measured with a Cole Palmer Model 71250 salinity-conductivity-temperature meter and probe; pH was measured with a Fisher Scientific Accumet 910 pH meter and combination electrode; dissolved oxygen concentration was measured with a YSI Model 59 dissolved oxygen meter. Daily temperature measurements were performed with a Princo mercury thermometer and a Fisher minimum-maximum thermometer. Light intensity was measured with a General Electric type 217 light meter.

2.9 Reference Toxicity Test

A chronic reference toxicity test exposing *Ceriodaphnia dubia* to sodium chloride (NaCl) was conducted from August 05, 2005 to August 12, 2005. The reference test was conducted to establish the health of the test organisms. The reference toxicity test included five NaCl concentrations and a dilution water control (moderately hard reconstituted water). The nominal NaCl concentrations for the test with *Ceriodaphnia dubia* was 500, 1000, 2000, 3000 and 4000 mg of NaCl/L. Test methods were the same as those described above for the effluent test.

3.0 Statistics

All data generated during the test was tabulated, summarized and analyzed by SGS. The data generated at the end of 48 hours were analyzed and when appropriate a median lethal concentration (LC_{50}) was calculated. This value was derived using a computerized statistical method (TOXSTAT 3.5), which was also used to calculate confidence levels were possible for each test organism.


If partial mortalities were observed in at least two concentrations, the probit analysis, which yields LC_{50} values and 95 percent confidence levels, was used. When fewer than two partial mortalities were observed, the moving average method, binomial method, or non-linear interpolation, was used to generate LC_{50} s. The final report specifies the statistical methods used.

The Shapiro-Wilk's test and Bartlett's test are performed on all other chronic data to test for normality of data distribution and homogeneity of variance between treatments.

Concentrations above the NOECL for survival were excluded from the hypothesis tests for reproduction and growth. If assumptions of parametric analysis (Shapiro-Wilk's test and Bartlett's test) are met, the reproduction data will be analyzed using Dunnett's procedure or the T-test with Bonferroni Adjustment. If assumptions are not met, Steel's Many-One Rank test or Wilcoxon Rank Sum test with Bonferroni Adjustment (non-parametric analyses) are used to analyze data. Fisher's Exact is used to analyze Ceriodaphnia survival data. The final report specifies the statistical methods used.

Generally, to choose the best estimate values for a particular data set, the U.S. EPA flow chart on page 21 was followed.

Flowchart for Statistical Analysis of Data

4.0 Results

4.1 Effluent Toxicity Test

The methods and detection limits of chemical analyses performed on the composite effluent sample and dilution water are summarized in Table 1. Results of the characterization and analysis of the effluent and the dilution water are presented in Table 2. Water quality parameters measured during the toxicity test are presented in Table 3. Daily and continuous monitoring of the test solutions established the temperature ranged from 24°C to 26°C throughout the exposure period. The effluent concentration was tested (expressed as %) and the corresponding percent mortalities recorded during the 48-hour toxicity test are presented in Table 4.

The percent survival and number of offspring produced during the 7-day exposure to C. dubia are presented in Table 4. The 48-hour LC_{50} value was determined to be >100% effluent, since no concentrations caused \geq 50% mortality during the first 48 hours of the study. At test termination, 100% survival was observed among C. dubia exposed to all effluent concentrations and the controls. Based on statistical analysis of the survival data, the NOCEL was determined to be 100% effluent.

By day seven, ≥60% of the reference control organisms had produced at least three broods with a minimum of 15 young per female.

		М	ean Nur	nber of C	Offspring	per Eff	luent Cor	ncentration	
		Efflu	ent Cond	centratio	n (%)		Dilution water	Reference	Secondary Reference
	6.25	12.5	25	50	75	100	control	Control	Control
Mean →	24.7	25.8	27.2	25.4	26.2	23.7	24.8	25.1	24.6

(Secondary reference control = sodium thiosulfate)

Statistical analyses of *C. dubia* reproduction using Dunnett's did not established a difference between the 100% effluent concentration and the control group. The NOCEL, based on reproduction, was therefore determined to be 100% effluent. The Lowest-Observed-Chronic-Effect-Level (LOCEL), based on reproduction, was determined to be >100% effluent. The Maximum-Acceptable-Wastewater-Concentration (MAWC) was calculated to be 100% effluent.

4.2 Reference Toxicity Test

SGS uses sodium chloride (NaCl) as a reference toxicant. The reference test was conducted from August 03, 2005 to August 05, 2005, and the resulting 48-hour LC_{50} was estimated by Spearman-Karber Trim to be 1238 mg of NaCl/L (95% confidence intervals of 1037 to 1479 mg NaCl/L).

5.0 References

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17th Edition.
- U.S. Environmental Protection Agency. 1984. *Development of water Quality-Based Permit Limitations for Toxic Pollutants*. Federal Register 49(48):90160-90190.
- U.S. Environmental Protection Agency. 1985. *Technical Support Document for Water Quality-Based Toxics Control*. Office of Water, Washington, DC.
- U.S. Environmental Protection Agency. 1991. Technical Support Document for Water Quality-Based Toxics Control. Office of Water, Washington, DC.
- Weber, Cornelius I., et al., Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition. EPA-821-R-02-013. U.S.EPA, Cincinnati, Ohio.

Table 1. Methods and detection limits of chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River).

<u>Parameters</u>	Method	Detection Limits
Ammonia Nitrogen as N	EPA 350.2	1.0 mg/L
Chloride	EPA 325.2	1.0 mg/L
Total Organic Carbon	EPA 415.1	1.0 mg/L
Total Solids	EPA 160.3	10.0 mg/L
Phosphorus, Total as P	EPA 365.2	0.02 mg/L
Total Residual Chlorine	Standard Methods 4500-Cl G	0.01 mg/L
Total Suspended Solids	EPA 160.2	5.0 mg/L

Sample #1 - collected from 08/14/05 to 08/15/05 Table 2a. Dilution water collected on 08/15/05 Results of the characterization and analyses of the General **Electric Pittsfield Plant effluent and the dilution water** (Housatonic River).

Parameter	Effluent (A6668C)	Housatonic River (A6667R)
Temperature	24.7°C	24.7°C
pH	6.87	6.62
Alkalinity (as CaCO₃)	152 mg/L	149 mg/L
Hardness (as CaCO₃)	290 mg/L	300 mg/L
Dissolved Oxygen	9.04 mg/L	8.92 mg/L
Specific Conductivity	725 μmhos/cm	416 μmhos/cm
Salinity	N/A	N/A
Total Residual Chlorine	ND	ND
Ammonia as N (0-Hour)	ND	ND
Total Phosphorus as P	0.12 mg/L	0.021 mg/L
Chloride	80 mg/L	23 mg/L
Total Suspended Solids	17 mg/L	ND
Total Solids	450 mg/L	240 mg/L
Total Organic Carbon	7.6 mg/L	4.1 mg/L
Description The second contract of the sec	clear	slight yellow color

^{*}Dissolved oxygen concentrations recorded after samples were aerated and warmed to approximately 20°C.

N/A = not applicable ND = non detectable

Sample #2 - collected from 08/16/05 to 08/17/05 Table 2b. Dilution water collected on 08/17/05 Results of the characterization and analyses of the General **Electric Pittsfield Plant effluent and the dilution water** (Housatonic River)

(Housatonic River).	Ffflo	Ususatonia Diver
Parameter	Effluent (A6670C)	Housatonic River (A6669R)
Temperature	25.2°C	25.2°C
pH	7.15	6.80
Alkalinity (as CaCO₃)	193	152
Hardness (as CaCO₃)	350	240
Dissolved Oxygen	8.46	8.80
Specific Conductivity	761	386
Salinity	N/A	N/A
Total Residual Chlorine	ND	ND
Ammonia as N (0-Hour)	ND	ND
Total Phosphorus as P	0.062 mg/L	ND
Chloride	80 mg/L	22 mg/L
Total Suspended Solids	9.0 mg/L	ND
Total Solids	410 mg/L	220 mg/L
Total Organic Carbon	6.8 mg/L	4.6 mg/L
Description	Clear	Slight yellow color

Dissolved oxygen concentrations recorded after samples were aerated and warmed to approximately 20°C.

N/A = not applicable ND = non detectable

Table 2c. Sample #3 – collected from 08/18/05 to 08/19/05
Dilution water collected on 08/19/05
Results of the characterization and analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River).

(Housatonic River). Parameter	Effluent (A6672C)	Housatonic River (A6671R)
Temperature	25.4°C	25.4°C
·		7.43
pH	7.35	7.43
Alkalinity (as CaCO₃)	322	301
Hardness (as CaCO₃)	380	390
Dissolved Oxygen	8.51	8.46
Specific Conductivity	1123	414
Salinity	N/A	N/A
Total Residual Chlorine	ND	ND
Ammonia as N (0-Hour)	ND	ND
Total Phosphorus as P	0.030 mg/L	ND
Chloride	110 mg/L	23 mg/L
Total Suspended Solids	ND	ND
Total Solids	590 mg/L	230 mg/L
Total Organic Carbon	4.2 mg/L	4.2 mg/L
Description		Slight yellow color
Dissolved oxygen concentrations recorde		aerated and warmed

Dissolved oxygen concentrations recorded after samples were aerated and warmed to approximately 20° C. N/A = not applicable ND = non detectable

Table 3. The water quality measurements (ranges) recorded during the 7-day short-term chronic toxicity test exposing Ceriodaphnia dubia to General Electric Pittsfield Plant effluent.

Sample ↓	рH	Dissolved Oxygen mg/L	Temperature (°C)	Conductivity
Dilution Water Control	6.62-7.54	8.46-8.92	24.7-25.7	380-416
Reference Control	7.03-7.11	8.70-8.82	24.7-25.7	304-323
Na ₂ S ₂ O ₃ Control	7.09-7.15	8.72-8.81	24.7-25.7	312-326
6.25% effluent	6.64-7.52	8.46-8.92	24.7-25.7	430-558
12.5% effluent	6.65-7.50	8.46-8.92	24.7-25.7	473-602
25% effluent	6.70-7.47	8.46-8.95	24.7-25.7	531-707
50% effluent	6.76-7.45	8.48-8.97	24.7-25.7	552-831
75% effluent	6.80-7.41	8.50-8.98	24.7-25.7	678-950
100% effluent	6.87-7.40	8.46-9.04	24.7-25.7	710-1123

Dilution Water Control Reference Control

Na₂S₂O₃ Control

= receiving water collected from the Housatonic River

= moderately hard synthetic water

= moderately hard synthetic water and sodium thiosulfate (0.1 N)

Table 4. Summary of the mean survival and reproduction recorded during the 7-day short-term chronic toxicity test exposing Ceriodaphnia dubia to General Electric Pittsfield Plant effluent.

Effluent				Days	, ,			=
Concentration (%)	1	2	3	4	5	6	7	
Reference Control	100%	100%	100%	100%	100%	100%	100%	-
Na ₂ S ₂ O ₃ Control	100%	100%	100%	100%	100%	100%	100%	
Control	100%	100%	100%	100%	100%	100%	100%	
6.25	100%	100%	100%	100%	100%	100%	100%	
12.5	100%	100%	100%	100%	100%	100%	100%	
25	100%	100%	100%	100%	100%	100%	100%	
50	100%	100%	100%	100%	100%	100%	100%	
75	100%	100%	100%	100%	100%	100%	100%	
100	100%	100%	100%	100%	100%	100%	100%	
	Num	ber of (Offsprin	a Produ	ıced			Mea
Reference Control	0	0	0	31	21	63	133	25.
Na ₂ S ₂ O ₃ Control	0	0	0	32	26	77	111	24.
Control	0	0	0	35	29	77	110	24.
6.25	0	0	0	32	34	56	125	24.
12.5	0	0	0	36	23	73	126	25.
25	0	0	0	40	32	78	122	27.
50	0	0	0	36	22	76	120	25.
75	0	0	0	43	23	76	120	26.
100	0	0	0	42	19	55	121	23.

