

Corporate Environmental Programs General Electric Company 100 Woodlawn Avenue, Pittsfield, MA 01201

Transmitted via Overnight Courier

October 8, 2004

Mr. Dean Tagliaferro U.S. Environmental Protection Agency Region I – New England 10 Lyman Street, Suite 2 Pittsfield, MA 01201 Ms. Susan Steenstrup Acting Section Chief, Special Projects Bureau of Waste Site Cleanup Department of Environmental Protection 436 Dwight Street Springfield, MA 01103

Re: GE-Pittsfield/Housatonic River Site

Monthly Status Report Pursuant to Consent Decree for September 2004 (GECD900)

Dear Mr. Tagliaferro and Ms. Steenstrup:

Enclosed are copies of General Electric's (GE's) monthly progress report for September 2004 activities conducted by GE at the GE-Pittsfield/Housatonic River Site. This monthly report is submitted pursuant to Paragraph 67 of the Consent Decree (CD) for this Site, which was entered by the U.S. District Court on October 27, 2000.

The enclosed monthly report includes not only the activities conducted by GE under the CD, but also other activities conducted by GE at the GE-Pittsfield/Housatonic River Site (as defined in the CD). The report is formatted to apply to the various areas of the Site as defined in the CD, and to provide for each area, the information specified in Paragraph 67 of the CD. The activities conducted specifically pursuant to or in connection with the CD are marked with an asterisk. GE is submitting a separate monthly report to the Massachusetts Department of Environmental Protection (MDEP), with a copy to the United States Environmental Protection Agency (EPA), describing the activities conducted by GE at properties outside the CD Site pursuant to GE's December 2000 Administrative Consent Order from MDEP.

The enclosed monthly report includes, where applicable, tables that list the samples collected during the subject month, summarize the analytical results received during that month from sampling or other testing activities, and summarize other groundwater monitoring and oil recovery information obtained during that month. Also, enclosed for each of you (and for Weston) is a CD-ROM that contains these same tables of the analytical data and monitoring information in electronic form.

Please call Andrew Silfer or me if you have any questions.

Sincerely.

John F. Novotny, P.E.

Manager - Facilities and Brownfields Programs

Enclosures

V:\GE\_Pittsfield\_General\Reports\Monthly\2004\.09-04\cover ltr.doc

cc: Robert Cianciarulo, EPA (cover letter only)

Tim Conway, EPA (cover letter only)

James DiLorenzo, EPA

Rose Howell, EPA (CD-ROM of report)

Holly Inglis, EPA

William Lovely, EPA (Items 7, 8, 9, 10, 11, 12, 16/17, 22, 23, and 25 only)

Susan Svirsky, EPA (Items 7, 15, and 20 only)

K.C. Mitkevicius, USACE (CD-ROM of report)

Thomas Angus, MDEP (cover letter only)

Robert Bell, MDEP (cover letter only)

Anna Symington, MDEP (cover letter only)

Nancy E. Harper, MA AG

Susan Peterson, CT DEP

Field Supervisor, US FWS, DOI

Kenneth Finkelstein, Ph.D., NOAA (Items 13, 14, and 15 only)

Dale Young, MA EOEA

Mayor James Ruberto, City of Pittsfield

Thomas Hickey, Director, Pittsfield Economic Development Authority

Dawn Jamros, Weston (hard copy of report, CD-ROM of report, CD-ROM of data)

Richard Nasman, P.E., Berkshire Gas (CD-ROM of report)

Michael Carroll GE (CD-ROM of report)

Andrew Silfer, GE (cover letter only)

Rod McLaren, GE (CD-ROM of report)

James Nuss, BBL

James Bieke, Goodwin Procter

Jim Rhea, QEA (narrative only)

Teresa Bowers, Gradient

Public Information Repositories (5 copies)

GE Internal Repository (2 copies)

(w/o separate CD-ROM, except where noted)

# SEPTEMBER 2004

# MONTHLY STATUS REPORT PURSUANT TO CONSENT DECREE FOR GE-PITTSFIELD/HOUSATONIC RIVER SITE

GENERAL ELECTRIC COMPANY

PITTSFIELD, MASSACHUSETTS

# **Background**

The General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and other governmental entities have entered into a Consent Decree (CD) for the GE-Pittsfield/Housatonic River Site, which was entered by the U.S. Court on October 27, 2000. In accordance with Paragraph 67 of the CD, GE has prepared this monthly report, which summarizes the status of activities conducted by GE at the GE-Pittsfield/Housatonic River Site ("Site") (as defined in the CD).

This report covers activities in the areas listed below (as defined in the CD and/or the accompanying Statement of Work for Removal Actions Outside the River [SOW]). Only those areas that have had work activities for the month subject to reporting are included. The specific activities conducted pursuant to or in connection with the CD are noted with an asterisk.

### **General Activities (GECD900)**

# **GE Plant Area (non-groundwater)**

- 1. 20s, 30s, 40s Complexes (GECD120)
- 2. East Street Area 2 South (GECD150)
- 3. East Street Area 2 North (GECD140)
- 4. East Street Area 1 North (GECD130)
- 5. Hill 78 and Building 71 Consolidation Areas (GECD210/220)
- 6. Hill 78 Area Remainder (GECD160)
- 7. Unkamet Brook Area (GECD170)

# Former Oxbow Areas (non-groundwater)

- 8. Former Oxbow Areas A & C (GECD410)
- 9. Lyman Street Area (GECD430)
- 10. Newell Street Area I (GECD440)
- 11. Newell Street Area II (GECD450)
- 12. Former Oxbow Areas J & K (GECD420)

### **Housatonic River**

- 13. Upper ½-Mile Reach (GECD800)
- 14. 1½-Mile Reach (only for activities, if any, conducted by GE) (GECD820)
- 15. Rest of the River (GECD850)

# **Housatonic River Floodplain**

- 16. Current Residential Properties Adjacent to 1½-Mile Reach (Actual/Potential Lawns) (GECD710)
- 17. Non-Residential Properties Adjacent to 1½-Mile Reach (excluding banks) (GECD720)
- 18. Current Residential Properties Downstream of Confluence (Actual/Potential Lawns) (GECD730)

### **Other Areas**

- 19. Allendale School Property (GECD500)
- 20. Silver Lake Area (GECD600)

# **Groundwater Management Areas (GMAs)**

- 21. Plant Site 1 (GECD310)
- 22. Former Oxbows J & K (GECD320)
- 23. Plant Site 2 (GECD330)
- 24. Plant Site 3 (GECD340)
- 25. Former Oxbows A&C (GECD350)

# GENERAL ACTIVITIES GE-PITTSFIELD/HOUSATONIC RIVER SITE (GECD900) SEPTEMBER 2004

# a. Activities Undertaken/Completed

- Attended Pittsfield Citizens Coordinating Council (CCC) meeting (September 8, 2004).
- Continued GE-EPA electronic data exchanges for the Housatonic River Watershed and Areas Outside the River.\*
- Continued meetings with EPA, MDEP, and the Pittsfield Economic Development Authority (PEDA) to discuss a revised NPDES permit.

# b. Sampling/Test Results Received

- Sample results were received for routine sampling conducted pursuant to GE's NPDES Permit for the GE facility. Sampling records and results are provided in Attachment A to this report.
- NPDES Discharge Monitoring Reports (DMRs) for the period of August 1 through August 31, 2004, are provided in Attachment B to this report.
- A report titled *Toxicity Evaluation of Wastewaters Discharged from the General Electric Plant; Pittsfield, Massachusetts (Samples Collected in September 2004)* was prepared for GE by SGS Environmental Services, Inc. (SGS). A copy of that report is provided in Attachment C.
- A report titled *Chronic Effects of the Process Wastewaters Discharged from the General Electric Plant; Pittsfield, Massachusetts (Samples Collected in September 2004)* was prepared for GE by SGS. A copy of that report is provided in Attachment D.

## c. Work Plans/Reports/Documents Submitted

None

# d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Attend public, CCC, and PEDA meetings as appropriate.
- Continue NPDES sampling and monitoring activities.
- Continue discussions of a revised NPDES permit.

### e. General Progress/Unresolved Issues/Potential Schedule Impacts

Issues relating to a revised NPDES permit are under discussion.

## f. Proposed/Approved Work Plan Modifications

None

# ITEM 1 PLANT AREA 20s, 30s, 40s COMPLEXES (GECD120) SEPTEMBER 2004

### a. Activities Undertaken/Completed

- Continued discussions with EPA, MDEP, and PEDA regarding land transfer issues for the 20s and 30s Complexes.
- Continued discussions with holders of encumbrances at 20s and 30s Complexes regarding subordination agreements for Grants of Environmental Restrictions and Easements (EREs).\*
- Continued pre-demolition activities at Buildings 42, 43/43-A, and 44.
- Continued oil monitoring in Building 43 elevator shaft; no recoverable quantities were encountered (see Item 21.a).
- Completed Building 28B demolition activities and transported demolition debris to Hill 78 On-Plant Consolidation Area (OPCA).
- Conducted miscellaneous PCB wipe sampling, as identified in Table 1-1.
- Conducted ambient air sampling for particulate matter.

## b. Sampling/Test Results Received

See attached tables.

## c. Work Plans/Reports/Documents Submitted

- Submitted draft Soil Data Compilation Report for 30s Complex (September 14, 2004).\*
- Submitted topographic survey maps for 20s and 30s Complexes (September 16, 2004).\*
- Submitted letter to MDEP noting that approval is not required for division of lands at 20s and 30s Complexes and Woodlawn Avenue (September 21, 2004).
- Submitted draft plans of restricted areas to be attached to EREs for 20s and 30s Complexes (September 29, 2004).\*

## d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue pre-demolition activities (including asbestos abatement) at Buildings 42, 43/43-A, and 44.

# ITEM 1 (cont'd) PLANT AREA 20s, 30s, 40s COMPLEXES (GECD120) SEPTEMBER 2004

# d. Upcoming Scheduled and Anticipated Activities (next six weeks) (cont'd)

- Submit final Soil Data Compilation Report for 30s Complex.\*
- Meet with Community Development Board to discuss Approval Not Required (ANR) Land Subdivision Plans for 20s and 30s Complexes (scheduled for October 5, 2004).
- Conduct unofficial pre-certification inspection of land in 20s and 30s Complexes (scheduled for October 13, 2004).\*
- Submit final drafts of EREs for 20s and 30s Complexes and related documents (e.g., survey plans, subordination agreements, title commitments) to Agencies (on or before October 15, 2004).\*
- Submit draft Completion Reports for 20s and 30s Complexes (on or before October 15, 2004).\*
- Complete transfer of 20s and 30s Complexes to PEDA following receipt of all necessary Agency approvals.

# e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

# f. Proposed/Approved Work Plan Modifications

None

# TABLE 1-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

# 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name                            | Field Sample ID     | Sample Date | Matrix | Laboratory              | Analyses           | Date Received |
|-----------------------------------------|---------------------|-------------|--------|-------------------------|--------------------|---------------|
| Miller Vac Wipe Sampling                | MILLER-VAC-W1       | 9/3/04      | Wipe   | SGS                     | PCB                | 9/8/04        |
| Miller Vac Wipe Sampling                | MILLER-VAC-W2       | 9/3/04      | Wipe   | SGS                     | PCB                | 9/8/04        |
| Miller Vac Wipe Sampling                | MILLER-VAC-W3       | 9/3/04      | Wipe   | SGS                     | PCB                | 9/8/04        |
| Miller Vac Wipe Sampling                | MILLER-VAC-W4       | 9/3/04      | Wipe   | SGS                     | PCB                | 9/8/04        |
| Miller Vac Wipe Sampling                | MILLER-VAC-W5       | 9/3/04      | Wipe   | SGS                     | PCB                | 9/8/04        |
| Miller Vac Wipe Sampling                | MILLER-VAC-W6       | 9/3/04      | Wipe   | SGS                     | PCB                | 9/8/04        |
| Miller Vac Wipe Sampling                | MILLER-VAC-W7       | 9/3/04      | Wipe   | SGS                     | PCB                | 9/8/04        |
| Ambient Air Particulate Matter Sampling | West of Guard Shack | 9/13/04     | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | Background Location | 9/13/04     | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | West of Guard Shack | 9/14/04     | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | Background Location | 9/14/04     | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |

# TABLE 1-2 PCB DATA RECEIVED DURING SEPTEMBER 2004

# MILLER VAC WIPE SAMPLING 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in mg/100cm²)

| Sample ID     | Date<br>Collected | Aroclor-1016, -1221,<br>-1232, -1242, -1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|---------------|-------------------|---------------------------------------------|--------------|--------------|------------|
| MILLER-VAC-W1 | 9/3/2004          | ND(1.0)                                     | 0.55 J       | ND(1.0)      | 0.55 J     |
| MILLER-VAC-W2 | 9/3/2004          | ND(1.0)                                     | ND(1.0)      | ND(1.0)      | ND(1.0)    |
| MILLER-VAC-W3 | 9/3/2004          | ND(1.0)                                     | ND(1.0)      | ND(1.0)      | ND(1.0)    |
| MILLER-VAC-W4 | 9/3/2004          | ND(1.0)                                     | ND(1.0)      | ND(1.0)      | ND(1.0)    |
| MILLER-VAC-W5 | 9/3/2004          | ND(1.0)                                     | ND(1.0)      | ND(1.0)      | ND(1.0)    |
| MILLER-VAC-W6 | 9/3/2004          | ND(1.0)                                     | ND(1.0)      | ND(1.0)      | ND(1.0)    |
| MILLER-VAC-W7 | 9/3/2004          | ND(1.0)                                     | ND(1.0)      | ND(1.0)      | ND(1.0)    |

### Notes:

- 1. Samples were collected by Blasland Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parentheses is the associated detection limit.

## Data Qualifiers:

J - Indicates an estimated value less than the practical quantitation limit (PQL).

# TABLE 1-3 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING SEPTEMBER 2004

### PARTICULATE AMBIENT AIR CONCENTRATIONS 20s, 30s, 40s COMPLEX GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Date               | Sampler Location    | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration (mg/m³) | Average Period<br>(Hours:Min) | Predominant<br>Wind Direction |
|--------------------|---------------------|------------------------------------------|------------------------------------------|-------------------------------|-------------------------------|
| 09/13/04           | West of Guard Shack | 0.034                                    | 0.029*                                   | 9:45                          | N                             |
| 09/14/04           | West of Guard Shack | 0.048                                    | 0.006*                                   | 9:45                          | SW                            |
| Notification Level |                     | 0.120                                    |                                          |                               |                               |

### Notes:

Background monitoring location inside GE Gate 31 on the corner of Woodlawn Avenue and Tyler Street.

<sup>\*</sup> Measured with DR-2000. All others measured with pDR-1000.

# ITEM 2 PLANT AREA EAST STREET AREA 2-SOUTH (GECD150) SEPTEMBER 2004

# a. Activities Undertaken/Completed

- Continued pre-demolition activities at the 60s Complex.
- Performed sludge sampling at Building 64T, Liquid Phase Carbon Adsorption (LPCA) sampling at Building 64G, ambient air monitoring for PCBs, and other miscellaneous sampling, as identified in Table 2-1.
- Tankered and transported 14,500 gallons of water from Building 61 to Building 64G for treatment.
- Continued discussions regarding ERE and subordination agreements for CRA.\*
- Continued survey activities associated with finalizing ERE for CRA.\*
- Continued development of interim letter report on additional data needs at East Street Area 2-South.\*

## b. Sampling/Test Results Received

See attached tables.

## c. Work Plans/Reports/Documents Submitted

Submitted letter (written follow-up) to verbal notifications of pre-demolition sampling results at 60s Complex (September 7, 2004).

# d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue to conduct routine process sampling at Buildings 64G and/or 64T.
- Continue discussions regarding ERE and subordination agreements for CRA.\*
- Continue pre-demolition and initiate demolition activities at the 60s Complex.
- Submit interim letter report on additional data needs at East Street Area 2-South (due on or before October 26, 2004).\*

# ITEM 2 (cont'd) PLANT AREA EAST STREET AREA 2-SOUTH (GECD150) SEPTEMBER 2004

# e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

# f. Proposed/Approved Work Plan Modifications

Received response from EPA (dated September 23, 2004) to GE's September 7, 2004 notification letter regarding equipment containing PCBs.

# TABLE 2-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

# EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name                                               | Field Sample ID                    | Sample Date | Matrix | Laboratory              | Analyses     | Date Received |
|------------------------------------------------------------|------------------------------------|-------------|--------|-------------------------|--------------|---------------|
| 60's Complex Asbestos Abatement Shower Water Drum Sampling | 60-COMP-WATER-1                    | 9/14/04     | Water  | SGS                     | PCB          | 9/20/04       |
| Building 64G LPCA Monitoring                               | I4-64G-01                          | 9/7/04      | Water  | SGS                     | VOC          | 9/13/04       |
| Building 64G LPCA Monitoring                               | I4-64G-02                          | 9/7/04      | Water  | SGS                     | SVOC         | 9/14/04       |
| Building 64G LPCA Monitoring                               | I4-64G-03                          | 9/7/04      | Water  | SGS                     | PCB          | 9/13/04       |
| Building 64G LPCA Monitoring                               | 14-64G-04                          | 9/7/04      | Water  | SGS                     | Oil & Grease | 9/13/04       |
| Building 64G LPCA Monitoring                               | 14-64G-05                          | 9/7/04      | Water  | SGS                     | VOC          | 9/13/04       |
| Building 64G LPCA Monitoring                               | 14-64G-06                          | 9/7/04      | Water  | SGS                     | SVOC         | 9/14/04       |
| Building 64G LPCA Monitoring                               | 14-64G-07                          | 9/7/04      | Water  | SGS                     | PCB          | 9/13/04       |
| Building 64G LPCA Monitoring                               | 14-64G-08                          | 9/7/04      | Water  | SGS                     | Oil & Grease | 9/13/04       |
| Building 64G LPCA Monitoring                               | 14-64G-09                          | 9/7/04      | Water  | SGS                     | VOC          | 9/13/04       |
| Building 64G LPCA Monitoring                               | I4-64G-10                          | 9/7/04      | Water  | SGS                     | SVOC         | 9/14/04       |
| Building 64G LPCA Monitoring                               | I4-64G-11                          | 9/7/04      | Water  | SGS                     | PCB          | 9/13/04       |
| Building 64G LPCA Monitoring                               | I4-64G-12                          | 9/7/04      | Water  | SGS                     | Oil & Grease | 9/13/04       |
| Building 64G LPCA Monitoring                               | I4-64G-13                          | 9/7/04      | Water  | SGS                     | VOC          | 9/13/04       |
| Building 64G LPCA Monitoring                               | I4-64G-14                          | 9/7/04      | Water  | SGS                     | SVOC         | 9/14/04       |
| Building 64G LPCA Monitoring                               | I4-64G-15                          | 9/7/04      | Water  | SGS                     | PCB          | 9/13/04       |
| Building 64G LPCA Monitoring                               | I4-64G-16                          | 9/7/04      | Water  | SGS                     | Oil & Grease | 9/13/04       |
| Building 64T Sludge Sampling                               | I4-64T-01                          | 9/5/04      | Sludge | SGS                     | PCB          | 9/13/04       |
| PCB Ambient Air Sampling                                   | Northeast of 60s Complex           | 9/1 -9/2/04 | Air    | Berkshire Environmental | PCB          | 9/20/04       |
| PCB Ambient Air Sampling                                   | Northwest of 60s Complex           | 9/1 -9/2/04 | Air    | Berkshire Environmental | PCB          | 9/20/04       |
| PCB Ambient Air Sampling                                   | Northwest of 60s Complex colocated | 9/1 -9/2/04 | Air    | Berkshire Environmental | PCB          | 9/20/04       |
| PCB Ambient Air Sampling                                   | Southwest of 60s Complex           | 9/1 -9/2/04 | Air    | Berkshire Environmental | PCB          | 9/20/04       |
| PCB Ambient Air Sampling                                   | Southeast of 60s Complex           | 9/1 -9/2/04 | Air    | Berkshire Environmental | PCB          | 9/20/04       |
| PCB Ambient Air Sampling                                   | Background Inside GE Gate 31       | 9/1 -9/2/04 | Air    | Berkshire Environmental | PCB          | 9/20/04       |
| PCB Ambient Air Sampling                                   | Northeast of 60s Complex           | 9/8 -9/9/04 | Air    | Berkshire Environmental | PCB          | 9/20/04       |
| PCB Ambient Air Sampling                                   | Northwest of 60s Complex           | 9/8 -9/9/04 | Air    | Berkshire Environmental | PCB          | 9/20/04       |
| PCB Ambient Air Sampling                                   | Northwest of 60s Complex colocated | 9/8 -9/9/04 | Air    | Berkshire Environmental | PCB          | 9/20/04       |
| PCB Ambient Air Sampling                                   | Southwest of 60s Complex           | 9/8 -9/9/04 | Air    | Berkshire Environmental | PCB          | 9/20/04       |
| PCB Ambient Air Sampling                                   | Southeast of 60s Complex           | 9/8 -9/9/04 | Air    | Berkshire Environmental | PCB          | 9/20/04       |
| PCB Ambient Air Sampling                                   | Background Inside GE Gate 31       | 9/8 -9/9/04 | Air    | Berkshire Environmental | PCB          | 9/20/04       |

## TABLE 2-2 PCB DATA RECEIVED DURING SEPTEMBER 2004

# BUILDING 64T SLUDGE SAMPLING EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

| Sample ID | Date<br>Collected | Aroclor-1016, -1221,<br>-1232, -1242, -1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|-----------|-------------------|---------------------------------------------|--------------|--------------|------------|
| I4-64T-01 | 9/5/2004          | ND(5.2)                                     | 88           | 67           | 155        |

### Notes:

- 1. Sample was collected by General Electric Company and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parentheses is the associated detection limit.

# TABLE 2-3 DATA RECEIVED DURING SEPTEMBER 2004

### BUILDING 64G LPCA MONITORING EAST STREET AREA 2 - SOUTH

### **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS**

(Results are presented in parts per million, ppm)

|                       | Sample ID:      | I4-64G-01 | I4-64G-02 | I4-64G-03 | I4-64G-04 | I4-64G-05  | I4-64G-06 | I4-64G-07 | I4-64G-08 |
|-----------------------|-----------------|-----------|-----------|-----------|-----------|------------|-----------|-----------|-----------|
| Parameter             | Date Collected: | 09/07/04  | 09/07/04  | 09/07/04  | 09/07/04  | 09/07/04   | 09/07/04  | 09/07/04  | 09/07/04  |
| Volatile Organics     |                 |           |           |           |           |            |           |           |           |
| 1,1,1-Trichloroethane |                 | ND(0.010) | NA        | NA        | NA        | 0.0028 J   | NA        | NA        | NA        |
| Benzene               |                 | 0.039     | NA        | NA        | NA        | ND(0.0050) | NA        | NA        | NA        |
| Chlorobenzene         |                 | 0.16      | NA        | NA        | NA        | ND(0.0050) | NA        | NA        | NA        |
| Ethylbenzene          |                 | 0.029     | NA        | NA        | NA        | ND(0.0050) | NA        | NA        | NA        |
| Vinyl Chloride        |                 | 0.0050 J  | NA        | NA        | NA        | ND(0.0050) | NA        | NA        | NA        |
| PCBs-Unfiltered       |                 |           |           |           |           |            |           |           |           |
| None Detected         |                 | NA        | NA        |           | NA        | NA         | NA        |           | NA        |
| Semivolatile Organics |                 |           |           |           |           |            |           |           |           |
| 1,3-Dichlorobenzene   |                 | NA        | 0.0037 J  | NA        | NA        | NA         | ND(0.010) | NA        | NA        |
| 1,4-Dichlorobenzene   |                 | NA        | 0.0075 J  | NA        | NA        | NA         | ND(0.010) | NA        | NA        |
| Acenaphthene          |                 | NA        | 0.036     | NA        | NA        | NA         | ND(0.010) | NA        | NA        |
| Fluorene              |                 | NA        | 0.0053 J  | NA        | NA        | NA         | ND(0.010) | NA        | NA        |
| Naphthalene           |                 | NA        | 0.019     | NA        | NA        | NA         | ND(0.010) | NA        | NA        |
| Conventionals         | •               |           |           | •         | •         | ·          |           | •         |           |
| Oil & Grease          |                 | NA        | NA        | NA        | 8.3       | NA         | NA        | NA        | 10        |

# TABLE 2-3 DATA RECEIVED DURING SEPTEMBER 2004

### BUILDING 64G LPCA MONITORING EAST STREET AREA 2 - SOUTH

### GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

|                       | Sample ID:      | I4-64G-09  | I4-64G-10 | I4-64G-11 | I4-64G-12 | I4-64G-13  | I4-64G-14 | I4-64G-15 | I4-64G-16 |
|-----------------------|-----------------|------------|-----------|-----------|-----------|------------|-----------|-----------|-----------|
| Parameter             | Date Collected: | 09/07/04   | 09/07/04  | 09/07/04  | 09/07/04  | 09/07/04   | 09/07/04  | 09/07/04  | 09/07/04  |
| Volatile Organics     |                 |            |           |           |           |            |           |           |           |
| 1,1,1-Trichloroethane |                 | 0.0026 J   | NA        | NA        | NA        | ND(0.0050) | NA        | NA        | NA        |
| Benzene               |                 | ND(0.0050) | NA        | NA        | NA        | ND(0.0050) | NA        | NA        | NA        |
| Chlorobenzene         |                 | ND(0.0050) | NA        | NA        | NA        | ND(0.0050) | NA        | NA        | NA        |
| Ethylbenzene          |                 | ND(0.0050) | NA        | NA        | NA        | ND(0.0050) | NA        | NA        | NA        |
| Vinyl Chloride        |                 | ND(0.0050) | NA        | NA        | NA        | ND(0.0050) | NA        | NA        | NA        |
| PCBs-Unfiltered       |                 |            |           |           |           |            |           |           |           |
| None Detected         |                 | NA         | NA        |           | NA        | NA         | NA        |           | NA        |
| Semivolatile Organics |                 |            |           |           |           |            |           |           |           |
| 1,3-Dichlorobenzene   |                 | NA         | ND(0.010) | NA        | NA        | NA         | ND(0.010) | NA        | NA        |
| 1,4-Dichlorobenzene   |                 | NA         | ND(0.010) | NA        | NA        | NA         | ND(0.010) | NA        | NA        |
| Acenaphthene          |                 | NA         | ND(0.010) | NA        | NA        | NA         | ND(0.010) | NA        | NA        |
| Fluorene              |                 | NA         | ND(0.010) | NA        | NA        | NA         | ND(0.010) | NA        | NA        |
| Naphthalene           |                 | NA         | ND(0.010) | NA        | NA        | NA         | ND(0.010) | NA        | NA        |
| Conventionals         | ·               |            |           |           | •         | •          |           | •         |           |
| Oil & Grease          |                 | NA         | NA        | NA        | 3.1 B     | NA         | NA        | NA        | ND(5.0)   |

### Notes:

- 1. Samples were collected by General Electric Company and were submitted to SGS Environmental Services, Inc. for analysis of volatiles, PCBs, semivolatiles, and oil & grease.
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- Only those constituents detected in one or more samples are summarized.
- 5. Indicates that all constituents for the parameter group were not detected.

