

GE 159 Plastics Avenue Pittsfield, MA 01201 USA

Transmitted via Overnight Courier

June 9, 2005

Mr. Dean Tagliaferro U.S. Environmental Protection Agency Region I – New England 10 Lyman Street, Suite 2 Pittsfield, MA 01201 Ms. Susan Steenstrup Bureau of Waste Site Cleanup Department of Environmental Protection 436 Dwight Street Springfield, MA 01103

Re: GE-Pittsfield/Housatonic River Site Monthly Status Report Pursuant to Consent Decree for May 2005 (GECD900)

Dear Mr. Tagliaferro and Ms. Steenstrup:

Enclosed are copies of General Electric's (GE's) monthly progress report for May 2005 activities conducted by GE at the GE-Pittsfield/Housatonic River Site. This monthly report is submitted pursuant to Paragraph 67 of the Consent Decree (CD) for this Site, which was entered by the U.S. District Court on October 27, 2000.

The enclosed monthly report includes not only the activities conducted by GE under the CD, but also other activities conducted by GE at the GE-Pittsfield/Housatonic River Site (as defined in the CD). The report is formatted to apply to the various areas of the Site as defined in the CD, and to provide for each area, the information specified in Paragraph 67 of the CD. The activities conducted specifically pursuant to or in connection with the CD are marked with an asterisk. GE is submitting a separate monthly report to the Massachusetts Department of Environmental Protection (MDEP), with a copy to the United States Environmental Protection Agency (EPA), describing the activities conducted by GE at properties outside the CD Site pursuant to GE's November 2000 Administrative Consent Order from MDEP.

The enclosed monthly report includes, where applicable, tables that list the samples collected during the subject month, summarize the analytical results received during that month from sampling or other testing activities, and summarize other groundwater monitoring and oil recovery information obtained during that month. Also, enclosed for each of you (and for Weston) is a CD-ROM that contains these same tables of the analytical data and monitoring information in electronic form.

Please call Andrew Silfer or me if you have any questions.

Sincerely,

John F. Mousty / ets for

John F. Novotny, P.E. Manager - Facilities and Brownfields Programs

Enclosure V:\GE_Pittsfield_GeneralReports and Presentations\Monthly Reports\2005\05-05 CD Monthly\Letter.doc

Mr. Dean Tagliaferro Ms. Susan Streenstrup June 9, 2005 Page 2 of 2

Robert Cianciarulo, EPA (cover letter only) cc: Tim Conway, EPA (cover letter only) James DiLorenzo, EPA William Lovely, EPA (Items 7, 8, 9, 10, 11, 12, 16/17, 22, 23, and 25 only) Rose Howell, EPA (cover letter only) Holly Inglis, EPA (hard copy and CD-ROM of report) Susan Svirsky, EPA (Items 7, 15, and 20 only) K.C. Mitkevicius, USACE (CD-ROM of report) Thomas Angus, MDEP (cover letter only) Robert Bell, MDEP (cover letter only) Anna Symington, MDEP (cover letter only) Nancy E. Harper, MA AG Susan Peterson, CT DEP Field Supervisor, US FWS, DOI Kenneth Finkelstein, Ph.D., NOAA (Items 13, 14, and 15 only) Dale Young, MA EOEA Mayor James Ruberto, City of Pittsfield Thomas Hickey, Director, Pittsfield Economic Development Authority Linda Palmieri, Weston (hard copy of report, CD-ROM of report, CD-ROM of data) Richard Nasman, P.E., Berkshire Gas (CD-ROM of report) Michael Carroll GE (CD-ROM of report) Andrew Silfer, GE (cover letter only) Rod McLaren, GE (CD-ROM of report) James Nuss, BBL James Bieke, Goodwin Procter Jim Rhea, OEA (narrative only) Teresa Bowers, Gradient Public Information Repositories (1 hard copy, 5 copies of CD-ROM) GE Internal Repository (1 hard copy)

(w/o separate CD-ROM, except where noted)

MAY 2005

MONTHLY STATUS REPORT

PURSUANT TO CONSENT DECREE FOR GE-PITTSFIELD/HOUSATONIC RIVER SITE

GENERAL ELECTRIC COMPANY

 $V: \label{eq:constraint} V: \label{eq:constr$

Background

The General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and other governmental entities have entered into a Consent Decree (CD) for the GE-Pittsfield/Housatonic River Site, which was entered by the U.S. Court on October 27, 2000. In accordance with Paragraph 67 of the CD, GE has prepared this monthly report, which summarizes the status of activities conducted by GE at the GE-Pittsfield/Housatonic River Site ("Site") (as defined in the CD).

This report covers activities in the areas listed below (as defined in the CD and/or the accompanying Statement of Work for Removal Actions Outside the River [SOW]). Only those areas that have had work activities for the month subject to reporting are included. The specific activities conducted pursuant to or in connection with the CD are noted with an asterisk.

General Activities (GECD900)

GE Plant Area (non-groundwater)

- 1. 20s, 30s, 40s Complexes (GECD120)
- 2. East Street Area 2 South (GECD150)
- 3. East Street Area 2 North (GECD140)
- 4. East Street Area 1 North (GECD130)
- 5. Hill 78 and Building 71 Consolidation Areas (GECD210/220)
- 6. Hill 78 Area Remainder (GECD160)
- 7. Unkamet Brook Area (GECD170)

Former Oxbow Areas (non-groundwater)

- 8. Former Oxbow Areas A & C (GECD410)
- 9. Lyman Street Area (GECD430)
- 10. Newell Street Area I (GECD440)
- 11. Newell Street Area II (GECD450)
- 12. Former Oxbow Areas J & K (GECD420)

Housatonic River

- 13. Upper ¹/₂-Mile Reach (GECD800)
- 14. 1¹/₂-Mile Reach (only for activities, if any, conducted by GE) (GECD820)
- 15. Rest of the River (GECD850)

Housatonic River Floodplain

- 16. Current Residential Properties Adjacent to 1¹/₂-Mile Reach (Actual/Potential Lawns) (GECD710)
- 17. Non-Residential Properties Adjacent to 1¹/₂-Mile Reach (excluding banks) (GECD720)
- 18. Current Residential Properties Downstream of Confluence (Actual/Potential Lawns) (GECD730)

Other Areas

- 19. Allendale School Property (GECD500)
- 20. Silver Lake Area (GECD600)

Groundwater Management Areas (GMAs)

- 21. Plant Site 1 (GECD310)
- 22. Former Oxbows J & K (GECD320)
- 23. Plant Site 2 (GECD330)
- 24. Plant Site 3 (GECD340)
- 25. Former Oxbows A&C (GECD350)

GENERAL ACTIVITIES GE-PITTSFIELD/HOUSATONIC RIVER SITE (GECD900) MAY 2005

a. Activities Undertaken/Completed

- Continued GE-EPA electronic data exchanges for the Housatonic River Watershed and Areas Outside the River.*
- Participated in Citizens Coordinating Council (CCC) mid-course review (May 25, 2005).
- Continued discussions with Western Massachusetts Electric Company (WMECo) regarding subordination agreements for WMECo easements on GE properties that will be subject to Grants of Environmental Restrictions and Easements (EREs).*

b. <u>Sampling/Test Results Received</u>

- See attached tables.
- Sample results were received for routine sampling conducted pursuant to GE's NPDES Permit for the GE facility. Sampling records and results are provided in Attachment A to this report.
- NPDES Discharge Monitoring Reports (DMRs) for the period of April 1 through April 30, 2005, are provided in Attachment B to this report.
- A report titled *Toxicity Evaluation of Wastewaters Discharged from the General Electric Plant; Pittsfield, Massachusetts (Samples Collected in May 2005)* was prepared for GE by SGS Environmental Services, Inc. (SGS). A copy of that report is provided in Attachment C.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue NPDES sampling and monitoring activities.
- Attend public, CCC, and Pittsfield Economic Development Authority (PEDA) meetings, as appropriate.
- Respond to EPA's March 9, 2005 letter on Northeast Analytical's (NEA's) and SGS' Standard Operating Procedures (SOPs) for PCB analysis using Method 8082 for NPDES monitoring.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

None

TABLE G-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

GENERAL ACTIVITIES GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Berkshire Concrete Gravel Pit Backfill	BERKCONCRETE-GRAVEL-C1	4/20/05	Soil	SGS	PCB, VOC, SVOC, Metals	5/4/05
Bushika Gravel Pit Backfill Sampling	BUSHIKA-GRAVEL-C1	4/20/05	Soil	SGS	PCB, VOC, SVOC, Metals	5/4/05
Hurleys Gravel Pit Backfill Sampling	HURLEYS-GRAVEL-C1	4/20/05	Soil	SGS	PCB, VOC, SVOC, Metals	5/4/05

TABLE G-2 DATA RECEIVED DURING MAY 2005

BERKSHIRE CONCRETE GRAVEL PIT, BUSHIKA GRAVEL PIT AND HURLEYS GRAVEL PIT BACKFILL SAMPLING GENERAL ACTIVITIES GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Parameter	Sample ID: Date Collected:	BERKCONCRETE-GRAVEL-C1 04/20/05	BUSHIKA-GRAVEL-C1 04/20/05	HURLEYS-GRAVEL-C1 04/20/05
Volatile Organics			-	
None Detected				
PCBs				
Aroclor-1260		ND(0.034)	ND(0.039)	0.11
Total PCBs		ND(0.034)	ND(0.039)	0.11
Semivolatile Organic	S			
None Detected				
Inorganics				
Antimony		ND(6.00)	1.10 B	ND(6.00)
Arsenic		5.90	4.40	3.40
Barium		30.0	27.0	28.0
Beryllium		0.390 B	0.370 B	0.260 B
Cadmium		0.400 B	0.320 B	0.240 B
Chromium		9.20	6.20	7.60
Cobalt		10.0	7.30	6.00
Copper		15.0	10.0	10.0
Lead		5.50	9.00	2.50
Nickel		16.0	10.0	10.0
Selenium		2.80	1.00	1.80
Silver		0.180 B	0.210 B	0.120 B
Thallium		0.890 B	ND(1.20)	ND(1.00)
Tin		1.20 B	1.30 B	1.20 B
Vanadium		12.0	7.80	7.80
Zinc		46.0	38.0	23.0

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, semivolatiles and metals.

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

3. Only those constituents detected in one or more samples are summarized.

4. -- Indicates that all constituents for the parameter group were not detected.

Data Qualifiers:

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

ITEM 1 PLANT AREA 20s, 30s, 40s COMPLEXES (GECD120) MAY 2005

a. <u>Activities Undertaken/Completed</u>

- Completed transfer of 20s and 30s Complexes to PEDA at public ceremony (May 2, 2005).
- Confirmed Notice of Transfer of responsibility, coverage, and liability for NPDES Permit Program Outfalls 001, 01A, and 004 at 20s and 30s Complexes (May 10, 2005).*
- Completed closure of select manholes and catch basins in drainage basin areas 001, 004, and YD-3 (May 25, 2005).
- Continued demolition activities at Buildings 42 and 43/43-A and completed demolition of Building 44.
- Completed concrete core characterization at 40s Complex for non-PCB Appendix IX+3 constituents, as proposed in the August 4, 2004 Building Characterization Proposal and as modified by EPA and GE at the April 25, 2005 technical meeting.
- Conducted ambient air monitoring for particulate matter and PCBs (see Table 1-1).
- Conducted sampling of soil from 31W oil/water separator, as identified in Table 1-1.
- Initiated preparation of Supplemental Building Characterization Report and Building Debris Stockpile Proposal for 40s Complex (due 30 days after receipt of approval from EPA for August 4, 2004 Building Characterization Proposal) (also see Item 1.e below).

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. <u>Work Plans/Reports/Documents Submitted</u>

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue demolition activities at Buildings 42 and 43/43-A.
- Submit Supplemental Building Characterization Report and Building Debris Stockpile Proposal (due 30 days after receipt of approval from EPA for GE's August 4, 2004 Building Characterization Proposal) (also see Item 1.e below).

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

Issues relating to stockpiling building demolition debris from 40s Complex for use as grading/fill material within that complex are under discussion with EPA.

f. <u>Proposed/Approved Work Plan Modifications</u>

None

TABLE 1-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
40's Complex Building Sampling	42-1-CF-COMP-1	5/2/05	Concrete	SGS	TCLP	5/6/05
40's Complex Building Sampling	42-2-CF-1A	4/28/05	Concrete	SGS	VOC, SVOC, Metals	5/4/05
40's Complex Building Sampling	42-2-CF-2A	4/28/05	Concrete	SGS	VOC, SVOC, Metals	5/4/05
40's Complex Building Sampling	42-3-CF-2A	4/28/05	Concrete	SGS	VOC, SVOC, Metals	5/4/05
40's Complex Building Sampling	42-3-CW-1A	4/28/05	Concrete	SGS	VOC, SVOC, Metals	5/4/05
40's Complex Building Sampling	42-4-CF-1A	4/28/05	Concrete	SGS	VOC, SVOC, Metals	5/4/05
40's Complex Building Sampling	42-4-CF-2A	4/28/05	Concrete	SGS	VOC, SVOC, Metals	5/4/05
40's Complex Building Sampling	42-R-C-1A	4/29/05	Concrete	SGS	VOC, SVOC, Metals	5/5/05
40's Complex Building Sampling	43-2-CF-1A	5/2/05	Concrete	SGS	VOC, SVOC, Metals	5/6/05
40's Complex Building Sampling	43-2-CW-2A	5/2/05	Concrete	SGS	VOC, SVOC, Metals	5/6/05
40's Complex Building Sampling	43-3-CF-1A	4/29/05	Concrete	SGS	VOC, SVOC, Metals	5/5/05
40's Complex Building Sampling	43-3-CF-2A	5/2/05	Concrete	SGS	VOC, SVOC, Metals	5/6/05
40's Complex Building Sampling	43-4-CF-1A	4/29/05	Concrete	SGS	VOC, SVOC, Metals	5/5/05
40's Complex Building Sampling	43-4-CF-2A	5/2/05	Concrete	SGS	VOC, SVOC, Metals	5/6/05
40's Complex Building Sampling	43-5-CF-1A	5/2/05	Concrete	SGS	VOC, SVOC, Metals	5/6/05
40's Complex Building Sampling	43-5-CF-2A	4/29/05	Concrete	SGS	VOC, SVOC, Metals	5/5/05
40's Complex Building Sampling	43-DUP-1 (43-5-CF-2A)	4/29/05	Concrete	SGS	VOC, SVOC, Metals	5/5/05
40's Complex Building Sampling	43-DUP-2 (43-2-CF-1A)	5/2/05	Concrete	SGS	VOC, SVOC, Metals	5/6/05
40's Complex Building Sampling	43-R-C-1A	4/29/05	Concrete	SGS	VOC, SVOC, Metals	5/5/05
Plant Site Utility Sampling	31W-SEPARATOR-SOIL-1	5/9/05	Soil	SGS	PCB	5/12/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/2/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/2/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/2/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/2/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/2/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/3/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/3/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/3/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/3/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/3/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/4/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/4/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/4/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/4/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/4/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/5/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/5/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/5/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/5/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/5/05	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/9/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/9/05	Air	Berkshire Environmental	Particulate Matter	5/16/05

TABLE 1-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/9/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/9/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/9/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/10/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/10/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/10/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/10/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/10/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/11/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/11/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/11/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/11/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/11/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/12/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/12/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/12/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/12/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/12/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/13/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/13/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/13/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/13/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/13/05	Air	Berkshire Environmental	Particulate Matter	5/16/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/16/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/16/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/16/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/16/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/16/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/17/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/17/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/17/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/17/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/17/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/18/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/18/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/18/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/18/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/18/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/19/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/19/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/19/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/19/05	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/19/05	Air	Berkshire Environmental	Particulate Matter	5/24/05

TABLE 1-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/23/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/23/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/23/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/23/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/23/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/27/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/27/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/27/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/27/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/27/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	W3 - West of 40s Complex	5/31/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	MC3 - Near Bldg. 16 & 19	5/31/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	M2 - South of Bldg. 5	5/31/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	S2 - Woodlawn Avenue	5/31/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	Background Inside GE Gate 31	5/31/05	Air	Berkshire Environmental	Particulate Matter	6/2/05
PCB Ambient Air Sampling	W3 - West of 40s Complex	5/23 - 5/24/05	Air	Berkshire Environmental	PCB	5/31/05
PCB Ambient Air Sampling	S2 - Woodlawn Avenue	5/23 - 5/24/05	Air	Berkshire Environmental	PCB	5/31/05
PCB Ambient Air Sampling	M2 - South of Bldg. 5	5/23 - 5/24/05	Air	Berkshire Environmental	PCB	5/31/05
PCB Ambient Air Sampling	MC3 - Near Bldg. 16 & 19	5/23 - 5/24/05	Air	Berkshire Environmental	PCB	5/31/05
PCB Ambient Air Sampling	MC3-CO-Colocated - near Bldgs. 16 & 19	5/23 - 5/24/05	Air	Berkshire Environmental	PCB	5/31/05
PCB Ambient Air Sampling	BM1-Background - Inside GE Gate 31	5/23 - 5/24/05	Air	Berkshire Environmental	PCB	5/31/05

Note:

1. Field duplicate sample locations are presented in parenthesis.

40'S COMPLEX BUILDING SAMPLING 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	42-2-CF-1A	42-2-CF-2A	42-3-CF-2A	42-3-CW-1A	42-4-CF-1A	42-4-CF-2A
Parameter	Date Collected:	04/28/05	04/28/05	04/28/05	04/28/05	04/28/05	04/28/05
Volatile Organics							
2-Hexanone		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.025)
4-Methyl-2-pentanon	e	ND(0.010)	ND(0.010)	0.0059 J	ND(0.010)	ND(0.010)	ND(0.025)
Acetone		ND(0.020)	ND(0.020)	0.031	0.075	0.0053 J	0.66
Benzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)
Bromomethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.017 J
Carbon Disulfide		ND(0.0050)	ND(0.0050)	ND(0.0050)	0.0011 J	ND(0.0050)	ND(0.025)
Chlorobenzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)
Chloromethane		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.013 J
Ethylbenzene		ND(0.0050)	0.0010 J	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)
Methylene Chloride		ND(0.0050)	ND(0.0050)	0.0012 J	0.0048 J	ND(0.0050)	ND(0.025)
Toluene		0.0039 J	0.0070	0.017	0.020	0.0045 J	0.034
Trichloroethene		ND(0.0050)	ND(0.0050)	ND(0.0050)	0.0026 J	ND(0.0050)	ND(0.025)
Trichlorofluorometha	ne	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.025)
Xylenes (total)		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.0022 J	ND(0.025)
Semivolatile Organ	nics	· · · · · · · · · · · · · · · · · · ·			,		· · · · · · ·
2-Methylnaphthalene		0.059 J	ND(0.33)	ND(3.3)	ND(0.33)	0.45 J	ND(0.33)
Acenaphthene		ND(0.33)	ND(0.33)	0.95 J	ND(0.33)	2.0 J	ND(0.33)
Anthracene		ND(0.33)	ND(0.33)	3.0 J	ND(0.33)	5.6	ND(0.33)
Benzo(a)anthracene		ND(0.33)	ND(0.33)	5.8	ND(0.33)	12	ND(0.33)
Benzo(a)pyrene		ND(0.33)	ND(0.33)	4.9	ND(0.33)	12	ND(0.33)
Benzo(b)fluoranthene	е	ND(0.33)	ND(0.33)	5.1	ND(0.33)	12	ND(0.33)
Benzo(g,h,i)pervlene)	ND(0.33)	ND(0.33)	2.6 J	ND(0.33)	6.0	ND(0.33)
Benzo(k)fluoranthene	e	ND(0.33)	ND(0.33)	6.1	ND(0.33)	13	ND(0.33)
Benzyl Alcohol		ND(0.67)	ND(0.67)	ND(6.7)	ND(0.67)	ND(6.7)	ND(0.67)
bis(2-Ethylhexyl)phth	alate	ND(0.33)	ND(0.33)	ND(1.7)	0.27 J	ND(1.7)	1.5
Butylbenzylphthalate		ND(0.33)	ND(0.33)	ND(3.3)	ND(0.33)	ND(3.3)	ND(0.33)
Chrysene		0.066 J	ND(0.33)	6.2	ND(0.33)	14	0.13 J
Dibenzofuran		0.62	0.068 J	1.6 J	ND(0.33)	2.7 J	ND(0.33)
Fluoranthene		0.97	ND(0.33)	19	ND(0.33)	36	0.30 J
Fluorene		ND(0.33)	ND(0.33)	0.48 J	ND(0.33)	2.0 J	ND(0.33)
Indeno(1,2,3-cd)pyre	ene	ND(0.33)	ND(0.33)	2.3 J	ND(0.33)	6.0	ND(0.33)
Isophorone		0.75	7.4 E	4.8	11 E	ND(3.3)	0.088 J
Naphthalene		ND(0.33)	ND(0.33)	ND(3.3)	ND(0.33)	ND(3.3)	ND(0.33)
Phenanthrene		3.0	0.12 J	25	0.056 J	43	0.33 J
Pyrene		0.31 J	ND(0.33)	14	ND(0.33)	29	0.097 J
Inorganics							
Antimony		2.10 B	1.90 B	2.20 B	1.70 B	1.80 B	2.10 B
Arsenic		2.30	3.30	7.80	2.30	4.90	4.50
Barium		47.0	38.0	90.0	38.0	110	140
Beryllium		0.170 B	0.210 B	0.350 B	0.280 B	0.230 B	0.290 B
Cadmium		ND(0.500)	ND(0.500)	ND(0.500)	ND(0.500)	0.100 B	ND(0.500)
Chromium		13.0	21.0	14.0	8.10	7.50	9.60
Cobalt		3.80 B	4.80 B	7.20	8.70	7.80	6.90
Copper		13.0	20.0	11.0	28.0	18.0	11.0
Lead		4.00	3.30	5.20	3.40	29.0	5.10
Mercury		ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100)	ND(0.100)	0.0390 B
Nickel		9.10	12.0	12.0	11.0	9.40	11.0
Selenium		ND(1.00)	ND(1.00)	ND(1.00)	ND(1.00)	ND(1.00)	ND(1.00)
Silver		ND(1.00)	ND(1.00)	0.220 B	ND(1.00)	ND(1.00)	ND(1.00)
Thallium		2.60	4.10	3.80	3.60	3.40	2.60
Tin		1.50 B	1.90 B	2.00 B	3.10 B	1.80 B	1.80 B
Vanadium		8.40	8.30	17.0	47.0	9.00	10.0
Zinc		29.0	23.0	35.0	28.0	42.0	37.0

40'S COMPLEX BUILDING SAMPLING 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Sample	D: 42-R-C-1A	42-R-C-1A 43-2-CF-1A		43-3-CF-1A	43-3-CF-2A	
Parameter Date Collecte	ed: 04/29/05	05/02/05	05/02/05	04/29/05	05/02/05	
Volatile Organics						
2-Hexanone	ND(0.025)	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	0.0034 J	
4-Methyl-2-pentanone	ND(0.025)	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)	
Acetone	ND(0.025)	ND(0.020) [ND(0.020)]	ND(0.020)	ND(0.020)	0.16	
Benzene	0.013 J	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Bromomethane	ND(0.025)	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Carbon Disulfide	ND(0.025)	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Chlorobenzene	ND(0.025)	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Chloromethane	ND(0.025)	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Ethylbenzene	0.017 J	0.00055 J [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Methylene Chloride	ND(0.025)	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Toluene	0.19	0.017 [0.0049 J]	0.020	ND(0.0050)	0.0097	
Trichloroethene	ND(0.025)	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	0.0035 J	
Trichlorofluoromethane	0.060	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Xylenes (total)	0.072	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	0.015	
Semivolatile Organics	•	· · · · · · · · · · · · · · · · · · ·			•	
2-Methylnaphthalene	0.58 J	ND(0.33) [ND(0.33)]	ND(0.33)	ND(3.3)	0.40 J	
Acenaphthene	ND(3.3)	ND(0.33) [ND(0.33)]	ND(0.33)	ND(3.3)	ND(3.3)	
Anthracene	ND(3.3)	ND(0.33) [ND(0.33)]	ND(0.33)	ND(3.3)	ND(3.3)	
Benzo(a)anthracene	ND(3.3)	ND(0.33) [ND(0.33)]	ND(0.33)	0.96 J	ND(3.3)	
Benzo(a)pyrene	ND(3.3)	ND(0.33) [ND(0.33)]	ND(0.33)	0.81 J	ND(3.3)	
Benzo(b)fluoranthene	ND(3.3)	ND(0.33) [ND(0.33)]	ND(0.33)	0.64 J	ND(3.3)	
Benzo(g,h,i)perylene	ND(3.3)	ND(0.33) [ND(0.33)]	ND(0.33)	0.45 J	ND(3.3)	
Benzo(k)fluoranthene	ND(3.3)	ND(0.33) [ND(0.33)]	ND(0.33)	1.2 J	ND(3.3)	
Benzyl Alcohol	ND(6.7)	ND(0.67) [ND(0.67)]	ND(0.67)	ND(6.7)	ND(6.7)	
bis(2-Ethylhexyl)phthalate	ND(1.7)	ND(0.33) [ND(0.33)]	ND(0.33)	ND(1.7)	ND(1.7)	
Butylbenzylphthalate	ND(3.3)	0.28 J [0.32 J]	ND(0.33)	ND(3.3)	ND(3.3)	
Chrysene	ND(3.3)	ND(0.33) [ND(0.33)]	ND(0.33)	1.1 J	0.50 J	
Dibenzofuran	0.30 J	ND(0.33) [ND(0.33)]	ND(0.33)	ND(3.3)	ND(3.3)	
Fluoranthene	ND(3.3)	ND(0.33) [ND(0.33)]	ND(0.33)	1.5 J	0.41 J	
Fluorene	ND(3.3)	ND(0.33) [ND(0.33)]	ND(0.33)	ND(3.3)	ND(3.3)	
Indeno(1,2,3-cd)pyrene	ND(3.3)	ND(0.33) [ND(0.33)]	ND(0.33)	ND(3.3)	ND(3.3)	
Isophorone	ND(3.3)	3.8 [3.1]	1.5	ND(3.3)	ND(3.3)	
Naphthalene	5.6	0.029 J [ND(0.33)]	ND(0.33)	ND(3.3)	0.49 J	
Phenanthrene	0.74 J	ND(0.33) [ND(0.33)]	0.033 J	0.92 J	0.72 J	
Pyrene	ND(3.3)	ND(0.33) [ND(0.33)]	ND(0.33)	1.5 J	0.34 J	
Inorganics						
Antimony	ND(6.00)	2.50 B [2.40 B]	3.20 B	ND(6.00)	2.00 B	
Arsenic	4.40	3.80 [3.70]	3.30	7.10	7.90	
Barium	120	65.0 [47.0]	48.0	110	87.0	
Beryllium	0.640	0.280 B [0.280 B]	0.280 B	0.420 B	0.400 B	
Cadmium	0.410 B	0.0570 B [ND(0.500)]	ND(0.500)	0.440 B	ND(0.500)	
Chromium	12.0	16.0 [16.0]	8.60	12.0	15.0	
Cobalt	9.70	6.60 [6.30]	8.10	7.60	10.0	
Copper	26.0	17.0 [17.0]	18.0	11.0	190	
Lead	4.90	5.00 [5.00]	22.0	4.40	70.0	
Mercury	ND(0.100)	0.670 [0.270]	ND(0.100)	0.0230 B	0.0340 B	
Nickel	15.0	9.50 [10.0]	10.0	13.0	19.0	
Selenium	1.40	ND(1.00) [ND(1.00)]	ND(1.00)	1.40	ND(1.00)	
Silver	0.160 B	ND(1.00) [ND(1.00)]	ND(1.00)	0.270 B	0.210 B	
Thallium	ND(1.00)	2.30 [3.20]	3.10	ND(1.00)	5.20	
Tin	1.90 B	2.30 B [2.30 B]	2.50 B	1.80 B	6.20 B	
Vanadium	16.0	14.0 [17.0]	30.0	20.0	28.0	
Zinc	25.0	33.0 [35.0]	46.0	34.0	190	

40'S COMPLEX BUILDING SAMPLING 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	43-4-CF-1A	43-4-CF-2A	43-5-CF-1A	43-5-CF-2A	43-R-C-1A
Parameter	Date Collected:	04/29/05	05/02/05	05/02/05	04/29/05	04/29/05
Volatile Organics	;					
2-Hexanone		ND(0.025)	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.025)]	ND(0.025)
4-Methyl-2-pentance	one	ND(0.025)	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.025)]	ND(0.025)
Acetone		ND(0.025)	ND(0.020)	ND(0.020)	ND(0.020) [ND(0.025)]	ND(0.025)
Benzene		ND(0.025)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.025)]	ND(0.025)
Bromomethane		ND(0.025)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.025)]	ND(0.025)
Carbon Disulfide		ND(0.025)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.025)]	ND(0.025)
Chlorobenzene		ND(0.025)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.025)]	0.061
Chloromethane		ND(0.025)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.025)]	ND(0.025)
Ethylbenzene		0.014 J	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.025)]	0.012 J
Methylene Chloride	9	ND(0.025)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.025)]	ND(0.025)
Toluene		0.14	ND(0.0050)	0.0091	0.014 [0.023 J]	0.15
Trichloroethene		0.58	ND(0.0050)	ND(0.0050)	0.0061 [0.034]	0.078
Trichlorofluorometh	nane	ND(0.025)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.025)]	0.042
Xylenes (total)		0.071	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.025)]	0.11
Semivolatile Orga	anics			· · · · · · · · · · · · · · · · · · ·		•
2-Methylnaphthaler	ne	ND(3.3)	0.67 J	7.3 E	ND(3.3) [ND(3.3)]	ND(3.3)
Acenaphthene	-	ND(3.3)	2.2 J	0.10 J	ND(3.3) [ND(3.3)]	ND(3.3)
Anthracene		ND(3.3)	2.1 J	ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Benzo(a)anthracer	ne	ND(3.3)	4.2	ND(0.33)	ND(3.3) [ND(3.3)]	0.33 J
Benzo(a)pyrene		ND(3.3)	3.6	ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Benzo(b)fluoranthe	ene	ND(3.3)	3.5	ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Benzo(a,h,i)pervler	ne	ND(3.3)	1.9 J	ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Benzo(k)fluoranthe	ne	ND(3.3)	3.7	ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Benzyl Alcohol		ND(6.7)	ND(6.7)	1.3	ND(6.7) [ND(6.7)]	ND(6.7)
bis(2-Ethylhexyl)ph	Ithalate	ND(1.7)	ND(1.7)	ND(0.33)	ND(1.7) [ND(1.7)]	ND(1.7)
Butylbenzylphthala	te	ND(3.3)	ND(3.3)	0.27 J	ND(3.3) [ND(3.3)]	ND(3.3)
Chrysene		ND(3.3)	4.1	ND(0.33)	ND(3.3) [ND(3.3)]	0.52 J
Dibenzofuran		ND(3.3)	2.7 J	ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Fluoranthene		ND(3.3)	13	ND(0.33)	ND(3.3) [ND(3.3)]	0.73 J
Fluorene		ND(3.3)	0.94 J	ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Indeno(1,2,3-cd)py	rene	ND(3.3)	1.6 J	ND(0.33)	ND(3.3) [ND(3.3)]	ND(3.3)
Isophorone		ND(3.3)	ND(3.3)	0.82	ND(3.3) [ND(3.3)]	ND(3.3)
Naphthalene		ND(3.3)	0.41 J	1.2	ND(3.3) [ND(3.3)]	0.84 J
Phenanthrene		ND(3.3)	23	ND(0.33)	ND(3.3) [ND(3.3)]	1.2 J
Pyrene		ND(3.3)	10	ND(0.33)	ND(3.3) [ND(3.3)]	0.74 J
Inorganics						
Antimony		ND(6.00)	2.60 B	2.30 B	ND(6.00) [ND(6.00)]	ND(6.00)
Arsenic		11.0	2.90	2.90	8.20 [6.70]	4.90
Barium		99.0	28.0	100	82.0 [79.0]	52.0
Beryllium		0.440 B	0.210 B	0.290 B	0.440 B [0.430 B]	0.440 B
Cadmium		0.490 B	ND(0.500)	ND(0.500)	0.520 [0.500]	0.450 B
Chromium		12.0	7.00	12.0	12.0 [11.0]	11.0
Cobalt		7.70	6.10	5.90	12.0 [12.0]	31.0
Copper		18.0	25.0	10.0	16.0 [18.0]	59.0
Lead		11.0	7.60	4.20	4.60 [3.20]	5.00
Mercury		ND(0.100)	0.0100 B	ND(0.100)	ND(0.100) [ND(0.100)]	ND(0.100)
Nickel		13.0	11.0	8.70	13.0 [14.0]	17.0
Selenium		1.90	ND(1.00)	ND(1.00)	1.60 [1.70]	1.90
Silver		0.390 B	0.220 B	ND(1.00)	0.260 B [0.270 B]	0.300 B
Thallium		ND(1.00)	3.20	2.50	ND(1.00) [ND(1.00)]	ND(1.00)
Tin		5.30 B	2.50 B	1.60 B	2.30 B [1.60 B]	2.10 B
Vanadium		23.0	6.40	8.00	24.0 [26.0]	36.0
Zinc		44.0	64.0	68.0	36.0 [34.0]	31.0

40'S COMPLEX BUILDING SAMPLING 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, semivolatiles, and metals.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Only those constituents detected in one or more samples are summarized.
- 4. Field duplicate sample results are presented in brackets.

Data Qualifiers:

Organics (volatiles, semivolatiles)

- E Analyte exceeded calibration range.
- J Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

TABLE 1-3 TCLP DATA RECEIVED DURING MAY 2005

40'S COMPLEX BUILDING SAMPLING 20s, 30s, 40s Complex

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

		TCLP	
	Sample ID:	Regulatory	42-1-CF-COMP-1
Parameter	Date Collected:	Limits	5/2/2005
Volatile Organic	S		
1,1-Dichloroether	ne	0.7	ND(0.10)
1,2-Dichloroethar	ne	0.5	ND(0.10)
2-Butanone		200	ND(0.20)
Benzene		0.5	ND(0.10)
Carbon Tetrachlo	oride	0.5	ND(0.10)
Chlorobenzene		100	0.088 J
Chloroform		6	ND(0.10)
Tetrachloroethen	е	0.7	ND(0.10)
Trichloroethene		0.5	ND(0.10)
Vinyl Chloride		0.2	ND(0.10)
Semivolatile Or	ganics		
1,4-Dichlorobenz	ene	7.5	ND(0.050)
2,4,5-Trichloroph	enol	400	ND(0.050)
2,4,6-Trichloroph	enol	2	ND(0.050)
2,4-Dinitrotoluene	e	0.13	ND(0.050)
Cresol		200	ND(0.050)
Hexachlorobenze	ne	0.13	ND(0.050)
Hexachlorobutad	iene	0.5	ND(0.050)
Hexachloroethan	e	3	ND(0.050)
Nitrobenzene		2	ND(0.050)
Pentachlorophen	ol	100	ND(0.050)
Pyridine		5	ND(0.050)
Inorganics			
Arsenic		5	ND(0.100)
Barium		100	0.440
Cadmium		1	ND(0.0200)
Chromium		5	0.00350 B
Lead		5	0.00950 B
Mercury		0.2	ND(0.00200)
Selenium		1	0.00770 B
Silver		5	ND(0.0200)

Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of TCLP constituents.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

Organics (volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

TABLE 1-4PCB DATA RECEIVED DURING MAY 2005

PLANT SITE UTILITY SAMPLING 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Date	Aroclor-1016, -1221,			
Sample ID	Collected	-1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
31W-SEPARATOR-SOIL-1	5/9/2005	ND(0.33)	8.0	ND(0.33)	8.0

Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 1-5 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING MAY 2005

40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m ³)	Background Site Concentration (mg/m ³)	Average Period (Hours:Min)	Predominant Wind Direction
05/02/05	W3 - West of 40s Complex	0.019	0.017*	10:00 ¹	SSW
	MC3 - Near Bldg. 16 & 19	0.019*		9:45 ¹	
	M2 - South of Bldg. 5	0.020*		9:45 ¹	
	S2 - Woodlawn Avenue	0.021		9:45 ¹	
05/03/05	W3 - West of 40s Complex	0.014	0.015*	10:00	WNW
	MC3 - Near Bldg. 16 & 19	0.011*		9:45	
	M2 - South of Bldg. 5	0.018*		9:45	
	S2 - Woodlawn Avenue	0.016		10:00	
05/04/05	W3 - West of 40s Complex	0.013	0.009*	11:30	WNW
	MC3 - Near Bldg, 16 & 19	0.012*		11:30	
	M2 - South of Bldg. 5	0.015*		11:30	
	S2 - Woodlawn Avenue	0.013		11:30	
05/05/05	W3 - West of 40s Complex	0.009	0.016*	12:00	Variable, WNW
00,00,00	MC3 - Near Bldg 16 & 19	0.011*	01010	11:45	
	M2 - South of Bldg. 5	0.009*		11:45	
	S2 - Woodlawn Avenue	0.012		12:00	
05/06/05 ²	W3 - West of 40s Complex	NA	NA	NA	NA
00,00,00	MC3 - Near Bldg 16 & 19				
	M2 - South of Bldg. 5				
	S2 - Woodlawn Avenue				
05/09/05	W3 - West of 40s Complex	0.004	0.00//*	11.15	Variable NNE NNW
00/00/00	MC3 - Near Bldg 16 & 19	0.004	0.004	10:45	
	M2 - South of Bldg. 5	0.005*		11:00	
	S2 - Woodlawn Avenue	0.006		11:00	
05/10/05	W3 - West of 40s Complex	0.006	0.010*	10:30	Variable, SSW
	MC3 - Near Bldg. 16 & 19	0.009*		10:45	,
	M2 - South of Bldg. 5	0.007*		10:45	
	S2 - Woodlawn Avenue	0.013		10:45	
05/11/05	W3 - West of 40s Complex	0.019	0.039*	11:00	WNW
	MC3 - Near Bldg. 16 & 19	0.019*		10:45	
	M2 - South of Bldg. 5	0.022*		10:30	
	S2 - Woodlawn Avenue	0.052		10:45	
05/12/05	W3 - West of 40s Complex	0.007	0.012*	10:00	NNE, NNW
	MC3 - Near Bldg. 16 & 19	0.005*		10:00	
	M2 - South of Bldg. 5	0.004*		10:00	
	S2 - Woodlawn Avenue	0.026		9:45	
05/13/05	W3 - West of 40s Complex	0.008	0.012*	11:15	WNW, NNW
	MC3 - Near Bldg. 16 & 19	0.006*		10:45	
	M2 - South of Bldg. 5	0.005*		10:45	
05/10/05	S2 - Woodlawn Avenue	0.028	0.000*	11:00	14/5 154/
05/16/05	W3 - West of 40s Complex	0.014	0.026*	11:45	WNW
	MC3 - Near Bidg. 16 & 19	0.015"		11:30	
	IVIZ - SOULTI OF BIDD. 5	0.011		11.30	
05/17/05	W3 - West of 40s Complex	0.033	0.012*	10:45	\ \/\\ \/\
03/17/03	MC3 - Near Rida 16 & 10	0.000	0.012	10:45	VVINVV
	M2 - South of Bldg 5	0.007		10:45	
	S2 - Woodlawn Avenue	0.032		10:45	
05/18/05	W3 - West of 40s Complex	0.008	0.018*	11.15	WNW
00, 10,00	MC3 - Near Bldg. 16 & 19	0.015*	0.010	11:00	
	M2 - South of Blda. 5	0.009*		11:00	
	S2 - Woodlawn Avenue	0.038		11:00	

TABLE 1-5 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING MAY 2005

40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m ³)	Background Site Concentration (mg/m ³)	Average Period (Hours:Min)	Predominant Wind Direction
05/19/05	W3 - West of 40s Complex	0.006	0.017*	11:15	Variable, WNW
	MC3 - Near Bldg. 16 & 19	0.014*		11:00	
	M2 - South of Bldg. 5	0.006*		11:00	
	S2 - Woodlawn Avenue	0.035		11:00	
05/20/05 ²	W3 - West of 40s Complex	NA	NA	NA	NA
	MC3 - Near Bldg. 16 & 19				
	M2 - South of Bldg. 5				
	S2 - Woodlawn Avenue				
05/23/05	W3 - West of 40s Complex	0.007	0.011*	11:00	Variable, ENE
	MC3 - Near Bldg. 16 & 19	0.005*		10:45	
	M2 - South of Bldg. 5	0.002*		10:45	
	S2 - Woodlawn Avenue	0.032		10:45	
05/24/05 ³	W3 - West of 40s Complex	NA	NA	NA	NA
	MC3 - Near Bldg. 16 & 19				
	M2 - South of Bldg. 5				
	S2 - Woodlawn Avenue				
05/25/05 ³	W3 - West of 40s Complex	NA	NA	NA	NA
	MC3 - Near Bldg. 16 & 19				
	M2 - South of Bldg. 5				
	S2 - Woodlawn Avenue				
05/26/05 ³	W3 - West of 40s Complex	NA	NA	NA	NA
	MC3 - Near Bldg. 16 & 19				
	M2 - South of Bldg. 5				
	S2 - Woodlawn Avenue				
05/27/05	W3 - West of 40s Complex	0.003	0.007*	11:15	Variable, NNW
	MC3 - Near Bldg. 16 & 19	0.004*		11:00	
	M2 - South of Bldg. 5	0.004*		11:00	
	S2 - Woodlawn Avenue	0.029		11:00	
05/30/05 ⁴	W3 - West of 40s Complex	NA	NA	NA	NA
	MC3 - Near Bldg. 16 & 19				
	M2 - South of Bldg. 5				
	S2 - Woodlawn Avenue				
05/31/05	W3 - West of 40s Complex	0.011	0.021*	8:00 ¹	Calm, NNE
	MC3 - Near Bldg. 16 & 19	0.016*		8:00 ¹	
	M2 - South of Bldg. 5	0.010*		8:00 ¹	
	S2 - Woodlawn Avenue	0.045		8:00 ¹	
Notification Level		0.120			

Notes:

NA - Not Available

* Measured with DR-2000 or DR-4000. All others measured with pDR-1000.

Background monitoring location inside GE Gate 31 on the corner of Woodlawn Avenue and Tyler Street.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

¹ Sampling period was shortened due to precipitation/threat of precipitation.

² Sampling was not performed due to lack of site activity.

³ Sampling was not performed due to precipitation/threat of precipitation.

⁴ Sampling was not performed due to lack of site activity on the Memorial Day holiday.

TABLE 1-6 AMBIENT AIR PCB DATA RECEIVED DURING MAY 2005

40s COMPLEX DEMOLITION ACTIVITIES 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	W3 - West of 40s Complex (µg/m3)	S2 - Woodlawn Avenue (μg/m3)	M2 - South of Bldg. 5 (µg/m3)	MC3 - Near Bldg. 16 & 19 (µg/m3)	MC3-CO Co-located · Near Bldgs. 16 & 19 (µg/m3)	BM1-Background - Inside GE Gate 31 (µg/m3)
05/23 - 05/24/05	0.0122	0.0012	0.0011	0.0005	0.0007	0.0004
Notification Level	0.05	0.05	0.05	0.05	0.05	0.05

ITEM 2 PLANT AREA EAST STREET AREA 2-SOUTH (GECD150) MAY 2005

a. Activities Undertaken/Completed

- Performed sludge sampling at Building 64T, Liquid Phase Carbon Absorption (LPCA) sampling and carbon sampling at Building 64G, oil sampling from Tank J at Building 64, sampling of oil from that originated from this area and was stored in drums at Building 78, and sampling of soil from sweeping activities (see Table 2-1).
- Continued site restoration activities at 60s Complex.

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue routine process sampling at Buildings 64G and/or 64T.
- Complete restoration activities at the 60s Complex.
- Initiate additional sampling activities proposed in Interim Letter Report (submitted October 22, 2004) following EPA approval.*
- Continue development of Final Completion Report for City Recreational Area.*

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

None

TABLE 2-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Building 64 Tank J Oil Sampling	64-TANKJ-OIL-1	5/11/05	Oil	SGS	PCB, VOC, SVOC, Total RCRA Metals, Flashpoint	5/20/05
Building 64G Carbon Sampling	64G-CARBON-1	4/27/05	Solid	SGS	PCB, VOC, SVOC, Total Metals, TCLP, Cyanide	5/9/05
Building 64G LPCA Monitoring	E5-64G-01	5/10/05	Water	SGS	VOC	5/19/05
Building 64G LPCA Monitoring	E5-64G-02	5/10/05	Water	SGS	SVOC	5/19/05
Building 64G LPCA Monitoring	E5-64G-03	5/10/05	Water	SGS	PCB	5/19/05
Building 64G LPCA Monitoring	E5-64G-04	5/10/05	Water	SGS	Oil & Grease	5/19/05
Building 64G LPCA Monitoring	E5-64G-05	5/10/05	Water	SGS	VOC	5/19/05
Building 64G LPCA Monitoring	E5-64G-06	5/10/05	Water	SGS	SVOC	5/19/05
Building 64G LPCA Monitoring	E5-64G-07	5/10/05	Water	SGS	PCB	5/19/05
Building 64G LPCA Monitoring	E5-64G-08	5/10/05	Water	SGS	Oil & Grease	5/19/05
Building 64G LPCA Monitoring	E5-64G-09	5/10/05	Water	SGS	VOC	5/19/05
Building 64G LPCA Monitoring	E5-64G-10	5/10/05	Water	SGS	SVOC	5/19/05
Building 64G LPCA Monitoring	E5-64G-11	5/10/05	Water	SGS	PCB	5/19/05
Building 64G LPCA Monitoring	E5-64G-12	5/10/05	Water	SGS	Oil & Grease	5/19/05
Building 64G LPCA Monitoring	E5-64G-13	5/10/05	Water	SGS	VOC	5/19/05
Building 64G LPCA Monitoring	E5-64G-14	5/10/05	Water	SGS	SVOC	5/19/05
Building 64G LPCA Monitoring	E5-64G-15	5/10/05	Water	SGS	PCB	5/19/05
Building 64G LPCA Monitoring	E5-64G-16	5/10/05	Water	SGS	Oil & Grease	5/19/05
Building 64T Sludge Sampling	E5-64T-01	5/1/05	Sludge	SGS	PCB	5/11/05
Building 78 Drum Sampling	64X-COALTAR-OIL-1	4/14/05	Oil	SGS	PCB, VOC, SVOC, Flashpoint, RCRA Metals (8)	5/4/05
Pittsfield Sand & Gravel Pond Silt	PSG-PONDSILT-C1	5/2/05	Soil	SGS	PCB, VOC, SVOC, Metals	5/16/05
Plant Site Utility Sampling	64SWEEPINGS-SOIL-C-1	5/9/05	Soil	SGS	PCB	5/16/05
Plant Site Utility Sampling	64SWEEPINGS-SOIL-C-2	5/9/05	Soil	SGS	PCB	5/16/05
Plant Site Utility Sampling	64SWEEPINGS-SOIL-C-3	5/9/05	Soil	SGS	PCB	5/16/05
Plant Site Utility Sampling	64SWEEPINGS-SOIL-C-4	5/9/05	Soil	SGS	PCB	5/16/05
Plant Site Utility Sampling	64SWEEPINGS-SOIL-C-5	5/9/05	Soil	SGS	PCB	5/16/05

TABLE 2-2DATA RECEIVED DURING MAY 2005

BUILDING 78 DRUM SAMPLING EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

	Sample ID:	64X-COALTAR-OIL-1
Parameter	Date Collected:	04/14/05
Volatile Organics		
Benzene		640
Ethylbenzene		4200
Styrene		540
Toluene		3600
Xylenes (total)		5400
PCBs		
None Detected		
Semivolatile Organics		
2-Methylnaphthalene		340
Acenaphthene		98 J
Acenaphthylene		260
Anthracene		100 J
Benzo(a)anthracene		67 J
Benzo(a)pyrene		71 J
Benzo(b)fluoranthene		20 J
Benzo(g,h,i)perylene		18 J
Benzo(k)fluoranthene		39 J
Chrysene		60 J
Fluoranthene		160
Fluorene		140
Naphthalene		1000
Phenanthrene		460
Pyrene		210
Inorganics		
Arsenic		15.0
Barium		0.510
Chromium		0.450 B
Lead		1.80
Selenium		2.90
Silver		12.0
Conventional Parameters		
Flash Point (°F)		144

Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, semivolatiles, metals, and flash point.
- 2. Only detected constituents are summarized.
- 3. -- Indicates that all constituents for the parameter group were not detected.