Actual number of mortalities (if any) is presented in parentheses.

Reference Control

= moderately hard synthetic water

Na₂S₂O₃ Control

= moderately hard synthetic water and sodium thiosulfate (0.1 N)

Dilution Water Control = receiving water collected from the Housatonic River

Appendix I References

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference:

SGS/USEPA

Document File Name:

7003-05.DOC

Revision Number:

5.0

Effective Date:

May 17, 2005

Review Date:

May 17, 2005

Document Control Number:

7003.05

Page 1 of 7

Approved by:

Supervisor

_

Approved by:

parice Taller DA/QC Officer

Data D

1.0 INTRODUCTION

- 1.1 This method estimates the chronic toxicity of whole effluents and receiving water to *Pimephales promelas*, fathead minnow, and *Ceriodaphnia dubia* in a seven-day, static-renewal test. Growth, survival, and reproduction are used as endpoints to measure toxicity.
- 1.2 The sample is brought up to test temperature in a room temperature water bath. Chemical parameters are checked and recorded. If the pH, D.O. or chlorine fall outside the acceptable testing range, the effluent may be adjusted (see screening; Test Preparation).
- 1.3 24 hour composite samples are used in chronic testing. Some tests use three samples collected over the seven day period in which the test is set up and daily renewals are made. Other tests require a fresh sample daily for seven days.
 - 1.3.1 The first sample is used for test initiation on day 1 and test solution renewal on day 2. The second sample is used for renewals on days 3 and 4, and the third sample is used for renewals on days 5, 6. Samples held over night are kept at 4° C until needed.
 - 1.3.2 A fresh sample is collected and used for solution renewal each day.

2.0 PIMEPHALES PROMELAS LARVAL SURVIVAL AND GROWTH TEST

2.1 Test Duration

7 Days

- 2.2 Static Renewal
- 2.3 Endpoints

Survival and Growth

Document Title:

Procedure for Chronic Aquatic Toxicity Testing,

Method Reference:

SGS/USEPA Document File Name: 7003-05.DOC

Revision Number:

5.0

Effective Date:

May 17, 2005

Review Date:

May 17, 2005

Document Control Number:

7003.05

WOONTROLLE

Page 2 of 7

2.4 **Test Preparation**

- 2.4.1 The screening test consists of a control and a 100%. The definitive test consists of a control and a dilution series consisting of 100%, 50%, 25%, 12.5% and 6.25% of the effluent(unless otherwise requested). Samples taken at points downstream may be included if a permit requires it.
- The sample is brought up to test temperature(25°C) in a waterbath. 2.4.2 Chemical parameters (alkalinity, hardness, pH, D.O., and conductivity) are checked and recorded. If the pH, D.O. or chlorine fall outside the acceptable testing range, the effluent may be adjusted (see screening; Test Preparation).
- The dilutions are prepared in graduated cylinders using moderately hard synthetic water (unless other dilution water is specified by the permit).
- 250 ml of each dilution are poured into four(4) beakers. Containers are disposable 800 ml HDPE plastic beakers.

2.5 Loading

- 2.5.1 Ten organisms, less than 24 hours old, are placed in each beaker. Fish are loaded by first transferring them to a shallow dish from which they are easily transferred with a large bore pipette.
- 2.5.2 The test chambers are positioned randomly at the beginning of the test. This randomization is maintained throughout the test.

2.6 **Test Temperature**

The test is conducted in a constant temperature incubator at 25°C \pm 1°

2.7 Renewal Procedure

- 2.7.1 At 24 hours, the water quality parameters and temperatures are checked and recorded. At this time mortalities are also recorded and removed.
- 2.7.2 New concentrations are prepared (as in day 1) and the renewal water qualities and temperatures are recorded.
- 2.7.3 The test vessels are gently emptied. Extreme care is taken not to lose any fish. At this time uneaten artemia and other debris are removed from the

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference:

SGS/USEPA Document File Name: 7003-05.DOC

Revision Number:

5.0

Effective Date: Review Date:

May 17, 2005

May 17, 2005

Page 3 of 7

Document Control Number:

7003.05

bottom of the test chambers using a disposable pipet. New dilutions are slowly added.

2.7.4 Accidental removal of fish is noted on the bench sheet.

2.8 Feeding

- The fish in each chamber are fed 0.15 ml of an artemia suspension two (2) times daily. Accuracy and consistency is assured by dispensing artemia suspension with an automatic pipette. The artemia suspension consists of concentrated newly hatched brine shrimp. This feeding will supply each chamber with sufficient food to ensure a small excess.
- 2.8.2 Fish are not fed during the final 12 hours of the test.

2.9 **Termination of the Test**

- 2.9.1 Seven days after test initiation the test is terminated. At this time final water qualities are measured and recorded along with mortalities.
- Surviving larvae from each test chamber are rinsed with D.I. water and are placed on pre-weighed tin trays. The fish are euthanised before drying. The fish are dried at 100° C for a minimum of 2 hours and are then placed in a desiccator until the time of weighing. Weights are measured to the nearest 0.01 mg.

2.10 **Acceptability of Test Results**

Survival in the controls must be at least 80%. The average dry weight of control larvae must be greater than or equal to 0.250 mg.

3.0 CERIODAPHNIA DUBIA SURVIVAL AND REPRODUCTION TEST

3.1 **Test Duration**

Until 60% of the control has three broods.

3.2 **Static Renewal**

3.3 **Test Endpoints**

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7003-05.DOC

Revision Number:

5.0

Effective Date:

May 17, 2005

Review Date:

May 17, 2005

Page 4 of 7

Document Control Number:

7003.05

Survival and Reproduction

3.4 Test Preparation

- 3.4.1 A screening test consists of a control and a 100%.
- 3.4.2 A definitive test consists of a control and a dilution series consisting of 100%, 50%, 25%, 12.5% and 6.25% of the effluent (unless otherwise requested) and River Sample Points, if provided.

3.5 Feeding

0.1 ml each of YCT and concentrated algae is placed in the test vessel prior to loading or transferring of the organisms. This is done to prevent undue stress to the organisms.

3.6 Loading

- 3.6.1 Neonates are obtained from adults that have eight or more young in their third or subsequent broods.
- 3.6.2 Neonates used in the test are all within 8 hours of each other in age. At the time of test initiation the neonates are ≤ 24 hours.
- 3.6.3 One neonate is placed in each test vessel. Test vessels are 30 ml disposable medicine cups. SGS uses a fibrotic illuminator during loading and renewals.

3.7 Test Temperature

25°C ± 1° C

3.8 Renewal

- 3.8.1 New test solutions are prepared and placed in new test vessels daily. Renewal water quality is measured prior to transfer. The test organisms are transferred to the new test solutions using a small bore pipette.
- 3.8.2 Neonates are counted at the time of transfer, but are not transferred. This number, along with any adult mortalities, is recorded.

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7003-05.DOC

Revision Number:

5.0

Effective Date: Review Date:

May 17, 2005

May 17, 2005

Page 5 of 7

Document Control Number:

7003.05

3.9 Termination of the Test

- 3.9.1 The test is terminated when sixty percent (60%) of the control has had three broods.
- 3.9.2 At this time neonates are counted and recorded.

3.10 Acceptability of Test Results

- 3.10.1 Survival of the control adults must be at least 80%.
- 3.10.2 80% or greater survival and an average of 15 or more young/surviving female in the control solutions.

4.0 TEST DATA

- 4.1 Mortalities are recorded daily.
- 4.2 Water quality parameters are recorded before test initiation, at 24 hour intervals, (renewal of dilutions) and at the time of test termination.
- 4.3 Final dry weight of the *Pimephales promelas* are recorded.
- 4.4 Neonates are counted and recorded daily in the Ceriodaphnia dubia test.
- 4.5 Any unusual observations or complications noted during the test.

5.0 DATA ANALYSIS

5.1 Introduction

The data collected is first tabulated and summarized. A hypothesis test approach is used to calculate LOEC (Lowest Observed Effect Concentration) and NOEC (No Observed Effect Concentration) values for survival, growth and reproduction.

5.2 Methods for estimating the NOEC and LOEC of Survival Data

Note: Concentrations at which there is no survival in any of the test chambers are excluded from statistical analysis.

5.2.1 Fisher's Exact Test - used for Ceriodaphnia dubia survival data.

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference:

SGS/USEPA Document File Name: 7003-05.DOC

Revision Number:

5.0

Effective Date:

May 17, 2005

Review Date:

May 17, 2005

. . .

Page 6 of 7

Document Control Number:

7003.05

- 5.2.2 Shapiro-Wilk's Test and Bartlett's Test tests for normality and homogeneity of variance respectively, are performed first using no transformation.
- 5.2.3 Dunnett's Procedure parametric procedure; used if data meets both the normality and homogeneity assumptions.
- Steel's Many-One Rank Test non-parametric procedure; used if either the normality or homogeneity test fail.
- 5.2.5 Bonferroni T-test - parametric analysis; used when unequal number of replicates occur.
- Wilcoxon Rank Sum Test with the Bonferroni adjustments non-5.2.6 parametric analysis; used when unequal number of replicates occur.
- 5.2.7 t-Test used to compare Control with River Sample Points. Used for screening tests.

6.0 **REPORT PREPARATION**

- 6.1 SGS chronic toxicity test reports contain the following information:
 - Summary Page Includes client, NPDES permit number, date collected, type and date of test, dilution water used, summary of test procedure and results.
 - Logistical Information When the sample was collected and by whom, when the sample arrived at the laboratory, start time of test, any other pertinent information.
 - 6.1.3 Results Values obtained from test, statistical methods utilized to calculate the results.
 - Initial Characteristics of Effluent Includes dissolved oxygen, pH, specific conductivity, hardness, alkalinity, temperature and total residual chlorine when indicated.
 - Data Summary Summarizes percent survival per concentration, mean dry weight per concentration, mean young produced per concentration.
 - 6.1.6 Statistical Data Print Outs.

37

SGS Environmental Services Inc. Standard Operating Procedure

Document Title:

Procedure for Chronic Aquatic Toxicity Testing

Method Reference:

SGS/USEPA

Document File Name:

7003-05.DOC

Revision Number:

5.0

Effective Date:

May 17, 2005

Review Date:

May 17, 2005

Document Control Number:

7003.05

Page 7 of 7

6.1.7 Chain of Custody

7.0 References

- 7.1 Weber, Cornelius I., et al., Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms., Fourth Edition. EPA-821-R-02-013. U.S.EPA, Cincinnati, Ohio.
- 7.2 Reporting and Testing Guidance for Biomonitoring Required by the Ohio Environmental Protection Agency, October, 1991.

38

Document Title:

Culture Waters for Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7005-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998

May 17, 2005

Page 1 of 3

Document Control Number:

7005.04

Approved by:

Supervisor

Date

Approved by:

ANGC Officer

5-17-05 Date

1.0 Summary

This document describes the preparation of various waters used for the culture of aquatic organisms.

2.0 Moderately-Hard Synthetic Water

- 2.1 Place 19 liter of de-ionized, or equivalent, water in a properly cleaned and labeled plastic carboy.
- 2.2 Add 1.20 g of MgSO₄, 1.92 g NaHCO₃ and 0.08g KCI to the carboy.
- 2.3 Aerate overnight.
- 2.4 Add 1.20 g of CaSO₄ 2H₂O to 1 liter of de-ionized or equivalent water in a separate flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 19 liter above and mix well.
- 2.5 Aerate vigorously for 24 hours to stabilize the medium.