### Data Qualifiers:

### Organics (volatiles, PCBs, semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

### **Conventional Parameters**

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

# TABLE 2-4 PCB DATA RECEIVED DURING SEPTEMBER 2004

# 60'S COMPLEX ASBESTOS ABATEMENT SHOWER WATER DRUM SAMPLING EAST STREET AREA 2 - SOUTH

# GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

| Sample ID       | Date<br>Collected | Aroclor-1016, -1221,<br>-1232, -1242, -1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|-----------------|-------------------|---------------------------------------------|--------------|--------------|------------|
| 60-COMP-WATER-1 | 9/14/2004         | ND(0.000065)                                | 0.00024      | 0.00044      | 0.00068    |

### Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parentheses is the associated detection limit.

# TABLE 2-5 AIR SAMPLE DATA RECEIVED DURING SEPTEMBER 2004

# PCB AMBIENT AIR CONCENTRATIONS EAST STREET AREA 2 - SOUTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Date               | Northeast of 60s<br>Complex (µg/m³) | Northwest of 60s<br>Complex (µg/m³) | Northwest of 60s<br>Complex colocated<br>(µg/m³) | Southwest of 60s<br>Complex (µg/m³) | Southeast of 60s<br>Complex (µg/m³) | Background Inside<br>GE Gate 31 (μg/m³) |
|--------------------|-------------------------------------|-------------------------------------|--------------------------------------------------|-------------------------------------|-------------------------------------|-----------------------------------------|
| 09/01 - 09/02/04   | 0.0040                              | 0.0028                              | 0.0035                                           | 0.0030                              | 0.0091                              | 0.0014                                  |
| 09/08 - 09/09/04   | 0.0068                              | 0.0053                              | 0.0043                                           | 0.0032                              | 0.0053                              | NA <sup>1</sup>                         |
| Notification Level | 0.05                                | 0.05                                | 0.05                                             | 0.05                                | 0.05                                | 0.05                                    |

## Note:

<sup>&</sup>lt;sup>1</sup> Sample did not meet validity requirements and was not analyzed. Sampler did not run for the required 24-hour period due to a motor problem.

# ITEM 3 PLANT AREA EAST STREET AREA 2-NORTH (GECD140) SEPTEMBER 2004

# a. Activities Undertaken/Completed

- Initiated topographic survey in support of future RD/RA activities.
- Conducted miscellaneous sampling, as identified in Table 3-1.

# b. Sampling/Test Results Received

See attached tables.

# c. Work Plans/Reports/Documents Submitted

None

# d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Awaiting EPA approval of the Pre-Design Investigation Report submitted on June 17, 2004.
- Continue topographic survey in support of future RD/RA activities.

# e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

# f. Proposed/Approved Work Plan Modifications

None

# TABLE 3-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

# EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name                               | Field Sample ID | Sample Date | Matrix | Laboratory | Analyses                                    | Date Received |
|--------------------------------------------|-----------------|-------------|--------|------------|---------------------------------------------|---------------|
| Building 12 Compressor Water Drum          | 12-F1317-WATER- | 9/14/04     | Water  | SGS        | PCB                                         | 9/20/04       |
| Building 19 Liquid Chiller System Sampling | 19-1-CS-1       | 9/20/04     | Water  | SGS        | Glycol                                      |               |
| Building 19 Liquid Heating System Sampling | 19-1-HS-1       | 8/25/04     | Liquid | SGS        | PCB, VOC, Total Metals, Glycol Constituents | 9/2/04        |

### **TABLE 3-2 DATA RECEIVED DURING SEPTEMBER 2004**

# **BUILDING 19 LIQUID HEATING SYSTEM SAMPLING EAST STREET AREA 2 - NORTH**

# **GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS**

(Results are presented in parts per million, ppm)

|                          | Sample ID:      | 19-1-HS-1 |
|--------------------------|-----------------|-----------|
| Parameter                | Date Collected: | 08/25/04  |
| <b>Volatile Organics</b> |                 |           |
| 2-Butanone               |                 | 0.020     |
| Acetone                  |                 | 0.016     |
| PCBs-Unfiltered          |                 |           |
| None Detected            |                 |           |
| Inorganics-Unfilte       | ered            |           |
| Barium                   |                 | 0.0770    |
| Chromium                 |                 | 0.00560   |
| Lead                     |                 | 0.190     |
| Selenium                 |                 | 0.230     |
| Silver                   |                 | 0.00390 B |
| Conventionals            |                 |           |
| Ethylene Glycol          |                 | 35000     |
| Tri-ethylene glycol      |                 | 28000     |

### Notes:

- Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, metals, and glycol constituents.
- 2. Only detected constituents are summarized.
- -- Indicates that all constituents for the parameter group were not detected.

### Data Qualifiers:

### Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

# TABLE 3-3 PCB DATA RECEIVED DURING SEPTEMBER 2004

# BUILDING 12 COMPRESSOR WATER DRUM SAMPLING EAST STREET AREA 2 - NORTH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

| Sample ID        | Date<br>Collected | Aroclor-1016, -1221,<br>-1232, -1242, -1248 | Aroclor-1254 | Aroclor-1260 | Total PCBs |
|------------------|-------------------|---------------------------------------------|--------------|--------------|------------|
| 12-F1317-WATER-1 | 9/14/2004         | ND(0.000065)                                | 0.0011       | 0.00014      | 0.00124    |

### Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parentheses is the associated detection limit.

# ITEM 4 PLANT AREA EAST STREET AREA 1-NORTH (GECD130) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

# a. Activities Undertaken/Completed

Continued survey activities associated with finalizing ERE for GE-owned properties.

# b. Sampling/Test Results Received

None

# c. Work Plans/Reports/Documents Submitted

None

# d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Submit ERE and subordination agreements for GE properties.
- Send notice to holders of encumbrances on Parcel K11-1-15 that a Conditional Solution was implemented at the portion of that property within East Street Area 1-North.
- Conduct pre-certification inspection of this RAA with EPA and MDEP.

# e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

# f. Proposed/Approved Work Plan Modifications

None

# ITEM 5 PLANT AREA HILL 78 & BUILDING 71 CONSOLIDATION AREAS (GECD210/220) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

## a. Activities Undertaken/Completed

- Transferred soil and sediment from 1½ Mile Reach of the Housatonic River, demolition debris from Building 28B, and debris from pre-demolition activities conducted at Buildings 61 and 66 to the OPCAs.
- Conducted ambient air monitoring for particulates and PCBs at the OPCAs.
- Continued transfer of leachate from Building 71 OPCA to Building 64G for treatment. The total amount transferred in September 2004 was 230,000 gallons (see Table 5-4).

# b. Sampling/Test Results Received

See attached tables.

## c. Work Plans/Reports/Documents Submitted

None

## d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Continue transfer of building demolition debris from ongoing demolition projects and excavated material from 1½ Mile Reach removal activities to the OPCAs.

## e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

## f. Proposed/Approved Work Plan Modifications

None

# TABLE 5-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

### HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name                            | Field Sample ID              | Sample Date   | Matrix | Laboratory              | Analyses           | Date Received |
|-----------------------------------------|------------------------------|---------------|--------|-------------------------|--------------------|---------------|
| Ambient Air Particulate Matter Sampling | North of OPCAs               | 8/31/04       | Air    | Berkshire Environmental | Particulate Matter | 9/9/04        |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co.    | 8/31/04       | Air    | Berkshire Environmental | Particulate Matter | 9/9/04        |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs           | 8/31/04       | Air    | Berkshire Environmental | Particulate Matter | 9/9/04        |
| Ambient Air Particulate Matter Sampling | Southwest of OPCAs           | 8/31/04       | Air    | Berkshire Environmental | Particulate Matter | 9/9/04        |
| Ambient Air Particulate Matter Sampling | West of OPCAs                | 8/31/04       | Air    | Berkshire Environmental | Particulate Matter | 9/9/04        |
| Ambient Air Particulate Matter Sampling | Background Location          | 8/31/04       | Air    | Berkshire Environmental | Particulate Matter | 9/9/04        |
| Ambient Air Particulate Matter Sampling | North of OPCAs               | 9/13/04       | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co.    | 9/13/04       | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs           | 9/13/04       | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | Southwest of OPCAs           | 9/13/04       | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | West of OPCAs                | 9/13/04       | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | Background Location          | 9/13/04       | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | North of OPCAs               | 9/14/04       | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co.    | 9/14/04       | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs           | 9/14/04       | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | Southwest of OPCAs           | 9/14/04       | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | West of OPCAs                | 9/14/04       | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | Background Location          | 9/14/04       | Air    | Berkshire Environmental | Particulate Matter | 9/20/04       |
| Ambient Air Particulate Matter Sampling | North of OPCAs               | 9/24/04       | Air    | Berkshire Environmental | Particulate Matter | 9/28/04       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co.    | 9/24/04       | Air    | Berkshire Environmental | Particulate Matter | 9/28/04       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs           | 9/24/04       | Air    | Berkshire Environmental | Particulate Matter | 9/28/04       |
| Ambient Air Particulate Matter Sampling | Southwest of OPCAs           | 9/24/04       | Air    | Berkshire Environmental | Particulate Matter | 9/28/04       |
| Ambient Air Particulate Matter Sampling | West of OPCAs                | 9/24/04       | Air    | Berkshire Environmental | Particulate Matter | 9/28/04       |
| Ambient Air Particulate Matter Sampling | Background Location          | 9/24/04       | Air    | Berkshire Environmental | Particulate Matter | 9/28/04       |
| Ambient Air Particulate Matter Sampling | North of OPCAs               | 9/29/04       | Air    | Berkshire Environmental | Particulate Matter | 10/5/04       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co.    | 9/29/04       | Air    | Berkshire Environmental | Particulate Matter | 10/5/04       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs           | 9/29/04       | Air    | Berkshire Environmental | Particulate Matter | 10/5/04       |
| Ambient Air Particulate Matter Sampling | Southwest of OPCAs           | 9/29/04       | Air    | Berkshire Environmental | Particulate Matter | 10/5/04       |
| Ambient Air Particulate Matter Sampling | West of OPCAs                | 9/29/04       | Air    | Berkshire Environmental | Particulate Matter | 10/5/04       |
| Ambient Air Particulate Matter Sampling | Background Location          | 9/29/04       | Air    | Berkshire Environmental | Particulate Matter | 10/5/04       |
| Ambient Air Particulate Matter Sampling | North of OPCAs               | 9/30/04       | Air    | Berkshire Environmental | Particulate Matter | 10/5/04       |
| Ambient Air Particulate Matter Sampling | Pittsfield Generating Co.    | 9/30/04       | Air    | Berkshire Environmental | Particulate Matter | 10/5/04       |
| Ambient Air Particulate Matter Sampling | Southeast of OPCAs           | 9/30/04       | Air    | Berkshire Environmental | Particulate Matter | 10/5/04       |
| Ambient Air Particulate Matter Sampling | Southwest of OPCAs           | 9/30/04       | Air    | Berkshire Environmental | Particulate Matter | 10/5/04       |
| Ambient Air Particulate Matter Sampling | West of OPCAs                | 9/30/04       | Air    | Berkshire Environmental | Particulate Matter | 10/5/04       |
| Ambient Air Particulate Matter Sampling | Background Location          | 9/30/04       | Air    | Berkshire Environmental | Particulate Matter | 10/5/04       |
| PCB Ambient Air Sampling                | Southwest of OPCAs           | 9/13 -9/14/04 | Air    | Berkshire Environmental | PCB                | 9/22/04       |
| PCB Ambient Air Sampling                | Southwest of OPCAs colocated | 9/13 -9/14/04 | Air    | Berkshire Environmental | PCB                | 9/22/04       |
| PCB Ambient Air Sampling                | West of OPCAs                | 9/13 -9/14/04 | Air    | Berkshire Environmental | PCB                | 9/22/04       |
| PCB Ambient Air Sampling                | North of OPCAs               | 9/13 -9/14/04 | Air    | Berkshire Environmental | PCB                | 9/22/04       |
| PCB Ambient Air Sampling                | Southeast of OPCAs           | 9/13 -9/14/04 | Air    | Berkshire Environmental | PCB                | 9/22/04       |

# TABLE 5-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

### HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name             | Field Sample ID              | Sample Date   | Matrix | Laboratory              | Analyses | Date Received |
|--------------------------|------------------------------|---------------|--------|-------------------------|----------|---------------|
| PCB Ambient Air Sampling | Pittsfield Generating (PGE)  | 9/13 -9/14/04 | Air    | Berkshire Environmental | PCB      | 9/22/04       |
| PCB Ambient Air Sampling | Background Inside GE Gate 31 | 9/13 -9/14/04 | Air    | Berkshire Environmental | PCB      | 9/22/04       |
| PCB Ambient Air Sampling | Southwest of OPCAs           | 9/14 -9/15/05 | Air    | Berkshire Environmental | PCB      | 9/22/04       |
| PCB Ambient Air Sampling | Southwest of OPCAs colocated | 9/14 -9/15/05 | Air    | Berkshire Environmental | PCB      | 9/22/04       |
| PCB Ambient Air Sampling | West of OPCAs                | 9/14 -9/15/05 | Air    | Berkshire Environmental | PCB      | 9/22/04       |
| PCB Ambient Air Sampling | North of OPCAs               | 9/14 -9/15/05 | Air    | Berkshire Environmental | PCB      | 9/22/04       |
| PCB Ambient Air Sampling | Southeast of OPCAs           | 9/14 -9/15/05 | Air    | Berkshire Environmental | PCB      | 9/22/04       |
| PCB Ambient Air Sampling | Pittsfield Generating (PGE)  | 9/14 -9/15/05 | Air    | Berkshire Environmental | PCB      | 9/22/04       |
| PCB Ambient Air Sampling | Background Inside GE Gate 31 | 9/14 -9/15/05 | Air    | Berkshire Environmental | PCB      | 9/22/04       |

# TABLE 5-2 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING SEPTEMBER 2004

# PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Date                             | Sampler Location                          | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration (mg/m³) | Average Period<br>(Hours:Min) | Predominant<br>Wind Direction |
|----------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------|-------------------------------|
| 08/16/04 - 08/20/04 <sup>1</sup> | North of OPCAs                            | NA                                       | NA                                       | NA                            | NA                            |
|                                  | Pittsfield Generating Co.                 |                                          |                                          |                               |                               |
|                                  | Southeast of OPCAs                        |                                          |                                          |                               |                               |
|                                  | Southwest of OPCAs                        |                                          |                                          |                               |                               |
|                                  | West of OPCAs                             |                                          |                                          |                               |                               |
| 08/23/04 - 08/27/04 <sup>1</sup> | North of OPCAs                            | NA                                       | NA                                       | NA                            | NA                            |
|                                  | Pittsfield Generating Co.                 |                                          |                                          |                               |                               |
|                                  | Southeast of OPCAs                        |                                          |                                          |                               |                               |
|                                  | Southwest of OPCAs                        |                                          |                                          |                               |                               |
|                                  | West of OPCAs                             |                                          |                                          |                               |                               |
| 08/30/04 <sup>1</sup>            | North of OPCAs                            | NA                                       | NA                                       | NA                            | NA                            |
|                                  | Pittsfield Generating Co.                 |                                          |                                          |                               |                               |
|                                  | Southeast of OPCAs                        |                                          |                                          |                               |                               |
|                                  | Southwest of OPCAs                        |                                          |                                          |                               |                               |
|                                  | West of OPCAs                             |                                          |                                          |                               |                               |
| 08/31/04                         | North of OPCAs                            | 0.002                                    | 0.005*                                   | 5:00 <sup>6</sup>             | NA                            |
| 33/31/31                         | Pittsfield Generating Co.                 | 0.004*                                   | 0.000                                    | 5:00 <sup>6</sup>             |                               |
|                                  | Southeast of OPCAs                        | 0.003                                    |                                          | 5:00 <sup>6</sup>             |                               |
|                                  | Southwest of OPCAs                        | 0.004*                                   |                                          | 2:00 <sup>6,7</sup>           |                               |
|                                  | West of OPCAs                             | 0.005                                    |                                          | 3:45 <sup>2</sup>             |                               |
| 09/01/04 - 09/03/04 <sup>1</sup> | North of OPCAs                            | NA                                       | NA                                       | NA                            | NA                            |
| 00/01/01 00/00/01                | Pittsfield Generating Co.                 | 147                                      | 100                                      | 100                           | 101                           |
|                                  | Southeast of OPCAs                        |                                          |                                          |                               |                               |
|                                  | Southwest of OPCAs                        |                                          |                                          |                               |                               |
|                                  | West of OPCAs                             |                                          |                                          |                               |                               |
| 09/06/04 - 09/10/04 <sup>1</sup> | North of OPCAs                            | NA                                       | NA                                       | NA                            | NA                            |
|                                  | Pittsfield Generating Co.                 |                                          |                                          |                               |                               |
|                                  | Southeast of OPCAs                        |                                          |                                          |                               |                               |
|                                  | Southwest of OPCAs                        |                                          |                                          |                               |                               |
|                                  | West of OPCAs                             |                                          |                                          |                               |                               |
| 09/13/04                         | North of OPCAs                            | 0.022                                    | 0.029*                                   | 9:45                          | N                             |
|                                  | Pittsfield Generating Co.                 | 0.029*                                   |                                          | 9:30                          |                               |
|                                  | Southeast of OPCAs                        | 0.031                                    |                                          | 7:45 <sup>2</sup>             |                               |
|                                  | Southwest of OPCAs                        | 0.021*                                   |                                          | 10:00                         |                               |
| 09/14/04                         | West of OPCAs  North of OPCAs             | 0.015<br>0.008                           | 0.006*                                   | 10:00<br>9:45                 | SW                            |
| U9/ 14/U4                        | North of OPCAs  Pittsfield Generating Co. | 0.008                                    | 0.006"                                   | 9:45<br>9:45                  | SVV                           |
|                                  | Southeast of OPCAs                        | 0.008                                    |                                          | 9.45<br>9:45                  |                               |
|                                  | Southwest of OPCAs                        | 0.010**3                                 |                                          | 7:45 <sup>3</sup>             |                               |
|                                  | West of OPCAs                             | 0.002                                    |                                          | 9:45                          |                               |

# TABLE 5-2 AMBIENT AIR PARTICULATE MATTER DATA RECEIVED DURING SEPTEMBER 2004

# PARTICULATE AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Date                             | Sampler Location          | Average Site<br>Concentration<br>(mg/m³) | Background Site<br>Concentration (mg/m³) | Average Period<br>(Hours:Min) | Predominant<br>Wind Direction |
|----------------------------------|---------------------------|------------------------------------------|------------------------------------------|-------------------------------|-------------------------------|
| 09/15/04 - 09/17/04 <sup>1</sup> | North of OPCAs            | NA                                       | NA                                       | NA                            | NA                            |
|                                  | Pittsfield Generating Co. |                                          |                                          |                               |                               |
|                                  | Southeast of OPCAs        |                                          |                                          |                               |                               |
|                                  | Southwest of OPCAs        |                                          |                                          |                               |                               |
|                                  | West of OPCAs             |                                          |                                          |                               |                               |
| 09/20/04 - 09/23/04 <sup>1</sup> | North of OPCAs            | NA                                       | NA                                       | NA                            | NA                            |
|                                  | Pittsfield Generating Co. |                                          |                                          |                               |                               |
|                                  | Southeast of OPCAs        |                                          |                                          |                               |                               |
|                                  | Southwest of OPCAs        |                                          |                                          |                               |                               |
|                                  | West of OPCAs             |                                          |                                          |                               |                               |
| 09/24/04                         | North of OPCAs            | 0.006                                    | 0.011*                                   | 9:45                          | Calm                          |
|                                  | Pittsfield Generating Co. | 0.007*                                   |                                          | 9:45                          |                               |
|                                  | Southeast of OPCAs        | 0.009                                    |                                          | 9:45                          |                               |
|                                  | Southwest of OPCAs        | 0.002*                                   |                                          | 6:00 <sup>4</sup>             |                               |
|                                  | West of OPCAs             | 0.002                                    |                                          | 9:45                          |                               |
| 09/27/04 <sup>1</sup>            | North of OPCAs            | NA                                       | NA                                       | NA                            | NA                            |
|                                  | Pittsfield Generating Co. |                                          |                                          |                               |                               |
|                                  | Southeast of OPCAs        |                                          |                                          |                               |                               |
|                                  | Southwest of OPCAs        |                                          |                                          |                               |                               |
|                                  | West of OPCAs             |                                          |                                          |                               |                               |
| 09/28/04 <sup>5</sup>            | North of OPCAs            | NA                                       | NA                                       | NA                            | NA                            |
|                                  | Pittsfield Generating Co. |                                          |                                          |                               |                               |
|                                  | Southeast of OPCAs        |                                          |                                          |                               |                               |
|                                  | Southwest of OPCAs        |                                          |                                          |                               |                               |
|                                  | West of OPCAs             |                                          |                                          |                               |                               |
| 09/29/04                         | North of OPCAs            | 0.003                                    | 0.012*                                   | 8:45 <sup>6</sup>             | ENE, NE                       |
| 55.25.5                          | Pittsfield Generating Co. | 0.005*                                   | 5.5.1                                    | 8:30 <sup>6</sup>             | ,                             |
|                                  | Southeast of OPCAs        | 0.000                                    |                                          | 8:30 <sup>6</sup>             |                               |
|                                  | Southwest of OPCAs        | 0.007*                                   |                                          | 7:00 <sup>2</sup>             |                               |
|                                  | West of OPCAs             | 0.003                                    |                                          | 8:30 <sup>6</sup>             |                               |
| 09/30/04                         | North of OPCAs            | 0.016                                    | 0.021*                                   | 10:00                         | Calm                          |
|                                  | Pittsfield Generating Co. | 0.017*                                   |                                          | 10:00                         |                               |
|                                  | Southeast of OPCAs        | 0.002                                    |                                          | 10:00                         |                               |
|                                  | Southwest of OPCAs        | 0.020*                                   |                                          | 10:15                         |                               |
|                                  | West of OPCAs             | 0.029                                    |                                          | 10:00                         |                               |
| Notification Level               |                           | 0.120                                    |                                          |                               |                               |

# Notes:

NA - Not Available

Background monitoring location inside GE Gate 31 on the corner of Woodlawn Avenue and Tyler Street.

<sup>\*</sup> Measured with DR-2000. All others measured with pDR-1000.

<sup>&</sup>lt;sup>1</sup> Sampling was not performed due to lack of site activity.

<sup>&</sup>lt;sup>2</sup> Sampling period was shortened due to instrument malfunction (dead battery).

 $<sup>^{\</sup>scriptsize 3}$  Data were modified due to false high readings in the morning.

 $<sup>^{\</sup>rm 4}$  Sampling period was shortened due to instrument malfunction.

<sup>&</sup>lt;sup>5</sup> Sampling was not performed due to precipitation/threat of precipitation.

 $<sup>^{\</sup>rm 6}$  Sampling period was shortened due to precipitation/threat of precipitation.

 $<sup>^{\</sup>rm 7}$  Sampling period was shortened due to switching of monitors.

# TABLE 5-3 AIR SAMPLE DATA RECEIVED DURING SEPTEMBER 2004

# PCB AMBIENT AIR CONCENTRATIONS HILL 78/BUILDING 71 ON PLANT CONSOLIDATION AREAS GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Date               | Southwest of OPCAs (μg/m³) | Southwest of OPCAs colocated (µg/m³) | West of OPCAs<br>(μg/m³) | North of<br>OPCAs (µg/m³) | Southeast of OPCAs (µg/m³) | Pittsfield<br>Generating (PGE)<br>(µg/m³) | Background<br>Inside GE Gate<br>31 (µg/m³) |
|--------------------|----------------------------|--------------------------------------|--------------------------|---------------------------|----------------------------|-------------------------------------------|--------------------------------------------|
| 09/13 - 09/14/04   | 0.0023                     | 0.0025                               | 0.0009                   | 0.0006                    | 0.0010                     | 0.0033                                    | 0.0019                                     |
| 09/14 - 09/15/04   | ND                         | 0.0017                               | 0.0020                   | ND                        | 0.0006                     | 0.0015                                    | 0.0031                                     |
| Notification Level | 0.05                       | 0.05                                 | 0.05                     | 0.05                      | 0.05                       | 0.05                                      | 0.05                                       |

Note:

ND - Non Detect (<0.0003)

# **TABLE 5-4**

# BUILDING 71 CONSOLIDATION AREA LEACHATE TRANSFER SUMMARY PLANT AREA - HILL 78 & BUILDING 71 CONSOLIDATION AREAS

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

| Month / Year   | Total Volume of<br>Leachate Transferred<br>(Gallons) |
|----------------|------------------------------------------------------|
| September 2003 | 94,000                                               |
| October 2003   | 84,000                                               |
| November 2003  | 86,500                                               |
| December 2003  | 102,500                                              |
| January 2004   | 35,000                                               |
| February 2004  | 30,000                                               |
| March 2004     | 98,000                                               |
| April 2004     | 107,000                                              |
| May 2004       | 164,500                                              |
| June 2004      | 147,500                                              |
| July 2004      | 171,000                                              |
| August 2004    | 214,000                                              |
| September 2004 | 230,000                                              |

Leachate is transferred from the Building 71 On-Plant Consolidation Area to Building 64G for treatment.

# ITEM 6 PLANT AREA HILL 78 AREA - REMAINDER (GECD160) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

# a. Activities Undertaken/Completed

Initiated survey of pre-design investigation sampling locations (September 21, 2004).

# b. Sampling/Test Results Received

None

# c. Work Plans/Reports/Documents Submitted

None

# d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Continue survey of pre-design investigation sampling locations and other preparations in advance of pre-design investigation.

# e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

# f. Proposed/Approved Work Plan Modifications

Received EPA approval of Addendum to Pre-Design Investigation Work Plan (September 8, 2004).

# ITEM 7 PLANT AREA UNKAMET BROOK AREA (GECD170) SEPTEMBER 2004

# a. Activities Undertaken/Completed

- Continued pre-design investigation soil sampling.\*
- Conducted other miscellaneous sampling, as identified in Table 7-1.

# b. <u>Sampling/Test Results Received</u>

See attached tables.

# c. Work Plans/Reports/Documents Submitted

None

# d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue pre-design investigation soil sampling.\*
- Initiate additional sampling proposed in the Interim Pre-Design Investigation Report (dated February 18, 2004).\*

# e. General Progress/Unresolved Issues/Potential Schedule Impacts

Additional sampling proposed in the Interim Pre-Design Investigation Report within the wetland area has been delayed due to the presence of standing water.

## f. Proposed/Approved Work Plan Modifications

Received EPA conditional approval of the February 18, 2004 Interim Pre-Design Investigation Report (September 7, 2004).