Data Qualifiers:

Organics (PCBs, volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

TABLE 2-3 DATA RECEIVED DURING MAY 2005

BUILDING 64G CARBON SAMPLING EAST STREET AREA 2 - SOUTH **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS** (Results are presented in parts per million, ppm)

	Sample ID:	64G-CARBON-1		
Parameter	Date Collected:	04/27/05		
Volatile Organic	s			
1,1,1-Trichloroeth	ane	0.021 J		
1,1-Dichloroethan	ne	0.016 J		
Benzene		0.048		
Chlorobenzene		1.5		
Chloroform		0.014 J		
Ethylbenzene		0.18		
Toluene		0.012 J		
trans-1,2-Dichloro	pethene	0.045		
Trichloroethene		0.075		
Vinyl Chloride		0.023 J		
Xylenes (total)		0.40		
PCBs				
Aroclor-1254		1.5		
Aroclor-1260		0.47		
Total PCBs		1.97		
Semivolatile Org	ganics			
1,2,4,5-Tetrachlor	robenzene	0.26 J		
1,2,4-Trichlorober	nzene	12		
1,2-Dichlorobenz	ene	0.46 J		
1,3-Dichlorobenz	ene	16		
1,4-Dichlorobenz	ene	21		
2-Methylnaphthale	ene	3.1		
Acenaphthene		27		
Acenaphthylene		2.0		
Acetophenone		3.3		
Anthracene		1.4		
Dibenzofuran		0.36 J		
Fluoranthene		1.2		
Fluorene		3.5		
Naphthalene		16		
Phenanthrene		0.96		
Pyrene		2.1		
Inorganics				
Antimony		1.30 B		
Arsenic		8.40		
Barium		370		
Beryllium		0.690		
Cadmium		0.120 B		
Chromium		7.00		
Cobalt		7.10		
Copper		9.50		
Cyanide		19.0		
Lead		1.50		
Nickel		11.0		
Selenium		0.950 B		
Silver		1.10		
Tin		1.60 B		
Vanadium		16.0		

Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, semivolatiles, metals, cyanide, and TCLP
- 2. constituents.

3. Only detected constituents are summarized.

Please refer to Table 2-4 for a summary of TCLP constituents.

Data Qualifiers:

Organics (PCBs, volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

TABLE 2-4 TCLP DATA RECEIVED DURING MAY 2005

BUILDING 64G CARBON SAMPLING EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

		TCLP	
	Sample ID:	Regulatory	64G-CARBON-1
Parameter	Date Collected:	Limits	4/27/2005
Volatile Organics	3		
1,1-Dichloroethen	е	0.7	ND(0.10)
1,2-Dichloroethan	е	0.5	ND(0.10)
2-Butanone		200	ND(0.20)
Benzene		0.5	ND(0.10)
Carbon Tetrachlor	ride	0.5	ND(0.10)
Chlorobenzene		100	ND(0.10)
Chloroform		6	ND(0.10)
Tetrachloroethene	•	0.7	ND(0.10)
Trichloroethene		0.5	ND(0.10)
Vinyl Chloride		0.2	ND(0.10)
Semivolatile Orga	anics		
1,4-Dichlorobenze	ene	7.5	ND(0.050)
2,4,5-Trichlorophe	enol	400	ND(0.050)
2,4,6-Trichlorophe	enol	2	ND(0.050)
2,4-Dinitrotoluene		0.13	ND(0.050)
Cresol		200	ND(0.050)
Hexachlorobenzer	ne	0.13	ND(0.050)
Hexachlorobutadie	ene	0.5	ND(0.050)
Hexachloroethane		3	ND(0.050)
Nitrobenzene		2	ND(0.050)
Pentachloropheno		100	ND(0.050)
Pyridine		5	ND(0.050)
Inorganics			
Arsenic		5	ND(0.100)
Barium		100	5.00
Cadmium		1	ND(0.0200)
Chromium		5	ND(0.0500)
Lead		5	0.0160 B
Mercury		0.2	ND(0.00200)
Selenium		1	0.0100 B
Silver		5	0.00380 B

Notes:

1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, semivolatiles, metals, cyanide, and TCLP constituents.

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

3. Please refer to Table 2-3 for a summary of volatiles, PCBs, semivolatiles, metals and cyanide.

Data Qualifiers:

Organics (PCBs, volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

TABLE 2-5PCB DATA RECEIVED DURING MAY 2005

BUILDING 64T SLUDGE SAMPLING EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Date	Aroclor-1016, -1221,			
Sample ID	Collected	-1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
E5-64T-01	5/1/2005	ND(4.5)	60	33	93

Notes:

1. Sample was collected by General Electric Company and submitted to SGS Environmental Services, Inc. for analysis of PCBs.

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 2-6 DATA RECEIVED DURING MAY 2005

PITTSFIELD SAND AND GRAVEL POND SILT SAMPLING EAST STREET AREA 2 - SOUTH

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	PSG-PONDSILT-C1
Parameter	Date Collected:	05/02/05
Volatile Organi	cs	
None Detected		
PCBs		
None Detected		
Semivolatile Or	rganics	
None Detected		
Inorganics		
Arsenic		5.00
Barium		47.0
Beryllium		0.350 B
Chromium		12.0
Cobalt		8.90
Copper		17.0
Lead		9.00
Nickel		14.0
Thallium		4.50
Tin		1.70 B
Vanadium		13.0
Zinc		43.0

Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, and metals.
- 2. Only detected constituents are summarized.
- 3. -- Indicates that all constituents for the parameter group were not detected.

Data Qualifiers:

Inorganics

 ${\sf B}$ - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL) .

TABLE 2-7 PCB DATA RECEIVED DURING MAY 2005

PLANT SITE UTILITY SAMPLING EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Date	Aroclor-1016, -1221,			
Sample ID	Collected	-1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
64SWEEPINGS-SOIL-C-1	5/9/2005	ND(0.034)	1.3	0.34	1.64
64SWEEPINGS-SOIL-C-2	5/9/2005	ND(0.17)	2.2	0.61	2.81
64SWEEPINGS-SOIL-C-3	5/9/2005	ND(0.034)	1.0	0.45	1.45
64SWEEPINGS-SOIL-C-4	5/9/2005	ND(0.17)	2.4	0.70	3.1
64SWEEPINGS-SOIL-C-5	5/9/2005	ND(0.034)	0.41	0.22	0.63

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc. and submitted to SGS Environmental Services, Inc. for analysis of PCBs.

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 2-8DATA RECEIVED DURING MAY 2005

BUILDING 64G LPCA MONITORING EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID:	E5-64G-01	E5-64G-02	E5-64G-03	E5-64G-04	E5-64G-05	E5-64G-06	E5-64G-07	E5-64G-08
Parameter Date Collected:	05/10/05	05/10/05	05/10/05	05/10/05	05/10/05	05/10/05	05/10/05	05/10/05
Volatile Organics								
Benzene	0.053	NA	NA	NA	ND(0.0050)	NA	NA	NA
Chlorobenzene	0.23	NA	NA	NA	ND(0.0050)	NA	NA	NA
Chloromethane	0.0021 J	NA	NA	NA	ND(0.0050)	NA	NA	NA
Ethylbenzene	0.052	NA	NA	NA	ND(0.0050)	NA	NA	NA
Toluene	0.0030 J	NA	NA	NA	ND(0.0050)	NA	NA	NA
Trichloroethene	0.0025 J	NA	NA	NA	ND(0.0050)	NA	NA	NA
Vinyl Chloride	0.0072	NA	NA	NA	0.0052	NA	NA	NA
PCBs-Unfiltered								
Aroclor-1254	NA	NA	0.00036	NA	NA	NA	ND(0.000065)	NA
Aroclor-1260	NA	NA	0.00017	NA	NA	NA	ND(0.000065)	NA
Total PCBs	NA	NA	0.00053	NA	NA	NA	ND(0.000065)	NA
Semivolatile Organics								
1,2,4-Trichlorobenzene	NA	0.0013 J	NA	NA	NA	ND(0.010)	NA	NA
1,3-Dichlorobenzene	NA	0.0017 J	NA	NA	NA	ND(0.010)	NA	NA
1,4-Dichlorobenzene	NA	0.0033 J	NA	NA	NA	ND(0.010)	NA	NA
Acenaphthene	NA	0.011	NA	NA	NA	ND(0.010)	NA	NA
Fluorene	NA	0.0021 J	NA	NA	NA	ND(0.010)	NA	NA
Naphthalene	NA	0.0064 J	NA	NA	NA	ND(0.010)	NA	NA
Conventionals								
Oil & Grease	NA	NA	NA	2.8 B	NA	NA	NA	1.5 B

Page 1 of 2

TABLE 2-8 DATA RECEIVED DURING MAY 2005

BUILDING 64G LPCA MONITORING EAST STREET AREA 2 - SOUTH **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS** (Results are presented in parts per million, ppm)

Sample ID	E5-64G-09	E5-64G-10	E5-64G-11	E5-64G-12	E5-64G-13	E5-64G-14	E5-64G-15	E5-64G-16
Parameter Date Collected	: 05/10/05	05/10/05	05/10/05	05/10/05	05/10/05	05/10/05	05/10/05	05/10/05
Volatile Organics								
Benzene	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA	NA	NA
Chlorobenzene	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA	NA	NA
Chloromethane	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA	NA	NA
Ethylbenzene	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA	NA	NA
Toluene	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA	NA	NA
Trichloroethene	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA	NA	NA
Vinyl Chloride	0.0042 J	NA	NA	NA	ND(0.0050)	NA	NA	NA
PCBs-Unfiltered								
Aroclor-1254	NA	NA	ND(0.000065)	NA	NA	NA	ND(0.000065)	NA
Aroclor-1260	NA	NA	ND(0.000065)	NA	NA	NA	ND(0.000065)	NA
Total PCBs	NA	NA	ND(0.000065)	NA	NA	NA	ND(0.000065)	NA
Semivolatile Organics								
1,2,4-Trichlorobenzene	NA	ND(0.010)	NA	NA	NA	ND(0.010)	NA	NA
1,3-Dichlorobenzene	NA	ND(0.010)	NA	NA	NA	ND(0.010)	NA	NA
1,4-Dichlorobenzene	NA	ND(0.010)	NA	NA	NA	ND(0.010)	NA	NA
Acenaphthene	NA	ND(0.010)	NA	NA	NA	ND(0.010)	NA	NA
Fluorene	NA	ND(0.010)	NA	NA	NA	ND(0.010)	NA	NA
Naphthalene	NA	ND(0.010)	NA	NA	NA	ND(0.010)	NA	NA
Conventionals								
Oil & Grease	NA	NA	NA	2.2 B	NA	NA	NA	2.2 B

Notes:

1. Samples were collected by General Electric Company and submitted to SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, and oil & grease.

2. NA - Not Analyzed.

3. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

4. Only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics (volatiles, PCBs, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Conventional Parameters

TABLE 2-9 DATA RECEIVED DURING MAY 2005

BUILDING 64 TANK J OIL SAMPLING EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID:	64-TANKJ-OIL-1
Parameter Date Collected:	05/11/05
Volatile Organics	
Benzene	87
Chlorobenzene	340
Ethylbenzene	360
Xylenes (total)	220
PCBs	
Aroclor-1260	3000
Total PCBs	3000
Semivolatile Organics	
1,3-Dichlorobenzene	18 J
1,4-Dichlorobenzene	40 J
2-Methylnaphthalene	300
3,3'-Dimethylbenzidine	8.2 J
Acenaphthene	480
Acenaphthylene	68 J
Anthracene	230
Benzo(a)anthracene	130
Benzo(a)pyrene	120 J
Benzo(b)fluoranthene	48 J
Benzo(g,h,i)perylene	43 J
Benzo(k)fluoranthene	72 J
Chrysene	110 J
Dibenzofuran	33 J
Fluoranthene	280
Fluorene	290
Indeno(1,2,3-cd)pyrene	29 J
Naphthalene	1800
Phenanthrene	870
Pyrene	500
Inorganics	
Arsenic	2.60
Barium	0.180
Chromium	0.600 B
Selenium	1.70 B
Silver	0.480 B
Conventional Parameters	
Flash Point (°F)	>180

Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, metals, and flash point.
- 2. Only detected constituents are summarized.

Data Qualifiers:

Organics (PCBs, volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

ITEM 3 PLANT AREA EAST STREET AREA 2-NORTH (GECD140) MAY 2005

a. <u>Activities Undertaken/Completed</u>

- Continued equipment draining and dismantling activities at Buildings 1, 2, and 3.
- Continued asbestos removal activities at Buildings 4, 5, and 6.
- Distributed a Request For Proposal (RFP) for asbestos and equipment/liquids removal at Buildings 15, 15A, 15B, and 15W on May 18, 2005.
- Collected building material characterization samples from Buildings 1, 2, 3, 3B, 15, 15A, 15B, and 15W (May 16 to May 18, 2005).
- Conducted sampling of oil from equipment in Buildings 1, 2, 3, 4, 5, and 6, as identified in Table 3-1.
- Provided verbal notification to EPA (May 18, 2005) and followed up with written notification (May 27, 2005) regarding oil-containing breakers under the Toxic Substance Control Act Consent Agreement Order.

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

- Submitted revised Pre-Excavation Notification Letter for ongoing facility upgrades (May 27, 2005).
- Submitted letter transmitting results of pre-demolition sampling conducted at Building 4 (May 27, 2005).
- Submitted Pre-Excavation Notification Letter for utility excavations associated with demolition of Buildings 4, 5, and 6 (May 31, 2005).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue asbestos removal activities at Buildings 4, 5, and 6.
- Continue equipment draining and dismantling activities at Buildings 1, 2, and 3.

d. Upcoming Scheduled and Anticipated Activities (next six weeks) (cont'd)

- Conduct pre-bid meeting for asbestos and equipment/liquids removal a Buildings 15, 15A, 15B, and 15W.
- Distribute an RFP for asbestos removal activities at Buildings 1, 2, and 3.
- Award contract for asbestos and equipment/liquids removal at Buildings 15, 15A, 15B, and 15W.
- Conduct pre-bid meeting for asbestos removal activities at Buildings 1, 2, and 3.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

None

TABLE 3-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Building 1 Characterization Sampling	1-1-1	5/17/05	Brick	SGS	PCB	
Building 1 Characterization Sampling	1-1-2	5/17/05	Brick	SGS	PCB	
Building 1 Characterization Sampling	1-1-3	5/17/05	Brick	SGS	PCB	
Building 1 Characterization Sampling	1-1-4	5/17/05	Brick	SGS	PCB	
Building 1 Characterization Sampling	1-1-5	5/17/05	Tile/Concrete	SGS	PCB	
Building 1 Characterization Sampling	1-1-6	5/17/05	Brick	SGS	PCB	
Building 1 Characterization Sampling	1-1-7	5/17/05	Brick	SGS	PCB	
Building 1 Characterization Sampling	1-1-8	5/17/05	Brick	SGS	PCB	
Building 1 Characterization Sampling	1-1-9	5/17/05	Brick	SGS	PCB	
Building 1 Characterization Sampling	1-1-9	5/18/05	Brick	SGS	PCB	Cancelled
Building 1 Characterization Sampling	1-1-10	5/17/05	Brick	SGS	PCB	
Building 1 Characterization Sampling	1-1-11	5/17/05	Brick	SGS	PCB	
Building 1 Characterization Sampling	1-1G-TCLP-1	5/18/05	Brick/Wood	SGS	TCLP	
Building 1 Characterization Sampling	1-1-TCLP-1	5/18/05	Brick/Concrete	SGS	TCLP	
Building 1 Characterization Sampling	1-2-TCLP-1	5/17/05	Brick	SGS	TCLP	Cancelled
Building 1 Characterization Sampling	1-2-TCLP-2	5/17/05	Brick	SGS	TCLP	Cancelled
Building 2 Characterization Sampling	2-1-1	5/17/05	Brick	SGS	PCB	
Building 2 Characterization Sampling	2-1-2	5/17/05	Brick	SGS	PCB	
Building 2 Characterization Sampling	2-1-3	5/17/05	Brick	SGS	PCB	
Building 2 Characterization Sampling	2-1-4	5/17/05	Brick	SGS	PCB	
Building 2 Characterization Sampling	2-1-5	5/17/05	Concrete	SGS	PCB	
Building 2 Characterization Sampling	2-1-6	5/17/05	Concrete	SGS	PCB	
Building 2 Characterization Sampling	2-1-7	5/17/05	Concrete	SGS	PCB	
Building 2 Characterization Sampling	2-1-8	5/17/05	Concrete	SGS	PCB	
Building 2 Characterization Sampling	2-1-9	5/18/05	Brick	SGS	PCB	
Building 2 Characterization Sampling	2-1-TCLP-1	5/17/05	Brick	SGS	TCLP	Cancelled
Building 2 Characterization Sampling	2-1-TCLP-1	5/18/05	Brick/Concrete	SGS	TCLP	
Building 3 Characterization Sampling	3-1-1	5/17/05	Concrete	SGS	PCB	
Building 3 Characterization Sampling	3-1-2	5/17/05	Brick	SGS	PCB	
Building 3 Characterization Sampling	3-1-3	5/17/05	Concrete	SGS	PCB	
Building 3 Characterization Sampling	3-1-4	5/17/05	Brick	SGS	PCB	
Building 3 Characterization Sampling	3-1-5	5/17/05	Brick	SGS	PCB	
Building 3 Characterization Sampling	3-1-6	5/17/05	Brick	SGS	PCB	
Building 3 Characterization Sampling	3-1-7	5/17/05	Brick	SGS	PCB	
Building 3 Characterization Sampling	3-1-8	5/17/05	Brick	SGS	PCB	
Building 3 Characterization Sampling	3-1-9	5/18/05	Brick	SGS	PCB	
Building 3 Characterization Sampling	3-1-TCLP-1	5/18/05	Brick/Concrete	SGS	TCLP	
Building 3 Characterization Sampling	3-1-TCLP-1	5/17/05	Brick	SGS	TCLP	Cancelled
Building 3 Characterization Sampling	3B-1-1	5/16/05	Brick/Concrete	SGS	PCB	
Building 3 Characterization Sampling	3B-1-TCLP-1	5/16/05	Brick/Concrete	SGS	TCLP	
Building 4 Oil Sampling	4-1-1-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-2-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-3-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\05-05 CD Monthly\Tracking Logs\Tracking.xls

TABLE 3-1
TABLE 3-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Building 4 Oil Sampling	4-1-4-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-5-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-6-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-7-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-8-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-9-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-10-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-11-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-12-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-13-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-14-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-15-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-16-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-17-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-18-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-19-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-20-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-21-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-22-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-23-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-24-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-25-GLYCERIN-1	5/3/05	Glycerin	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-26-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 4 Oil Sampling	4-1-27-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-1-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-2-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-3-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-4-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-5-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-6-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-7-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-8-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-9-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-10-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-11-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-12-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-13-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-14-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-15-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-16-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-17-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-18-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-19-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\05-05 CD Monthly\Tracking Logs\Tracking.xls

TABLE 3-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Building 5 Oil Sampling	5-1-20-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 5 Oil Sampling	5-1-21-GLYCERIN-1	5/3/05	Glycerin	SGS	PCB	5/24/05
Building 6 Oil Sampling	6-1-1-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 6 Oil Sampling	6-1-2-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 6 Oil Sampling	6-1-3-OIL-1	5/3/05	Oil	SGS	PCB	5/24/05
Building 15 Characterization Sampling	15-1-1	5/18/05	Concrete	SGS	PCB	
Building 15 Characterization Sampling	15-1-2	5/18/05	Concrete	SGS	PCB	
Building 15 Characterization Sampling	15-1-3	5/18/05	Concrete	SGS	PCB	
Building 15 Characterization Sampling	15-1-4	5/18/05	Concrete	SGS	PCB	
Building 15 Characterization Sampling	15-1-5	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-6	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-7	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-8	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-9	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-10	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-11	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-12	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-13	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-14	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-15	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-16	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-17	5/18/05	Brick	SGS	PCB	
Building 15 Characterization Sampling	15-1-TCLP-1	5/18/05	Brick/Concrete	SGS	TCLP	
Building 15 Characterization Sampling	15-1-TCLP-2	5/18/05	Concrete/Brick	SGS	TCLP	
Buildings 1, 2 & 3 Oil Sampling	715-2-3-OIL-1	5/23/05	Oil	SGS	PCB	
Building 1 Characterization Sampling	BLDG1A-2-1	5/16/05	Wood	SGS	PCB	
Building 1 Characterization Sampling	BLDG1A-2-2	5/16/05	Brick	SGS	PCB	
Building 1 Characterization Sampling	BLDG1A-2-TCLP-1	5/16/05	Wood	SGS	TCLP	
Building 1 Characterization Sampling	BLDG1A-2-TCLP-2	5/16/05	Wood	SGS	TCLP	
Building 1 Characterization Sampling	BLDG-DUP-1 (1-1-3)	5/17/05	Brick	SGS	PCB	
Building 1 Characterization Sampling	BLDG-DUP-2 (1-1-TCLP-1)	5/18/05	Brick/Concrete	SGS	TCLP	
Building 1 Characterization Sampling	BLDG-DUP-2 (1-2-TCLP-1)	5/17/05	Brick	SGS	TCLP	
Building 2 Characterization Sampling	BLDG-DUP-3 (2-1-6)	5/17/05	Concrete	SGS	PCB	
Building 15 Characterization Sampling	BLDG-DUP-4 (15-1-3)	5/18/05	Concrete	SGS	PCB	
Building 15 Characterization Sampling	BLDG-DUP-5 (15-1-15)	5/18/05	Brick	SGS	PCB	

Note:

1. Field duplicate sample locations are presented in parenthesis.

TABLE 3-2 PCB DATA RECEIVED DURING MAY 2005

BUILDINGS 4, 5 AND 6 OIL SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

		Date	Date Aroclor-1016, -1221,			
Sample ID	Matrix	Collected	-1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
4-1-1-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-2-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-3-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	0.82 J	0.82 J
4-1-4-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-5-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-6-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-7-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-8-OIL-1	Oil	5/3/2005	ND(7.9)	ND(7.9)	ND(7.9)	ND(7.9)
4-1-9-OIL-1	Oil	5/3/2005	ND(1.0)	2.9	ND(1.0)	2.9
4-1-10-OIL-1	Oil	5/3/2005	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)
4-1-11-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-12-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-13-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-14-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	1.6	1.6
4-1-15-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-16-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-17-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-18-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-19-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-20-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	9.2	9.2
4-1-21-OIL-1	Oil	5/3/2005	ND(4.0)	ND(4.0)	56	56
4-1-22-OIL-1	Oil	5/3/2005	ND(39)	ND(39)	490	490
4-1-23-OIL-1	Oil	5/3/2005	ND(39)	ND(39)	140	140
4-1-24-OIL-1	Oil	5/3/2005	ND(3.9)	ND(3.9)	17	17
4-1-25-GLYCERIN-1	Glycerin	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-26-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
4-1-27-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-1-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-2-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-3-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-4-OIL-1	Oil	5/3/2005	ND(1.0)	21	12	33
5-1-5-OIL-1	Oil	5/3/2005	ND(1.0)	2.2	ND(1.0)	2.2
5-1-6-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-7-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-8-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-9-OIL-1	Oil	5/3/2005	ND(1.0)	5.4	4.3	9.7
5-1-10-OIL-1	Oil	5/3/2005	ND(1.0)	3.0	2.7	5.7
5-1-11-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-12-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-13-OIL-1	Oil	5/3/2005	ND(1.0)	0.89 J	ND(1.0)	0.89 J
5-1-14-OIL-1	Oil	5/3/2005	ND(1.0)	0.78 J	ND(1.0)	0.78 J
5-1-15-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-16-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-17-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	0.81 J	0.81 J
5-1-18-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-19-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-20-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
5-1-21-GLYCERIN-1	Glycerin	5/3/2005	ND(0.00024)	ND(0.000065)	ND(0.00024)	ND(0.00024)
6-1-1-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
6-1-2-OIL-1	Oil	5/3/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)
6-1-3-OIL-1	Oil	5/3/2005	ND(1.0)	6.2	ND(1.0)	6.2

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

J - Indicates an estimated value less than the practical quantitation limit (PQL).

ITEM 4 PLANT AREA EAST STREET AREA 1-NORTH (GECD130) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Initiated preparation of draft Final Completion Report for submission to EPA.
- Submitted revised drafts of ERE and associated plans for GE-owned properties to EPA (May 31, 2005).

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Finalize and submit draft Final Completion Report to EPA.
- Submit revised draft of Title Commitment for GE-owned properties to EPA.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 5 PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

- Conducted ambient air monitoring for particulate matter and PCBs.
- Conducted sampling of concrete slab at Building 71 OPCA (see Table 5-1).
- Continued transfer of leachate from Building 71 OPCA to Building 64G for treatment. The total amount transferred in May 2005 was 89,500 gallons (see Table 5-5).
- Transferred soils and sediments from removal activities at the 1½ Mile Reach and 1½ Mile floodplain properties, demolition materials from the 40s Complex, and various facility-related materials to the OPCAs.

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue transfer of building demolition debris from ongoing demolition projects and excavated material from removal activities in the 1½ Mile Reach and 1½ Mile floodplain properties to the OPCAs.
- Initiate transfer of excavated materials from Newell Street Area I/II removal activities to the OPCAs.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

TABLE 5-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Building 71 OPCA Concrete Slab Sampling	BLDG71-OPCA-1	5/4/05	Concrete	SGS	PCB	5/13/05
Ambient Air Particulate Matter Sampling	North of OPCAs	5/4/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	5/4/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	5/4/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	5/4/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	West of OPCAs	5/4/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Background Location	5/4/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	North of OPCAs	5/5/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	5/5/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	5/5/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	5/5/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	West of OPCAs	5/5/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Background Location	5/5/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	North of OPCAs	5/6/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	5/6/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	5/6/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	5/6/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	West of OPCAs	5/6/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	Background Location	5/6/04	Air	Berkshire Environmental	Particulate Matter	5/10/05
Ambient Air Particulate Matter Sampling	North of OPCAs	5/18/04	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	5/18/04	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	5/18/04	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	5/18/04	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	West of OPCAs	5/18/04	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	Background Location	5/18/04	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	North of OPCAs	5/19/04	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	5/19/04	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	5/19/04	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	5/19/04	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	West of OPCAs	5/19/04	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	Background Location	5/19/04	Air	Berkshire Environmental	Particulate Matter	5/24/05
Ambient Air Particulate Matter Sampling	North of OPCAs	5/23/04	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	5/23/04	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	5/23/04	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	5/23/04	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	West of OPCAs	5/23/04	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	Background Location	5/23/04	Air	Berkshire Environmental	Particulate Matter	6/2/05

TABLE 5-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Ambient Air Particulate Matter Sampling	North of OPCAs	5/31/04	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	Pittsfield Generating Co.	5/31/04	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	Southeast of OPCAs	5/31/04	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	Southwest of OPCAs	5/31/04	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	West of OPCAs	5/31/04	Air	Berkshire Environmental	Particulate Matter	6/2/05
Ambient Air Particulate Matter Sampling	Background Location	5/31/04	Air	Berkshire Environmental	Particulate Matter	6/2/05
PCB Ambient Air Sampling	Southwest of OPCAs	5/5 - 5/6/05	Air	Berkshire Environmental	PCB	5/11/05
PCB Ambient Air Sampling	Southwest of OPCAs Co-located	5/5 - 5/6/05	Air	Berkshire Environmental	PCB	5/11/05
PCB Ambient Air Sampling	West of OPCAs	5/5 - 5/6/05	Air	Berkshire Environmental	PCB	5/11/05
PCB Ambient Air Sampling	North of OPCAs	5/5 - 5/6/05	Air	Berkshire Environmental	PCB	5/11/05
PCB Ambient Air Sampling	Southeast of OPCAs	5/5 - 5/6/05	Air	Berkshire Environmental	PCB	5/11/05
PCB Ambient Air Sampling	Pittsfield Generating (PGE)	5/5 - 5/6/05	Air	Berkshire Environmental	PCB	5/11/05
PCB Ambient Air Sampling	Background Inside GE Gate 31	5/5 - 5/6/05	Air	Berkshire Environmental	PCB	5/11/05

TABLE 5-2PCB DATA RECEIVED DURING MAY 2005

BUILDING 71 CONCRETE SLAB SAMPLING HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Date								
Sample ID	Collected	Aroclor-1016	Aroclor-1221	Aroclor-1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs
BLDG71-OPCA-1	5/4/2005	ND(0.033)	ND(0.033)						

Notes:

1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

TABLE 5-3 AMBIENT AIR PCB DATA RECEIVED DURING MAY 2005

PCB AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Southwest of OPCAs (μg/m ³)	Southwest of OPCAs Co-located (µg/m ³)	West of OPCAs (µg/m³)	North of OPCAs (µg/m³)	Southeast of OPCAs (µg/m³)	Pittsfield Generating (PGE) (µg/m ³)	Background Inside GE Gate 31 (μg/m ³)
05/05 - 05/06/05	0.0009	0.0008	0.0009	0.0008	0.0009	0.0030	0.0014
Notification Level	0.05	0.05	0.05	0.05	0.05	0.05	0.05

TABLE 5-4 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING MAY 2005

PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m ³)	Background Site Concentration (mg/m ³)	Average Period (Hours:Min)	Predominant Wind Direction
05/02/05 ¹	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
05/03/05 ¹	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
05/04/05	North of OPCAs	0.022	0.009*	11:30	WNW
	Pittsfield Generating Co.	0.010*		11:30	
	Southeast of OPCAs	0.019		11:30	
	Southwest of OPCAs	0.015		11:30	
	West of OPCAs	0.016		11:30	
05/05/05	North of OPCAs	0.017	0.016*	11:30	Variable, WNW
	Pittsfield Generating Co.	0.011*		11:30	
	Southeast of OPCAs	0.015		11:30	
	Southwest of OPCAs	0.010*		11:30	
	West of OPCAs	0.020		11:30	
05/06/05	North of OPCAs	0.031	0.019*	11:00	Variable, ESE
	Pittsfield Generating Co.	0.016*		9:15 ²	
	Southeast of OPCAs	0.029		11:00	
	Southwest of OPCAs	0.016*		10:45	
	West of OPCAs	0.023		11:00	
05/09/05 - 05/13/05	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
05/10/05	West of OPCAs		N10	N 10	NIA
05/16/05	North of OPCAs	NA	NA	NA	NA
	Pittsheid Generating Co.				
	Southeast of OPCAs				
	West of OPCAs				
05/17/05 ¹	North of OPCAs	ΝΑ	ΝΔ	ΝΔ	ΝΔ
03/11/03	Bittefield Constating Co	IN A	INA	IN-A	IN/A
	Southoast of OPCAs				
	Southwast of OPCAs				
	West of OPCAs				
05/18/05	North of OPCAs	0.022	0.018*	11:00	
00/10/00	Pittsfield Generating Co	0.022	0.010	11:00	
	Southeast of OPCAs	0.011		11:00	
	Southwest of OPCAs	0.008*		11:00	
	West of OPCAs	0.009		11:00	
05/19/05	North of OPCAs	0.020	0.017*	11:00	Variable, WNW
00/10/00	Pittsfield Generating Co	0.007*	0.017	11:00	
	Southeast of OPCAs	0.010		11:00	
	Southwest of OPCAs	0.009*		11:00	
	West of OPCAs	0.010		11:00	

TABLE 5-4 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING MAY 2005

PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

Date	Sampler Location	Average Site Concentration (mg/m ³)	Average Site Concentration (mg/m³)Background Site Concentration (mg/m³)		Predominant Wind Direction
05/20/05 ¹	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
05/23/05	North of OPCAs	0.017	0.011*	11:45	Variable, ENE
	Pittsfield Generating Co.	0.006*		11:45	
	Southeast of OPCAs	0.007		11:45	
	Southwest of OPCAs	0.009*		11:45	
	West of OPCAs	0.002		11:30	
05/24/05 - 05/27/05 ¹	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
05/30/05 ³	North of OPCAs	NA	NA	NA	NA
	Pittsfield Generating Co.				
	Southeast of OPCAs				
	Southwest of OPCAs				
	West of OPCAs				
05/31/05	North of OPCAs	0.026	0.021*	8:00 ⁴	Calm, NNE
	Pittsfield Generating Co.	0.009*		8:00 ⁴	
	Southeast of OPCAs	0.015		8:00 ⁴	
	Southwest of OPCAs	0.012*		8:00 ⁴	
	West of OPCAs	0.011		8:00 ⁴	
Notification Level		0.120			

Notes:

NA - Not Available

* Measured with DR-2000 or DR-4000. All others measured with pDR-1000.

Background monitoring location inside GE Gate 31 on the corner of Woodlawn Avenue and Tyler Street.

Predominant wind direction determined using hourly wind direction data from the Pittsfield Municipal Airport Weather Station.

¹ Sampling was not performed due to lack of site activity.

² Sampling period was shortened due to site access problem (gate locked).

³ Sampling was not performed due to lack of site activity on the Memorial Day holiday.

⁴ Sampling period was shortened due to precipitation/threat of precipitation.

TABLE 5-5

BUILDING 71 CONSOLIDATION AREA LEACHATE TRANSFER SUMMARY PLANT AREA - HILL 78 & BUILDING 71 CONSOLIDATION AREAS

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

	Total Volume of Leachate Transferred
Month / Year	(Gallons)
May 2004	164,500
June 2004	147,500
July 2004	171,000
August 2004	214,000
September 2004	230,000
October 2004	177,000
November 2004	138,000
December 2004	146,000
January 2005	136,000
February 2005	116,500
March 2005	174,500
April 2005	192,000
May 2005	89,500

Leachate is transferred from the Building 71 On-Plant Consolidation Area to Building 64G for treatment.

ITEM 6 PLANT AREA HILL 78 AREA - REMAINDER (GECD160) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Continued compilation and validation of pre-design investigation analytical results.

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Assess pre-design investigation soil sampling data.
- Initiate an assessment of City of Pittsfield storm drains and sewer lines extending beneath Hill 78 (due in September 2005).

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 7 PLANT AREA UNKAMET BROOK AREA (GECD170) MAY 2005

a. Activities Undertaken/Completed

Conducted sampling at and continued pre-demolition preparation of GE Advanced Materials Plant Site 1 buildings (see Table 7-1).

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted Pre-Excavation Notification for facility upgrades in the vicinity of Building OP-3 (May 3, 2005).

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Complete pre-design investigation sampling (i.e., samples associated with "unresolved issues" listed below under Item 7.e).*
- Continue pre-demolition preparation of GE Advanced Materials Plant Site 1 buildings.
- Initiate demolition of GE Advanced Materials Plant Site 1 buildings (anticipated for early to mid-June 2005).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

- Refusal was encountered at 1 foot below ground surface at six locations anticipated to be borings extending to 15 feet in the vicinity of the Unkamet Brook portion flowing through Parcel L11-4-11. GE, with EPA oversight, is attempting alternative sampling procedures to attempt to advance those borings as anticipated.*
- Soil samples have not been collected from five surface locations and one boring location at Parcel L12-1-2 because the location of the newly constructed Pittsfield Xtra Mart has obstructed access and created safety concerns due to installed product lines that are in close proximity to the proposed soil sample locations. GE and EPA are discussing alternatives to collecting those samples. To facilitate those discussions, GE has agreed to prepare a letter report summarizing the analytical data currently available for Parcel L12-1-2.*

f. Proposed/Approved Work Plan Modifications

Received verbal approval from EPA/MDEP for the Pre-Excavation Notification letters (GE to EPA/MDEP dated April 27, 2005 and May 3, 2005) for several planned major excavations (May 16, 2005).

TABLE 7-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
GE Advanced Materials Site 1	107-1-PC-1	5/3/05	Paint	SGS	PCB	5/6/05
GE Advanced Materials Site 1	107-1-PC-2	5/3/05	Paint	SGS	PCB	5/6/05
GE Advanced Materials Site 1	107-A2207-SOLIDS-1	4/22/05	Solid	SGS	PCB, TCLP	5/4/05
GE Advanced Materials Site 1	108-1-PC-1	5/3/05	Paint	SGS	PCB	5/6/05
GE Advanced Materials Site 1	108-1-PC-2	5/3/05	Paint	SGS	PCB	5/6/05
GE Advanced Materials Site 1	109-1-PC-1	5/3/05	Paint	SGS	PCB	5/6/05
GE Advanced Materials Site 1	109-1-PC-2	5/3/05	Paint	SGS	PCB	5/6/05
GE Advanced Materials Site 1	109-A0623-SOLIDS-1	4/22/05	Solid	SGS	PCB, TCLP	5/9/05
GE Advanced Materials Site 1	109-B1526-WATER-1	4/18/05	Water	SGS	PCB, VOC, SVOC, Flashpoint, Total RCRA Metals	5/5/05
GE Advanced Materials Site 1	109-B1527-WATER-1	4/18/05	Water	SGS	PCB, VOC, SVOC, Flashpoint, Total RCRA Metals	5/5/05
GE Advanced Materials Site 1	109-C1281-OIL-1	5/5/05	Oil	SGS	PCB	5/9/05
GE Advanced Materials Site 1	109-C1285-OIL-1	5/5/05	Oil	SGS	PCB	5/9/05
GE Advanced Materials Site 1	109-ELEVATOR-WATER-1	4/18/05	Water	SGS	PCB, VOC, SVOC, RCRA Metals (8)	5/4/05
GE Advanced Materials Site 1	110-1-PC-2	5/3/05	Paint	SGS	PCB	5/6/05
GE Advanced Materials Site 1	110-C1450-WATER-1	4/18/05	Water	SGS	PCB, VOC, SVOC, Flashpoint, Total RCRA Metals	5/5/05
GE Advanced Materials Site 1	111-A2208-SOLIDS-1	4/22/05	Solid	SGS	PCB, TCLP	5/4/05
GE Advanced Materials Site 1	111-B1524-WATER-1	4/21/05	Water	SGS	PCB, VOC, SVOC, Flashpoint, Total RCRA Metals	5/4/05
GE Advanced Materials Site 1	112-1-PC-1	5/3/05	Paint	SGS	PCB	5/6/05
GE Advanced Materials Site 1	112-1-PC-2	5/3/05	Paint	SGS	PCB	5/6/05
GE Advanced Materials Site 1	112-SUMPS-SOLIDS-COMP-1	4/22/05	Solid	SGS	PCB, TCLP	5/9/05
GE Advanced Materials Site 1	113-B1519-WATER-1	4/21/05	Water	SGS	PCB, VOC, SVOC, Flashpoint, Total RCRA Metals	5/4/05
GE Advanced Materials Site 1	113-B1525-WATER-1	4/18/05	Water	SGS	PCB, VOC, SVOC, Flashpoint, Total RCRA Metals	5/5/05
GE Advanced Materials Site 1	113-B1597-WATER-1	4/21/05	Water	SGS	PCB, VOC, SVOC, Flashpoint, Total RCRA Metals	5/4/05
GE Advanced Materials Site 1	113-B1598-WATER-1	4/21/05	Water	SGS	PCB, VOC, SVOC, Flashpoint, Total RCRA Metals	5/4/05
GE Advanced Materials Site 1	114-1-PC-2	5/3/05	Paint	SGS	PCB	5/6/05
GE Advanced Materials Site 1	114-B1530-WATER-1	4/21/05	Water	SGS	PCB, VOC, SVOC, Flashpoint, Total RCRA Metals	5/4/05
GE Advanced Materials Site 1	GEAM-DUP-1B (109-1-PC-1)	5/3/05	Paint	SGS	PCB	5/6/05
GE Advanced Materials Site 1	GEAM-DUP-1S (109-1-PC-2)	5/3/05	Paint	SGS	PCB	5/6/05

Note:

1. Field duplicate sample locations are presented in parenthesis.

TABLE 7-2PCB DATA RECEIVED DURING MAY 2005

GE ADVANCED MATERIALS SITE 1 UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

		Date	Aroclor-1016,							
Sample ID	Matrix	Collected	-1221, -1232	Aroclor-1242	Aroclor-1248	Aroclor-1254	Aroclor-1260	Total PCBs		
				Building 107						
107-1-PC-1	Paint	5/3/2005	ND(2.0)	ND(2.0)	ND(2.0)	3.2	7.2	10.4		
107-1-PC-2	Paint	5/3/2005	ND(10)	41	ND(10)	ND(10)	ND(10)	41		
107-A2207-SOLIDS-1	Solid	4/22/2005	ND(0.067)	ND(0.067)	0.14	0.36	0.75	1.25		
Building 108										
108-1-PC-1	Paint	5/3/2005	ND(0.10)	ND(0.10)	ND(0.10)	1.1	2.2	3.3		
108-1-PC-2	Paint	5/3/2005	ND(0.50)	ND(0.50)	ND(0.50)	6.6	5.1	11.7		
Building 109										
109-1-PC-1	Paint	5/3/2005	ND(0.50) [ND(0.50)]	ND(0.50) [ND(0.50)]	ND(0.50) [ND(0.50)]	9.5 [6.4]	4.8 [4.3]	14.3 [10.7]		
109-1-PC-2	Paint	5/3/2005	ND(0.50) [ND(0.50)]	ND(0.50) [ND(0.50)]	ND(0.50) [ND(0.50)]	6.0 [5.1]	4.5 [2.4]	10.5 [7.5]		
109-A0623-SOLIDS-1	Solid	4/22/2005	ND(0.061)	ND(0.061)	0.10	0.31	0.36	0.77		
109-B1526-WATER-1	Water	4/18/2005	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)		
109-B1527-WATER-1	Water	4/18/2005	ND(0.000065)	ND(0.000065)	ND(0.000065)	0.000045 J	ND(0.000065)	0.000045 J		
109-C1281-OIL-1	Oil	5/5/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)		
109-C1285-OIL-1	Oil	5/5/2005	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)	ND(1.0)		
109-ELEVATOR-WATER-1	Water	4/18/2005	ND(0.000065)	ND(0.000065)	ND(0.000065)	0.000053 J	ND(0.000065)	0.000053 J		
				Building 110						
110-1-PC-2	Paint	5/3/2005	ND(0.17)	ND(0.17)	ND(0.17)	0.56	0.96	1.52		
110-C1450-WATER-1	Water	4/18/2005	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)		
				Building 111						
111-A2208-SOLIDS-1	Solid	4/22/2005	ND(0.086)	ND(0.086)	1.5	1.0	1.4	3.9		
111-B1524-WATER-1	Water	4/21/2005	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)		
				Building 112						
112-1-PC-1	Paint	5/3/2005	ND(2.0)	17	ND(2.0)	ND(2.0)	ND(2.0)	17		
112-1-PC-2	Paint	5/3/2005	ND(10)	93	ND(10)	ND(10)	ND(10)	93		
112-SUMPS-SOLIDS-COMP-1	Solid	4/22/2005	ND(0.047)	ND(0.047)	1.1	0.34	0.39	1.83		
				Building 113						
113-B1519-WATER-1	Water	4/21/2005	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)		
113-B1525-WATER-1	Water	4/18/2005	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)		
113-B1597-WATER-1	Water	4/21/2005	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)		
113-B1598-WATER-1	Water	4/21/2005	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)		
				Building 114						
114-1-PC-2	Paint	5/3/2005	ND(0.40)	ND(0.40)	ND(0.40)	1.7	2.3	4.0		
114-B1530-WATER-1	Water	4/21/2005	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)	ND(0.000065)		

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc. and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, semivolatiles, RCRA metals, flash point, and TCLP constituents.

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

3. Field duplicate sample results are presented in brackets.

4. Please refer to Table 7-3 for a summary of volatiles, semivolatiles, RCRA metals, and flash point and refer to Table 7-4 for a summary of TCLP constituents.

5. Solid matrix samples are presented in dry weight.

Data Qualifiers:

J - Indicates an estimated value less than the practical quantitation limit (PQL).

TABLE 7-3 APPENDIX IX+3 DATA RECEIVED DURING MAY 2005

GE ADVANCED MATERIALS SITE 1 UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID:	109-B1526-WATER-1	109-B1527-WATER-1	109-ELEVATOR-WATER-1	110-C1450-WATER-1	111-B1524-WATER-1
Parameter Date Collected:	04/18/05	04/18/05	04/18/05	04/18/05	04/21/05
Volatile Organics					
Carbon Disulfide	ND(0.010)	0.028	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chlorobenzene	ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.0050)	0.00066 J
Methylene Chloride	0.0078 J	0.0054 J	ND(0.0050)	ND(0.0050)	ND(0.0050)
Toluene	0.32	0.41	ND(0.0050)	ND(0.0050)	ND(0.0050)
Semivolatile Organics					
1,2,4-Trichlorobenzene	ND(0.010)	0.0016 J	ND(0.010)	ND(0.010)	ND(0.010)
1,2-Dichlorobenzene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2,4,5-Trichlorophenol	0.031	0.029	ND(0.010)	ND(0.010)	ND(0.010)
2-Methylphenol	0.0054 J	0.0056 J	ND(0.010)	ND(0.010)	ND(0.010)
3&4-Methylphenol	0.0056 J	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Acetophenone	0.083	0.17	ND(0.010)	ND(0.010)	ND(0.010)
Pentachlorophenol	0.0015 J	0.0020 J	ND(0.050)	ND(0.050)	ND(0.050)
Phenol	0.050	0.13	ND(0.010)	ND(0.010)	ND(0.010)
Inorganics-Unfiltered					
Arsenic	0.140	0.0990	ND(0.00500)	ND(0.00500)	ND(0.00500)
Barium	0.00660	0.0370	0.00340	0.0360	0.000900 B
Cadmium	0.00130	0.00500	0.00100	0.00240	ND(0.00100)
Chromium	0.0270	0.0520	0.00140 B	ND(0.00500)	0.00110 B
Lead	0.0340	0.190	0.0150	0.00800	0.00370 B
Mercury	0.00110	0.00160	0.000290	0.000130 B	ND(0.000200)
Selenium	0.00480 B	0.00540	ND(0.00500)	0.00540	ND(0.00500)
Conventionals					
Flash Point (°F)	>180	>180	NA	>180	>180

Page 1 of 2

TABLE 7-3 APPENDIX IX+3 DATA RECEIVED DURING MAY 2005

GE ADVANCED MATERIALS SITE 1 UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID:	113-B1519-WATER-1	113-B1525-WATER-1	113-B1597-WATER-1	113-B1598-WATER-1	114-B1530-WATER-1
Parameter Date Collected:	04/21/05	04/18/05	04/21/05	04/21/05	04/21/05
Volatile Organics					
Carbon Disulfide	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chlorobenzene	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.00067 J	ND(0.0050)
Methylene Chloride	0.0012 J	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Toluene	0.0061	0.00097 J	ND(0.0050)	ND(0.0050)	ND(0.0050)
Semivolatile Organics					
1,2,4-Trichlorobenzene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
1,2-Dichlorobenzene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	0.080
2,4,5-Trichlorophenol	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
2-Methylphenol	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
3&4-Methylphenol	0.0027 J	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Acetophenone	0.0025 J	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Pentachlorophenol	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Phenol	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Inorganics-Unfiltered					
Arsenic	0.0240	ND(0.00500)	ND(0.00500)	ND(0.00500)	0.0100
Barium	0.0240	0.0310	0.0160	0.00780	0.500
Cadmium	0.00130	ND(0.00100)	ND(0.00100)	ND(0.00100)	0.0180
Chromium	0.00680	0.0510	0.0340	0.0140	0.0650
Lead	0.0380	0.0140	0.0110	0.00750	0.450
Mercury	0.000230	0.000450	0.000220	ND(0.000200)	0.0220
Selenium	ND(0.00500)	0.00690	ND(0.00500)	ND(0.00500)	0.0220
Conventionals					
Flash Point (°F)	>180	>180	>180	>180	>180

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, metals, and flash point.

2. NA - Not Analyzed.

3. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

4. Only those constituents detected in one or more samples are summarized.

5. Please refer to Table 7-2 for a summary of PCBs.

Data Qualifiers:

Organics (volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

TABLE 7-4 TCLP DATA RECEIVED DURING MAY 2005

GE ADVANCED MATERIALS SITE 1 UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

	TCLP				
Sample ID:	Regulatory	107-A2207-SOLIDS-1	109-A0623-SOLIDS-1	111-A2208-SOLIDS-1	112-SUMPS-SOLIDS-COMP-1
Parameter Date Collected:	Limits	4/22/2005	4/22/2005	4/22/2005	4/22/2005
Volatile Organics					
1,1-Dichloroethene	0.7	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
1,2-Dichloroethane	0.5	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
2-Butanone	200	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)
Benzene	0.5	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Carbon Tetrachloride	0.5	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Chlorobenzene	100	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Chloroform	6	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Tetrachloroethene	0.7	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Trichloroethene	0.5	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Vinyl Chloride	0.2	ND(0.10)	ND(0.10)	ND(0.10)	ND(0.10)
Semivolatile Organics					
1,4-Dichlorobenzene	7.5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
2,4,5-Trichlorophenol	400	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
2,4,6-Trichlorophenol	2	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
2,4-Dinitrotoluene	0.13	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Cresol	200	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobenzene	0.13	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachlorobutadiene	0.5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Hexachloroethane	3	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Nitrobenzene	2	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Pentachlorophenol	100	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Pyridine	5	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.050)
Inorganics					
Arsenic	5	ND(0.100)	ND(0.100)	0.0980 B	ND(0.100)
Barium	100	0.300	0.400	0.660	0.490
Cadmium	1	0.0480	0.300	ND(0.0200)	0.190
Chromium	5	ND(0.0500)	0.00670 B	0.00650 B	0.00370 B
Lead	5	0.0120 B	0.550	0.0440 B	0.0950 B
Mercury	0.2	ND(0.00200)	ND(0.00200)	ND(0.00200)	ND(0.00200)
Selenium	1	ND(0.200)	0.00570 B	ND(0.200)	ND(0.200)
Silver	5	0.00120 B	ND(0.0200)	ND(0.0200)	ND(0.0200)

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc. and submitted to SGS Environmental Services, Inc. for analysis of PCBs and TCLP constituents.

2. Please refer to Table 7-2 for a summary of PCBs.

3. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

ITEM 8 FORMER OXBOW AREAS A & C (GECD410) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Initiated preparation of Final RD/RA Work Plan.

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Complete and submit Final RD/RA Work Plan (due July 6, 2005).