3.0 Hard Synthetic Water

- 3.1 Place 9 liter of de-ionized, or equivalent, water in a properly cleaned and labeled plastic carboy.
- 3.2 Add 1.20 g of MgSO₄, 1.92 g NaHCO₃ and 0.08g KCl to the carboy.
- 3.3 Aerate overnight.
- 3.4 Add 1.20 g of CaSO₄2H₂O to 1 liter of de-ionized, or equivalent water in a separate flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 9 liter above and mix well.
- 3.5 Aerate vigorously for 24 hours to stabilize the medium.

Document Title:

Culture Waters for Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7005-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998

May 17, 2005

Document Control Number:

7005.04

39

Page 2 of 3

4.0 Synthetic Water Solutions

- 4.1 KCL Stock Solution
 - 4.1.1 Place 8 g of crystalline, reagent grade KCL in a 1 liter volumetric flask.
 - 4.1.2 Bring the volume to one liter with distilled water.
 - 4.1.3 Aerate vigorously for several hours before using.
 - 4.1.4 Store in a 1 liter polyethylene bottle.
- 4.2 MgSO₄ Stock Solution
 - 4.2.1 Place 120 g of regent water, anhydrous MgSO₄ powder in a 1 liter volumetric flask.
 - 4.2.2 Bring the volume to one liter with distilled water.
 - 4.2.3 Aerate vigorously for several hours before using.
 - 4.2.4 Store in a 1 liter polyethylene bottle.
- 4.3 NaHCO₃ Stock Solution
 - 4.3.1 Place 96 g of reagent grade NaHCO₃ powder in a 1 liter volumetric flask.
 - 4.3.2 Bring the volume to 1 liter with distilled water
 - 4.3.3 Aerate vigorously for several hours before using.
 - 4.3.4 Store in a 1 liter polyethylene bottle.

5.0 Activated Carbon Treated Tap Water Diluent

- 5.1 Fill a 5-gallon carboy with water from the treatment system using the attached hose. Water should be allowed to flow slowly through the hose into the sink for 2-3 minutes before filling the carboy. Flow rate to fill the carboy should be slow.
- One or two long airstones are placed in the filled carboy. Water is aerated vigorously for 48-hours.
- 5.3 Total residual chlorine must be checked on water from newly filled carboys before using.
- 5.4 Alkalinity, hardness and pH are checked on samples from dechlorinated water carboys according to the Laboratory Procedure Checklist.
- 5.5 Log information on the Dechlorinated Tap Water and Cechlorimeter log sheet including the carboy number and date filled.

40

SGS Environmental Services Inc. Standard Operating Procedure

Document Title:

Culture Waters for Aquatic Toxicity Testing

Method Reference:

SGS/USEPA

Document File Name: Revision Number:

7005-04.DOC 4.0

Effective Date:

October 20, 1998

Review Date:

May 17, 2005

Page 3 of 3

Document Control Number:

UNCONTROLLED

7005.04

6.0 Synthetic Sea Water Preparation

- 6.1 Fill a clean carboy with dechlorinated water to approximately the 25-gallon mark.
- The newly filled carboy should be checked for the presence of chlorine and the results recorded on the saltwater carboy log sheet. If chlorine is present, two 4-inch airstones (adjusted to a moderately heavy air flow) should be introduced and the water aerated until a level of <0.01 mg/L is reached.
- 6.3 A sufficient amount of synthetic salt is added to the carboy to obtain the required salinity (usually 20 ppt).
- 6.4 All information should be logged on the Saltwater Carboy log sheet.

Document Title:

Culture of Daphnia

Method Reference:

SGS/USEPA

Document File Name: Revision Number:

7006-05.DOC 5.0

Effective Date:

March 12, 2001

Review Date:

May 17, 2005

UMCAMIFICALED

Page 1 of 3

Document Control Number:

7006

41

Approved by: Supervisor

Approved by: Sauce Satterner

Approved by: Sauce Satterner

AAQC Officer

1.0 Summary

This document describes the procedure for the culture of Ceriodaphnia dubia, Daphnia pulex, Daphnia magna that are used in aquatic toxicity testing.

Mass Stock Cultures of Ceriodaphnia dubia, Daphnia pulex, and Daphnia magna 2.0

- Stock cultures are maintained in 1000 ml beakers/jars with 900 mls of culture 2.1 media at 20 ± 1° C. These cultures are maintained only as a back-up source of organisms.
- 2.2 Culture media for Ceriodaphnia dubia and Daphnia pulex is moderately-hard synthetic water. Culture media for Daphnia magna is hard synthetic water (see document control number 7005.04, "Culture Waters for Aquatic Toxicity Testing").
- 2.3 Many cultures are maintained simultaneously with an informal rotation cycle. New cultures are started with young produced by individual cultures. These cultures are maintained for approximately 3 weeks after which they are discarded.
- Cultures are fed YCT (yeast, cerophyll, digested trout chow/flake food) and algae 2.4 (Selanastrum capricorium) on Monday, Wednesday and Friday. Feeding, as well as culture rotation, temperature and all other relevant data is recorded by species in a log book.
- Stock cultures are also fed algae and YCT. These feedings are recorded in the 2.5 log book.

Individual Cultures of Ceriodaphnia dubia, Daphnia pulex, Daphnia magna 3.0

- 3.1 Cultures of Daphnia magna and Daphnia pulex are maintained in 100 ml plastic beakers. Twenty-four (24) beakers with one organism each are kept at all times to ensure continuous availability of neonates for testing. Cultures of individual Ceriodaphnia dubia are maintained in 30 ml sterile plastic medicine cups. One to two cultures of approximately 100 organisms each are kept at all times.
- Cultures are renewed three times per week. Organisms are fed daily. 3.2

Document Title:

Culture of Daphnia

Method Reference:

SGS/USEPA Document File Name: 7006-05.DOC

Revision Number:

5.0

Effective Date: Review Date:

March 12, 2001

May 17, 2005

Page 2 of 3

LAMICAL MITPOLICE

Document Control Number:

7006

4.0 **Obtaining Neonates for Testing**

- Cultures of Ceriodaphnia are started by placing one neonate into a 30 ml 4.1 disposable plastic cup containing approximately 20 ml of Moderately Hard Synthetic Water. New Ceriodaphnia cultures are started every ten to fourteen days. D. magna and D. pulex are replaced whenever mortality occurs.
- The individual cultures are transferred to fresh media three times per week. 4.2 Synthetic water, algae and YCT are mixed prior to pouring into culture vessel to ensure uniformity of media. The old media and neonates are kept for stock cultures for several weeks and then discarded.
- To assure neonates for chronic tests are of a very similar age, transfer of individual 4.3 brood stock to fresh media should be made the morning of the test. The cultures are then checked approximately every two hours to find an adequate number of neonates all released with an 8 hour period. For acute tests, individuals are either transferred less than 24 hours before a test or the young are separated from adults less than 24 hours before a test.
- Young used in chronic testing are obtained from adults who have produced at least 4.4 three broods, with no less than 8 neonates in their third or subsequent brood. Neonates are then distributed in a "blocking" procedure, i.e., neonates from the same organism are placed in one replication of each concentration.

5.0 **DAPHNIA** Food

5.1 Digested Flake Food

- 5.1.1 Add 5g flake food to 1 L deionized water. Mix well in a blender and place in a 2 L separatory funnel. To digest, aerate this mixture at room temperature for one week.
- 5.1.2 At end of the digestion period, remove aeration and allow to settle.
- 5.1.3 Drain sediment. Place supernatant in a beaker and allow to settle in refrigerator overnight.
- 5.1.4 Filter through fine mesh.

Document Title:

Culture of Daphnia

Method Reference:

SGS/USEPA

Document File Name: Revision Number:

7006-05.DOC 5.0

Effective Date: Review Date:

March 12, 2001

May 17, 2005

Page 3 of 3

Document Control Number:

7006

5.2 Cerophyll®

- 5.2.1 Add 5g Cerophyll[®] to 1 L deionized water. Mix in a blender on high speed for 5 minutes.
- 5.2.2 Remove from blender and allow to settle in refrigerator overnight.
- 5.2.3 Retain supernatant for combined YCT food.
- 5.3 Yeast
 - 5.3.1 Add 5g dry yeast to 1 L deionized water. Mix in a blender at low speed.
 - 5.3.2 Do not allow mixture to settle.
- 5.4 Combined YCT Food
 - 5.4.1 Mix equal parts of each of the above preparations in large clean beakers.
 - 5.4.2 Pour well mixed YCT into small screw cap bottles. Freeze until needed.

Document Title:

Reference Toxicant Testing

Method Reference:

SGS/USEPA

Document File Name: **Revision Number:**

7008-05.DOC 5.0

Effective Date:

July 31, 2001

Review Date

May 17, 2005

Page 1 of 3

Document Control Number: ____

7008

44

W. W.

Approved by: Supervisor Date

Approved by: Season Factor 5-17-05

Approved by: Date

1.0 Summary

> To insure that healthy organisms are used in testing, SGS performs monthly QA/QC tests on all in-house cultured organisms. SGS uses sodium chloride as a reference toxicant.

2.0 **Apparatus**

- 2.1 Disposible plastic beakers
- 2.2 Disposible plastic medicine cups
- 2.3 **Pipettes**
- 2.4 pH meter
- 2.5 Dissolved oxygen (DO) meter

3.0 Reagents

- Moderately hard synthetic water (refer to document control number 7005, Culture 3.1 Waters for Aquatic Toxicity Testing)
- 3.2 Sodium Chloride (NaCl), reagent grade, Baker

4.0 Method

Pimephales promelas (fathead minnows) 4.1

- 4.1.1 48-hour static acute toxicity tests are run at 20°C (±1°C) using fish that are from 1 to 14 days old.
- 4.1.2 This test consists of a control and a dilution series of 10g/L, 9g/L, 8g/L, 7g/L, and 6g/L, of sodium chloride. Other dilution series may be used.

Document Title:

Reference Toxicant Testing

Method Reference:
Document File Name:

SGS/USEPA 7008-05.DOC

Revision Number:

5.0

Effective Date: Review Date

July 31, 2001

May 17, 2005

IMCONTROLLED

Document Control Number:

7008

4.7

45

Page 2 of 3

- 4.1.3 The dilutions are prepared in 800 ml disposable plastic beakers using moderately hard synthetic water. 500 mls of test solution is placed in each of two replications. Water quality values are measured and recorded at this time.
- 4.1.4 Ten organisms are placed in each replicate. Fish are loaded by first siphoning them into a shallow pan from which they are transferred to the beakers with a large bore pipette.
- 4.1.5 The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

4.2 Daphnids (Ceriodaphnia dubia, Daphnia magna, Daphnia pulex)

- 4.2.1 48-hour static acute tests are performed at 25°C (±1°C) using organisms less than 24 hours old.
- 4.2.2 These tests consist of a control and a five dilution series. The concentration of the reference toxicant is varied depending on species.
 - 4.2.2.1 Ceriodaphnia dubia, Daphnia pulex:

dilutions of 3.0 g/L, 2.5 g/L, 2.0 g/L, 1.5 g/L, 1.0 g/L

4.2.2.2 Daphnia magna:

dilutions of 5.0 g/L, 4.0 g/L, 3.0 g/L, 2.0 g/L, 1.0 g/L

- 4.2.3 Dilutions are prepared using moderately hard synthetic water. 20 mls of each dilution are placed in each of 5 plastic medicine cups.
- 4.2.4 Four organisms are placed in each test vessel. The *Daphnids* are loaded with a disposable plastic pipette. Organisms are gently released below the surface of the water to minimize risk of injury.
- 4.2.5 The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

5.0 Data Analysis

5.1 Toxicity tests are conducted on a monthly basis.

46

SGS Environmental Services Inc. Standard Operating Procedure

Document Title:

Reference Toxicant Testing

Method Reference:
Document File Name:

SGS/USEPA 7008-05.DOC

Revision Number:

5.0

Effective Date: Review Date

July 31, 2001 May 17, 2005 JAMCO MTROLLED

Document Control Number:

7008

Page 3 of 3

- 5.2 The median lethal concentration (LC₅₀) is calculated according to EPA protocols.
- 5.3 Results from these tests are incorporated into Q-sum charts. These records are kept in monthly files.