# TABLE 7-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

# UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name                                                                  | Field Sample ID              | Sample Date | Depth (feet) | Matrix | Laboratory | Analyses                                          | Date Received      |
|-------------------------------------------------------------------------------|------------------------------|-------------|--------------|--------|------------|---------------------------------------------------|--------------------|
| OP-3 Firewater Tank Major Excavation Removal                                  | OP3-BORING-1                 | 9/24/04     | 6-8          | Soil   | SGS        | VOC                                               | 9/30/04            |
| OP-3 Firewater Tank Major Excavation Removal                                  | OP3-BORING-2                 | 9/24/04     | 6-8          | Soil   | SGS        | VOC                                               | 9/30/04            |
| OP-3 Firewater Tank Major Excavation Removal                                  | OP3-BORING-3                 | 9/24/04     | 7-8          | Soil   | SGS        | VOC                                               | 9/30/04            |
| OP-3 Firewater Tank Major Excavation Removal                                  | OP3-COMPOSITE-1              | 9/24/04     | 0-8          | Soil   | SGS        | TCLP                                              | 9/30/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-DUP-100 (RAA10-E-VV20) | 9/21/04     | 6-15         | Soil   | SGS        | PCB                                               |                    |
| Pre-Design Soil Investigation Sampling                                        | RAA10-DUP-101 (RAA10-E-LL12) | 9/23/04     | 6-15         | Soil   | SGS        | PCB                                               |                    |
| Pre-Design Soil Investigation Sampling                                        | RAA10-DUP-102 (RAA10-E-X12)  | 9/30/04     | 6-15         | Soil   | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF                  |                    |
| Pre-Design Soil Investigation Sampling                                        | RAA10-DUP-98 (RAA10-E-FF14)  | 9/8/04      | 3-6          | Soil   | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF, Pest, Herb      | 9/23/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-DUP-99 (RAA10-E-FF14)  | 9/8/04      | 4-6          | Soil   | SGS        | VOC                                               | 9/23/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-DD22                 | 9/7/04      | 1-3          | Soil   | SGS        | PCB                                               | 9/20/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-DD22                 | 9/7/04      | 3-6          | Soil   | SGS        | PCB                                               | 9/20/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-DD22                 | 9/7/04      | 6-15         | Soil   | SGS        | PCB                                               | 9/20/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-DD22                 | 9/7/04      | 0-1          | Soil   | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb | 9/20/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-DD24                 | 9/7/04      | 0-1          | Soil   | SGS        | PCB                                               | 9/20/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-DD24                 | 9/7/04      | 1-3          | Soil   | SGS        | PCB                                               | 9/20/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-DD24                 | 9/7/04      | 3-6          | Soil   | SGS        | PCB                                               | 9/20/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-DD24                 | 9/7/04      | 6-15         | Soil   | SGS        | PCB                                               | 9/20/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF14                 | 9/8/04      | 6-15         | Soil   | SGS        | PCB, SVOC, Inorganics                             | 9/23/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF14                 | 9/8/04      | 3-6          | Soil   | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF, Pest, Herb      | 9/23/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF14                 | 9/8/04      | 0-1          | Soil   | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb | 9/23/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF14                 | 9/8/04      | 1-3          | Soil   | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb | 9/23/04            |
| Pre-Design Soil Investigation Sampling Pre-Design Soil Investigation Sampling | RAA10-E-FF14                 | 9/8/04      | 4-6          | Soil   | SGS        | VOC                                               | 9/23/04            |
| Pre-Design Soil Investigation Sampling Pre-Design Soil Investigation Sampling | RAA10-E-FF14                 | 9/8/04      | 8-10         | Soil   | SGS        | VOC                                               | 9/23/04            |
| Pre-Design Soil Investigation Sampling Pre-Design Soil Investigation Sampling | RAA10-E-FF14<br>RAA10-E-FF16 | 9/8/04      | 1-3          | Soil   | SGS        | PCB                                               | 9/23/04            |
| Pre-Design Soil Investigation Sampling Pre-Design Soil Investigation Sampling | RAA10-E-FF16<br>RAA10-E-FF16 | 9/8/04      | 3-6          | Soil   | SGS        | PCB<br>PCB                                        | 9/23/04            |
| Pre-Design Soil Investigation Sampling Pre-Design Soil Investigation Sampling | RAA10-E-FF16<br>RAA10-E-FF16 | 9/8/04      | ა-ი<br>6-15  | Soil   | SGS        | PCB                                               | 9/23/04            |
| Pre-Design Soil Investigation Sampling Pre-Design Soil Investigation Sampling | RAA10-E-FF16                 | 9/8/04      | 0-15         | Soil   | SGS        | PCB, VOC, SVOC, Inorganics                        | 9/23/04            |
| Pre-Design Soil Investigation Sampling Pre-Design Soil Investigation Sampling | RAA10-E-FF18                 | 9/8/04      | 1-3          | Soil   | SGS        | PCB, VOC, SVOC, morganics                         | 9/23/04            |
| Pre-Design Soil Investigation Sampling Pre-Design Soil Investigation Sampling | RAA10-E-FF18                 | 9/8/04      | 3-6          | Soil   | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF, Pest, Herb      | 9/23/04            |
|                                                                               |                              |             | ა-ი<br>6-15  |        | SGS        |                                                   | 9/23/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF18                 | 9/8/04      |              | Soil   |            | PCB, SVOC, Inorganics, PCDD/PCDF, Pest, Herb      |                    |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF18                 | 9/8/04      | 0-1          | Soil   | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb | 9/23/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF18                 | 9/8/04      | 4-6          | Soil   | SGS<br>SGS | VOC<br>VOC                                        | 9/23/04<br>9/23/04 |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF18                 | 9/8/04      | 8-10         | Soil   |            |                                                   |                    |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF20                 | 9/7/04      | 1-3          | Soil   | SGS        | PCB                                               | 9/20/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF20                 | 9/7/04      | 3-6          | Soil   | SGS        | PCB                                               | 9/20/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF20                 | 9/7/04      | 6-15         | Soil   | SGS        | PCB                                               | 9/20/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF20                 | 9/7/04      | 0-1          | Soil   | SGS        | PCB, VOC, SVOC, Inorganics                        | 9/20/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF22                 | 9/8/04      | 1-3          | Soil   | SGS        | PCB                                               | 9/23/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF22                 | 9/8/04      | 3-6          | Soil   | SGS        | PCB                                               | 9/23/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF22                 | 9/8/04      | 6-15         | Soil   | SGS        | PCB, SVOC, Inorganics                             | 9/23/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF22                 | 9/8/04      | 0-1          | Soil   | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb | 9/23/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF22                 | 9/8/04      | 8-10         | Soil   | SGS        | VOC                                               | 9/23/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF24                 | 9/9/04      | 6-15         | Soil   | SGS        | PCB                                               | 9/28/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF24                 | 9/9/04      | 3-6          | Soil   | SGS        | PCB, SVOC, Inorganics                             | 9/28/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF24                 | 9/9/04      | 1-3          | Soil   | SGS        | PCB, VOC, SVOC, Inorganics                        | 9/28/04            |
| Pre-Design Soil Investigation Sampling                                        | RAA10-E-FF24                 | 9/9/04      | 4-6          | Soil   | SGS        | VOC                                               | 9/28/04            |

V:\GE\_Pittsfield\_General\Reports and Presentations\Monthly Reports\2004\09-04 CD Monthly\Tracking Logs\Tracking.xls

TABLE 7-1 1 of 3 10/7/2004

# TABLE 7-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

# UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Pre-Design Soil Investigation Sampling Pre-Design Soil In | 9/28/04<br>9/28/04<br>9/28/04<br>9/28/04<br>9/28/04<br>9/28/04<br>9/28/04<br>9/28/04<br>9/28/04 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Pre-Design Soil Investigation Sampling Pre-Design Soil In | 9/28/04<br>9/28/04<br>9/28/04<br>9/28/04<br>9/28/04<br>9/28/04                                  |
| Pre-Design Soil Investigation Sampling Pre-Design Soil In | 9/28/04<br>9/28/04<br>9/28/04<br>9/28/04<br>9/28/04<br>9/28/04                                  |
| Pre-Design Soil Investigation Sampling Pre-Design Soil In | 9/28/04<br>9/28/04<br>9/28/04<br>9/28/04<br>9/28/04                                             |
| Pre-Design Soil Investigation Sampling Pre-Design Soil In | 9/28/04<br>9/28/04<br>9/28/04<br>9/28/04                                                        |
| Pre-Design Soil Investigation Sampling Pre-Design Soil In | 9/28/04<br>9/28/04<br>9/28/04                                                                   |
| Pre-Design Soil Investigation Sampling Pre-Design Soil In | 9/28/04<br>9/28/04                                                                              |
| Pre-Design Soil Investigation Sampling RAA10-E-HH16 9/9/04 4-6 Soil SGS VOC Pre-Design Soil Investigation Sampling RAA10-E-HH16 9/9/04 6-8 Soil SGS VOC Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 0-1 Soil SGS PCB Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 3-6 Soil SGS PCB Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 6-15 Soil SGS PCB Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 1-3 Soil SGS PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9/28/04                                                                                         |
| Pre-Design Soil Investigation Sampling RAA10-E-HH16 9/9/04 6-8 Soil SGS VOC Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 0-1 Soil SGS PCB PCB Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 3-6 Soil SGS PCB PCB PCB PCB Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 6-15 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 0-1 Soil SGS PCB Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 3-6 Soil SGS PCB Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 6-15 Soil SGS PCB Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 1-3 Soil SGS PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/28/04                                                                                         |
| Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 3-6 Soil SGS PCB Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 6-15 Soil SGS PCB Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 1-3 Soil SGS PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 6-15 Soil SGS PCB Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 1-3 Soil SGS PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-LL12 9/23/04 1-3 Soil SGS PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
| Pro Docian Soil Investigation Sampling DAA10 E NN12 0/22/04 0.1 Soil SCS DCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-NN12 9/23/04 6-15 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-NN12 9/23/04 3-6 Soil SGS PCB, SVOC, Inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-NN12 9/23/04 1-3 Soil SGS PCB, VOC, SVOC, Inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-NN12 9/23/04 3-4 Soil SGS VOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-PP16 9/23/04 1-3 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-PP16 9/23/04 3-6 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-PP16 9/23/04 6-15 Soil SGS PCB, SVOC, Inorganics, PCDD/PCDF, Pest, Herb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-PP16 9/23/04 0-1 Soil SGS PCB, VOC, SVOC, Inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-PP16 9/23/04 6-8 Soil SGS VOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-RR16 9/23/04 6-15 Soil SGS PCB Pre-Design Soil Investigation Sampling RAA10-E-RR16 9/23/04 3-6 Soil SGS PCB, SVOC, Inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-RR16 9/23/04 3-6 Soil SGS PCB, SVOC, Inorganics Pre-Design Soil Investigation Sampling RAA10-E-RR16 9/23/04 1-3 Soil SGS PCB, VOC, SVOC, Inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-RR16 9/23/04 1-3 Soil SGS PCB, VOC, SVOC, Inorganics  Pre-Design Soil Investigation Sampling RAA10-E-RR16 9/23/04 0-1 Soil SGS PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-RR16 9/23/04 0-1 Soil SGS PCB, VOC, SVOC, Indigatics, PCBD/PCBP, Pest, Neib                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-TR15 9/23/04 0-1 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-1117 9/23/04 0-1 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-TT19 9/23/04 0-1 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-IU16 9/23/04 0-1 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-UU17 9/23/04 0-1 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-UU18 9/23/04 0-1 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-UU19 9/23/04 0-1 Soil SGS PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-VV18 9/21/04 0-1 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-VV18 9/21/04 1-3 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-VV18 9/21/04 3-6 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-VV18 9/21/04 6-8 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-VV20 9/21/04 0-1 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-VV20 9/21/04 1-3 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-VV20 9/21/04 6-15 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-VV20 9/21/04 3-6 Soil SGS PCB, SVOC, Inorganics, PCDD/PCDF, Pest, Herb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-VV20 9/21/04 4-6 Soil SGS VOC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                 |
| Pre-Design Soil Investigation Sampling RAA10-E-X10 9/30/04 1-3 Soil SGS PCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                 |

V:\GE\_Pittsfield\_General\Reports and Presentations\Monthly Reports\2004\09-04 CD Monthly\Tracking Logs\Tracking.xls

# TABLE 7-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

# UNKAMET BROOK AREA GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name                           | Field Sample ID | Sample Date | Depth (feet) | Matrix | Laboratory | Analyses Date                                     | Received |
|----------------------------------------|-----------------|-------------|--------------|--------|------------|---------------------------------------------------|----------|
| Pre-Design Soil Investigation Sampling | RAA10-E-X10     | 9/30/04     | 3-6          | Soil   | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF                  |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-X10     | 9/30/04     | 6-15         | Soil   | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF                  |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-X10     | 9/30/04     | 0-1          | Soil   | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF             |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-X10     | 9/30/04     | 10-12        | Soil   | SGS        | VOC                                               |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-X10     | 9/30/04     | 4-6          | Soil   | SGS        | VOC                                               |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-X12     | 9/30/04     | 3-6          | Soil   | SGS        | PCB                                               |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-X12     | 9/30/04     | 6-15         | Soil   | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF                  |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-X12     | 9/30/04     | 0-1          | Soil   | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF             |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-X12     | 9/30/04     | 1-3          | Soil   | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF             |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-X12     | 9/30/04     | 8-10         | Soil   | SGS        | VOC                                               |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-XX20    | 9/22/04     | 1-3          | Soil   | SGS        | PCB                                               |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-XX20    | 9/22/04     | 3-6          | Soil   | SGS        | PCB                                               |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-XX20    | 9/22/04     | 6-12         | Soil   | SGS        | PCB, SVOC, Inorganics, PCDD/PCDF, Pest, Herb      |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-XX20    | 9/22/04     | 0-1          | Soil   | SGS        | PCB, VOC, SVOC, Inorganics, PCDD/PCDF, Pest, Herb |          |
| Pre-Design Soil Investigation Sampling | RAA10-E-XX20    | 9/22/04     | 10-12        | Soil   | SGS        | VOC                                               |          |

### Note:

<sup>1.</sup> Field duplicate sample locations are presented in parenthesis.

## TABLE 7-2 PCB DATA RECEIVED DURING SEPTEMBER 2004

## PRE-DESIGN SOIL INVESTIGATION SAMPLING UNKAMET BROOK AREA

#### ${\bf GENERAL\ ELECTRIC\ COMPANY\ -\ PITTSFIELD,\ MASSACHUSETTS}$

(Results are presented in dry weight parts per million, ppm)

|              | Depth  | Date      | Aroclor-1016, -1221,  |                       |                       |                       |                       |
|--------------|--------|-----------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| Sample ID    | (Feet) | Collected | -1232, -1248          | Aroclor-1242          | Aroclor-1254          | Aroclor-1260          | Total PCBs            |
| RAA10-E-DD22 | 0-1    | 9/7/2004  | ND(0.046)             | ND(0.046)             | ND(0.046)             | 0.020 J               | 0.020 J               |
|              | 1-3    | 9/7/2004  | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             |
|              | 3-6    | 9/7/2004  | ND(0.048)             | ND(0.048)             | ND(0.048)             | ND(0.048)             | ND(0.048)             |
|              | 6-15   | 9/7/2004  | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)             |
| RAA10-E-DD24 | 0-1    | 9/7/2004  | ND(0.053)             | ND(0.053)             | 0.058                 | 0.043 J               | 0.101                 |
|              | 1-3    | 9/7/2004  | ND(0.049)             | ND(0.049)             | ND(0.049)             | ND(0.049)             | ND(0.049)             |
|              | 3-6    | 9/7/2004  | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             |
|              | 6-15   | 9/7/2004  | ND(0.040)             | ND(0.040)             | 0.075                 | ND(0.040)             | 0.075                 |
| RAA10-E-FF14 | 0-1    | 9/8/2004  | ND(0.049)             | ND(0.049)             | 0.15                  | ND(0.049)             | 0.15                  |
|              | 1-3    | 9/8/2004  | ND(0.047)             | ND(0.047)             | ND(0.047)             | ND(0.047)             | ND(0.047)             |
|              | 3-6    | 9/8/2004  | ND(0.056) [ND(0.055)] |
|              | 6-15   | 9/8/2004  | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)             | ND(0.042)             |
| RAA10-E-FF16 | 0-1    | 9/8/2004  | ND(0.048)             | ND(0.048)             | 0.040 J               | 0.14                  | 0.18                  |
|              | 1-3    | 9/8/2004  | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             |
|              | 3-6    | 9/8/2004  | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             |
|              | 6-15   | 9/8/2004  | ND(0.039)             | 0.16                  | 0.052                 | 0.021 J               | 0.233                 |
| RAA10-E-FF18 | 0-1    | 9/8/2004  | ND(0.045)             | ND(0.045)             | ND(0.045)             | ND(0.045)             | ND(0.045)             |
|              | 1-3    | 9/8/2004  | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)             |
|              | 3-6    | 9/8/2004  | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             |
|              | 6-15   | 9/8/2004  | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             |
| RAA10-E-FF20 | 0-1    | 9/7/2004  | ND(0.046)             | ND(0.046)             | ND(0.046)             | 0.022 J               | 0.022 J               |
|              | 1-3    | 9/7/2004  | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             |
|              | 3-6    | 9/7/2004  | ND(0.047)             | ND(0.047)             | ND(0.047)             | ND(0.047)             | ND(0.047)             |
|              | 6-15   | 9/7/2004  | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             |
| RAA10-E-FF22 | 0-1    | 9/8/2004  | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)             |
|              | 1-3    | 9/8/2004  | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)             | ND(0.046)             |
|              | 3-6    | 9/8/2004  | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             |
|              | 6-15   | 9/8/2004  | ND(0.041)             | ND(0.041)             | ND(0.041)             | ND(0.041)             | ND(0.041)             |
| RAA10-E-FF24 | 1-3    | 9/9/2004  | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             |
|              | 3-6    | 9/9/2004  | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             |
|              | 6-15   | 9/9/2004  | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             | ND(0.040)             |
| RAA10-E-HH14 | 0-1    | 9/9/2004  | ND(0.052)             | ND(0.052)             | 0.026 J               | 0.10                  | 0.126                 |
|              | 1-3    | 9/9/2004  | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             | ND(0.043)             |
|              | 3-6    | 9/9/2004  | ND(0.056)             | ND(0.056)             | ND(0.056)             | ND(0.056)             | ND(0.056)             |
|              | 6-15   | 9/9/2004  | ND(0.050)             | ND(0.050)             | ND(0.050)             | ND(0.050)             | ND(0.050)             |
| RAA10-E-HH16 | 0-1    | 9/9/2004  | ND(0.054)             | ND(0.054)             | 0.044 J               | 0.10                  | 0.144                 |
|              | 1-3    | 9/9/2004  | ND(0.047)             | ND(0.047)             | ND(0.047)             | ND(0.047)             | ND(0.047)             |
|              | 3-6    | 9/9/2004  | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             | ND(0.044)             |
|              | 6-15   | 9/9/2004  | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             | ND(0.039)             |

#### Notes

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs.
- 2. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 3. Field duplicate sample results are presented in brackets.

#### Data Qualifiers:

J - Indicates an estimated value less than the practical quantitation limit (PQL).

## PRE-DESIGN SOIL INVESTIGATION SAMPLING UNKAMET BROOK AREA

| Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RAA10-E-DD22               | RAA10-E-FF14                   | RAA10-E-FF14                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------|----------------------------------|
| Sample Depth(Feet):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0-1                        | 0-1                            | 1-3                              |
| Parameter Date Collected:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 09/07/04                   | 09/08/04                       | 09/08/04                         |
| Volatile Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NID (0.000)                | ND(0.000)                      | ND (0.000)                       |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND(0.028)                  | ND(0.030)                      | ND(0.028)                        |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND(0.0070)                 | ND(0.0074)                     | ND(0.0071)                       |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND(0.0070)                 | ND(0.0074)                     | ND(0.0071)                       |
| Semivolatile Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND(0.50)                   | ND(0.00)                       | NID(0.00)                        |
| Butylbenzylphthalate Di-n-Butylphthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND(0.56)<br>ND(0.56)       | ND(0.69)<br>0.14 J             | ND(0.80)<br>ND(0.80)             |
| Fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND(0.56)                   | ND(0.69)                       | ND(0.80)                         |
| Organochlorine Pesticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND(0.36)                   | ND(0.09)                       | ND(0.60)                         |
| None Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                          |                                |                                  |
| Organophosphate Pesticides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                |                                  |
| None Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                |                                  |
| The state of the s | <del>-</del>               |                                |                                  |
| Herbicides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |                                |                                  |
| None Detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                |                                  |
| Furans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0000054.\/               | 0.0000000                      | ND(0.000000E4)                   |
| 2,3,7,8-TCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0000051 Y                | 0.0000032 Y                    | ND(0.00000054)                   |
| TCDFs (total)<br>1,2,3,7,8-PeCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000039<br>0.0000023 J    | 0.000023<br>ND(0.0000017)      | ND(0.00000053)<br>ND(0.00000019) |
| 2,3,4,7,8-PeCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0000023 J<br>0.0000045 J | ND(0.0000017)<br>ND(0.0000022) | ND(0.00000019)                   |
| PeCDFs (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000045 3                 | 0.0000093                      | ND(0.00000029)                   |
| 1,2,3,4,7,8-HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000030<br>0.0000044 J    | ND(0.000093                    | ND(0.0000014)                    |
| 1,2,3,6,7,8-HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000044 J                | ND(0.0000024)                  | ND(0.00000048)                   |
| 1.2.3.7.8.9-HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00000090 J               | ND(0.0000021)                  | ND(0.00000010)                   |
| 2,3,4,6,7,8-HxCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000032 J                | ND(0.0000018)                  | ND(0.00000044)                   |
| HxCDFs (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000098                   | 0.000015                       | ND(0.0000020)                    |
| 1,2,3,4,6,7,8-HpCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00016                    | 0.000011                       | ND(0.0000022)                    |
| 1,2,3,4,7,8,9-HpCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0000015 J                | ND(0.00000096)                 | ND(0.00000024)                   |
| HpCDFs (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00027                    | 0.000018                       | ND(0.0000022)                    |
| OCDF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000084                   | ND(0.0000060)                  | ND(0.0000011)                    |
| Dioxins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                                |                                  |
| 2,3,7,8-TCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND(0.00000030) X           | ND(0.00000013)                 | ND(0.00000012)                   |
| TCDDs (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND(0.00000066)             | ND(0.00000016)                 | ND(0.0000010)                    |
| 1,2,3,7,8-PeCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND(0.0000032) X            | ND(0.00000046)                 | ND(0.00000029)                   |
| PeCDDs (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0000016 J                | ND(0.00000047)                 | ND(0.00000029)                   |
| 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND(0.00000071)             | ND(0.00000025)                 | ND(0.00000010)                   |
| 1,2,3,6,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0000021 J                | ND(0.00000029)                 | ND(0.000000068)                  |
| 1,2,3,7,8,9-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00000089 J               | ND(0.00000026)                 | ND(0.00000015)                   |
| HxCDDs (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000014                   | ND(0.0000012)                  | ND(0.00000037)                   |
| 1,2,3,4,6,7,8-HpCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.000036                   | 0.0000050 J                    | ND(0.0000015)                    |
| HpCDDs (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.000061                   | 0.000012                       | ND(0.0000025)                    |
| OCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00035                    | 0.000098                       | 0.000030<br>0.0000044            |
| Total TEQs (WHO TEFs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000080                  | 0.000018                       | 0.0000044                        |
| Inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 20                       | E 00                           | 0.70                             |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.30                       | 5.00                           | 2.70                             |
| Barium<br>Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76.0<br>0.660              | 94.0<br>0.790                  | 0.800                            |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.440 B                    | 0.790<br>0.220 B               | 0.800<br>0.280 B                 |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18.0                       | 18.0                           | 18.0                             |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.0                       | 8.70                           | 10.0                             |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.0                       | 20.0                           | 18.0                             |
| Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.160                      | 0.0920 B                       | 0.0520 B                         |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17.0                       | 20.0                           | 9.20                             |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.160                      | 0.0980 B                       | 0.0460 B                         |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17.0                       | 17.0                           | 19.0                             |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND(1.00)                   | 1.10 B                         | ND(1.10)                         |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND(1.00)                   | ND(1.10)                       | ND(1.10)                         |
| Sulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND(7.00)                   | 14.0                           | 11.0                             |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND(1.40)                   | 2.20                           | 1.80                             |
| Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.30 B                     | 5.60 B                         | 4.20 B                           |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.0                       | 18.0                           | 20.0                             |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 76.0                       | 77.0                           | 83.0                             |

## PRE-DESIGN SOIL INVESTIGATION SAMPLING UNKAMET BROOK AREA

| Sample ID:<br>Sample Depth(Feet): | RAA10-E-FF14<br>3-6                     | RAA10-E-FF14<br>4-6     | RAA10-E-FF14<br>6-15 |
|-----------------------------------|-----------------------------------------|-------------------------|----------------------|
| Parameter Date Collected:         | 09/08/04                                | 09/08/04                | 09/08/04             |
| Volatile Organics                 |                                         |                         | -                    |
| Acetone                           | NA                                      | ND(0.037) [0.015 J]     | NA                   |
| Benzene                           | NA                                      | ND(0.0092) [0.012]      | NA                   |
| Chlorobenzene                     | NA                                      | ND(0.0092) [ND(0.0078)] | NA                   |
| Semivolatile Organics             |                                         |                         |                      |
| Butylbenzylphthalate              | ND(0.78) [ND(0.55)]                     | NA                      | ND(0.46)             |
| Di-n-Butylphthalate               | ND(0.78) [ND(0.55)]                     | NA                      | ND(0.46)             |
| Fluoranthene                      | ND(0.78) [ND(0.55)]                     | NA                      | ND(0.46)             |
| Organochlorine Pesticides         | ( ()]                                   |                         | 112 (0110)           |
| None Detected                     |                                         | NA                      | NA                   |
| Organophosphate Pesticides        |                                         | INA                     | IVA                  |
| None Detected                     |                                         | NA                      | NA                   |
|                                   | <del>-</del>                            | INA                     | IVA                  |
| Herbicides                        |                                         |                         |                      |
| None Detected                     | <del></del>                             | NA                      | NA                   |
| Furans                            |                                         |                         |                      |
| 2,3,7,8-TCDF                      | ND(0.00000015) [ND(0.00000012)]         | NA                      | NA                   |
| TCDFs (total)                     | ND(0.00000015) [ND(0.00000014)]         | NA                      | NA                   |
| 1,2,3,7,8-PeCDF                   | ND(0.00000012) [ND(0.00000013)]         | NA                      | NA                   |
| 2,3,4,7,8-PeCDF                   | ND(0.00000012) [ND(0.00000013)]         | NA                      | NA                   |
| PeCDFs (total)                    | ND(0.00000012) [ND(0.00000013)]         | NA                      | NA                   |
| 1,2,3,4,7,8-HxCDF                 | ND(0.00000018) [ND(0.000000086)]        | NA                      | NA                   |
| 1,2,3,6,7,8-HxCDF                 | ND(0.000000077) [ND(0.000000037)]       | NA                      | NA                   |
| 1,2,3,7,8,9-HxCDF                 | ND(0.000000090) [ND(0.000000045)]       | NA                      | NA                   |
| 2,3,4,6,7,8-HxCDF                 | ND(0.00000018) [ND(0.000000040)]        | NA                      | NA                   |
| HxCDFs (total)                    | ND(0.00000019) [ND(0.000000086)]        | NA                      | NA                   |
| 1.2.3.4.6.7.8-HpCDF               | ND(0.00000034) [ND(0.00000017)]         | NA                      | NA                   |
| 1,2,3,4,7,8,9-HpCDF               | ND(0.00000011) [ND(0.000000057)]        | NA                      | NA                   |
| HpCDFs (total)                    | ND(0.00000034) [ND(0.00000017)]         | NA NA                   | NA                   |
| OCDF                              | ND(0.00000071) [ND(0.00000019)]         | NA NA                   | NA                   |
| Dioxins                           | (                                       |                         |                      |
| 2,3,7,8-TCDD                      | ND(0.00000011) [ND(0.00000010)]         | NA                      | NA                   |
| TCDDs (total)                     | ND(0.00000011) [ND(0.00000010)]         | NA NA                   | NA<br>NA             |
| 1,2,3,7,8-PeCDD                   | ND(0.00000011) [ND(0.00000010)]         | NA NA                   | NA NA                |
| PeCDDs (total)                    | ND(0.00000025) [ND(0.00000018)]         | NA NA                   | NA<br>NA             |
| 1,2,3,4,7,8-HxCDD                 | ND(0.00000023) [ND(0.00000018)]         | NA<br>NA                | NA<br>NA             |
| 1,2,3,6,7,8-HxCDD                 | ND(0.00000013) [ND(0.000000009)]        | NA NA                   | NA<br>NA             |
|                                   | , , , , , , , , , , , , , , , , , , , , |                         | NA<br>NA             |
| 1,2,3,7,8,9-HxCDD                 | ND(0.0000014) [ND(0.000000094)]         | NA<br>NA                | NA<br>NA             |
| HxCDDs (total)                    | ND(0.00000015) [ND(0.00000020)]         |                         |                      |
| 1,2,3,4,6,7,8-HpCDD               | ND(0.00000044) [ND(0.00000029)]         | NA<br>NA                | NA<br>NA             |
| HpCDDs (total)                    | ND(0.00000044) [ND(0.00000029)]         | NA NA                   | NA<br>NA             |
| OCDD                              | ND(0.0000024) [ND(0.0000026)]           | NA NA                   | NA<br>NA             |
| Total TEQs (WHO TEFs)             | 0.00000027 [0.00000021]                 | NA                      | NA                   |
| Inorganics                        |                                         |                         | T                    |
| Arsenic                           | 2.60 [2.60]                             | NA                      | 3.50                 |
| Barium                            | 110 [74.0]                              | NA                      | 16.0 B               |
| Beryllium                         | 0.520 [0.500]                           | NA                      | 0.180 B              |
| Cadmium                           | 0.170 B [0.260 B]                       | NA                      | 0.110 B              |
| Chromium                          | 14.0 [13.0]                             | NA                      | 6.00                 |
| Cobalt                            | 8.10 [9.50]                             | NA                      | 7.50                 |
| Copper                            | 18.0 [16.0]                             | NA                      | 9.90                 |
| Cyanide                           | 0.0670 B [0.0880 B]                     | NA                      | 0.0310 B             |
| Lead                              | 8.00 [7.30]                             | NA                      | 3.80                 |
| Mercury                           | ND(0.170) [ND(0.170)]                   | NA                      | ND(0.130)            |
| Nickel                            | 16.0 [16.0]                             | NA                      | 12.0                 |
| Selenium                          | 1.50 [1.20 B]                           | NA NA                   | ND(1.00)             |
| Silver                            | ND(1.30) [ND(1.20)]                     | NA NA                   | ND(1.00)             |
| Sulfide                           | 11.0 [11.0]                             | NA NA                   | 28.0                 |
| Thallium                          | ND(1.70) [1.40 B]                       | NA NA                   | 1.20 B               |
| Tin                               | 4.90 B [5.10 B]                         | NA NA                   | 4.20 B               |
| Vanadium                          | 15.0 [16.0]                             | NA NA                   | 6.30                 |
| Zinc                              | 61.0 [65.0]                             | NA NA                   | 33.0                 |
| LIIIO                             | 01.0 [00.0]                             | 1 1/7                   | 55.0                 |