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 9 LYMAN STREET AREA (GECD430) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

None

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

Submitted Addendum to Conceptual RD/RA Work Plan to EPA (May 9, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Upon EPA approval of Addendum to Conceptual RD/RA Work Plan, begin work on Final RD/RA Work Plan.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 10 NEWELL STREET AREA I (GECD440) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Conducted sampling of Maxymillian topsoil stockpile for use as backfill.

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Record ERE for Parcel J9-23-24 upon receipt of EPA approval and MDEP acceptance of ERE.
- Initiate remediation of Parcel J9-23-13 and Parcels J9-23-19, -20, and -21.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

TABLE 10-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

NEWELL STREET AREA I GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Maxymillian Topsoil Pile Sampling	TOPSOIL-050505-1	5/5/05	Soil	SGS	PCB, VOC, SVOC, Metals	5/19/05

TABLE 10-2 DATA RECEIVED DURING MAY 2005

MAXYMILLIAN TOPSOIL PILE SAMPLING NEWELL STREET AREA 1 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	TOPSOIL-050505-1 05/05/05
Volatile Organics		
None Detected		
PCBs		
Aroclor-1260		0.024 J
Total PCBs		0.024 J
Semivolatile Orga	inics	
Benzo(a)anthracen	е	0.076 J
Benzo(a)pyrene		0.089 J
Benzo(b)fluoranthe	ne	0.059 J
Benzo(g,h,i)peryler	ie	0.052 J
Benzo(k)fluoranthe	ne	0.10 J
Chrysene		0.079 J
Fluoranthene		0.14 J
Phenanthrene		0.073 J
Pyrene		0.13 J
Inorganics		
Arsenic		5.80
Barium		51.0
Beryllium		0.450 B
Chromium		13.0
Cobalt		8.60
Copper		15.0
Lead		24.0
Mercury		0.0310 B
Nickel		13.0
Selenium		0.540 B
Thallium		3.30
Tin		2.60 B
Vanadium		18.0
Zinc		79.0

Notes:

- Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, and metals.
- ². Only detected constituents are summarized.
- 3. -- Indicates that all constituents for the parameter group were not detected.

Data Qualifiers:

Organics (PCBs, volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

ITEM 11 NEWELL STREET AREA II (GECD450) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Selected Remediation Contractor (May 26, 2005).

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

Submitted Addendum to the March 2005 Final RD/RA Work Plan (May 25, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Submit Supplemental Information Package with additional details on remediation plans.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

Received EPA conditional approval of March 2005 Final RD/RA Work Plan (May 12, 2005).

ITEM 12 FORMER OXBOW AREAS J & K (GECD420) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

None

b. <u>Sampling/Test Results Received</u>

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Following EPA approval of Conceptual RD/RA Work Plan (submitted March 9, 2005), begin final remediation design activities.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

ITEM 13 HOUSATONIC RIVER AREA UPPER ½ MILE REACH (GECD800) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Performed 2005 restored bank erosion and spring 2005 restored bank vegetation inspections (May 23, 2005).

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

Submitted Response to Comments from Natural Resource Trustees regarding GE's 2004 Annual Monitoring Report (May 2, 2005).

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Submit trip report detailing results of 2005 restored bank erosion and spring 2005 restored bank vegetation inspections.
- Conduct seepage meter monitoring when water levels allow.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

- Seepage meter monitoring has not occurred due to increased water levels.
- Issues relating to total organic carbon (TOC) content in isolation layer remain to be resolved. EPA and GE have agreed that GE's report on those issues will be deferred until after the seepage meter data are available. The Final Completion Report for Upper ¹/₂ Mile Reach Removal Action will be submitted following resolution of those issues.

f. <u>Proposed/Approved Work Plan Modifications</u>

(Note: This item is limited to activities conducted by GE and does not include EPA's work on the 1½-Mile Reach Removal Action)

a. <u>Activities Undertaken/Completed</u>

On May 31, 2005, BBL (on GE's behalf) performed a round of water column monitoring at nine locations along the Housatonic River between Coltsville, MA and Great Barrington, MA. Two of these locations are situated in the 1½-Mile Reach: Lyman Street Bridge (Location 4) and Dawes Avenue Bridge (Location 6). The Dawes Avenue Bridge location was sampled instead of the Pomeroy Avenue Bridge (Location 6A) due to remediation construction activities at Pomeroy Avenue. A composite grab sample was collected at each location and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a (see Table 14-1). (The other seven locations are discussed under Item 15 below.)

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue Housatonic River monthly water column monitoring.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

TABLE 14-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Monthly Water Column Sampling	Location-4	4/28/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	5/13/05
Monthly Water Column Sampling	Location-4	5/31/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-6	5/31/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	
Monthly Water Column Sampling	Location-6A	4/28/05	Water	NEA	PCB, TSS, POC, Chlorophyll-A	5/13/05

TABLE 14-2 SAMPLE DATA RECEIVED DURING MAY 2005

MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

		Date	Aroclor-1016, -1221,							
Sample ID	Location	Collected	-1232, -1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	POC	TSS	Chlorophyll (a)
LOCATION-4	Lyman Street Bridge	4/28/05	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.178	1.80	0.00090
LOCATION-6A	Pomeroy Ave. Bridge	4/28/05	ND(0.000220)	0.0000270 PE	ND(0.0000220)	0.0000230 AG	0.0000500	0.273	1.60	0.0010

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc. and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).

2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.

3. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

Data Qualifiers:

AG - Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

PE - Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

ITEM 15 HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) MAY 2005

a. Activities Undertaken/Completed

- Attended Peer Review Meeting on EPA's Model Calibration Report (May 4-5, 2005).*
- On May 25, 2005, BBL (on GE's behalf) collected 38 soil samples from 19 locations on Parcel 7-49A located in Lee, MA adjacent to the Housatonic River in the river reach between Woods Pond Dam and Rising Pond (Reach 7). The sampling was done as part of GE's additional characterization sampling of several Reach 7 floodplain properties, as outlined in GE's March 1, 2005 letter to EPA. Samples were collected at depth increments of 0 to 1 foot and 1 to 2 feet, and submitted to SGS Environmental Services for analysis of PCBs (see Table 15-1).
- On May 31, 2005, BBL (on GE's behalf) performed a round of water column monitoring at nine locations along the Housatonic River between Coltsville and Great Barrington, MA. Two locations are situated in the 1½-Mile Reach of the Housatonic River and were discussed in Item 14. Of the remaining seven locations, two are located upstream of the 1½-Mile Reach: Hubbard Avenue Bridge (Location 1) and Newell Street Bridge (Location 2). The five remaining locations are situated in the Rest of the River: Holmes Road Bridge (Location 7); New Lenox Road Bridge (Location 9); Woods Pond Headwaters (Location 10); Schweitzer Bridge (Location 12); and Division Street Bridge (Location 13). Sampling activities were performed at all these locations on May 31, 2005 from downstream to upstream. Composite grab samples were collected at each location sampled and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a (see Table 15-1).

b. <u>Sampling/Test Results</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

Submitted April 2005 Quarterly Inspection Report for Woods Pond Dam (May 16, 2005).*

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue Housatonic River monthly water column monitoring.
- Prepare plan for work on gate stem repairs at Rising Pond Dam, as identified in the Structural Integrity Report submitted in July 2003 for that dam, and based on the October 2003 gate stem inspection.*

d. Upcoming Scheduled and Anticipated Activities (next six weeks) (cont'd)

- Upon receipt of notification from EPA that EPA's Human Health and Environmental Risk Assessments have been completed, begin work on development of Interim Media Protection Goals (IMPGs) Proposal.*
- GE is working with EPA to collect cross-section (geometry) data for approximately 140 transects located on the Housatonic River between Woods Pond Dam and Rising Pond Dam. These data will be used to expand EPA's current model of the Housatonic River from Woods Pond Dam downstream to Rising Pond Dam.*

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

Floodplain soil sampling for the remaining Reach 7 floodplain properties has been suspended as a result of property owners not granting access permission.

f. <u>Proposed/Approved Work Plan Modifications</u>

TABLE 15-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	Received
Additional Reach 7 Floodplain Soil Sampling	DUP-052505-1 (FP01-001-003)	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	DUP-052505-2 (FP01-005-002)	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	DUP-FPPROR-1 (FP02-004-001)	4/27/05	0-1	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP01-001-001	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-001-001	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-001-002	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-001-002	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-001-003	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-001-003	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-002-001	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-002-001	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-002-002	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-002-002	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-002-003	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-002-003	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-003-001	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-003-001	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-003-002	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-003-002	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-004-001	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-004-001	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-004-002	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-004-002	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-005-001	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-005-001	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-005-002	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-005-002	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-005-003	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-005-003	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-006-001	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-006-001	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-006-002	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-006-002	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-006-003	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-006-003	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-007-001	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-007-001	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-007-002	5/25/05	0-1	Soil	SGS	РСВ	
Additional Reach 7 Floodplain Soil Sampling	FP01-007-002	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-007-003	5/25/05	0-1	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP01-007-003	5/25/05	1-2	Soil	SGS	PCB	
Additional Reach 7 Floodplain Soil Sampling	FP02-004-001	4/27/05	0-1	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP02-004-001	4/27/05	1-2	Soil	SGS	PCB	5/11/05
Additional Deeph 7 Fleedalaia Osil Osmalian	ED02 005 001	1/07/0E	0_1	Soil	868		5/11/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\05-05 CD Monthly\Tracking Logs\Tracking.xls

TABLE 15-1

TABLE 15-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	Received
Additional Reach 7 Floodplain Soil Sampling	FP02-005-001	4/27/05	1-2	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-001-001	4/29/05	0-1	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-001-001	4/29/05	1-2	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-001-002	4/29/05	0-1	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-001-002	4/29/05	1-2	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-001-003	4/29/05	0-1	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-001-003	4/29/05	1-2	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-002-001	4/29/05	0-1	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-002-001	4/29/05	1-2	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-002-002	4/29/05	0-1	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-002-002	4/29/05	1-2	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-002-003	4/29/05	0-1	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-002-003	4/29/05	1-2	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-003-001	4/29/05	0-1	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-003-001	4/29/05	1-2	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-003-002	4/29/05	0-1	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-003-002	4/29/05	1-2	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-003-003	4/29/05	0-1	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-003-003	4/29/05	1-2	Soil	SGS	PCB	5/11/05
Additional Reach 7 Floodplain Soil Sampling	FP03-DUP-1 (FP03-001-003)	4/29/05	0-1	Soil	SGS	PCB	5/11/05
Monthly Water Column Sampling	HR-D1 (Location-12)	4/28/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	5/13/05
Monthly Water Column Sampling	HR-D1 (Location-12)	5/31/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	
Monthly Water Column Sampling	Location-1	4/28/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	5/13/05
Monthly Water Column Sampling	Location-1	5/31/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	
Monthly Water Column Sampling	Location-10	5/31/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	
Monthly Water Column Sampling	Location-10	4/28/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	5/13/05
Monthly Water Column Sampling	Location-12	5/31/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	
Monthly Water Column Sampling	Location-12	4/28/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	5/13/05
Monthly Water Column Sampling	Location-13	4/28/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	5/13/05
Monthly Water Column Sampling	Location-13	5/31/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	
Monthly Water Column Sampling	Location-2	4/28/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	5/13/05
Monthly Water Column Sampling	Location-2	5/31/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	
Monthly Water Column Sampling	Location-7	4/28/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	5/13/05
Monthly Water Column Sampling	Location-7	5/31/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	
Monthly Water Column Sampling	Location-9	5/31/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	
Monthly Water Column Sampling	Location-9	4/28/05	NA	Water	NEA	PCB, TSS, POC, Chlorophyl-A	5/13/05
2004 Biennial Housatonic CT Fish Monitoring	2558/F-2317	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2563/F-2322	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2564/F-2323	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2565/F-2324	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2604/F-1365	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2610/F-1368	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2612/F-1370	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2613/F-1371	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\05-05 CD Monthly\Tracking Logs\Tracking.xls

TABLE 15-1

TABLE 15-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	Received
2004 Biennial Housatonic CT Fish Monitoring	2617/F-1375	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2655/F-1377	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2656/F-1378	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2657/F-1379	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2934/F-1385	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2936/F-1387	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2937/F-1388	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3140/F-1398	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3143/F-1401	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3145/F-1403	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3147/F-1405	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3157/F-1415	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3317/F-1445	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3318/F-1446	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3319/F-1447	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3332/F-1460	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3334/F-1462	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3335/F-1464	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2588/F-1354	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2589/F-1355	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2602/F-1363	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2658/F-1379	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2659/F-1380	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2660/F-1381	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3286/F-1434	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3287/F-1435	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3288/F-1436	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3289/F-1437	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3328/F-1456	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3329/F-1457	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3330/F-1458	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3336/F-1465	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3337/F-1466	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2555/F-2314	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2556/F-2315	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2557/F-2316	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2559/F-2318	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2560/F-2319	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2561/F-2320	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2562/F-2321	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2574/F-1342	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2587/F-1353	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2590/F-1356	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2661/F-1382	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\05-05 CD Monthly\Tracking Logs\Tracking.xls

TABLE 15-1
TABLE 15-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	Received
2004 Biennial Housatonic CT Fish Monitoring	2662/F-1383	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2663/F-1384	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3141/F-1399	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3142/F-1400	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3146/F-1404	Sep-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3163/F-1421	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3178/F-1432	Sep-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3179/F-1433	Sep-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3290/F-1438	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3291/F-1439	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3292/F-1440	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3293/F-1441	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3294/F-1442	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3295/F-1443	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3296/F-1444	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3320/F-1448	Sep-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3323/F-1451	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3324/F-1452	Sep-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3325/F-1453	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2591/F-1357	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2603/F-1364	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2608/F-1366	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2609/F-1367	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2611/F-1369	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2614/F-1372	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2935/F-1386	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2938/F-1389	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2939/F-1390	Sep/Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3136/F-1394	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3137/F-1395	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3138/F-1396	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3139/F-1397	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3144/F-1402	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3155/F-1413	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3162/F-1420	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3321/F-1449	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3322/F-1450	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3326/F-1454	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3327/F-1455	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3331/F-1459	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3333/F-1461	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2566/F-2325	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2567/F-2326	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2568/F-1336	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\05-05 CD Monthly\Tracking Logs\Tracking.xls

TABLE 15-1

TABLE 15-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	Received
2004 Biennial Housatonic CT Fish Monitoring	2569/F-1337	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2570/F-1338	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2571/F-1339	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2572/F-1340	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2573/F-1341	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2578/F-1347	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2579/F-1348	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2580/F1349	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2581/F-1350	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2582/F-1351	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2583/F-1352	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2597/F-1358	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2598/F-1359	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2599/F-1360	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2600/F-1361	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2601/F-1362	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2615/F-1373	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	2616/F-1374	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3149/F-1407	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3150/F-1408	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3151/F-1409	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3152/F-1410	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3154/F-1412	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3158/F-1416	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3159/F-1417	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3160/F-1418	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3161/F-1419	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3164/F-1422	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3165/F-1423	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3166/F-1424	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3167/F-1425	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3168/F-1426	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3169/F-1427	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3173/F-1428	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3174/F-1429	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3176/F-1430	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3177/F-1431	Oct-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3153/F-1411	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05
2004 Biennial Housatonic CT Fish Monitoring	3156/F-1414	Aug-04	NA	Biota	Academy of Natural Sciences	PCB	5/31/05

TABLE 15-2 SAMPLE DATA RECEIVED DURING MAY 2005

MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

		Date	Aroclor-1016,							
Sample ID	Location	Collected	-1221,-1232,-1242	Aroclor 1248	Aroclor 1254	Aroclor 1260	Total PCBs	POC	TSS	Chlorophyll (a)
LOCATION-1	Hubbard Avenue Bridge	4/28/05	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.177	1.30	0.00070
LOCATION-2	Newell Street Bridge	4/28/05	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.381	2.00	0.0011
LOCATION-7	Holmes Road Bridge	4/28/05	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.293	3.10	0.0018
LOCATION-9	New Lenox Road Bridge	4/28/05	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.0000230 AG	0.0000230	0.305	3.90	0.0020
LOCATION-10	Headwaters of Woods Pond	4/28/05	ND(0.0000220)	0.0000250 PE	0.0000240 AF	0.0000270 AG	0.0000760	0.367	2.10	0.0016
LOCATION-12	Schweitzer Bridge	4/28/05	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.0000250 AG	0.0000250	0.208	2.10	0.0022
		4/28/05	[ND(0.0000220)]	[0.0000260 PE]	[0.0000270 AF]	[0.0000340 AG]	[0.0000870]	[0.267]	[2.40]	[0.0019]
LOCATION-13	Division Street Bridge	4/28/05	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	ND(0.0000220)	0.516	4.10	0.0064

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc. and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).

2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.

3. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

4. Field duplicate sample results are presented in brackets.

Data Qualifiers:

AF - Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

AG - Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

PE - Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately

quantify PCBs present in a sample that has undergone environmental alteration.

TABLE 15-3 PCB DATA RECEIVED DURING MAY 2005

ADDITIONAL REACH 7 FLOODPLAIN SOIL SAMPLING HOUSATONIC RIVER - REST OF RIVER **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS** (Results are presented in dry weight parts per million, ppm)

			Date	Aroclor-1016, -1221,			
Parcel ID	Sample ID	Depth(Feet)	Collected	-1232, -1242, -1248	Aroclor-1254	Aroclor-1260	Total PCBs
35-17	FP02-004-001	0-1	4/27/2005	ND(0.045) [ND(0.045)]	ND(0.045) [ND(0.045)]	0.72 [0.67]	0.72 [0.67]
		1-2	4/27/2005	ND(0.043)	ND(0.043)	0.14	0.14
	FP02-005-001	0-1	4/27/2005	ND(0.33)	ND(0.33)	6.2	6.2
		1-2	4/27/2005	ND(0.051)	0.64	1.7	2.34
35-5A	FP03-001-001	0-1	4/29/2005	ND(0.039)	0.19	0.54	0.73
		1-2	4/29/2005	ND(0.038)	0.39	1.4	1.79
	FP03-001-002	0-1	4/29/2005	ND(0.044)	ND(0.044)	ND(0.044)	ND(0.044)
		1-2	4/29/2005	ND(0.047)	ND(0.047)	ND(0.047)	ND(0.047)
	FP03-001-003	0-1	4/29/2005	ND(0.040) [ND(0.042)]	ND(0.040) [ND(0.042)]	ND(0.040) [ND(0.042)]	ND(0.040) [ND(0.042)]
		1-2	4/29/2005	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)
	FP03-002-001	0-1	4/29/2005	ND(0.23)	1.5	2.2	3.7
		1-2	4/29/2005	ND(0.39)	2.9	5.8	8.7
	FP03-002-002	0-1	4/29/2005	ND(0.50)	2.8	5.1	7.9
		1-2	4/29/2005	ND(0.59)	ND(0.59)	8.0	8.0
	FP03-002-003	0-1	4/29/2005	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)
		1-2	4/29/2005	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)
	FP03-003-001	0-1	4/29/2005	ND(0.045)	ND(0.045)	0.26	0.26
		1-2	4/29/2005	ND(0.045)	ND(0.045)	ND(0.045)	ND(0.045)
	FP03-003-002	0-1	4/29/2005	ND(0.042)	ND(0.042)	ND(0.042)	ND(0.042)
		1-2	4/29/2005	ND(0.038)	ND(0.038)	ND(0.038)	ND(0.038)
	FP03-003-003	0-1	4/29/2005	ND(0.045)	ND(0.045)	ND(0.045)	ND(0.045)
		1-2	4/29/2005	ND(0.042)	ND(0.042)	0.044	0.044

Notes:

Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
 ND - Analyte was not detected. The number in parenthesis is the associated detection limit.
 Field duplicate sample results are presented in brackets.

SUMMARY OF ACADEMY OF NATURAL SCIENCES 2004 BIENNIAL HOUSATONIC FISH PCB DATA HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

	Sample						
	Identification			Number of	Congener	Aroclor Total	Percent
Location ID	Number	Month Collected	Species	Individuals	Total PCBs	PCBs	Lipids
Bulls Bridge	2558/F-2317	Aug-04	Smallmouth Bass	1	1.26	1.46	1.23
Bulls Bridge	2563/F-2322	Aug-04	Smallmouth Bass	1	0.623	0.738	0.86
Bulls Bridge	2564/F-2323	Aug-04	Bluegill	5	0.319	0.367	0.90
Bulls Bridge	2565/F-2324	Aug-04	Bluegill	5	0.206	0.238	1.10
Bulls Bridge	2604/F-1365	Aug-04	Bluegill	5	0.289	0.329	1.67
Bulls Bridge	2610/F-1368	Aug-04	Smallmouth Bass	1	0.702	0.830	0.60
Bulls Bridge	2612/F-1370	Aug-04	Smallmouth Bass	1	0.769	0.931	1.40
Bulls Bridge	2613/F-1371	Aug-04	Smallmouth Bass	1	1.62	1.88	1.48
Bulls Bridge	2617/F-1375	Aug-04	Smallmouth Bass	1	1.22	1.44	0.58
Bulls Bridge	2655/F-1377	Aug-04	Northern Pike	1	0.551	0.624	0.44
Bulls Bridge	2656/F-1378	Aug-04	Northern Pike	1	0.162	0.189	0.42
Bulls Bridge	2657/F-1379	Aug-04	Northern Pike	1	0.636	0.718	0.84
Bulls Bridge	2934/F-1385	Aug-04	Yellow Bullhead	5	0.361	0.424	1.08
Bulls Bridge	2936/F-1387	Aug-04	Brown Bullhead	5	0 417	0.533	1 48
Bulls Bridge	2937/F-1388	Aug-04	Brown Bullhead	5	0.319	0.396	1.10
Bulls Bridge	3140/F-1398	Aug-04	Smallmouth Bass	1	0.010	1 13	1.20
Bulls Bridge	31/3/F-1/01	Aug-04	Smallmouth Bass	1	0.861	0.986	1.00
Bulls Bridge	3145/E-1401	Aug-04	Smallmouth Bass	1	0.856	0.900	1.55
Bulls Bridge	3143/F-1403	Aug-04	Smallmouth Bass	1	1.62	0.905	1.07
Bulls Bridge	3147/F-1403		Largomouth Bass	5	0.565	0.647	1.22
Bulls Bridge	2217/E 14/5	Aug-04	Dumpkinsood	2	0.000	0.047	0.66
Bullo Bridge	3317/F-1443	Aug-04	Pumpkinseed	2	0.220	0.271	0.00
Bullo Bridge	3310/F-1440	Aug-04	Pumpkinseed	2	0.200	0.224	0.79
Dulls Dridge	3319/F-1447	Aug-04	Yellew Dareh	2	0.272	0.307	1.22
Bulls Bridge	3332/F-1460	Aug-04	Yellow Perch	5	0.303	0.339	1.32
Bulls Bridge	3334/F-1462	Aug-04	Yellow Perch	5	0.337	0.379	1.10
Bulls Bridge	3335/F-1464	Aug-04	Yellow Perch	5	0.434	0.493	1.08
Falls Village	2588/F-1354	Aug-04	Bluegill	5	0.438	0.484	1.62
Fails Village	2589/F-1355	Aug-04	Biuegili	5	0.468	0.511	2.97
Falls Village	2602/F-1363	Aug-04	Bluegill	5	0.332	0.376	1.31
Falls Village	2658/F-1379	Aug-04	Northern Pike	1	0.747	0.851	1.26
Falls Village	2659/F-1380	Aug-04	Northern Pike	1	31.7	42.8	0.59
Falls Village	2660/F-1381	Aug-04	Northern Pike	1	0.945	1.11	0.96
Falls Village	3286/F-1434	Oct-04	Pumpkinseed	5	0.227	0.257	1.32
Falls Village	3287/F-1435	Oct-04	Yellow Perch	5	0.491	0.562	1.28
Falls Village	3288/F-1436	Oct-04	Smallmouth Bass	5	1.01	1.22	1.98
Falls Village	3289/F-1437	Oct-04	Brown Bullhead	1	0.133	0.161	2.26
Falls Village	3328/F-1456	Aug-04	Brown Bullhead	1	0.372	0.457	1.48
Falls Village	3329/F-1457	Aug-04	Brown Bullhead	1	0.417	0.516	0.91
Falls Village	3330/F-1458	Aug-04	Brown Bullhead	1	0.353	0.410	1.74
Falls Village	3336/F-1465	Aug-04	Pumpkinseed	5	0.330	0.370	1.16
Falls Village	3337/F-1466	Aug-04	Pumpkinseed	5	0.267	0.297	1.12
Lake Lillinonah	2555/F-2314	Aug-04	Smallmouth Bass	1	0.274	0.308	1.51
Lake Lillinonah	2556/F-2315	Aug-04	Smallmouth Bass	1	0.214	0.248	0.95
Lake Lillinonah	2557/F-2316	Aug-04	Smallmouth Bass	1	0.208	0.240	1.35
Lake Lillinonah	2559/F-2318	Aug-04	Smallmouth Bass	1	0.246	0.298	0.80
Lake Lillinonah	2560/F-2319	Aug-04	Smallmouth Bass	1	0.607	0.706	1.20
Lake Lillinonah	2561/F-2320	Aug-04	Smallmouth Bass	1	0.530	0.608	1.32
Lake Lillinonah	2562/F-2321	Aug-04	Smallmouth Bass	1	0.759	0.893	1.28
Lake Lillinonah	2574/F-1342	Aug-04	Bluegill	5	0.256	0.298	1.00
Lake Lillinonah	2587/F-1353	Aug-04	Bluegill	5	0.116	0.135	1.13
Lake Lillinonah	2590/F-1356	Aug-04	Bluegill	5	0.126	0.148	0.78
Lake Lillinonah	2661/F-1382	Aug-04	Northern Pike	1	1.54	1.77	2.05
Lake Lillinonah	2662/F-1383	Aug-04	Northern Pike	1	0.764	0.865	1.66
Lake Lillinonah	2663/F-1384	Aug-04	Northern Pike	1	0.965	1.11	2.41
Lake Lillinonah	3141/F-1399	Oct-04	Smallmouth Bass	1	0.388	0.465	1.47

SUMMARY OF ACADEMY OF NATURAL SCIENCES 2004 BIENNIAL HOUSATONIC FISH PCB DATA HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

	Sample						
	Identification			Number of	Congener	Aroclor Total	Percent
Location ID	Number	Month Collected	Species	Individuals	Total PCBs	PCBs	Lipids
Lake Lillinonah	3142/F-1400	Oct-04	Smallmouth Bass	1	1.47	1.67	0.69
Lake Lillinonah	3146/F-1404	Sept-04	Smallmouth Bass	1	0.626	0.725	1.55
Lake Lillinonah	3163/F-1421	Aug-04	White Catfish	5	1.26	1.54	1.64
Lake Lillinonah	3178/F-1432	Sept-04	Brown Bullhead	1	0.396	0.563	2.18
Lake Lillinonah	3179/F-1433	Sept-04	Brown Bullhead	1	0.156	0.206	1.88
Lake Lillinonah	3290/F-1438	Oct-04	Yellow Bullhead	1	0.253	0.308	1.41
Lake Lillinonah	3291/F-1439	Aug-04	Yellow Bullhead	1	0.0780	0.0917	1.12
Lake Lillinonah	3292/F-1440	Aug-04	Yellow Bullhead	1	0.112	0.141	0.94
Lake Lillinonah	3293/F-1441	Aug-04	Yellow Bullhead	1	0.277	0.341	0.68
Lake Lillinonah	3294/F-1442	Aug-04	Yellow Bullhead	1	0.191	0.242	1.12
Lake Lillinonah	3295/F-1443	Aug-04	Redbreast Sunfish	4	0.122	0.143	0.84
Lake Lillinonah	3296/F-1444	Aug-04	Yellow Perch	5	0.120	0.140	0.76
Lake Lillinonah	3320/F-1448	Sept-04	Redbreast Sunfish	3	0.141	0.163	1.68
Lake Lillinonah	3323/F-1451	Oct-04	Pumpkinseed	4	0.0429	0.0495	1.63
Lake Lillinonah	3324/F-1452	Sept-04	Yellow Perch	5	0 154	0 184	1.57
Lake Lillinonah	3325/F-1453	Oct-04	Yellow Perch	5	0.101	0.171	1.07
Lake Zoar	2501/F-1357	Aug-04	Bluegill	5	0.0813	0.0924	1.00
Lake Zoar	2603/E-1364		Bluegill	5	0.0010	0.0024	1.24
Lake Zoar	2003/1-1304 2608/E-1366	Aug-04	Smallmouth Bass	1	0.245	0.200	1.49
Lake Zoar	2000/F-1300	Aug-04	Smallmouth Bass	1	0.227	0.230	0.70
Lake Zoar	2003/1-1307 2611/E-1369	Aug-04	Smallmouth Bass	1	0.474	0.332	0.70
Lake Zoar	2011/1-1309 2614/E 1272	Aug-04	Smallmouth Bass	1	0.127	0.140	0.24
Lake Zoar	2014/F-1372 2025/E 1296	Aug-04	Bluggill	5	0.239	0.298	1.06
	2933/F-1360	Aug-04	M/bite Dereb	5	0.120	0.140	1.00
Lake Zoar	2930/F-1309	Aug-04 Sont 04/Oct 04	Vollow Doroh	5	0.510	0.556	2.42
Lake Zoar	2939/F-1390	Sept-04/Oct-04	Fellow Perch	CC	0.205	0.237	0.92
	3130/F-1394	Aug-04	Smallmouth Bass		0.150	0.170	1.27
Lake Zoar	3137/F-1395	Oct-04	Smallmouth Bass	1	0.266	0.295	1.65
Lake Zoar	3138/F-1390	Oct-04	Smallmouth Bass	1	0.214	0.256	1.06
Lake Zoar	3139/F-1397	Oct-04	Smallmouth Bass	1	0.257	0.303	1.38
Lake Zoar	3144/F-1402	Oct-04	Smallmouth Bass	1	0.222	0.255	1.29
Lake Zoar	3155/F-1413	Oct-04	Smailmouth Bass	1	0.649	0.734	2.19
Lake Zoar	3162/F-1420	Oct-04	Pumpkinseed	5	0.0759	0.0867	1.46
Lake Zoar	3321/F-1449	Oct-04	White Catfish	4	0.780	0.922	3.29
Lake Zoar	3322/F-1450	Oct-04	White Cattish	4	0.402	0.469	3.93
Lake Zoar	3326/F-1454	Aug-04	Yellow Perch	5	0.122	0.139	0.98
Lake Zoar	3327/F-1455	Aug-04	Pumpkinseed	5	0.0744	0.0862	0.83
Lake Zoar	3331/F-1459	Aug-04	Yellow Perch	5	0.181	0.209	1.18
Lake Zoar	3333/F-1461	Aug-04	Yellow Bullhead	1	0.0495	0.0617	0.98
West Cornwall	2566/F-2325	Aug-04	Brown Trout	1	1.34	1.49	5.45
West Cornwall	2567/F-2326	Aug-04	Smallmouth Bass	1	1.48	1.69	1.82
West Cornwall	2568/F-1336	Aug-04	Brown Trout	1	3.73	4.25	4.67
West Cornwall	2569/F-1337	Aug-04	Brown Trout	1	1.77	2.15	4.18
West Cornwall	2570/F-1338	Aug-04	Brown Trout	1	0.979	1.13	3.06
West Cornwall	2571/F-1339	Aug-04	Smallmouth Bass	1	0.384	0.432	0.94
West Cornwall	2572/F-1340	Aug-04	Smallmouth Bass	1	0.720	0.832	2.22
West Cornwall	2573/F-1341	Aug-04	Brown Trout	1	1.98	2.39	8.16
West Cornwall	2578/F-1347	Aug-04	Brown Trout	1	1.59	1.77	7.01
West Cornwall	2579/F-1348	Aug-04	Brown Trout	1	1.12	1.28	4.11
West Cornwall	2580/F1349	Aug-04	Brown Trout	1	1.16	1.31	3.64
West Cornwall	2581/F-1350	Aug-04	Brown Trout	1	1.11	1.32	4.54
West Cornwall	2582/F-1351	Aug-04	Brown Trout	1	1.83	2.03	5.72
West Cornwall	2583/F-1352	Aug-04	Smallmouth Bass	1	0.759	0.839	1.90
West Cornwall	2597/F-1358	Aug-04	Brown Trout	1	1.47	1.67	4.46
West Cornwall	2598/F-1359	Aug-04	Brown Trout	1	1.59	1.87	5.21
West Cornwall	2599/F-1360	Aug-04	Smallmouth Bass	1	0.896	1.03	1.27

SUMMARY OF ACADEMY OF NATURAL SCIENCES 2004 BIENNIAL HOUSATONIC FISH PCB DATA HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

	Sample						
Location ID	Number	Month Collected	Species	Number of Individuals	Total PCBs	Arocior Total PCBs	Percent Lipids
West Cornwall	2600/F-1361	Aug-04	Brown Trout	1	1.76	1.96	5.54
West Cornwall	2601/F-1362	Aug-04	Smallmouth Bass	1	0.788	0.912	1.74
West Cornwall	2615/F-1373	Aug-04	Brown Trout	1	1.17	1.35	4.06
West Cornwall	2616/F-1374	Aug-04	Brown Trout	1	1.25	1.47	3.92
West Cornwall	3149/F-1407	Oct-04	Smallmouth Bass	1	0.719	0.836	1.84
West Cornwall	3150/F-1408	Oct-04	Smallmouth Bass	1	1.10	1.23	1.78
West Cornwall	3151/F-1409	Oct-04	Smallmouth Bass	1	1.05	1.17	2.18
West Cornwall	3152/F-1410	Oct-04	Smallmouth Bass	1	1.98	2.21	2.05
West Cornwall	3154/F-1412	Oct-04	Brown Trout	1	1.42	1.56	3.21
West Cornwall	3158/F-1416	Aug-04	Brown Trout	1	1.73	1.97	5.85
West Cornwall	3159/F-1417	Aug-04	Brown Trout	1	1.55	1.73	4.97
West Cornwall	3160/F-1418	Aug-04	Brown Trout	1	1.37	1.58	5.35
West Cornwall	3161/F-1419	Aug-04	Brown Trout	1	1.34	1.53	3.36
West Cornwall	3164/F-1422	Oct-04	Brown Trout	1	2.77	3.14	3.70
West Cornwall	3165/F-1423	Oct-04	Brown Trout	1	1.87	2.05	4.32
West Cornwall	3166/F-1424	Oct-04	Brown Trout	1	1.78	2.03	2.34
West Cornwall	3167/F-1425	Oct-04	Brown Trout	1	2.11	2.33	3.24
West Cornwall	3168/F-1426	Oct-04	Brown Trout	1	1.69	1.90	2.80
West Cornwall	3169/F-1427	Oct-04	Brown Trout	1	1.46	1.60	4.86
West Cornwall	3173/F-1428	Oct-04	Brown Trout	1	1.99	2.21	4.81
West Cornwall	3174/F-1429	Oct-04	Brown Trout	1	2.42	2.74	2.34
West Cornwall	3176/F-1430	Oct-04	Brown Trout	1	1.66	1.85	2.58
West Cornwall	3177/F-1431	Oct-04	Brown Trout	1	2.06	2.27	4.51
Burlington Hatchery	3153/F-1411	Aug-04	Brown Trout	1	0.0934	0.0983	9.54
Burlington Hatchery	3156/F-1414	Aug-04	Brown Trout	1	0.0854	0.0897	8.29

Note:

1. Samples were collected and analyzed by Academy of Natural Sciences of Philadelphia.

ITEMS 16 & 17 HOUSATONIC RIVER FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1½-MILE REACH (GECD710 AND GECD720) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Selected Remediation Contractor for remediation of the Group 3A and 3B floodplain properties (May 11, 2005).
- Conducted floodplain topsoil sampling for use as backfill.
- On May 24, 2005, GE received sampling results for the backfill materials proposed for use at the Group 3A and 3B floodplain properties. The samples were collected and analyzed by the Remediation Contractor.

b. <u>Sampling/Test Results Received</u>

See attached table.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Submit a Supplemental Information Package with more details on remediation plans for the Group 3A and 3B floodplain properties.
- Prepare and submit an Addendum to the RD/RA Work Plan for the Group 3A and 3B Floodplain Properties (due on or before June 9, 2005).
- Prepare and submit an RD/RA Work Plan for the Group 3C and 3D Floodplain Properties (due on or before June 10, 2005).
- Upon EPA approval of Pre-Design Investigation Report for Phase 4 properties, conduct additional sampling and survey activities at those properties.

e. General Progress/Unresolved Issues/Potential Schedule Impacts

GE will discuss with EPA a schedule for pre-certification inspection and submittal of a Final Completion Report for Phase 1 and Phase 2 properties and ERE for City property in Phase 2.

ITEMS 16 & 17 (cont'd) HOUSATONIC RIVER FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1½-MILE REACH (GECD710 AND GECD720) MAY 2005

f. Proposed/Approved Work Plan Modifications

Received conditional approval from EPA of the RD/RA Work Plan for the Group 3A and 3B Floodplain Properties (May 26, 2005).

TABLE 16&17-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
Floodplain Soil Sampling	FLOODPLAIN-TOPSOIL-1	5/19/05	Soil	SGS	PCB, VOC, SVOC, Metals	
Backfill Material Sampling (Common Fill)	H2-OT000056-0-5A21-1	4/21/2005	Soil	STL	PCB, VOC, SVOC, Metals	5/24/2005
Backfill Material Sampling (Common Fill)	H2-OT000056-0-5A21-2	4/21/2005	Soil	STL	PCB, VOC, SVOC, Metals	5/24/2005
Backfill Material Sampling (Common Fill)	H2-OT000056-0-5A21-3	4/21/2005	Soil	STL	PCB, VOC, SVOC, Metals	5/24/2005

TABLE 16&17-2 DATA RECEIVED DURING MAY 2005

BACKFILL MATERIAL SAMPLING (COMMON FILL) FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	H2-OT000056-0-5A21-1	H2-OT000056-0-5A21-2	H2-OT000056-0-5A21-3
Parameter	Date Collected:	04/21/05	04/21/05	04/21/05
Volatile Organics				
Acetone		0.007	0.0083	0.0089
Methylene Chloride		ND(0.0053)	0.001J	0.0013 J
PCBs				
None Detected				
Semivolatile Orga	nics			
None Detected				
Inorganics				
Arsenic		4.2	4.3	3.6
Barium		15.3	23.1	17.8
Beryllium		0.17	0.20	0.22
Cadmium		0.12	0.17	0.13
Chromium		3.9	4.1	4.4
Cobalt		6.1	7.5	8.2
Copper		10.5	9.9	11.5
Lead		4.7	4.2	4.1
Nickel		9.1	9.9	10.3
Silver		ND(0.15)	ND(0.16)	0.21
Vanadium		5.1	5.4	5.8
Zinc		35.2	39.2	39.8

Notes:

1. Samples were collected by Sevenson Environmental and submitted to Severn Trent Laboratories for analysis of volatiles, PCBs, semivolatiles, and metals.

2. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

^{3.} Only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics (PCBs, volatiles, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

ITEM 18 HOUSATONIC RIVER FLOODPLAIN CURRENT RESIDENTIAL PROPERTIES DOWNSTREAM OF CONFLUENCE (ACTUAL/POTENTIAL LAWNS) (GECD730) MAY 2005

a. Activities Undertaken/Completed

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

None

e. General Progress/Unresolved Issues/Potential Schedule Impacts

Awaiting EPA approval of GE's Pre-Design Investigation Work Plan (submitted on February 26, 2002). (Based on discussions with EPA, it appears that this pre-design sampling will be deferred for some period of time.)*

f. Proposed/Approved Work Plan Modifications

None

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

- Completed Stage 1 of the Bench-Scale Study and delivered samples for sediment and pore water analysis for PCB, TOC, EPH, and VPH concentrations (see Table 20-1).
- Performed water level monitoring at Silver Lake staff gauge and monitoring wells surrounding the lake (see Item 21.a).

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

- Submitted Second Interim Pre-Design Investigation Report for Silver Lake Soils (May 17, 2005).
- Submitted a response to EPA comments on the Supplemental Pre-Design Investigation Report for Silver Lake Sediments (May 24, 2005).

d. <u>Upcoming Scheduled Activities (next six weeks)</u>

- Continue water-level monitoring at well pairs surrounding the lake.
- Continue Bench-Scale Study for sediments in accordance with Bench-Scale Study Work Plan, as conditionally approved by EPA on February 25, 2005.
- Send ERE requests to owners of certain commercial properties adjacent to Silver Lake.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

Discussions underway with EPA regarding requests for EREs at above properties.

f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval of the Supplemental Pre-Design Investigation Report for Sediments (May 19, 2005).

TABLE 20-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	Received
Silver Lake Bench Scale Study	CAP MATERIAL 7	4/14/05	NA	Water	NEA	TOC	5/4/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	FD-1-050505 (SL-BS-SE-B3-CAP)	5/5/05	0-2	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	FD-1-050505 (SL-BS-SE-B3-CAP)	5/5/05	0-2	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	FD-2-050505 (SL-BS-SE-E3-CAP)	5/5/05	0-2	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	FD-2-050505 (SL-BS-SE-E3-CAP)	5/5/05	0-2	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-A3-CAP	5/5/05	0-2	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-A3-CAP	5/5/05	2-4	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-A3-CAP	5/5/05	4-6	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-A3-CAP	5/5/05	6-9.75	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-A3-CAP	5/5/05	0-2	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-A3-CAP	5/5/05	2-4	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-A3-CAP	5/5/05	4-6	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-A3-CAP	5/5/05	6-9.75	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-A3-SED	5/5/05	0-6	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-A3-SED	5/5/05	0-6	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-B3-CAP	5/5/05	0-2	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-B3-CAP	5/5/05	2-4	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-B3-CAP	5/5/05	4-6	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-B3-CAP	5/5/05	6-10.25	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-B3-CAP	5/5/05	0-2	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-B3-CAP	5/5/05	2-4	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-B3-CAP	5/5/05	4-6	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-B3-CAP	5/5/05	6-10.25	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-B3-SED	5/5/05	0-6	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-B3-SED	5/5/05	0-6	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-C8-CAP	5/5/05	0-2	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-C8-CAP	5/5/05	2-4	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-C8-CAP	5/5/05	4-6	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-C8-CAP	5/5/05	6-10.5	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-C8-CAP	5/5/05	0-2	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-C8-CAP	5/5/05	2-4	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-C8-CAP	5/5/05	4-6	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-C8-CAP	5/5/05	6-10.5	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-C8-SED	5/5/05	0-6	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-C8-SED	5/5/05	0-6	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-D3-CAP	5/5/05	0-2	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-D3-CAP	5/5/05	2-4	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-D3-CAP	5/5/05	4-6	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-D3-CAP	5/5/05	6-10	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-D3-CAP	5/5/05	0-2	Sediment	SGS	VPH, EPH	5/27/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\05-05 CD Monthly\Tracking Logs\Tracking.xls

TABLE 20-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample	Depth				Date
Project Name	Field Sample ID	Date	(feet)	Matrix	Laboratory	Analyses	Received
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-D3-CAP	5/5/05	2-4	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-D3-CAP	5/5/05	4-6	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-D3-CAP	5/5/05	6-10	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-D3-SED	5/5/05	0-6	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-D3-SED	5/5/05	0-6	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-E3-CAP	5/5/05	0-2	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-E3-CAP	5/5/05	2-4	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-E3-CAP	5/5/05	4-6	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-E3-CAP	5/5/05	6-10.75	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-E3-CAP	5/5/05	0-2	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-E3-CAP	5/5/05	2-4	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-E3-CAP	5/5/05	4-6	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-E3-CAP	5/5/05	6-10.75	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-E3-SED	5/5/05	0-6	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-E3-SED	5/5/05	0-6	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-F3-CAP	5/5/05	0-2	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-F3-CAP	5/5/05	2-4	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-F3-CAP	5/5/05	4-6	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-F3-CAP	5/5/05	6-10.75	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-F3-CAP	5/5/05	0-2	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-F3-CAP	5/5/05	2-4	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-F3-CAP	5/5/05	4-6	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-F3-CAP	5/5/05	6-10.75	Sediment	SGS	VPH, EPH	5/27/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-F3-SED	5/5/05	0-6	Sediment	NEA	PCB, TOC	5/25/05
Silver Lake Bench Scale Study - Stage 1 Post Consolidation	SL-BS-SE-F3-SED	5/5/05	0-6	Sediment	SGS	VPH, EPH	5/27/05

Note:

-

-

1. Field duplicate sample locations are presented in parenthesis.

SILVER LAKE BENCH SCALE STUDY SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

	Sample ID:	CAP MATERIAL 7
Parameter	Date Collected:	04/14/05
Total Organic Car	bon	
TOC - Replicate 1		44000
TOC - Replicate 2		51000
TOC - Replicate 3		46000
TOC - Average		47000
TOC - % RSD		8.0

Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to Northeast Analytical, Inc. for analysis of total organic carbon (TOC).
- 2. % RSD Percent relative standard deviation.