6.0 Definitions

6.1 Median lethal concentrations (LC₅₀) -- the concentration that is calculated to be lethal to 50 percent of the organisms within the test period.

47

SGS Environmental Services Inc. **Standard Operating Procedure**

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference: Document File Name:

SGS/USEPA 7009-04.DOC

Revision Number:

4.0

Effective Date: **Review Date:**

October 20, 1998

May 17, 2005

Page 1 of 3

Document Control Number:

7009.04

Approved by: Supervisor

Approved by: Securin Fattern

AAQC Officer

1.0 Summary

This document describes the manner in which sample waters (effluents, wastewaters, etc.) are handled from point of collection to testing.

2.0 Sample Handling

2.1 Sampling Personnel

SGS's sampling personnel are trained and experienced in the techniques for collecting samples according to NPDES permit requirements. This includes the use of automatic sampling equipment and the measurement of various field parameters.

2.2 Sample Containers

Sample containers used by SGS are disposable plastic cubitainers®.

2.3 Sample Collection Points

For NPDES permit required tests, the sample will be collected at the point specified in the discharge permit unless otherwise directed by the regulatory agency.

2.4 Sample Shipment

Samples are placed on ice (sufficient to maintain 0-4°C) in a cooler and are transported as quickly as possible to the laboratory.

2.5 Laboratory Handling of Samples

Upon delivery to the laboratory, the effluent samples are inspected, given a sample control number and stored at 4° C until used for testing.

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference:
Document File Name:

SGS/USEPA 7009-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998

May 17, 2005

Page 2 of 3

Document Control Number:

7009.04

2.6 Sample Holding Time

Samples will be tested within 24 hours upon receipt in the laboratory. The maximum lapsed time for collection of a grab or composite sample and the initiation of test, or for test solution renewal, will not exceed 36-hours for Chronic and Acute Testing.

3.0 LABORATORY ENVIRONMENT

3.1 Laboratory Arrangement

The aquatic toxicity testing laboratory is divided into two separate areas: (1) the culturing laboratory and (2) the testing laboratory. See attached diagram for details of laboratory layout.

3.2 Temperature

The aquatic toxicity testing laboratory air temperature is maintained at 20 \pm 1° C throughout the year by a central heating and cooling system which is regulated by thermostats. Temperatures are continuously recorded by thermographs.

3.3 Water

Several waters are available for use in the laboratory. SGS has access to municipally supplied water, well water and reagent water from which synthetic water is prepared. Waters used for culturing and testing are analyzed semiannually for priority pollutants and other contaminants. A detailed report is available.

3.4 Lighting

Ambient laboratory lighting is regulated with a 16 hour day/8 hour night photoperiod controlled by an electronic timing system in the culturing and testing areas.

4.0 LABORATORY EQUIPMENT

4.1 General

Instruments used for the measurement of physical and chemical parameters are calibrated prior to use in testing. Any instrument that exceeds the calibration limits is taken out of service and corrective action is taken.

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference:

SGS/USEPA

Document File Name:

7009-04.DOC

Revision Number:

4.0

Effective Date: Review Date:

October 20, 1998

May 17, 2005

Page 3 of 3

Document Control Number:

UNCONTROLLED

7009.04

4.2 Balances

Analytical balances are calibrated against standard weights prior to use. All calibration results and adjustments are recorded in bound books.

4.3 Water Quality Meters

Meters are calibrated prior to use using known standards and the manufacturer's instructions. Records of calibration are kept in logbooks. Detailed procedures for the operation of these meters are found in SOP's for each specific instrument.

4.4 Reagents

All reagents are stored in a separate area. Expired reagents and chemicals are discarded.

4.5 Test Containers

All test containers are either clean reusable glassware or new, disposable plastic beakers.

5.0 EQUIPMENT CLEANING PROCEDURES

- 5.1 Equipment used in culturing or testing is washed in the following manner:
 - 5.1.1 Soak 15 minutes and scrub with detergent in tap water.
 - 5.1.2 Rinse three times with tap water.
 - 5.1.3 Rinse once with 20% nitric acid.
 - 5.1.4 Rinse twice with deionized water.
 - 5.1.5 Rinse once with full-strength, pesticide-grade acetone.
 - 5.1.6 Rinse well with deionized water.
 - 5.1.7 Invert and air dry.
 - 5.1.8 All equipment and test chambers are rinsed with deionized water immediately prior to use for each test.

49

Appendix II Chains of Custody

Chain of Custody Record
General Electric Co.
100 Woodlawn Ave. Pittsfield, MA 01201

Chain of Custody #: 08 G 08 1505

AUG 2005 Chronic Toxicity Comp. #

SPITSAMOLE NA AUGS

Project # NPDES PERMIT	CT&L	Analytical Lab: CT&E Environmental Services Inc.	es Inc.		Sampled By: Mar / 1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	Schouse VI.	
Sample #	Date	Time	Containers		3	Presentative	Remarks
A6668C	51/8 as h1/8	105	1/09m 10	1 Gallon plastic	Definitive Test(NOCEL), Static reproductive chronic toxicity, 7-day w/Cerlodapheia		(See below)
A6668C	8/14 to 8/15/05	7/05	100 j	1000 ml. plastic	Chloride, TSS,Total Solids, Alkalinity Specific Conductance, CL2	Chilled	
A6668C	8/14 to 8/15/05	50/2 N	pos /	500 ml. plastic	Total Phosphorus, TOC, NH3	H2S04	
acio, v	21/2//8	80		illon	Housatonic River water		
A667R	-1	0	plastic 1000 ml.	ige ja	Chloride, TSS, Total Solids, Alkalinity Specific Conductance 1:2	Chilled	
AGGTR	8/15/05	>	500 rad. plastic	ific thic	Total Phosphorus, TOC, NH3	H2S04	
Relinquished By.	Southy	Date/Time		Receiv	KBy.	Date/Time 8-45-05	140
Kelinquishad By:	· 12	ParterTime P/2 -05	641 So.	Received By:		Date/Time	
Iditional Comments Ta 24 hour composite.	he effluent sa The sample o	mple being analyzed for collection times for each 005-64T- $764M$	toxicity is a flow-proportion outfall are as follows:	as follow	for toxicity is a flow-proportioned composite. Each outfall sample ich outfall are as follows:	mple 098- 7/5	K
time of compositin	The time of compositing the final flow-proportioned sample was	tioned sample w:	- 1	1/00 A.M.			
		e.			12 8/1. (292)	4.00	51

rued 8/16 (2990) 4

Boulana Annolin

Chain of Custody Record

General Electric Co.

100 Woodlawn Ave. Pittsfield, MA 01201

Chain of Custody #: 086081705

TA5-40-P333-3/4

AUG 200 Schronic Toxicity - Comp. # 2

	Project # NPDES PERMIT	CT&E EI	Analytical Lab: CT&E Environmental Services Inc.	nc.	Sampled By: May	Mark toleran	70	
	Sample #	Date	Time	Containers	72	Parameters to be Analyzed	25/62	
m	A6670C	8/16 00 1/1/8	77	0 0 1 Gallon	Definitive Test(NOC! chronic toxicity, 7	Definitive Test(NOCEL), Static reproductive chronic toxicity, 7-day w/Ceriodaphnia	Chilled	(See below)
m	A6670 C	8/1/ to 8/17/05		1000 ml. plastic	Chloride, TSS,Tol Specific Cen	Chloride, TSS, Total Solids, Alkalinity Specific Conductance, CL2	Chilled	
M	A6670C	8/16 08/1/93	7	500 ml. plastic	Total Phosph	Total Phosphorus, TOC, NH3	H2504	
	A6669R	20/11/8	g 30 Am	1 Gallon Plastic	Housetonic	Housatonic River water	Chilled	
	A6669R	2/17/05		1000 ml. plastic	Chloride, TSS,Tota Specific Cond	Chloride, TSS, Total Solids, Alkalinity Specific Conductance, CL2	Chilled	
ナ	A69991	8/12/105	>	500 ml. plastic	Total Phospho	Total Phosphorus, TOC, NH3	H2S04	
	Relinguished By:		Date/Time					
	Mark Walnus	In the second	f-1705			0	Date/Time	20 hl
<u></u> L	27 1		S- 17-05	14 S R	pived By:	a de la	rime 2 A C	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
7 18	Additional Comments: 1 is a 24-hour composite.	he effluent sa The sample o	g analyzed for to limes for each ou	xicity is a flow-p itfall are as folic	roportioned composit	te. Each outfall san	0	2
	17. MAN 000	005-641.	005-64T. 70g/m 00	5-640	M 007-	- W 60	09B. 500	Ź
듸	The time of compositing	The time of compositing the final flow-proportioned sample was	ned sample was	1/00 A.M.	si	Ups	J. 1	

Chain of Custody Record

General Electric Co.

100 Woodlawn Ave. Pittsfield, MA 01201

Chain of Custody #: 086,08/905

AUG 2005 Chronic Toxicity - Comp. # 3

	Ana CT&E Environ	Analytical Lab: CT&E Environmental Services Inc		益		
Sample #	Date	Time Containers	iners	WILL SEAN COULE	١	
,	1 1 1	1		rarameters to be Analyzed	Preservative	Remarks
72/	466/2C 8/18 6/19/05 10:5	10:50 AM	1 Gallon plastic	Definitive Test(NOCEL), Static reproductive chronic toxicity, 7-day w/Cerladanhaia	the Chilled	(See below)
A6672C	8/18 to 8/19/05	10:50	1000 mil.	Choride, TSS, Total Solids, Alkalinity	Chilled	
72C	A6672C 8/18 to 8/19/05 10:50	Ø: SOA	Soo m.	Specific Conductance, CL2 Total Phosphorus, TOC, NH3	HZSO4	
2			1 Gerlan			
#1001116	8/19/05	MY 02:4	plastic	Housatonic River water dilution water for chronic test	Chilled	
A6671R	8/19/05	7:20 ~M	1000 ml. plastic	Chloride, TSS,Total Solids, Alkalinity Specific Conductance, CL2	Chilled	
A6671R	8/15/05 8	7:20 AM	500 ml. plastic	Total Phosphorus, TOC, NH3	H2S04	
Relinquished By:	Conf.		Recei	we Br	Date/Time	
Refinguished By	Date:		8	pived By:		201/
iditional Comments: T a 24-hour composite. 001- T∶ ⊣ S AM	Additional Comments: The effluent sample being analyzed for toxicity is a flow-proposis a 24-hour composite. The sample collection times for each outfall are as follows: 001- T: 45 AM 004 005-641- 7:00 AM 005-646- T:00 AM 0	ayzed for toxicits for each outfall	toxicity is a flow-propoutfall are as follows	Additional Comments: The effluent sample being analyzed for toxicity is a flow-proportioned composite. Each outfall sample is a 24-hour composite. The sample collection times for each outfall are as follows: 001-7:45 AM 004-7:45 AM 005-641-7:00 AM 005-646-7:00 AM 007-	-05	9:3D
ompositing	The time of compositing the final flow-proportioned sample		was 10:50 AM A.M.		urs /	2,00

Appendix III Bench Data

Client:

745- 40- P333-001 1002 S 08/10/00 50/01/20 Temp. Range: Date Received: Date Analyzed: Analyst(s): KH Lab. No.: < 24 hrs 0850 A Age: Housatonic River Time: Ceriodaphnia dubia 7-day chronic 50/11/00 Effluent composite General Electric Source of dilution water: Sample Date: Test Species: Type of Test: Project: Source:

Ending

Beginning

Total Chlorine:

					Date:	: 08/16/0C		30/11/80	
					Time:	e: 11.00		11:40	
1	Housatonic	MSHW	MUCW						_
Concentration→	River	Ö	Na ₂ S ₂ O ₃	6.25%	Effluent 12.5%	Effluent 25%	Effluent 50%	Effluent	Effluent
Initial	COLICIO		Control			2	800	%5/	100%
Temperature									
יכווויסכומות	4.47	24.7	442	24.3					
Hardness	380	110		11.7	24.7	24.7	24.7	7.4.7	211.2
D.0.	0 6.1		110						444
	71.0	a. +1	8.49	70.00	600	0			240
LI	29.9	7.04	7/12	77.	71.0	6.95	8.97	8.98	700
Alkalinity	1116	1		5.3	ودور	670	6.26	70,	7 2
Co Condition	1.5	6+	66	_				2.00	iat
J. Collanct.	416	312	319	777	110				751
					1 + 4	7.6 <	667	169	775

474 478		0)	 	1.17	+	6.78 6.85	681 732	
		(0)	1.32 1.32	-	25 75	145	240 068	
			1.3	8.87	6.69 6.30	7577	$\frac{1}{1}$	
	60		+	2	+	317 313		
End	No. Surviving 10	Temperature 25.1	D.O.	Ha	Sn Conduct	ישה בסוומתרו		

Client:

		Lab. No.: TAS-HO-P333-001/002	Uate Received: 08/16/05	Date Analyzed: 04/2/	Analyst(s): KH		- 1	o lemp. Kange: of		
General Electric				1	Source: Eliluent composite	ution water: Housatonic River	Ceriodaphnia dubia	Digital Digita	/-day chronic	, in
Client: G	Project:		Sample Date:	Source.		Source of dilu	Test Species:	Tyna of Toct.	ype of rest.	Total Chlorine:

		į				00:11	_	6:00	
	Housatonic Much	MOUN							
Concentration→	River	Control	Na ₂ S ₂ O ₃	Effluent 6.25%	Effluent 12.5%	Effluent 25%	Effluent 50%	Effluent 75%	Effluent
Initial									2
Tomporation									
ieilipelature	7.57	7:57	25.7	15.7					
Hardness	200			1	2.12	7-37	7.57	2.30	100
	100	00	000					7	7.57
0.0.	00.00	200	0 12	100			ļ		200
		0	27.0	01.00	ø,	20.00	0 62	9	2
ЬН	6,64	7 69	7 17	1 70	1	11.0	4.45	8.45	9.00
Alkalinity			77.1	71.0	6. +8	6.79	200	100	12
AIRCHILLY	15.7	n e	ナン				10.6	101	6.4
Sp. Conduct.	407	4-1	1 4						1110
		111	376	459	てって	2	121	1.00	
						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	3	8	410

08/10/05 Ending

Beginning 08/17/05

> Date: Time:

	ŗ		7	_	_	Т	_	_	Т		7	_		T	_
				7	1		977		,,	a so	,				`. !
				0	3	1:12	27		100	900					100
			Ş	ક		1110	4.7		200	10.0				,,,,	75.5
			2	23	,	1216		: 6	てえな					07.4	- 1
			0	,	1110	ー・シャル		n g	000				,,0	120	֡֝֝֝֡֝֜֝֝֓֜֜֝֓֓֓֓֜֝֜֜֜֓֓֓֓֓֓֜֜֜֜֓֓֓֓֜֜֜֡֓֜֓֡֡֡֡֓֜֜֡֓֡֓֡֡֡֡֜֜֡֡֡֡֜֜֜֡֡֡֡֡֡
			9		7777		,	0	0		_			しついて	
		•	3	2	12.6		0,0	X.ee					- 77	ر ان	
		2	2,	.,,	12:6		- //5/ 8	- P					175	•	
		0		271.6			, X	5				1	1		
End		vo. Surviving		emperature								ייין ליוליניט מע	יייים וחחרים.		
	-		-	_	1	_	_1	1	•	_	Ľ	_	,		

DAY

4

General Electric

Client:

Lab. No.: TAS-HO- P 333-003/004	Date Analyzed:	Analyst(s): KH		Age: < 74 hrs Temn Range: 55	
Project:	Sample Date: 08/16/05 Time: 11:00	ource: Effluent composite	Source of dilution water: Housatonic River	lest Species: Ceriodaphnia dubia Age:	Type of Test: 7-day chronic

	<u></u>	
Ending	08/ 10/2	(1)
Beginning	08/18/05	(1:00
	Date:	Time:
nd		
Total Chlorine:		

								25.00	
	Housatonic	MESW	MHUM	Effluont	P.661				
Concentration→	River	Control	Na ₂ S ₂ O ₃	6.25%	12.5%	Effluent 25%	Effluent 50%	Effluent 75%	Effluent
Initial			201100						2
Tomporativo									
ו כווו ואכן פרחו ב	7.57	25.2	7.72	600	*				
Hardness	9/10			27.5	7.57	7.52	28.7	202	2000
	2.2	8	9						77.57
0.0	6 82	- 7 0							22
	0:00	à	86.78	00.47	200	11 / 0	,		2,0
I d	080	703	1 10		5	20.00	8.58	0 × 0	24.00
A 11 11 14.			4:10	is E	e o	6 9	707	7	
AIKAIIIIIT	725/	e t	カツ				ۇ	4.0+	7.15
An Conditor	,00						_		1
Sp. collance.	200	5.75	125	112.11	6 5 7 7	1			14%
)	127	7+7	5 7 5	255	049	194
)	

			,	<u> </u>		752		Ø. 40		7.7	100
				7	_		L	_		7	
			9		11 20	7. 6. 7	-	0.43	1	7.7	7.60
			9		7:36		a	2	70.7	^	サイン
			20		カンフ		ナシス		ングク		155
		3	93	1130	1 1	, ,	a 6	17 7	40.0	00:	4 + +
		2	2	790	12.1	22.0	0.61	1 011	600	1100	725
		0)		7.72		77	9	717	4.17	7,0	250
		9		75:4		9.00		200		2/2	3
		9	200	7.5.7	7	ダナワ		o o o		1001	
8	No Criminal	Suiviving	Lamparatura	וואכומנתוב					7	sp. conduct.	
בחם	Ž		4	5	2	יי	7	<u></u>	ú	<u>ر</u> م	

DAY

General Electric

Client:

Lab. No.: TAS-40-P333.003/004 08/18/05 Temp. Range: Date Analyzed: Date Received: Analyst(s): KH < 24 hrs Age: 11:00 Source: Effluent composite
Source of dilution water: Housatonic River Time: Ceriodaphnia dubia 7-day chronic 08/10-17/05 Sample Date: Test Species: Type of Test: Project:

Ending Beginning Total Chlorine:

08/20/05

08/10/00

Date:

					ļ	00/11/00		08/20/02		
					lime:	e: (1;00	0	11.00		
	Househomic	MOUN						2		
Concentration→	River Control	Control	MHSW Na ₂ S ₂ O ₃	Effluent 6.25%	Effluent 12.5%	Effluent 25%	Effluent	Effluent	Effluent	
Tmitin	Control		Control .			?	0,00	/2%	100%	
	i									
Temperature	78.5	200	1 36							
Londa of			();	25.5	5.72	200	100			
nardness	228	200	011				?	5.57	25.52	
D.0.	20.00	9	000						220	
		10:0	00.00	-t-00	けら	0,0	-		3	
Цď	6.84	01.E	7.12	10%	1	3	4 < 0	8.55	9.4	
Alkalinity	157	6.9	7		7:07	7.09	7.13	7.17	270	
Cn Conding		3	4							
Sp. conduct.	350	320	325	430	284	1/2	,		184	
					7.	100	658	709	246	
-										

End								27	Q t
No. Surviving	0)	0)	01	,					
Temperature	1.56	136	7 00	3	60	9)	9	97	2
		7.67	1.5.7	7S. (75.6	1-56	000		9
D.O.	8,62	77.8	05.8	570			724	25. (7.32
Ī	100			060	ğ	28.54	0.50	27:00	6/1 0
	0.6	4.15	7.19	00	7.06	7 17	1 .00	3	0.10
Sp. Conduct.	37	324	2.21	חחו	1.04	7:12	4:10	7.20	7.22
			3	17.1	440	2.2.5	6,56	177	76.
								1.1.1	+24

DAY

Client:

	Lab. No.: TAS-40, 0333-0051006		Anal		Age: < 24 hrs Temp. Range: or	
Client: General Electric	Project:	Sample Date: 08/18-14/05 Time: 10:50	Source: Effluent composite	Source of dilution water: Housatonic River	Ceriodaphnia dubia	Type of Test: 7-day chronic

Ending

Beginning 08/20/05

Total Chlorine:

					_			•	
					Date:	e: 08/20/05		08/21/05	
					Time:	e: 11:00		11:00	
Concentration→	nousatonic River	Control	MHSW	Effluent 6.25%	Effluent	Effluent	Effluent	Effluent	Effluent
	Control		Control	2	0/6:31	% C7	%0¢	75%	100%
Initial									
Temperature	75.4	75.74	17.36	25.4	11 30	***************************************			
Lordnoon	, , ,			7	22.4	5.57	25.4	75.4	20.02
naluness	340	100	7:0						1
D.0.	8.46	188	8.80	32.0	2 1112	0110	977 0		8
Hu	7/1/2	7 50	2,5		ST.O	0.10	å	8.50	90.57
	7.2.6	+ .07	4.12	4.41	7.41	7:40	7.38	7.6	787
Alkalinity	30/	64	e						12/4
Sp Conduct	7117	2 15	i	9,0					322
	1	2.0	217	276	5 45	681	759	932	(123

End									
No. Surviving	23	0)	8	2	67		1		
T	í		3	3	2	77	Ø	9	9
remperature	250	22.0	20.0	28.0	0. 7.	25.0	0 36	7 7 6	
((:: (!		l		1	712	120	0.01
0.0	g.40	24.6	8.73		サガロー	27.0	1110	411 9	13:17
7	1		1	l	3	١	0.41	a. 4V	77.00
1	+ 5. +	4.13	200		7.5.2		1 57	7 2 2	200
יייייייייייייייייייייייייייייייייייייי	1130			İ		ļ	7.16	ナシナ	7.07
op. conduct.	77	717	ر ق	5.24	ととい	603	オンサ	000	100
						I		ر د د د	+0=

General Electric

Client:

Lab. No.: 745-40-7333-005/600 Date Received: 08/20/05 ပ Date Analyzed: <u>08/21/65</u> 20/02/80 Temp. Range: Analyst(s): KH < 24 hrs Age: 05:01 Housatonic River Time: Ceriodaphnia dubia 7-day chronic 70/18-19/05 Source: Effluent composite Source of dilution water: Sample Date: Test Species: Type of Test: Project:

		Т-	
	Ending	08/22/05	11,00
	Beginning	08/21/05	00(1)
•		Date:	Time:
Total Chloring.	otal Cinornie:		