## PRE-DESIGN SOIL INVESTIGATION SAMPLING UNKAMET BROOK AREA

| Sample ID:<br>Sample Depth(Feet): | RAA10-E-FF14<br>8-10 | RAA10-E-FF16<br>0-1 | RAA10-E-FF18<br>0-1 | RAA10-E-FF18<br>3-6 | RAA10-E-FF18<br>4-6 |
|-----------------------------------|----------------------|---------------------|---------------------|---------------------|---------------------|
| Parameter Date Collected:         | 09/08/04             | 09/08/04            | 09/08/04            | 09/08/04            | 09/08/04            |
| Volatile Organics                 |                      |                     |                     |                     |                     |
| Acetone                           | ND(0.025)            | ND(0.029)           | ND(0.027)           | NA                  | ND(0.023)           |
| Benzene                           | 0.021                | ND(0.0073)          | ND(0.0068)          | NA                  | ND(0.0059)          |
| Chlorobenzene                     | 0.14                 | 0.015               | ND(0.0068)          | NA                  | ND(0.0059)          |
| Semivolatile Organics             |                      |                     |                     |                     |                     |
| Butylbenzylphthalate              | NA                   | ND(0.58)            | ND(0.68)            | ND(0.39)            | NA                  |
| Di-n-Butylphthalate               | NA                   | ND(0.58)            | ND(0.68)            | ND(0.39)            | NA                  |
| Fluoranthene                      | NA                   | ND(0.58)            | ND(0.68)            | ND(0.39)            | NA                  |
| Organochlorine Pesticides         |                      |                     |                     |                     |                     |
| None Detected                     | NA                   | NA                  |                     |                     | NA                  |
| Organophosphate Pesticides        |                      |                     |                     |                     |                     |
| None Detected                     | NA                   | NA                  |                     |                     | NA                  |
| Herbicides                        |                      |                     |                     |                     |                     |
| None Detected                     | NA                   | NA                  |                     |                     | NA                  |
| Furans                            |                      |                     |                     |                     |                     |
| 2,3,7,8-TCDF                      | NA                   | NA                  | 0.0000017 Y         | ND(0.000000091)     | NA                  |
| TCDFs (total)                     | NA NA                | NA NA               | 0.0000045           | ND(0.000000091)     | NA NA               |
| 1,2,3,7,8-PeCDF                   | NA NA                | NA NA               | ND(0.0000052)       | ND(0.000000000)     | NA NA               |
| 2,3,4,7,8-PeCDF                   | NA NA                | NA NA               | ND(0.00000070)      | ND(0.000000080)     | NA NA               |
| PeCDFs (total)                    | NA NA                | NA NA               | ND(0.0000025)       | ND(0.000000082)     | NA<br>NA            |
| 1,2,3,4,7,8-HxCDF                 | NA NA                | NA NA               | ND(0.0000012)       | ND(0.000000079)     | NA NA               |
| 1,2,3,6,7,8-HxCDF                 | NA NA                | NA NA               | ND(0.00000043)      | ND(0.000000025)     | NA NA               |
| 1.2.3.7.8.9-HxCDF                 | NA                   | NA                  | ND(0.000000084)     | ND(0.000000030)     | NA                  |
| 2.3.4.6.7.8-HxCDF                 | NA                   | NA                  | ND(0.00000065)      | ND(0.000000027)     | NA                  |
| HxCDFs (total)                    | NA                   | NA                  | 0.0000037           | ND(0.000000079)     | NA                  |
| 1,2,3,4,6,7,8-HpCDF               | NA                   | NA                  | 0.000011            | ND(0.00000016)      | NA                  |
| 1,2,3,4,7,8,9-HpCDF               | NA                   | NA                  | ND(0.00000031)      | ND(0.000000059)     | NA                  |
| HpCDFs (total)                    | NA                   | NA                  | 0.000019            | ND(0.00000016)      | NA                  |
| OCDF                              | NA                   | NA                  | ND(0.0000061)       | ND(0.00000018)      | NA                  |
| Dioxins                           |                      | •                   | •                   | •                   | •                   |
| 2,3,7,8-TCDD                      | NA                   | NA                  | ND(0.00000012)      | ND(0.000000093)     | NA                  |
| TCDDs (total)                     | NA                   | NA                  | ND(0.00000022)      | ND(0.000000093)     | NA                  |
| 1,2,3,7,8-PeCDD                   | NA                   | NA                  | ND(0.00000029)      | ND(0.00000015)      | NA                  |
| PeCDDs (total)                    | NA                   | NA                  | ND(0.00000029)      | ND(0.00000015)      | NA                  |
| 1,2,3,4,7,8-HxCDD                 | NA                   | NA                  | ND(0.00000017)      | ND(0.000000079)     | NA                  |
| 1,2,3,6,7,8-HxCDD                 | NA                   | NA                  | ND(0.00000025)      | ND(0.000000063)     | NA                  |
| 1,2,3,7,8,9-HxCDD                 | NA                   | NA                  | ND(0.00000014)      | ND(0.000000067)     | NA                  |
| HxCDDs (total)                    | NA                   | NA                  | ND(0.00000084)      | ND(0.00000016)      | NA                  |
| 1,2,3,4,6,7,8-HpCDD               | NA                   | NA                  | 0.0000038 J         | ND(0.00000011)      | NA                  |
| HpCDDs (total)                    | NA                   | NA                  | 0.0000038           | ND(0.00000011)      | NA                  |
| OCDD                              | NA                   | NA                  | 0.000031            | ND(0.00000079)      | NA                  |
| Total TEQs (WHO TEFs)             | NA                   | NA                  | 0.00000086          | 0.0000017           | NA                  |
| Inorganics                        |                      |                     |                     |                     |                     |
| Arsenic                           | NA                   | 6.30                | 4.10                | 1.70                | NA                  |
| Barium                            | NA                   | 99.0                | 75.0                | 8.40 B              | NA                  |
| Beryllium                         | NA                   | 0.710               | 0.790               | 0.230 B             | NA                  |
| Cadmium                           | NA                   | 0.380 B             | 0.230 B             | 0.180 B             | NA                  |
| Chromium                          | NA                   | 22.0                | 17.0                | 4.80                | NA                  |
| Cobalt                            | NA                   | 11.0                | 12.0                | 5.20                | NA                  |
| Copper                            | NA                   | 20.0                | 18.0                | 8.80                | NA                  |
| Cyanide                           | NA                   | 0.240               | 0.140               | ND(0.120)           | NA                  |
| Lead                              | NA                   | 26.0                | 12.0                | 3.50                | NA                  |
| Mercury                           | NA                   | 0.150               | 0.0480 B            | ND(0.120)           | NA                  |
| Nickel                            | NA                   | 20.0                | 18.0                | 8.60                | NA                  |
| Selenium                          | NA                   | 1.20                | 1.10                | ND(1.00)            | NA                  |
| Silver                            | NA                   | ND(1.10)            | ND(1.00)            | ND(1.00)            | NA                  |
| Sulfide                           | NA                   | 7.00 B              | 6.50 B              | ND(5.80)            | NA                  |
| Thallium                          | NA                   | 2.10                | 1.50                | ND(1.20)            | NA                  |
| Tin                               | NA                   | 5.60 B              | 3.90 B              | 3.40 B              | NA                  |
| Vanadium                          | NA                   | 24.0                | 19.0                | 5.20                | NA                  |
| Zinc                              | NA                   | 96.0                | 77.0                | 27.0                | NA                  |

## PRE-DESIGN SOIL INVESTIGATION SAMPLING UNKAMET BROOK AREA

| Sample ID Sample Depth(Feet) Parameter Date Collected | : 6-15                             | RAA10-E-FF18<br>8-10<br>09/08/04 | RAA10-E-FF20<br>0-1<br>09/07/04 | RAA10-E-FF22<br>0-1<br>09/08/04 | RAA10-E-FF22<br>6-15<br>09/08/04 |
|-------------------------------------------------------|------------------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------|
| Volatile Organics                                     | . 03/00/04                         | 09/00/04                         | 09/01/04                        | 09/00/04                        | 09/00/04                         |
| Acetone                                               | NA NA                              | ND(0.023)                        | ND(0.028)                       | ND(0.027)                       | NA                               |
| Benzene                                               | NA<br>NA                           | ND(0.0058)                       | ND(0.0070)                      | ND(0.0068)                      | NA<br>NA                         |
| Chlorobenzene                                         | NA NA                              | ND(0.0058)                       | ND(0.0070)                      | ND(0.0068)                      | NA<br>NA                         |
| Semivolatile Organics                                 | INA                                | ND(0.0036)                       | 140(0.0070)                     | ND(0.0000)                      | IVA                              |
| Butylbenzylphthalate                                  | ND(0.44)                           | NA                               | ND(0.51)                        | ND(0.64)                        | 0.16 J                           |
| Di-n-Butylphthalate                                   | ND(0.44)                           | NA<br>NA                         | ND(0.51)                        | ND(0.64)                        | ND(0.41)                         |
| Fluoranthene                                          | ND(0.44)                           | NA<br>NA                         | ND(0.51)                        | ND(0.64)                        | ND(0.41)                         |
| Organochlorine Pesticides                             | ND(0.44)                           | INA                              | ND(0.51)                        | ND(0.04)                        | ND(0.41)                         |
| None Detected                                         |                                    | NA                               | NA                              | l                               | NA                               |
| Organophosphate Pesticides                            |                                    | INA                              | INA                             |                                 | INA                              |
| None Detected                                         |                                    | NA                               | NA                              | l                               | NA                               |
| Herbicides                                            |                                    | INA                              | INA                             |                                 | INA                              |
| None Detected                                         |                                    | NA                               | NA                              |                                 | NA                               |
|                                                       |                                    | INA                              | INA                             |                                 | INA                              |
| Furans                                                | ND(0.00000077)                     | NIA.                             | N.A.                            | 0.0000045.\/                    | NIA                              |
| 2,3,7,8-TCDF                                          | ND(0.000000077)                    | NA<br>NA                         | NA<br>NA                        | 0.0000045 Y                     | NA<br>NA                         |
| TCDFs (total)                                         | ND(0.000000077)                    | NA<br>NA                         | NA<br>NA                        | 0.000021<br>ND(0.0000014)       | NA<br>NA                         |
| 1,2,3,7,8-PeCDF                                       | ND(0.000000069)                    | NA<br>NA                         | NA<br>NA                        | ND(0.0000014)                   | NA<br>NA                         |
| 2,3,4,7,8-PeCDF                                       | ND(0.000000069)<br>ND(0.000000080) | NA<br>NA                         | NA<br>NA                        | ND(0.000018)<br>0.000058        | NA<br>NA                         |
| PeCDFs (total)                                        | (                                  |                                  |                                 |                                 | NA<br>NA                         |
| 1,2,3,4,7,8-HxCDF<br>1,2,3,6,7,8-HxCDF                | ND(0.000000043)                    | NA<br>NA                         | NA<br>NA                        | ND(0.0000027)                   | NA<br>NA                         |
|                                                       | ND(0.000000024)                    | NA<br>NA                         | NA<br>NA                        | ND(0.00000099)                  | NA<br>NA                         |
| 1,2,3,7,8,9-HxCDF                                     | ND(0.000000026)<br>ND(0.000000023) | NA<br>NA                         | NA<br>NA                        | ND(0.00000012)<br>ND(0.0000010) | NA<br>NA                         |
| 2,3,4,6,7,8-HxCDF<br>HxCDFs (total)                   | ND(0.000000023)                    | NA<br>NA                         | NA<br>NA                        | 0.000028                        | NA<br>NA                         |
| 1,2,3,4,6,7,8-HpCDF                                   | ND(0.000000043)                    | NA<br>NA                         | NA<br>NA                        | 0.000028                        | NA<br>NA                         |
| 1,2,3,4,6,7,6-прСDF<br>1,2,3,4,7,8,9-HpCDF            | ND(0.000000084)                    | NA<br>NA                         | NA<br>NA                        | ND(0.0000062)                   | NA<br>NA                         |
| HpCDFs (total)                                        | ND(0.000000080)                    | NA<br>NA                         | NA<br>NA                        | 0.00011                         | NA<br>NA                         |
| OCDF                                                  | ND(0.00000003)                     | NA<br>NA                         | NA NA                           | 0.00011                         | NA<br>NA                         |
| Dioxins                                               | 14D(0.00000013)                    | INA                              | INA                             | 0.000031                        | INA                              |
| 2,3,7,8-TCDD                                          | ND(0.000000083)                    | NA                               | NA                              | ND(0.00000011)                  | NA                               |
| TCDDs (total)                                         | ND(0.000000083)                    | NA<br>NA                         | NA<br>NA                        | ND(0.00000011)                  | NA<br>NA                         |
| 1,2,3,7,8-PeCDD                                       | ND(0.00000005)                     | NA<br>NA                         | NA<br>NA                        | ND(0.00000038)                  | NA<br>NA                         |
| PeCDDs (total)                                        | ND(0.00000015)                     | NA<br>NA                         | NA<br>NA                        | ND(0.00000027)                  | NA<br>NA                         |
| 1,2,3,4,7,8-HxCDD                                     | ND(0.00000013)                     | NA<br>NA                         | NA<br>NA                        | ND(0.00000008)                  | NA<br>NA                         |
| 1,2,3,6,7,8-HxCDD                                     | ND(0.00000011)                     | NA NA                            | NA NA                           | ND(0.00000029)                  | NA NA                            |
| 1,2,3,7,8,9-HxCDD                                     | ND(0.000000000)                    | NA NA                            | NA NA                           | ND(0.00000041)                  | NA NA                            |
| HxCDDs (total)                                        | ND(0.000000000)                    | NA NA                            | NA NA                           | ND(0.0000022)                   | NA NA                            |
| 1,2,3,4,6,7,8-HpCDD                                   | ND(0.000000082)                    | NA NA                            | NA NA                           | 0.000014                        | NA NA                            |
| HpCDDs (total)                                        | ND(0.00000015)                     | NA NA                            | NA NA                           | 0.000025                        | NA                               |
| OCDD                                                  | ND(0.00000057)                     | NA NA                            | NA NA                           | 0.00013                         | NA NA                            |
| Total TEQs (WHO TEFs)                                 | 0.00000016                         | NA                               | NA                              | 0.0000023                       | NA                               |
| Inorganics                                            |                                    |                                  |                                 |                                 |                                  |
| Arsenic                                               | 1.20                               | NA                               | 4.00                            | 6.80                            | 2.00                             |
| Barium                                                | 9.90 B                             | NA                               | 72.0                            | 100                             | 13.0 B                           |
| Beryllium                                             | 0.160 B                            | NA NA                            | 0.690                           | 0.750                           | 0.0710 B                         |
| Cadmium                                               | 0.170 B                            | NA                               | 0.370 B                         | 0.560                           | 0.130 B                          |
| Chromium                                              | 4.10                               | NA                               | 16.0                            | 15.0                            | 2.70                             |
| Cobalt                                                | 5.10                               | NA                               | 10.0                            | 14.0                            | 4.60 B                           |
| Copper                                                | 8.90                               | NA                               | 18.0                            | 19.0                            | 12.0                             |
| Cyanide                                               | ND(0.240)                          | NA                               | 0.140 B                         | 0.190                           | ND(0.250)                        |
| Lead                                                  | 2.70                               | NA                               | 16.0                            | 23.0                            | 3.60                             |
| Mercury                                               | ND(0.120)                          | NA                               | 0.0630 B                        | 0.140                           | ND(0.120)                        |
| Nickel                                                | 8.00                               | NA                               | 15.0                            | 18.0                            | 7.70                             |
| Selenium                                              | ND(1.00)                           | NA                               | 0.760 B                         | 1.40                            | ND(1.00)                         |
| Silver                                                | 0.130 B                            | NA                               | ND(1.00)                        | 0.170 B                         | ND(1.00)                         |
| Sulfide                                               | 15.0                               | NA                               | 11.0                            | 6.60 B                          | 5.90 B                           |
| Thallium                                              | ND(1.20)                           | NA                               | ND(1.40)                        | 1.60                            | ND(1.20)                         |
| Tin                                                   | 3.30 B                             | NA                               | 4.80 B                          | 5.60 B                          | 3.30 B                           |
|                                                       |                                    |                                  |                                 |                                 |                                  |
| Vanadium                                              | 4.40 B<br>20.0                     | NA<br>NA                         | 17.0<br>71.0                    | 21.0<br>73.0                    | 2.90 B<br>20.0                   |