Sample ID:	SL-BS-SE-A3-CAP	SL-BS-SE-A3-CAP	SL-BS-SE-A3-CAP	SL-BS-SE-A3-CAP	SL-BS-SE-A3-SED	SL-BS-SE-B3-CAP
Sample Depth (Inches):	0-2	2-4	4-6	6-9.75	0-6	0-2
Parameter Date Collected:	05/05/05	05/05/05	05/05/05	05/05/05	05/05/05	05/05/05
PCBs						
Aroclor-1221	ND(0.060)	ND(0.061)	ND(0.059)	ND(0.060)	ND(5.0)	ND(0.061) [ND(0.060)]
Aroclor-1248	ND(0.060)	ND(0.061)	ND(0.059)	ND(0.060)	85 PE	0.38 PE [0.38 PE]
Aroclor-1254	ND(0.060)	ND(0.061)	ND(0.059)	ND(0.060)	86 AF	0.11 AF [0.12 AF]
Aroclor-1260	ND(0.060)	ND(0.061)	ND(0.059)	ND(0.060)	110 AG	ND(0.061) [0.063 AG]
Total PCBs	ND(0.060)	ND(0.061)	ND(0.059)	ND(0.060)	281	0.49 [0.563]
Extractable Petroleum Hydrocarbons						
C11-C22 Aromatic Hydrocarbons	ND(200)	ND(200)	ND(200)	ND(200)	ND(200)	ND(200) [ND(200)]
C19-C36 Aliphatic Hydrocarbons	ND(500)	ND(500)	ND(500)	ND(500)	1900	ND(500) [ND(500)]
C9-C18 Aliphatic Hydrocarbons	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)	ND(500) [ND(500)]
Volatile Petroleum Hydrocarbons						
C5-C8 Aliphatic Hydrocarbons	ND(100)	ND(100)	ND(100)	ND(100)	41	ND(100) [ND(100)]
C9-C10 Aromatic Hydrocarbons	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	ND(100) [ND(100)]
C9-C12 Aliphatic Hydrocarbons	ND(100)	ND(100)	ND(100)	ND(100)	190	ND(100) [ND(100)]
Total Petroleum Hydrocarbons	ND(500)	ND(500)	ND(500)	ND(500)	2600	ND(500) [ND(500)]
Inorganics						
TOC - Replicate 1	8100	11000	10000	9700	120000	8800 [11000]
TOC - Replicate 2	9800	12000	12000	12000	140000	13000 [7800]
TOC - Replicate 3	8100	8000	9900	12000	150000	41000 [9200]
TOC - Replicate 4	NA	NA	NA	NA	NA	7000 [NA]
TOC - Average	8700	10000	11000	11000	140000	17000 [9400]
TOC - % RSD	11	21	8.1	13	10	92 [19]

Sample ID	SL-BS-SE-B3-CAP	SL-BS-SE-B3-CAP	SL-BS-SE-B3-CAP	SL-BS-SE-B3-SED	SL-BS-SE-C8-CAP	SL-BS-SE-C8-CAP
Sample Depth (Inches):	2-4	4-6	6-10.25	0-6	0-2	2-4
Parameter Date Collected	: 05/05/05	05/05/05	05/05/05	05/05/05	05/05/05	05/05/05
PCBs						
Aroclor-1221	ND(0.064)	ND(0.065)	ND(0.060)	ND(5.6)	ND(0.059)	ND(0.060)
Aroclor-1248	0.23 PE	0.39 PE	0.75 PE	110 PE	0.13 PE	ND(0.060)
Aroclor-1254	ND(0.064)	0.090 AF	0.17 AF	120 AF	ND(0.059)	ND(0.060)
Aroclor-1260	ND(0.064)	ND(0.065)	0.066 AG	110 AG	ND(0.059)	ND(0.060)
Total PCBs	0.23	0.48	0.986	340	0.13	ND(0.060)
Extractable Petroleum Hydrocarbons						
C11-C22 Aromatic Hydrocarbons	ND(200)	ND(200)	ND(200)	ND(200)	ND(200)	ND(200)
C19-C36 Aliphatic Hydrocarbons	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)
C9-C18 Aliphatic Hydrocarbons	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)
Volatile Petroleum Hydrocarbons						
C5-C8 Aliphatic Hydrocarbons	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)
C9-C10 Aromatic Hydrocarbons	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)
C9-C12 Aliphatic Hydrocarbons	ND(100)	ND(100)	ND(100)	300	ND(100)	ND(100)
Total Petroleum Hydrocarbons	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)
Inorganics						
TOC - Replicate 1	7500	8100	11000	110000	7600	18000
TOC - Replicate 2	6400	9700	12000	110000	11000	18000
TOC - Replicate 3	20000	12000	15000	110000	7600	7900
TOC - Replicate 4	14000	NA	NA	NA	NA	23000
TOC - Average	12000	10000	13000	110000	8800	17000
TOC - % RSD	54	22	19	2.4	23	38

Sample II	D: SL-BS-SE-C8-CAP	SL-BS-SE-C8-CAP	SL-BS-SE-C8-SED	SL-BS-SE-D3-CAP	SL-BS-SE-D3-CAP	SL-BS-SE-D3-CAP
Sample Depth (Inches): 4-6	6-10.5	0-6	0-2	2-4	4-6
Parameter Date Collected	1: 05/05/05	05/05/05	05/05/05	05/05/05	05/05/05	05/05/05
PCBs						
Aroclor-1221	ND(0.058)	ND(0.058)	ND(4.6)	ND(0.061)	ND(0.061)	ND(0.062)
Aroclor-1248	ND(0.058)	ND(0.058)	85 PE	ND(0.061)	ND(0.061)	ND(0.062)
Aroclor-1254	ND(0.058)	ND(0.058)	62 AF	ND(0.061)	ND(0.061)	ND(0.062)
Aroclor-1260	ND(0.058)	ND(0.058)	40 AG	ND(0.061)	ND(0.061)	ND(0.062)
Total PCBs	ND(0.058)	ND(0.058)	187	ND(0.061)	ND(0.061)	ND(0.062)
Extractable Petroleum Hydrocarbons						
C11-C22 Aromatic Hydrocarbons	ND(200)	ND(200)	ND(200)	ND(200)	ND(200)	ND(200)
C19-C36 Aliphatic Hydrocarbons	ND(500)	ND(500)	ND(620)	ND(500)	ND(500)	ND(500)
C9-C18 Aliphatic Hydrocarbons	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)
Volatile Petroleum Hydrocarbons						
C5-C8 Aliphatic Hydrocarbons	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)
C9-C10 Aromatic Hydrocarbons	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)
C9-C12 Aliphatic Hydrocarbons	ND(100)	ND(100)	100	ND(100)	ND(100)	ND(100)
Total Petroleum Hydrocarbons	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)
Inorganics						
TOC - Replicate 1	18000	8900	95000	9000	7500	8800
TOC - Replicate 2	17000	8100	95000	12000	4800	12000
TOC - Replicate 3	7800	11000	96000	8700	14000	8700
TOC - Replicate 4	23000	NA	NA	NA	7300	NA
TOC - Average	16000	9200	95000	9900	8500	9800
TOC - % RSD	38	14	0.66	19	48	19

Sample ID:	SL-BS-SE-D3-CAP	SL-BS-SE-D3-SED	SL-BS-SE-E3-CAP	SL-BS-SE-E3-CAP	SL-BS-SE-E3-CAP	SL-BS-SE-E3-CAP
Sample Depth (Inches):	6-10	0-6	0-2	2-4	4-6	6-10.75
Parameter Date Collected	05/05/05	05/05/05	05/05/05	05/05/05	05/05/05	05/05/05
PCBs						
Aroclor-1221	ND(0.062)	ND(7.3)	ND(0.058) [ND(0.060)]	ND(0.058)	ND(0.060)	ND(0.060)
Aroclor-1248	ND(0.062)	100 PE	ND(0.058) [ND(0.060)]	ND(0.058)	ND(0.060)	ND(0.060)
Aroclor-1254	ND(0.062)	150 AF	ND(0.058) [ND(0.060)]	ND(0.058)	ND(0.060)	ND(0.060)
Aroclor-1260	ND(0.062)	100 AG	ND(0.058) [ND(0.060)]	ND(0.058)	ND(0.060)	ND(0.060)
Total PCBs	ND(0.062)	350	ND(0.058) [ND(0.060)]	ND(0.058)	ND(0.060)	ND(0.060)
Extractable Petroleum Hydrocarbons						
C11-C22 Aromatic Hydrocarbons	ND(200)	ND(200)	ND(200) [ND(200)]	ND(200)	ND(200)	ND(200)
C19-C36 Aliphatic Hydrocarbons	ND(500)	1900	ND(500) [ND(500)]	ND(500)	ND(500)	ND(500)
C9-C18 Aliphatic Hydrocarbons	ND(500)	ND(500)	ND(500) [ND(500)]	ND(500)	ND(500)	ND(500)
Volatile Petroleum Hydrocarbons						
C5-C8 Aliphatic Hydrocarbons	ND(100)	ND(100)	ND(100) [ND(100)]	ND(100)	ND(100)	ND(100)
C9-C10 Aromatic Hydrocarbons	ND(100)	ND(100)	ND(100) [ND(100)]	ND(100)	ND(100)	ND(100)
C9-C12 Aliphatic Hydrocarbons	ND(100)	310	ND(100) [ND(100)]	ND(100)	ND(100)	ND(100)
Total Petroleum Hydrocarbons	ND(500)	2500	ND(500) [ND(500)]	ND(500)	ND(500)	ND(500)
Inorganics						
TOC - Replicate 1	12000	130000	8200 [12000]	8100	16000	8600
TOC - Replicate 2	8700	120000	15000 [8500]	6800	12000	8900
TOC - Replicate 3	9300	130000	19000 [8500]	10000	9800	12000
TOC - Replicate 4	NA	NA	9800	NA	NA	NA
TOC - Average	9900	130000	13000 [9600]	8300	13000	10000
TOC - % RSD	16	3.6	38 [20]	19	24	21

SILVER LAKE BENCH SCALE STUDY SILVER LAKE AREA GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

	Sample ID:	SL-BS-SE-E3-SED	SL-BS-SE-F3-CAP	SL-BS-SE-F3-CAP	SL-BS-SE-F3-CAP	SL-BS-SE-F3-CAP	SL-BS-SE-F3-SED
	Sample Depth (Inches):	0-6	0-2	2-4	4-6	6-10.75	0-6
Parameter	Date Collected:	05/05/05	05/05/05	05/05/05	05/05/05	05/05/05	05/05/05
PCBs							
Aroclor-1221		ND(0.78)	ND(0.062)	0.20 PB	ND(0.060)	ND(0.063)	82 PB
Aroclor-1248		9.9 PE	0.18 PE	0.36 PE	ND(0.060)	ND(0.063)	120 PE
Aroclor-1254		16 AF	0.15 AF	0.29 AF	ND(0.060)	ND(0.063)	100 AF
Aroclor-1260		9.7 AG	ND(0.062)	0.076 AG	ND(0.060)	ND(0.063)	13 AG
Total PCBs		35.6	0.33	0.926	ND(0.060)	ND(0.063)	315
Extractable Petro	pleum Hydrocarbons						
C11-C22 Aromatic	c Hydrocarbons	ND(200)	ND(200)	ND(200)	ND(200)	ND(200)	ND(200)
C19-C36 Aliphatic	Hydrocarbons	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)
C9-C18 Aliphatic H	Hydrocarbons	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)
Volatile Petroleu	m Hydrocarbons						
C5-C8 Aliphatic H	ydrocarbons	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)
C9-C10 Aromatic	Hydrocarbons	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)
C9-C12 Aliphatic H	Hydrocarbons	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)	ND(100)
Total Petroleum H	ydrocarbons	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)	ND(500)
Inorganics							
TOC - Replicate 1		84000	19000	8800	9800	15000	53000
TOC - Replicate 2		82000	13000	16000	25000	7400	55000
TOC - Replicate 3		83000	20000	13000	12000	8600	58000
TOC - Replicate 4		NA	NA	15000	9700	14000	NA
TOC - Average		83000	17000	13000	14000	11000	55000
TOC - % RSD		1.1	22	23	50	34	4.6

Notes:

1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to Northeast Analytical, Inc. for analysis of PCBs, total organic carbon (TOC), and EPH/VPH.

2. % RSD - Percent relative standard deviation.

3. NA - Not Analyzed - TOC Replicate 4 is only analyzed and reported by laboratory when the % RSD of Replicate 1 thru Replicate 3 is greater than 25%.

4. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

5. Field duplicate sample results are presented in brackets.

6. With the exception of EPH/VPH and TOC only those constituents detected in one or more samples are summarized.

Data Qualifiers:

AF - Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

AG - Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.

PB - Aroclor 1221 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1221 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

PE - Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported to more accurately quantify PCBs present in a sample that has undergone environmental alteration.

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\05-05 CD Monthly\Analytical Data Tables\Tables.xls

ITEM 21 GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

General

- Conducted routine groundwater elevation and NAPL monitoring.

East Street Area 1-North and South:

- Continued automated groundwater and NAPL pumping at North Side and South Side Caissons. Approximately 20 gallons of LNAPL were recovered from the North Side Caisson, while recoverable quantities of LNAPL were not encountered in the South Side Caisson in May.
- Collected approximately 0.006 liter (0.002 gallon) of LNAPL from wells in this area in May.

East Street Area 2-South:

- Continued automated groundwater and LNAPL removal activities. A total of approximately 4,839,577 gallons of groundwater was recovered from pumping systems 64R, 64S, 64V, 64X, RW-1(S), RW-1(X), and RW-2(X). In addition, approximately 1,104 gallons of LNAPL were removed from pumping systems 64R, 64V, RW-1(S), RW-1(X), 64X, and 64S Caisson.
- Continued automated DNAPL removal activities. Removed approximately 51 gallons of DNAPL from pumping system RW-3(X).
- Continued routine well monitoring and manual NAPL removal activities. Approximately 10.25 liters (2.7 gallons) of LNAPL were removed from wells in this area during May.
- Approximately 2.35 liters (0.62 gallon) of DNAPL was removed from wells E2SC-03I and E2SC-17 utilizing the dedicated weighted bailer installed during the prior monitoring round at this location. New bailers were installed in wells E2SC-03I and E2SC-17 to be checked during the upcoming month.
- Treated/discharged 5,251,401 gallons of water through 64G Groundwater Treatment Facility.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) MAY 2005

a. <u>Activities Undertaken/Completed</u> (cont'd)

East Street Area 2-South: (cont'd)

- Conducted LNAPL sampling and analysis activities at monitoring wells GMA1-15 and GMA1-16.
- Initiated LNAPL recovery testing at wells GMA1-15, GMA1-17W, and GMA1-19.

East Street Area 2-North:

- Continued routine well monitoring and NAPL removal activities. Recoverable quantities of NAPL were not encountered in this area during May.

20s, 30s, and 40s Complexes:

- Continued routine well monitoring and manual NAPL removal activities. Recoverable quantities of NAPL were not encountered in this area during May.

Lyman Street Area:

- Continued automated groundwater and NAPL removal activities. Approximately 5 gallons of LNAPL were removed from System RW-3.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 1.1 liters (0.29 gallon) of DNAPL were removed from wells in this area.

Newell Street Area II:

- Continued automated DNAPL recovery, with the collection of approximately 155 gallons of DNAPL from the automated collection systems.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 53.44 liters (14.1 gallons) of DNAPL were removed from wells in this area during May.
- Completed DNAPL recovery testing at wells associated with the automated collection systems.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) MAY 2005

Newell Street Area II: (cont'd)

- Reinstalled DNAPL recovery pumps and re-activated the automated collection systems on May 9, 2005.
- Decommissioned 18 monitoring wells in preparation for the placement of an engineered barrier at this RAA.

Silver Lake Area:

- Continued routine monitoring of monitoring well pairs around lake and staff gauge in lake.

b. <u>Sampling/Test Results Received</u>

See attached tables.

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Continue routine monitoring activities.
- Complete LNAPL recovery testing at selected wells in East Street Area 2-South.
- Submit proposal to install additional LNAPL monitoring wells in East Street Area 2-South.
- Submit proposal to upgrade DNAPL recovery systems at Newell Street Area II.
- Evaluate NAPL thickness and groundwater elevation data and work on preparation of spring 2005 NAPL monitoring report.
- Decommission well LSSC-05 and convert above-grade wells LSSC-34S and LSSC-34I to flush-mount wells.

ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) MAY 2005

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. <u>Proposed/Approved Work Plan Modifications</u>

- Received EPA conditional approval of GE's Newell Street Area II Groundwater and DNAPL Proposal (May 2, 2005).
- Received EPA approval of GE's January 2005 GMA 1 Groundwater Quality Interim Report for Fall 2005 (May 31, 2005).

AUTOMATED LNAPL & GROUNDWATER RECOVERY SYSTEMS MONTHLY SUMMARY EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

		Vol. LNAPL Collected	Vol. Water Recovered	Percent
Caisson	Month	(gallon)	(gallon)	Downtime
North Side	May 2004	0.0	22,300	
	June 2004	4.3	28,500	
	July 2004	4.4	16,700	
	August 2004	2.0	16,300	
	September 2004	4.0	24,300	
	October 2004	0.0	25,000	0.30
	November 2004	0.0	18,300	0.31 - Power Outage
	December 2004	35.0	32,200	
	January 2005	2.0	32,600	
	February 2005	3.0	24,700	
	March 2005	1.0	34,700	
	April 2005	0.0	37,100	1.72 - Power Outage
	May 2005	20.0	16,300	
South Side	May 2004	0.0	71,500	
	June 2004	0.0	75,300	
	July 2004	4.4	67,100	
	August 2004	0.0	67,300	
	September 2004	0.0	102,700	
	October 2004	2.0	82,700	0.30
	November 2004	2.0	69,600	0.31 - Power Outage
	December 2005	4.0	98,300	
	January 2005	1.0	77,400	
	February 2005	1.0	76,500	
	March 2005	1.0	98,200	
	April 2005	0.0	99,900	1.72 - Power Outage
	May 2005	0.0	86,600	

MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

		Depth	Depth to	LNAPL	LNAPL	May 2005
Well	Date	to Water	LNAPL	Thickness	Removed	Removal
Name		(ft BMP)	(ft BMP)	(feet)	(liters)	(liters)
34	5/26/2005	5.92	5.91	0.01	0.006	0.006

Total Manual LNAPL Removal for May 2005: 0.006 liters 0.002 gallons

Note:

1. ft BMP - feet Below Measuring Point.

ROUTINE WELL MONITORING EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

May 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
GMA 1 - East S	Street Area 1	- North							
North Caisson	997.84	5/4/2005	18.27	18.25	0.02		19.80	0.00	979.59
North Caisson	997.84	5/12/2005	18.33	18.30	0.03		19.80	0.00	979.54
North Caisson	997.84	5/17/2005	18.15	18.14	0.01		19.80	0.00	979.70
North Caisson	997.84	5/25/2005	17.73	17.71	0.02		19.80	0.00	980.13
GMA 1 - East S	Street Area 1	- South							
31R	1,000.23	5/26/2005	9.31		0.00		15.05	0.00	990.92
33	999.50	5/26/2005	Car Parke	d on Well;	Could Not	Gauge		0.00	NA
34	999.90	5/26/2005	5.92	5.91	0.01		21.01	0.00	993.99
37R	988.79	5/26/2005	7.22		0.00		17.65	0.00	981.57
72	1000.62	5/26/2005	6.72		0.00		21.98	0.00	993.90
72R	1000.92	5/26/2005	6.68		0.00		13.30	0.00	994.24
80	989.98	5/26/2005	6.38		0.00		24.72	0.00	983.60
89	993.89	5/26/2005	3.65		0.00		9.00	0.00	990.24
90	987.65	5/26/2005	5.92		0.00		12.11	0.00	981.73
139R	NA	5/26/2005	11.23		0.00		14.18	0.00	NA
ES1-13	999.93	5/26/2005	6.50		0.00		12.51	0.00	993.43
ES1-23R	989.94	5/26/2005	3.95		0.00		16.09	0.00	985.99
ES1-24	990.61	5/26/2005	5.02		0.00		12.40	0.00	985.59
GMA1-7	985.81	5/26/2005	11.98		0.00		14.88	0.00	973.83
GMA1-18	998.29	5/26/2005	7.68		0.00		13.58	0.00	990.61
South Caisson	1001.11	5/4/2005	13.25	13.19	0.06		15.00	0.00	987.92
South Caisson	1001.11	5/12/2005	13.40	13.34	0.06		15.00	0.00	987.77
South Caisson	1001.11	5/17/2005	11.55	11.54	0.01		15.00	0.00	989.57
South Caisson	1001.11	5/25/2005	14.05	14.03	0.02		15.00	0.00	987.08

Notes:

1. ft BMP - feet Below Measuring Point.

2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.

3. NA indicates information not available.

TABLE 21-4 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

May 2005

Recovery		Oil Collected	Water Recovered	Percent
System Location	Month	(gallon)	(gallon)	Downtime
40R	May 2004	0		
	June 2004	0		
	July 2004	0		
	August 2004	0		
	September 2004	0		
	October 2004	0		0.30 - Power Outage
	November 2004	0		0.31 - Power Outage
	December 2004	0		
	January 2005	0		
	February 2005	0		
	March 2005	0		
	April 2005	0		1.72 - Power Outage
	May 2005	0		0.96 - Maintenance
64R	May 2004	125	629,500	
	June 2004	736	923,500	
	July 2004	380	693,900	
	August 2004	250	330,800	
	September 2004	350	675,600	
	October 2004	175	472,200	0.30 - Power Outage
	November 2004	150	566,100	0.31 - Power Outage
	December 2004	350	630,500	
	January 2005	575	357,900	
	February 2005	400	228,400	
	March 2005	175	292,400	
	April 2005	575	1,071,000	1.72 - Power Outage
	May 2005	550	931,300	0.96 - Maintenance
64S System	May 2004	1,045	1,062,518	
	June 2004	772	968,659	
	July 2004	154	349,705	
	August 2004	230	240,781	
	September 2004	479	681,275	
	October 2004	324	1,034,272	0.30 - Power Outage
	November 2004	625	902,053	0.31 - Power Outage
	December 2004	91	1,147,526	
	January 2005	/5	844,225	
	February 2005	97	821,010	
	Iviarch 2005	282	905,525	
	April 2005	499	1,039,179	1.72 - Power Outage
1	May 2005	300	660,761	0.96 - Maintenance
64V '	May 2004	933	1,313,100	
	June 2004	879	1,444,400	
	July 2004	773	940,100	
	August 2004	772	875,900	
	September 2004	1,170	1,385,900	
	October 2004	920	1,221,100	0.30 - Power Outage
	November 2004	551	1,108,200	0.31 - Power Outage
	December 2004	832	1,460,100	
	January 2005	747	1,103,300	
	February 2005	622	1,095,400	
	March 2005	675	1,342,900	
	April 2005	785	1,221,000	1.72 - Power Outage
	May 2005	254	996,400	0.96 - Maintenance

TABLE 21-4 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH **GROUNDWATER MANAGEMENT AREA 1**

CONSENT DECREE MONTHLY STATUS REPORT **GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS**

May 2005

Recovery		Oil Collected	Water Recovered	Percent
System Location	Month	(gallon)	(gallon)	Downtime
64X	May 2004	10	403,200	
	June 2004	5	518,400	
	July 2004	10	403,200	
	August 2004	31	388,800	
	September 2004	51	518,400	
	October 2004	5	403,200	0.30 - Power Outage
	November 2004	10	388,800	0.31 - Power Outage
	December 2004	10	518,400	
	January 2005	5	388,800	
	February 2005	5	403,200	
	March 2005	5	532,800	
	April 2005	0	417,600	1.72 - Power Outage
	May 2005	0	374,400	0.96 - Maintenance
RW-2(X)	May 2004	0	427,200	
	June 2004	0	458,500	
	July 2004	0	1,029,700	
	August 2004	0	1,020,000	
	September 2004	0	1,138,800	0.93
	October 2004	0	911,800	0.30 - Power Outage
	November 2004	0	836,300	0.31 - Power Outage
	December 2004	0	1,111,700	
	January 2005	0	822,500	
	February 2005	0	825,200	
	March 2005	0	1,019,600	
	April 2005	0	859,500	1.72 - Power Outage
	May 2005	0	730,600	0.96 - Maintenance
RW-1(S) ²	May 2004	36	1,056,169	
	June 2004	419	1,108,600	
	July 2004	196	669,474	
	August 2004	158	709,815	
	September 2004	159	914,647	9.72
	October 2004	1	1,092,740	0.30 - Power Outage
	November 2004	0	9/7,2/1	0.31 - Power Outage
	December 2004	11	1,362,634	0.35 - Maintenance
	January 2005	50	998,655	
	February 2005	41	934,203	
	March 2005	43	1,117,949	
	April 2005	1	864,198	22.41 - Maint. & Power Outage
	May 2005	0	912,416	0.96 - Maintenance
RVV-1(X)	May 2004	0	397,200	
	June 2004	5	453,900	
	July 2004	0	303,900	
	August 2004	10	473,200	
	October 2004	10	500,500	0.20 Dower Outors
	November 2004	0	301,400	0.30 - Fower Outage
	December 2004	0	402,900	4.17 Maintonanas
	January 2005	0	443,700	
	February 2005	0	309,000	
	March 2005	0	200,400	
	Δpril 2005	0	399,300	1 72 - Power Outogo
	May 2005	0	233.700	0.96 - Maintenance

TABLE 21-4 AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS May 2005

Oil Collected Water Recovered Percent Recovery System Location Month (gallon) (gallon) Downtime RW-3(X) May 2004 55 June 2004 169 July 2004 57 August 2004 47 September 2004 67 October 2004 0.30 - Power Outage 52 November 2004 46 0.31 - Power Outage December 2004 66 January 2005 53 February 2005 37 March 2005 64 April 2005 53 1.72 - Power Outage 51 0.96 - Maintenance May 2005

Summary of T	otal Automated Removal	
Water:	4,839,577 Gallons	
LNAPL:	1,104 Gallons	
DNAPL:	51 Gallons	

Notes:

1. The flow meter at recovery well 64V was reset in December 2004.

2. The flow meter at recovery well RW-1(S) was reset in February 2005.

WELL MONITORING AND RECOVERY OF LNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

			Way 2005			
Well Name	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	LNAPL Removed (liters)	May 200 Remova (liters)
13	5/20/2005	17.20	16.90	0.30	0.185	0.185
14	5/20/2005	17.16	17.12	0.04	0.025	0.025
26RR	5/20/2005	21.43	20.45	0.98	0.605	0.605
55	5/20/2005	16.90	16.15	0.75	0.463	0.463
GMA1-15	5/20/2005	15.45	14.61	0.84	0.518	1.476
	5/31/2005	15.14	14.55	0.59	0.958	
GMA1-16	5/20/2005	13.10	12.60	0.50	0.308	0.308
GMA1-17W	5/20/2005	16.04	14.50	1.54	0.950	3.316
	5/31/2005	16.21	14.76	1.45	2.366	
GMA1-19	5/6/2005	10.95	9.89	1.06	0.654	3.869
	5/13/2005	11.40	10.13	1.27	0.784	
	5/20/2005	11.82	10.38	1.44	0.888	
	5/27/2005	11.33	10.19	1.14	0.703	
	5/31/2005	10.80	10.09	0.71	0.840	

Total LNAPL Removal East Street Area 2 - South for May 2005: 10.247 liters 2.704 gallons

Total LNAPL Removal East Street Area 2 - North for May 2005: 0.000 liters 0.000 gallons

Total LNAPL Removal 20's, 30's & 40's Complexs for May 2005: 0.000 liters 0.000 gallons

Total LNAPL Removal for May 2005: 10.247 liters 2.704 gallons

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. LNAPL recovery testing was performed on 5/31/2005 at wells GMA1-15, GMA1-17W, and GMA1-19.

LNAPL thickness data represents the initial measurements at these wells on that date. LNAPL removal data represents the total volume recovered from these wells on that date.

TABLE 21-6 WELL MONITORING AND RECOVERY OF DNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

Well Name	Date	Depth to Water (ft BMP)	Depth to DNAPL (ft BMP)	DNAPL Thickness (feet)	DNAPL Removed (liters)	May 2005 Removal (liters)
E2SC-03I	5/27/2005	8.78	38.18	10.27	1.851	1.851
E2SC-03I	5/27/2005	NM	NM	3.00 (2)	0.463	0.463
E2SC-17	5/27/2005	NM	NM	0.25 ⁽²⁾	0.039	0.039

Total DNAPL Removal East Street Area 2 - South for May 2005: 2.353 liters 0.621 gallons

Total DNAPL Removal East Street Area 2 - North for May 2005: 0.000 liters 0.000 gallons

Total DNAPL Removal 20's, 30's & 40's Complexs for May 2005: 0.000 liters 0.000 gallons

> Total DNAPL Removal for May 2005: 2.353 liters 0.621 gallons

Notes:

1. ft BMP - feet Below Measuring Point.

2. DNAPL thickness as measured in the weighted bailer upon retrieval from the well.

TABLE 21-764G TREATMENT PLANT DISCHARGE DATAGROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

Date	Housatonic River Discharge (gallons)	Recharge Pond Discharge (gallons)	Total Discharge (gallons)
May 2004	5,678,620	236,862	5,915,482
June 2004	4,709,390	350,668	5,060,058
July 2004	4,585,370	316,805	4,902,175
August 2004	4,844,107	310,199	5,154,306
September 2004	5,075,190	248,505	5,323,695
October 2004	6,097,384	260,847	6,358,231
November 2004	5,521,300	180,462	5,701,762
December 2004	5,656,177	152,428	5,808,605
January 2005	5,650,380	112,791	5,763,171
February 2005	4,576,005	195,380	4,771,385
March 2005	5,005,313	235,153	5,240,466
April 2005	5,759,380	172,867	5,932,247
May 2005	4,962,650	288,751	5,251,401

After treatment, the majority of the water processed at GE's Building 64G groundwater treatment facility is discharged to the Housatonic River through NPDES permitted Outfall 005. However, as part of GE's overall efforts to contain NAPL within the site and to optimize NAPL recovery operations, a portion of the treated water discharged from the 64G facility is routed to GE's on-site recharge pond located in East Street Area 2-South.

TABLE 21-8 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

May 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
30's Complex	(. <u></u>		<u> </u>		<u> </u>	<u> </u>		
95-15	986.38	5/23/2005	8.15		0.00		16.65	0.00	978.23
GMA1-10	984.86	5/23/2005	7.45		0.00		19.73	0.00	977.41
GMA1-12	992.26	5/23/2005	16.25		0.00		22.14	0.00	976.01
RF-02	982.43	5/23/2005	5.60		0.00		18.30	0.00	976.83
RF-03	985.40	5/23/2005	9.42		0.00		18.45	0.00	975.98
RF-03D	985.31	5/23/2005	7.50		0.00		36.00	0.00	977.81
RF-16	987.91	5/23/2005	9.38		0.00		20.71	0.00	978.53
40s Complex									
95-17	1,007.67	5/25/2005	24.30		0.00		28.42	0.00	983.37
RF-4	1,011.99	5/25/2005	15.20		0.00		24.00	0.00	996.79
East Street A	rea 2 - South								
13	990.88	5/20/2005	17.20	16.90	0.30		22.57	0.00	973.96
14	991.61	5/20/2005	17.16	17.12	0.04		25.70	0.00	974.49
19	983.59	5/6/2005	9.70		0.00		19.89	0.00	973.89
19	983.59	5/13/2005	10.05		0.00		19.91	0.00	973.54
19	983.59	5/20/2005	10.47		0.00		19.91	0.00	973.12
19	983.59	5/27/2005	10.10		0.00		19.85	0.00	973.49
26RR	1,000.58	5/20/2005	21.43	20.45	0.98		28.55	0.00	980.06
40R	991.60	5/4/2005	16.37		0.00		25.00	0.00	975.23
40R	991.60	5/12/2005	16.65		0.00		25.00	0.00	974.95
40R	991.60	5/17/2005	15.10		0.00		25.00	0.00	976.50
40R	991.60	5/25/2005	17.05		0.00		25.00	0.00	974.55
49R	988.71	5/20/2005	15.05		0.00		24.89	0.00	973.66
49RR	989.80	5/20/2005	16.05		0.00		23.05	0.00	973.75
55	989.45	5/20/2005	16.90	16.15	0.75		30.03	0.00	973.25
64R	993.37	5/4/2005	17.14	17.13	0.01		19.00	0.00	976.24
64R	993.37	5/12/2005	16.90	16.85	0.05		19.00	0.00	976.52
64R	993.37	5/17/2005	17.45	17.44	0.01		19.00	0.00	975.93
64R	993.37	5/25/2005	16.86	16.83	0.03		19.00	0.00	976.54
64S	984.48	5/4/2005	17.39		0.00		28.70	0.00	967.09
64S	984.48	5/12/2005	17.00		0.00		28.70	0.00	967.48
64S	984.48	5/17/2005	16.84		0.00		28.70	0.00	967.64
64S	984.48	5/25/2005	17.03		0.00		28.70	0.00	967.45
64S-Caisson	NA	5/4/2005	10.12	9.82	0.30		14.55	0.00	NA
64S-Caisson	NA	5/12/2005	10.00	9.90	0.10		14.55	0.00	NA
64S-Caisson	NA	5/17/2005	9.95	9.70	0.25		14.55	0.00	NA
64S-Caisson	NA	5/25/2005	9.78	9.73	0.05		14.55	0.00	NA
64V	987.29	5/4/2005	21.70	21.30	0.40	Р	29.60	< 0.01	965.96
64V	987.29	5/12/2005	22.10	21.50	0.60	Р	29.60	< 0.01	965.75
64V	987.29	5/17/2005	22.10	21.70	0.40	Р	29.60	< 0.01	965.56
64V	987.29	5/25/2005	21.60	21.30	0.30		29.60	0.00	965.97
64X(N)	984.83	5/4/2005	11.30	11.27	0.03		15.85	0.00	973.56
64X(N)	984.83	5/12/2005	11.35	11.34	0.01		15.85	0.00	973.49

TABLE 21-8 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

May 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
64X(N)	984.83	5/17/2005	11.95	11.94	0.01		15.85	0.00	972.89
64X(N)	984.83	5/25/2005	11.59	11.58	0.01		15.85	0.00	973.25
64X(S)	981.56	5/4/2005	13.91		0.00		23.82	0.00	967.65
64X(S)	981.56	5/12/2005	14.20	Р	< 0.01		23.82	0.00	967.36
64X(S)	981.56	5/17/2005	13.60	Р	< 0.01		23.82	0.00	967.96
64X(S)	981.56	5/25/2005	14.25	Р	< 0.01		23.82	0.00	967.31
64X(W)	984.87	5/4/2005	17.18	17.16	0.02		24.35	0.00	967.71
64X(W)	984.87	5/12/2005	17.40	17.38	0.02		24.35	0.00	967.49
64X(W)	984.87	5/17/2005	17.80	17.78	0.02		24.35	0.00	967.09
64X(W)	984.87	5/25/2005	17.53	17.50	0.03		24.35	0.00	967.37
95-01	983.77	5/20/2005	9.60		0.00		17.20	0.00	974.17
3-6C-EB-22	986.94	5/20/2005	13.45		0.00		20.01	0.00	973.49
E2SC-03I	982.12	5/27/2005	8.78		0.00	38.18	48.45	10.27	973.34
E2SC-03I	982.12	5/27/2005		See Not	e 8 regardin	g DNAPL	Thickness:	3.00	NM
E2SC-17	985.38	5/27/2005	11.00		0.00		45.46	0.00	974.38
E2SC-17	985.38	5/27/2005		See Not	e 8 regardin	g DNAPL	Thickness:	0.25	NM
E2SC-23	992.07	5/20/2005	16.25		0.00		21.16	0.00	975.82
E2SC-24	987.90	5/20/2005	15.35		0.00		21.64	0.00	972.55
GMA1-13	991.41	5/20/2005	17.16		0.00		27.18	0.00	974.25
GMA1-14	997.43	5/20/2005	18.10		0.00		23.45	0.00	979.33
GMA1-15	988.59	5/20/2005	15.45	14.61	0.84		17.84	0.00	973.92
GMA1-15	988.59	5/31/2005	15.14	14.55	0.59		17.85	0.00	974.00
GMA1-16	986.82	5/20/2005	13.10	12.60	0.50		20.03	0.00	974.19
GMA1-17E	993.03	5/20/2005	14.85		0.00		17.30	0.00	978.18
GMA1-17W	992.63	5/20/2005	16.04	14.50	1.54		23.30	0.00	978.02
GMA1-17W	992.63	5/31/2005	16.21	14.76	1.45		23.30	0.00	977.77
GMA1-19	984.28	5/6/2005	10.95	9.89	1.06		17.14	0.00	974.32
GMA1-19	984.28	5/13/2005	11.40	10.13	1.27		17.14	0.00	974.06
GMA1-19	984.28	5/20/2005	11.82	10.38	1.44		17.14	0.00	973.80
GMA1-19	984.28	5/27/2005	11.33	10.19	1.14		17.15	0.00	974.01
GMA1-19	984.28	5/31/2005	10.80	10.09	0.71		17.20	0.00	974.14
GMA1-20	983.49	5/6/2005	9.40		0.00		17.30	0.00	974.09
GMA1-20	983.49	5/13/2005	9.71		0.00		17.30	0.00	973.78
GMA1-20	983.49	5/20/2005	10.05		0.00		17.30	0.00	973.44
GMA1-20	983.49	5/27/2005	9.70		0.00		17.30	0.00	973.79
GMA1-21	985.68	5/6/2005	11.60		0.00		19.54	0.00	974.08
GMA1-21	985.68	5/13/2005	11.90		0.00		19.55	0.00	973.78
GMA1-21	985.68	5/20/2005	12.15		0.00		19.54	0.00	973.53
GMA1-21	985.68	5/27/2005	11.85		0.00		19.54	0.00	973.83
HR-G2-MW-1	982.60	5/20/2005	10.30		0.00		18.24	0.00	972.30
HR-G2-MW-2	981.39	5/20/2005	8.05		0.00		17.67	0.00	973.34
HR-G2-MW-3	<u>9</u> 87.14	5/20/2005	14.25		0.00		22.00	0.00	9 <mark>72.89</mark>
HR-G2-RW-1	976.88	5/20/2005	5.81	5.80	0.01		18.72	0.00	972.55
RW-1(S)	987.23	5/4/2005	18.80	Р	< 0.01		28.60	0.00	968.43
RW-1(S)	987.23	5/12/2005	18.55		0.00	Р	28.60	< 0.01	968.68
TABLE 21-8 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

May 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
RW-1(S)	987.23	5/17/2005	19.20	19.19	0.01	Р	28.60	< 0.01	968.04
RW-1(S)	987.23	5/25/2005	19.10		0.00		28.60	0.00	968.13
RW-1(X)	982.68	5/4/2005	14.49		0.00		20.80	0.00	968.19
RW-1(X)	982.68	5/12/2005	14.00		0.00		20.80	0.00	968.68
RW-1(X)	982.68	5/17/2005	14.18		0.00		20.80	0.00	968.50
RW-1(X)	982.68	5/25/2005	14.00		0.00		20.80	0.00	968.68
RW-2(X)	985.96	5/4/2005	12.29		0.00		15.30	0.00	973.67
RW-2(X)	985.96	5/12/2005	12.65		0.00		15.30	0.00	973.31
RW-2(X)	985.96	5/17/2005	12.10		0.00		15.30	0.00	973.86
RW-2(X)	985.96	5/25/2005	18.80		0.00		15.30	0.00	967.16
RW-3(X)	980.28	5/4/2005	7.63		0.00	42.20	44.40	2.20	972.65
RW-3(X)	980.28	5/12/2005	8.10		0.00	42.20	44.40	2.20	972.18
RW-3(X)	980.28	5/17/2005	7.40		0.00	42.38	44.40	2.02	972.88
RW-3(X)	980.28	5/25/2005	8.20		0.00	42.10	44.40	2.30	972.08
Housatonic F	River								
SG-HR-1	990.73	5/6/2005	15.73	See Note 7	7 regarding of	depth to wa	ater		975.00
SG-HR-1	990.73	5/13/2005	17.76	See Note 7	7 regarding of	depth to wa	ater		972.97
SG-HR-1	990.73	5/19/2005	19.25	See Note 7 regarding depth to water 971.48					
SG-HR-1	990.73	5/25/2005	16.21	See Note 7	7 regarding o	depth to wa	ater		974.52

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- Well HR-G2-RW-1 is constructed at an angle of 41.67 degrees from vertical. Depth to water data reflect measurements collected along the angled well casing. Groundwater elevations are corrected to account for the angle of the well casing.
- 7. A survey reference point (SG-HR-1) was established on the Newell Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the
- 8. A weighted bailer has been installed at this location to remove accumulations of DNAPL. The DNAPL thickness reported is that measured within the bailer upon the initial retrieval.
- 9. LNAPL recovery testing was performed on 5/31/2005 at wells GMA1-15, GMA1-17W, and GMA1-19. LNAPL thickness data represents the initial measurements at these wells on that date.

TABLE 21-9 ACTIVE RECOVERY SYSTEMS MONTHLY SUMMARY LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

Way 2005

	Volume Water	RW-1 DNAPL	RW-1R LNAPL	RW-3 LNAPL
Manth / Vaan	Pumped	Recovered	Recovered	Recovered
Month / Year	(galion)	(gallon)	(gallon)	(gallon)
May 2003	281,349			10
June 2003	266,987			10
July 2003	244,776			10
August 2003	290,984			10
September 2003	309,162			20
October 2003	485,653			20
November 2003	363,979			10
December 2003	490,517			
January 2004	299,584			
February 2004	305,485			
March 2004	409,514			
April 2004	344,707			1
May 2004	307,361			
June 2004	410,230			
July 2004	328,363			
August 2004	310,473			
September 2004	499,209		1	20
October 2004	426,078			
November 2004	421,409			12
December 2004	539,528			10
January 2005	443,634			10
February 2005	409,113			5
March 2005	455,192			5
April 2005	425,145			5
May 2005	357,497			5

Notes:

1. Volume of water pumped is total from Wells RW-1R, RW-2, and RW-3.

2. -- indicates LNAPL or DNAPL was not recovered by the system.

3. There was no downtime during May 2005.

TABLE 21-10 MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

Well	Date	Depth to Water	Depth to DNAPL	DNAPL Thickness	DNAPL Removed	May 2005 Removal
Name		(ft BMP)	(ft BMP)	(feet)	(liters)	(liters)
LS-31	5/25/2005	13.06	22.78	0.54	0.333	0.333
LS-38	5/25/2005	14.28	24.97	0.09	0.056	0.056
LSSC-07	5/6/2005	8.80	24.86	0.22	0.136	0.587
	5/13/2005	9.45	24.81	0.27	0.167	
	5/19/2005	9.65	24.85	0.23	0.142	
	5/25/2005	9.45	24.85	0.23	0.142	
LSSC-08I	5/6/2005	9.95	23.37	0.02	0.012	0.036
	5/19/2005	11.20	23.36	0.02	0.012	
	5/25/2005	10.73	23.37	0.02	0.012	
LSSC-16I	5/25/2005	7.81	28.39	0.15	0.093	0.093

Note:

Total Manual DNAPL Removal for May 2005: 1.105 liters 0.292 gallons

1. ft BMP - feet Below Measuring Point.

TABLE 21-11 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

May 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
E-07	982.87	5/23/2005	6.85		0.00		19.71	0.00	976.02
EPA-01	983.04	5/23/2005	11.05		0.00		22.66	0.00	971.99
LS-24	986.58	5/23/2005	13.48		0.00		15.31	0.00	973.10
LS-30	986.440	5/25/2005	13.16		0.000	21.80	22.22	0.42	973.28
LS-31	987.090	5/25/2005	13.06		0.000	22.78	23.32	0.54	974.03
LS-38	986.95	5/25/2005	14.28		0.00	24.97	25.06	0.09	972.67
LS-44	980.78	5/23/2005	8.72		0.00		24.78	0.00	972.06
LSSC-07	982.48	5/6/2005	8.80		0.00	24.86	25.08	0.22	973.68
LSSC-07	982.48	5/13/2005	9.45		0.00	24.81	25.08	0.27	973.03
LSSC-07	982.48	5/19/2005	9.65		0.00	24.85	25.08	0.23	972.83
LSSC-07	982.48	5/25/2005	9.45		0.00	24.85	25.08	0.23	973.03
LSSC-08I	983.13	5/6/2005	9.95		0.00	23.37	23.39	0.02	973.18
LSSC-08I	983.13	5/13/2005	10.85		0.00		23.40	0.00	972.28
LSSC-08I	983.13	5/19/2005	11.20		0.00	23.36	23.38	0.02	971.93
LSSC-08I	983.13	5/25/2005	10.73		0.00	23.37	23.39	0.02	972.40
LSSC-08S	983.11	5/23/2005	11.21		0.00		14.69	0.00	971.90
LSSC-16I	980.88	5/25/2005	7.81		0.00	28.39	28.54	0.15	973.07
LSSC-18	987.32	5/23/2005	14.14		0.00		18.59	0.00	973.18
LSSC-32	980.68	5/23/2005	8.25		0.00		35.26	0.00	972.43
LSSC-33	980.49	5/23/2005	7.95		0.00		29.77	0.00	972.54
MW-6R	985.14	5/23/2005	10.31		0.00		13.94	0.00	974.83
RW-1	984.88	5/4/2005	11.95		0.00	Р	21.00	< 0.01	972.93
RW-1	984.88	5/12/2005	11.70		0.00	Р	21.00	< 0.01	973.18
RW-1	984.88	5/17/2005	11.70		0.00	Р	21.00	< 0.01	973.18
RW-1	984.88	5/25/2005	12.10		0.00	Р	21.00	< 0.01	972.78
RW-1 (R)	985.07	5/4/2005	15.82		0.00	Р	20.42	< 0.01	969.25
RW-1 (R)	985.07	5/12/2005	15.55		0.00	20.22	20.42	0.20	969.52
RW-1 (R)	985.07	5/17/2005	15.70		0.00	Р	20.42	< 0.01	969.37
RW-1 (R)	985.07	5/25/2005	15.60		0.00	20.00	20.42	0.42	969.47
RW-2	987.82	5/4/2005	19.76		0.00		21.75	0.00	968.06
RW-2	987.82	5/12/2005	15.05		0.00		21.75	0.00	972.77
RW-2	987.82	5/17/2005	13.58		0.00		21.75	0.00	974.24
RW-2	987.82	5/25/2005	15.60		0.00		21.75	0.00	972.22
RW-3	984.08	5/4/2005	16.85	16.75	0.10		21.57	0.00	967.32
RW-3	984.08	5/12/2005	16.64	16.50	0.14		21.57	0.00	967.57
RW-3	984.08	5/17/2005	16.95	16.71	0.24		21.57	0.00	967.35
RW-3	984.08	5/25/2005	16.95	16.75 0.20 21.57 0.00					967.32
Housatonic I	River (Lymar	Street Brid	dge)						
BM-2A	986.32	5/6/2005	12.55	55 See Note 4 regarding depth to water					
BM-2A	986.32	5/13/2005	13.90	See Note 4	regarding o	depth to wa	ter		972.42
BM-2A	986.32	5/19/2005	14.85	See Note 4	971.47				
BM-2A	986.32	5/25/2005	11.52	See Note 4	regarding of	depth to wa	ter		974.80

TABLE 21-11 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 4. A survey reference point (BM-2A) was established on the Lyman Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

TABLE 21-12 ACTIVE DNAPL RECOVERY SYSTEMS MONTHLY SUMMARY NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

Recovery System	Date	Total Gallons Recovered
System 1 ⁽¹⁾	May 2004	16.0
	June 2004	16.5
	July 2004	14.3
	August 2004	14.6
	September 2004	16.5
	October 2004	11.0
	November 2004	15.4
	December 2004	15.4
	January 2005 ⁽³⁾	8.8
	February 2005	13.2
	March 2005	17.3
	April 2005	24.2
	May 2005	9.9
System 2 ⁽²⁾	May 2004	138.8
	June 2004	97.2
	July 2004	16.2
	August 2004	226.0
	September 2004	129.6
	October 2004	78.2
	November 2004	81.0
	December 2004	64.8
	January 2005 ⁽³⁾	157.2
	February 2005	126.9
	March 2005	16.2
	April 2005	16.2
	May 2005	145.8
Total Automated	DNAPL Removal for May 2005:	155.7 Gallons

Notes:

^{1.} System 1 wells are NS-15, NS-30, and NS-32.

^{2.} System 2 wells are N2SC-01I, N2SC-03I, and N2SC-14.

^{3.} In January 2005, System 2 malfunctioned during weeks 2 and 3, pumping mostly water. The volume reported for those two weeks is an estimated quantity that was included in the total volume removed.

^{4.} The automated recovery systems were inactive from April 21, 2005 through May 8, 2005 to allow for DNAPL recovery tests at the individual wells.

TABLE 21-13

GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

CONSENT DECREE MONTHLY STATUS REPORT GROUNDWATER MANAGEMENT AREA 1 - NEWELL STREET AREA II MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL May 2005

		Depth	Depth to	DNAPL	DNAPL	May 2005
Well	Date	to Water	DNAPL	Thickness	Removed	Removal
Name		(ft BMP)	(ft BMP)	(feet)	(liters)	(liters)
N2SC-01I	5/2/2005	12.20	38.40	3.19	1.970	11.030
	5/3/2005	12.15	38.60	2.98	3.130	
	5/4/2005	12.22	38.84	2.74	3.000	
	5/5/2005	11.88	38.92	2.68	2.930	
N2SC-03I	5/2/2005	12.07	37.65	3.04	1.880	6.842
	5/3/2005	12.10	38.08	2.60	2.257	
	5/4/2005	12.17	39.44	1.26	1.624	
	5/5/2005	11.87	39.52	1.18	1.081	
N2SC-07	5/25/2005	11.10	38.05	0.11	0.068	0.068
N2SC-08	5/2/2005	11.54	42.40	0.19	0.117	1.049
	5/3/2005	11.50	42.37	0.22	0.136	
	5/4/2005	11.61	42.58	0.01	0.006	
	5/25/2005	11.90	41.30	1.28	0.790	
N2SC-14	5/2/2005	13.50	38.58	1.70	9.558	34.038
	5/3/2005	13.41	38.58	1.70	9.861	
	5/4/2005	13.55	38.67	1.61	8.449	
	5/5/2005	13.19	38.66	1.62	6.170	
NS-15	5/2/2005	11.42	39.15	0.28	0.173	0.371
	5/3/2005	11.36	39.29	0.14	0.086	
	5/4/2005	11.44	39.34	0.09	0.056	
	5/5/2005	11.09	39.34	0.09	0.056	
NS-30	5/2/2005	12.91	38.45	0.03	0.019	0.031
	5/3/2005	12.86	38.47	0.01	0.006	
	5/5/2005	12.56	38.47	0.01	0.006	
NS-32	5/2/2005	13.04	41.02	0.02	0.010	0.010

Notes:

- 1. ft BMP feet Below Measuring Point.
- DNAPL recovery testing was performed from 5/2/2005 to 5/5/2005 at wells N2SC-01I, N2SC-03I, N2SC-08, N2SC-14, NS-15, NS-30, and NS-32.
 DNAPL thickness data represents the initial measurements on each date.

Total DNAPL Removal for May 2005: 53.439 liters

DNAPL removal data represents the total volume recovered on each date.

14.100 gallons

TABLE 21-14 ROUTINE WELL MONITORING NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

May 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
N2SC-01I	984.99	5/2/2005	12.20		0.00	38.40	41.59	3.19	972.79
N2SC-01I	984.99	5/3/2005	12.15		0.00	38.60	41.58	2.98	972.84
N2SC-01I	984.99	5/4/2005	12.22		0.00	38.84	41.58	2.74	972.77
N2SC-01I	984.99	5/5/2005	11.88		0.00	38.92	41.60	2.68	973.11
N2SC-01S	985.10	5/18/2005	9.50		0.00		21.59	0.00	975.60
N2SC-02	985.56	5/25/2005	12.26		0.00		40.44	0.00	973.30
N2SC-03I	985.33	5/2/2005	12.07		0.00	37.65	40.69	3.04	973.26
N2SC-03I	985.33	5/3/2005	12.10		0.00	38.08	40.68	2.60	973.23
N2SC-03I	985.33	5/4/2005	12.17		0.00	39.44	40.70	1.26	973.16
N2SC-03I	985.33	5/5/2005	11.87		0.00	39.52	40.70	1.18	973.46
N2SC-03S	985.18	5/18/2005	8.60		0.00		21.50	0.00	976.58
N2SC-06	985.27	5/19/2005	12.42		0.00		34.83	0.00	972.85
N2SC-07	984.61	5/25/2005	11.10		0.00	38.05	38.16	0.11	973.51
N2SC-08	986.07	5/2/2005	11.54		0.00	42.40	42.59	0.19	974.53
N2SC-08	986.07	5/3/2005	11.50		0.00	42.37	42.59	0.22	974.57
N2SC-08	986.07	5/4/2005	11.61		0.00	42.58	42.59	0.01	974.46
N2SC-08	986.07	5/5/2005	11.40		0.00		42.59	0.00	974.67
N2SC-08	986.07	5/25/2005	11.90		0.00	41.30	42.58	1.28	NM
N2SC-11	988.08	5/19/2005	11.50		0.00		37.40	0.00	976.58
N2SC-13S	985.15	5/23/2005	8.30		0.00		16.15	0.00	976.85
N2SC-14	985.06	5/2/2005	13.50		0.00	38.58	40.28	1.70	971.56
N2SC-14	985.06	5/3/2005	13.41		0.00	38.58	40.28	1.70	971.65
N2SC-14	985.06	5/4/2005	13.55		0.00	38.67	40.28	1.61	971.51
N2SC-14	985.06	5/5/2005	13.19		0.00	38.66	40.28	1.62	971.87
N2SC-15	985.58	5/23/2005	11.61		0.00		41.48	0.00	973.97
NS-1	983.40	5/19/2005	11.50		0.00		17.40	0.00	971.90
NS-11	984.54	5/23/2005	DRY		0.00		9.30	0.00	< 975.24
NS-15	982.76	5/2/2005	11.42		0.00	39.15	39.43	0.28	971.34
NS-15	982.76	5/3/2005	11.36		0.00	39.29	39.43	0.14	971.40
NS-15	982.76	5/4/2005	11.44		0.00	39.34	39.43	0.09	971.32
NS-15	982.76	5/5/2005	11.09		0.00	39.34	39.43	0.09	971.67
NS-18	985.20	5/19/2005	NM		0.00		17.70	0.00	NM
NS-19	985.72	5/19/2005	10.60		0.00		18.12	0.00	975.12
NS-21	983.39	5/16/2005	9.75		0.00		17.59	0.00	973.64
NS-24	984.37	5/17/2005	10.52		0.00		17.87	0.00	973.85
NS-30	985.99	5/2/2005	12.91		0.00	38.45	38.48	0.03	973.08
NS-30	985.99	5/3/2005	12.86		0.00	38.47	38.48	0.01	973.13
NS-30	985.99	5/4/2005	13.08		0.00		38.48	0.00	972.91
NS-30	985.99	5/5/2005	12.56		0.00	38.47	38.48	0.01	973.43
NS-31	986.05	5/20/2005	13.40		0.00		38.45	0.00	972.65
NS-32	986.20	5/2/2005	13.04		0.00	41.02	41.04	0.02	973.16
NS-32	986.20	5/3/2005	13.01		0.00		41.04	0.00	973.19
NS-32	986.20	5/4/2005	12.89		0.00		41.04	0.00	973.31
NS-32	986.20	5/5/2005	12.70		0.00		41.16	0.00	973.50
NS-33	987.21	5/18/2005	11.80		0.00		17.91	0.00	975.41
NS-34	986.81	5/19/2005	13.74		0.00		36.71	0.00	973.07
NS-35	982.99	5/20/2005	9.70		0.00		31.39	0.00	973.29
NS-36	985.20	5/17/2005	11.60		0.00		19.40	0.00	973.60

TABLE 21-14 ROUTINE WELL MONITORING NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NM indicates information not measured.
- DNAPL recovery testing was performed from 5/2/2005 to 5/5/2005 at wells N2SC-01I, N2SC-03I, N2SC-08, N2SC-14, NS-15, NS-30, and NS-32.
 DNAPL thickness data represents the initial measurements at these wells on each date.