Concentration→	River Control	Control	MHSW Na ₂ S ₂ O ₃ Control	Effluent 6.25%	Effluent 12.5%	Effluent 25%	Effluent 50%	Effluent 75%	Effluent 100%
Initial	r								
Temperature	076	240	070						
יבוויםכותיום	2.67	710	2.47	7.0	74.8	24.8	24.8	200	0110
Hardness	360	011	9/1				2	61:0	24.0
0	150	,							2
	9:36	28.86	8.80	14.00	ن ن	8.52	200	7148	700
ЬН	67.t	11.4	7.15	27 129	7 47	1//17	1 1		10.0
Albalinity	200			1,,,,	1-1-1	117	4.45	1.41	7.40
AIM AIII III Y	202	2	4						, , ,
Sp. Conduct	707	2 7 2	100	1					276
		262	5 6	277	つけい	ナクサ	700	ŝ	11011
						-	- >	-	֡֝֜֝֜֜֜֝֜֜֝֜֜֜֜֜֝֜֜֜֜֜֜֜֜֜֓֓֓֜֜֜֜֜֜֜֜֜֜

End									
A10 C	4.								
No. Surviving	ē	2	9	\$	0)	9/	•	9	
Tomorrow	17. 4.6			}	2	3	ĝ	2	9
remperature	b.S.7	75.4	7 S · 4	7.72	75.4	7.52	11 36	77.50	7 40
0	,	,				-	7.5.7	T : X	サ・ヘン
0.0.	Ø:44	24.40	04.00 14.00	20,00	CO	670	ש מני	0 20	1
	1			1, 2,	41.0	0 .1	9	م. م	
П	< 5. E	トブア	1. F	7.23	7.57	7.57	27.40	12.5	1
Co Condition	7.10						4	7.7	7.45
Sp. colldact.	714	528	335	2 40	195	174	265	021	004
								747	750

DAY

Client:

Lab. No.: TAS-40-0333-005/006 ပ Date Analyzed: 08/22/65 Date Received: 08/20/05 Temp. Range: Analyst(s): KH Age: < 24 hrs Time: 10:50 Housatonic River Ceriodaphnia dubia 7-day chronic Source: Effluent composite
Source of dilution water: Hou 30/51-H/80 General Electric Sample Date: Test Species: Type of Test: Project:

Ending	08/11/05	10:00
Beginning	20/11/80	(1:06
	Date:	Time:

Total Chlorine:

		-							
Concentration→	River Control	Control	MHSW Na ₂ S ₂ O ₃	Effluent 6.25%	Effluent 12.5%	Effluent 25%	Effluent 50%	Effluent 75%	Effluent 100%
Initial									
Temperature	76.3	100							
200	42.1	45.4	4.37	£.3Z	4. 3Z	1 30	1		
Hardness	270	001	93			L3:1	25.7	25.7	76.7
			2			•			,
D.O.	47.00	44.00	8	277.0	1110				× +0
I	7 671	1		61.0	2.40	x 20	o vo	0 27	000
	4.34	4.0.4	0.1	7.57	2	1		2/19	0.26
Alkalinity	202	77	1		7:50	4.40	54.7	15.17	7.30
		5	†						200
Sp. Conduct.	7110	204	217	£ 50	100				320
				200	700	620	0 0 -	950	1001
								200	1001

	Γ		Γ	_	Ţ	_	_	Γ		T		7	
			4	ŝ		24 4	4.77	1	o oi		47.0		1100
			Ç	2		7.37		110	12.0	2	8.+		770
			9		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ナン		/4 0		70 1	1 4 . 7	. 00	- C
			9		77.00	43.4	,,	W. 40		7 44	7 . 4	1.01	+
		9	5		7.57		2	o it o	30,5	ナジュ		717	1
		?	2)	77 00	トンソ		0 22	1		ē. +		041	
		2		1100		9	Z C	200	7	9: 7	1	777	
		9		クンク		1,0	×0.00		7.7	1	נייר	27	
	•	Ş		25.4		2	0.17		58.7		210	77	
End	No Curring	No. Sarvivilly	Tompount	ובווחבומותוב							Sp. Conduct		
												_	

Page 1 of 3

Lab. No. TAS-Ho-133 Test Organism CD Start Date: 08/16/05 Time: 11:00

Client: GE Lot No. End Date: 08/13/05 End Time III.00

Effluent/Sample EFF Age: <24 hrs Investigators

Conc.	1_					Rep	olicate		<u> </u>	- 		No. of	No. of	Young
Control	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per
	1			ł										1
	2						1	 		+	 	<u> </u>	 	
	3					 	+	 	+	 -	 	 	 	
	4	4	2	3	3	4	3	1	3	4	3	 		
	5	0	4	0	ı	8	0	8	0	0	0			
-	6	9	0	9	10	0	10	0	10	7	8			
	7	13	13	14	13	14	14	13	14	12	13	<u> </u>		
	8						<u> </u>		 	16	1	 		
	total	26	19	26	27	26	27	23	27	23	24	248	10	24.8

Conc.	1_	<u> </u>				Re	plicate					No. of	No. of	Young
2°Control	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per
	1							 		╁	+	 		Adui
	2	<u> </u>	 	 	 	+	 		+		┼	 		-
	3			 	†	 	 	-	+	 	 	-	 	
	4	5	4	3	4	3	2	4	3	4				├──
	5	0	0	0	8	0	2	10	0	9	0			
	6	12	9	8	13	9	10	0	8	0	8	 		
	7	7	15	12	0	14	13	13	11	14	11			
	8						1			 	 	 		-
	total	24	28	23	25	26	28 04	27	22	27	22	252	10	25.2
		24	28	23	25	26	2004	27	22	1	22	252 K	10	2

Conc.	ł					Re	olicate					No. of	No. of	Young
2°Control+	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per
						}	İ	1						
	2			1			1	1	1	 				
	3			 		 	+	+			 	 	 	
	4	3	4	3	4	3	4	3	3	2	3	 		
	5	4	9	0	T	0	0	8	0	2	0			
	6	0	12	10	12	8	12	0	12	0	111			
	7	9	0	14	13	12	12	14	11	14	12			
	8							-	+	 • •	1.2			
	total	18	25	27	30	23	28	25	26	18	20	246	ω	24.6

Biotoxicity Bench Sheet

Page 2 of 3

 Lab. No.
 TAT-Ho-P333
 Test Organism
 CO
 Start Date:
 08/16/or
 Time:
 11:00

 Client:
 C1x
 Lot No.
 End Date:
 08/23/or
 End Time:
 11:00

 Effluent/Sample
 EFF
 Age:
 C24 A-s
 Investigators
 KH

Conc.	1					Rep	olicate					No. of	No. of	Young
6.25%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adul
	1			İ										
	2			<u> </u>			+	†	 		 	 		
	3		†	1	<u> </u>			+-	 	+	 	 	<u> </u>	
	4	2	4	3	2	3	4	3	4	3	u			
	5	0	0	8	0	0	0	7	8	0	11	<u> </u>		
-	6	6	9	0	12	9	13	0	0	1	0			
	7	12	13	14	14	- [1	11	12	13	12	13			
	8				1				 	†	 '' -			
-	total	20	26	25	28	23	28	22	25	22	28	247	10	24.7

Conc.	1_					Re	olicate					No. of	No. of	Young
12.5%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adult
	1	1				ĺ								T
	2							+	 	+		 	 	
	3		 	 	 		+	 	 	+	 	 	 	
	4	3	4	3	4	5	4	3	4	2	4			
	5	0	9	0	0	0	B	0	G	0	0			
	6	9	0	6	9	10	0	10	0	16	13			
	7	14	12	12	12	13	14	12	13	11	13			
	8													
	total	160	25	21	25	28	26	25	23	29	30	258	lo	25.8

Conc.	ŀ					Rep	olicate					No. of	No. of	Youn
25%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	pe: Adu
	1			1			1							
	2						 		 	<u> </u>	<u> </u>	 		<u> </u>
	3				†			<u> </u>	 	 	 	1		
•	4	3	4	4	4	5	4	5	4	3	Ц			-
	5	8	10	0	0	0	0	0	0	14	0			
	6	0	0	13	10	11	7	10	(4	0	13			
	7	13	14	12	13	13	12	12	10	12	11			
	8													
	total	24	28	19	27	29	23	2.7	28	29	28	272	10	17 1

Biotoxicity Bench Sheet

Page 3 of 3

Lab. No. TA5 - Ho - P333 Test Organism CD Start Date: 08/10/05 Time: 11:00

Client: GF Lot No. End Date: 08/23/05 End Time II:00

Effluent/Sample FF Age: C24 HB5 Investigators

Conc.						Rep	olicate					No. of	No. of	Young
50%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per
	1	ł	Į				Ĭ	T	T			 	 -	7.00
	2		 		† ·		 	 	 	 	 -	<u> </u>		-
	3				 	<u> </u>	 -	┼	 	 	╁	 		ļ
	4	2	4	5	5	ч	0	5	4	3	4	 		
	5	0	8	0	0	0	5	0	0	9	0	+		
	6	10	0	8	7	12	14	9	9	0	1	†		<u></u>
	7	13	16	13	12	14	0	13	14	12	13	 		
	8										 	†		
	total	25	28	26	24	30	14	27	27	24	24	254	v	25.4

Conc.	_					Re	plicate					No. of	No. of	Young
75%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per Adult
	1	l T							1		1	 		Addi
	2		 			 	+	+	+	+	┼	 		
	3	 	 		 		 	+	 	 	 			
	4	3	4	5	4	5	5	4	4	5	4	 -		
	5	0	9	0	6	0	1	0	0	7	0			
	6	12	0	9	0	12	10	13	10	0	10			
	7	14	12	10	11	12	17	11	13	12	13			
	8							1	 '	<u> </u>	1			
	total	29	25	24	21	29	18	28	27	24	27	262	10	26.2

Conc.	1_		.,			Re	plicate					No. of	No. of	Young
100%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	pe Adu
	1										†		 	1 200
	2	ļ	 -	<u> </u>	 	+	 		+	 	 	+	-	<u> </u>
	3	†	<u> </u>			 	 	+	-		 - -			
	4	4	5	4	3	5	5	4	3	5	4	 		
	5	0	0	0	G	7	0	0	0	0	6	1		
	6	6	9	8	0	0	10	6	10	6	6			
	7	14	12	12	11	13	11	12	12	13	11			
	8							†		1	<u> </u>	<u> </u>		
	total	24	26	24	20	25	26	22	25	24	21	237	10	12.

Appendix IV Statistical Sheets

Title: GE AUGUST 2005

File: GECDREP .805

Transform: NO TRANSFORMATION

Kolmogorov Test for Normality

(p-value = 0.0030)

D = 0.1194 D* = 1.1419

Critical D* = 1.035 (alpha = 0.01 , N = 90) = 0.895 (alpha = 0.05 , N = 90)

Data FAIL normality test (alpha = 0.01). Try another transformation.

Warning - The first three homogeneity tests are sensitive to non-normality and should not be performed with this data as is.