## PRE-DESIGN SOIL INVESTIGATION SAMPLING UNKAMET BROOK AREA

| Volatile Organics  Acetone Benzene Chlorobenzene Semivolatile Organics  Butylbenzylphthalate Di-n-Butylphthalate Fluoranthene Organochlorine Pesticides None Detected Organophosphate Pesticides None Detected Herbicides None Detected Furans 2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,7,8-PeCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 0,CDF Dioxins 2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND(0.024) ND(0.024) ND(0.0060) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND(0.026) ND(0.0066) ND(0.0066) ND(0.0066)  ND(0.44) ND(0.44) ND(0.44) NA  NA  NA  NA  NA  NA  NA  NA  NA  NA | NA N                          | ND(0.026) ND(0.0064) ND(0.0064) ND(0.0064) NA | 09/09/04  ND(0.032) ND(0.0080) ND(0.0080)  ND(0.54) ND(0.54) 0.11 J  0.0000027 YJ 0.000019 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Acetone Benzene Chlorobenzene Semivolatile Organics Butylbenzylphthalate Di-n-Butylphthalate Fluoranthene Organochlorine Pesticides None Detected Organophosphate Pesticides None Detected Herbicides None Detected Furans 2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ID(0.0060)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND(0.0066) ND(0.0066) ND(0.0066) ND(0.0066) ND(0.44) ND(0.44) NA                | NA NA NA ND(0.43) ND(0.43) ND(0.43) NA NA NA NA NA NA             | ND(0.0064) ND(0.0064) NA                         | ND(0.0080) ND(0.0080) ND(0.54) ND(0.54) ND(0.54) 0.0000027 YJ                              |
| Benzene N Chlorobenzene N Semivolatile Organics Butylbenzylphthalate Di-n-Butylphthalate Fluoranthene Organochlorine Pesticides None Detected Organophosphate Pesticides None Detected Herbicides None Detected Furans 2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ID(0.0060)   ID( | ND(0.0066) ND(0.0066) ND(0.0066) ND(0.0066) ND(0.44) ND(0.44) NA                | NA NA NA ND(0.43) ND(0.43) ND(0.43) NA NA NA NA NA NA             | ND(0.0064) ND(0.0064) NA                         | ND(0.0080) ND(0.0080) ND(0.54) ND(0.54) ND(0.54) 0.0000027 YJ                              |
| Chlorobenzene Semivolatile Organics Butylbenzylphthalate Di-n-Butylphthalate Fluoranthene Organochlorine Pesticides None Detected Organophosphate Pesticides None Detected Herbicides None Detected Furans 2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HpCDF HyCDFs (total) 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0.0066)  ND(0.44) ND(0.44) ND(0.44) NA                                 | NA  ND(0.43) ND(0.43) ND(0.43) NA  NA  NA  NA  NA  NA  NA  NA  NA | ND(0.0064)  NA                                      | ND(0.0080)  ND(0.54)  ND(0.54)  0.11 J    0.0000027 YJ                                     |
| Semivolatile Organics Butylbenzylphthalate Di-n-Butylphthalate Fluoranthene Organochlorine Pesticides None Detected Herbicides None Detected Herbicides None Detected Furans 2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,6,7,8-HyCDF HxCDFs (total) 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-PeCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0.44) ND(0.44) ND(0.44) NA                                             | ND(0.43) ND(0.43) ND(0.43) NA  NA  NA  NA  NA  NA  NA  NA  NA  NA | NA NA NA NA NA NA                                                                 | ND(0.54)<br>ND(0.54)<br>0.11 J                                                             |
| Butylbenzylphthalate Di-n-Butylphthalate Fluoranthene Organochlorine Pesticides None Detected Herbicides None Detected Herbicides None Detected Furans 2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,6,7,8-HyCDF HxCDFs (total) 1,2,3,4,7,8,9-HpCDF HyCDFs (total) 0CDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0.44) ND(0.44) NA                                                      | ND(0.43) ND(0.43) NA NA NA NA NA NA NA NA                         | NA NA NA NA NA NA NA NA NA                                                        | ND(0.54) 0.11 J 0.0000027 YJ                                                               |
| Di-n-Butylphthalate Fluoranthene Organochlorine Pesticides None Detected Herbicides None Detected Herbicides None Detected Flurans 2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-PeCDF HxCDFs (total) 1,2,3,4,7,8-PeCDF 1,2,3,4,6,7,8-HyCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF HyCDFs (total) 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-PeCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0.44) ND(0.44) NA                                                      | ND(0.43) ND(0.43) NA NA NA NA NA NA NA NA                         | NA NA NA NA NA NA NA NA NA                                                        | ND(0.54) 0.11 J 0.0000027 YJ                                                               |
| Fluoranthene Organochlorine Pesticides None Detected Organophosphate Pesticides None Detected Herbicides None Detected Furans 2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-HyCDF 1,2,3,4,7,8-PeCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND(0.44)  NA  NA  NA  NA  NA  NA  NA  NA  NA  N                                                               | ND(0.43)  NA  NA  NA  NA  NA  NA  NA  NA  NA  N                   | NA NA NA NA NA NA NA                                                              | 0.11 J                                                                                     |
| Organochlorine Pesticides           None Detected           Organophosphate Pesticides           None Detected           Herbicides           None Detected           Furans           2,3,7,8-TCDF           TCDFs (total)           1,2,3,7,8-PeCDF           2,3,4,7,8-PeCDF           PeCDFs (total)           1,2,3,4,7,8-HxCDF           1,2,3,4,8,9-HxCDF           1,2,3,4,6,7,8-HxCDF           1,2,3,4,6,7,8-HpCDF           1,2,3,4,7,8,9-HpCDF           HpCDFs (total)           OCDF           Dioxins           2,3,7,8-TCDD           TCDDs (total)           1,2,3,7,8-PeCDD           PeCDDs (total)           1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                              | NA NA NA NA NA NA NA                                              | NA NA NA NA NA                                                                    | <br><br>0.0000027 YJ                                                                       |
| None Detected   Organophosphate Pesticides   None Detected   Herbicides   None Detected   Furans   2,3,7,8-TCDF   TCDFs (total)   1,2,3,7,8-PeCDF   2,3,4,7,8-PeCDF   2,3,4,7,8-PeCDF   1,2,3,6,7,8-HxCDF   1,2,3,6,7,8-HxCDF   1,2,3,6,7,8-HxCDF   1,2,3,4,6,7,8-HxCDF   1,2,3,4,6,7,8-HyCDF   1,2,3,4,6,7,8-HyCDF   1,2,3,4,7,8,9-HpCDF   1,2,3,4,7,8-HxCDD   TCDDs (total)   1,2,3,7,8-PeCDD   PeCDDs (total)   1,2,3,4,7,8-HxCDD   PeCDDs (total) | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA NA NA NA NA NA NA NA NA                                                                                    | NA NA NA NA NA                                                    | NA<br>NA<br>NA                                                                    | <br>0.0000027 YJ                                                                           |
| Organophosphate Pesticides           None Detected           Herbicides           None Detected           Furans           2,3,7,8-TCDF           TCDFs (total)           1,2,3,7,8-PeCDF           2,3,4,7,8-PeCDF           PeCDFs (total)           1,2,3,4,7,8-HxCDF           1,2,3,4,8-HxCDF           1,2,3,4,6,7,8-HxCDF           1,2,3,4,6,7,8-HyCDF           1,2,3,4,7,8,9-HpCDF           HpCDFs (total)           OCDF           Dioxins           2,3,7,8-TCDD           TCDDs (total)           1,2,3,7,8-PeCDD           PeCDDs (total)           1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA NA NA NA NA NA NA NA NA                                                                                    | NA NA NA NA NA                                                    | NA<br>NA<br>NA                                                                    | <br>0.0000027 YJ                                                                           |
| None Detected  Herbicides  None Detected  Furans  2,3,7,8-TCDF  TCDFs (total)  1,2,3,7,8-PeCDF  2,3,4,7,8-PeCDF  1,2,3,4,7,8-HxCDF  1,2,3,6,7,8-HxCDF  1,2,3,4,7,8-HxCDF  1,2,3,4,7,8-HxCDF  1,2,3,4,7,8-HxCDF  1,2,3,4,7,8-HxCDF  1,2,3,4,7,8,9-HpCDF  1,2,3,4,7,8,9-HpCDF  1,2,3,4,7,8,9-HpCDF  1,2,3,4,7,8,9-HpCDF  TCDDs (total)  OCDF  Dioxins  2,3,7,8-TCDD  TCDDs (total)  1,2,3,7,8-PeCDD  PeCDDs (total)  1,2,3,7,8-PeCDD  PeCDDs (total)  1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA NA NA NA NA NA NA                                                                                          | NA<br>NA<br>NA<br>NA                                              | NA<br>NA<br>NA                                                                    | <br>0.0000027 YJ                                                                           |
| None Detected  Herbicides  None Detected  Furans  2,3,7,8-TCDF  TCDFs (total)  1,2,3,7,8-PeCDF  2,3,4,7,8-PeCDF  1,2,3,4,7,8-HxCDF  1,2,3,6,7,8-HxCDF  1,2,3,4,7,8-HxCDF  1,2,3,4,7,8-HxCDF  1,2,3,4,7,8-HxCDF  1,2,3,4,7,8-HxCDF  1,2,3,4,7,8,9-HpCDF  1,2,3,4,7,8,9-HpCDF  1,2,3,4,7,8,9-HpCDF  1,2,3,4,7,8,9-HpCDF  TCDDs (total)  OCDF  Dioxins  2,3,7,8-TCDD  TCDDs (total)  1,2,3,7,8-PeCDD  PeCDDs (total)  1,2,3,7,8-PeCDD  PeCDDs (total)  1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA NA NA NA NA NA NA                                                                                          | NA<br>NA<br>NA<br>NA                                              | NA<br>NA<br>NA                                                                    | <br>0.0000027 YJ                                                                           |
| None Detected Furans  2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF TCDDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA<br>NA<br>NA<br>NA<br>NA                                                                                    | NA<br>NA<br>NA                                                    | NA<br>NA                                                                          | 0.0000027 YJ                                                                               |
| None Detected Furans  2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF 1,2,3,4,6,7,8-HyCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF TCDDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA<br>NA<br>NA<br>NA<br>NA                                                                                    | NA<br>NA<br>NA                                                    | NA<br>NA                                                                          | 0.0000027 YJ                                                                               |
| Furans  2,3,7,8-TCDF TCDFs (total)  1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total)  1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA<br>NA<br>NA<br>NA<br>NA                                                                                    | NA<br>NA<br>NA                                                    | NA<br>NA                                                                          | 0.0000027 YJ                                                                               |
| 2,3,7,8-TCDF TCDFs (total) 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA<br>NA<br>NA<br>NA                                                                                          | NA<br>NA                                                          | NA                                                                                |                                                                                            |
| TCDFs (total)  1,2,3,7,8-PeCDF  2,3,4,7,8-PeCDF  PeCDFs (total)  1,2,3,4,7,8-HxCDF  1,2,3,6,7,8-HxCDF  1,2,3,4,6,7,8-HxCDF  HxCDFs (total)  1,2,3,4,6,7,8-HyCDF  1,2,3,4,6,7,8-HpCDF  1,2,3,4,7,8,9-HpCDF  HpCDFs (total)  OCDF  Dioxins  2,3,7,8-TCDD  TCDDs (total)  1,2,3,7,8-PeCDD  PeCDDs (total)  1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA<br>NA<br>NA<br>NA                                                                                          | NA<br>NA                                                          | NA                                                                                |                                                                                            |
| 1,2,3,7,8-PeCDF 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA<br>NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA<br>NA<br>NA                                                                                                | NA                                                                |                                                                                   |                                                                                            |
| 2,3,4,7,8-PeCDF PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA<br>NA                                                                                                      |                                                                   |                                                                                   | 0.000019<br>0.0000013 J                                                                    |
| PeCDFs (total) 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,6,7,8-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA<br>NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                            |                                                                   |                                                                                   |                                                                                            |
| 1,2,3,4,7,8-HxCDF 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                               | NA<br>NA                                                          | NA<br>NA                                                                          | 0.0000027 J                                                                                |
| 1,2,3,6,7,8-HxCDF 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF  Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                               | NA<br>NA                                                          | NA<br>NA                                                                          | 0.000038                                                                                   |
| 1,2,3,7,8,9-HxCDF 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA<br>NA                                                                                                      | NA<br>NA                                                          | NA<br>NA                                                                          | 0.0000023 J                                                                                |
| 2,3,4,6,7,8-HxCDF HxCDFs (total) 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                            | NA                                                                | NA                                                                                | 0.0000018 J                                                                                |
| HxCDFs (total)  1,2,3,4,6,7,8-HpCDF  1,2,3,4,7,8,9-HpCDF  HpCDFs (total)  OCDF  Dioxins  2,3,7,8-TCDD  TCDDs (total)  1,2,3,7,8-PeCDD  PeCDDs (total)  1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NIΛ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NA                                                                                                            | NA                                                                | NA                                                                                | ND(0.00000089)                                                                             |
| 1,2,3,4,6,7,8-HpCDF 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NA                                                                                                            | NA                                                                | NA                                                                                | 0.0000028 J                                                                                |
| 1,2,3,4,7,8,9-HpCDF HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | 0.000058                                                                                   |
| HpCDFs (total) OCDF Dioxins 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | 0.000066                                                                                   |
| OCDF  Dioxins  2,3,7,8-TCDD  TCDDs (total)  1,2,3,7,8-PeCDD  PeCDDs (total)  1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | ND(0.00000074)                                                                             |
| Dioxins  2,3,7,8-TCDD  TCDDs (total)  1,2,3,7,8-PeCDD  PeCDDs (total)  1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | 0.00011                                                                                    |
| 2,3,7,8-TCDD TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | 0.000032                                                                                   |
| TCDDs (total) 1,2,3,7,8-PeCDD PeCDDs (total) 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                   |                                                                                   |                                                                                            |
| 1,2,3,7,8-PeCDD<br>PeCDDs (total)<br>1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | ND(0.00000039)                                                                             |
| PeCDDs (total)<br>1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | ND(0.0000010)                                                                              |
| 1,2,3,4,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | ND(0.00000074)                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | 0.0000012 J                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | ND(0.00000074)                                                                             |
| 1,2,3,6,7,8-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | ND(0.00000091) X                                                                           |
| 1,2,3,7,8,9-HxCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | ND(0.00000074)                                                                             |
| HxCDDs (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | 0.0000059 J                                                                                |
| 1,2,3,4,6,7,8-HpCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | 0.000015                                                                                   |
| HpCDDs (total)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA                                                                                                            | NA                                                                | NA                                                                                | 0.000026                                                                                   |
| OCDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA NA                                                                                                         | NA NA                                                             | NA NA                                                                             | 0.00014                                                                                    |
| Total TEQs (WHO TEFs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA NA                                                                                                         | NA NA                                                             | NA NA                                                                             | 0.0000039                                                                                  |
| Inorganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                   |                                                                                   | 0.000000                                                                                   |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.00                                                                                                          | 3.00                                                              | NA                                                                                | 6.00                                                                                       |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 52.0                                                                                                          | 58.0                                                              | NA NA                                                                             | 100                                                                                        |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               |                                                                   |                                                                                   |                                                                                            |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.640                                                                                                         | 0.540                                                             | NA<br>NA                                                                          | 0.860                                                                                      |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.230 B                                                                                                       | 0.180 B                                                           |                                                                                   | 0.330 B                                                                                    |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.0                                                                                                          | 12.0                                                              | NA<br>NA                                                                          | 21.0                                                                                       |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.0                                                                                                          | 11.0                                                              | NA<br>NA                                                                          | 11.0                                                                                       |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.0                                                                                                          | 14.0                                                              | NA<br>NA                                                                          | 18.0                                                                                       |
| Cyanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0690 B                                                                                                      | 0.0270 B                                                          | NA NA                                                                             | 0.170                                                                                      |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.00                                                                                                          | 7.20                                                              | NA<br>NA                                                                          | 25.0                                                                                       |
| Mercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0210 B                                                                                                      | 0.0690 B                                                          | NA                                                                                | 0.180                                                                                      |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18.0                                                                                                          | 17.0                                                              | NA                                                                                | 18.0                                                                                       |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.00                                                                                                          | 0.640 B                                                           | NA                                                                                | 0.860 B                                                                                    |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND(1.00)                                                                                                      | ND(1.00)                                                          | NA                                                                                | ND(1.20)                                                                                   |
| Sulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.30 B                                                                                                        | 10.0                                                              | NA                                                                                | 13.0                                                                                       |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.20 B                                                                                                        | ND(1.30)                                                          | NA                                                                                | 1.40 B                                                                                     |
| Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                               | 3.80 B                                                            | NA                                                                                | 6.20 B                                                                                     |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.50 B                                                                                                        |                                                                   |                                                                                   |                                                                                            |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.50 B<br>16.0                                                                                                | 14.0                                                              | NA                                                                                | 19.0                                                                                       |

## PRE-DESIGN SOIL INVESTIGATION SAMPLING UNKAMET BROOK AREA

| Sample ID:<br>Sample Depth(Feet): | RAA10-E-HH16<br>3-6 | RAA10-E-HH16<br>4-6     | RAA10-E-HH16<br>6-8 | RAA10-E-HH16<br>6-15 |
|-----------------------------------|---------------------|-------------------------|---------------------|----------------------|
| Parameter Date Collected:         | 09/09/04            | 09/09/04                | 09/09/04            | 09/09/04             |
| Volatile Organics                 | NA                  | ND(0.022)               | ND(0.022)           | NA                   |
| Acetone<br>Benzene                | NA<br>NA            | ND(0.022)<br>ND(0.0055) | ND(0.023)           | NA<br>NA             |
|                                   |                     | . ,                     | ND(0.0057)          | NA<br>NA             |
| Chlorobenzene                     | NA                  | ND(0.0055)              | 0.0066              | INA                  |
| Semivolatile Organics             | ND(0.44)            | 114                     | 114                 | NID (0.00)           |
| Butylbenzylphthalate              | ND(0.44)            | NA<br>NA                | NA<br>NA            | ND(0.39)             |
| Di-n-Butylphthalate               | ND(0.44)            | NA<br>NA                | NA NA               | ND(0.39)             |
| Fluoranthene                      | ND(0.44)            | NA                      | NA                  | ND(0.39)             |
| Organochlorine Pesticides         |                     |                         |                     |                      |
| None Detected                     | NA                  | NA                      | NA                  | NA                   |
| Organophosphate Pesticides        |                     |                         | 1                   |                      |
| None Detected                     | NA                  | NA                      | NA                  | NA                   |
| Herbicides                        |                     |                         |                     |                      |
| None Detected                     | NA                  | NA                      | NA                  | NA                   |
| urans                             |                     |                         |                     |                      |
| 2,3,7,8-TCDF                      | NA                  | NA                      | NA                  | NA                   |
| TCDFs (total)                     | NA                  | NA                      | NA                  | NA                   |
| 1,2,3,7,8-PeCDF                   | NA                  | NA                      | NA                  | NA                   |
| 2,3,4,7,8-PeCDF                   | NA                  | NA                      | NA                  | NA                   |
| PeCDFs (total)                    | NA                  | NA                      | NA                  | NA                   |
| 1,2,3,4,7,8-HxCDF                 | NA                  | NA                      | NA                  | NA                   |
| 1,2,3,6,7,8-HxCDF                 | NA                  | NA                      | NA                  | NA                   |
| 1,2,3,7,8,9-HxCDF                 | NA                  | NA                      | NA                  | NA                   |
| 2,3,4,6,7,8-HxCDF                 | NA                  | NA                      | NA                  | NA                   |
| HxCDFs (total)                    | NA                  | NA                      | NA                  | NA                   |
| 1,2,3,4,6,7,8-HpCDF               | NA                  | NA                      | NA                  | NA                   |
| 1,2,3,4,7,8,9-HpCDF               | NA                  | NA                      | NA                  | NA                   |
| HpCDFs (total)                    | NA                  | NA                      | NA                  | NA                   |
| OCDF                              | NA                  | NA                      | NA                  | NA                   |
| Dioxins                           |                     |                         |                     |                      |
| 2,3,7,8-TCDD                      | NA                  | NA                      | NA                  | NA                   |
| ΓCDDs (total)                     | NA                  | NA                      | NA                  | NA                   |
| 1,2,3,7,8-PeCDD                   | NA                  | NA                      | NA                  | NA                   |
| PeCDDs (total)                    | NA                  | NA                      | NA                  | NA                   |
| 1,2,3,4,7,8-HxCDD                 | NA                  | NA                      | NA                  | NA                   |
| 1,2,3,6,7,8-HxCDD                 | NA                  | NA                      | NA                  | NA                   |
| 1,2,3,7,8,9-HxCDD                 | NA                  | NA                      | NA                  | NA                   |
| HxCDDs (total)                    | NA                  | NA                      | NA                  | NA                   |
| 1,2,3,4,6,7,8-HpCDD               | NA                  | NA                      | NA                  | NA                   |
| HpCDDs (total)                    | NA                  | NA                      | NA                  | NA                   |
| OCDD                              | NA                  | NA                      | NA                  | NA                   |
| Total TEQs (WHO TEFs)             | NA                  | NA                      | NA                  | NA                   |
| norganics                         |                     |                         |                     |                      |
| Arsenic                           | 1.90                | NA                      | NA                  | 1.70                 |
| Barium                            | 34.0                | NA NA                   | NA NA               | 9.30 B               |
| Beryllium                         | 0.300 B             | NA NA                   | NA NA               | 0.160 B              |
| Cadmium                           | 0.180 B             | NA NA                   | NA NA               | 0.140 B              |
| Chromium                          | 8.30                | NA NA                   | NA NA               | 5.20                 |
| Cobalt                            | 7.40                | NA NA                   | NA NA               | 8.90                 |
| Copper                            | 11.0                | NA NA                   | NA NA               | 9.80                 |
| Cyanide                           | 0.0150 B            | NA NA                   | NA NA               | ND(0.120)            |
| _ead                              | 5.10                | NA NA                   | NA NA               | 4.00                 |
| Mercury                           | ND(0.130)           | NA NA                   | NA NA               | ND(0.120)            |
| Nickel                            | 12.0                | NA NA                   | NA NA               | 9.90                 |
| Selenium                          | 0.960 B             | NA NA                   | NA NA               | ND(1.00)             |
| Silver                            | ND(1.00)            | NA NA                   | NA NA               | ND(1.00)             |
| Sulfide                           | 15.0                | NA NA                   | NA NA               | 32.0                 |
| Fhallium                          | ND(1.30)            | NA NA                   | NA<br>NA            | ND(1.20)             |
| Hamaii                            |                     |                         |                     |                      |
| Γin                               | 430 B               | NΔ                      |                     |                      |
| Γin<br>/anadium                   | 4.30 B<br>7.80      | NA<br>NA                | NA<br>NA            | 3.30 B<br>5.30       |

## PRE-DESIGN SOIL INVESTIGATION SAMPLING UNKAMET BROOK AREA

#### GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in dry weight parts per million, ppm)

#### Notes:

- Samples were collected by Blasland, Bouck & Lee, Inc., and were submitted to SGS Environmental Services, Inc. for analysis
  of Appendix IX+3 constituents.
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. Total 2,3,7,8-TCDD toxicity equivalents (TEQs) were calculated using Toxicity Equivalency Factors (TEFs) derived by the World Health Organization (WHO) and published by Van den Berg et al. in Environmental Health Perspectives 106(2), December 1998.
- 5. With the exception of dioxin/furans, only those constituents detected in one or more samples are summarized.
- 6. -- Indicates that all constituents for the parameter group were not detected.
- 7. Field duplicate sample results are presented in brackets.

#### Data Qualifiers:

#### Organics (volatiles, semivolatiles, pesticides, herbicides, dioxin/furans)

- J Indicates an estimated value less than the practical quantitation limit (PQL).
- X Estimated maximum possible concentration.
- Y 2,3,7,8-TCDF results have been confirmed on a DB-225 column.

#### Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

## TABLE 7-4 DATA RECEIVED DURING SEPTEMBER 2004

## OP-3 FIREWATER TANK MAJOR EXCAVATION REMOVAL UNKAMET BROOK AREA

## GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in dry weight parts per million, ppm)

| Parameter         | Sample ID:<br>Sample Depth(Feet):<br>Date Collected: | OP3-BORING-1<br>6-8<br>09/24/04 | OP3-BORING-2<br>6-8<br>09/24/04 | OP3-BORING-3<br>7-8<br>09/24/04 |  |  |  |
|-------------------|------------------------------------------------------|---------------------------------|---------------------------------|---------------------------------|--|--|--|
| Volatile Organics |                                                      |                                 |                                 |                                 |  |  |  |
| Acetone           |                                                      | 0.018 J                         | 0.019 J                         | ND(0.029)                       |  |  |  |

#### Notes:

- Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of volatiles.
- 2. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 3. Only detected constituents are summarized.

#### **Data Qualifiers:**

#### Organics (volatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

## TABLE 7-5 TCLP DATA RECEIVED DURING SEPTEMBER 2004

## OP-3 FIREWATER TANK MAJOR EXCAVATION REMOVAL UNKAMET BROOK AREA

## GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

|                       | Sample ID:          | TCLP       | OP3-COMPOSITE-1 |
|-----------------------|---------------------|------------|-----------------|
|                       | Sample Depth(Feet): | Regulatory | 0-8             |
| Parameter             | Date Collected:     | Limits     | 9/24/2004       |
| Volatile Organics     | •                   |            | •               |
| 1,1-Dichloroethene    |                     | 0.7        | ND(0.10)        |
| 1,2-Dichloroethane    |                     | 0.5        | ND(0.10)        |
| 2-Butanone            |                     | 200        | ND(0.20)        |
| Benzene               |                     | 0.5        | ND(0.10)        |
| Carbon Tetrachloride  |                     | 0.5        | ND(0.10)        |
| Chlorobenzene         |                     | 100        | ND(0.10)        |
| Chloroform            |                     | 6          | ND(0.10)        |
| Tetrachloroethene     |                     | 0.7        | ND(0.10)        |
| Trichloroethene       |                     | 0.5        | ND(0.10)        |
| Vinyl Chloride        |                     | 0.2        | ND(0.10)        |
| Semivolatile Organic  | S                   | -          | 1 11            |
| 1,4-Dichlorobenzene   |                     | 7.5        | ND(0.050)       |
| 2,4,5-Trichlorophenol |                     | 400        | ND(0.050)       |
| 2,4,6-Trichlorophenol |                     | 2          | ND(0.050)       |
| 2,4-Dinitrotoluene    |                     | 0.13       | ND(0.050)       |
| Cresol                |                     | 200        | ND(0.050)       |
| Hexachlorobenzene     |                     | 0.13       | ND(0.050)       |
| Hexachlorobutadiene   |                     | 0.5        | ND(0.050)       |
| Hexachloroethane      |                     | 3          | ND(0.050)       |
| Nitrobenzene          |                     | 2          | ND(0.050)       |
| Pentachlorophenol     |                     | 100        | ND(0.050)       |
| Pyridine .            |                     | 5          | ND(0.050)       |
| Organochlorine Pes    | ticides             |            | , ,             |
| Endrin                |                     | 0.02       | ND(0.0015)      |
| Gamma-BHC (Lindan     | e)                  | 0.4        | ND(0.0025)      |
| Heptachlor            | ,                   | 0.008      | ND(0.0020)      |
| Heptachlor Epoxide    |                     | 0.008      | ND(0.0020)      |
| Methoxychlor          |                     | 10         | ND(0.040)       |
| Technical Chlordane   |                     | 0.03       | ND(0.012)       |
| Toxaphene             |                     | 0.5        | ND(0.050)       |
| Herbicides            | •                   |            | ·               |
| 2,4,5-TP              |                     | 1          | ND(0.010)       |
| 2,4-D                 |                     | 10         | ND(0.010)       |
| Inorganics            |                     |            | . , ,           |
| Arsenic               |                     | 5          | ND(0.100)       |
| Barium                |                     | 100        | 0.400           |
| Cadmium               |                     | 1          | 0.00120 B       |
| Chromium              |                     | 5          | 0.00170 B       |
| Lead                  |                     | 5          | 0.00670 B       |
| Mercury               |                     | 0.2        | ND(0.00200)     |
| Selenium              |                     | 1          | ND(0.200)       |

#### Notes:

1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of TCLP constituents.

5

0.00150 B

2. ND - Analyte was not detected. The number in parentheses is the associated detection limit.

#### Data Qualifiers:

Silver

#### Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

## ITEM 8 FORMER OXBOW AREAS A & C (GECD410) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. <u>Activities Undertaken/Completed</u>

Initiated preparation of letter report on additional supplemental soil sampling.

#### b. Sampling/Test Results Received

None

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Submit letter report on additional supplemental soil sampling (due on or before November 1, 2004).

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

### ITEM 9 LYMAN STREET AREA (GECD430) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. <u>Activities Undertaken/Completed</u>

None

#### b. Sampling/Test Results Received

None

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

If additional sampling is required based on EPA's review of GE's Conceptual RD/RA Work Plan, submit proposal for such sampling.

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

GE and EPA are currently discussing issues relating to GE's Conceptual RD/RA Work Plan submitted on March 23, 2004.

#### f. Proposed/Approved Work Plan Modifications

### ITEM 10 NEWELL STREET AREA I (GECD440) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. Activities Undertaken/Completed

- Completed restoration activities at Parcels J9-23-22, J9-23-23, and J9-23-24.
- Performed post-construction inspection at Parcels J9-23-16 through J9-23-18 and Parcels J9-23-22 through J9-23-24.
- Received signed access agreement for remediation from owner of Parcels J9-23-19 through J9-23-21 (dated September 24, 2004).

#### b. Sampling/Test Results Received

None

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Discuss draft EREs for GE-owned properties with EPA and MDEP and work on obtaining subordination agreements for easements at those properties.
- Initiate removal actions at Parcels J9-23-19 through J9-23-21.
- Upon receipt of EPA approval and MDEP acceptance of ERE for Parcel J9-23-24, record that ERE.

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

To date, the owner of Parcel J9-23-13 has not granted access for remediation.

#### f. Proposed/Approved Work Plan Modifications

### ITEM 11 NEWELL STREET AREA II (GECD450) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

| a. Activities Undertaken/Completed |
|------------------------------------|
|------------------------------------|

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Awaiting EPA review of Conceptual RD/RD Work Plan (submitted on July 16, 2004).

e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

f. Proposed/Approved Work Plan Modifications

### ITEM 12 FORMER OXBOW AREAS J & K (GECD420) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. Activities Undertaken/Completed

Completed additional supplemental sampling as proposed in Supplemental Pre-Design Investigation Report and Additional Sampling Proposal submitted on June 28, 2004, and as conditionally approved by EPA on August 26, 2004.

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Initiate preparation of letter report on additional supplemental sampling (due on or before November 26, 2004).