Page 2 of 2 V:\GE_Pittsfield_General\Reports and Presentations\Wonthly Reports\2005\05-05 CD Monthly\Wonitoring Data\GMA 1-Newell.xls.xls\21-14

TABLE 21-15 ROUTINE WELL MONITORING SILVER LAKE AREA GROUNDWATER MANAGEMENT AREA 1

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

May 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
Monitoring We	ells Adjacent	to Silver La	ke						
SLGW-01D	983.13	5/26/2005	4.60		0.00		36.98	0.00	978.53
SLGW-01S	982.94	5/26/2005	7.10		0.00		16.25	0.00	975.84
SLGW-02D	985.10	5/26/2005	7.40		0.00		36.86	0.00	977.70
SLGW-02S	985.39	5/26/2005	8.01		0.00		16.76	0.00	977.38
SLGW-03D	979.14	5/26/2005	1.24		0.00		32.05	0.00	977.90
SLGW-03S	980.21	5/26/2005	4.20		0.00		14.63	0.00	976.01
SLGW-04D	983.51	5/26/2005	6.05		0.00		37.09	0.00	977.46
SLGW-04S	984.02	5/26/2005	8.12		0.00		16.69	0.00	975.90
SLGW-05D	979.30	5/26/2005	3.41		0.00		34.92	0.00	975.89
SLGW-05S	979.12	5/26/2005	3.28		0.00		11.68	0.00	975.84
SLGW-06D	981.63	5/26/2005	5.58		0.00		34.98	0.00	976.05
SLGW-06S	981.66	5/26/2005	5.55		0.00		13.76	0.00	976.11
Staff Gauge w	ithin Silver L	ake							
Silver Lake	NIA	E/C/200E	4 4 4	Soo Noto	1 rogarding d	lonth to wat	or		NIA
Gauge	NA	5/6/2005	4.44	See Note 4	+ regarding d	iepin io wai	ei		NA
Silver Lake	NIA	E/12/200E	1 5 1	Soo Noto	1 rogarding d	lonth to wat	or		ΝΙΑ
Gauge	INA	5/13/2005	4.51	See Note 4		IN/A			
Silver Lake	NIA	E/10/200E	4 55	See Note	ΝΙΑ				
Gauge	INA	5/19/2005	4.00	Oce Nole .	11/21				
Silver Lake Gauge	NA	5/25/2005	4.48	See Note 4	4 regarding d	lepth to wat	er		NA

Notes:

1. ft BMP - feet Below Measuring Point.

2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.

3. NA indicates information not available.

4. A new Silver Lake Gauge has been installed and will be surveyed to obtain a new horizontal datum. "Depth to Water" values provided refer to feet above the datum, rather than feet below the measuring point.

 Additional groundwater elevation data was collected from wells near Silver Lake that are located in the 30s Complex and at the Lyman Street Area. Those results are presented in the monitoring tables for those Removal Action Areas.

ITEM 22 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS J & K (GMA 2) (GECD320) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Conducted monthly river elevation monitoring.

b. <u>Sampling/Test Results Received</u>

See attached table.

c. <u>Work Plans/Reports/Documents Submitted</u>

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Conduct monthly river elevation monitoring.
- Annual groundwater sampling anticipated to be conducted in October 2005.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

TABLE 22-1ROUTINE WELL MONITORINGGROUNDWATER MANAGEMENT AREA 2

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)
Housatonic Riv	ver (Foot Brid	lge)							
GMA2-SG-1	989.82	5/25/2005	15.17	See Note	2 regarding d	epth to wate	er		974.65

Notes:

1. ft BMP - feet Below Measuring Point.

2. A survey reference point was established on the Oxbow J & K foot bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

ITEM 23 GROUNDWATER MANAGEMENT AREAS PLANT SITE 2 (GMA 3) (GECD330) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

- Conducted routine groundwater elevation monitoring and NAPL monitoring/removal activities. Approximately 9.1 liters (2.4 gallons) of LNAPL were removed by the automatic skimmer located in well 51-21 and an additional 11.0 liters (2.9 gallons) of LNAPL were manually removed from the wells in this area (see Table 23-4).
- Completed spring 2005 groundwater sampling event.
- Conducted LNAPL sampling and analysis activities at monitoring wells GMA3-10 and UB-MW-8.
- Conducted LNAPL recovery testing at wells GMA3-12 and GMA3-13.

b. <u>Sampling/Test Results Received</u>

- See attached tables.
- Preliminary analytical results received in May 2005 from the spring 2005 GMA 3 baseline groundwater quality monitoring activities are shown in Table 23-2. These preliminary results have been compared to the current Method 1 GW-2 and GW-3 groundwater standards and UCLs for groundwater set forth in the MCP. These comparisons indicate the following:
 - The MCP UCL for chlorobenzene in groundwater (10 ppm) was exceeded in the samples from monitoring wells 89A and 114A. Similar exceedances were previously observed in these wells.
 - There were no other exceedances of UCLs in any of the groundwater sample results received in May 2005.
 - The MCP GW-2 standards were not exceeded in any of the GW-2 groundwater sample results received in May 2005.
 - The MCP GW-3 standard for chlorobenzene (0.5 ppm) was exceeded in the samples from GW-3 monitoring wells 89B and 114B-R. Similar exceedances were previously observed in these wells.

b. Sampling/Test Results Received (cont'd)

- Although wells 89A and 114A are 50-foot-deep natural attenuation wells and not monitoring points for GW-3 standards, we note, for completeness, that the concentrations of chlorobenzene in the samples from those wells were greater than the MCP GW-3 standards. The chlorobenzene concentrations at these locations were also greater than MCP UCL for chlorobenzene in groundwater, as discussed above. This was also true in previous sampling events.
- No other MCP GW-3 standards were exceeded in any of the groundwater sample results received in May 2005.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue ongoing groundwater and NAPL monitoring and recovery activities.
- Inspect manholes along Plastics Avenue for the presence of LNAPL (see Item 23.f).
- Evaluate NAPL thickness and groundwater elevation and analytical data and work on preparation of spring 2005 monitoring report.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

LNAPL was observed in monitoring well GMA3-13 during the initial monitoring round on April 19, 2005. The LNAPL was removed from the well and EPA and MDEP were contacted regarding this observation. Per the Plant Site NAPL monitoring protocols, this well has been monitored on a weekly basis. GE will also perform a visual inspection of the sanitary sewer line in this area at manholes located along Plastics Avenue, including sampling of water, NAPL, and/or sediment if NAPL is observed during these inspections. GE will evaluate additional potential response actions and, if any are determined to be warranted, will submit a proposal for EPA approval.

TABLE 23-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

		Sample				Date
Project Name	Field Sample ID	Date	Matrix	Laboratory	Analyses	Received
NAPL Sampling	GMA3-10	5/12/05	Oil	SGS	VOC	5/27/05
NAPL Sampling	UB-PZ-3	5/12/05	Oil	SGS	VOC	5/27/05
Semi-Annual Groundwater Sampling	111A-R	4/14/05	Water	SGS	VOC, Natural Attenuation	5/5/05
Semi-Annual Groundwater Sampling	111B-R	4/21/05	Water	SGS	PCB, PCB (f), VOC, SVOC, Metals, Metals (f), CN, CN (f), Sulfide, PCDD/PCDF, Natural Attenuation	5/12/05
Semi-Annual Groundwater Sampling	114A	4/21/05	Water	SGS	VOC, Natural Attenuation	5/12/05
Semi-Annual Groundwater Sampling	114B-R	4/21/05	Water	SGS	Attenuation	5/12/05
Semi-Annual Groundwater Sampling	16C-R	5/2/05	Water	SGS	Alkanity, Chloride, Nitrite, Nitrate, DOC, Iron, Sulfate	Cancel
Semi-Annual Groundwater Sampling	16C-R	4/27/05	Water	SGS	VOC, Natural Attenuation	5/16/05
Semi-Annual Groundwater Sampling	39E	4/13/05	Water	SGS	VOC, Natural Attenuation	5/4/05
Semi-Annual Groundwater Sampling	43A	4/12/05	Water	SGS	VOC, Natural Attenuation	5/2/05
Semi-Annual Groundwater Sampling	51-14	4/15/05	Water	SGS	VOC	5/2/05
Semi-Annual Groundwater Sampling	54B-R	4/27/05	Water	SGS	PCB, PCB (f), VOC, SVOC, Metals, Metals (f), CN, CN (f), Sulfide, PCDD/PCDF, Pest, Herb	5/16/05
Semi-Annual Groundwater Sampling	89A	5/2/05	Water	SGS	VOC, Natural Attenuation	5/23/05
Semi-Annual Groundwater Sampling	89B	5/3/05	Water	SGS	PUB, PUB (I), VUU, SVUU, Metals, Metals (I), UN, UN (I), Sulfide, PUDD/PUDF, Pest, Herb, Natural Attenuation	5/23/05
Semi-Annual Groundwater Sampling	89D-R	5/2/05	Water	SGS	Alkanity, Chloride, Nitrite, Nitrate, DOC, Iron, Sulfate	5/23/05
Semi-Annual Groundwater Sampling	89D-R	4/26/05	Water	SGS	VOC, Ethene, Ethane, Methane	5/16/05
Semi-Annual Groundwater Sampling	90A	4/14/05	Water	SGS	VOC, Natural Attenuation	5/5/05
Semi-Annual Groundwater Sampling	90B	4/14/05	Water	SGS	PCB, PCB (t), VOC, SVOC, Metals, Metals (t), CN, CN (t), Sulfide, PCDD/PCDF, Pest, Herb, Natural Attenuation	5/5/05
Semi-Annual Groundwater Sampling	95A	4/22/05	Water	SGS	VOC, SVOC, Natural Attenuation	5/12/05
Semi-Annual Groundwater Sampling	95B-R	4/21/05	Water	SGS	PCB, PCB (f), VOC, SVOC, Metals, Metals (f), CN, CN (f), Sulfide, PCDD/PCDF, Pest, Herb, Natural	5/12/05
Semi-Annual Groundwater Sampling	DUP-3 (GMA3-4)	4/12/05	Water	SGS	VOC	5/2/05
Semi-Annual Groundwater Sampling	GMA3-3	4/13/05	Water	SGS	PCB, PCB (f), VOC, SVOC, Metals, Metals (f), CN, CN (f), Sulfide, PCDD/PCDF, Pest, Herb	5/4/05
Semi-Annual Groundwater Sampling	GMA3-4	4/12/05	Water	SGS	VOC	5/2/05
Semi-Annual Groundwater Sampling	GMA3-5	4/13/05	Water	SGS	PCB, PCB (f), VOC, SVOC, Metals, Metals (f), CN, CN (f), Sulfide, PCDD/PCDF	5/4/05
Semi-Annual Groundwater Sampling	GMA3-6	4/12/05	Water	SGS	PCB, PCB (f), VOC, SVOC, Metals, Metals (f), CN, CN (f), Sulfide, PCDD/PCDF	5/2/05
Semi-Annual Groundwater Sampling	GMA3-9	4/12/05	Water	SGS	VOC	5/2/05
Semi-Annual Groundwater Sampling	GMA3-DUP-1 (89B)	5/3/05	Water	SGS		5/23/05
Semi-Annual Groundwater Sampling	OBG-2	4/14/05	Water	SGS	VOC	5/5/05

Notes:

1. Field duplicate sample locations are presented in parenthesis.

2. (f) - Indicates filtered analysis requested.

Sample ID		16C-R	39E	43A	51-14	54B-R	
Parameter	Date Collected:	04/27/05	04/13/05	04/12/05	04/15/05	04/27/05	
Volatile Organic	s						
1,1,2,2-Tetrachlo	roethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	
1,4-Dioxane		ND(0.20)	ND(0.20)	0.077 J	ND(0.20)	ND(0.20)	
Acetone		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	
Benzene		0.0039 J	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Carbon Disulfide		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Carbon Tetrachlo	oride	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.0036 J	ND(0.0050)	
Chlorobenzene		0.013	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Chloroform		0.00064 J	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Methylene Chlorid	de	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Toluene		0.0026 J	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.0060	
trans-1,2-Dichloro	pethene	0.00096 J	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Trichloroethene		0.0020 J	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Trichlorofluorome	ethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	
Total VOCs		0.023 J	ND(0.20)	0.077 J	0.0036 J	0.0060	
PCBs-Unfiltered	d			•		• •	
Aroclor-1254		NA	NA	NA	NA	ND(0.000065)	
Aroclor-1260		NA	NA	NA	NA	ND(0.000065)	
Total PCBs		NA	NA	NA	NA	ND(0.000065)	
PCBs-Filtered							
Aroclor-1254		NA	NA	NA	NA	ND(0.000065)	
Aroclor-1260		NA	NA	NA	NA	ND(0.000065)	
Total PCBs		NA	NA	NA	NA	ND(0.000065)	
Semivolatile Or	ganics						
1,2,4-Trichlorobe	nzene	NA	NA	NA	ND(0.0050)	ND(0.010)	
1,2-Dichlorobenz	ene	NA	NA	NA	ND(0.0050)	ND(0.010)	
1,3-Dichlorobenz	ene	NA	NA	NA	ND(0.0050)	ND(0.010)	
1,4-Dichlorobenz	ene	NA	NA	NA	ND(0.0050)	ND(0.010)	
2-Chlorophenol		NA	NA	NA	NA	ND(0.010)	
Acenaphthene		NA	NA	NA	NA	ND(0.010)	
Naphthalene		NA	NA	NA	ND(0.0050)	ND(0.010)	
Organochlorine	Pesticides			•	· · · ·	· · · · ·	
None Detected		NA	NA	NA	NA		
Organophospha	ate Pesticides				•	•	
None Detected		NA	NA	NA	NA		
Herbicides					•		
None Detected		NA	NA	NA	NA		
Furans							
2,3,7,8-TCDF		NA	NA	NA	NA	ND(0.000000021)	
TCDFs (total)		NA	NA	NA	NA	ND(0.000000021)	
1,2,3,7,8-PeCDF		NA	NA	NA	NA	ND(0.000000018)	
2,3,4,7,8-PeCDF		NA	NA	NA	NA	ND(0.000000017)	
PeCDFs (total)		NA	NA	NA	NA	ND(0.000000022)	
1,2,3,4,7,8-HxCD)F	NA	NA	NA	NA	ND(0.000000017)	
1,2,3,6,7,8-HxCD)F	NA	NA	NA	NA	ND(0.000000017)	
1,2,3,7,8,9-HxCD	F	NA	NA	NA	NA	ND(0.000000019)	
2,3,4,6,7,8-HxCDF		NA	NA	NA	NA	ND(0.000000018)	
HxCDFs (total)		NA	NA	NA	NA	ND(0.000000019)	
1.2.3.4.6.7.8-HpCDF		NA	NA	NA	NA	ND(0.000000033)	
1,2,3,4,7,8,9-HpC	DF	NA	NA	NA	NA	ND(0.000000012)	
HpCDFs (total)		NA	NA	NA	NA	ND(0.000000044)	
OCDF ,		NA	NA	NA	NA	ND(0.000000055)	

	Sample ID:	16C-R	39E	43A	51-14	54B-R
Parameter	Date Collected:	04/27/05	04/13/05	04/12/05	04/15/05	04/27/05
Dioxins						
2,3,7,8-TCDD		NA	NA	NA	NA	ND(0.000000019)
TCDDs (total)		NA	NA	NA	NA	ND(0.000000019)
1,2,3,7,8-PeCDD)	NA	NA	NA	NA	ND(0.000000026)
PeCDDs (total)		NA	NA	NA	NA	ND(0.000000026)
1,2,3,4,7,8-HxCD	D	NA	NA	NA	NA	ND(0.000000018)
1,2,3,6,7,8-HxCD	D	NA	NA	NA	NA	ND(0.000000017)
1,2,3,7,8,9-HxCD	D	NA	NA	NA	NA	ND(0.000000016)
HxCDDs (total)		NA	NA	NA	NA	ND(0.000000018)
1,2,3,4,6,7,8-HpC	CDD	NA	NA	NA	NA	ND(0.000000046)
HpCDDs (total)		NA	NA	NA	NA	ND(0.000000046)
OCDD		NA	NA	NA	NA	0.00000058 J
Total TEQs (WH	O TEFs)	NA	NA	NA	NA	0.000000035
Inorganics-Unfi	Itered					
Antimony		NA	NA	NA	NA	ND(0.0600)
Arsenic		NA	NA	NA	NA	ND(0.0100)
Barium		NA	NA	NA	NA	0.210
Bervillium		NA	NA	NA	NA	ND(0.00100)
Cadmium		NA	NA	NA	NA	ND(0.00500)
Chromium		NA	ΝΔ	ΝΔ	NA	ND(0.00000)
Cobalt		NA	NA	NA	NA	0.00170 B
Copper		ΝΔ	ΝΔ	ΝΔ	ΝA	0.00380 B
Cvanide		NA	ΝΔ	ΝΔ	NA	ND(0.0100)
Lead		NA	ΝA	ΝΔ	NA	ND(0.0100)
Mercury		ΝΔ	ΝΔ	ΝΔ	ΝA	ND(0.00000)
Nickol		ΝΔ	ΝA	ΝΔ	NA	ND(0.000200)
Selenium			NA	ΝΔ	NA	ND(0.00500)
Silvor			NA	NA	NA	ND(0.00500)
Sulfido			NA NA	NA NA	NA NA	3 20 B
Vanadium			NA	ΝΔ	NA	0.00260 B
Zinc			NA	ΝΔ	NA	0.00200 B
Inorganice-Filto	rod		11/7		IN/A	0.00050 B
Antimony	ieu	NIA	NIA	NIA	NIA	
Anumony		NA NA	NA NA	NA NA	NA NA	ND(0.0600)
Arsenic		NA NA	NA NA	NA NA	NA NA	0.160 P
Danullium		NA NA	INA NA	N/A N/A	INA NA	0.100 B
Codmium		NA NA	INA NA	NA NA	NA NA	ND(0.00100)
Caumium		NA NA	NA NA	NA NA	NA NA	ND(0.00500)
Coholt		NA NA	NA NA	N/A N/A	NA NA	0.00220 B
Coppor		NA NA	NA NA	NA NA	NA NA	0.00420 B
Cupper		NA	NA NA	NA NA	NA NA	0.00020 B
Cyanice		NA NA	NA NA	N/A N/A	NA NA	
Moreury		NA NA	NA NA	NA NA	NA NA	ND(0.00300)
Nickol		NA	NA NA	NA NA	NA NA	0.00400 B
Solonium		NA NA				ND(0.00500)
Selenium		NA NA		N/A N/A	NA NA	ND(0.00500)
Vanadium		NA NA	NA NA	NA NA	NA NA	0.00290 B
Zinc		NA	NA NA	NA NA	NA NA	0.0100 B
	tion Parameters	INA	INA.	11/4	INA	0.0100 B
	lion Farameters	400	40.0	250	NIA	NIA
Alkalinity (Total)		130	43.0	350	NA	NA NA
Dissolved Organi	ia Carbon	9.0	02	40 ND(1.00)	INA NA	INA NA
Dissolved Organ		1.00 0.0400 D	1.40	ND(1.00)	INA NA	IN/A
Lissoived Iron		U.U480 B	0.0900	ND(0.0500)	NA NA	INA NA
Ethane		ND(0.0040)	ND(0.0040)	ND(0.0040)	INA NA	INA NA
Ethene		ND(0.0030)	ND(0.0030)	ND(0.0030)	INA NA	INA NA
Ivietnane		ND(0.00200)	0.140	0.0830	NA NA	NA NA
Nitrate Nitrogen		0.0690	0.840	ND(0.0500)	NA NA	NA NA
Nitrite Nitrogen	- (0.0140 B	0.00770 B	ND(0.0500)	NA NA	INA NA
Suitate (turbidime	etric)	3.20	4.90	43.0	NA	INA

	Sample ID:	89A	89B	89D-R
Parameter	Date Collected:	05/02/05	05/03/05	4/26-5/2/2005
Volatile Organic	s			
1,1,2,2-Tetrachlor	roethane	ND(1.0)	ND(0.10) [ND(0.10)]	ND(0.010)
1,4-Dioxane		ND(1.0)	ND(0.20) [ND(0.20)]	ND(0.20)
Acetone		ND(1.0)	ND(0.10) [ND(0.10)]	ND(0.010)
Benzene		5.5	0.16 [0.17]	0.15
Carbon Disulfide		ND(1.0)	ND(0.10) [ND(0.10)]	ND(0.010)
Carbon Tetrachlo	oride	ND(1.0)	ND(0.10) [ND(0.10)]	ND(0.010)
Chlorobenzene		16	1.4 [1.3]	0.45
Chloroform		ND(1.0)	ND(0.10) [ND(0.10)]	0.024
Methylene Chloric	de	ND(1.0)	ND(0.10) [ND(0.10)]	ND(0.010)
Toluene		ND(1.0)	ND(0.10) [ND(0.10)]	ND(0.010)
trans-1,2-Dichloro	pethene	ND(1.0)	ND(0.10) [ND(0.10)]	ND(0.010)
Trichloroethene		ND(1.0)	ND(0.10) [ND(0.10)]	ND(0.010)
Trichlorofluorome	ethane	ND(1.0)	ND(0.10) [ND(0.10)]	ND(0.010)
Total VOCs		22	1.6 [1.5]	0.62
PCBs-Unfiltered	d			-
Aroclor-1254		NA	ND(0.000065) [0.000075]	NA
Aroclor-1260		NA	ND(0.000065) [ND(0.000065)]	NA
Total PCBs		NA	ND(0.000065) [0.000075]	NA
PCBs-Filtered				
Aroclor-1254		NA	ND(0.000065) [ND(0.000065)]	NA
Aroclor-1260		NA	ND(0.000065) [ND(0.000065)]	NA
Total PCBs		NA	ND(0.000065) [ND(0.000065)]	NA
Semivolatile Org	ganics			
1,2,4-Trichlorober	nzene	NA	ND(0.010) [ND(0.010)]	NA
1,2-Dichlorobenz	ene	NA	ND(0.010) [0.0012 J]	NA
1,3-Dichlorobenze	ene	NA	ND(0.010) [ND(0.010)]	NA
1,4-Dichlorobenz	ene	NA	0.0060 J [0.0073 J]	NA
2-Chlorophenol		NA	0.0049 J [0.0068 J]	NA
Acenaphthene		NA	ND(0.010) [ND(0.010)]	NA
Naphthalene		NA	0.0033 J [0.0042 J]	NA
Organochlorine	Pesticides			-
None Detected		NA		NA
Organophospha	ate Pesticides			
None Detected		NA		NA
Herbicides				
None Detected		NA		NA
Furans				
2,3,7,8-TCDF		NA	ND(0.000000017) [ND(0.000000020)]	NA
TCDFs (total)		NA	ND(0.000000017) [ND(0.000000032)]	NA
1,2,3,7,8-PeCDF		NA	ND(0.000000013) [ND(0.000000016)]	NA
2,3,4,7,8-PeCDF		NA	ND(0.000000013) [ND(0.000000016)]	NA
PeCDFs (total)		NA	ND(0.000000017) [ND(0.000000020)]	NA
1,2,3,4,7,8-HxCD	F	NA	ND(0.000000017) [ND(0.000000017)]	NA
1,2,3,6,7,8-HxCD	F	NA	ND(0.000000017) [ND(0.000000017)]	NA
1,2,3,7,8,9-HxCD	F	NA	ND(0.000000019) [ND(0.000000019)]	NA
2,3,4,6,7,8-HxCD	F	NA	ND(0.000000018) [ND(0.000000019)]	NA
HxCDFs (total)		NA	ND(0.000000019) [ND(0.000000019)]	NA
1,2,3,4,6,7,8-HpC	DF	NA	ND(0.000000026) [ND(0.000000018)]	NA
1,2,3,4,7,8,9-HpC	DF	NA	ND(0.000000010) [ND(0.0000000010)]	NA
HpCDFs (total)		NA	ND(0.000000026) [ND(0.000000018)]	NA
OCDF		NA	ND(0.000000032) [ND(0.000000023)]	NA

Danamatan	Sample ID:	89A	89B	89D-R
Parameter	Date Collected:	05/02/05	05/03/05	4/26-5/2/2005
DIOXINS				
2,3,7,8-TCDD		NA	ND(0.000000011) [ND(0.000000014)]	NA
I CDDs (total)		NA	ND(0.000000011) [ND(0.000000014)]	NA
1,2,3,7,8-PeCDL)	NA	ND(0.000000022) [ND(0.0000000229)]	NA
PeCDDs (total)	20	NA	ND(0.000000022) [ND(0.0000000229)]	NA
1,2,3,4,7,8-HxCL		NA	ND(0.000000015) [ND(0.000000020)]	NA
1,2,3,6,7,8-HXCL		NA	ND(0.000000014) [ND(0.000000019)]	NA
1,2,3,7,8,9-HxCL	טט	NA	ND(0.000000014) [ND(0.000000018)]	NA
HXCDDs (total)	000	NA	ND(0.000000015) [ND(0.000000020)]	NA
1,2,3,4,6,7,8-Hpt	JDD	NA	ND(0.000000052) [ND(0.000000061)]	NA
HpCDDs (total)		NA	ND(0.000000062) [ND(0.000000065)]	NA
		NA	ND(0.000000035) [ND(0.000000051)]	NA
Total TEQS (WH	IO TEFS)	NA	0.000000027 [0.000000034]	NA
Inorganics-Unf	iltered			
Antimony		NA	0.00770 B [ND(0.0600)]	NA
Arsenic		NA	ND(0.0100) [ND(0.0100)]	NA
Barium		NA	0.0630 B [0.0590 B]	NA
Beryllium		NA	ND(0.00100) [ND(0.00100)]	NA
Cadmium		NA	ND(0.00500) [ND(0.00500)]	NA
Chromium		NA	ND(0.0100) [ND(0.0100)]	NA
Cobalt		NA	ND(0.0500) [ND(0.0500)]	NA
Copper		NA	ND(0.0250) [ND(0.0250)]	NA
Cyanide		NA	ND(0.0100) [ND(0.0100)]	NA
Lead		NA	ND(0.00300) [ND(0.00300)]	NA
Mercury		NA	ND(0.000200) [ND(0.000200)]	NA
Nickel		NA	ND(0.0400) [ND(0.0400)]	NA
Selenium		NA	ND(0.00500) [ND(0.00500)]	NA
Silver		NA	ND(0.00500) [ND(0.00500)]	NA
Sulfide		NA	3.20 B [3.20 B]	NA
Vanadium		NA	0.00170 B [0.00140 B]	NA
Zinc		NA	0.00370 B [0.00270 B]	NA
Inorganics-Filte	ered			
Antimony		NA	ND(0.0600) [ND(0.0600)]	NA
Arsenic		NA	ND(0.0100) [ND(0.0100)]	NA
Barium		NA	0.0620 B [0.0630 B]	NA
Beryllium		NA	ND(0.00100) [ND(0.00100)]	NA
Cadmium		NA	ND(0.00500) [ND(0.00500)]	NA
Chromium		NA	ND(0.0100) [ND(0.0100)]	NA
Cobalt		NA	ND(0.0500) [ND(0.0500)]	NA
Copper		NA	ND(0.0250) [ND(0.0250)]	NA
Cyanide		NA	ND(0.0100) [ND(0.0100)]	NA
Lead		NA	ND(0.00300) [ND(0.00300)]	NA
Mercury		NA	ND(0.000200) [ND(0.000200)]	NA
Nickel		NA	ND(0.0400) [ND(0.0400)]	NA
Selenium		NA	ND(0.00500) [ND(0.00500)]	NA
Silver		NA	ND(0.00500) [ND(0.00500)]	NA
Vanadium		NA	0.00180 B [0.00160 B]	NA
Zinc		NA	ND(0.0200) [0.00410 B]	NA
Natural Attenua	tion Parameters			
Alkalinity (Total)		340	270 [260]	330
Chloride		320	130 [110]	540
Dissolved Organ	ic Carbon	11.0	6.90 [5.20]	7.60
Dissolved Iron		ND(0.0500)	5.60 [5.80]	ND(0.0500)
Ethane		0.023	ND(0.0040) [ND(0.0040)]	ND(0.0040)
Ethene		0.0054	ND(0.0030) [ND(0.0030)]	0.0032
Methane		1.40	2.80 [2.80]	0.00890
Nitrate Nitrogen		0.0170 B	0.0150 B [0.0510]	0.00480 B
Nitrite Nitrogen		ND(0.0500)	0.00790 B [0.0130 B]	ND(0.0500)
Sulfate (turbidim	etric)	ND(2.00)	ND(2.00) [ND(2.00)]	18.0

	Sample ID:	90A	90B	95A	95B-R			
Parameter	Date Collected:	04/14/05	04/14/05	04/22/05	04/21/05			
Volatile Organics								
1,1,2,2-Tetrachlor	roethane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)			
1,4-Dioxane		ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)			
Acetone		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)			
Benzene		ND(0.0050)	ND(0.0050)	ND(0.0050)	0.047			
Carbon Disulfide		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)			
Carbon Tetrachlo	ride	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)			
Chlorobenzene		ND(0.0050)	ND(0.0050)	0.00053 J	0.37			
Chloroform		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)			
Methylene Chloric	le	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)			
Toluene		0.00072 J	ND(0.0050)	0.0038 J	ND(0.010)			
trans-1.2-Dichloro	bethene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)			
Trichloroethene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)			
Trichlorofluorome	thane	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)			
Total VOCs		0.00072 J	ND(0.20)	0.0043 J	0.42			
PCBs-Unfiltered	1							
Aroclor-1254	-	NA	ND(0.000065)	NA	0.00010			
Aroclor-1260		NA	ND(0.000065)	NA	ND(0.000065)			
Total PCBs		NA	ND(0.000065)	NA	0.00010			
PCBs-Filtered		101	112(0.000000)	101	0.00010			
Aroclor-1254		ΝΔ	ND(0,000065)	NΙΔ	0.000060 1			
Aroclor-1260		NA	ND(0.000065)	NA NA	ND(0.000065)			
Total PCBs		NA	ND(0.000065)	NA NA	0.000060			
Somivolatilo Ora	anios	IN/A	ND(0.000003)	IN/A	0:000000 3			
3ennivolatile Org	Janics	NIA		NIA				
1,2,4-Trichlorober	nzene	INA NA	ND(0.010)	NA NA	ND(0.010)			
1,2-Dichlorobenze	ene	NA NA	ND(0.010)	NA NA	0.0012 J			
1,3-Dichlorobenze	ene	NA NA	ND(0.010)	NA NA	ND(0.010)			
1,4-Dichlorobenze	ene	INA NA	ND(0.010)		0.0046 J			
		INA NA	ND(0.010)	ND(0.010)	ND(0.010)			
Acenaphinene		INA NA	ND(0.010)	NA NA	ND(0.010)			
Naphthalene	De estada en	NA	ND(0.010)	INA	ND(0.010)			
Organochiorine	Pesticides		1		1			
None Detected	C. D. Malda	NA		NA				
Organophospha	te Pesticides							
None Detected		NA		NA				
Herbicides								
None Detected		NA		NA				
Furans								
2,3,7,8-TCDF		NA	ND(0.000000079)	NA	ND(0.000000018)			
TCDFs (total)		NA	ND(0.000000079)	NA	ND(0.000000018)			
1,2,3,7,8-PeCDF		NA	ND(0.00000011)	NA	ND(0.000000040)			
2,3,4,7,8-PeCDF		NA	ND(0.00000011)	NA	ND(0.000000040)			
PeCDFs (total)		NA	ND(0.00000011)	NA	ND(0.000000040)			
1,2,3,4,7,8-HxCD	F	NA	ND(0.000000082)	NA	ND(0.000000037)			
1,2,3,6,7,8-HxCD	F	NA	ND(0.000000067)	NA	ND(0.000000030)			
1,2,3,7,8,9-HxCD	F	NA	ND(0.000000090)	NA	ND(0.000000040)			
2,3,4,6,7,8-HxCD	F	NA	ND(0.000000080)	NA	ND(0.000000036)			
HxCDFs (total)		NA	ND(0.0000000090)	NA	ND(0.000000040)			
1,2,3,4,6,7,8-HpC	DF	NA	ND(0.000000067)	NA	ND(0.000000044)			
1,2,3,4,7,8,9-HpC	DF	NA	ND(0.000000084)	NA	ND(0.000000056)			
HpCDFs (total)		NA	ND(0.000000084)	NA	ND(0.000000056)			
OCDE		NA	ND(0.00000014)	NA	ND(0.00000010)			

Paramotor	Sample ID:	90A	90B	95A	95B-R
Diexine	Date Collected.	04/14/03	04/14/03	04/22/03	04/21/05
		NIA		NIA	
			ND(0.000000002)	NA NA	ND(0.000000027)
		NA NA	ND(0.000000002)	NA NA	ND(0.000000027)
1,2,3,7,0-FeCDD	,		ND(0.00000016)	NA NA	ND(0.0000000058)
	חע	NA NA	ND(0.00000010)	NA NA	ND(0.0000000058)
1,2,3,4,7,0-1 IXCL		NA NA	ND(0.00000012)	NA NA	ND(0.00000000000000000000000000000000000
1,2,3,0,7,0-HxCD			ND(0.00000000000000000000000000000000000	NA	ND(0.000000056)
HyCDDs (total)		NΔ	ND(0.00000012)	ΝΔ	ND(0.00000000000000000000000000000000000
1 2 3 4 6 7 8-HpC	חחר	ΝΔ	ND(0.00000012)	ΝΔ	ND(0.00000000000000000000000000000000000
HpCDDs (total)		ΝΔ	ND(0.000000012)	NA	ND(0.000000002)
		NΔ	ND(0.000000012)	NA	ND(0.000000002)
Total TEQs (WH	O TEEs)	NA	0.000000019	NA	0.000000071
Inorganics-Unfi	iltered	TW (0.00000013	TW (0.000000071
Antimony	licicu	ΝΔ	ND(0.0600)	ΝΔ	ND(0.0600)
Anamony		ΝΔ	ND(0.0000)	ΝA	ND(0.0000)
Barium		NΔ	0.0210 B	ΝΔ	0.0770 B
Bervillium		ΝΔ	ND(0.00100)	ΝA	0.000350 B
Cadmium		ΝΔ	ND(0.00500)	ΝΔ	ND(0.00500)
Chromium		NΔ	0.00330 B	ΝΔ	ND(0.00000)
Cohalt		ΝΔ	ND(0.0500)	ΝA	ND(0.0500)
Copper		ΝΔ	ND(0.0300)	ΝA	ND(0.0350)
Cvanide		NΔ	ND(0.0230)	ΝΔ	ND(0.0230)
Lead		NΔ	ND(0.0100)	ΝA	ND(0.0100)
Mercury		ΝΔ	ND(0.00300)	ΝA	ND(0.00300)
Nickol		NΔ	0.00180 B	ΝΔ	ND(0.000200)
Selenium		NΔ	0.00100 D	ΝA	ND(0.0400)
Silvor		ΝΔ	ND(0.00500)	ΝA	ND(0.00500)
Sulfide		NΔ	ND(5.00)	NA	3 20 B
Vanadium		NA	ND(0.0500)	NA	ND(0.0500)
Zinc		NA	0.00590 B	NA	0.00260 B
Inorganics-Filte	ared	1.0.1	0.00000 B	101	0.00200 B
Antimony	licu	ΝΔ	ND(0.0600)	ΝΔ	ND(0.0600)
Arsenic		NA	ND(0.0000)	NA	ND(0.0100)
Barium		NA	0.0210 B	NA	0.0760 B
Bervillium		NA	ND(0.00100)	NA	ND(0.00100)
Cadmium		NA	ND(0.00500)	NA	ND(0.00500)
Chromium		NA	0.00260 B	NA	ND(0.0100)
Cohalt		NA	ND(0.0500)	NA	ND(0.0500)
Copper		NA	ND(0.0250)	NA	ND(0.0250)
Cvanide		NA	ND(0.0100)	NA	ND(0.0100)
Lead		NA	ND(0.00300)	NA	ND(0.00300)
Mercury		NA	ND(0.000200)	NA	ND(0.000200)
Nickel		NA	ND(0.0400)	NA	ND(0.0400)
Selenium		NA	ND(0.00500)	NA	ND(0.00500)
Silver		NA	ND(0.00500)	NA	ND(0.00500)
Vanadium		NA	ND(0.0500)	NA	ND(0.0500)
Zinc		NA	ND(0.0200)	NA	ND(0.0200)
Natural Attenua	tion Parameters				
Alkalinity (Total)		160	140	100	180
Chloride		7.4	4 1	21	97
Dissolved Organ	ic Carbon	0.810 B	6.40	0.930 B	3.40
Dissolved Iron		ND(0.0500)	2.60	0.720	0.820
Ethane		ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.020)
Ethene		ND(0.0030)	ND(0.0030)	ND(0.0030)	ND(0.015)
Methane		0.0190	0.0340	0.270	0.600
Nitrate Nitrogen		0.0540	0 140	0.0190 B	0.0130 B
Nitrite Nitrogen		ND(0.0500)	0.00260 B	0.00370 B	0.00440 B
Sulfate (turbidime	etric)	20.0	4.20	0.700 B	2.00 B

	Sample ID:	111A-R	111B-R	114A	114B-R			
Parameter	Date Collected:	04/14/05	04/21/05	04/21/05	04/21/05			
Volatile Organics								
1.1.2.2-Tetrachlor	roethane	ND(0.0050)	0.00058 J	ND(1.0)	ND(0.050)			
1.4-Dioxane		ND(0.20)	ND(0.20)	ND(1.0)	ND(0.20)			
Acetone		ND(0.010)	ND(0.010)	ND(1.0)	ND(0.050)			
Benzene		ND(0.0050)	ND(0.0050)	ND(1.0)	ND(0.050)			
Carbon Disulfide		0.0081	ND(0.0050)	ND(1.0)	ND(0.050)			
Carbon Tetrachlo	oride	ND(0.0050)	ND(0.0050)	ND(1.0)	ND(0.050)			
Chlorobenzene		ND(0.0050)	0.0030 J	12	1.4			
Chloroform		ND(0.0050)	ND(0.0050)	ND(1.0)	ND(0.050)			
Methylene Chloric	de	ND(0.0050)	ND(0.0050)	ND(1.0)	ND(0.050)			
Toluene		0.0088	0.0014 J	ND(1.0)	ND(0.050)			
trans-1,2-Dichloro	pethene	ND(0.0050)	ND(0.0050)	ND(1.0)	ND(0.050)			
Trichloroethene		ND(0.0050)	ND(0.0050)	ND(1.0)	ND(0.050)			
Trichlorofluorome	ethane	ND(0.0050)	ND(0.0050)	ND(1.0)	ND(0.050)			
Total VOCs		0.017	0.0050 J	12	1.4			
PCBs-Unfiltered	d			•	•			
Aroclor-1254		NA	0.000028 J	NA	0.000030 J			
Aroclor-1260		NA	ND(0.000065)	NA	ND(0.000065)			
Total PCBs		NA	0.000028 J	NA	0.000030 J			
PCBs-Filtered				•				
Aroclor-1254		NA	ND(0.000065)	NA	ND(0.000065)			
Aroclor-1260		NA	ND(0.000065)	NA	ND(0.000065)			
Total PCBs		NA	ND(0.000065)	NA	ND(0.000065)			
Semivolatile Org	ganics		•	•	•			
1,2,4-Trichlorober	nzene	NA	ND(0.010)	NA	0.0018 J			
1,2-Dichlorobenzo	ene	NA	ND(0.010)	NA	0.012			
1,3-Dichlorobenz	ene	NA	ND(0.010)	NA	0.0039 J			
1,4-Dichlorobenze	ene	NA	ND(0.010)	NA	0.028			
2-Chlorophenol		NA	ND(0.010)	NA	ND(0.010)			
Acenaphthene		NA	ND(0.010)	NA	ND(0.010)			
Naphthalene		NA	ND(0.010)	NA	ND(0.010)			
Organochlorine	Pesticides							
None Detected		NA	NA	NA				
Organophospha	ate Pesticides							
None Detected		NA	NA	NA				
Herbicides								
None Detected		NA	NA	NA				
Furans			·					
2,3,7,8-TCDF		NA	ND(0.000000022)	NA	ND(0.000000040)			
TCDFs (total)		NA	ND(0.000000022)	NA	ND(0.000000040)			
1,2,3,7,8-PeCDF		NA	ND(0.000000039)	NA	ND(0.000000089)			
2,3,4,7,8-PeCDF		NA	ND(0.000000040)	NA	ND(0.000000090)			
PeCDFs (total)		NA	ND(0.000000040)	NA	ND(0.000000090)			
1,2,3,4,7,8-HxCD	F	NA	ND(0.000000036)	NA	ND(0.000000077)			
1,2,3,6,7,8-HxCD	F	NA	ND(0.000000029)	NA	ND(0.000000064)			
1,2,3,7,8,9-HxCD	F	NA	ND(0.000000039)	NA	ND(0.000000085)			
2,3,4,6,7,8-HxCD	F	NA	ND(0.000000035)	NA	ND(0.000000076)			
HxCDFs (total)		NA	ND(0.000000039)	NA	ND(0.000000085)			
1,2,3,4,6,7,8-HpC	DF	NA	ND(0.000000039)	NA	ND(0.000000086)			
1,2,3,4,7,8,9-HpC	DF	NA	ND(0.000000049)	NA	ND(0.00000011)			
HpCDFs (total)		NA	ND(0.000000049)	NA	ND(0.00000011)			
OCDF		NA	ND(0.00000011)	NA	ND(0.00000023)			

Parameter	Sample ID: Date Collected:	111A-R 04/14/05	111B-R 04/21/05	114A 04/21/05	114B-R 04/21/05
Dioxins		•	0.121100	0.12.000	0.42.000
		ΝΔ	ND(0.000000030)	ΝΔ	
TCDDs (total)		NA	ND(0.00000000000000000000000000000000000	NA	ND(0.00000000000)
1 2 3 7 8-PeCDD)	NA	ND(0.00000000000000000000000000000000000	NA	ND(0.000000013)
PeCDDs (total)	,	NA	ND(0.000000002)	ΝΔ	ND(0.00000013)
1 2 3 4 7 8-HxCD	D	NA	ND(0.0000000058)	NA	ND(0.00000013)
1 2 3 6 7 8-HxCD	D	NA	ND(0.000000045)	NA	ND(0,000000099)
123789-HxCD	D	NA	ND(0.000000049)	NA	ND(0.000000011)
HxCDDs (total)	2	NA	ND(0.0000000058)	NA	ND(0.00000013)
1.2.3.4.6.7.8-HpC	CDD	NA	ND(0.000000076)	NA	ND(0.00000013)
HpCDDs (total)		NA	ND(0.000000076)	NA	ND(0.00000013)
OCDD		NA	ND(0.000000094)	NA	ND(0.00000022)
Total TEQs (WH	O TEFs)	NA	0.000000073	NA	0.00000016
Inorganics-Unfi	Itered				
Antimony		NA	ND(0.0600)	NA	ND(0.0600)
Arsenic		NA	ND(0.0100)	NA	ND(0.0100)
Barium		NA	0.0290 B	NA	0.170 B
BervIlium		NA	0.000860 B	NA	ND(0.00100)
Cadmium		NA	ND(0.00500)	NA	ND(0.00500)
Chromium		NA	0.00220 B	NA	0.00460 B
Cobalt		NA	ND(0.0500)	NA	ND(0.0500)
Copper		NA	0.00150 B	NA	ND(0.0250)
Cvanide		NA	0.00330 B	NA	0.00170 B
Lead		NA	ND(0.00300)	NA	ND(0.00300)
Mercury		NA	ND(0.000200)	NA	0.0000500 B
Nickel		NA	ND(0.0400)	NA	0.00210 B
Selenium		NA	ND(0.00500)	NA	ND(0.00500)
Silver		NA	ND(0.00500)	NA	ND(0.00500)
Sulfide		NA	3.20 B	NA	ND(5.00)
Vanadium		NA	ND(0.0500)	NA	ND(0.0500)
Zinc		NA	0.00500 B	NA	0.00220 B
Inorganics-Filte	red				
Antimony		NA	ND(0.0600)	NA	ND(0.0600)
Arsenic		NA	ND(0.0100)	NA	ND(0.0100)
Barium		NA	0.0280 B	NA	0.170 B
Beryllium		NA	0.000340 B	NA	ND(0.00100)
Cadmium		NA	ND(0.00500)	NA	ND(0.00500)
Chromium		NA	0.00120 B	NA	0.00120 B
Cobalt		NA	ND(0.0500)	NA	ND(0.0500)
Copper		NA	ND(0.0250)	NA	ND(0.0250)
Cyanide		NA	0.00190 B	NA	ND(0.0100)
Lead		NA	0.00460	NA	ND(0.00300)
Mercury		NA	ND(0.000200)	NA	ND(0.000200)
Nickel		NA	ND(0.0400)	NA	ND(0.0400)
Selenium		NA	ND(0.00500)	NA	ND(0.00500)
Silver		NA	ND(0.00500)	NA	ND(0.00500)
Vanadium		NA	ND(0.0500)	NA	ND(0.0500)
Zinc		NA	ND(0.0200)	NA	ND(0.0200)
Natural Attenua	tion Parameters				
Alkalinity (Total)		120	180	130	250
Chloride		110	13	1.5	87
Dissolved Organi	ic Carbon	1.40	1.90	0.510 B	2.50
Dissolved Iron		ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)
Ethane		ND(0.0040)	ND(0.0040)	ND(0.0040)	ND(0.0040)
Ethene		ND(0.0030)	ND(0.0030)	ND(0.0030)	ND(0.0030)
Methane		ND(0.00200)	ND(0.00200)	0.100	0.170
Nitrate Nitrogen		0.00810 B	5.90	0.0260 B	0.0810
Nitrite Nitrogen		ND(0.0500)	0.0240 B	0.00470 B	0.00470 B
Sulfate (turbidime	etric)	54.0	250	1.20 B	5.50