Title: GE AUGUST 2005

File: GE AUGUSI 2005

File: GECDREP .805 Transform: NO TRANSFORMATION

	Steel's Many-One	Rank Test	- Ho: Control <treatment< th=""></treatment<>				
GROUP	IDENTIFICATION	MEAN IN ORIGINAL UNITS	RANK SUM	CRIT. VALUE	DF	SIG 0.05	
- -	CONTROL	24.8000					
2	CONTROL+	24.6000	104.50	73.00	10.00		
3	2' CONTROL	25.2000	109.00	73.00	10.00		
4	6.25%	24.7000	103.50	73.00	10.00		
5	12.5%	25.8000	111.00	73.00	10.00		
6	25%	27.2000	137.50	73.00	10.00		
7	50%	25.4000	112.50	73.00	10.00		
8	75%	26.2000	124.00	73.00	10.00		
9	100%	23 7000	87 50	73 00	10 00		

Critical values are 1 tailed (k = 8)

Title: GE AUGUST 2005

File: GECDREP .805 Transform: NO TRANSFORMATION

GRP	IDENTIFICATION	MEAN	SMOOTHED MEAN	CONCENTRATION
1	CONTROL	24.8000	25.4875	0.0000
2	CONTROL+	24.6000	25.4875	0.0000
3	2' CONTROL	25.2000	25.4875	2.0000
4	6.25%	24.7000	25.4875	6.2500
5	12.5%	25.8000	25.4875	12.5000
6	25%	27.2000	25.4875	25.0000
7	50%	25.4000	25.4875	50.0000
8	75%	26.2000	25.4875	75.0000
9	100%	23.7000	23.7000	100.0000

ICp estimate with p = 25 is > 100.0000

Appendix V U.S. EPA Region I Toxicity Test Summary

Toxicity Test Summary Sheet

Facility Name:	General Electric Co.	Test Sta	art Date: August 16, 2005
NPDES Permit No	umber: <u>MA 000 3891</u>	_ Pipe Number:	001, 005-64T, 005-64G,
			09A, 09B
Test Type	Test Species	Sample Typ	e Sample Method
☐ Acute	☐ Fathead minnow	□ Prechlorinated	
☑ Chronic	□ Ceriodaphnia	□ Dechlorinated	I ☑ Composite
☐ Modified*	☑ Ceriodaphnia dubia	☐ Chlorine	☐ Flow thru
☐ 24-hour	☐ Mysid Shrimp	☐ Spiked at lab	□ Other
Screening	☐ Menidia	☑ Chlorinated o	n-
	□ Sea Urchin	site	
	□ Champia	☐ Unchlorinated	i
	□ Selenastrum		
	□ other		
*Modified (Chronic r	reporting acute values)		
Dilution Water			
	•	•	way from the discharge, free
•	$^\prime$ or other sources of cont	tamination (Recei	ving water name: <u>Housatonic</u>
River);		1. 1	
	•	•	ss, etc. to generally reflect the
	cs of the receiving water		
			or equivalent deionized water
			bined with mineral water;
	ea salts mixed with deio	•	
Delonized wa	ater and hypersaline brir	ie; or	
	a data(a). August 14	200E to August 1	10 2005
Effluent sampling	j date(s). <u>August 14,</u>	2005 to August 1	19, 2005
			
Effluent concentr	rations tested (in %):	100 75	50 25 12.5 6.25
	• •	it limit concentrat	
	(. 5		
Was effluent sali	nity adjusted? No		
If yes, to what va	alue? N/A ppt		
With sea salts?	· ·	e brine solution?	N/A
			
	oncentrations tested afte	•	
(in %): <u>N/A</u>	<u>N/A</u> <u>N/A</u> N/A	<u> N/A </u>	
	int Test Date: August		

Permit Limits & Test Results

Test Acceptability Criteria

MEAN CONTROL SURVIVAL:	≥90%	MEAN CONTROL REPRODUCTION:	N/A
MEAN CONTROL WEIGHT:	N/A	MEAN CONTROL CELL COUNT: N	I/A

Limit	S	Result	:S
LC ₅₀	N/A	48-hr LC ₅₀	>100%
		Upper Value	N/A
		Lower Value	N/A
		Data Analysis	
		Method used:	N/A
A-NOEC	N/A	A-NOEC	100%
C-NOEC	N/A	C-NOEC	100%
		LOEC	100%
IC25	N/A	IC25	N/A
IC50	N/A	IC50	N/A

N/A = not applicable

Appendix VI 7-Day Chronic Reference Toxicity Test Data

Page 1 of 2

							3
Lab. No.	ac	Test Organism	~D	Start Date:	نہ امم		
Client:		Lot No			00/05/05	Time:	1500
Effluent/Sample		LOI 140		End Date:	08/12/05	End Time	1500
⊏::iiuenivoamble	Nacl	Age:	124 hrs	Investigators	V		
	•				K	<u>+-</u>	

Сопс.						Re	plicate					No. of	Ma of	TV
Control	Day	1	2	3	4	5	6	7	8	9	10	Young	No. of Adults	Young per
	1					1	 	+	 	+		 -	ļ	Adul
	2		 	 -	+	 	+	 	+		 -			
······	3	 	 	 	 	+	2		 		 	 		
	4	5	4	3	3	4	0	4	0	+	3	 		
	5	9	8	0	8	0	7	0	10	0	8	 -		
	6	0	0	11	0	12	0	12	0	7	0			
	7	12	13	14	12	13	12	13	12	12	14			
	8						 	 	1.0	1	-			
	total	26	25	28	23	29	71	29	12	23	15	251		

Conc.	l _					Re	plicate					No. of	No. of	I Varia
250 ns/8 0.25%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	Young per
	1	1					1		 	+		+	 	Adul
	2		1	1	1	 		 	+	+	┼	 		
	3			 	 	 	+			 	 	+		
	4	3	4	3	4	3	4	3	1	4	3			
	5	0	0	5	0	8	10	0	9	0	8	 		
	6	9	10	0	10	0	0	8	7	10	0	 		
	7	14	11	12	13	12	14	14	12	12		 		
	8			 						12	11	 		
	total	26	25	20	27	23	28	25	30	26	22	252	10	15.2

Conc.	_	<u> </u>				Re	plicate					No. of	No. of	Young
12.5%	Day	1	2	3	4	5	6	7	8	9	10	Young	Adults	per
	1	1			1		7	1		+	 -	 	ļ	Adul
	2			<u> </u>	+	+	+		+	 	 -	 		<u> </u>
	3		<u> </u>		 	+	 	+		 	 	-		
	4	4	5	4	3	4	5	13	5	14	5			
	5	10	0	0	0	0	1 4	0	0	0	8			 -
	6	0	12	10	8	111	0	8	10	10	0	 		
	7	13	13	il	12	13	10	13	12	 	13			
	8			· · · · · ·					-	X-0		 		
	total	27	19	25	23	28	22	24	27		26	246	a	24.6

Biotoxicity Bench Sheet

Page 2 of 2

Lab. No.	AC	T 10				age 2 of 2
Client:	ac	Test Organism	_CD	Start Date:	08/05/05 Time:	
	<u> </u>	Lat No		End Date:		1500
Effluent/Sample	Maci	Age.	224 his		08/11/05 End Time	1500
		•	SECHNIC	Investigators	150 KH	

Day	'	2	13		Replicate									
1		L		'	4	5	6、	7	8	9	10	No of Young	No of Adults	Young
1						+	 				ļ		Adul	
2		 	 	 	+	 	┽	┥—		↓				
3		 	†	 	+	 	 		 	ļ				
4	2	0	0	0	12	0	1	1	+	-				
5	0	4	X'D			 	 	 		1-6-				
6	3	0	1	0	+	X-0	 	1	 	 				
7	0	1.	11-1	2	1 1 2	 	 	 	X-0	X-0				
8				<u> </u>	1	 	0_	10	1.					
otal	5	6	x-0	6	 	¥ 50	7	1	 	W			3.5	
	3 4 5 6 7 8	3 4 2 5 0 6 3 7 0 8	3 4 2 0 5 0 4 6 3 0 7 0 2 8 Otal 5 4	3 4 2 0 0 5 0 4 × 0 6 3 0 7 0 2 V	3	3 4 2 0 0 0 2 5 0 4 × 0 3 0 6 3 0 0 1 3 7 0 2 3 3 8 V	3 4 2 0 0 0 2 0 5 0 4 × 0 3 0 × 0 6 3 0 0 7 0 7 1 3	3 4 2 0 0 0 2 0 3 5 0 4 × 0 3 0 × 0 0 6 3 0 0 0 × 1 4 7 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 1 0 0 0 2 0 3 1 5 0 4 × 0 3 0 × 0 0 0 6 3 0 0 × 1 4 1 7 0 1 3 0 0 0	3 4 1 0 0 0 0 2 0 3 2 0 5 0 4 × 0 3 0 × 0 0 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0	3 4 1 0 0 0 0 2 0 3 1 0 2 0 5 0 4 × 0 3 0 × 0 0 0 2 0 7 0 7 0 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 1 0 0 0 0 2 0 3 1 0 1 5 0 4 × 0 3 0 × 0 0 0 2 0 7 0 7 0 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 4 1 0 0 0 0 2 0 3 2 0 2 5 0 5 0 4 × 0 3 0 × 0 0 0 2 0 7 0 7 0 1 1 X -0 X -0 0 0 1 1 1 X -0 X -0 0 0 1 1 X -0 X -0	

Conc.			T			Re	plicate							
2000 mg/l -50%	Day		2	3	4	5	6	7	8	9	10	No of Young	No. of Adults	Young per
	1				1	†	+	 	+	+	+	 		Adult
	2		1	 	†	+	+	 	+	 		<u> </u>		
	3		1	†	+	+	 	 	 		 			
	4	0	1	 _ _ _ _ _ _ _		 	+	 	 	 				
	5		0	10	2	0	0	0	0	0	0			
	6	X-0	16	0	0	0	2	X-0	0	3	3			 -
	- -		0	2-0	x-0	X-0	X-0		X-0	0	x-0			
			X-0		, _	1			<u> </u>	x-0	A			
	8	V			V					1				
	total	X-0	x-2	4-0				<u>- </u>	₩-	1	V			
				- 7 -	x-2	LX-0	x-2	X-0	1.0	X-3	1 3-3	12	0	1.2

	Davi	1				Kep	olicate					TAL	T	,
Conc. 4000 inc/2 100%	1	'	2	3	4	5	6	7	8	Э	10	No of Young	No of Adults	Young per Adult
	2	×	X	×	×	×		X	X	X	X			
	4	 		+-	++-	 	X							
	5		† †	†-}-	 	++		┼-┼-						
	6			 	- -			 						
	7							-			╌╂╌┤			
	8	V	4	V	V		\forall	V	1	V	-			
	total				<u> </u>		<u> </u>		<u>'</u>		V]	

Title: CD REFTOX AUGUST 2005

File:

QCCDREP .805

Transform:

NO TRANSFORMATION

Shapiro - Wilk's Test for Normality

D = 401.0000W = 0.9574

Critical W = 0.9300 (alpha = 0.01 , N = 50) W = 0.9470 (alpha = 0.05 , N = 50)

Data PASS normality test (alpha = 0.01). Continue analysis.

Title: CD REFTOX AUGUST 2005
File: QCCDREP .805 Transform: NO TRANSFORMATION

Bartlett's Test for Homogeneity of Variance

Calculated B1 statistic = 11.2076

(p-value = 0.0243)

Data PASS B1 homogeneity test at 0.01 level. Continue analysis.