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

## TABLE 12-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

## FORMER OXBOW AREAS J AND K GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name                                          | Field Sample ID             | Sample Date | Depth (feet) | Matrix | Laboratory | Analyses | Date Received |
|-------------------------------------------------------|-----------------------------|-------------|--------------|--------|------------|----------|---------------|
| Additional Supplemental Pre-Design Soil Investigation | RAA15-E7BSE                 | 9/20/04     | 1-3          | Soil   | SGS        | SVOC     | 9/27/04       |
| Additional Supplemental Pre-Design Soil Investigation | RAA15-E7W                   | 9/20/04     | 0-1          | Soil   | SGS        | SVOC     | 9/27/04       |
| Additional Supplemental Pre-Design Soil Investigation | RAA15-E7W                   | 9/20/04     | 1-3          | Soil   | SGS        | SVOC     | 9/27/04       |
| Additional Supplemental Pre-Design Soil Investigation | RAA15-E8NEE                 | 9/16/04     | 1-3          | Soil   | SGS        | SVOC     | 9/24/04       |
| Additional Supplemental Pre-Design Soil Investigation | RAA15-E8NENE                | 9/16/04     | 1-3          | Soil   | SGS        | SVOC     | 9/24/04       |
| Additional Supplemental Pre-Design Soil Investigation | RAA15-E8NWNE                | 9/16/04     | 1-3          | Soil   | SGS        | SVOC     | 9/24/04       |
| Additional Supplemental Pre-Design Soil Investigation | RAA15-E8NWNW                | 9/16/04     | 1-3          | Soil   | SGS        | SVOC     | 9/24/04       |
| Additional Supplemental Pre-Design Soil Investigation | RAA15-F7                    | 9/16/04     | 0-1          | Soil   | SGS        | SVOC     | 9/24/04       |
| Additional Supplemental Pre-Design Soil Investigation | RAA15-F7                    | 9/16/04     | 1-3          | Soil   | SGS        | SVOC     | 9/24/04       |
| Additional Supplemental Pre-Design Soil Investigation | RAA15-JKS-DUP-5 (RAA15-E7W) | 9/20/04     | 1-3          | Soil   | SGS        | SVOC     | 9/27/04       |

#### Note:

1. Field duplicate sample locations are presented in parenthesis.

## ADDITIONAL SUPPLEMENTAL PRE-DESIGN SOIL INVESTIGATION SAMPLING FORMER OXBOW AREAS J AND K

#### ${\bf GENERAL\ ELECTRIC\ COMPANY\ -\ PITTSFIELD,\ MASSACHUSETTS}$

(Results are presented in dry weight parts per million, ppm)

|                  | Sample ID:          | RAA15-E7BSE | RAA15-E7W | RAA15-E7W           | RAA15-E8NEE | RAA15-E8NENE |
|------------------|---------------------|-------------|-----------|---------------------|-------------|--------------|
| 5                | Sample Depth(Feet): | 1-3         | 0-1       | 1-3                 | 1-3         | 1-3          |
| Parameter        | Date Collected:     | 09/20/04    | 09/20/04  | 09/20/04            | 09/16/04    | 09/16/04     |
| Semivolatile Or  | ganics              |             |           |                     |             |              |
| 2-Picoline       |                     | ND(0.47)    | ND(0.49)  | ND(0.44) [ND(0.44)] | ND(0.35)    | ND(0.38)     |
| 3&4-Methylphen   | ol                  | ND(0.94)    | ND(0.98)  | ND(0.89) [ND(0.89)] | ND(0.71)    | ND(0.76)     |
| Acenaphthene     |                     | 0.27 J      | ND(0.49)  | ND(0.44) [ND(0.44)] | ND(0.35)    | ND(0.38)     |
| Acenaphthylene   |                     | ND(0.47)    | ND(0.49)  | ND(0.44) [ND(0.44)] | ND(0.35)    | ND(0.38)     |
| Acetophenone     |                     | ND(0.47)    | ND(0.49)  | ND(0.44) [ND(0.44)] | ND(0.35)    | ND(0.38)     |
| Anthracene       |                     | 0.57        | ND(0.49)  | ND(0.44) [ND(0.44)] | 0.12 J      | ND(0.38)     |
| Benzo(a)anthrac  | cene                | 0.75        | ND(0.49)  | ND(0.44) [ND(0.44)] | 0.19 J      | ND(0.38)     |
| Benzo(a)pyrene   |                     | 0.33 J      | ND(0.49)  | ND(0.44) [ND(0.44)] | 0.14 J      | ND(0.38)     |
| Benzo(b)fluorant | thene               | 0.20 J      | ND(0.49)  | ND(0.44) [ND(0.44)] | 0.10 J      | ND(0.38)     |
| Benzo(g,h,i)pery | /lene               | ND(0.47)    | ND(0.49)  | ND(0.44) [ND(0.44)] | 0.098 J     | ND(0.38)     |
| Benzo(k)fluorant | hene                | 0.50        | ND(0.49)  | ND(0.44) [ND(0.44)] | 0.16 J      | ND(0.38)     |
| Chrysene         |                     | 0.86        | ND(0.49)  | ND(0.44) [ND(0.44)] | 0.25 J      | 0.085 J      |
| Dibenzo(a,h)ant  | hracene             | ND(0.47)    | ND(0.49)  | ND(0.44) [ND(0.44)] | ND(0.35)    | ND(0.38)     |
| Dibenzofuran     |                     | 0.14 J      | ND(0.49)  | ND(0.44) [ND(0.44)] | ND(0.35)    | ND(0.38)     |
| Fluoranthene     |                     | 3.2         | 0.25 J    | ND(0.44) [ND(0.44)] | 0.54        | 0.16 J       |
| Fluorene         |                     | 0.26 J      | ND(0.49)  | ND(0.44) [ND(0.44)] | ND(0.35)    | ND(0.38)     |
| Indeno(1,2,3-cd) | )pyrene             | ND(0.47)    | ND(0.49)  | ND(0.44) [ND(0.44)] | ND(0.35)    | ND(0.38)     |
| Naphthalene      |                     | 0.12 J      | ND(0.49)  | ND(0.44) [ND(0.44)] | ND(0.35)    | ND(0.38)     |
| Phenanthrene     |                     | 2.6         | 0.16 J    | ND(0.44) [ND(0.44)] | 0.34 J      | 0.078 J      |
| Phenol           |                     | ND(0.47)    | ND(0.49)  | ND(0.44) [ND(0.44)] | ND(0.35)    | ND(0.38)     |
| Pyrene           |                     | 2.4         | 0.20 J    | ND(0.44) [ND(0.44)] | 0.42        | 0.16 J       |

## ADDITIONAL SUPPLEMENTAL PRE-DESIGN SOIL INVESTIGATION SAMPLING FORMER OXBOW AREAS J AND K

#### ${\bf GENERAL\ ELECTRIC\ COMPANY\ -\ PITTSFIELD,\ MASSACHUSETTS}$

(Results are presented in dry weight parts per million, ppm)

| Sample ID:<br>Sample Depth(Feet): | RAA15-E8NWNE<br>1-3 | RAA15-E8NWNW<br>1-3 | RAA15-F7<br>0-1 | RAA15-F7<br>1-3 |
|-----------------------------------|---------------------|---------------------|-----------------|-----------------|
| Parameter Date Collected:         |                     | 09/16/04            | 09/16/04        | 09/16/04        |
| Semivolatile Organics             |                     |                     |                 |                 |
| 2-Picoline                        | ND(0.36)            | 0.076 J             | ND(0.50)        | ND(0.46)        |
| 3&4-Methylphenol                  | ND(0.72)            | 0.28 J              | ND(1.0)         | ND(0.92)        |
| Acenaphthene                      | ND(0.36)            | 2.8                 | ND(0.50)        | ND(0.46)        |
| Acenaphthylene                    | ND(0.36)            | 4.0                 | 0.13 J          | ND(0.46)        |
| Acetophenone                      | ND(0.36)            | 0.16 J              | ND(0.50)        | ND(0.46)        |
| Anthracene                        | ND(0.36)            | 14                  | 0.25 J          | 0.11 J          |
| Benzo(a)anthracene                | 0.10 J              | 27                  | 0.57            | 0.18 J          |
| Benzo(a)pyrene                    | ND(0.36)            | 14                  | 0.46 J          | 0.12 J          |
| Benzo(b)fluoranthene              | ND(0.36)            | 11                  | 0.23 J          | ND(0.46)        |
| Benzo(g,h,i)perylene              | ND(0.36)            | 4.5                 | 0.20 J          | ND(0.46)        |
| Benzo(k)fluoranthene              | 0.092 J             | 16                  | 0.65            | 0.13 J          |
| Chrysene                          | 0.13 J              | 29                  | 0.90            | 0.26 J          |
| Dibenzo(a,h)anthracene            | ND(0.36)            | 1.7                 | ND(0.50)        | ND(0.46)        |
| Dibenzofuran                      | ND(0.36)            | 4.3                 | ND(0.50)        | ND(0.46)        |
| Fluoranthene                      | 0.26 J              | 74                  | 1.8             | 0.52            |
| Fluorene                          | ND(0.36)            | 6.3                 | ND(0.50)        | ND(0.46)        |
| Indeno(1,2,3-cd)pyrene            | ND(0.36)            | 4.6                 | 0.20 J          | ND(0.46)        |
| Naphthalene                       | ND(0.36)            | 3.2                 | ND(0.50)        | ND(0.46)        |
| Phenanthrene                      | 0.15 J              | 57                  | 0.99            | 0.47            |
| Phenol                            | ND(0.36)            | 0.24 J              | ND(0.50)        | ND(0.46)        |
| Pyrene                            | 0.22 J              | 59                  | 1.5             | 0.48            |

#### Notes:

- Samples were collected by Blasland, Bouck & Lee, Inc., and were submitted to SGS Environmental Services, Inc. for analysis of semivolatiles.
- 2. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 3. Only those constituents detected in one or more samples are summarized.
- Field duplicate sample results are presented in brackets.

#### Data Qualifiers:

#### Organics (semivolatiles)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

# ITEM 13 HOUSATONIC RIVER AREA UPPER ½ MILE REACH (GECD800) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. <u>Activities Undertaken/Completed</u>

None

#### b. Sampling/Test Results Received

None

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Conduct seepage meter monitoring when water levels allow.
- Submit Restored Bank Vegetation and Aquatic Habitat Structures Inspection Report for Fall 2004 by mid-November 2004.

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

- Seepage meter monitoring has not occurred due to increased water levels.
- Issues relating to TOC content in isolation layer remain to be resolved. EPA and GE have agreed that GE's report on those issues will be deferred until after the seepage meter data are available. The Final Completion Report for Upper ½ Mile Reach Removal Action will be submitted following resolution of those issues.

#### f. Proposed/Approved Work Plan Modifications

# ITEM 14 HOUSATONIC RIVER AREA 1½-MILE REACH (GECD820) SEPTEMBER 2004

(Note: This item is limited to activities conducted by GE and does not include EPA's work on the 1½-Mile Reach Removal Action)

#### a. Activities Undertaken/Completed

On September 23, 2004, BBL (on GE's behalf) performed a round of water column monitoring at nine locations along the Housatonic River between Coltsville, MA and Great Barrington, MA. Two of these locations are situated in the 1½-Mile Reach: Lyman Street Bridge (Location 4) and Pomeroy Avenue Bridge (Location 6A). A composite grab sample was collected at each location and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a (see Table 14-1). (The other seven locations are discussed under Item 15 below.)

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

None

#### d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Continue Housatonic River monthly water column monitoring.

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

## TABLE 14-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

## HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name                  | Field Sample ID | Sample Date | Matrix | Laboratory | Analyses                    | Date Received |
|-------------------------------|-----------------|-------------|--------|------------|-----------------------------|---------------|
| Monthly Water Column Sampling | Location-4      | 9/23/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A |               |
| Monthly Water Column Sampling | Location-4      | 8/25/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A | 9/17/04       |
| Monthly Water Column Sampling | Location-6A     | 8/25/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A | 9/17/04       |
| Monthly Water Column Sampling | Location-6A     | 9/23/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A |               |

#### TABLE 14-2 SAMPLE DATA RECEIVED DURING SEPTEMBER 2004

## MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - 1 1/2 MILE REACH GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

| Sample ID   | Location            | Date<br>Collected | Aroclor-1016,<br>-1221, -1232, -1242 | Aroclor 1248  | Aroclor 1254  | Aroclor 1260  | Total PCBs    | POC   | TSS  | Chlorophyll (a) |
|-------------|---------------------|-------------------|--------------------------------------|---------------|---------------|---------------|---------------|-------|------|-----------------|
| LOCATION-4  | Lyman Street Bridge | 8/25/2004         | ND(0.0000220)                        | ND(0.0000220) | ND(0.0000220) | ND(0.0000220) | ND(0.0000220) | 0.534 | 2.20 | 0.00080         |
| LOCATION-6A | Pomeroy Ave. Bridge | 8/25/2004         | ND(0.0000220)                        | 0.0000630 PE  | 0.0000710 AF  | 0.000190      | 0.000324      | 0.979 | 6.70 | 0.0014          |

#### Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc. and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).
- 2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. AF Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- 5. PE Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported.

# ITEM 15 HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) SEPTEMBER 2004

#### a. Activities Undertaken/Completed

- On September 23, 2004, BBL (on GE's behalf) performed a round of water column monitoring at nine locations along the Housatonic River between Coltsville and Great Barrington, MA. Two locations are situated in the 1½-Mile Reach of the Housatonic River and were discussed in Item 14. Of the remaining seven locations, two are located upstream of the 1½-Mile Reach: Hubbard Avenue Bridge (Location 1) and Newell Street Bridge (Location 2). The five remaining locations are situated in the Rest of the River: Holmes Road Bridge (Location 7); New Lenox Road Bridge (Location 9); Woods Pond Headwaters (Location 10); Schweitzer Bridge (Location 12); and Division Street Bridge (Location 13). Sampling activities were performed at all these locations on September 23, 2004 from downstream to upstream. Composite grab samples were collected at each location sampled and submitted to Northeast Analytical for analysis of PCBs (total), TSS, POC, and chlorophyll-a (see Table 15-1).
- On September 27, 2004, BBL (on GE's behalf) performed fish sampling in Morewood Lake as outlined in a scope of work approved by MDEP (in consultation with EPA) by letter dated September 9, 2004. Ten edible-size largemouth bass (>12 inches) and 10 edible-size bluegill (>6 inches) were collected using a boat electrofisher. Samples were submitted to Northeast Analytical for analysis of PCB Aroclors and percent lipids in skin-on, scales-off fillets.
- Fish sampling in the Housatonic River for young-of-year (YOY) largemouth bass, yellow perch, and bluegill/pumpkinseed was performed on September 29-30, 2004. In total, 47 samples were collected using a boat electrofisher and submitted to EnChem Labs, Inc. for analysis of PCB Aroclors and percent lipids in whole-body composite samples (minimum of five fish per sample).

#### b. Sampling/Test Results

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue Housatonic River monthly water column monitoring.
- Complete YOY fish sampling (37 samples remaining), currently scheduled to occur during the week of October 11, 2004.

# ITEM 15 (cont'd) HOUSATONIC RIVER AREA REST OF THE RIVER (GECD850) SEPTEMBER 2004

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks) (cont'd)

- Proceed with work on gate stem repairs at Rising Pond Dam, as identified in the Structural Integrity Report submitted in July 2003 for that dam, and based on the October 2003 gate stem inspection.\* Discuss with owner of Rising Pond.
- Conduct bi-annual structural integrity inspection of Woods Pond Dam (anticipated in November 2004).
- Conduct dam assessment training (anticipated in November 2004).

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

Ongoing issues relating to EPA's risk assessments.\*

#### f. Proposed/Approved Work Plan Modifications

By letter dated September 8, 2004, MDEP (in consultation with EPA) approved a scope of work submitted by BBL (on GE's behalf) for fish sampling in Morewood Lake.

## TABLE 15-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

## HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name                  | Field Sample ID     | Sample Date | Matrix | Laboratory | Analyses                    | Date Received |
|-------------------------------|---------------------|-------------|--------|------------|-----------------------------|---------------|
| Monthly Water Column Sampling | HR-D1 (Location-12) | 9/23/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A |               |
| Monthly Water Column Sampling | HR-D1 (Location-12) | 8/25/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A | 9/17/04       |
| Monthly Water Column Sampling | Location-1          | 9/23/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A |               |
| Monthly Water Column Sampling | Location-1          | 8/25/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A | 9/17/04       |
| Monthly Water Column Sampling | Location-10         | 8/25/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A | 9/17/04       |
| Monthly Water Column Sampling | Location-10         | 9/23/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A |               |
| Monthly Water Column Sampling | Location-12         | 9/23/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A |               |
| Monthly Water Column Sampling | Location-12         | 8/25/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A | 9/17/04       |
| Monthly Water Column Sampling | Location-13         | 9/23/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A |               |
| Monthly Water Column Sampling | Location-13         | 8/25/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A | 9/17/04       |
| Monthly Water Column Sampling | Location-2          | 8/25/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A | 9/17/04       |
| Monthly Water Column Sampling | Location-2          | 9/23/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A |               |
| Monthly Water Column Sampling | Location-7          | 8/25/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A | 9/17/04       |
| Monthly Water Column Sampling | Location-7          | 9/23/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A |               |
| Monthly Water Column Sampling | Location-9          | 8/25/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A | 9/17/04       |
| Monthly Water Column Sampling | Location-9          | 9/23/04     | Water  | NEA        | PCB, TSS, POC, Chlorophyl-A |               |

#### Note:

1. Field duplicate sample locations are presented in parenthesis.

#### TABLE 15-2 SAMPLE DATA RECEIVED DURING SEPTEMBER 2004

## MONTHLY WATER COLUMN SAMPLING HOUSATONIC RIVER - REST OF RIVER GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

| Sample ID   | Location                 | Date<br>Collected | Aroclor-1016,<br>-1221, -1232, -1242 | Aroclor 1248   | Aroclor 1254   | Aroclor 1260  | Total PCBs    | POC     | TSS    | Chlorophyll (a)  |
|-------------|--------------------------|-------------------|--------------------------------------|----------------|----------------|---------------|---------------|---------|--------|------------------|
| Sample ID   | Location                 | Collected         | -1221, -1232, -1242                  | AIOCIOI 1240   | AIUCIUI 1234   | AIOCIOI 1200  | Total FCDs    | FOC     | 100    | Ciliorophyli (a) |
| LOCATION-1  | Hubbard Avenue Bridge    | 8/25/2004         | ND(0.0000220)                        | ND(0.0000220)  | ND(0.0000220)  | ND(0.0000220) | ND(0.0000220) | 0.453   | 2.40   | 0.00080          |
| LOCATION-2  | Newell Street Bridge     | 8/25/2004         | ND(0.0000220)                        | ND(0.0000220)  | 0.0000230 AF   | 0.0000260     | 0.0000490     | 0.383   | 2.80   | 0.0013           |
| LOCATION-7  | Holmes Road Bridge       | 8/25/2004         | ND(0.0000220)                        | ND(0.0000220)  | 0.0000220 AF   | 0.0000450     | 0.0000670     | 0.555   | 3.60   | 0.0017           |
| LOCATION-9  | New Lenox Road Bridge    | 8/25/2004         | ND(0.0000220)                        | 0.0000290 PE   | 0.0000480 AF   | 0.0000980     | 0.000175      | 0.548   | 3.70   | 0.0017           |
| LOCATION-10 | Headwaters of Woods Pond | 8/25/2004         | ND(0.0000220)                        | 0.0000330 PE   | 0.0000550 AF   | 0.000100      | 0.000188      | 0.387   | 3.50   | 0.0021           |
| LOCATION-12 | Schweitzer Bridge        | 8/25/2004         | ND(0.0000220)                        | 0.0000340PE    | 0.0000480 AF   | 0.0000890     | 0.000171      | 0.653   | 2.50   | 0.0029           |
|             |                          | 8/25/2004         | [ND(0.0000220)]                      | [0.0000400 PE] | [0.0000560 AF] | [0.000110]    | [0.000206]    | [0.510] | [2.60] | [0.0030]         |
| LOCATION-13 | Division Street Bridge   | 8/25/2004         | ND(0.0000220)                        | ND(0.0000220)  | ND(0.0000220)  | 0.0000480 AG  | 0.0000480     | 0.551   | 3.40   | 0.0014           |

#### Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc. and submitted to Northeast Analytical, Inc. for analysis of unfiltered PCBs, total suspended solids (TSS), particulate organic carbon (POC), and chlorophyll (a).
- 2. Sampling methods involved the collection of composite grab samples at each location, representative of three stations (25, 50, and 75 percent of the total river width at each location) at 50 percent of the total river depth at each station.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. AF Aroclor 1254 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- 5. AG Aroclor 1260 is being reported as the best Aroclor match. The sample exhibits an altered PCB pattern.
- 6. PE Aroclor 1248 is being used to report an altered PCB pattern exhibited by the sample. Actual Aroclor 1248 is not present in the sample, but is reported.
- 7. Field duplicate sample results are presented in brackets.

# ITEMS 16 & 17 HOUSATONIC RIVER FLOODPLAIN RESIDENTIAL AND NON-RESIDENTIAL PROPERTIES ADJACENT TO 1½-MILE REACH (GECD710 AND GECD720) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. Activities Undertaken/Completed

- Discussed with EPA revisions to certain averaging/evaluation areas at the Phase 3 floodplain properties.
- Updated existing figures for the Phase 3 floodplain properties to include the results of supplemental PCB sampling and additional EPA analyses.

#### b. Sampling/Test Results Received

None

#### c. Work Plans/Reports/Documents Submitted

None

#### d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

- Following further discussions with EPA, submit a revised Interim Pre-Design Investigation Report proposing additional sampling at Phase 3 properties.
- Awaiting EPA review of Pre-Design Investigation Work Plan Addendum for Phase 4 Group 4A Properties; then submit a Pre-Design Investigation Work Plan Addendum for Phase 4 Groups 4B and 4C properties.

#### e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

- GE will discuss with EPA schedule for pre-certification inspection and submittal of Final Completion Report for Phase 1 and Phase 2 properties, and ERE for City-owned property in Phase 2.
- Issues related to timing for sampling at Phase 3 and Phase 4 properties are under discussion with EPA.

#### f. Proposed/Approved Work Plan Modifications

# ITEM 18 HOUSATONIC RIVER FLOODPLAIN CURRENT RESIDENTIAL PROPERTIES DOWNSTREAM OF CONFLUENCE (ACTUAL/POTENTIAL LAWNS) (GECD730) SEPTEMBER 2004

#### a. <u>Activities Undertaken/Completed</u>

None

#### b. Sampling/Test Results Received

None

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

None

#### e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

Awaiting EPA approval of GE's Pre-Design Investigation Work Plan (submitted on February 26, 2002). (Based on discussions with EPA, it appears that this pre-design sampling will be deferred for some period of time.)\*

#### f. Proposed/Approved Work Plan Modifications

### ITEM 20 OTHER AREAS SILVER LAKE AREA (GECD600) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. Activities Undertaken/Completed

Performed water level monitoring at Silver Lake staff gauge (see Item 21.a).

#### b. Sampling/Test Results Received

None

#### c. Work Plans/Reports/Documents Submitted

- Submitted revisions to GE's Pre-Design Investigation Report for Silver Lake Sediments (September 15, 2004).
- Submitted letter to EPA proposing supplemental pre-design investigations for sediments and outlining objectives of upcoming bench-scale pilot study for capping sediments (September 15, 2004).
- Submitted Interim Pre-Design Investigation Report for Soils at Properties Adjacent to Silver Lake (September 29, 2004).

#### d. Upcoming Scheduled Activities (next six weeks)

- Continue water-level monitoring at well pairs surrounding the lake.
- Initiate supplemental pre-design investigation activities for sediments within 30 days after EPA approval of GE's September 15, 2004 letter proposal.
- Submit Bench-Scale Pilot Study Work Plan for Silver Lake Sediments (due within 30 days of EPA's approval of GE's September 15, 2004 letter proposal).

#### e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

#### f. Proposed/Approved Work Plan Modifications

# ITEM 21 GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

#### a. <u>Activities Undertaken/Completed</u>

#### General

- Initiated semi-annual NAPL bailing round at all GMA 1 wells where NAPL was observed during the prior year.

#### **East Street Area 1-North and South:**

- Continued automated groundwater and NAPL pumping at North Side and South Side Caissons. A total of approximately 4.0 gallons of LNAPL was removed from the North Side Caisson, while recoverable quantities were not encountered at the South Side Caisson in September.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 2.02 liters (0.53 gallon) of LNAPL were removed from wells in this area during September.
- Developed replacement well 139R.
- Installed new well GMA 1-18 at 1294 East Street to replace well ES1-14 for future monitoring activities.

#### **East Street Area 2-South:**

- Continued automated groundwater and LNAPL removal activities. A total of approximately 5,815,122 gallons of groundwater was recovered from pumping systems 64R, 64S, 64V, 64X, RW-1(S), RW-1(X), and RW-2(X). In addition, approximately 2,734 gallons of LNAPL were removed from pumping systems 64R, 64V, RW-1(S), RW-1(X), 64X, and 64S Caisson.
- Continued automated DNAPL removal activities. Removed approximately 67 gallons of DNAPL from pumping system RW-3(X).
- Continued routine well monitoring and manual NAPL removal activities. Approximately 7.50 liters (1.98 gallons) of LNAPL were recovered from the wells monitored during September.
- Treated/discharged 5,323,695 gallons of water through 64G Groundwater Treatment Facility.
- Placed weighted bailers in coal-tar DNAPL wells E2SC-3I and E2SC-17.

# ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) SEPTEMBER 2004

#### a. Activities Undertaken/Completed (cont'd)

#### **East Street Area 2-North:**

- Continued routine well monitoring and manual NAPL removal activities. Approximately 0.69 liter (0.18 gallon) of LNAPL and approximately 0.34 liter (0.09 gallon) of DNAPL were recovered from the wells monitored during September.

#### 20s, 30s, and 40s Complexes:

- Continued routine well monitoring and manual NAPL removal activities. Approximately 0.06 liter (0.02 gallon) of LNAPL and no DNAPL were recovered from the wells monitored in September.
- Continued to monitor LNAPL within the hydraulic piston cylinder of Building 43 elevator shaft; no recoverable quantities were encountered.

#### **Lyman Street Area:**

- Continued automated groundwater and NAPL removal activities. Approximately 1 gallon of LNAPL was recovered from well RW-1R and approximately 20 gallons of LNAPL were recovered from well RW-3 in September.
- Continued routine well monitoring and manual NAPL removal activities and conducted semiannual bailing round at all wells that contained NAPL in 2003. Approximately 1.12 liters (0.29 gallon) of LNAPL and approximately 3.34 liters (0.88 gallon) of DNAPL were removed from wells located in this area.

#### **Newell Street Area II:**

- Continued automated DNAPL recovery, with the collection of approximately 146 gallons of DNAPL from the automated collection systems.
- Continued routine well monitoring and manual NAPL removal activities. Approximately 0.82 liter (0.21 gallon) of LNAPL and approximately 1.99 liters (0.52 gallon) of DNAPL were removed from wells in this area.

#### Silver Lake:

- Continued routine monitoring of staff gauge in lake.

# ITEM 21 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 1 (GMA 1) (GECD310) SEPTEMBER 2004

#### b. Sampling/Test Results Received

See attached tables.

#### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue routine monitoring, including performance of fall 2004 semi-annual monitoring event.
- Conduct semi-annual riverbank inspection.
- Possibly install two soil borings downgradient of wells GMA1-15 and GMA1-16 upon EPA approval (see Item 21.f below).
- Submit a proposal for abandonment of Building 43 elevator shaft.
- Initiate fall 2004 interim groundwater quality sampling activities.

#### e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

#### f. Proposed/Approved Work Plan Modifications

- Received conditional approval letter from EPA (dated September 8, 2004) for GE's Groundwater Quality Interim Report for Fall 2003.
- GE's NAPL Monitoring Report for Fall 2003 contained a number of proposed modifications to the NAPL monitoring/recovery program at this GMA. These included a proposal to install two soil borings downgradient of wells GMA1-15 and GMA1-16 within one month of EPA approval of that report. The soil boring results will be compared with other soil boring logs in the area and GE will propose at least two locations for NAPL monitoring well installations.

#### **TABLE 21-1**

## AUTOMATED LNAPL & GROUNDWATER RECOVERY SYSTEMS MONTHLY SUMMARY EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

|           |                | Vol. LNAPL | Vol. Water |                     |
|-----------|----------------|------------|------------|---------------------|
|           |                | Collected  | Recovered  | Percent             |
| Caisson   | Month          | (gallon)   | (gallon)   | Downtime            |
| Northside | September 2003 | 5.0        | 26,800     | 0.074 Power Outage  |
|           | October 2003   | 0.0        | 22,700     |                     |
|           | November 2003  | 0.0        | 37,300     |                     |
|           | December 2003  | 0.0        | 47,300     |                     |
|           | January 2004   | 2.5        | 23,700     | 0.40                |
|           | February 2004  | 0.0        | 16,300     |                     |
|           | March 2004     | 0.0        | 22,500     | 0.27 - Power Outage |
|           | April 2004     | 1.0        | 29,100     |                     |
|           | May 2004       | 0.0        | 22,300     |                     |
|           | June 2004      | 4.3        | 28,500     |                     |
|           | July 2004      | 4.4        | 16,700     |                     |
|           | August 2004    | 2.0        | 16,300     |                     |
|           | September 2004 | 4.0        | 24,300     |                     |
| Southside | September 2003 | 0.0        | 77,600     | 0.074 Power Outage  |
|           | October 2003   | 0.0        | 94,000     |                     |
|           | November 2003  | 0.0        | 85,100     |                     |
|           | December 2003  | 0.0        | 106,600    |                     |
|           | January 2004   | 2.5        | 72,500     | 0.40                |
|           | February 2004  | 0.0        | 5,400      |                     |
|           | March 2004     | 0.0        | 68,200     | 0.27 - Power Outage |
|           | April 2004     | 1.0        | 74,600     |                     |
|           | May 2004       | 0.0        | 71,500     |                     |
|           | June 2004      | 0.0        | 75,300     |                     |
|           | July 2004      | 4.4        | 67,100     |                     |
|           | August 2004    | 0.0        | 67,300     |                     |
|           | September 2004 | 0.0        | 102,700    |                     |

## TABLE 21-2 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

| Well<br>Name | Date      | Depth<br>to Water<br>(ft BMP) | Depth to<br>LNAPL<br>(ft BMP) | LNAPL<br>Thickness<br>(feet) | LNAPL<br>Removed<br>(liters) | September 2004<br>Removal<br>(liters) |
|--------------|-----------|-------------------------------|-------------------------------|------------------------------|------------------------------|---------------------------------------|
| 49           | 9/30/2004 | 4.97                          | 4.95                          | 0.02                         | 0.012                        | 0.012                                 |
| 105          | 9/30/2004 | 8.41                          | 6.92                          | 1.49                         | 0.919                        | 0.919                                 |
| 106          | 9/30/2004 | 8.36                          | 6.95                          | 1.41                         | 0.870                        | 0.870                                 |
| 131          | 9/30/2004 | 3.85                          | 3.80                          | 0.05                         | 0.017                        | 0.017                                 |
| 34           | 9/30/2004 | 5.29                          | 5.28                          | 0.01                         | 0.006                        | 0.006                                 |
| 35           | 9/30/2004 | 5.30                          | 5.29                          | 0.01                         | 0.006                        | 0.006                                 |
| 45           | 9/30/2004 | 5.31                          | 5.30                          | 0.01                         | 0.006                        | 0.006                                 |
| 72           | 9/30/2004 | 6.03                          | 6.02                          | 0.01                         | 0.006                        | 0.006                                 |
| 76           | 9/30/2004 | 6.76                          | 6.47                          | 0.29                         | 0.179                        | 0.179                                 |

Total Manual LNAPL Removal for September 2004: 2.021 liters

Note: 0.533 gallons

1. ft BMP - feet Below Measuring Point.