Sample ID:	GMA3-3	GMA3-4	GMA3-5
Parameter Date Collected:	04/13/05	04/12/05	04/13/05
Volatile Organics			
1,1,2,2-Tetrachloroethane	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
1,4-Dioxane	ND(0.20)	ND(0.20) [ND(0.20)]	ND(0.20)
Acetone	ND(0.010)	ND(0.010) [ND(0.010)]	ND(0.010)
Benzene	0.00094 J	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Carbon Disulfide	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Carbon Tetrachloride	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Chlorobenzene	0.0095	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Chloroform	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Methylene Chloride	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Toluene	ND(0.0050)	0.0021 J [0.0042 J]	0.00087 J
trans-1,2-Dichloroethene	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Trichloroethene	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Trichlorofluoromethane	ND(0.0050)	ND(0.0050) [ND(0.0050)]	0.0024 J
Total VOCs	0.010 J	0.0021 J [0.0042 J]	0.0033 J
PCBs-Unfiltered			
Aroclor-1254	0.00052	NA	ND(0.000065)
Aroclor-1260	0.000097	NA	ND(0.000065)
Total PCBs	0.000617	NA	ND(0.000065)
PCBs-Filtered			
Aroclor-1254	0.00013	NA	ND(0.000065)
Aroclor-1260	ND(0.000065)	NA	ND(0.000065)
Total PCBs	0.00013	NA	ND(0.000065)
Semivolatile Organics			
1,2,4-Trichlorobenzene	ND(0.010)	ND(0.0050) [ND(0.0050)]	ND(0.010)
1,2-Dichlorobenzene	ND(0.010)	ND(0.0050) [ND(0.0050)]	ND(0.010)
1,3-Dichlorobenzene	ND(0.010)	ND(0.0050) [ND(0.0050)]	ND(0.010)
1,4-Dichlorobenzene	ND(0.010)	ND(0.0050) [ND(0.0050)]	ND(0.010)
2-Chlorophenol	ND(0.010)	NA	ND(0.010)
Acenaphthene	0.0023 J	NA	ND(0.010)
Naphthalene	ND(0.010)	ND(0.0050) [ND(0.0050)]	ND(0.010)
Organochlorine Pesticides			
None Detected	-	NA	NA
Organophosphate Pesticides			
None Detected		NA	NA
Herbicides			
None Detected		NA	NA
Furans			•
2,3,7,8-TCDF	ND(0.000000078)	NA	ND(0.000000023)
TCDFs (total)	ND(0.000000078)	NA	ND(0.000000023)
1,2,3,7,8-PeCDF	ND(0.00000011)	NA	ND(0.000000034)
2,3,4,7,8-PeCDF	ND(0.00000011)	NA	ND(0.000000035)
PeCDFs (total)	ND(0.00000011)	NA	ND(0.000000035)
1,2,3,4,7,8-HxCDF	ND(0.000000086)	NA	ND(0.000000025)
1,2,3,6,7,8-HxCDF	ND(0.000000070)	NA	ND(0.000000021)
1,2,3,7,8,9-HxCDF	ND(0.000000094)	NA	ND(0.000000028)
2,3,4,6,7,8-HxCDF	ND(0.000000084)	NA	ND(0.000000025)
HxCDFs (total)	ND(0.000000094)	NA	ND(0.000000028)
1,2,3,4,6,7,8-HpCDF	ND(0.000000064)	NA	ND(0.000000054)
1,2,3,4,7,8,9-HpCDF	ND(0.000000081)	NA	ND(0.000000068)
HpCDFs (total)	ND(0.000000081)	NA	ND(0.000000068)
OCDF	ND(0.00000017)	NA	ND(0.000000041)

S Parameter Date C	ample ID: collected:	GMA3-3 04/13/05	GMA3-4 04/12/05	GMA3-5 04/13/05
Dioxins	e li e e le e e e e e e e e e e e e e e			
2 3 7 8-TCDD	[ND(0.00000089)	ΝΔ	ND(0.00000026)
		ND(0.00000000000000000000000000000000000	NA	ND(0.000000026)
1 2 3 7 8-PeCDD		ND(0.00000000000000000000000000000000000	ΝΔ	ND(0.000000028)
PoCDDs (total)		ND(0.000000015)	ΝΔ	ND(0.000000048)
		ND(0.00000013)	NA	ND(0.000000043)
1 2 3 6 7 8-HyCDD		ND(0.00000013)		ND(0.000000043)
1 2 3 7 8 0 HyCDD		ND(0.00000010)		ND(0.000000036)
HyCDDs (total)		ND(0.000000011)	NA	ND(0.00000000000000000000000000000000000
1 2 3 4 6 7 8-HpCDD		ND(0.00000013)		ND(0.000000043)
		ND(0.00000012)		ND(0.000000035)
		ND(0.00000012)		ND(0.000000033)
		0.00000019		0.000000072)
		0.00000013		0.0000000000
Antimony	1		NIA	ND(0.0600)
Anumony		ND(0.0600)	NA NA	ND(0.0600)
Arsenic		0.00420 B	NA	ND(0.0100)
Barium		0.100 B	NA NA	0.0270 B
Beryllium		ND(0.00100)	NA	ND(0.00100)
		ND(0.00500)	NA	0.000720 B
Chromium		ND(0.0100)	NA	ND(0.0100)
Cobalt		ND(0.0500)	NA	0.00770 B
Copper		0.00170 B	NA	0.00150 B
Cyanide		0.00530 B	NA	ND(0.0100)
Lead		ND(0.00300)	NA	ND(0.00300)
Mercury		ND(0.000200)	NA	ND(0.000200)
Nickel		0.00680 B	NA	0.00270 B
Selenium		ND(0.00500)	NA	ND(0.00500)
Silver		0.00110 B	NA	0.00200 B
Sulfide		3.20 B	NA	3.20 B
Vanadium		0.00220 B	NA	0.00280 B
Zinc		0.0160 B	NA	0.00730 B
Inorganics-Filtered				
Antimony		ND(0.0600)	NA	ND(0.0600)
Arsenic		ND(0.0100)	NA	ND(0.0100)
Barium		0.100 B	NA	0.0300 B
Beryllium		ND(0.00100)	NA	ND(0.00100)
Cadmium		ND(0.00500)	NA	ND(0.00500)
Chromium		ND(0.0100)	NA	ND(0.0100)
Cobalt		0.00140 B	NA	0.00950 B
Copper		0.00200 B	NA	0.00190 B
Cyanide		0.00490 B	NA	ND(0.0100)
Lead		ND(0.00300)	NA	ND(0.00300)
Mercury		ND(0.000200)	NA	ND(0.000200)
Nickel		0.00590 B	NA	0.00260 B
Selenium		ND(0.00500)	NA	0.00540
Silver		ND(0.00500)	NA	ND(0.00500)
Vanadium		ND(0.0500)	NA	ND(0.0500)
Zinc		0.0100 B	NA	0.00360 B
Natural Attenuation Parame	eters			
Alkalinity (Total)		NA	NA	NA
Chloride		NA	NA	NA
Dissolved Organic Carbon		NA	NA	NA
Dissolved Iron		NA	NA	NA
Ethane		NA	NA	NA
Ethene		NA	NA	NA
Methane		NA	NA	NA
Nitrate Nitrogen		NA	NA	NA
Nitrite Nitrogen		NA	NA	NA
Sulfate (turbidimetric)		NA	NA	NA

Sample ID:		GMA3-6	GMA3-9	OBG-2
Parameter	Date Collected:	04/12/05	04/12/05	04/14/05
Volatile Organic	S			
1,1,2,2-Tetrachlo	roethane	ND(0.0050)	ND(0.0050)	ND(0.0050)
1,4-Dioxane		ND(0.20)	ND(0.20)	ND(0.20)
Acetone		0.0031 J	0.0037 J	ND(0.010)
Benzene		ND(0.0050)	ND(0.0050)	ND(0.0050)
Carbon Disulfide		ND(0.0050)	ND(0.0050)	ND(0.0050)
Carbon Tetrachlo	oride	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chlorobenzene		0.0018 J	ND(0.0050)	ND(0.0050)
Chloroform		ND(0.0050)	ND(0.0050)	ND(0.0050)
Methylene Chlorid	de	0.011	ND(0.0050)	ND(0.0050)
Toluene		0.0026 J	0.0013 J	0.00051 J
trans-1,2-Dichlor	oethene	ND(0.0050)	ND(0.0050)	ND(0.0050)
Trichloroethene		ND(0.0050)	ND(0.0050)	ND(0.0050)
Trichlorofluorome	ethane	ND(0.0050)	ND(0.0050)	ND(0.0050)
Total VOCs		0.019 J	0.0050 J	0.00051 J
PCBs-Unfiltered	d			
Aroclor-1254		ND(0.000065)	NA	NA
Aroclor-1260		ND(0.000065)	NA	NA
Total PCBs		ND(0.000065)	NA	NA
PCBs-Filtered		· · · ·		
Aroclor-1254		ND(0.000065)	NA	NA
Aroclor-1260		ND(0.000065)	NA	NA
Total PCBs		ND(0.000065)	NA	NA
Semivolatile Or	ganics	1 /		
1.2.4-Trichlorobe	nzene	ND(0.010)	ND(0.0050)	ND(0.0050)
1,2-Dichlorobenz	ene	ND(0.010)	ND(0.0050)	ND(0.0050)
1,3-Dichlorobenz	ene	ND(0.010)	ND(0.0050)	ND(0.0050)
1,4-Dichlorobenz	ene	0.0035 J	ND(0.0050)	ND(0.0050)
2-Chlorophenol		ND(0.010)	NA	NA
Acenaphthene		ND(0.010)	NA	NA
Naphthalene		ND(0.010)	ND(0.0050)	ND(0.0050)
Organochlorine	Pesticides		<u> </u>	· · · ·
None Detected		NA	NA	NA
Organophospha	ate Pesticides			
None Detected		NA	NA	NA
Herbicides				
None Detected		NA	NA	NA
Furans				
2,3,7,8-TCDF		ND(0.000000047)	NA	NA
TCDFs (total)		ND(0.0000000047)	NA	NA
1.2.3.7.8-PeCDF		ND(0.00000016)	NA	NA
2,3,4,7,8-PeCDF		ND(0.000000016)	NA	NA
PeCDFs (total)		ND(0.000000016)	NA	NA
1,2,3,4,7,8-HxCD)F	ND(0.000000012)	NA	NA
1,2,3,6,7,8-HxCDF		ND(0.000000097)	NA	NA
1,2,3,7,8,9-HxCDF		ND(0.00000013)	NA	NA
2,3,4,6,7,8-HxCDF		ND(0.00000012)	NA	NA
HxCDFs (total)		ND(0.00000013)	NA	NA
1,2,3,4,6,7,8-HpC	DF	ND(0.000000090)	NA	NA
1,2,3,4,7,8,9-HpC	DF	ND(0.00000011)	NA	NA
HpCDFs (total)		ND(0.00000011)	NA	NA
OCDF		ND(0.00000020)	NA	NA

	Sample ID:	GMA3-6	GMA3-9	OBG-2
Parameter	Date Collected:	04/12/05	04/12/05	04/14/05
Dioxins				
2,3,7,8-TCDD		ND(0.000000064)	NA	NA
TCDDs (total)		ND(0.000000064)	NA	NA
1,2,3,7,8-PeCDD		ND(0.00000021)	NA	NA
PeCDDs (total)		ND(0.00000021)	NA	NA
1,2,3,4,7,8-HxCDD		ND(0.000000017)	NA	NA
1,2,3,6,7,8-HxCDD		ND(0.00000013)	NA	NA
1,2,3,7,8,9-HxCDD		ND(0.000000014)	NA	NA
HxCDDs (total)		ND(0.000000017)	NA	NA
1.2.3.4.6.7.8-HpCDD)	ND(0.00000015)	NA	NA
HpCDDs (total)		ND(0.00000015)	NA	NA
OCDD		ND(0.00000018)	NA	NA
Total TEQs (WHO T	EFs)	0.00000023	NA	NA
Inorganics-Unfilter	red			
Antimony		ND(0.0600)	NA	NA
Arsenic		ND(0.0100)	NA	NA
Barium		0 180 B	NA	NΔ
Bervllium		ND(0.00100)	NA	NA
Cadmium		ND(0.00500)	ΝΔ	NΔ
Chromium		ND(0.0100)	NA	NΔ
Cobalt		ND(0.0500)	NA	NΔ
Coppor		ND(0.0350)		NA
Cupper		ND(0.0230)		N/A N/A
Lood		0.00180 B		NA NA
Moroun		ND(0.000200)		
Niekol		ND(0.000200)		
Selenium		ND(0.0400)		
Selenium		ND(0.00500)	NA NA	NA NA
Silver		0.00120 B		NA NA
Suillue		3.20 B	INA NA	NA NA
		ND(0.0500)	INA NA	NA NA
		0.00630 B	INA	INA
Inorganics-Filtered	1			
Antimony		ND(0.0600)	NA	NA
Arsenic		ND(0.0100)	NA	NA
Barium		0.160 B	NA	NA
Beryllium		ND(0.00100)	NA	NA
Cadmium		ND(0.00500)	NA	NA
Chromium		ND(0.0100)	NA	NA
Cobalt		ND(0.0500)	NA	NA
Copper		ND(0.0250)	NA	NA
Cyanide		ND(0.0100)	NA	NA
Lead		ND(0.00300)	NA	NA
Mercury		ND(0.000200)	NA	NA
Nickel		ND(0.0400)	NA	NA
Selenium		ND(0.00500)	NA	NA
Silver		ND(0.00500)	NA	NA
Vanadium		ND(0.0500)	NA	NA
Zinc		ND(0.0200)	NA	NA
Natural Attenuation	n Parameters			
Alkalinity (Total)		NA	NA	NA
Chloride		NA	NA	NA
Dissolved Organic C	Carbon	NA	NA	NA
Dissolved Iron		NA	NA	NA
Ethane		NA	NA	NA
Ethene		NA	NA	NA
Methane		NA	NA	NA
Nitrate Nitrogen		NA	NA	NA
Nitrite Nitrogen		NA	NA	NA
Sulfate (turbidimetric	c)	NA	NA	NA

BASELINE SEMI-ANNUAL GROUNDWATER SAMPLING GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, Appendix IX+3 constituents, and Natural Attenuation Parameters.
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998.
- With the exception of dioxin/furans, only those constituents detected in one or more samples are summarized.
- 6. Indicates that all constituents for the parameter group were not detected.

Data Qualifiers:

- Organics (volatiles, PCBs, semivolatiles, pesticides, herbicides, dioxin/furans)
 - J Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics and Natural Attenuation Parameters

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

NAPL SAMPLING GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Parameter	Sample ID: Date Collected:	GMA3-10 05/12/05	UB-PZ-3 05/12/05				
Volatile Organi	Volatile Organics						
Ethylbenzene		0.0064 J	ND(0.31)				
lodomethane		0.0058 J	ND(0.31)				
Toluene		0.0086 J	ND(0.31)				
Xylenes (total)		0.051	0.049 J				

Notes:

- Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles.
- 2. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 3. Only detected constituents are summarized.

Data Qualifiers:

Organics (volatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

TABLE 23-4 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

		Depth	Depth to		LNAPL	May 2005
Well	Date	to Water	LNAPL	Ihickness	Removed	Removal
Name		(ft BMP)	(ft BMP)	(feet)	(liters)	(liters)
51-19	5/24/2005	10.55	9.81	0.74	0.457	0.457
51-21	5/4/2005	14.50	Р	< 0.01	2.274	9.096
	5/12/2005	14.50	Р	< 0.01	2.274	
	5/17/2005	14.66	Р	< 0.01	2.274	
	5/25/2005	14.77		0.00	2.274	
59-03R	5/24/2005	11.85	10.76	1.09	0.561	0.561
GMA3-10	5/6/2005	11.01	10.20	0.81	0.500	1.883
	5/12/2005	11.09	10.28	0.81	0.500	
	5/19/2005	11.10	10.42	0.68	0.420	
	5/24/2005	11.30	10.55	0.75	0.463	
GMA3-12	5/6/2005	11.00	10.55	0.45	1.112	5.713
	5/10/2005	11.05	10.65	0.40	1.283	
	5/11/2005	10.79	10.68	0.11	0.480	
	5/12/2005	10.80	10.70	0.10	0.514	
	5/19/2005	11.25	10.82	0.43	1.063	
	5/24/2005	11.44	10.93	0.51	1.261	
GMA3-13	5/6/2005	11.00	10.35	0.65	0.401	2.297
	5/10/2005	10.95	10.40	0.55	0.523	
	5/11/2005	10.74	10.46	0.28	0.442	
	5/12/2005	10.84	10.48	0.36	0.363	
	5/19/2005	11.05	10.59	0.46	0.284	
	5/24/2005	11.18	10.72	0.46	0.284	
UB-PZ-3	5/24/2005	11.70	11.32	0.38	0.132	0.132

Total Automated LNAPL Removal at well 51-21 for May 2005: 9.096 liters 2.40 Gallons

Total Manual LNAPL Removal at all other wells for May 2005: 11.043 liters 2.91 Gallons

Total LNAPL Removed for May 2005: 20.139 liters 5.31 Gallons

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. P indicates that LNAPL or DNAPL is present at a thickness that is < 0.01 feet. The corresponding thickness is recorded as such.
- LNAPL recovery testing was performed from 5/10/2005 to 5/12/2005 at wells GMA3-12 and GMA3-13.

LNAPL thickness data represents the initial measurements on each date. LNAPL removal data represents the total volume recovered on each date.

TABLE 23-5 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

May 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
51-05	996.44	5/24/2005	8.70		0.00		12.38	0.00	987.74
51-06	997.36	5/24/2005	10.30		0.00		14.64	0.00	987.06
51-07	997.08	5/24/2005	10.25		0.00		11.28	0.00	986.83
51-08	997.08	5/6/2005	9.97	9.95	0.02		14.66	0.00	987.13
51-08	997.08	5/12/2005	10.14	10.11	0.03		14.66	0.00	986.97
51-08	997.08	5/19/2005	10.29	10.26	0.03		14.67	0.00	986.82
51-08	997.08	5/24/2005	10.43	10.41	0.02		14.66	0.00	986.67
51-09	997.70	5/24/2005	10.20		0.00		11.60	0.00	987.50
51-11	994.37	5/24/2005	8.13		0.00		13.41	0.00	986.24
51-12	996.55	5/24/2005	7.45		0.00		11.80	0.00	989.10
51-13	997.42	5/24/2005	DRY		0.00		10.05	0.00	987.37
51-14	996.77	5/24/2005	8.82		0.00		15.00	0.00	987.95
51-15	996.43	5/24/2005	9.91		0.00		14.50	0.00	986.52
51-16R	996.39	5/24/2005	9.78	9.69	0.09		14.55	0.00	986.69
51-17	996.43	5/24/2005	Well was p	aved over;	needs to be	replaced			NA
51-18	997.12	5/24/2005	10.46		0.00		12.60	0.00	986.66
51-19	996.43	5/24/2005	10.55	9.81	0.74		14.05	0.00	986.57
51-21	1001.49	5/4/2005	14.50	Р	< 0.01		NM	0.00	986.99
51-21	1001.49	5/12/2005	14.50	Р	< 0.01		NM	0.00	986.99
51-21	1001.49	5/17/2005	14.66	Р	< 0.01		NM	0.00	986.83
51-21	1001.49	5/25/2005	14.77		0.00		NM	0.00	986.72
59-01	997.52	5/24/2005	10.73		0.00		11.35	0.00	986.79
59-03R	997.64	5/24/2005	11.85	10.76	1.09		17.05	0.00	986.80
59-07	997.96	5/24/2005	11.14	11.12	0.02		23.51	0.00	986.84
GMA3-10	997.54	5/6/2005	11.01	10.20	0.81		18.02	0.00	987.28
GMA3-10	997.54	5/12/2005	11.09	10.28	0.81		18.02	0.00	987.20
GMA3-10	997.54	5/19/2005	11.10	10.42	0.68		18.02	0.00	987.07
GMA3-10	997.54	5/24/2005	11.30	10.55	0.75		18.02	0.00	986.94
GMA3-11	997.25	5/24/2005	10.05		0.00		18.42	0.00	987.20
GMA3-12	997.84	5/6/2005	11.00	10.55	0.45		21.23	0.00	987.26
GMA3-12	997.84	5/10/2005	11.05	10.65	0.40		21.25	0.00	987.16
GMA3-12	997.84	5/11/2005	10.79	10.68	0.11		21.25	0.00	987.15
GMA3-12	997.84	5/12/2005	10.80	10.70	0.10		21.25	0.00	987.13
GMA3-12	997.84	5/19/2005	11.25	10.82	0.43		21.25	0.00	986.99
GMA3-12	997.84	5/24/2005	11.44	10.93	0.51		21.25	0.00	986.87
GMA3-13	997.73	5/6/2005	11.00	10.35	0.65		17.83	0.00	987.33
GMA3-13	997.73	5/10/2005	10.95	10.40	0.55		17.82	0.00	987.29
GMA3-13	997.73	5/11/2005	10.74	10.46	0.28		17.82	0.00	987.25
GMA3-13	997.73	5/12/2005	10.84	10.48	0.36		17.82	0.00	987.22
GMA3-13	997.73	5/19/2005	11.05	10.59	0.46		17.82	0.00	987.11
GMA3-13	997.73	5/24/2005	11.18	10.72	0.46		17.82	0.00	986.98
GMA3-14	997.42	5/24/2005	10.45		0.00		17.05	0.00	986.97
UB-MW-10	995.99	5/24/2005	9.15		0.00		15.80	0.00	986.84
UB-PZ-3	998.15	5/24/2005	11.70	11.32	0.38		13.38	0.00	986.80

TABLE 23-5 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 3

CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS May 2005

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet; the corresponding thickness is recorded as such.
- 6. LNAPL recovery testing was performed from 5/10/2005 to 5/12/2005 at wells GMA3-12 and GMA3-13. LNAPL thickness data represents the initial measurements at these wells on each date.

ITEM 24 GROUNDWATER MANAGEMENT AREAS PLANT SITE 3 (GMA 4) (GECD340) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. Activities Undertaken/Completed

Conducted routine groundwater elevation monitoring at well GMA4-3.

b. <u>Sampling/Test Results Received</u>

See attached table.

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine monitoring at well GMA4-3.
- Evaluate groundwater elevation and analytical data and work on preparation of spring 2005 monitoring report.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

Received EPA approval of GE's February 2005 GMA 4 Groundwater Quality Interim Report for Fall 2004 (May 31, 2005).

TABLE 24-1 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 4

CONSENT DECREE MONTHLY STATUS REPORT **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS** May 2005

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)
GMA4-3	1,003.95	5/23/2005	16.90		0.00		26.25	0.00	987.05

Notes:

1. ft BMP - feet Below Measuring Point.

2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.

ITEM 25 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS A & C (GMA 5) (GECD350) MAY 2005

* All activities described below for this item were conducted pursuant to the Consent Decree.

a. <u>Activities Undertaken/Completed</u>

None

b. <u>Sampling/Test Results Received</u>

None

c. <u>Work Plans/Reports/Documents Submitted</u>

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Annual groundwater sampling anticipated to be conducted in October 2005.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

Attachment A

NPDES Sampling Records and Results May 2005

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
NPDES Sampling	001-A6451	5/2/05	Water	SGS	Oil & Grease	5/11/05
NPDES Sampling	001-A6453	5/2/05	Water	SGS	PCB	5/11/05
NPDES Sampling	001-A6461	5/3/05	Water	SGS	TSS	5/11/05
NPDES Sampling	005-A6445/A6446	4/26/05	Water	SGS	PCB	5/3/05
NPDES Sampling	005-A6462/A6463	5/3/05	Water	SGS	PCB, TSS, BOD	5/11/05
NPDES Sampling	005-A6473/A6474	5/10/05	Water	SGS	PCB	5/18/05
NPDES Sampling	005-A6485/A6486	5/17/05	Water	SGS	PCB	5/26/05
NPDES Sampling	005-A6498/A6499	5/24/05	Water	SGS	PCB	5/31/05
NPDES Sampling	005-A6509/A6510	5/31/05	Water	SGS	PCB	
NPDES Sampling	09B-A6438	4/24/05	Water	SGS	TSS	5/3/05
NPDES Sampling	09B-A6443	4/25/05	Water	SGS	BOD	5/3/05
NPDES Sampling	09B-A6448	5/1/05	Water	SGS	TSS	5/11/05
NPDES Sampling	09B-A6458	5/2/05	Water	SGS	BOD	5/11/05
NPDES Sampling	09B-A6467	5/9/05	Water	SGS	TSS	5/18/05
NPDES Sampling	09B-A6475	5/10/05	Water	SGS	BOD	5/18/05
NPDES Sampling	09B-A6476	5/15/05	Water	SGS	TSS	5/24/05
NPDES Sampling	09B-A6483	5/16/05	Water	SGS	BOD	5/24/05
NPDES Sampling	09B-A6491	5/22/05	Water	SGS	TSS	5/31/05
NPDES Sampling	09B-A6496	5/23/05	Water	SGS	BOD	5/31/05
NPDES Sampling	09B-A6503	5/29/05	Water	SGS	TSS	
NPDES Sampling	09B-A6511	5/31/05	Water	SGS	BOD	
NPDES Sampling	09C-A6436	4/24/05	Water	SGS	Oil & Grease	5/3/05
NPDES Sampling	09C-A6449	5/1/05	Water	SGS	Oil & Grease	5/11/05
NPDES Sampling	09C-A6465	5/8/05	Water	SGS	Oil & Grease	5/18/05
NPDES Sampling	09C-A6477	5/15/05	Water	SGS	Oil & Grease	5/24/05
NPDES Sampling	09C-A6489	5/22/05	Water	SGS	Oil & Grease	5/31/05
NPDES Sampling	09C-A6501	5/29/05	Water	SGS	Oil & Grease	
NPDES Sampling	64G-A6441	4/25/05	Water	SGS	Oil & Grease	5/3/05
NPDES Sampling	64G-A6456	5/2/05	Water	SGS	Oil & Grease	5/11/05
NPDES Sampling	64G-A6470	5/9/05	Water	SGS	Oil & Grease	5/18/05
NPDES Sampling	64G-A6481	5/16/05	Water	SGS	Oil & Grease	5/24/05
NPDES Sampling	64G-A6494	5/23/05	Water	SGS	Oil & Grease	5/31/05
NPDES Sampling	64G-A6506	5/30/05	Water	SGS	Oil & Grease	
NPDES Sampling	64T-A6439	4/25/05	Water	SGS	Oil & Grease	5/3/05
NPDES Sampling	64T-A6454	5/2/05	Water	SGS	Oil & Grease	5/11/05
NPDES Sampling	64T-A6468	5/9/05	Water	SGS	Oil & Grease	5/18/05
NPDES Sampling	64T-A6479	5/16/05	Water	SGS	Oil & Grease	5/24/05
NPDES Sampling	64T-A6492	5/23/05	Water	SGS	Oil & Grease	5/31/05
NPDES Sampling	64T-A6504	5/30/05	Water	SGS	Oil & Grease	
NPDES Sampling	A6459R	5/3/05	Water	SGS	Acute Toxicity Test	5/16/05
NPDES Sampling	A6459RCN	5/3/05	Water	SGS	CN	5/11/05

V:\GE_Pittsfield_General\Reports and Presentations\Monthly Reports\2005\05-05 CD Monthly\Tracking Logs\Tracking.xls

TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING MAY 2005

NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

Project Name	Field Sample ID	Sample Date	Matrix	Laboratory	Analyses	Date Received
NPDES Sampling	A6459RTM	5/3/05	Water	SGS	Metals (10)	5/11/05
NPDES Sampling	A6460C	5/3/05	Water	SGS	Acute Toxicity Test	5/16/05
NPDES Sampling	A6460CCN	5/3/05	Water	SGS	CN	5/11/05
NPDES Sampling	A6460CDM	5/3/05	Water	SGS	Filtered Metals (8)	5/11/05
NPDES Sampling	A6460CTM	5/3/05	Water	SGS	Metals (10)	5/11/05
NPDES Sampling	APR05WK5	4/26/05	Water	SGS	Cu, Pb, Zn	5/3/05
NPDES Sampling	JUN05WK1	5/31/05	Water	SGS	Cu, Pb, Zn	
NPDES Sampling	MAY05WK2	5/10/05	Water	SGS	Cu, Pb, Zn	5/18/05
NPDES Sampling	MAY05WK3	5/17/05	Water	SGS	Cu, Pb, Zn	5/26/05
NPDES Sampling	MAY05WK4	5/24/05	Water	SGS	Cu, Pb, Zn	5/31/05

Sample ID:	001-A6451	001-A6453	001-A6461	005-A6445/A6446	005-A6462/A6463	005-A6473/A6474	005-A6485/A6486
Parameter Date Collected:	05/02/05	05/02/05	05/03/05	04/26/05	05/03/05	05/10/05	05/17/05
PCBs-Unfiltered							
Aroclor-1254	NA	0.00016	NA	ND(0.000065)	0.000067	ND(0.000065)	ND(0.000065)
Aroclor-1260	NA	ND(0.000065)	NA	ND(0.000065)	0.000055 J	ND(0.000065)	ND(0.000065)
Total PCBs	NA	0.00016	NA	ND(0.000065)	0.000122	ND(0.000065)	ND(0.000065)
Inorganics-Unfiltered							
Aluminum	NA	NA	NA	NA	NA	NA	NA
Cadmium	NA	NA	NA	NA	NA	NA	NA
Calcium	NA	NA	NA	NA	NA	NA	NA
Chromium	NA	NA	NA	NA	NA	NA	NA
Copper	NA	NA	NA	NA	NA	NA	NA
Cyanide	NA	NA	NA	NA	NA	NA	NA
Lead	NA	NA	NA	NA	NA	NA	NA
Magnesium	NA	NA	NA	NA	NA	NA	NA
Nickel	NA	NA	NA	NA	NA	NA	NA
Silver	NA	NA	NA	NA	NA	NA	NA
Zinc	NA	NA	NA	NA	NA	NA	NA
Inorganics-Filtered							
Aluminum	NA	NA	NA	NA	NA	NA	NA
Cadmium	NA	NA	NA	NA	NA	NA	NA
Chromium	NA	NA	NA	NA	NA	NA	NA
Copper	NA	NA	NA	NA	NA	NA	NA
Lead	NA	NA	NA	NA	NA	NA	NA
Nickel	NA	NA	NA	NA	NA	NA	NA
Silver	NA	NA	NA	NA	NA	NA	NA
Zinc	NA	NA	NA	NA	NA	NA	NA
Conventionals							
Biological Oxygen Demand (5-day)	NA	NA	NA	NA	ND(2.0)	NA	NA
Oil & Grease	ND(5.0)	NA	NA	NA	NA	NA	NA
Total Suspended Solids	NA	NA	43.0	NA	ND(5.00)	NA	NA

Parameter Date	Sample ID: te Collected:	005-A6498/A6499 05/24/05	09B-A6438 04/24/05	09B-A6443 04/25/05	09B-A6448 05/01/05	09B-A6458 05/02/05	09B-A6467 05/09/05	09B-A6475 05/10/05	09B-A6476 05/15/05	09B-A6483 05/16/05
PCBs-Unfiltered										
Aroclor-1254		0.000025 J	NA							
Aroclor-1260		ND(0.000065)	NA							
Total PCBs		0.000025 J	NA							
Inorganics-Unfiltere	d									
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA	NA	NA
Cyanide		NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA	NA	NA
Magnesium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA	NA	NA
Inorganics-Filtered										
Aluminum		NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium		NA	NA	NA	NA	NA	NA	NA	NA	NA
Copper		NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead		NA	NA	NA	NA	NA	NA	NA	NA	NA
Nickel		NA	NA	NA	NA	NA	NA	NA	NA	NA
Silver		NA	NA	NA	NA	NA	NA	NA	NA	NA
Zinc		NA	NA	NA	NA	NA	NA	NA	NA	NA
Conventionals										
Biological Oxygen Der	mand (5-day)	NA	NA	ND(2.0)	NA	ND(2.0)	NA	2.9	NA	2.7
Oil & Grease		NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Suspended Solic	ds	NA	16.0	NA	9.00	NA	9.00	NA	ND(5.00)	NA

Sample ID: Parameter Date Collected:	09B-A6491 05/22/05	09B-A6496 05/23/05	09C-A6436 04/24/05	09C-A6449 05/01/05	09C-A6465 05/08/05	09C-A6477 05/15/05	09C-A6489 05/22/05	64G-A6441 04/25/05	64G-A6456 05/02/05
PCBs-Unfiltered				•					
Aroclor-1254	NA								
Aroclor-1260	NA								
Total PCBs	NA								
Inorganics-Unfiltered									
Aluminum	NA								
Cadmium	NA								
Calcium	NA								
Chromium	NA								
Copper	NA								
Cyanide	NA								
Lead	NA								
Magnesium	NA								
Nickel	NA								
Silver	NA								
Zinc	NA								
Inorganics-Filtered									
Aluminum	NA								
Cadmium	NA								
Chromium	NA								
Copper	NA								
Lead	NA								
Nickel	NA								
Silver	NA								
Zinc	NA								
Conventionals									
Biological Oxygen Demand (5-day)	NA	2.0	NA						
Oil & Grease	NA	NA	ND(5.0)	ND(5.0)	1.6 B	1.0 B	1.9 B	ND(5.0)	ND(5.0)
Total Suspended Solids	11.0	NA							

Sample ID: Parameter Date Collected:	64G-A6470 05/09/05	64G-A6481 05/16/05	64G-A6494 05/23/05	64T-A6439 04/25/05	64T-A6454 05/02/05	64T-A6468 05/09/05	64T-A6479 05/16/05	64T-A6492 05/23/05	A6459RCN 05/03/05
PCBs-Unfiltered			•		•			•	
Aroclor-1254	NA	NA							
Aroclor-1260	NA	NA							
Total PCBs	NA	NA							
Inorganics-Unfiltered									
Aluminum	NA	NA							
Cadmium	NA	NA							
Calcium	NA	NA							
Chromium	NA	NA							
Copper	NA	NA							
Cyanide	NA	ND(0.0200)							
Lead	NA	NA							
Magnesium	NA	NA							
Nickel	NA	NA							
Silver	NA	NA							
Zinc	NA	NA							
Inorganics-Filtered									
Aluminum	NA	NA							
Cadmium	NA	NA							
Chromium	NA	NA							
Copper	NA	NA							
Lead	NA	NA							
Nickel	NA	NA							
Silver	NA	NA							
Zinc	NA	NA							
Conventionals									
Biological Oxygen Demand (5-day)	NA	NA							
Oil & Grease	ND(5.0)	2.1 B	ND(5.0)	ND(5.0)	2.1 B	ND(5.0)	1.5 B	ND(5.0)	NA
Total Suspended Solids	NA	NA							

NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

Sample ID: Parameter Date Collected:	A6459RTM 05/03/05	A6460CCN 05/03/05	A6460CDM 05/03/05	A6460CTM 05/03/05	APR05WK5 04/26/05	MAY05WK2 05/10/05	MAY05WK3 05/17/05	MAY05WK4 05/24/05
PCBs-Unfiltered		•					•	•
Aroclor-1254	NA							
Aroclor-1260	NA							
Total PCBs	NA							
Inorganics-Unfiltered								
Aluminum	ND(0.100)	NA	NA	0.120	NA	NA	NA	NA
Cadmium	ND(0.00100)	NA	NA	ND(0.00100)	NA	NA	NA	NA
Calcium	14.0	NA	NA	49.0	NA	NA	NA	NA
Chromium	0.000940 B	NA	NA	0.00130 B	NA	NA	NA	NA
Copper	ND(0.00500)	NA	NA	0.0110	0.00200 B	0.00280 B	0.00660	0.00760
Cyanide	NA	0.00850 B	NA	NA	NA	NA	NA	NA
Lead	ND(0.00500)	NA	NA	0.0160	ND(0.00500)	0.00300 B	ND(0.00500)	0.00590
Magnesium	4.90	NA	NA	20.0	NA	NA	NA	NA
Nickel	0.00200 B	NA	NA	ND(0.00500)	NA	NA	NA	NA
Silver	ND(0.00500)	NA	NA	ND(0.00500)	NA	NA	NA	NA
Zinc	0.00620 B	NA	NA	0.0510	0.0130 B	0.0190 B	0.0140 B	0.0350
Inorganics-Filtered								
Aluminum	NA	NA	ND(0.100)	NA	NA	NA	NA	NA
Cadmium	NA	NA	ND(0.00100)	NA	NA	NA	NA	NA
Chromium	NA	NA	ND(0.00500)	NA	NA	NA	NA	NA
Copper	NA	NA	0.00370 B	NA	NA	NA	NA	NA
Lead	NA	NA	ND(0.00500)	NA	NA	NA	NA	NA
Nickel	NA	NA	ND(0.00500)	NA	NA	NA	NA	NA
Silver	NA	NA	ND(0.00500)	NA	NA	NA	NA	NA
Zinc	NA	NA	0.0410	NA	NA	NA	NA	NA
Conventionals								
Biological Oxygen Demand (5-day)	NA							
Oil & Grease	NA							
Total Suspended Solids	NA							

Notes:

1. Samples were collected by General Electric Company and submitted to SGS Environmental Services, Inc. for analysis of PCBs, cyanide, TSS, BOD, oil & grease, and metals (filtered and unfiltered).

2. NA - Not Analyzed.

3. ND - Analyte was not detected. The number in parenthesis is the associated detection limit.

4. With the exception of inorganics only those constituents detected in one or more samples are summarized.

Data Qualifiers:

Organics (PCBs)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

Inorganics and Conventional Parameters

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

Attachment B

NPDES Discharge Monitoring Reports April 2005

PERMITTEE NAME/ADDRESS (Include Factory) NAME GENERAL ELECTRI	C CORF	PORAT	FICN	NATIONAL POI	LUTANT DISCH	ARGE ELIMINATION SYST	M (NPDES)	AJOR			Form / OMB N	Approved. Io. 2040-0004
ADDRESS ATTN: JEFFREY G 100 WODDLAWN AV PITTBFIELD FACILITY GENERAL ELECTRI LOCATIONPITTEFIELD). RUEI VENUE C COM	BESAN M/ PANY M/	1 A 01201 A 01201		MONI MONI MO MO MO MO MO MO MO MO MO MO MO MO MO		1 12 (1 ANGE NUMBER F D MO DAY O4 30 *	SUBR W) - FINAL ISCHARGE T ** NO DISC	D SILV HARGE	ER	LAKE	
ATTN: MICHAEL T CARR		EHS&I	<u>-</u> Ωυ	ANTITY OR LOADIN	NG	QÜALI		NOTE: Read Instru RATION	ctions befor	NO.	FREQUENC	Y SAMPLE
	\geq		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
РН	SAMP	LE	*****	******		7.4	*****	8.1	(12)	0	01/07	GR
00400 1 0 0 EFFLUENT GROSS VALUE	PERM REQUIRE	IT MENT	******	***	***	5.0 MINIMUM	***	9.0 MAXIMUM	SU		JEEKL	YRANG-C
SOLIDS) TOTAL SUSPENDED	SAMP MEASURE	LE MENT	0	0	(26)	***	****	*****		0	01/30	CP
00530 1 0 0 EFFLUENT GROSS VALUE	PERM REQUIRE	IT MENT	MO AVG	628 DAILY MX	LBS/DY LBS/DY	****	体教授特殊转	林林林林茶林	****		MONT	COMPOS H
OTL & CREASE	SAMP MEASURE	LE MENT	***	5.9	(26)	****	***	3.0	(19)	0	01/30	GR
00556 1 0 0 EFFLUENT GROSS VALUE	PERM REQUIRE	IT MENT	****	DAILY MX	LBS/DY	****	***	15 DAILY MX	MG/L		MONT	ORAB H
PULYCHLORINATED BIPHENYLS (PCBS)	SAMP MEASURE	LE MENT	****	0.0005	(26)	*****	****	*****		0	01/30	GR
39516 1 0 0 EFFLUENT GROSS VALUE	PERM	IT MENT	· * * * * * * * *	REPORT DAILY MX	LBS/DY	****	· · · · · · · · · · · · · · · · · · ·	体存动动动	**** ****		MONT	GRAB
FLOW, IN CONDUIT OR THRU TREATMENT PLANT	SAMP	LE MENT	0.141	0.453	(03)	****	*****	长持任务		0	99/99	RC
SOOSO 1 0 0 EFFLUENT GROSS VALUE	PERM REQUIRE	IT MENT	MD AVG	2.55 DAILY MX	MGD	***	****	· 华华安安全	****		UDUS	NRCORDE
	SAMP	LE MENT								24		Al Angle A
	PERM	IT MENT							1			
	SAMP											Alter a
	PERM	IT MENT				Par and St.						
NAME/TITLE PRINCIPAL EXECUTIVE	OFFICER	I certily i prepared	under penalty of law that U under my direction or sup	his document and all attach ervision in accordance with	ments were a system designed		1-1		TELEPHON	E	C	ATENTC
Michael T. Carroll Mgr. Pittsfield Remediation	Prog.	submittee or those p submittee	that qualified personner pr d. Based on my inquiry of persons directly responsible d is, to the best of my know	the person or persons who is for gathering the informat riedge and belief, true, accu	the information manage the system ion, the informatio trate, and complete	Misha	ul 7. Car	well 113	448-590	2	2004 -	5 25
TYPED OR PRINTED		1 am awa Including	re that there are significan the possibility of fine and	t penalties for submitting fa Imprisonment for knowing	lse Information, violations,	SIGNAT	CER OR AUTHORIZE	D AGENT CO	NUMBER	1	YEAR	MO DAY
SAMPLE AT THE DISCHA	ANY VIOLA	TIONS	Reference ell'ette	chments here) SEPERATOR.								a la contra

PAGE OF

inter.

PERMITTEE NAME/ADDRESS (Include Facility NAME GENERAL ELECTR.) ADDRESS ATTN: JEFFREY (I 100 WOODLAWN AN PLTTSFIELD FACILITY GENERAL ELECTR.) LOCATIONP ITTSFIELD ATTN: MICHAEL T CARF	Name Location (Different IC CORPORA 3. RUEBESA VENUE MIC COMPANY ROLL, EHS&	, TION M A 01201 A 01201 F	RATIONAL PO DISC MACOON PERM YEAR FROM 05	MON MON MON MON MON MON MON MON MON MON	ANDE ELIMINATION SYST NITORING REPORT (DISCH) ITORING PERIOD	EM (NPDES) DMRI A I (MAGE NUMBER F D AO DAY 04 30 *	AJOR SUBR W) - FINAL ISCHARGE 1 ** NO DISC NOTE: Read Instru	TO SILV	'ER	Form Ap OMB No LAKE	proved. . 2040-0004
PARAMETER	\searrow	QU	ANTITY OR LOADI	NG	QUALIT	Y OR CONCENT	NCENTRATION			FREQUENCY	Y SAMPLE
	$\langle \rangle$	AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS		ANALYSIS	
PH	SAMPLE MEASUREMENT	*****	*****		NODI [C]	****	NODI[C]	(12)			in the second
SEE COMMENTS BELOW	PERMIT REQUIREMENT	****	******	***	S.O MINIMUM	****	7.0 MAXIMUM	su		JEEKLY	RANG-0
OIL & GREASE	SAMPLE MEASUREMENT	*****	NODI [C]	(26)	*****	*****	NODI [C]	(19)			
00556 (P. O. O. SEE COMMENTS BELOW	PERMIT REQUIREMENT	*****	DAILY MX	LBS/DY	非接接接持折	****	1 SNOBHCT	MGZL		DNCE/ MONTH	GRAB
POLYCHEORINATED BIPHENYLS (PCBS)	SAMPLE MEASUREMENT	****	NODICI	(26)	*****	***	*****			i Salari Marina	
39516 P O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	并会办托头给	DAILY	LBS/DY	林林林林林	****	长你林林你 好	****		OTRL Y	GRAB
FLOW, IN CONDUIT OR THRU TREATMENT PLANT	SAMPLE MEASUREMENT	NODIC	NOOT [C]	3 03)	****	***	*****			6 (35) 6 4	
50050 P O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	MD AVG/	2. KODHCT	MGD	******	长长春秋香茶	转转数装带的	****		DNCE/	ACCRUE
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT			1945 (1949) 1945 (1949) 1946 (1949)							
	SAMPLE MEASUREMENT										1
	PERMIT REQUIREMENT					and said					
	SAMPLE MEASUREMENT									States -	1
	PERMIT										
NAME/TITLE PRINCIPAL EXECUTIVE	OFFICER I certily	order penalty of law that U	is document and all attach	ments were			Second Contraction Contraction	TELEPHON	F	DA	TE
Michael T. Carroll	to assure submittee or those p submittee l am avail	that qualified personnel pr 1. Based on my inquiry of bersons directly respondble 1 is, to the best of my know re that there are significant	operty gather and evaluate the person or persons who a for gathering the informat ledge and belief, true, accu penalities for submitting fa	a system designed the information manage the system lon, the information rate, and completion	Micha	UT. Car	sec 41	3 1448-:	5902	2005 5	- 25
Mgr. PINEEDIOT REINTERATION	Prog. Including	the possibility of fine and) (Reference all attac	mprisonment for knowing thrments here)	rielations.	OFFIC	ER OR AUTHORIZED	AGENT	A ANY MILED	2	2685 10	DAY

1.

語言語

OF 1

4

PAGE

PERMITTEE NAME/ADDRESS (Andre Factory) NAME GENERAL ELECTRI ADDRESS ATTN: JEFFREY G 100 WOODLAWN AV PITTSFIELD FACILITY GENERAL ELECTRI LOCATIONS TITSEFIELD	C CORPOR C CORPOR RUEBEE VENUE	MA 01201				EM (NPDES) DMR) MA 5 1 (S MOE NUMBER F WA NO DAY	AJOR SUBR W) - FINAL ATERS TO H	OUSATO	INIC	RIVE	aproved. >. 2040-0004
ATTN: MICHAEL T CARF	ROLL, EHS	5&F				041 301 **	IOTE: Read Instru	ctions befor	com	pleting this	form.
PARAMETER	\sim	QU	ANTITY OR LOADI	NG	QUALIT	TY OR CONCENTR	ATION		NO. EX	OF ANALYSIS	SAMPLE
	$\langle \rangle$	AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS		1. 19	1.1.1.1
BOD, 5-DAY (20 DEG. C)	SAMPLE MEASUREMEN	νт 0.	0	(26)	计非安全部	***	***		0	01/30	CP
D0310 T 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMEN	90 MD AVG	135 DAILY MX	LBS/DY	*****	*****	******	****		DNCE/ MONTH	COMPO
SOLIDS, TOTAL SUSPENDED	SAMPLE MEASUREMEN	9 ти	0	(26)	*****	****	****		0	01/30	OP
00530 T 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMEN	ISS MO AVG	270 DAILY MX	LBS/DY	*****	****	****	****		DNCE/ MONTH	COMPOS
OIL & GREASE	SAMPLE MEASUREMEN	NT #####	11.7	(26)	*****	*****	2.6	(19)	0	01/07	GR
00556 TO 0 SEE COMMENTS BELOW	PERMIT REQUIREMEN	******	135 DAILY MX	LBS/DY	林林林林林	***	15 DAILY MX	MG/L		JEEKL.Y	GRAB
POLYCHUORINATED BIPHENYLS (PCBS)	SAMPLE MEASUREMEN	VT 0.0003	0.0014	(26)	****	*****	*****		0	01/07	CP
39516 T O O SEE COMMENTS BELOW	PERMIT REQUIREMEN	MO AVG	0.03 DAILY MX	LBS/DY	****	*****	****	****	1	JEEKLY	COMPOS
FLOW, IN CONDUIT OR THRU TREATMENT PLANT	SAMPLE	_{ут} 0.252	0.534	(03)	*****	*****	*****		0	99/99	RC
SOOSO T O O SEE COMMENTS BELOW	PERMIT	2.09 MO AVG	2.09 DAILY MX	MGD	*****	****	计操作操作	****		CONTIN	RCORDA
	SAMPLE	ιτ									
	PERMIT	T									
	SAMPLE MEASUREMEN	п									in Dough
	PERMIT	T							article and		
NAME/TITLE PRINCIPAL EXECUTIVE	OFFICER 1 etr	tily under penalty of law that i	his document and all attach	ments were	いないで確認			TELEPHON	E	D/	TE
Michael T. Carroll Mgr. Pittsfield Remediation	Prog. Jam	are that qualified personnel pa nitted. Based on my inquiry of iose persons directly responsible nitted is, to the best of my know aware that there are significan	roperly gather and evaluate the perion or persons who i for gathering the informat chedge and belief, true, accu thenghies for submitting for	a system designed the information manage the system, tion, the information trate, and complete, abe information.	Mael	VALE T. C	acoll 413	448-590	12	2005 5	25
TYPED OR PRINTED	Inclu	iding the possibility of fine and	Imprisonment for knowing	violations.	OFFIC	ER OR AUTHORIZED	AGENT ARE	NUMBER	1200	YEAR N	O DAY
SEE PAGE 8 + 9 OF PE	RMIT FOR	NS (Reference ell'atta R SAMPL'ING R	chments here! EQUIREMEN	rs. sei	E DMR(S)	64G + 064T	FOR FURT	HER PA	RAM	ETERS.	

ਿ

OF 1

PAGE

LOCATION FITTSFIELD ATTN: MICHAEL T CARR	MA C COMPANY MA OLL, EHS&F	01201 01201	FROM OS	MONI MONI MO DA 04 0		4 G (5 Not Rumer F 0 DAY 04 30 **	UBR W) - FINAL OUNDWATEF * NO DIS(OTE: Read Institu	TREAT	MEN	T (005 I ### pleting this	;) i form.
PARAMETER	\searrow	QUA	NTITY OR LOADI	NG	QUALIT	ATION		NO, EX	FREQUENCY	SAMPLE	
	\sim	AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS		ANALYSIS	
PH	SAMPLE MEASUREMENT	****	*****	a stand	7.3	*****	7.9	(12))	99/99	RCDR
00400 T 0 0 SEE COMMENTS BELOW	PERMIT REQUIREMENT	外关条条件	法保护保护法 计	**** ****	S, O MINIMUM	林林桥林林林	9.0 MAXIMUM	SU SU		JEEKLY	RANQ-0
BASE NEUTRALS & ACIE (METHOD 625), TOTAL	SAMPLE MEASUREMENT	***	*****		*****	NODI [9]	NODI [9]	(19)	時代の		
76030 T 0 0 SEE COMMENTS BELOW		***	· 计标准条件作	****	林伊林桥桥	REPORT MO AVG	REPORT DAILY M	MG/L		TRLY	GRAB
VOLATILE COMPOUNDS, (GC/MS)	SAMPLE MEASUREMENT	****	*****		*****	NODI [9]	NODI [9]	(19)			
78732 T O O SEE COMMENTS BELOW	PERMIT	· 体存者者亦存 。	******	**** ****	林林林林林	REPORT MO AVO	DAILY M	MG/L		ITRLY	GRAB
	SAMPLE MEASUREMENT PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT PERMIT REQUIREMENT										1
	SAMPLE MEASUREMENT PERMIT REQUIREMENT			interest and					101 mg		1
	SAMPLE MEASUREMENŢ	Economic Contraction									
	PERMIT										
NAME/TITLE PRINCIPAL EXECUTIVE C	OFFICER prepared u	ider penalty of law that the inder my direction or super hat qualified more and	s document and all attach rvision in accordance with	ments were arsystem designed				TELEPHON	E	DA	TE
Michael T. Carroll Mgr. Pittsfield Remediation I	submitted. of those pe submitted	Based on my inquiry of the recent directly responsible f is, to the best of my knowle	e person or persons who i or gathering the informat edge and belief, true, accu	manage the system, ion, the information rate, and complete	. Micho	et Ca	usel 13	448-5902	2	2005 5	25
TYPED OR PRINTED	I am aware Including 1	be possibility of fine and in	penalities for submitting fa	te information,	OFFIC	ER OR AUTHORIZED	AGENT	EA NUMBER	16.5	YEAR M	O DAY

Ŷ

6.