Critical B = 13.2767 (alpha = 0.01, df = 4) = 9.4877 (alpha = 0.05, df = 4) Title: CD REFTOX AUGUST 2005
File: QCCDREP .805 Transform: NO TRANSFORMATION

ANOVA Table

SOURCE	DF	SS	MS	F
Between	4	6166.6800	1541.6700	173.0054
Within (Error)	45	401.0000	8.9111	
Total	49	6567.6800		
			(p-val)	ue = 0.0000)

Critical F = 3.7674 (alpha = 0.01, df = 4.45) = 2.5787 (alpha = 0.05, df = 4.45)

Since F > Critical F REJECT Ho: All equal (alpha = 0.05)

Title: CD REFTOX AUGUST 2005

File:

QCCDREP .805 Transform:

NO TRANSFORMATION

I	Dunnett's Test -	TABLE 1 OF 2	Ho:Control	<treatment< td=""><td></td></treatment<>	
GROUP	IDENTIFICATION	TRANSFORMED MEAN	MEAN CALCULATED II ORIGINAL UNITS	N T STAT	SIG 0.05
1 2 3 4 5	CONTROL 250 MG/L 500 MG/L 1000 MG/L 2000 MG/L	25.1000 25.2000 24.6000 3.5000 1.2000	25.1000 25.2000 24.6000 3.5000 1.2000	-0.0749 0.3745 16.1798 17.9026	*
Dunnett	critical value = 2.	2300 (1 Tailed,	alpha = 0.05, df (Acti	[used] = 4 ual df = 4	

Title: CD REFTOX AUGUST 2005

File: QCCDREP .805

Transform: NO TRANSFORMATION

	Ounnett's Test -	TABLE 2 O	F 2 Ho	:Control<	Treatment
GROUP	IDENTIFICATION	NUM OF REPS	MIN SIG DIFF (IN ORIG. UNITS)	% OF CONTROL	DIFFERENCE FROM CONTROL
1 2 3 4 5	CONTROL 250 MG/L 500 MG/L 1000 MG/L 2000 MG/L	10 10 10 10	2.9770 2.9770 2.9770 2.9770	11.9 11.9 11.9 11.9	-0.1000 0.5000 21.6000 23.9000

Title: CD REFTOX AUGUST 2005 File: QCCDREP .805 Transform: NO TRANSFORMATION

GRP	IDENTIFICATION	MEAN	SMOOTHED MEAN	CONCENTRATION
1	CONTROL	25.1000	25.1500	0.0000
2	250 MG/L	25.2000	25.1500	250.0000
3	500 MG/L	24.6000	24.6000	500.0000
4	1000 MG/L	3.5000	3.5000	1000.0000
5	2000 MG/L	1.2000	1.2000	2000.0000

ICp estimate with p = 25 is 635.9597

Bootstrap results using 480 iterations:

Mean = 624.8202 Standard Deviation = 24.4462 95% Confidence Interval: (558.1897 , 653.8955)

Client:								
Project: Reference	Toxicant		Lab. No.:					
				Date Received	:			
Sample Date:	Time:			Date Analyzed	•			
Source: Nacl			Analyst:					
Source of dilution water:	Moderately	Hard	Syntheti	c Water	-			
Test Species: Cerodo	phnia dubic	Age:			ange: °C			
	UK ACUTE		1					
Total Chlorine:			Γ	Beginning	Ending			
			Date:	08/03/05	08/05/05			
			Time:	1500	1500			

Concentration	Control	500	1000	2000	3000	4000
START						1 4000
Temperature	24.5	24.5	254.5	24.5	24.5	24.5
Hardness	110					120
D.O.	8.7	8.7	8.7	87	8.7	8.8
pН	٦.t	7.2	7.2	7.2	7.2	7.2
Alkalinity	45					74
Sp. Conduct.	309	2340	3670	3920	5730	7440
24 HOUR					·	
Temperature	25.2	25.2	21.2	25.2	15.2	25.2
No. Surviving	20	20	20	13	6	0
48 HOUR		· · · · · · · · · · · · · · · · · · ·	·			<u> </u>
Temperature	25.8	25 8	258	258	25 8	29.8
No. Surviving	20	20	13	4	0	0

Note: All results expressed in mg/L unless otherwise designated. < = less than

Note: Number in parenthesis equals number not adversely effected (EC_{50}). This number is used in calculating EC_{50} value.

Note: Due to fragile structure of *Daphnia* organisms, dissolved oxygen (DO), hardness, alkalinity, specific conductance, and pH reading could not be taken after the organisms are added to the sample. Doing so would cause injury to the organisms.

Method Reference: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fifth Edition. EPA-821-R-02-012 U.S.EPA, Washington, DC

FOR REFERENCE, CITE:

HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719: CORRECTION 12(4):417 (1978).

DATE: 08/03/05 TEST NUMBER: -

DURATION: 48 HOURS

CHEMICAL: NaCl

SPECIES: CD

RAW DATA:

CONCENTRATION (MG/L) 500.001000.002000.003000.004000.00 NUMBER EXPOSED: 20 20 20 20 20 MORTALITIES: 0 7 16 20 20

 20
 20
 20
 20
 20

 0
 7
 16
 20
 20

MORTALITIES: SPEARMAN-KARBER TRIM:

0.00%

 SPEARMAN-KARBER
 ESTIMATES:
 LC50:
 1238.42

 95%
 LOWER
 CONFIDENCE:
 1036.97

 95%
 UPPER
 CONFIDENCE:
 1478.99

Attachment E

Results from the GeoTesting Express Direct Shear Interface Testing of the Cover System Components for a Portion of the Building 71 OPCA [August 24, 2005]

Client: Blasland, Bouck & Lee, Inc. Project Name: Pittsfield, MA Project Location: GTX #: 6125 Start Date: 08/24/05 Tested By: bdf/rmt End Date: 08/24/05 Checked By: jdt Soil ID: General Fill Soil Description: Moist, dark olive brown silty sand with gravel. Geosynthetic ID: Geocomposite: Roll #1645018 Geosynthetic Description: Black, double non-woven.

Interface Shear Test Series by ASTM D 5321

Test Series #:

1

Test Profile - Top to Bottom:

Textured Gripping Surface / SOIL / GEOCOMPOSITE / Textured Gripping Surface

Soil Preparation:

Compacted using moderate effort at the as received Moisture Content

Compaction Characteristics:

Maximum Dry Density

--- pcf

Optimum Moisture Content

--- %

Compaction Test Method

ASTM D 1557

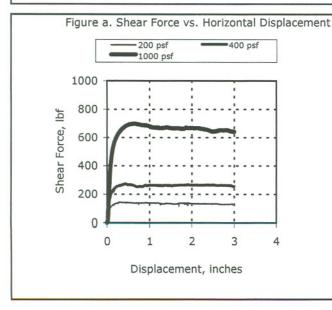
Geosynthetic Preparation:

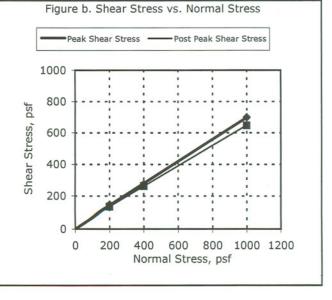
Saturated for 30 minutes under normal load prior to shear.

Test Equipment:

Top box = 12 in x 12 in; Bottom box = 16 in x 12 in; Load cells and LVDTs connected to data

acquisition system for shear force, normal load and horizontal displacement readings; Flat


plate clamping device; surface area = 144 in²


Horizontal Displacement, in/min: 0.

Test Condition: inundated

Parameter	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
Initial Moisture Content, %	8	8	8			
Initial Dry Density, pcf	121	121	121			
Percent Compaction, %						
Normal Compressive Stress, psf	200	400	1000			
Peak Shear Stress, psf	144	274	699			
Post Peak Shear Stress, psf	131	262	648			
Final Moisture Content, %	17	16	16			

NOTES:Peak Friction Angle:35degreesPeak Cohesion:0psfPost Peak Friction Angle:33degreesPost Peak Cohesion:2psf

Client:	Blasland, Bouck & Lee, Inc.				
Project Name:	GE				
Project Location:	Pittsfield, MA				
GTX #:	6125				
Start Date:	08/24/05	Tested By:	bdf/rmt		
End Date:	08/25/05	Checked By:	jdt		
Soil ID:	Subgrade Soil				
Soil Description:	Moist, dark olive brown silty sand with gravel.				
Geosynthetic ID:	Geomembrane: Roll #GT-06-05-0795				
Geosynthetic Description:	Black, 60 mil textured HDPE.				

Interface Shear Test Series by ASTM D 5321

Test Series #:

2

Test Profile - Top to Bottom:

Textured Gripping Surface / SOIL / GEOMEMBRANE / Textured Gripping Surface

Soil Preparation:

Compacted using moderate effort at the as received Moisture Content

Compaction Characteristics:

Maximum Dry Density

--- pcf

Optimum Moisture Content

--- %

Compaction Test Method

ASTM D 1557

Geosynthetic Preparation:

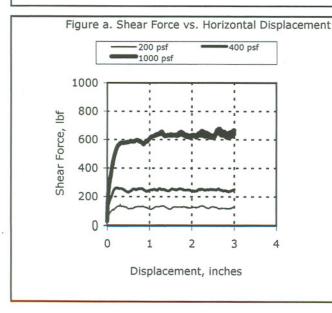
Saturated for 30 minutes under normal load prior to shear.

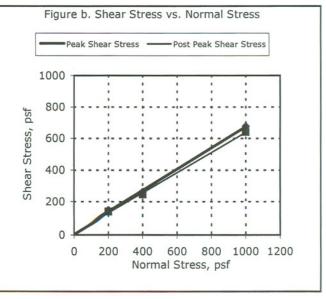
Test Equipment:

Top box = 12 in x 12 in; Bottom box = 16 in x 12 in; Load cells and LVDTs connected to data

acquisition system for shear force, normal load and horizontal displacement readings; Flat

plate clamping device; surface area = 144 in²


Horizontal Displacement, in/min:


0.04

Test Condition: inundated

Parameter	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
Initial Moisture Content, %	9	9	9			
Initial Dry Density, pcf	116	116	116			
Percent Compaction, %						
Normal Compressive Stress, psf	200	400	1000			
Peak Shear Stress, psf	144	260	677			
Post Peak Shear Stress, psf	135	245	640			
Final Moisture Content, %	19	18	15			

Peak Friction Angle: 34 degrees
Peak Cohesion: 2 psf
Post Peak Friction Angle: 33 degrees
Post Peak Cohesion: 0 psf

Client:	Blasland, Bouck & Lee,	Inc.					
Project Name:	GE						
Project Location:	Pittsfield, MA						
GTX #:	6125						
Start Date:	08/24/05	Tested By:	bdf/rmt				
End Date:	08/25/05 Checked By:		jdt				
Geosynthetic ID:	Geomembrane: Roll #GT-06-05-0795						
-	Geocomposite: Roll #1645018						
Geosynthetic Description:	Geomembrane: Black, 60 mil textured HDPE.						
	Geocomposte: Black do	Geocomposte: Black double non-woven.					

Interface Shear Test Series by ASTM D 5321

Test Series #:

3

Test Profile - Top to Bottom:

Textured Gripping Surface / GEOMEMBRANE / GEOCOMPOSITE / Textured Gripping Surface

Soil Preparation:

Compaction Characteristics:

Corrected Maximum Dry Density

--- pcf

Corrected Optimum Moisture Content

--- %

Compaction Test Method

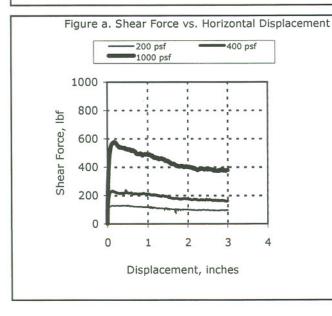
ASTM D 1557

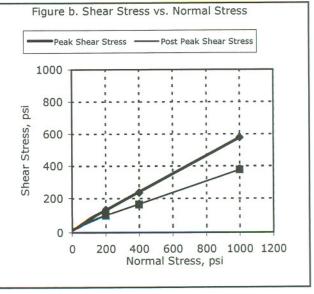
Geosynthetic Preparation:

Saturated for 15 minutes under normal load prior to shear.

Test Equipment:

Top box = 12 in x 12 in; Bottom box = 16 in x 12 in; Load cells and LVDTs connected to data acquisition system for shear force, normal load and horizontal displacement readings; Flat plate


clamping device; surface area = 144 in²


Horizontal Displacement, in/min: 0.3

Test Condition: inundated

Parameter	Point 1	Point 2	Point 3	Point 4	Point 5	Point 6
Initial Moisture Content, %						
Initial Dry Density, pcf						
Percent Compaction, %						
Normal Compressive Stress, psf	200	400	1000			
Peak Shear Stress, psf	130	236	578			
Post Peak Shear Stress, psf	96	163	377			
Final Moisture Content, %						

NOTES:Peak Friction Angle:29degreesPeak Cohesion:15psfPost Peak Friction Angle:19degreesPost Peak Cohesion:24psf