## TABLE 21-3 ROUTINE WELL MONITORING EAST STREET AREA 1 - NORTH & SOUTH GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

|                                    | Measuring      |           | Depth    | Depth to | LNAPL     | Depth to | Total    | DNAPL     | Corrected   |  |  |
|------------------------------------|----------------|-----------|----------|----------|-----------|----------|----------|-----------|-------------|--|--|
| Well                               | Point Elev.    | Date      | to Water | LNAPL    | Thickness | DNAPL    | Depth    | Thickness | Water Elev. |  |  |
| Name                               | (feet)         |           | (ft BMP) | (ft BMP) | (feet)    | (ft BMP) | (ft BMP) | (feet)    | (feet)      |  |  |
| GMA 1 - East Street Area 1 - North |                |           |          |          |           |          |          |           |             |  |  |
| 49                                 | 999.90         | 9/30/2004 | 4.97     | 4.95     | 0.02      |          | 20.70    | 0.00      | 994.95      |  |  |
| 105                                | 1,002.85       | 9/30/2004 | 8.41     | 6.92     | 1.49      |          | 17.46    | 0.00      | 995.83      |  |  |
| 106                                | 1,004.06       | 9/30/2004 | 8.36     | 6.95     | 1.41      |          | 12.48    | 0.00      | 997.01      |  |  |
| 107                                | 1,003.86       | 9/30/2004 | 7.08     |          | 0.00      |          | 17.69    | 0.00      | 996.78      |  |  |
| 131                                | 1,001.18       | 9/30/2004 | 3.85     | 3.80     | 0.05      |          | 6.44     | 0.00      | 997.38      |  |  |
| ES1-08                             | 1,000.85       | 9/30/2004 | 4.67     |          | 0.00      |          | 13.54    | 0.00      | 996.18      |  |  |
| North Cassion                      | 997.84         | 9/1/2004  | 17.42    | 17.40    | 0.02      |          | 19.80    | 0.00      | 980.44      |  |  |
| North Cassion                      | 997.84         | 9/8/2004  | 18.29    | 18.25    | 0.04      |          | 19.80    | 0.00      | 979.59      |  |  |
| North Cassion                      | 997.84         | 9/16/2004 | 18.16    | 18.15    | 0.01      |          | 19.80    | 0.00      | 979.69      |  |  |
| North Cassion                      | 997.84         | 9/23/2004 | 18.40    | 18.36    | 0.04      |          | 19.80    | 0.00      | 979.48      |  |  |
| North Cassion                      | 997.84         | 9/29/2004 | 18.40    | 18.37    | 0.03      |          | 19.80    | 0.00      | 979.47      |  |  |
| GMA 1 - East Str                   | eet Area 1 - S | South     |          |          |           |          |          |           |             |  |  |
| 34                                 | 999.90         | 9/30/2004 | 5.29     | 5.28     | 0.01      |          | 21.02    | 0.00      | 994.62      |  |  |
| 35                                 | 1,000.15       | 9/30/2004 | 5.30     | 5.29     | 0.01      |          | 9.62     | 0.00      | 994.86      |  |  |
| 45                                 | 1,000.10       | 9/30/2004 | 5.31     | 5.30     | 0.01      |          | 20.77    | 0.00      | 994.80      |  |  |
| 72                                 | 1,000.62       | 9/30/2004 | 6.03     | 6.02     | 0.01      |          | 22.01    | 0.00      | 994.60      |  |  |
| 76                                 | 1,000.45       | 9/30/2004 | 6.76     | 6.47     | 0.29      |          | 18.72    | 0.00      | 993.96      |  |  |
| 139R                               | NA             | 9/16/2004 | 11.12    | -        | 0.00      |          | 14.69    | 0.00      | NA          |  |  |
| GMA1-18                            | NA             | 9/27/2004 | 8.27     |          | 0.00      |          | 12.42    | 0.00      | NA          |  |  |
| South Cassion                      | 1,001.11       | 9/1/2004  | 13.73    | 13.71    | 0.02      |          | 15.00    | 0.00      | 987.40      |  |  |
| South Cassion                      | 1,001.11       | 9/8/2004  | 13.26    | 13.19    | 0.07      |          | 15.00    | 0.00      | 987.92      |  |  |
| South Cassion                      | 1,001.11       | 9/16/2004 | 14.53    | 14.49    | 0.04      |          | 15.00    | 0.00      | 986.62      |  |  |
| South Cassion                      | 1,001.11       | 9/23/2004 | 14.50    | 14.44    | 0.06      |          | 15.00    | 0.00      | 986.67      |  |  |
| South Cassion                      | 1,001.11       | 9/29/2004 | 14.35    | 14.31    | 0.04      |          | 15.00    | 0.00      | 986.80      |  |  |

#### Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.

#### **TABLE 21-4**

#### AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS **EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1**

#### CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS September 2004

| Recovery   |                | Oil       | Water     |                     |
|------------|----------------|-----------|-----------|---------------------|
| System     |                | Collected | Recovered | Percent             |
| Location   | Month          | (gallon)  | (gallon)  | Downtime            |
|            |                | ``        | (galion)  | DOWITHINE           |
| 40R        | September 2003 | 0         |           |                     |
|            | October 2003   | 0         |           |                     |
|            | November 2003  | 0         |           |                     |
|            | December 2003  | 0         |           |                     |
|            | January 2004   | 0         |           |                     |
|            | February 2004  | 0         |           | 0.3                 |
|            | March 2004     | 0         |           | 0.27 - Power Outage |
|            | April 2004     | 0         |           |                     |
|            | May 2004       | 0         |           |                     |
|            | June 2004      | 0         |           |                     |
|            | July 2004      | 0         |           |                     |
|            | August 2004    | 0         |           |                     |
|            | September 2004 | 0         |           |                     |
| 64R        | September 2003 | 1,150     | 639,200   |                     |
|            | October 2003   | 975       | 717,300   |                     |
|            | November 2003  | 200       | 563,400   |                     |
|            | December 2003  | 625       | 290,500   |                     |
|            | January 2004   | 50        | 233,000   |                     |
|            | February 2004  | 250       | 1,015,000 | 0.3                 |
|            | March 2004     | 325       | 897,300   | 0.94 - Power Outage |
|            | April 2004     | 975       | 705,000   | •                   |
|            | May 2004       | 125       | 629,500   |                     |
|            | June 2004      | 736       | 923,500   |                     |
|            | July 2004      | 380       | 693,900   |                     |
|            | August 2004    | 250       | 330,800   |                     |
|            | September 2004 | 350       | 675,600   |                     |
| 64S System | September 2003 | 0         | 443,631   |                     |
|            | October 2003   | 150       | 983,801   |                     |
|            | November 2003  | 1,198     | 1,041,476 |                     |
|            | December 2003  | 925       | 1,529,896 | 1.6 - Low Voltage   |
|            | January 2004   | 1,054     | 1,237,777 | · ·                 |
|            | February 2004  | 224       | 651,804   | 3.88                |
|            | March 2004     | 1,271     | 802,349   | 1.88 - Power Outage |
|            | April 2004     | 1,374     | 947,810   | •                   |
|            | May 2004       | 1,045     | 1,062,518 |                     |
|            | June 2004      | 772       | 968,659   |                     |
|            | July 2004      | 154       | 349,705   |                     |
|            | August 2004    | 230       | 240,781   |                     |
|            | September 2004 | 994       | 681,275   |                     |
| 64V        | September 2003 | 867       | 1,020,100 |                     |
|            | October 2003   | 1,071     | 1,482,600 |                     |
|            | November 2003  | 1,377     | 1,309,800 |                     |
|            | December 2003  | 2,261     | 1,719,700 | 6.7 - Replaced Pump |
|            | January 2004   | 1,768     | 1,366,300 |                     |
|            | February 2004  | 408       | 1,091,800 | 0.3                 |
|            | March 2004     | 1,173     | 1,370,200 | 0.27 - Power Outage |
|            | Maion 2007     | 1,170     | 1,570,200 | 5.21 1 51701 Odlago |

## AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS **EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1**

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS September 2004

| Recovery     |                | Oil       | Water     |                          |
|--------------|----------------|-----------|-----------|--------------------------|
| System       |                | Collected | Recovered | Percent                  |
| Location     | Month          | (gallon)  | (gallon)  | Downtime                 |
| Location     | WOTEH          | (gallott) | (gallott) | Downlaine                |
| 64V (cont'd) | April 2004     | 1,598     | 1,212,000 |                          |
|              | May 2004       | 933       | 1,313,100 |                          |
|              | June 2004      | 879       | 1,444,400 |                          |
|              | July 2004      | 773       | 940,100   |                          |
|              | August 2004    | 772       | 875,900   |                          |
|              | September 2004 | 1,170     | 1,385,900 |                          |
| 64X          | September 2003 | 15        | 403,200   |                          |
|              | October 2003   | 10        | 460,800   |                          |
|              | November 2003  | 10        | 403,200   |                          |
|              | December 2003  | 5         | 504,000   | 3.2 - Cleaned Flow Meter |
|              | January 2004   | 10        | 676,800   |                          |
|              | February 2004  | 2         | 403,200   | 0.3                      |
|              | March 2004     | 4         | 504,000   | 0.27 - Power Outage      |
|              | April 2004     | 0         | 388,800   |                          |
|              | May 2004       | 10        | 403,200   |                          |
|              | June 2004      | 5         | 518,400   |                          |
|              | July 2004      | 10        | 403,200   |                          |
|              | August 2004    | 31        | 388,800   |                          |
|              | September 2004 | 51        | 518,400   |                          |
| RW-2(X)      | September 2003 | 0         | 403,800   |                          |
| , ,          | October 2003   | 0         | 498,300   |                          |
|              | November 2003  | 0         | 461,400   |                          |
|              | December 2003  | 0         | 917,800   |                          |
|              | January 2004   | 0         | 403,200   |                          |
|              | February 2004  | 0         | 580,000   | 0.3                      |
|              | March 2004     | 0         | 644,300   | 0.27 - Power Outage      |
|              | April 2004     | 0         | 518,200   |                          |
|              | May 2004       | 0         | 427,200   |                          |
|              | June 2004      | 0         | 458,500   |                          |
|              | July 2004      | 0         | 1,029,700 |                          |
|              | August 2004    | 0         | 1,020,000 |                          |
|              | September 2004 | 0         | 1,138,800 | 0.93                     |
| RW-1(S) 1    | September 2003 | 50        | 811,790   |                          |
|              | October 2003   | 25        | 1,303,720 |                          |
|              | November 2003  | 52        | 1,155,983 |                          |
|              | December 2003  | 0         | 1,677,094 |                          |
|              | January 2004   | 96        | 1,196,628 |                          |
|              | February 2004  | 51        | 832,544   | 0.3                      |
|              | March 2004     | 31        | 1,114,375 | 0.27 - Power Outage      |
|              | April 2004     | 76        | 1,012,477 |                          |
|              | May 2004       | 36        | 1,056,169 |                          |
|              | June 2004      | 419       | 1,108,600 |                          |
|              | July 2004      | 196       | 669,474   |                          |
|              | August 2004    | 158       | 709,815   |                          |
|              | September 2004 | 159       | 914,647   | 9.72                     |

# AUTOMATED LNAPL/DNAPL & GROUNDWATER RECOVERY SYSTEMS EAST STREET AREA 2 - SOUTH GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS September 2004

| Recovery<br>System |                | Oil<br>Collected | Water<br>Recovered | Percent                  |
|--------------------|----------------|------------------|--------------------|--------------------------|
| Location           | Month          | (gallon)         | (gallon)           | Downtime                 |
| RW-1(X)            | September 2003 | 10               | 486,700            |                          |
| , ,                | October 2003   | 0                | 690,100            |                          |
|                    | November 2003  | 0                | 488,500            |                          |
|                    | December 2003  | 0                | 575,100            | 3.2 - Cleaned Flow Meter |
|                    | January 2004   | 0                | 426,600            |                          |
|                    | February 2004  | 0                | 382,600            | 0.3                      |
|                    | March 2004     | 1                | 502,100            | 0.27 - Power Outage      |
|                    | April 2004     | 0                | 387,100            |                          |
|                    | May 2004       | 0                | 397,200            |                          |
|                    | June 2004      | 5                | 453,900            |                          |
|                    | July 2004      | 0                | 363,900            |                          |
|                    | August 2004    | 0                | 473,200            |                          |
|                    | September 2004 | 10               | 500,500            |                          |
| RW-3(X)            | September 2003 | 55               |                    |                          |
| , ,                | October 2003   | 56               |                    |                          |
|                    | November 2003  | 55               |                    |                          |
|                    | December 2003  | 56               |                    |                          |
|                    | January 2004   | 70               |                    |                          |
|                    | February 2004  | 49               |                    | 0.3                      |
|                    | March 2004     | 75               |                    | 0.27 - Power Outage      |
|                    | April 2004     | 79               |                    |                          |
|                    | May 2004       | 55               |                    |                          |
|                    | June 2004      | 169              |                    |                          |
|                    | July 2004      | 57               |                    |                          |
|                    | August 2004    | 47               |                    |                          |
|                    | September 2004 | 67               |                    |                          |

| Summary of Tot | Summary of Total Automated Removal |  |  |  |  |  |  |
|----------------|------------------------------------|--|--|--|--|--|--|
| LNAPL:         | 2,734 Gallons                      |  |  |  |  |  |  |
| DNAPL:         | 67 Gallons                         |  |  |  |  |  |  |
| Water:         | 5,815,122 Gallons                  |  |  |  |  |  |  |

#### Note:

1. The flow meter at recovery well RW-1(S) was reset in March 2004.

# WELL MONITORING AND RECOVERY OF LNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

| Well     | Date      | Depth<br>to Water | Depth to<br>LNAPL | LNAPL<br>Thickness | LNAPL<br>Removed | September 2004<br>Removal |
|----------|-----------|-------------------|-------------------|--------------------|------------------|---------------------------|
| Name     |           | (ft BMP)          | (ft BMP)          | (feet)             | (liters)         | (liters)                  |
| CC       | 9/23/2004 | 18.71             | 18.68             | 0.03               | 0.018            | 0.018                     |
| FF       | 9/23/2004 | 23.72             | 23.70             | 0.02               | 0.012            | 0.012                     |
| II       | 9/23/2004 | 26.21             | 26.15             | 0.06               | 0.025            | 0.025                     |
| U        | 9/23/2004 | 19.03             | 19.02             | 0.01               | 0.006            | 0.006                     |
| 05-N     | 9/23/2004 | 24.24             | 24.20             | 0.04               | 0.025            | 0.025                     |
| 11-N     | 9/23/2004 | 30.02             | 30.01             | 0.01               | 0.006            | 0.006                     |
| 14-N     | 9/23/2004 | 24.25             | 23.31             | 0.94               | 0.580            | 0.580                     |
| 17-N     | 9/23/2004 | 29.84             | 29.76             | 0.08               | 0.049            | 0.049                     |
| 23-N     | 9/23/2004 | 30.32             | 30.30             | 0.02               | 0.012            | 0.012                     |
| 24-N     | 9/23/2004 | 29.54             | 29.50             | 0.04               | 0.025            | 0.025                     |
| 02       | 9/22/2004 | 16.58             | 16.50             | 0.08               | 0.049            | 0.049                     |
| 05       | 9/22/2004 | 13.52             | 13.50             | 0.02               | 0.012            | 0.012                     |
| 09R      | 9/22/2004 | 11.02             | 11.01             | 0.01               | 0.006            | 0.006                     |
| 13       | 9/22/2004 | 15.44             | 15.03             | 0.41               | 0.253            | 0.253                     |
| 14       | 9/22/2004 | 15.30             | 15.26             | 0.04               | 0.025            | 0.025                     |
| 25R      | 9/22/2004 | 23.30             | 19.15             | 4.15               | 2.560            | 2.560                     |
| 26RR     | 9/23/2004 | 21.61             | 21.03             | 0.58               | 0.358            | 0.358                     |
| 29       | 9/22/2004 | 16.90             | 16.30             | 0.60               | 0.370            | 0.370                     |
| 30       | 9/22/2004 | 10.90             | 10.85             | 0.05               | 0.031            | 0.031                     |
| 47       | 9/22/2004 | 16.88             | 15.90             | 0.98               | 0.605            | 0.605                     |
| 50       | 9/22/2004 | 10.13             | 9.27              | 0.86               | 0.531            | 0.531                     |
| 55       | 9/22/2004 | 14.95             | 14.35             | 0.60               | 0.370            | 0.370                     |
| 58       | 9/22/2004 | 10.60             | 10.59             | 0.01               | 0.006            | 0.006                     |
| 95-04    | 9/22/2004 | 16.95             | 12.16             | 4.79               | 0.743            | 0.743                     |
| 95-07    | 9/22/2004 | 23.04             | 17.50             | 5.54               | 0.860            | 0.860                     |
| GMA1-15  | 9/22/2004 | 13.20             | 12.55             | 0.65               | 0.401            | 0.401                     |
| GMA1-16  | 9/22/2004 | 11.09             | 11.01             | 0.08               | 0.049            | 0.049                     |
| GMA1-17W | 9/22/2004 | 14.70             | 14.30             | 0.40               | 0.248            | 0.248                     |
| M-R      | 9/22/2004 | 18.83             | 18.83             | 0.00               | 0.018            | 0.018                     |
| P3       | 9/22/2004 | 4.82              | 4.81              | 0.01               | 0.006            | 0.006                     |

Total LNAPL Removal 20's, 30's & 40's Complexes for September 2004: 0.061 liters 0.016 gallons

Total LNAPL Removal East Street Area 2 - North for September 2004: 0.697 liters

0.184 gallons

Total LNAPL Removal East Street Area 2 - South for September 2004: 7.501 liters
1.979 gallons

Total LNAPL Removal for September 2004: 8.259 liters 2.179 gallons

1. ft BMP - feet Below Measuring Point.

# WELL MONITORING AND RECOVERY OF DNAPL EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

|      |           | Depth    | Depth to | DNAPL     | DNAPL    | September 2004 |
|------|-----------|----------|----------|-----------|----------|----------------|
| Well | Date      | to Water | DNAPL    | Thickness | Removed  | Removal        |
| Name |           | (ft BMP) | (ft BMP) | (feet)    | (liters) | (liters)       |
| 05-N | 9/23/2004 | 24.24    |          | 0.00      | 0.339    | 0.339          |

Total DNAPL Removal 20's, 30's & 40's Complexes for September 2004: 0.000 liters 0.000 gallons

Total DNAPL Removal East Street Area 2 - North for September 2004: 0.339 liters

0.089 gallons

Total DNAPL Removal East Street Area 2 - South for September 2004: 0.000 liters

0.000 gallons

Total DNAPL Removal for September 2004: 0.339 liters

Note: 0.089 gallons

1. ft BMP - feet Below Measuring Point.

# TABLE 21-7 64G TREATMENT PLANT DISCHARGE DATA GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

| Date           | Housatonic River Discharge (gallons) | Recharge Pond<br>Discharge<br>(gallons) | Total<br>Discharge<br>(gallons) |
|----------------|--------------------------------------|-----------------------------------------|---------------------------------|
| September 2003 | 4,336,220                            | 294,016                                 | 4,630,236                       |
| October 2003   | 5,428,939                            | 251,753                                 | 5,680,692                       |
| November 2003  | 5,599,600                            | 108,107                                 | 5,707,707                       |
| December 2003  | 6,406,420                            | 60,343                                  | 6,466,763                       |
| January 2004   | 6,158,960                            | 132,862                                 | 6,291,822                       |
| February 2004  | 4,883,690                            | 186,281                                 | 5,069,971                       |
| March 2004     | 5,462,280                            | 112,985                                 | 5,575,265                       |
| April 2004     | 5,406,760                            | 169,598                                 | 5,576,358                       |
| May 2004       | 5,678,620                            | 236,862                                 | 5,915,482                       |
| June 2004      | 4,709,390                            | 350,668                                 | 5,060,058                       |
| July 2004      | 4,585,370                            | 316,805                                 | 4,902,175                       |
| August 2004    | 4,844,107                            | 310,199                                 | 5,154,306                       |
| September 2004 | 5,075,190                            | 248,505                                 | 5,323,695                       |

After treatment, the majority of the water processed at GE's Building 64G groundwater treatment facility is discharged to the Housatonic River through NPDES permitted Outfall 005. However, as part of GE's overall efforts to contain NAPL within the site and to optimize NAPL recovery operations, a portion of the treated water discharged from the 64G facility is routed to GE's on-site recharge pond located in East Street Area 2-South.

# TABLE 21-8 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

|                         | Measuring   |           | Depth        | Depth to      | LNAPL         | Depth to     | Total      | DNAPL     | Corrected   |
|-------------------------|-------------|-----------|--------------|---------------|---------------|--------------|------------|-----------|-------------|
| Well                    | Point Elev. | Date      | to Water     | LNAPL         | Thickness     | DNAPL        | Depth      | Thickness | Water Elev. |
| Name                    | (feet)      | Duto      | (ft BMP)     | (ft BMP)      | (feet)        | (ft BMP)     | (ft BMP)   | (feet)    | (feet)      |
| 20's Complex            | (1001)      |           | (It Billi )  | (It Dilli )   | (1001)        | (It Billi )  | (It Dilli) | (1001)    | (1001)      |
| CC                      | 998.84      | 9/23/2004 | 18.71        | 18.68         | 0.03          |              | 27.20      | 0.00      | 980.16      |
| FF                      | 1,005.70    | 9/23/2004 | 23.72        | 23.70         | 0.02          |              | 32.73      | 0.00      | 982.00      |
| II                      | 1,007.26    | 9/23/2004 | 26.21        | 26.15         | 0.06          |              | 31.65      | 0.00      | 981.11      |
| U                       | 998.89      | 9/23/2004 | 19.03        | 19.02         | 0.01          |              | 26.50      | 0.00      | 979.87      |
| Y                       | 1,002.86    | 9/23/2004 | 22.70        |               | 0.00          |              | 28.45      | 0.00      | 980.16      |
| 40s Complex             | ,           |           |              |               |               |              |            |           |             |
| Bldg. 43 Elev.          | NA          | 8/30/2004 | 27.72        | 27.71         | 0.01          |              | 61.69      | 0.00      | NA          |
| Bldg. 43 Elev.          | NA          | 9/7/2004  | 27.36        | 27.35         | 0.01          |              | 61.69      | 0.00      | NA          |
| Bldg. 43 Elev.          | NA          | 9/13/2004 | 26.89        | 26.88         | 0.01          |              | 61.69      | 0.00      | NA          |
| Bldg. 43 Elev.          | NA          | 9/20/2004 | 27.51        | 27.50         | 0.01          |              | 61.69      | 0.00      | NA          |
| Bldg. 43 Elev.          | NA          | 9/27/2004 | 27.64        | 27.63         | 0.01          |              | 61.69      | 0.00      | NA          |
| <b>East Street Area</b> |             |           |              |               |               |              |            |           |             |
| 05-N                    | 1,009.23    | 9/23/2004 | 24.24        | 24.20         | 0.04          |              | 27.50      | 0.00      | 985.03      |
| 11-N                    | 1,010.85    | 9/23/2004 | 30.02        | 30.01         | 0.01          |              | 35.66      | 0.00      | 980.84      |
| 14-N                    | 1,010.53    | 9/23/2004 | 24.25        | 23.31         | 0.94          |              | 30.35      | 0.00      | 987.15      |
| 16-N                    | 1,010.65    | 9/23/2004 | 30.02        |               | 0.00          |              | 37.42      | 0.00      | 980.63      |
| 17-N                    | 1,010.49    | 9/23/2004 | 29.84        | 29.76         | 0.08          |              | 38.83      | 0.00      | 980.72      |
| 23-N                    | 1,011.13    | 9/23/2004 | 30.32        | 30.30         | 0.02          |              | 38.33      | 0.00      | 980.83      |
| 24-N                    | 1,010.50    | 9/23/2004 | 29.54        | 29.50         | 0.04          |              | 35.92      | 0.00      | 981.00      |
| 95-12                   | 1,010.20    | 9/23/2004 | 29.60        |               | 0.00          |              | 31.48      | 0.00      | 980.60      |
| <b>East Street Area</b> |             |           |              |               |               |              |            | •         |             |
| 02                      | 995.64      | 9/22/2004 | 16.58        | 16.50         | 0.08          |              | 23.38      | 0.00      | 979.13      |
| 05                      | 996.10      | 9/22/2004 | 13.52        | 13.50         | 0.02          |              | 23.45      | 0.00      | 982.60      |
| 09R                     | 986.88      | 9/22/2004 | 11.02        | 11.01         | 0.01          |              | 19.58      | 0.00      | 975.87      |
| 13                      | 990.88      | 9/22/2004 | 15.44        | 15.03         | 0.41          |              | 22.54      | 0.00      | 975.82      |
| 14                      | 991.61      | 9/22/2004 | 15.30        | 15.26         | 0.04          |              | 25.73      | 0.00      | 976.35      |
| 15R                     | 989.23      | 9/22/2004 | 13.11        |               | 0.00          |              | 19.62      | 0.00      | 976.12      |
| 25R                     | 998.31      | 9/22/2004 | 23.30        | 19.15         | 4.15          |              | 30.86      | 0.00      | 978.87      |
| 26RR                    | 1,000.58    | 9/23/2004 | 21.61        | 21.03         | 0.58          |              | 28.60      | 0.00      | 979.51      |
| 28                      | 991.86      | 9/22/2004 | 13.15        | 12.92         | 0.23          |              | 21.73      | 0.00      | 978.92      |
| 29                      | 991.59      | 9/22/2004 | 16.90        | 16.30         | 0.60          |              | 22.06      | 0.00      | 975.25      |
| 30                      | 989.34      | 9/22/2004 | 10.90        | 10.85         | 0.05          |              | 20.40      | 0.00      | 978.49      |
| 40R                     | 991.60      | 9/1/2004  | 17.71        | 17.63         | 0.08          |              | 25.00      | 0.00      | 973.96      |
| 40R                     | 991.60      | 9/8/2004  | 17.80        | 17.73         | 0.07          |              | 25.00      | 0.00      | 973.87      |
| 40R                     | 991.60      | 9/16/2004 | 17.63        | Р             | < 0.01        |              | 25.00      | 0.00      | 973.97      |
| 40R                     | 991.60      | 9/23/2004 | 16.62        | Р             | < 0.01        |              | 25.00      | 0.00      | 974.98      |
| 40R                     | 991.60      | 9/29/2004 | 15.02        | Р             | < 0.01        |              | 25.00      | 0.00      | 976.58      |
| 47                      | 991.09      | 9/22/2004 | 16.88        | 15.90         | 0.98          |              | 23.08      | 0.00      | 975.12      |
| 48                      | 992.39      | 9/22/2004 | Unable to lo | cate, possibl | e candidate f | or replaceme | ent        | 0.00      | NM          |
| 50                      | 985.79      | 9/22/2004 | 10.13        | 9.27          | 0.86          |              | 23.45      | 0.00      | 976.46      |
| 55                      | 989.45      | 9/22/2004 | 14.95        | 14.35         | 0.60          |              | 30.04      | 0.00      | 975.06      |
| 58                      | 985.79      | 9/22/2004 | 10.60        | 10.59         | 0.01          |              | 24.48      | 0.00      | 975.20      |