2

1

OF 1

546

PITTSFIELD ACILITY GENERAL ELECTR OCATIONPITTSFIELD	MA IC COMPANY MA	01201 01201	FROM 05	MONI MO DA 04 O	TORING PERIOD Y YEAR N 1 TO OS	04 30 **	STEWATER	TREATM CHARGE		(005)	form.5
PARAMETER		QUA	NTITY OR LOADI	NG	QUALITY OR CONCENTR		RATION		NO.	FREQUENCY	SAMPLE
		AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
9 B	SAMPLE	***	****		7.0	***	8,2 '	(12)	0	99/99	RCDR
DC400 T O O SEE COMMENTS BELOW		计学会计计师	*****	****	S. O MINIMUM	****	7. 0 MAXIMUM	SU SU -		VEEKLY	RANG
DIBENZÜFÜRAN	SAMPLE MEASUREMENT	*****	******		*****	NODI [6]	NODI [6]	(22)			谨
SIGON T O O SEE COMMENTS BELOW		***	计 计许许特许语	***	长头静长林林	REPORT MD AVO	REPORT DAILY M	PPT		DNCE/	COMPO
	SAMPLE MEASUREMENT	1								- 199 - 199	
	PERMIT	1									
	SAMPLE	1.1				1					1
	PERMIT									A CARLENS	
	SAMPLE	引星建建				11000					
	PERMIT						and section of the se		COLUMN A		
	SAMPLE	E T. Et	件能推荐							11000000000000000000000000000000000000	
	PERMIT	2. 9. 2. 0. 1 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2									
	SAMPLE MEASUREMENT						· · · · · · · · · · · · · · · · · · ·		51 - 25 - 25 - 25 - 25 - 25 - 25		
	PERMIT										anti-
NAME/TITLE PRINCIPAL EXECUTIVE	OFFICER Prepared u	der penalty of law that the oder my direction or super	document and all attach vision in accordance with	ments were a system designed	100 2 10 2			TELEPHON	E	DA	TE
Michael T. Carroll Mgr. Pittsfield Remediation	Prog. submitted	at qualified personnel pro Based on my inquiry of O room directly responsible f s, to the best of my knowle	perly gather and evaluate e person or persons who r or gathering the informati dge and belief, true, accu	the information manage the system, lon, the information rate, and complete.	Mich	had T.C.	and 13	448-590	2	2005 5	5
TYPED OR PRINTED	I am aware Including I	that there are significant p he possibility of fine and in	enalties for submitting fa prisonment for knowing	be information, involutions	SIGNAT	URE OF PRINCIPAL E	AGENT CO	EA NUMBER	1.5	YEAR M	O DAY

PERMITTEE NAME/ADDRESS (Include Factility Name/Location (/D((Internit)) NAME GENERAL ELECTRIC CORPORATION ADDRESS ATTN: JEFFREY G. RUEBESAM 100 WODDLAWN AVENUE PITTSFIELD MA 01201 FACILITY GENERAL ELECTRIC COMPANY LOCATION PITTSFIELD MA 01201				MATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR) MAOOO3891 007 PERMIT NUMBER DISCHARGE NUMBER MONITORING PERIOD 1 YEAR MO YEAR MO OS 04 O1 TO OS 04			MAJOR (SUBR W) F - FINAL DISCHARGE TO HOUSATONIC R *** NO DISCHARGE ***				
PARAMETER		QU	ANTITY OR LOADI	NG	QUALITY OR CONCENTRATION				NO,	FREQUENCY	SAMPLE
	\square	AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	ANALYSIS	TYPE
TEMPERATURE, WATER DEG. FAHRENHEIT	SAMPLE MEASUREMENT	*****	****		****	NODI C	NODIC	(15)	中心に		
OCO11 W O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	*****	******	****	***	70 MO AVG	75 DAILY MX	DEG. F		INCE /	GRAB
PH	SAMPLE MEASUREMENT	****	*****		NODIC	*****	NODI C	(12)		Maria	Here's
SEE COMMENTS BELOW	PERMIT REQUIREMENT	****	*****	****	5.0 MINIMUM	******	9.0 MAXIMUM	SU		JEEKL Y	PANG-0
POLYCHUORINATED BIPHENYLS (PCBS)	SAMPLE MEASUREMENT	***	***		****	NODIC	NODI C	(21)	and and		and the
39516 W O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	特林林林林	******	***	使非种种变形	REPORT. MO AVG	REPORT DAILY MX	PPB		TRLY	GRAD
FLOW, IN CONDUIT OR THRU TREATMENT PLANT	SAMPLE MEASUREMENT	NODIC	NODI C	(03)	*****	****	*****				
SCOSO W O O SEE COMMENTS BELOW	PERMIT	REPORT MO AVG	REPORT DAILY MX	MGD	谷本农林谷林	***	长神静静静静	****	and the second s	DNCE/	CALCTI
	SAMPLE MEASUREMENT									1. 7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	a la
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT		an a								
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT									19-11-2 ⁻¹ -	1
	PERMIT							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1			
NAME/TITLE PRINCIPAL EXECUTIVE Michael T. Carroll Mgr. Pittsfield Remediation	OFFICER I certify a prepared to assure submitted or those public those public to an aver	nder penalty of law that th under my direction or sup- hat qualified personnel pr Based on my inquiry of t restona direcity responsible is, to the best of my know e that there are significant	is document and all attacht resiston in accordance with operty gather and evaluate the person or persons who a for gathering the informati ledge and belief, true, accu penalties for submitting fai	ments were a system designed the information manage the system ion, the informatio rate, and complete be information,	Mice	harf T. C.	XECUTIVE ARE	448-590	e 2	2005 5	TE 25
COMMENTS AND EXPLANATION OF A	ANY VIOLATIONS (Reference all etter	hter internet in the knowing i the internet in the second s RAIN.	viote Bolts.		TEN ON AUTHORIZED		E NUMBER		PAGE	OF

00329/050113-1254

PERMITTEE NAME/ADDRESS (Include Facility Name Location (FD(Gram)) NAME GENERAL ELECTRIC CORPORATION ADDRESS ATTN: JEFFREY G. RUEBESAM 100 WOODLAWN AVENUE			NATIONAL POL DISC MACOOC PERM	NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR) MACCOC/3891 DISCHARGE NUMBER				MAJOR (SUBR W) F - FINAL			
PITTSFIELD FACILITY GENERAL ELECTRI LOCATION PITTSFIELD ATTN: MICHAEL T CARF	M/ C COMPANY M/ ROLL, EHS&d	A 01201 A 01201	FROM 05	FROM 05 04 01		P 10 DAY 04 30 *	*** NO DISCHARGE NOTE: Read Instructions befor			BROOK	form.
PARAMETER	\bigtriangledown	QÚ	ANTITY OR LOADIN	NG	QUALIT	TY OR CONCENT	RATION		NO. EX	FREQUENCY	SAMPLE
	$\langle \rangle$	AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS		ATALISIS	E.
BOD, S-DAY (20 DEG. C)	SAMPLE MEASUREMENT	Ġ4	1.5	(26)	*****	*****	****		0	01/DW	CP
00310 V 0 0 SEE COMMENTS BELOW	PERMIT	MD AVG	438 DAILY MX	LBS/DY	*****	*****	*****	****		HEEKLY	COMPO
PH	SAMPLE MEASUREMENT	******	****		6.4	*****	7.2	(12)	0	01/DW	GR
OC400 V O O SEE COMMENTS BELOW	PERMIT	***	*****	***	5.0 MINIMUM	******	9.0 MAXIMUM	30 SU		JEEKLY	RANG
SOLIDSA TOTAL SUSPENDED	SAMPLE MEASUREMENT	7.7	20.4	(26)	*****	****	****		0	01/07	CP
DOSSO V O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	MD AVO	B76 DAILY MX	LBS/DY	****	****	****	****		NEEKLY	COMPO
DIL & GREASE	SAMPLE MEASUREMENT	******	0	(26)	*****	*****	0	(19)	0	01/DW	GR
CO556 V O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	******	438 DAILY MX	LBS/DY	孙孙孙孙 恭	本本非非非法	15 DAILY MX	MG/L		JEEKLY	GRAE
POLYCHLORINATED BIPHENYLS (PCBS)	SAMPLE MEASUREMENT	****	*****		***	NODI [9]	NODI [9]	(17)	100 C		
37516 V O O SEE COMMENTS BELOW	PERMIT	******	******	***	林林林林林	REPORT MC AVG	REPORT DAILY MX	MG/L		TRLY	GRAB
FLOW, IN CONDUIT OR THRU TREATMENT PLANT	SAMPLE MEASUREMENT	0.023	0.218	(03) MGD	*****	****	****	- 1	0	99/99	RC
SCOSO V O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	REPORT MD AVG	REPORT DAILY MX	MGD	· · · · · · · · · · · · · · · · · · ·	******	教林会林林	***** *****		CONTIN UOUS	RCORD
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
NAME/TITLE PRINCIPAL EXECUTIVE	OFFICER prepared	under penalty of law that U under my direction or sup	is document and all attach ervision in accordance with	ments were a system designed		1	~ -	TELEPHON	E	DA	TE
Michael T. Carroll Mgr. Pittsfield Remediation	Prog. submitted	that qualified personnet pr 1. Based on my inquiry of sersons directly responsible t is, to the best of my know	operty gather and evaluate the person or persons who for gathering the informat riedge and belief, true, accu	the information manage the system, ion, the informatio trate, and complete	Mic	hard to t	andfans	448-590	2	2005 5	25
TYPED OR PRINTED	1 am awa Including	re that there are significant the possibility of fine and i	penalties for submitting faither the penalties for submitting faither the penalties of the	lse Information, violations.	SIGNAT	URE OF PRINCIPAL	ED AGENT	A NUMBER	1	YEAR M	O DAY
COMMENTS AND EXPLANATION OF A SEE PAGE 11 OF PERMINAT DISCHARGE POINT 1	ANY VIOLATIONS IT. SEE DI FO BROOK FO	(Reference all ette MRS 009A + DR PH, OIL	chments here) 009B. RI & GREASE	EPORT SI AND PO	UM OF LOAD CB.	09A + 09	B, FOR BOD	, TSS,	FL	ow. s	AMPLE
EPA Form 3320-1 (Rev. 3/99) Previous edition	s may be used.					003	79/0501134-	part form.		PAGE	OF 1

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (/D(from)) NAME GENERAL ELECTRIC CORPORATION ADDRESS ATTN: JEFFREY G. RUEBESAM 100 WOODLAWN AVENUE PITTSFIELD MA 01201 FACILITY GENERAL ELECTRIC COMPANY LOCATIONPITTSFIELD MA 01201 ATTN: MICHAEL T CARROLL, EHS&F			RATIONAL P DISU MAOO PER FROM VEAR	MATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR) MACOO3891 PERMIT NUMBER MONITORING PERIOD YEAR MO YEAR MO OS 04 OS 04				MAJOR (SUBR W) F - FINAL 09A SAMPLE POINT *** NO DISCHARGE			iproved 5 2040-0004)9 9
PARAMETER	\searrow	Q	JANTITY OR LOAD	ING	QUALIT	TY OR CONCENTR	ATION		NO.	FREQUENCY	SAMPLE
	$\langle \rangle$	AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS] ~	ANALYSIS	TYPE
BOD, S-DAY (20 DEG. C)	SAMPLE MEASUREMEN	NT NOTET	NonieT	(26)	*****	****	****			M	
DO310 V O O BEE COMMENTS BELOW	PERMIT REQUIREMEN	MC AVG	DAILY MX	LBS/DY	****	***	****	****		JEEKLY	COMPO
SOLIDSA, TOTAL SUSPENDED	SAMPLE MEASUREMEN	NT NODICT	NODICT	(26)	*****	*****	*****			(Helphan 1996)	Survey of
00530 V O O SEE COMMENTS BELOW	PERMIT REQUIREMEN	T MO AVC	B76 DAILY MX	LBS/DY	****	****	*****	****		VEEKLY	Самра
FLOW, IN CONDULT OR THRU TREATMENT PLANT	SAMPLE MEASUREMEN		NODI[C]	(03)	*****	神经经外计外	****				Ĩ
SOOSO V O O SEE COMMENTS BELOW	PERMIT REQUIREMEN	MO AVG	REPORT DAILY MX	MGD	*****	推动推动动动	****	****		CONTIN UCUS	RCORD
	SAMPLE MEASUREMEN	чт									1
	PERMIT REQUIREMEN	T				an farman					
	SAMPLE MEASUREMEN	π									
	PERMIT REQUIREMEN	T									
	SAMPLE MEASUREMEN	п							1.1.1.1 1.1.1.1 1.1.1.1		
	PERMIT REQUIREMEN	T									
	SAMPLE MEASUREMEN	rr i									1. A.
PER	PERMIT REQUIREMEN	τ					San Star				
NAME/TITLE PRINCIPAL EXECUTIVE	OFFICER I cer	tity under penalty of law that t ared under my direction or su	this document and all attach pervision in accordance wit	hments were h a system designed				TELEPHON	IE	DA	TE
Michael T. Carroll Mgr. Rittsfield Remediation Prog. TYPED OR PRINTED			roperly gather and evaluat (the person or persons who e for gathering the informa wiedge and belief, true, acc	e the information manage the system, tion, the information urate, and complete.	Mich	al T.Ca	ull 113	448-590)2	2005 5	25
			I penalties for submitting f	alse information, violations.	OFFICER OF AUTHORIZED AGENT			NUMBER	9	YEAR M	O DAY

PAGE OF

÷.

PERMITTEE NAME/ADDRESS (Include Fectility Name / Location (/ Different) NAME GENERAL ELECTRIC CORPORATION ADDRESS ATTN: JEFFREY G. RUEBESAM 100 WOODLAWN AVENUE PITTSFIELD MA 01201 ACILITY GENERAL ELECTRIC COMPANY			MATIONAL PO DISC MACOON PERM	MATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR) MAGOOGES 1 PERMIT NUMBER DISCHARGE NUMBER MONITORING PERIOD			JOR UBR W) - FINAL B SAMPLE	POINT	Form Approved. OMB No. 2040-00 PRIOR TO 009		
ATTN: MICHAEL T CARE	NOLL, EHS&	A 01201 F	FROM 05	04 0	1 10 05	04 30 ** N	* NO DISC OTE: Read Instru	HARGE		1 ***	form.
PARAMETER	$\left \times\right $	QL				AVERAGE	ATION	LINITE	EX	OF	TYPE
BCD, SADAY (20 DEG C)	SAMPLE	0,4	1.5	(26)	***	***	*****	· ·	0	01/DW	CP
DOG10 V O O SEE COMMENTS BELOW		105 MO AVO	438 DAILY MX	LBS/DY	****	和林林华林	****	****		VEEKLY	COMPO
SOLIDS, TOTAL SUSPENDED	SAMPLE MEASUREMENT	77	20.4	(26)	****	*****	****		0	01/07	CP
OO530 V O O SEE COMMENTS BELOW	PERMIT REQUIREMENT	213 Mo Avg	B75 DAILY MX	LBS/DY	****	****	****	****		HEEKLY	сомер
FLOW, IN CONDUIT OR THRU TREATMENT PLANT	SAMPLE MEASUREMENT	0.023	0.218	(03) MGD	*****	****	****		0	99/99	RC
SEE COMMENTS BELOW	PERMIT REQUIREMENT	MD AVQ	DAILY MX	MGD	安井林长谷林	林林黄桥桥茶	***	****		CONTIN	RCORD
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT										
	SAMPLE MEASUREMENT										
	PERMIT REQUIREMENT		A March 1998								
	SAMPLE MEASUREMENT PERMIT REQUIREMENT										
NAME/TITLE PRINCIPAL EXECUTIVE	OFFICER I certily to prepared	under penalty of law that t under my direction or au	his document and all attach pervision in accordance with	iments were h a system designed				TELEPHON	IE	DA	TE
Michael T, Carroll Mgr. Pittsfield Remediation	Prog. to assure submittee or those p submittee	that qualified personnel p d. Based on my inquiry of persons directly responsible d is, to the best of my kno	roperty gather and evaluate the person or persons who a for gathering the informat windge and belief, true, accu	the information manage the system, tion, the information trate, and complete.	Mich	al 7. C.	moll 413	448-59	02	2005 5	25
TYPED OR PRINTED	Including	the possibility of fine and	Imprisonment for knowing	violations.	OFFIC	ER OR AUTHORIZED	AGENT COL	NUMBE	R State	YEAR M	O DAY
SEE PAGE 11 OF PERMI	T. SEE DI	MR 0091; S	SAMPLE AT C	Э́9В.							

EPA Form 3320-1 (Rev. 3/99) Previous editions may be used.

00359/05011 34-part form.

1

PERMITTEE NAME/ADDRESS (Include Facility Network Location (/D((Intro)) NAME GENERAL ELECTRIC CORPORATION ADDRESS ATTN: JEFFREY G. RUEBESAM 100 WOODLAWN AVENUE PITTSFIELD MA 01201 FACILITY GENERAL ELECTRIC COMPANY LOCATIONP ETTSFIELD MA 01201				MATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR) MAQQQ3891 SUM A DISCHARGE NUMBER MONITORING PERIOD YEAR MO DAY TO YEAR MO DAY			MAJOR (SUBR W) F - FINAL METALS:001,004,005,			Form Ap OMB No 07: 005	proved. 2040-0004
ATTN: MICHAEL T CARE	ROLL, EHS	&F			-4.14	N N	IOTE: Read Instru	ctions befo	re com	pleting this	form.
PARAMETER	\sim	QU	ANTITY OR LOAD	ING	QUALD	TY OR CONCENTR	ATION		NO.	FREQUENCY	SAMPLE
	\square	AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS		ANALYSIS	19 19 19
PHOSPHORUS, TOTAL (AS P)	SAMPLE MEASUREMEN	####### T	0	(26)	****	****	***		0	01/30	CP
00665 11 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMEN	******	REPORT DAILY MX	LBS/DY	*****	松关教林林林	****	****		DNCE/ MONTH	COMPOS
NICKEL	SAMPLE	**********	0	(26)	*****	*****	*****		0	02/30	CP
01074 1 0 0 EFFLUENT GROSS VALUE		化分标补合的 F	REPORT DAILY MX	LBS/DY	*****	***	华茶并很快动	****	25.10	ONCE/ MONTH	CUMPON
SILVER TOTAL RECOVERABLE 01079 1 0 0 EFFLUENT GROSS VALUE ZINC	SAMPLE MEASUREMEN	*##### T	0	(26)	******	****	***		0	02/30	CP
	PERMIT	******	REPORT DAILY MX	LBS/DY	华侨并并外校	***	齐林林林共长	***	a Carling	MONTH	COMPOS
	SAMPLE	*######	3.2	(26)	***	*****	***		0	01/07	CP
01094 1 0 0 EFFLUENT GROSS VALUE	PERMIT REQUIREMEN	林谷沙林相公	REPORT DALLY MX	LBS/DY	*****	作外关论并来	******	****		VEEKLY	COMPOS
ALUMINUM, TOTAL	SAMPLE MEASUREMEN	₩₩₩₩₩₩ T	0	(26)	***	****	****		0	02/30	СР
01105 1 0 0 EFFLUENT GROSS VALUE	PERMIT	长生·结核非非	REPORT DAILY MX	LBS/DY	*****	******	并终于条件	****		DNCE/ MONTH	COMPOS
CADMIUM TOTAL RECOVERABLE	SAMPLE MEASUREMEN	T ******	0	(26)	*****	****	***		0	02/30	CP
01113 1 0 0 EFFLUENT GROSS VALUE	PERMIT	******	REPORT DAILY MX	LBS/DY	华林会委使帝	作教授体体会	安非安非荣力	计存存符 存存存存		DNCE/	COMPOS
LEAD TOTAL RECOVERABLE	SAMPLE MEASUREMEN	T *######	0.91	(26)	***	*****	****		0	01/07	CP
01114 1 0 0 EFFLUENT GROSS VALUE	PERMIT	*****	REPORT DAILY MX	LBS/DT	****	林授桥林林林	*****	****		JEEKL Y	COMPOS
NAME/TITLE PRINCIPAL EXECUTIVE	OFFICER J cert	ity under penalty of law that U	is document and all attac	hments were th a system designed	となどです。	S. 7		TELEPHON	IE	DA	TE
Michael T. Carroll Mgr. Pittsfield Remediation	to as subm or th subm	ure that qualified personnel pr lited. Based on my inquiry of se persons directly responsible lited is, to the bast of my know	operly gather and evaluat the person or persons who for gathering the informa riedge and belief, true, acc	e the information manage the system, ation, the information wrate, and complete.	Mu	hart.C	and 413	448-590)2	2005 5	25
TYPED OR PRINTED	Inclu	ling the possibility of fine and	mprisonment for knowing	y violations.	OFFIC	CER OR AUTHORIZED	AGENT	A NUMBER	R	YEAR M	O DAY
COMMENTS AND EXPLANATION OF COMPOSITE PROPORTION	ANY VIOLATION	IS <i>(Reference all atta</i> LOW	chments here)								A PARTY AND
EPA Form 3320-1 (Rev. 3/99) Previous edition	s may be used.				- 31/201-2014	0020	2/050113-	part form.		PAGE	1

THE STATE OF THE S			MATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR) MACOCCERT 1 PERMIT NUMBER MONITORING PERIOD			M (NPDES) DMR) MA (S NOE NUMBER F ME O DAY	MAJOR (SUBR W) F - FINAL METALS: 001, 004, 0(Form Approved. OMB No. 2040-0004			
ATTN: MICHAEL T CAR	ROLL, EHS&F	01201		04 0		04 30 ** N	* NO DISC OTE: Read Instruc	HARGE		I ****	form.		
FARAMETER	$ \times $	AVERAGE			MINIMUM	AVERAGE	MAXIMUM	UNITS	EX	OF ANALYSIS	TYPE		
CHROMIUM TOTAL RECOVERABLE	SAMPLE	****	0.01	(26)	****	***	****		0	02/30	CP		
01118 1 0 0 EFFLUENT CROSS VALUE		******	REPORT DALLY MX	LBS/DY	林林林林林	***	****	****		DNCE/	COMPO		
COPPER TOTAL RECOVERABLE	SAMPLE MEASUREMENT	*****	0.78	(26)	*****	****	****		0	01/07	CP		
01117 1 0 0 EFFLUENT GROSS VALUI		****	REPORT DAILY MX	LBS/DY	并非荣誉并作	******	****	****		JEEKLY	сомро		
CYANIDE TOTAL RECOVERABLE	SAMPLE MEASUREMENT	*****	0.18	(26)	****	****	****		0	02/30	CP		
78248 1 0 0 EFFLUENT GROSS VALUI	PERMIT	***	REPORT DAILY MX	LBS/DY	特法特林林林	*****	计序体设计计	桥林林林 林林林林		MONTH	GRAB		
	SAMPLE MEASUREMENT								間の市				
	PERMIT REQUIREMENT										in the second		
	SAMPLE MEASUREMENT												
	PERMIT									A design of the	-04-1		
	SAMPLE MEASUREMENT								1.1		and the second		
	PERMIT REQUIREMENT												
	SAMPLE MEASUREMENT												
	PERMIT												
NAME/TITLE PRINCIPAL EXECUTIVE Michael T. Carroll Mgr. Pittsfield Remediation	OFFICER I certify au prepared i to assure I submitted or those po- submitted I am awar	nder penalty of law that U under my direction or sup hat qualified personnel pr Based on my inquiry of rooms directly responsible is, to the best of my know e that there are significant	is document and all ettach ervision in accordance with operty gather and evaluate the person or persons who for gathering the informat ledge and belief, true, accu penalities for submitting for	ments were h a system designed the information manage the system, tion, the information grate, and complete, abe information,	Micha	J. T. C	KECUTIVE ARE	448-590	e)2	DA 2005 5	те 23-		
COMMENTS AND EXPLANATION OF COMPOSITE PROPORTIO	ANY VIOLATIONS (ne possibility of fine and Reference all attain IW.	mprisonment for knowing Chroents here)	violations	OFFIC	ER OR AUTHORIZED	<u>agent [COD</u>			YEAR	O DAY		

1

1

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (/D(Grant) NAME GENERAL ELECTRIC CORPORATION ADDRESS ATTN: JEFFREY G. RUEBESAM 100 WODDLAWN AVENUE				HARGE MO	HARGE ELIMINATION SYST NITORING REPORT / S	EM (NRDES) DMR) M. Eb. (VIGE NUMBER	AJOR SUBR W) - FINAL			Form Ap OMB No	proved. 2040-0004
FACILITY GENERAL ELECTR LOCATION PITTSFIELD ATTN: MICHAEL T CAR	ACUTY GENERAL ELECTRIC COMPANY OCATION PITTSFIELD MA 01201 ATTN: MICHAEL T CARROLL, EHS&F		FROM 05	FROM 05 04 0		40 DAY 04 30 +	TOXICS: 001, 004, 00 *** ND DISCHARGE NOTE: Read Instructions befor			07,009	• 011 form.
PARAMETER	\bigtriangledown	QU/	ANTITY OR LOADIN	NG	QUALIT	Y OR CONCENT	RATION		NO.	FREQUENCY	SAMPLE
	$\langle \rangle$	AVERAGE	MAXIMUM	UNITS	MINIMUM	AVERAGE	MAXIMUM	UNITS		ANALYSIS	Ţ.
NDAEL STATRE 48HR AD	SAMPLE MEASUREMENT	****	******		100	*****	*****	(23)	0	01/20	CP
TDM3D 1 0 0 EFFLUENT GROSS VALUE		*****	******	***	35 DAILY MN	林许许乔尔	非非法法律	他R- CENT		DNCE/	COMPOS
	SAMPLE MEASUREMENT									il.	li i
	PERMIT										
	SAMPLE MEASUREMENT						alan Alan Alan Alan				a strengt
	PERMIT										
	SAMPLE				(学生))读						
<u>la la com</u>											
	MEASUREMENT										
10.	REQUIREMENT										
	MEASUREMENT	1				1					
	REQUIREMENT										
	MEASUREMENT	R. 10 19									dia o
	REQUIREMENT	inder senally of law that th	s document and all attach								
Michael T. Carroll Mgr. Pittsfield Remediation	officer prepared to assure submitted or those p aubmitted	under my direction or supe that qualthed personnel pro d. Based on my inquiry of the resons directly responsible is, to the best of my knowl	rvision in accordance with perly gather and evaluate he person or persons who r for gathering the informati edge and belief, true, accu	a system designe the information manage the system ion, the information rate, and complet	n Mich	<u>al T.C.</u>	ruel 113	448-590	<u>e</u> 2	2005 5	TE 25
TYPED OR PRINTED	Including	the possibility of fire and in	nprisonment for knowing	violations.	OFFIC	ER OR AUTHORIZE	D AGENT ARE	NUMBER	1.5	YEAR M	O DAY
COMMENTS AND EXPLANATION OF MONTHLY DRY WEATHER GHRONIC SEE DMR SI WET WEATHER RESULTS	TESTING. JMC FOR QUA	COMPOSITE ARTERLY WE	PROPORTIC T WEATHER	ACUTE.	O FLOW. SUBMIT	FOR JULY	, AUG., SEI WITH A NOD	PT. RE I '9'	POR WHEI	T ACUT N SUBM	E AND

Attachment C

Toxicity Evaluation of Wastewaters Discharged From the General Electric Plant; Pittsfield, Massachusetts [Samples Collected in May 2005]

Toxicity Evaluation of Wastewaters Discharged from The General Electric Plant Pittsfield, Massachusetts

Samples collected in May 2005

Submitted to:

General Electric Area Environmental & Facility Programs 100 Woodlawn Avenue Pittsfield, Massachusetts 01201

SGS Sample ID: TA5-E0-P053

Study Director: Ken Holliday

12 May 2005

SGS Environmental Services 1258 Greenbrier Street Charleston, West Virginia 25311-1002 Tel: 304.346.0725 Fax: 304.346.0761 www.sgs.com

Signatures and Approval

Submitted by: SGS Environmental Services 1258 Greenbrier Street Charleston, West Virginia 25311-1002

> Tel: 304.346.0725 Fax: 304.346.0761 www.sgs.com

llia

Ken Holliday (Study Director ken_holliday@sgs.com May 12, 2005 Date

Titshina L. Mims Technical Writer

May 12, 2005 Date

Barbara Hensley U Project Manager barbara_hensley@sgs.com

May 12, 2005 Date

Whole Effluent Toxicity Test Report Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: _____

May 12, 2005

boner orized signature

Jeannie Latterner

QA/QC Manager

Title

SGS Environmental Services

Table of Contents

	Page
Signatures and Approval	2
Whole Effluent Toxicity Test Report Certification	3
Summary	6
1.0 Introduction	7
1.1 Background	7
1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977)	8
1.3 Objective of the General Electric Study	8
2.0 Materials and Methods	9
2.1 Protocol	9
2.2 Effluent Sample	9
2.3 Dilution Water	10
2.4 Reference Control Water	10
2.5 Test Organisms	11
2.6 Test Procedures	11
2.7 Test Monitoring	12
2.8 Reference Toxicity Tests	13
3.0 Statistics	14
Flowchart for determination of the LC50	15
4.0 Results	16
4.1 Effluent Toxicity Test	16
4.2 Reference Toxicity Test	16
Reference Documents	17
Appendix I - References	22
Appendix II – Chain of Custody	40
Appendix III - Bench Data	42
Appendix IV - U.S. EPA Region I Toxicity Test Summary	48

List of Tables

	_	Page
Table 1	Methods and detection limits of chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)	18
Table 2	Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)	19
Table 3	The water quality measurements recorded during the 48-hour static toxicity test exposing <i>Daphnia pulex</i> to General Electric Pittsfield Plant effluent	20
Table 4	Cumulative percent mortalities recorded during the 48-hour static toxicity test exposing <i>Daphnia pulex</i> to General Electric Pittsfield Plant effluent	21

Summary

Static Acute Toxicity Test with *Daphnia pulex*

Sponsor:	General Electric
Protocol Title:	Acute Aquatic Toxicity Testing, SGS Document Control Number 7002, version 4.0
SGS Study Number:	ТА5-Е0-Р053
Test Material:	Composite effluent from the General Electric Company located in Pittsfield, Massachusetts
GE Sample ID:	A6460C
Dilution Water:	Water from the Housatonic River (grab sample)
GE Sample ID:	A6459R
Dates Collected:	May 02, 2005 to May 03, 2005
Date Received:	May 04, 2005
Test Dates:	May 04, 2005 to May 06, 2005
Test Concentrations:	100% effluent 75% effluent 50% effluent 35% effluent 15% effluent 5% effluent dilution water control reference control secondary reference control (sodium thiosulfate)
Results:	The 48-hour LC50 value was determined to be >100% effluent. The No-Observed-Acute- Effect-Level (NOAEL) was observed to be 100% effluent.

1.0 Introduction

1.1 Background

In 1972, amendments were made to the Clean Water Act (CWA) prohibiting the discharge of any pollutant from a point source to waters of the United States, unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Since the passing of the 1972 amendments to the CWA, significant progress has been made in cleaning up industrial process wastewater and municipal sewage.

The purpose of the National Pollutant Discharge Elimination System (NPDES) Program is to protect human health and the environment. The Clean Water Act requires that all point sources discharging pollutants into waters of the United States must obtain an NPDES permit. By point sources, EPA means discrete conveyances such as pipes or man made ditches.

For many years, discharge limits were based on available technology for wastewater treatment. However, in 1984, the U.S. Environmental Protection Agency (EPA) released a national policy statement entitled "Policy for the Development of Water Quality-Based Permit Limitations for Toxic Pollutants" (U.S. EPA, 1984) which addresses the control of toxic pollutants beyond technology-based requirements in order to meet water quality standards. To implement the new policy, guidance was provided to the respective state and regional permit personnel in the EPA's "Technical Support Document for Water Quality-Based Toxics Control" (U.S. EPA, 1985; U.S. EPA, 1991). The EPA's policy statement and the support document recommended that, where appropriate, permit limits should be based on effluent toxicity as measured in aquatic toxicity tests.

1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977)

The Clean Water Act is a 1977 amendment to the Federal Water Pollution Control Act of 1972, which set the basic structure for regulating discharges of pollutants to waters of the United States. The law gave EPA the authority to set effluent standards on an industry basis (technology-based) and continued the requirements to set water quality standards for all contaminants in surface waters. The CWA makes it unlawful for any person to discharge any pollutant from a point source into navigable waters unless a permit (NPDES) is obtained under the Act. The 1977 amendments focused on toxic pollutants. In 1987, the CWA was reauthorized and again focused on toxic substances, authorized citizen suit provisions, and funded sewage treatment plants (POTWs) under the Construction Grants Program. The CWA provisions for the delegation by EPA of many permitting, administrative, and enforcement aspects of the law to state governments. In states with the authority to implement CWA programs, EPA still retains oversight responsibilities.

1.3 Objective of the General Electric Study

The objective of this study was to measure the acute toxicity of the composite wastewater discharged by the General Electric facility located in Pittsfield, Massachusetts, using *Daphnia pulex* under static conditions. Whereas *D. pulex* are not considered locally important, they are routinely used by regulatory agencies and contract laboratories nationwide for toxicity testing. A toxicity test was conducted from May 04, 2005 to May 06, 2005 at SGS Environmental Services, Charleston, West Virginia. All original raw data and the final report produced for this study are stored in SGS's archives at the above location.

2.0 Materials and Methods

2.1 Protocol

Procedures used in this acute toxicity test followed those described in the SGS Standard Operating Procedure (SOP) entitled *Acute Aquatic Toxicity Testing*, SGS document control number 7002, version 4.0. This SOP generally follows the standard methodology presented in *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (U.S. EPA, 1993. Additional SOPs used in this study are outlined below:

Title	Document Number	Version
Culture Waters for Aquatic Toxicity Testing	7005	4.0
Culture of Daphnia	7006	5.0
Reference Toxicant Testing	7008	5.0
Sample Handling for Aquatic Toxicity Testing	7009	4.0

Copies of these documents are included in the References section of this report.

2.2 Effluent Sample

The effluent sample (A6460C) was collected by GE personnel May 02, 2005 to May 03, 2005. Upon receipt at SGS on May 04, 2005, the sample temperature was 4.7° C. The effluent sample was characterized as having

Parameter	Result
Total Hardness	290
Alkalinity (as CaCO₃)	207
pH	6.97
Specific Conductance	809
Dissolved Oxygen Concentration*	8.72
*Dissolved oxygen concentration was recorded approximately 20°C).	d after sample was aerated and warmed to

The effluent sample was observed to be clear and colorless.

2.3 Dilution Water

Dilution water consisted of receiving water collected from the Housatonic River. The receiving water (A6459R) was collected by General Electric personnel on May 03, 2005. Upon receipt at SGS on May 04, 2005, the sample temperature was 4.7°C. The dilution water was characterized as having

Parameter	Result
Total Hardness	300
Alkalinity (as CaCO₃)	53
pH	6.29
Specific Conductance	175
Dissolved Oxygen Concentration*	8.74

*Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 20°C).

The dilution water sample was observed to be slightly cloudy with a straw color.

2.4 Reference Control Water

Water used in the reference control vessels was deionized (DI) water adjusted to the appropriate hardness (moderately hard reconstituted water) by the addition of reagent grade chemicals (U.S. EPA, 1993). Characterization of this water resulted in:

Parameter	Result
Total Hardness	110
Alkalinity (as CaCO ₃)	68
рН	7.12
Specific Conductance	343
Dissolved Oxygen	8.78

2.5 Test Organisms

Daphnids (*Daphnia pulex*), less than 24-hours old, were obtained from SGS laboratory cultures maintained in Charleston. The culture system consisted of twenty-four (24) 100 ml disposable plastic beakers each containing 80 ml of culture medium and one (1) daphnid. The culture medium was deionized (DI) water for which the hardness was raised by addition of reagent grade chemicals (U.S. EPA, 1993). Prior to use, the culture water was characterized:

Parameter	Result
Total Hardness	within range of 80-110 mg/L
Alkalinity (as CaCO ₃)	within range of 60-70 mg/L
pH	within range of 7.0 to 7.2

The culture area was maintained at a temperature of $20^{\circ}C$ (± $1^{\circ}C$) with a regulated photoperiod of 16 hours of light and 8 hours of darkness.

Daphnid cultures were fed a combination of green algae (*Selanastrum capricorium*), approximately 4.0×10^7 cells/ml) and YCT (yeast, cereal leaves and trout chow). Approximately 1.0 ml of algae and 0.5 ml of YCT was added to each culture vessel daily. Three times per week, daphnids are transferred to fresh culture media.

Approximately twenty-four hours before test initiation, all immature daphnids were removed from the culture flasks. Offspring produced during the period were used in the toxicity test.

2.6 Test Procedures

A subsample of the effluent and the dilution water (approximately 2250 ml) was analyzed by SGS for total phosphorus, chloride, total suspended solids, and total solids. The 48-hour toxicity test was conducted at concentrations of 100%, 75%, 50%, 35%, 15% and 5% effluent. Test concentrations were prepared by

diluting the appropriate volume of effluent with dilution water to a total volume of 250 ml. Test solutions were then divided into replicate (5 replicates per concentration) 30 ml medicine cups, each containing 20 ml of test solution. One set of five control beakers (containing Housatonic River water) and one set of five reference control beakers (containing moderately hard reconstituted water) were established and maintained under the same conditions as the exposure concentrations. A secondary set of five reference control beakers (containing sodium thiosulfate) was also maintained. Test solutions were placed in an incubator to maintain solution temperature of $20^{\circ}C$ ($\pm 1^{\circ}C$). Light was provided on a 16-hour light and 8-hour dark photoperiod. Florescent bulbs provided an illumination of 90 to 100 foot-candles in the test area.

Prior to test initiation, daphnids less than 24-hours old were culled individually with a plastic pipette and placed into a 1000 ml holding beaker containing approximately 500 ml of reference water. The test was initiated when daphnids were individually transferred from the holding beaker to the test solutions (4 daphnids per replicate). The daphnids were fed prior to test initiation but were not fed during the exposure period.

2.7 Test Monitoring

The number of mortalities and observations in each replicate vessel were recorded at 24 and 48 hours of exposure and observed mortalities were removed from the test solutions. Biological observations and observations from the physical characteristics of each replicate test solution and control were also made and recorded at 0, 24 and 48 hours. Dissolved oxygen concentrations pH and temperature were measured at test initiation and at 24-hour intervals thereafter, in one replicate vessel (a) for each test concentration in which there were surviving organisms.

Total hardness concentrations were measured by the EDTA titrimetric method and total alkalinity concentrations were determined by potentiometric titration to an endpoint of pH 4.5 (APHA, 1989). Total residual chorine was measured by Hach test. Concentrations of ammonia were determined using a Buchi model 212 distillation unit and titrated automatically with a Brinkman titroprocessor. Specific conductivity was measured with a Cole Palmer Model 71250 salinityconductivity-temperature meter and probe; pH was measured with a Fisher Scientific Accumet 910 pH meter and combination electrode; dissolved oxygen concentration was measured with an YSI Model 59 dissolved oxygen meter. Daily temperature measurements were performed with a Princo mercury thermometer and a Fisher minimum-maximum thermometer. Light intensity was measured with a General Electric type 217 light meter.

2.8 Reference Toxicity Test

A 48-hour reference toxicity test exposing *Daphnia pulex* to sodium chloride (NaCl) was conducted from May 04, 2005 to May 06, 2005. The reference test was conducted to establish the health of the test organisms. The reference toxicity test included five NaCl concentrations and a dilution water control (moderately hard reconstituted water). The nominal NaCl concentrations for the test with *Daphnia pulex* ranged from 625 to 10,000 mg of NaCl/L. Test methods were the same as those described above for the effluent test.

3.0 Statistics

The concentration-response relationships observed were characterized by the median lethal concentrations (LC50), which is the concentration that is calculated to be lethal to 50 percent of the organisms within the test period. If no concentration caused mortality of 50%, then the LC50 value was determined to be greater than the highest concentration tested and no statistical analysis were performed. If at least one concentration caused mortality of greater than 50% of the test population, then a computer program (TOXSTAT 3.5) was used to calculate the LC50 value. Three statistical methods were available in the computer program: probit analysis, the Trimmed Spearman-Karber, and the Spearman-Karber methods. The graphical method is available if appropriate. Generally, to choose the best estimate of the LC50 value for a particular data set, the U.S. EPA flow chart on page 15 was followed.

The No-Observable-Acute-Effect-Level (NOAEL) was estimated for the acute toxicity test, and is defined as the highest concentration of effluent that produced \geq 90% survival.

Flowchart 1. Determination of the LC50 from a Multi-Effluent-Concentration Acute Toxicity Test

Flowchart for determination of the LC50 for multi-effluent-concentration acute toxicity tests.
4.0 Results

4.1 Effluent Toxicity Test

The methods and detection limits of chemical analyses performed on the composite effluent sample and dilution water are summarized in Table 1. Results of the characterization and analysis of the effluent and the dilution water are presented in Table 2. Water quality parameters measured during the toxicity test are presented in Table 3. Daily and continuous monitoring of the test solutions established the temperature ranged from 19°C to 21°C throughout the exposure period. The effluent concentration was tested (expressed as %) and the corresponding percent mortalities recorded during the 48-hour toxicity test are presented in Table 4. Significant toxicity was not demonstrated in this examination. Based on the results of this study, the 48-hour LC₅₀ value was >100% effluent. The NOAEL value for this study was determined to be 100% effluent.

4.2 Reference Toxicity Test

SGS uses sodium chloride (NaCl) as a reference toxicant. The reference test was conducted from May 04, 2005 to May 06, 2005, and the resulting 48-hour LC50 was estimated by Trimmed Spearman-Karber Method to be 1961 mg NaCl/L (95% confidence intervals of 1638 to 2348 mg NaCl/L).

References

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1989. *Standard Methods for the Examination of Water and Wastewater*. 17th Edition.
- U.S. Environmental Protection Agency. 1984. Development of water Quality-Based Permit Limitations for Toxic Pollutants. Federal Register 49(48): 90160-90190.
- U.S. Environmental Protection Agency. 1985. Technical Support Document for Water Quality-Based Toxics Control. Office of Water, Washington, DC.
- U.S. Environmental Protection Agency. 1991. Technical Support Document for Water Quality-Based Toxics Control. Office of Water, Washington, DC.
- U.S. Environmental Protection Agency. 1993. for *Measuring the Acute Toxicity of Effluents and Receiving Methods Waters to Freshwater and Marine Organisms*. EPA/600/4-90/027F.

Table 1.Methods and detection limits of chemical analyses of the
General Electric Pittsfield Plant effluent and the dilution
water (Housatonic River).

Parameters	Method	Detection Limits
Ammonia Nitrogen as N	EPA 350.2	1.0 mg/L
Chloride	EPA 325.2	1.0 mg/L
Total Organic Carbon	EPA 415.1	1.0 mg/L
Total Solids	EPA 160.3	10.0 mg/L
Phosphorus, Total as P	Standard Methods 4500-P	0.020 mg/L
Total Residual Chlorine	Standard Methods 4500-Cl G	0.01 mg/L
Total Suspended Solids	EPA 160.2	5.0 mg/L

Table 2.	Results of the characterization and analyses of the General
	Electric Pittsfield Plant effluent and the dilution water
	(Housatonic River).

Parameter	Effluent (A6460C)	Housatonic River (A6459R)
Temperature	20.8°C	20.8°C
рН	6.97	6.29
Alkalinity (as CaCO₃)	207 mg/L	53 mg/L
Hardness (as CaCO3)	290 mg/L	300 mg/L
Dissolved Oxygen	8.72 mg/L	8.74 mg/L
Specific Conductivity	809 µmhos/cm	175 μmhos/cm
Salinity	N/A	N/A
Total Residual Chlorine	ND	ND
Ammonia as N (0-Hour)	ND	ND
Total Phosphorus as P	0.054 mg/L	ND
Chloride	100 mg/L	15 mg/L
Total Suspended Solids	9.0 mg/L	ND
Total Solids	410 mg/L	88 mg/L
Total Organic Carbon	2.7 mg/L	4.4 mg/L

Dissolved oxygen concentrations recorded after samples were aerated and warmed to approximately 20° C. N/A = not applicable ND = non detectable

		pН		Di 0 (ssolv xyge mg/L	ed n .)	Ten	npera (°C)	ture
Matrix ↓	0	24	48	0	24	48	0	24	48
Reference Control	7.12	7.17	7.21	8.78	8.71	8.68	20.8	20.4	20.6
Secondary Ref Control	7.15	7.19	7.23	8.82	8.70	8.64	20.8	20.4	20.6
Dilution Water Control	6.29	6.34	6.41	8.74	8.68	8.62	20.8	20.4	20.6
5% Effluent	6.39	6.46	6.51	8.75	8.65	8.60	20.8	20.4	20.6
15% Effluent	6.48	6.59	6.63	8.74	8.64	8.58	20.8	20.4	20.6
35% Effluent	6.57	6.55	6.62	8.74	8.68	8.62	20.8	20.4	20.6
50% Effluent	6.73	6.84	6.82	8.72	8.61	8.57	20.8	20.4	20.6
75% Effluent	6.88	6.97	6.93	8.72	8.67	8.60	20.8	20.4	20.6
100% Effluent	6.97	7.04	7.09	8.72	8.60	8.62	20.8	20.4	20.6

Table 3.The water quality measurements recorded during the 48-
hour static toxicity test exposing Daphnia pulex to General
Electric Pittsfield Plant effluent.

Dissolved oxygen, pH and temperature were measured in one replicate test chamber (A) for each concentration and controls.

The appearance of the effluent was clear, with some sediment.

Reference Control	= moderately hard synthetic water
Secondary Control	= moderately hard synthetic water and 0.1 N sodium thiosulfate
	$(Na_2S_2O_3)$
Dilution Water Control	= receiving water collected from the Housatonic River

Table 4.Cumulative percent mortalities recorded during the 48-
hour static toxicity test exposing Daphnia pulex to General
Electric Pittsfield Plant effluent.

	. <u> </u>			Cui	mula	tive Perc	ent M	orta	lity	(%)		
Tast Matrix			2	4-Ho	our				48	B-Ho	ur	
↓ 	A	B	С	D	Е	Mean	A	В	С	D	E	Mean
Reference Control	0	0	0	0	0	0	0	0	0	0	0	0
Secondary Ref Control	0	0	0	0	0	0	0	0	0	0	0	0
Dilution Water Control	0	0	0	0	0	0	0	0	0	0	0	0
5% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
15% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
35% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
50% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
75% Effluent	0	0	0	0	0	0	0	0	0	0	0	0
100% Effluent	0	0	0	0	0	0	0	0	0	0	0	0

Reference Control Na₂S₂O₃ Control Dilution Water Control

= moderately hard synthetic water

= moderately hard synthetic water and sodium thiosulfate (0.1 N)

= receiving water collected from the Housatonic River

Appendix I

References

Document Title: Method Reference: Document File Name: Revision Number: Effective Date;

Acute Aquatic Toxicity Testing CT&E/USEPA 7002-04.DOC 4.0 October 20, 1998

UNCONTROLLED MODY

Page 1 of 6

Document Control Number: 7002.

20 Helliclay Nisor Approved by: _____0/21/98 Date 10/201 Approved by:

1.0 SUMMARY

A 24-, 48-, or 96-hour test to determine the toxicity to freshwater aquatic animals of effluents.

2.0 REFERENCES

- 2.1 Weber, Comelius I., Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fourth Edition. EPA-600/4-90/027. U.S.EPA, Cincinnati, Ohio.
- 2.2 Reporting and Testing Guidance for Biomonitoring Required by the Ohio Environmental Protection Agency, October, 1991.
- 2.3 Toxics Management Program's Guidance for Conduction and Reporting the Results of Toxicity Tests in Fulfillment of VPDES Permit Requirements, Revised July 1992.

3.0 SCREENING

3.1 Test Duration

24 Hours, 48 Hours or 96 Hours.

3.2 Test Preparation

3.2.1 Measure the pH, D.O. and total residual chlorine of the 100% effluent and the control water. If the effluent pH falls outside of the range of 6.0-9.0, two parallel tests are set up in which one effluent is adjusted and the other is not. The pH is adjusted to 7.0 using additions of 1N NaOH and HCl, (other pH adjustment endpoints may be utilized depending on local requirements). The measured amount of acid or base is recorded on the bench sheet. If the D.O. is below 40% saturation or above 100% saturation, the effluent is aerated prior to test initiation. If the total chlorine is above 0.1 mg/L, two parallel tests are set up in which one

Document Title: Method Reference: Document File Name: Revision Number: Effective Date:

Acute Aquatic Toxicity Testing CT&E/USEPA 7002-04.DOC 4.0 October 20, 1998

INCONTRAL

Page 2 of 6

Document Control Number: 7002.

effluent is dechlorinated and the other is not (Dechlorination may be prohibited; permit is checked to determine if dechlorination is allowed). The effluent is dechlorinated by the addition of anhydrous sodium thiosulfate. The measured amount is recorded on the bench sheet. Care is taken to add the least amount of sodium thiosulfate needed to decrease the TRC level below 0.10 mg/L. Typically, adjustment of effluent is unnecessary.

- 3.2.2 Twenty organisms per concentration are used in acute screening tests.
- 3.2.3 This is a static, non-renewal test, using Ceriodaphnia dubia, Daphnia pulex, Daphnia magna, or Pimephales promelas (Fathead minnow).
- 3.2.4 Water quality (D.O., pH, conductivity, hardness, alkalinity and TRC), is measured at the time of test initiation. At test termination, temperature, D.O. conductivity and pH are measured. The final mortality and percent effected counts are recorded. Temperature is maintained at 25°± 1°C for *Daphnia*, and 20° ± 1°C for fathead minnows. Facilities exist to perform both fish and *Daphnia* tests at either temperature.
- 3.3 Test Results

No statistical analysis is performed on screening data.

4.0 DEFINITIVE TEST

- 4.1 Pimephales promelas (Fathead Minnows)
 - 4.1.1 Test Duration

48-Hours or 96-Hours

- 4.1.2 Static non-renewal
- 4.1.3 Test Preparation

n ma ma e u

- 4.1.3.1 This test is comprised of a control and an effluent dilution series usually consisting of 100%, 50%, 25%, 12.5% and 6.25% (unless otherwise indicated).
- 4.1.3.2 The sample is brought up to test temperature in a room temperature water bath. Chemical parameters are checked and

٠,

and the second second

Document Title: Method Reference: Document File Name: Revision Number: Effective Date:

Acute Aquatic Toxicity Testing CT&E/USEPA 7002-04.DOC 4.0 October 20, 1998

UNCONTRA - Carpony

Page 3 of 6

Document Control Number: 7002.

recorded. If the pH, D.O. or chlorine fall outside the acceptable testing range, the effluent may be adjusted (see screening; Test Preparation).

- 4.1.3.3 The dilutions are prepared in calibrated graduated cylinders using moderately hard synthetic water as dilution water. Other dilution water may be used if specified.
- 4.1.3.4 Approximately 400 ml of test solution is placed in each of two 800 ml disposable plastic beakers.

4.1.4 Loading

Ten (10) organisms are placed in each beaker. CT&E uses fish which are less than 14 days old and are hatched within the same 24 hour period. A loading limit of 0.8 g/l is observed. Fish are loaded by first transferring them to a shallow dish where they are easily transferred into the test solutions with wide-bore pipettes.

4.1.5 Test Temperature

20° C (± 1)

- 4.1.6 Daily Procedures
 - 4.1.6.1 At the end of each 24 hours, the pH, D.O. and temperatures are checked and recorded. At this time mortalities are also recorded.
 - 4.1.6.2 If a 96 hour static acute test is required, the test solution may be renewed at 48 hours. Renewal is accomplished by siphoning old test solution and debris and replacing with fresh solution of the appropriate concentration.
 - 4.1.6.3 At the end of 48 hours or 96 hours the final mortalities and percent affected are recorded along with the final water qualities (D.O., pH, conductivity).

4.1.7 Feeding

.....

Organisms are allowed to feed only prior to test initiation, and prior to renewal at 48 hours in a 96 hour test.

• ;

Document Title: Method Reference: Document File Name: Revision Number: Effective Date:

Acute Aquatic Toxicity Testing CT&E/USEPA 7002-04.DOC 4.0 October 20, 1998

Page 4 of 6

Document Control Number:

7002.

UNCONTROLLER

- 4.2 Ceriodaphnia dubia, Daphnia magna, and Daphnia pulex
 - 4.2.1 Test Duration

48-Hours

- 4.2.2 Static Non-renewal
- 4.2.3 Test Preparation
 - 4.2.3.1 This test is comprised of a control and a dilution series consisting of 100%, 50%, 25%, 12.5% and 6.25% of the effluent (unless otherwise indicated).
 - 4.2.3.2 The sample is brought up to test temperature in a room temperature waterbath. Chemical parameters are checked and recorded. If the pH, D.O. or chlorine fall outside the acceptable testing range, the effluent may be adjusted (see screening; Test Preparation).
 - 4.2.3.3 The dilutions are prepared in beakers using moderately hard synthetic water (see Section II; Dilution Waters and Culture Media), unless other dilution water is specified. At least 25 ml. of each dilution are placed in five 30 ml. testing vessels.

4.2.4 Loading

- 4.2.4.1 Four organisms are placed in each vessel. The *Daphnids* are loaded with a disposable polyethylene transfer pipette and are gently released below the surface of the water to avoid the risk of injury.
- 4.2.5 Test Temperature

The test is conducted in a constant temperature incubator at $25^{\circ} \pm 1^{\circ}$ C(To satisfy local requirements tests may be conducted at other temperatures).

٠,

····

Document Title: Method Reference: Document File Name: Revision Number: Effective Date:

Acute Aquatic Toxicity Testing CT&E/USEPA 7002-04.DOC 4.0 October 20, 1998

Page 5 of 6

Document Control Number: 7

UNCONTROLLED

CODY

7002.

- 4.2.6 Daily Procedure
 - 4.2.6.1 At 24 and 48 hours the mortalities and number adversely effected are noted.
 - 4.2.6.2 Due to the fragile structure of *Daphnia* organisms, dissolved oxygen, hardness alkalinity, specific conductance and pH readings are not taken after the organisms have been added to the sample. These analyses could cause injury to the *Daphnia* organisms.
- 4.2.7 Photoperiod

16 hours light, 8 hours dark.

4.2.8 Feeding

Organisms are allowed to feed prior to test initiation; they are not fed for the duration of the test.

5.0 TEST DATA

- 5.1 Pimephales promelas, Ceriodaphnia dubia, Daphnia magna and Daphnia pulex
 - 5.1.1 Mortality and adverse effects are used as the endpoints for a definitive test.
 - 5.1.2 Chemical parameters checked before test initiation, at 24 hours, 48 hours, 72 hours and 96 hours.
 - 5.1.3 Mortalities recorded at 24 hours, 48 hours, 72 hours and 96 hours.
 - 5.1.4 Any atypical behavior or complications are recorded.

6.0 DATA ANALYSIS

6.1 Introduction

Data from acute effluent toxicity tests are used to estimate the LC50 and EC50. The LC50 is a point estimate of the effluent concentration that is expected to cause lethality to 50% of the test organisms. The EC50 is a point estimate of

٠,

Document Title: Method Reference: Document File Name: Revision Number: Effective Date:

Acute Aquatic Toxicity Testing CT&E/USEPA 7002-04.DOC 4.0 October 20, 1998

UNCONTROLLEE.

Page 6 of 6

Document Control Number: 7002.

the effluent concentration that is expected to cause and adverse effects to 50% of the test organisms.

- 6.2 Methods for Estimating the LC50 & EC50
 - 6.2.1 The flow chart (Figure 6) on page 76 of the manual, Methods for Measuring the Acute Toxicity of Effluents and Receiving Water to Freshwater and Marine Organisms (Fourth Edition), EPA-600/4-90-27F, Appendix A, Sections 4.4.1 through 4.4.3. is observed for determination of the LC50 for multi-concentration acute toxicity tests.
 - 6.2.2 Several statistics packages, including Toxstat® 3.4, are available for data analysis.

7.0 REPORT PREPARATION

- 7.1 CT&E Acute Toxicity Test Reports Typically Contain the Following Information:
 - 7.1.1 Test background information Includes client, NPDES or state permit number, sampling point reference number, date collected and received, collector's name, type and date of test, dilution water used, test results, and chain of custody forms.
 - 7.1.2 Results LC50 & EC50 values and analysis method used; Any comments concerning the test results.
 - 7.1.3 Initial Characterization of the Effluent Sample Raw Data Sheets: Includes dissolved oxygen (DO), pH, specific conductivity, hardness, alkalinity and a description of the sample source.

٠,

7.1.4 Reference Toxicity Data

Document Title: Method Reference: Document File Name: Revision Number: Effective Date:

Culture Waters for Aquatic Toxicity Testing CT&E/USEPA UNCONTROLLEC 7005-04.DOC 4.0 October 20, 1998

Page 1 of 3

Document Control Number: 7005.

Approved by: <u>Kan Hallislam</u> Supervisor Approved by: <u>MALO M. Work</u> ANGC Officer

 $\frac{10/21/98}{10/20/98}$

COPY

1.0 Summarv

This document describes the preparation of various waters used for the culture of aquatic organisms.

2.0 Moderately-Hard Synthetic Water

- Place 19 liter of de-ionized, or equivalent, water in a property cleaned and 2.1 labeled plastic carboy.
- 2.2 Add 1.20 g of MgSO₄, 1.92 g NaHCO₃ and 0.08g KCI to the carboy.
- 2.3 Aerate overnight.
- Add 1.20 g of CaSO42H2O to 1 liter of de-ionized or equivalent water in a 2.4 separate flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 19 liter above and mix well.
- 2.5 Aerate vigorously for 24 hours to stabilize the medium.

Hard Synthetic Water 3.0

- Place 9 liter of de-ionized, or equivalent, water in a properly cleaned and 3.1 labeled plastic carboy.
- 3.2 Add 1.20 g of MgSO₄, 1.92 g NaHCO₃ and 0.08g KCI to the carboy.
- 3.3 Aerate overnight.

C PRODUCTION CONTRACTOR

3.4 Add 1.20 g of CaSO42H2O to 1 liter of de-ionized, or equivalent water in a separate flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 9 liter above and mix well.

٠,

the manufacture of the second se

Aerate vigorously for 24 hours to stabilize the medium. 3.5

Document Title: Method Reference: Document File Name: 7005-04.DOC Revision Number: Effective Date:

Culture Waters for Aquatic Toxicity Testing CT&E/USEPA 4.0 October 20, 1998

Page 2 of 3

Document Control Number: 7005.

UNCONTROLLET

CONV

4.0 Synthetic Water Solutions

- 4.1 **KCL Stock Solution**
 - 4.1.1 Place 8 g of crystalline, reagent grade KCL in a 1 liter volumetric flask.
 - 4.1.2 Bring the volume to one liter with distilled water.
 - 4.1.3 Aerate vigorously for several hours before using.
 - 4.1.4 Store in a 1 liter polyethylene bottle.

4.2 MgSO₄ Stock Solution

- 4.2.1 Place 120 g of regent water, anhydrous MgSO4 powder in a 1 liter volumetric flask.
- 4.2.2 Bring the volume to one liter with distilled water.
- 4.2.3 Aerate vigorously for several hours before using.
- 4.2.4 Store in a 1 liter polyethylene bottle.
- 4.3 NaHCO3 Stock Solution
 - 4.3.1 Place 96 g of reagent grade NaHCO₃ powder in a 1 liter volumetric flask.
 - 4.3.2 Bring the volume to 1 liter with distilled water
 - 4.3.3 Aerate vigorously for several hours before using.
 - 4.3.4 Store in a 1 liter polyethylene bottle.

Activated Carbon Treated Tap Water Diluent 5.0

- Fill a 5-gallon carboy with water from the treatment system using the attached 5.1 hose. Water should be allowed to flow slowly through the hose into the sink for 2-3 minutes before filling the carboy. Flow rate to fill the carboy should be slow.
- One or two long airstones are placed in the filled carboy. Water is aerated 5.2 vigorously for 48-hours.
- 5.3 Total residual chlorine must be checked on water from newly filled carboys before using.
- Alkalinity, hardness and pH are checked on samples from dechlorinated water 5.4 carboys according to the Laboratory Procedure Checklist.
- 5.5 Log information on the Dechlorinated Tap Water and Cechlorimeter log sheet including the carboy number and date filled.

٠,

Ł

Document Title: Method Reference: Document File Name: Revision Number: Effective Date: Culture Waters for Aquatic Toxicity Testing CT&E/USEPA 7005-04.DOC 4.0 October 20, 1998

UNCONTROLLED COPY

Page 3 of 3

Document Control Number: 7005

6.0 Synthetic Sea Water Preparation

- 6.1 Fill a clean carboy with dechlorinated water to approximately the 25-gallon mark.
- 6.2 The newly filled carboy should be checked for the presence of chlorine and the results recorded on the saltwater carboy log sheet. If chlorine is present, two 4-inch airstones (adjusted to a moderately heavy air flow) should be introduced and the water aerated until a level of <0.01 mg/L is reached.
- 6.3 A sufficient amount of synthetic salt is added to the carboy to obtain the required salinity (usually 20 ppt).

•

1

8.4 All information should be logged on the Saltwater Carboy log sheet.

Document Title: Method Reference: Document File Name: Revision Number: Effective Date:

Page 1 of 3

1.0

Culture of Daphnia CT&E/USEPA 7006-05.DOC 5.0 March 12, 2001

UNCONTROLLED YDY

Document Control Number: 7006

Approved by: Approved by: Summary

This document describes the procedure for the culture of *Ceriodaphnia dubia*, *Daphnia pulex*, *Daphnia magna* that are used in aquatic toxicity testing.

2.0 Mass Stock Cultures of Ceriodaphnia dubia, Daphnia pulex, and Daphnia magna

- 2.1 Stock cultures are maintained in 1000 ml beakers/jars with 900 mls of culture media at $20 \pm 1^{\circ}$ C. These cultures are maintained only as a back-up source of organisms.
- 2.2 Culture media for *Ceriodaphnia dubia* and *Daphnia pulex* is moderately-hard synthetic water. Culture media for *Daphnia magna* is hard synthetic water (see document control number 7005.04, "Culture Waters for Aquatic Toxicity Testing").
- 2.3 Many cultures are maintained simultaneously with an informal rotation cycle. New cultures are started with young produced by individual cultures. These cultures are maintained for approximately 3 weeks after which they are discarded.
- 2.4 Cultures are fed YCT (yeast, cerophyll, digested trout chow/flake food) and algae (Selanastrum capricorium) on Monday, Wednesday and Friday. Feeding, as well as culture rotation, temperature and all other relevant data is recorded by species in a log book.
- 2.5 Stock cultures are also fed algae and YCT. These feedings are recorded in the log book.

3.0 Individual Cultures of Ceriodaphnia dubia, Daphnia pulex, Daphnia magna

.....

3.1 Cultures of *Daphnia magna* and *Daphnia pulex* are maintained in 100 ml plastic beakers. Twenty-four (24) beakers with one organism each are kept at all times to ensure continuous availability of neonates for testing. Cultures of individual *Ceriodaphnia dubia* are maintained in 30 ml sterile plastic medicine cups. One to two cultures of approximately 100 organisms each are kept at all times.

Document Title: Method Reference: Document File Name: 7006-05.DOC Revision Number: Effective Date:

Culture of Daphnia CT&E/USEPA 5.0 March 12, 2001

UNCONTROLLED COPY

Page 2 of 3

Document Control Number: 7006

Cultures are renewed three times per week. Organisms are fed daily. 3.2

Obtaining Neonates for Testing 4.0

- Cultures of Ceriodaphnia are started by placing one neonate into a 30 ml 4.1 disposable plastic cup containing approximately 20 ml of Moderately Hard Synthetic Water. New Ceriodaphnia cultures are started every ten to fourteen days. D. magna and D. pulex are replaced whenever mortality occurs.
- 4.2 The individual cultures are transferred to fresh media three times per week. Synthetic water, algae and YCT are mixed prior to pouring into culture vessel to ensure uniformity of media. The old media and neonates are kept for stock cultures for several weeks and then discarded.
- To assure neonates for chronic tests are of a very similar age, transfer of 4.3 individual brood stock to fresh media should be made the morning of the test. The cultures are then checked approximately every two hours to find an adequate number of neonates all released with an 8 hour period. For acute tests, individuals are either transferred less than 24 hours before a test or the young are separated from adults less than 24 hours before a test.
- 4.4 Young used in chronic testing are obtained from adults who have produced at least three broods, with no less than 8 neonates in their third or subsequent brood. Neonates are then distributed in a "blocking" procedure, i.e., neonates from the same organism are placed in one replication of each concentration.

5.0 DAPHNIA Food

- 5.1 **Digested Flake Food**
 - 5.1.1 Add 5g flake food to 1 L deionized water. Mix well in a blender and place in a 2 L separatory funnel. To digest, aerate this mixture at room temperature for one week.
 - 5.1.2 At end of the digestion period, remove aeration and allow to settle.
 - 5.1.3 Drain sediment. Place supernatant in a beaker and allow to settle in refrigerator overnight.

•

5.1.4 Filter through fine mesh.

Document Title: Method Reference: Document File Name: 7006-05.DOC Revision Number: Effective Date:

Culture of Daphnia CT&E/USEPA 5.0 March 12, 2001

UNCONTROLLED COPY

Page 3 of 3

Document Control Number: 7006

- 5.2 Cerophyli
 - 5.2.1 Add 5g Cerophyll^e to 1 L deionized water. Mix in a blender on high speed for 5 minutes.
 - 5.2.2 Remove from blender and allow to settle in refrigerator overnight.
 - 5.2.3 Retain supernatant for combined YCT food.
- 5.3 Yeast
 - 5.3.1 Add 5g dry yeast to 1 L deionized water. Mix in a blender at low speed.
 - 5.3.2 Do not allow mixture to settle.

- 5.4 Combined YCT Food
 - 5.4.1 Mix equal parts of each of the above preparations in large clean beakers.
 - 5.4.2 Pour well mixed YCT into small screw cap bottles. Freeze until needed.

•

....1

Document Title: Method Reference: Document File Name: Revision Number: Effective Date:

Reference Toxicant Testing CT&E/USEPA 7008-05.DOC 5.0 March 12, 2001

Page 1 of 2

Document Control Number: 70

UNCONTROLLED

7008

Hollida Approved by: 3/23/2001 B/23/2001 Approved by:

1.0 Summary

To insure that healthy organisms are used in testing, CT&E performs monthly QA/QC tests on all in-house cultured organisms. CT&E uses Sodium Chloride as a reference toxicant.

2.0 Pimephales promelas

- 2.1 48 hour static acute toxicity tests are run at 20°C (±1°C) using fish 1 to 14 days old.
- 2.2 This test consists of a control and a dilution series of 10g/L, 9g/L, 8g/L, 7g/L, and 6g/L, of sodium chloride. Other dilution series may be used.
- 2.3 The dilutions are prepared in 800 ml disposable plastic beakers using moderately hard synthetic water. 500 mls of test solution is placed in each of two replications. Water quality values are measured and recorded at this time.
- 2.4 Ten organisms are placed in each replicate. Fish are loaded by first siphoning them into a shallow pan from which they are transferred to the beakers with a large bore pipette.
- 2.5 The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

3.0 Daphnids (Ceriodaphnia dubia, Daphnia magna, Daphnia pulex)

......

- 3.1 48 hour static acute tests are performed at 25°C (±1°C) using organisms less than 24 hours old.
- 3.2 These tests consist of a control and a five dilution series. The concentration of the reference toxicant is varied depending on species.
 - 3.2.1 Ceriodaphnia dubia, Daphnia pulex: 10, 5, 2.5, 1.25, 0.625 grams/L

____1

٠,

Document Title: Method Reference: Document File Name: Revision Number: Effective Date:

Reference Toxicant Testing CT&E/USEPA 7008-05.DOC 5.0 March 12, 2001

UNCONTROLLED COV

Page 2 of 2

Document Control Number: 7008

- 3.2.2 Daphnia magna: 10, 5, 2.5, 1.25, 0.625 grams/L
- 3.3 Dilutions are prepared using moderately hard synthetic water. 20 mls of each dilution are placed in each of 5 plastic medicine cups.
- 3.4 Four organisms are placed in each test vessel. The *Daphnids* are loaded with a disposable plastic pipette. Organisms are gently released below the surface of the water to minimize risk of injury.
- 3.5 The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

4.0 Data Analysis

- 4.1 Toxicity tests are conducted on a monthly basis.
- 4.2 The LC₅₀ is calculated according to EPA protocols.
- 4.3 Results from these tests are incorporated into Q-sum charts. These records are kept in monthly files.

Document Title: Method Reference: Document File Name: Revision Number: Effective Date;

Sample Handling for Aquatic Toxicity Testing CT&E/USEPA 7009-04.DOC

UNCONTROLLED COPY

October 20, 1998

Page 1 of 3

Document Control Number:

7009.

Approved by: <u>Here Helliclary</u> Supervisor Approved by: <u>hydria II. (Dorn</u> QA/QC Officer

4.0

Date 15/25/98

1.0 Summary

This document describes the manner in which sample waters (effluents, wastewaters, etc.) are handled from point of collection to testing.

2.0 Sample Handling (

2.1 Sampling Personnel

CT&E's sampling personnel are trained and experienced in the techniques for collecting samples according to NPDES permit requirements. This includes the use of automatic sampling equipment and the measurement of various field parameters.

2.2 Sample Containers

Sample containers used by CT&E are disposable plastic cubitainers®.

2.3 Sample Collection Points

For NPDES permit required tests, the sample will be collected at the point specified in the discharge permit unless otherwise directed by the regulatory agency.

2.4 Sample Shipment

Samples are placed on ice (sufficient to maintain 0-4°C) in a cooler and are transported as quickly as possible to the laboratory.

2.5 Laboratory Handling of Samples

Upon delivery to the laboratory, the effluent samples are inspected, given a sample control number and stored at 4° C until used for testing.

• ;

and the second second second second second

Document Title: Method Reference: Document File Name: Revision Number: Effective Date: Sample Handling for Aquatic Toxicity Testing CT&E/USEPA 7009-04.DOC 4.0 October 20. 1998

Page 2 of 3

Document Control Number:

7009.

N JENY

INCONTROLLEL

2.6 Sample Holding Time

Samples will be tested within 24 hours upon receipt in the laboratory. The maximum lapsed time for collection of a grab or composite sample and the initiation of test, or for test solution renewal, will not exceed 36-hours for Chronic and Acute Testing.

3.0 LABORATORY ENVIRONMENT

3.1 Laboratory Arrangement

The aquatic toxicity testing laboratory is divided into two separate areas: (1) the culturing laboratory and (2) the testing laboratory. See attached diagram for details of laboratory layout.

3.2 Temperature

The aquatic toxicity testing laboratory air temperature is maintained at $20 \pm 1^{\circ}$ C throughout the year by a central heating and cooling system which is regulated by thermostats. Temperatures are continuously recorded by thermographs.

3.3 Water

Several waters are available for use in the laboratory. CT&E has access to municipally supplied water, well water and reagent water from which synthetic water is prepared. Waters used for culturing and testing are analyzed semiannually for priority pollutants and other contaminants. A detailed report is available.

3.4 Lighting

Ambient laboratory lighting is regulated with a 16 hour day/8 hour night photoperiod controlled by an electronic timing system in the culturing and testing areas.

4.0 LABORATORY EQUIPMENT

4.1 General

Instruments used for the measurement of physical and chemical parameters are calibrated prior to use in testing. Any instrument that exceeds the calibration limits is taken out of service and corrective action is taken.

ł

ŧ

Document Title: Method Reference: Document File Name: Revision Number:	Sample Handling for CT&E/USEPA 7009-04.DOC 4.0	Aquatic Toxicity Testing	
Effective Date:	October 20, 1998		Contraction of the second s
Page 3 of 3		Document Control Number:	7009

4.2 Balances

Analytical balances are calibrated against standard weights prior to use. All calibration results and adjustments are recorded in bound books.

4.3 Water Quality Meters

•

Meters are calibrated prior to use using known standards and the manufacturer's instructions. Records of calibration are kept in logbooks. Detailed procedures for the operation of these meters are found in SOP's for each specific instrument.

4.4 Reagents

All reagents are stored in a separate area. Expired reagents and chemicals are discarded.

4.5 **Test Containers**

All test containers are either clean reusable glassware or new, disposable plastic beakers.

5.0 EQUIPMENT CLEANING PROCEDURES

- Equipment used in culturing or testing is washed in the following manner: 5.1
 - 5.1.1 Soak 15 minutes and scrub with detergent in tap water.
 - 5.1.2 Rinse three times with tap water.
 - 5.1.3 Rinse once with 20% nitric acid.
 - 5.1.4 Rinse twice with deionized water.
 - 5.1.5 Rinse once with full-strength, pesticide-grade acetone.
 - 5.1.6 Rinse well with deionized water.
 - 5.1.7 Invert and air dry.

1.04.370.001.07

5.1.8 All equipment and test chambers are rinsed with deionized water immediately prior to use for each test.

• ;

Appendix II Chain of Custody

Chain of Custody Record General Electric Co.

100 Woodlawn Ave. Pittsfield, MA 01201

TASEOPOSS-YJ. Chain of Custody #: OBC, 05 0305

Wet Weather Acute Aquatic Toxicity for MAY 2015

Project # NPDES PERMIT	Anal CT&F Environ	dical Lab:		Sampled By:		
		nentai Jervices and.		(Print) MARK WASNEWS	ドイ	
vample #	Date	Time Contain	Si	Parameters to be Analyzed	Preservative	Remarks
DIULAL	5/2 to 2/1</td <td>,00,</td> <td>1 Gallon</td> <td>Definitive Test(LCS0 and NOAEL), Static</td> <td>Chilled</td> <td>(See helend)</td>	,00,	1 Gallon	Definitive Test(LCS0 and NOAEL), Static	Chilled	(See helend)
110/01	50/5/0 -1-	11 424	plastic	acute toxicity, 48 hr w/ Daphnia pulex		
N/1//V	-1 c/2 c/2	11111	1000 ml.	Chloride, T\$\$,Total Solids, Alkalinity	- H1-	
	<0/s/< -10	MY JI	plastic	Specific Conductance, CL2		
A6460C	5/2 to 5/3/05	- 1/60	500 ml. Nacije	Total Phosphorus, TOC, NH3	H2S04	
		1-11/ 3 7				
						the second second second second
A6457R	5/2/05	Frs M	1 Gallon Nactic	Housatonic River water	Chilled	
		0 1101		unution water for definitive test		
AG459R	5/3/05	8 'STH	1000 ml. plastic	Chloride, TSS,Total Solids, Alkalinity Specific Conductance, CL2	Chilled	
A6459R	5/3/05	8'SAM	500 ml. plastic	Total Phosphorus, TOC, NH3	H2S04	
				Q		
Plinh / / / / /	Date	line	Rece	fred By:	Date/Time	Agri
Relinquished By:	Datter			trand Russ	2010-10	/70(
5	2.	3- 45 1430		to start	- JUTYS	
Additional Comments:	The effluent sample being a	lalyzed for toxicity	/ is a flow-p	roportioned composite. Each butfall	sample	
is a 24-hour composite	The sample collection time	s for each outfall	are as folic		•	
100 MA 100	· / 005-64T- /	0 AN 005-640	- John	007- <u>0</u> 9A-	200	4
The time of compositir	ig the final flow-proportioned	sample was	1/00 A.A		Jo H F -	
				receipt 15 mg)	

Appendix III Bench Data

General Electric – 48-hour Acute Biotoxicity Bench Sheet

MOECT:West- VarwinerLat.Lat.Lat.Receivert: $ef[a][a][a][a][b][$	Molecti. Mech Varenton Acute Lab. Not:: TAS - EQ-POSJ - CO: Voc 2 Sample Date: $\underline{s_2/t_2}$ J/S Time: Lab. Not:: TAS - EQ-POSJ - CO: Voc 2 Sample Date: $\underline{s_2/t_2}$ J/S Time: Lab. Not:: TAS - EQ-POSJ - CO: Voc 2 Source: $\underline{e_{Ext}}$ FAINT Convertie Malyst(s): $\underline{e_{Ext}}$ Analyst(s): e_{E	<u>ة</u> ر	Incrit. Gene	ral Electri	υ												
Sample Date:Sample Date:Sample Stee:Date Received:Sample Stee:Sample Stee	Sample Date: $\underline{s}_{leven_l or}$ Time: $I_{1:ov}$ Date Analysed: $\underline{s}_{log_l of_l of_l of_l of_l of_l of_l of_l of$	Σ	roject: wet	Weather	Acute			Lab. No.: -	TAS- En-	2051-2							
Source of dilution water: Expansion Date Analyzed: Soleta Los Test Species: Daphnia pulex Temp. Range: Soleta Los Test Species: Daphnia pulex Analyst(s): $\mu\mu$ Test Species: Daphnia pulex Analyst(s): $\mu\mu$ Test Species: Daphnia pulex Analyst(s): $\mu\mu$ Total Chlorine: μ/μ Temp. Range: o_C Total Chlorine: μ/μ Temp. Range: o_C Total Chlorine: μ/μ Temp. Range: o_C Total Chlorine: μ/μ Temp: Table o_C o_C Concentration> Hoursatonic MHSW Effluent Effluent Effluent River Control MISSW Effluent Effluent Effluent Effluent River Control Control Sole 25% 25% 26% 75% 27% Diamonder Effluent Effluent Effluent Effluent Effluent Effluent Effluent River Engeneture D^2 $2^2/2$ $2^2/2$	Source of diution mater: Date Analyzed: Source Analysed: Source of diution mater: Date Analyzed: Source of diution mater: Date Analyzed: Source Analysed: Source Analyzed: Source Analyze: Source Analyzed: So	.Ϋ́.	ample Date.		ŀ			Date	teceived:	5/04/05	100/						
Source of dilution water: Concentration Analysit(s): μ Test Species: Daphnia Uuexarruc Eucera Marcia Temp. Range: σ Total Chlorins: Daphnia Uuexarruc Eucera Marcia Age: Temp. Range: σ Total Chlorins: Daphnia Uuexarruc Eucera Marcia Age: Temp. Range: σ Total Chlorins: Date: σ σ σ σ Total Chlorins: Date: σ σ σ σ Total Chlorins: Date: σ σ σ σ Concentration- River Control Nassolo, S S S σ Concentration No River Control Nassolo, S S S S S Concentration No Sinver Control Nassolo, S S S S S S Concentration No Sinver Control Nassolo, S S S S S S Concentration No Sinver Control Nassolo, S S S S S S Dio Sinver <	Source of dilution water: Conversion Analyst(s): Lut Test Species: Daphnia plues Main Species: Daphnia plues Main Species: Component	ы У		0-70/50	105	Ime: 11:00		Date	nalyzed: 0	104 105	1						
Test best of test: Destructor Luest Lives Live Temp. Range: - oc Total Chlorine: Uppe of Test: Daphnie pullex Age: Temp. Range: - oc Total Chlorine: Uppe of Test: Daphnie pullex Age: Temp. Range: - oc Total Chlorine: upde Effluent	Total Choiches: Daghning pullex Age:: Temp. Range:: oc Type of Test: Upponting pullex Age:: Temp. Range:: oc Type of Test: Upponting pullex Age:: Temp. Range:: oc Total Choiches: Upponting pullex Age:: Temp. Range:: oc/leaston Total Choiches: Age:: Time:: 1300 Date:: 1300 Sold Time:: 1300 Dolos Firmt Effluent Effluen		Nirce of dilution	LVENT (- MASITE			Analyst(s):	KH								
Type of Test: UdBDmid Dulex Age: Temp. Range: OC Total Chorine: 48-Hour Static Acute Beginning Ending Ending Ending Ending Ending OC Total Chorine: 48-Hour Static Acute Date: 25/64/65 Time: 13.06 Ending Ending Ending Ending Ending OC OC Date: 25.06 100% 100% 100% 100% 100% Date: 25.06 100%	Type of Test: UsapDnia pulex Age: Temp. Range: OC Total Chlorine: 48-Hour Static Acute Beginning Ending	J. Te	uure oi ailution est Snerias:	water:	HOUSATON	IC RIVER	WATER	-									
Total Chlorine: 48-Hour Static Acute Total Chlorine: 48-Hour Static Acute Total Chlorine: 48-Hour Static Acute Date: 25/64/67 Date: 5% Control MHSW Time: 130% Total Chlorine: Concord MHSW Fiftuent Effluent Effluent Concord No.so START Control So So <th <="" colspan="6" td=""><td>Total Chlorine: 48-Hour Static Acute Total Chlorine: 48-Hour Static Acute Date: <math>os/eu/or Iso os/eu/or Total Chlorine: 48-Hour Static Acute Date: $os/eu/or Iso os/eu/or Iso os/eu/or Concentration > Misw MHSW Effluent Effluen$</math></td><td>, t</td><td>the of Toot.</td><td>Uaphnia</td><td>a pulex</td><td></td><td>Age:</td><td></td><td>emp. Range</td><td>0</td><td></td></th>	<td>Total Chlorine: 48-Hour Static Acute Total Chlorine: 48-Hour Static Acute Date: <math>os/eu/or Iso os/eu/or Total Chlorine: 48-Hour Static Acute Date: $os/eu/or Iso os/eu/or Iso os/eu/or Concentration > Misw MHSW Effluent Effluen$</math></td> <td>, t</td> <td>the of Toot.</td> <td>Uaphnia</td> <td>a pulex</td> <td></td> <td>Age:</td> <td></td> <td>emp. Range</td> <td>0</td> <td></td>						Total Chlorine: 48-Hour Static Acute Total Chlorine: 48-Hour Static Acute Date: $os/eu/or Iso os/eu/or Total Chlorine: 48-Hour Static Acute Date: os/eu/or Iso os/eu/or Iso os/eu/or Concentration > Misw MHSW Effluent Effluen$, t	the of Toot.	Uaphnia	a pulex		Age:		emp. Range	0	
Total Chlorine: Date: Egginning Ending Date: Concord Concord Date: Concord Con	Total Chlorine: India Date: Control Beginning Ending Concentration- Housatonic MHSW MHSW Effluent Eff	-		48-Houi	r Static Ac	ute			•								
Concentration Housatonic Time: Mosatonic / so Mession (sold) Endiant (sold) Endiant Endit Endiant Endiant	Concentration→ Mousationic Time: Date: Cos/e4/6s Ending Ending Concentration→ River Control MHSW MHSW MHSW Fiftuent Effluent 25/64/6s 55/64/6s 55/64 15/96 15/96 100% FIART Concentration→ River Control Nass,00, 57/96 15/96 100% 55/64/6s 55/96 100% FIART Control Control Nass,00, 57/96 15/96 55/96 100% Temperature <i>D</i> ·S 1/16 Nass,00, 57/96 15/96 59/96 100% Di-O 0 0 0 0 20/9 20/9 20/96 <td>To</td> <td>tal Chlorine:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	To	tal Chlorine:														
Date: cs/eu/or	Date:: CS/64/65 Time:: J300 Collection: MISW Filluent Effluent			a a				Begin	ning	Ending							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Dat	e: 05/04	los 0	sloulos							
Concentration+ Housatonic River MHSW Control MHSW MHSW Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent Effluent START Control Na ₅ SO ₃ 5% 15% 35% 5% 75% 100% Fimperature 20 20 10 8.3 20.8 20.8 20.8 20.8 Di.O. 8.34 8.34 8.34 8.34 8.34 8.32 24.0 27.0 Di.O. 8.34 3.16 3.15 6.33 6.48 6.57 6.33 26.43 24.0 27.0 Di.O. 8.34 17.7 7.15 6.33 6.49 6.57 27.3 2.40 20.9 PA NOULCL 29.4 4.35 6.12 7.14 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4 26.4	Concentration+ Housatonic MHSW MHSW Effluent						Ë	e: /300		1300							
Temperature Ever Control Na_5_5_03 5% 15% 35% 50% 75% 100% STAT Temperature 26 20.8 20.8 20.8 20.8 20.8 20.9 20.9 20.9 Findences 260 1.e 1.e 1.e 2.1 2.15 6.34 20.8 20.8 20.9	Temperature Event Control Na ₂ S ₁ O ₃ 5% 15% 35% 50% 75% 100% Filtereture E	Concentration	Housatonic	MSHW	MSHM	Effluent	Effluent	Effluent	F66 1								
STAT Control Control Control Start	START Control Control <thcontrol< th=""> <thcontrol< th=""> <thcon< td=""><td></td><td>Control</td><td>Control</td><td>Na₂S₂O₃</td><td>5%</td><td>15%</td><td>35%</td><td>50%</td><td>ETTIUENT 75%</td><td>Effluent</td></thcon<></thcontrol<></thcontrol<>		Control	Control	Na ₂ S ₂ O ₃	5%	15%	35%	50%	ETTIUENT 75%	Effluent						
Temperature D_S D_S <thd_s< th=""> D_S <thd_s< th=""> <thd_< td=""><td>Temperature DS Ze Ze</td><td>START</td><td></td><td></td><td>Control</td><td></td><td></td><td></td><td></td><td></td><td></td></thd_<></thd_s<></thd_s<>	Temperature DS Ze	START			Control												
Hardness 200 10 110 110 110 20.0 2	Hardness 200 10 1(10 200 10 1(10 200 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.8 20.6 20.6 20.8 20.8 20.8 20.6 <	Temperature	8.02	20.8	8.8	au	0 42										
D:O. 8:34 8:35 8:34 8:34 8:32 2:40 PH 6:24 7:12 7:15 6:39 6:48 6:57 6:32 6:33 5:34 8:32 8:32 8:34 2:40 2:41	D.O. 8.74 8.79 8.81 8.75 8.24 8.74 8.72 2.40 PH 6.2π 7.15 6.37 6.37 6.57 6.32 8.32 8.32 8.32 8.32 8.74 8.04 8.64 8.64 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.66 8.64 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.67 8.66	Hardness	300	110	011	2	0.9	Q-02	20.8	20 Ø	20.8						
pH 6.24 7.12 7.15 6.34 6.48 8.34 8.32 8	pH 6.24 $\overline{3.12}$ $\overline{3.73}$ $\overline{6.34}$ $\overline{8.344}$ $\overline{8.32}$	D.O.	8.74	8t.8	6 92	200	:				290						
Alkalinity 53 68 30 9.3 6.43 6.88 6.93 6.94 204 213 6.88 6.94 204 <	Alkalinity 52 6 70 6.57 6.57 6.33 6.88 6.97 Sp. Conduct. 20 13 350 13 350 13 36 8	Ha	6.29	21.5	212		5	8.74	24.8	8.72	24.0						
Sp. Conduct. 2ee 15 343 350 193 304 4136 6/L 779 207 24 HOUR 20 20 20 20 20 193 304 4136 6/L 779 207 No. Surviving 20 </td <td>Sp. Conduct. 2ee 15 343 350 133 304 413B 6/L 739 207 24 HOUR 20 4 2 3 2 4 2 7<td>Alkalinity</td><td>53</td><td>68</td><td>2</td><td>5.3</td><td>6.78</td><td>6.57</td><td>6.73</td><td>6.88</td><td>47. d</td></td>	Sp. Conduct. 2ee 15 343 350 133 304 413B 6/L 739 207 24 HOUR 20 4 2 3 2 4 2 7 <td>Alkalinity</td> <td>53</td> <td>68</td> <td>2</td> <td>5.3</td> <td>6.78</td> <td>6.57</td> <td>6.73</td> <td>6.88</td> <td>47. d</td>	Alkalinity	53	68	2	5.3	6.78	6.57	6.73	6.88	47. d						
Za HOUR	24 HOUR Vo. Surviving D	Sp. Conduct.	st 002	343	350	192					207						
No. Surviving D <	No. Surviving D T 20 D 20 T 20	24 HOUR					204	438	612	622	809						
Temperature D.G. B -G D -G <thd -g<="" th=""> D -G D -G</thd>	Temperature $D.4$	No. Surviving	Q	az	20	R	8	22									
D: U $B \cdot B \cdot B$ $B \cdot A \cdot B \cdot B$ $B \cdot A \cdot B \cdot $	Dirty 8.24 8.70 8.65 8.64	D O	20.4	84	204	70.4	20.4	20.00	9	8	02						
C.S. Conduct. $C.S.$ $C.$	Privacuum 6.34 7.17 7.11 6.46 6.59 6.55 6.94 6.92 7.04 48 HOUR 184 357 357 268 202 4950 6.21 747 7.04 48 HOUR 70 252 357 268 202 272 292 704 No. Surviving 70 2		8.68	0 .1	8.70	8.65	8.64	6 10	1.00	2.0	70.4						
JP: Conduct: 184 354 351 26 321 450 6.34 6.44 404 48 HOUR 20 20 20 20 20 20 372 372 450 6.22 372 404 No. Surviving 20 20 20 20 20 20 20 20 Temperature 20 20 20 20 20 20 20 20 D.O. 862 8.60 8.60 8.50 8.62 8.60 20 20 PH 6.41 3.21 3.25 6.51 6.62 6.62 6.62 6.62 6.63 7.03 Rethod Reference: Methods for Maximin the Autor Transmin 3.71 2.11 3.13 4.44 6.28 2.03	JP: Conduct: 184 351 351 26 21 450 6.34 464 404 48 HOUR 20 20 25 351 351 251 450 6.22 392 812 No. Surviving 20		6.34	trt	7.19	6.46	6.59		9.0	+ 1 9 0 9	00						
No. Surviving ZO NO ZO	No. Surviving ZO No. ZO ZO </td <td>AP HOUD</td> <td>184</td> <td>357</td> <td>359</td> <td>208</td> <td>202</td> <td>150</td> <td>1 0 0 0 0 0</td> <td>+ 5- 9</td> <td>704</td>	AP HOUD	184	357	359	208	202	150	1 0 0 0 0 0	+ 5- 9	704						
Temperature D.C ZO	Temperature DC ZC ZC <thz< th=""> ZC ZC</thz<>	No Survivino						- AVE	179	745	822						
D.O. BC	D.0. BC BC BC BC BC 20 20 20 D.0. BC BC BC BC BC BC BC 20 20 DH $C.41$ 3.21 3.64 $B.64$ $B.62$ $B.57$ $B.60$ 20.6 Sp. Conduct. $C.41$ 3.21 3.21 3.22 6.51 6.62 6.62 6.62 6.92 2.94 Method Reference:Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fourth Edition. EDA. Sonta concert. In Concert.	Temperature	02,	2	20	2	22	20									
DH B (62 B (64 B (6 B (64 B (6) B (6) Z (6) <thz (7)<="" th=""> Z (6) Z (6</thz>	DH 6.41 8.64 8.64 8.64 8.62 8.52 8.62 20.6 20.6 Sp. Conduct. 6.41 3.21 3.21 3.22 6.51 6.62 8.62 8.62 Sp. Conduct. 146 3.63 371 $21L$ 3.17 6.62 6.62 6.92 6.93 7.09 Method Reference: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fourth Edition End Source Concerner 10.000		200	99	900	86	2010	3 4	0, 6	202	20						
Sp. Conduct. 6.41 3.21 3.25 6.51 6.63 8.62 8.62 8.62 Sp. Conduct. 100 363 371 212 513 6.62 6.62 6.93 7.69 Method Reference: Methods for Measuring the Acide Texture Iren 212 313 444 628 7.69 813	Sp. Conduct. 6.41 3.21 3.25 6.51 6.63 6.62 6.62 6.92 6.93 7.64 Method Reference:Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fourth Fedition End Sound Contract Local. 8.62 7.64		862	8.69	8.64	8.60	8.58	50	90	9.02	20.6						
Method Reference: Methods for Maximum the Acide Tourise 1 212 313 444 628 364 813	Method Reference: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fourth Friting, EDA. Sond Construction	Sn Conduct	6.41	12.C	22.F	6.51	6.63	11	×.04	8.0	89.62						
Method Reference: Methods for Measuring the Acute Touch. I Tay 0 20 454 813	Method Reference: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. Fourth Entition Edv. Sonce	- sp. contact.	90	363	371	212	4	1111	601	645	7.09						
	Cincinnati, Ohio.	Method Reference: M	ethods for Measuring H	ha Acida Tanàn				744	620	49t	813						

Γ

f:\public\forms\bioassay\GE bench sheet-acute.doc

TRIMMED SPEARMAN-KARBER METHOD. MONTANA STATE UNIV

FOR REFERENCE, CITE: HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719; CORRECTION 12(4):417 (1978).

DATE: 05/04/05 CHEMICAL: NaCl	TEST NUMBE	R: -			DURATION: SPECIES:	48 HOURS PULEX
RAW DATA: CONCENTRATION(MG/L) NUMBER EXPOSED: MORTALITIES: SPEARMAN-KARBER TRIM:	625.00125 20 0	0.00250 20 3 0.00%	0.005000 20 14	.00** 20 20	**** 20 20	
SPEARMAN-KARBER ESTIMATES 95% LOWER 95% UPPER	: LC50: CONFIDENCE: CONFIDENCE:		1961.46 1638.21 2348.49			

Acute Biotoxicity Bench Sheet

Client:	QC						
Project:	Reference	e Toxico	ant		Lab. No.;		
Sample Date:			Time		Date	Received:	
Source:	N=CI				Date	Analyzed:	
Source of dilut	tion water:				Analyst	· _ Kett	
Test Species:	Deal	- Moderat	ely Hard	Synthet	ic Water		
Type of Test:	48 Hou	PULEX DE ACUTI		Age:		Temp. Ran	ge: °C
Total Chlorine:	Y	n/d			Beg	innina	Ending
				Da	ate: 05/	24/05	
				Tii	me: ///	205	05/06/05
Concentration	Control	T	T				1600
START	Control	I	625	1250	2500	5000	10.000
Temperature	10.1	[
Hardness	100		20.1	20.(20.1	20.1	20.1
D.O.	67			+			120
pН			88	8.8	8.8	88	8.8
Alkalinity	7.0			7.2	7.2	7.2	7.2
Sp. Conduct.	228						74
24 HOUR			2010	2760	5930	10240	13010
Temperature	20.5				·····		
No. Surviving	20		20.5	20.5	20.5	20.5	20.5
48 HOUR	_~		10		13	4	0
Temperature	26.4		201				
No. Surviving	20		20	20.4	20.4	20.4	20.4
			10	14	6	0	0

Note: All results expressed in mg/L unless otherwise designated. < = less than

Note: Number in parenthesis equals number not adversely effected (EC_{50}). This number is used in calculating Note: Due to fragile structure of Daphnia organisms, dissolved oxygen (DO), hardness, alkalinity, specific

conductance, and pH reading could not be taken after the organisms are added to the sample. Doing so would

Method Reference: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fourth Edition. EPA-600/4-90/027F. U.S.EPA, Cincinnati, Ohio.

f:\public\forms\bioassay\report2.doc

Appendix IV

U.S. EPA Region I Toxicity Test Summary

Toxicity Test Summary Sheet

Facility Name: NPDES Permit Nu	<u>General</u> umber:	Electric Co. MA 000 3891	Test Sta Pipe Number:	art Date: <u>May 04, 2005</u> 001, 005-64T, 005-64G,	
				09A, 09B	
Test Type ☑ Acute □ Chronic □ Modified* □ 24-hour Screening	Test	Species ad minnow daphnia nia pulex I Shrimp dia Urchin pia astrum	Sample Typ Prechlorinated Dechlorinated Chlorine Spiked at lab Chlorinated or site Unchlorinated	e Sample Method d □ Grab d ☑ Composite □ Flow thru □ Other n-	-
Dilution Water <u>X</u> Receiving wa from toxicity <u>River</u>); <u>Alternate sur</u> characteristic Synthetic wat	ters colle or other face wate	ected at a point sources of cont er of known qua receiving water,	upstream of or av amination (Receiv ality and a harnes	way from the discharge, free ving water name: <u>Housatonic</u> s, etc. to generally reflect the	,
and reagent of or artificial se Deionized wa other	Jrade che a salts m ter and h	red using either emicals; or deio nixed with deior hypersaline brind	r Millipore Mill-Q c nized water comb nized water; e; or	or equivalent deionized water bined with mineral water;	
Effluent sampling	date(s):	_May 02, 20	005 to May 03, 2	2005	
Effluent concentra	itions tes	ted (in %): *(Permi	<u>100</u> <u>75</u> t limit concentrat	<u>50 35 15 5</u> ion): <u>N/A</u>	
Was effluent salin If yes, to what val With sea salts?	ity adjust lue? <u>N</u> N/A	ed? <u>No</u> /A ppt Hypersaline	brine solution? _	<u>N/A</u>	
Actual effluent cor (In %): <u>N/A</u> Reference Toxican	ICENTRATIC <u>N/A</u> t Test Da	ons tested after N/A N/A ote:	salinity adjustme <u>N/A N/A</u> May 04, 2005 to	ent o May 06, 2005	
N/A= not applicable					

Permit Limits & Test Results

Test Acceptability Criteria

MEAN CONTROL SURVIVAL: <u>100%</u> MEAN CONTROL REPRODUCTION: <u>N/A</u> MEAN CONTROL WEIGHT: <u>N/A</u> MEAN CONTROL CELL COUNT: <u>N/A</u>

Limits		Results	
LC50	N/A	48-hr LC50	>100%
		Upper Value	N/A
		Lower Value	N/A
		Data Analysis	
		Method used:	N/A
A-NOEC	<u> </u>	A-NOEC	100%
C-NOEC	N/A	C-NOEC	N/A
		LOEC	N/A
IC25	<u> </u>	IC25	N/A
IC50	<u> </u>	IC50	N/A

N/A = not applicable