# TABLE 21-8 ROUTINE WELL MONITORING EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

|             | Measuring   |           | Depth    | Depth to | LNAPL     | Depth to | Total    | DNAPL     | Corrected   |
|-------------|-------------|-----------|----------|----------|-----------|----------|----------|-----------|-------------|
| Well        | Point Elev. | Date      | to Water | LNAPL    | Thickness | DNAPL    | Depth    | Thickness | Water Elev. |
| Name        | (feet)      |           | (ft BMP) | (ft BMP) | (feet)    | (ft BMP) | (ft BMP) | (feet)    | (feet)      |
| 64R         | 993.37      | 9/1/2004  | 17.43    | 17.39    | 0.04      |          | 19.00    | 0.00      | 975.98      |
| 64R         | 993.37      | 9/8/2004  | 16.81    | 16.73    | 0.08      |          | 19.00    | 0.00      | 976.63      |
| 64R         | 993.37      | 9/16/2004 | 17.33    | 17.27    | 0.06      |          | 19.00    | 0.00      | 976.10      |
| 64R         | 993.37      | 9/23/2004 | 16.68    | 16.40    | 0.28      |          | 19.00    | 0.00      | 976.95      |
| 64R         | 993.37      | 9/29/2004 | 16.70    | 16.55    | 0.15      |          | 19.00    | 0.00      | 976.81      |
| 64S         | 984.48      | 9/1/2004  | 12.63    |          | 0.00      |          | 28.70    | 0.00      | 971.85      |
| 64S         | 984.48      | 9/8/2004  | 12.88    |          | 0.00      |          | 28.70    | 0.00      | 971.60      |
| 64S         | 984.48      | 9/16/2004 | 12.40    |          | 0.00      |          | 28.70    | 0.00      | 972.08      |
| 64S         | 984.48      | 9/23/2004 | 11.20    |          | 0.00      |          | 28.70    | 0.00      | 973.28      |
| 64S         | 984.48      | 9/29/2004 | 11.30    |          | 0.00      |          | 28.70    | 0.00      | 973.18      |
| 64S-Caisson | NA          | 9/1/2004  | 9.50     | 9.46     | 0.04      |          | 14.55    | 0.00      | NA          |
| 64S-Caisson | NA          | 9/8/2004  | 9.44     | Р        | < 0.01    |          | 14.55    | 0.00      | NA          |
| 64S-Caisson | NA          | 9/16/2004 | 9.58     | Р        | < 0.01    |          | 14.55    | 0.00      | NA          |
| 64S-Caisson | NA          | 9/23/2004 | 10.02    | 10.00    | 0.02      |          | 14.55    | 0.00      | NA          |
| 64S-Caisson | NA          | 9/29/2004 | 9.95     | 9.94     | 0.01      |          | 14.55    | 0.00      | NA          |
| 64V         | 987.29      | 9/1/2004  | 22.04    | 21.45    | 0.59      | Р        | 29.60    | < 0.01    | 965.80      |
| 64V         | 987.29      | 9/8/2004  | 21.96    | 21.29    | 0.67      | Р        | 29.60    | < 0.01    | 965.95      |
| 64V         | 987.29      | 9/16/2004 | 22.08    | 21.50    | 0.58      |          | 29.60    | 0.00      | 965.75      |
| 64V         | 987.29      | 9/23/2004 | 21.90    | 21.48    | 0.42      |          | 29.60    | 0.00      | 965.78      |
| 64V         | 987.29      | 9/29/2004 | 22.00    | 21.60    | 0.40      | Р        | 29.60    | < 0.01    | 965.66      |
| 64X(N)      | 984.83      | 9/1/2004  | 12.04    | 11.88    | 0.16      |          | 15.85    | 0.00      | 972.94      |
| 64X(N)      | 984.83      | 9/8/2004  | 12.60    | 12.44    | 0.16      |          | 15.85    | 0.00      | 972.38      |
| 64X(N)      | 984.83      | 9/16/2004 | 11.75    | 11.67    | 0.08      |          | 15.85    | 0.00      | 973.15      |
| 64X(N)      | 984.83      | 9/23/2004 | 9.40     | 9.29     | 0.11      |          | 15.85    | 0.00      | 975.53      |
| 64X(N)      | 984.83      | 9/29/2004 | 10.26    | 10.13    | 0.13      |          | 15.85    | 0.00      | 974.69      |
| 64X(S)      | 981.56      | 9/1/2004  | 15.02    | 14.97    | 0.05      |          | 23.82    | 0.00      | 966.59      |
| 64X(S)      | 981.56      | 9/8/2004  | 15.15    | Р        | < 0.01    |          | 23.82    | 0.00      | 966.41      |
| 64X(S)      | 981.56      | 9/16/2004 | 14.50    | Ρ        | < 0.01    | -        | 23.82    | 0.00      | 967.06      |
| 64X(S)      | 981.56      | 9/23/2004 | 11.87    | 11.86    | 0.01      |          | 23.82    | 0.00      | 969.70      |
| 64X(S)      | 981.56      | 9/29/2004 | 12.76    | 12.75    | 0.01      |          | 23.82    | 0.00      | 968.81      |
| 64X(W)      | 984.87      | 9/1/2004  | 18.25    | 18.23    | 0.02      |          | 24.35    | 0.00      | 966.64      |
| 64X(W)      | 984.87      | 9/8/2004  | 16.38    | 16.35    | 0.03      |          | 24.35    | 0.00      | 968.52      |
| 64X(W)      | 984.87      | 9/16/2004 | 17.76    | 17.70    | 0.06      |          | 24.35    | 0.00      | 967.17      |
| 64X(W)      | 984.87      | 9/23/2004 | 15.10    | 15.04    | 0.06      |          | 24.35    | 0.00      | 969.83      |
| 64X(W)      | 984.87      | 9/29/2004 | 15.97    | 15.94    | 0.03      |          | 24.35    | 0.00      | 968.93      |
| 95-04       | 988.70      | 9/22/2004 | 16.95    | 12.16    | 4.79      |          | 21.71    | 0.00      | 976.20      |
| 95-05       | 989.45      | 9/22/2004 | 13.36    |          | 0.00      |          | 20.08    | 0.00      | 976.09      |
| 95-07       | 994.91      | 9/22/2004 | 23.04    | 17.50    | 5.54      |          | 29.53    | 0.00      | 977.02      |
| E2SC-03I    | 982.12      | 9/22/2004 | 6.98     |          | 0.00      | 39.3     | 45.45    | 6.15      | 975.14      |
| E2SC-17     | 985.38      | 9/22/2004 | 9.62     |          | 0.00      | 48.1     | 48.30    | 0.20      | 975.76      |
| GMA1-15     | 988.59      | 9/22/2004 | 13.20    | 12.55    | 0.65      |          | 17.83    | 0.00      | 975.99      |
| GMA1-16     | 986.82      | 9/22/2004 | 11.09    | 11.01    | 0.08      |          | 20.01    | 0.00      | 975.80      |
| GMA1-17W    | 992.63      | 9/22/2004 | 14.70    | 14.30    | 0.40      |          | 23.36    | 0.00      | 978.30      |

## TABLE 21-8 ROUTINE WELL MONITORING

## EAST STREET AREA 2 - NORTH & SOUTH / 20s, 30s, & 40s COMPLEXES GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

|                 | Measuring   |           | Depth    | Depth to                            | LNAPL         | Depth to     | Total    | DNAPL     | Corrected   |
|-----------------|-------------|-----------|----------|-------------------------------------|---------------|--------------|----------|-----------|-------------|
| Well            | Point Elev. | Date      | to Water | LNAPL                               | Thickness     | DNAPL        | Depth    | Thickness | Water Elev. |
| Name            | (feet)      |           | (ft BMP) | (ft BMP)                            | (feet)        | (ft BMP)     | (ft BMP) | (feet)    | (feet)      |
| HR-C-RW-1       | NA          | 9/22/2004 | 3.60     |                                     | 0.00          | 22.64        | 22.70    | 0.06      | NA          |
| HR-G2-RW-1      | 976.88      | 9/24/2004 | 3.35     |                                     | 0.00          |              | 18.70    | 0.00      | 974.38      |
| M-R             | 998.19      | 9/22/2004 | 18.83    | 18.83                               | 0.00          |              | 29.24    | 0.00      | 979.36      |
| P3              | 989.25      | 9/22/2004 | 4.82     | 4.81                                | 0.01          |              | 13.09    | 0.00      | 984.44      |
| RW-1(S)         | 987.23      | 9/1/2004  | 17.75    | 17.63                               | 0.12          |              | 28.60    | 0.00      | 969.59      |
| RW-1(S)         | 987.23      | 9/8/2004  | 18.13    | 17.88                               | 0.25          |              | 28.60    | 0.00      | 969.33      |
| RW-1(S)         | 987.23      | 9/16/2004 | 18.21    | 18.00                               | 0.21          | Р            | 28.60    | < 0.01    | 969.22      |
| RW-1(S)         | 987.23      | 9/23/2004 | 11.20    | 11.19                               | 0.01          | Р            | 28.60    | < 0.01    | 976.04      |
| RW-1(S)         | 987.23      | 9/29/2004 | 18.10    | 18.09                               | 0.01          |              | 28.60    | 0.00      | 969.14      |
| RW-1(X)         | 982.68      | 9/1/2004  | 17.60    |                                     | 0.00          |              | 20.80    | 0.00      | 965.08      |
| RW-1(X)         | 982.68      | 9/8/2004  | 17.88    |                                     | 0.00          |              | 20.80    | 0.00      | 964.80      |
| RW-1(X)         | 982.68      | 9/16/2004 | 17.29    | Р                                   | < 0.01        |              | 20.80    | 0.00      | 965.39      |
| RW-1(X)         | 982.68      | 9/23/2004 | 15.80    |                                     | 0.00          |              | 20.80    | 0.00      | 966.88      |
| RW-1(X)         | 982.68      | 9/29/2004 | 15.30    |                                     | 0.00          |              | 20.80    | 0.00      | 967.38      |
| RW-2(X)         | 985.96      | 9/1/2004  | 14.70    |                                     | 0.00          |              | 15.30    | 0.00      | 971.26      |
| RW-2(X)         | 985.96      | 9/8/2004  | 15.08    |                                     | 0.00          |              | 15.30    | 0.00      | 970.88      |
| RW-2(X)         | 985.96      | 9/16/2004 | 14.33    |                                     | 0.00          |              | 15.30    | 0.00      | 971.63      |
| RW-2(X)         | 985.96      | 9/23/2004 | 10.68    |                                     | 0.00          |              | 15.30    | 0.00      | 975.28      |
| RW-2(X)         | 985.96      | 9/29/2004 | 11.69    |                                     | 0.00          |              | 15.30    | 0.00      | 974.27      |
| RW-3(X)         | 980.28      | 9/1/2004  | 8.60     |                                     | 0.00          | 42.15        | 44.40    | 2.25      | 971.68      |
| RW-3(X)         | 980.28      | 9/8/2004  | 9.80     |                                     | 0.00          | 42.05        | 44.40    | 2.35      | 970.48      |
| RW-3(X)         | 980.28      | 9/16/2004 | 8.25     |                                     | 0.00          | 41.75        | 44.40    | 2.65      | 972.03      |
| RW-3(X)         | 980.28      | 9/23/2004 | 5.78     |                                     | 0.00          |              | 44.40    | 0.00      | 974.50      |
| RW-3(X)         | 980.28      | 9/29/2004 | 8.30     |                                     | 0.00          | 41.80        | 44.40    | 2.60      | 971.98      |
| Housatonic Rive | er          |           |          |                                     |               |              |          |           |             |
| SG-HR-1         | 990.73      | 9/3/2004  | 19.32    | See Note 8 regarding depth to water |               |              |          |           | 971.41      |
| SG-HR-1         | 990.73      | 9/10/2004 | 16.40    | See Note 8                          | regarding de  | oth to water |          |           | 974.33      |
| SG-HR-1         | 990.73      | 9/17/2004 | 18.98    | See Note 8                          | regarding de  | oth to water |          |           | 971.75      |
| SG-HR-1         | 990.73      | 9/23/2004 | 13.60    | See Note 8                          | regarding de  | oth to water |          |           | 977.13      |
| SG-HR-1         | 990.73      | 9/30/2004 | 16.84    | See Note 8                          | regarding der | oth to water |          |           | 973.89      |

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 6. Well HR-G2-RW-1 is constructed at an angle of 41.67 degrees from vertical. Depth to water data reflect measurements collected along the angled well casing. Groundwater elevations are corrected to account for the angle of the well casing.
- 7. No measurements were obtained at this time due to the operation of the auto skimmer.
- 8. A survey reference point (SG-HR-1) was established on the Newell Street Bridge. The "Depth to Water" value(s) provided in the above table refers to the vertical distance from the surveyed reference point to the water surface.

# TABLE 21-9 ACTIVE RECOVERY SYSTEMS MONTHLY SUMMARY LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

| Month / Year   | Volume<br>Water<br>Pumped<br>(gallon) | RW-1<br>DNAPL<br>Recovered<br>(gallon) | RW-1R<br>LNAPL<br>Recovered<br>(gallon) | RW-3<br>LNAPL<br>Recovered<br>(gallon) |
|----------------|---------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|
| September 2002 | 165,634                               |                                        | 4                                       | 10                                     |
| October 2002   | 271,056                               |                                        |                                         | 15                                     |
| November 2002  | 264,950                               |                                        |                                         | 5                                      |
| December 2002  | 316,482                               |                                        | 2                                       | 23                                     |
| January 2003   | 272,679                               |                                        |                                         | 20                                     |
| February 2003  | 228,093                               |                                        |                                         | 20                                     |
| March 2003     | 287,152                               |                                        |                                         | 20                                     |
| April 2003     | 518,782                               |                                        |                                         | 10                                     |
| May 2003       | 281,349                               |                                        |                                         | 10                                     |
| June 2003      | 266,987                               |                                        |                                         | 10                                     |
| July 2003      | 244,776                               |                                        |                                         | 10                                     |
| August 2003    | 290,984                               |                                        |                                         | 10                                     |
| September 2003 | 309,162                               |                                        |                                         | 20                                     |
| October 2003   | 485,653                               |                                        |                                         | 20                                     |
| November 2003  | 363,979                               |                                        |                                         | 10                                     |
| December 2003  | 490,517                               |                                        |                                         |                                        |
| January 2004   | 299,584                               |                                        |                                         |                                        |
| February 2004  | 305,485                               |                                        |                                         |                                        |
| March 2004     | 409,514                               |                                        |                                         |                                        |
| April 2004     | 344,707                               |                                        |                                         | 1                                      |
| May 2004       | 307,361                               |                                        |                                         |                                        |
| June 2004      | 410,230                               |                                        |                                         |                                        |
| July 2004      | 328,363                               |                                        |                                         |                                        |
| August 2004    | 310,473                               |                                        |                                         |                                        |
| September 2004 | 499,209                               |                                        | 1                                       | 20                                     |

- 1. Volume of water pumped is total from Wells RW-1R, RW-2, and RW-3.
- 2. -- indicates LNAPL or DNAPL was not recovered by the system.
- 3. There was approximately 1.4% downtime (12 hours) during September 2004.

# TABLE 21-10 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

| Well<br>Name | Date      | Depth<br>to Water<br>(ft BMP) | Depth to<br>LNAPL<br>(ft BMP) | LNAPL<br>Thickness | LNAPL<br>Removed | September 2004<br>Removal |
|--------------|-----------|-------------------------------|-------------------------------|--------------------|------------------|---------------------------|
|              |           | ,                             | ,                             | (feet)             | (liters)         | (liters)                  |
| LS-04        | 9/27/2004 | 10.26                         | 10.25                         | 0.01               | 0.006            | 0.006                     |
| LS-13        | 9/28/2004 | 19.31                         | 19.11                         | 0.20               | 0.123            | 0.123                     |
| LS-21        | 9/27/2004 | 9.86                          | 8.95                          | 0.91               | 0.561            | 0.561                     |
| LS-23        | 9/27/2004 | 10.60                         | 10.17                         | 0.43               | 0.265            | 0.265                     |
| LSSC-06      | 9/28/2004 | 9.39                          | 9.13                          | 0.26               | 0.160            | 0.160                     |

Total Manual LNAPL Removal for September 2004: 1.115 liters

Note: 0.294 gallons

1. ft BMP - feet Below Measuring Point.

# TABLE 21-11 MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

| Well     | Date      | Depth<br>to Water | Depth to<br>DNAPL | DNAPL<br>Thickness | DNAPL<br>Removed | September 2004<br>Removal |
|----------|-----------|-------------------|-------------------|--------------------|------------------|---------------------------|
| Name     |           | (ft BMP)          | (ft BMP)          | (feet)             | (liters)         | (liters)                  |
| LS-04    | 9/27/2004 | 10.26             | 17.46             | 0.67               | 0.041            | 0.041                     |
| LS-30    | 9/28/2004 | 12.38             | 20.90             | 1.30               | 0.814            | 0.814                     |
| LS-31    | 9/28/2004 | 12.12             | 22.70             | 0.62               | 0.382            | 0.382                     |
| LS-34    | 9/28/2004 | 11.05             | 27.95             | 0.59               | 0.364            | 0.364                     |
| LS-35    | 9/27/2004 | 13.32             |                   | 0.00               | 0.456            | 0.456                     |
| LS-38    | 9/28/2004 | 13.04             | 25.00             | 0.05               | 0.031            | 0.031                     |
| LSSC-07  | 9/3/2004  | 9.78              | 24.90             | 0.18               | 0.110            | 1.005                     |
|          | 9/10/2004 | 7.85              | 24.85             | 0.23               | 0.537            |                           |
|          | 9/17/2004 | 9.53              | 24.85             | 0.23               | 0.265            |                           |
|          | 9/23/2004 | 6.21              | 24.65             | 0.43               | 0.093            |                           |
| LSSC-08I | 9/3/2004  | 11.29             | 23.37             | 0.02               | 0.012            | 0.037                     |
|          | 9/17/2004 | 10.95             | 23.35             | 0.04               | 0.025            |                           |
| LSSC-16I | 9/28/2004 | 6.25              | 28.50             | 0.04               | 0.025            | 0.025                     |
| LSSC-34I | 9/28/2004 | 10.56             | 28.20             | 0.30               | 0.185            | 0.185                     |

Total Manual DNAPL Removal for September 2004: 3.340 liters 0.881 gallons

1. ft BMP - feet Below Measuring Point.

# TABLE 21-12 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

September 2004

|          | Measuring   |           | Depth    | Depth to | LNAPL     | Depth to | Total    | DNAPL     | Corrected   |
|----------|-------------|-----------|----------|----------|-----------|----------|----------|-----------|-------------|
| Well     | Point Elev. | Date      | to Water | LNAPL    | Thickness | DNAPL    | Depth    | Thickness | Water Elev. |
| Name     | (feet)      |           | (ft BMP) | (ft BMP) | (feet)    | (ft BMP) | (ft BMP) | (feet)    | (feet)      |
| LS-02    | 983.32      | 9/27/2004 | 9.09     |          | 0.00      |          | 17.38    | 0.00      | 974.23      |
| LS-04    | 984.51      | 9/27/2004 | 10.26    | 10.25    | 0.01      | 17.46    | 18.13    | 0.67      | 974.26      |
| LS-12    | 985.49      | 9/28/2004 | 10.64    |          | 0.00      |          | 26.50    | 0.00      | 974.85      |
| LS-13    | 984.65      | 9/28/2004 | 19.31    | 19.11    | 0.20      |          | 24.11    | 0.00      | 965.53      |
| LS-21    | 983.42      | 9/27/2004 | 9.86     | 8.95     | 0.91      |          | 12.46    | 0.00      | 974.41      |
| LS-23    | 984.38      | 9/27/2004 | 10.60    | 10.17    | 0.43      |          | 15.29    | 0.00      | 974.18      |
| LS-30    | 986.44      | 9/28/2004 | 12.38    |          | 0.00      | 20.90    | 22.20    | 1.30      | 974.06      |
| LS-31    | 987.09      | 9/28/2004 | 12.12    |          | 0.00      | 22.70    | 23.32    | 0.62      | 974.97      |
| LS-34    | 985.79      | 9/28/2004 | 11.05    |          | 0.00      | 27.95    | 28.54    | 0.59      | 974.74      |
| LS-35    | 986.80      | 9/27/2004 | 13.32    | 12.58    | 0.74      |          | 21.63    | 0.00      | 974.17      |
| LS-38    | 986.95      | 9/28/2004 | 13.04    |          | 0.00      | 25.00    | 25.05    | 0.05      | 973.91      |
| LSSC-06  | 984.91      | 9/28/2004 | 9.39     | 9.13     | 0.26      |          | 19.38    | 0.00      | 975.76      |
| LSSC-07  | 982.48      | 9/3/2004  | 9.78     |          | 0.00      | 24.90    | 25.08    | 0.18      | 972.70      |
| LSSC-07  | 982.48      | 9/10/2004 | 7.85     |          | 0.00      | 24.85    | 25.08    | 0.23      | 974.63      |
| LSSC-07  | 982.48      | 9/17/2004 | 9.53     |          | 0.00      | 24.85    | 25.08    | 0.23      | 972.95      |
| LSSC-07  | 982.48      | 9/23/2004 | 6.21     |          | 0.00      | 24.65    | 25.08    | 0.43      | 976.27      |
| LSSC-07  | 982.48      | 9/28/2004 | 7.88     |          | 0.00      | 24.93    | 25.08    | 0.15      | 974.60      |
| LSSC-08I | 983.13      | 9/3/2004  | 11.29    |          | 0.00      | 23.37    | 23.39    | 0.02      | 971.84      |
| LSSC-08I | 983.13      | 9/10/2004 | 8.70     |          | 0.00      |          | 23.39    | 0.00      | 974.43      |
| LSSC-08I | 983.13      | 9/17/2004 | 10.95    |          | 0.00      | 23.35    | 23.39    | 0.04      | 972.18      |
| LSSC-08I | 983.13      | 9/23/2004 | 6.50     |          | 0.00      |          | 23.39    | 0.00      | 976.63      |
| LSSC-08I | 983.13      | 9/28/2004 | 9.05     |          | 0.00      |          | 23.39    | 0.00      | 974.08      |
| LSSC-16I | 980.88      | 9/28/2004 | 6.25     |          | 0.00      | 28.50    | 28.54    | 0.04      | 974.63      |
| LSSC-34I | 984.74      | 9/28/2004 | 10.56    |          | 0.00      | 28.20    | 28.50    | 0.30      | 974.18      |
| RW-1     | 984.88      | 9/1/2004  | 11.83    |          | 0.00      | Р        | 21.00    | < 0.01    | 973.05      |
| RW-1     | 984.88      | 9/8/2004  | 12.38    | Р        | < 0.01    | 20.75    | 21.00    | 0.25      | 972.50      |
| RW-1     | 984.88      | 9/16/2004 | 11.78    |          | 0.00      | 20.67    | 21.00    | 0.33      | 973.10      |
| RW-1     | 984.88      | 9/23/2004 | 9.98     |          | 0.00      | Р        | 21.00    | < 0.01    | 974.90      |
| RW-1     | 984.88      | 9/29/2004 | 10.20    |          | 0.00      | Р        | 21.00    | < 0.01    | 974.68      |
| RW-1 (R) | 985.07      | 9/1/2004  | 15.69    |          | 0.00      | 19.40    | 20.42    | 1.02      | 969.38      |
| RW-1 (R) | 985.07      | 9/8/2004  | 15.69    | Р        | < 0.01    | Р        | 20.42    | < 0.01    | 969.38      |
| RW-1 (R) | 985.07      | 9/16/2004 | 15.71    |          | 0.00      | Р        | 20.42    | < 0.01    | 969.36      |
| RW-1 (R) | 985.07      | 9/23/2004 | 13.99    | 13.98    | 0.01      |          | 20.42    | 0.00      | 971.09      |
| RW-1 (R) | 985.07      | 9/29/2004 | 14.60    |          | 0.00      | Р        | 20.42    | < 0.01    | 970.47      |
| RW-2     | 987.82      | 9/1/2004  | 15.77    |          | 0.00      |          | 21.75    | 0.00      | 972.05      |
| RW-2     | 987.82      | 9/8/2004  | 10.71    |          | 0.00      |          | 21.75    | 0.00      | 977.11      |
| RW-2     | 987.82      | 9/16/2004 | 17.79    |          | 0.00      |          | 21.75    | 0.00      | 970.03      |
| RW-2     | 987.82      | 9/23/2004 | 12.71    |          | 0.00      |          | 21.75    | 0.00      | 975.11      |
| RW-2     | 987.82      | 9/29/2004 | 12.50    |          | 0.00      |          | 21.75    | 0.00      | 975.32      |
| RW-3     | 984.08      | 9/1/2004  | 17.04    | 16.54    | 0.50      |          | 21.57    | 0.00      | 967.51      |
| RW-3     | 984.08      | 9/8/2004  | 17.12    | 16.72    | 0.40      |          | 21.57    | 0.00      | 967.33      |
| RW-3     | 984.08      | 9/16/2004 | 16.96    | 16.42    | 0.54      |          | 21.57    | 0.00      | 967.62      |
| RW-3     | 984.08      | 9/23/2004 | 16.92    | 16.60    | 0.32      |          | 21.57    | 0.00      | 967.46      |
| RW-3     | 984.08      | 9/29/2004 | 16.74    | 16.68    | 0.06      |          | 21.57    | 0.00      | 967.40      |

# TABLE 21-12 ROUTINE WELL MONITORING LYMAN STREET AREA GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

| Well<br>Name | Measuring<br>Point Elev.<br>(feet)     | Date      | Depth<br>to Water<br>(ft BMP) | Depth to<br>LNAPL<br>(ft BMP)       | LNAPL<br>Thickness<br>(feet) | Depth to<br>DNAPL<br>(ft BMP) | Total<br>Depth<br>(ft BMP) | DNAPL<br>Thickness<br>(feet) | Corrected<br>Water Elev.<br>(feet) |  |  |
|--------------|----------------------------------------|-----------|-------------------------------|-------------------------------------|------------------------------|-------------------------------|----------------------------|------------------------------|------------------------------------|--|--|
| Housatonic R | Housatonic River (Lyman Street Bridge) |           |                               |                                     |                              |                               |                            |                              |                                    |  |  |
| BM-2A        | 986.32                                 | 9/3/2004  | 14.95                         | See Note 4                          | regarding dep                | oth to water                  |                            |                              | 971.37                             |  |  |
| BM-2A        | 986.32                                 | 9/10/2004 | 12.15                         | See Note 4                          | regarding dep                | oth to water                  |                            |                              | 974.17                             |  |  |
| BM-2A        | 986.32                                 | 9/17/2004 | 14.53                         | See Note 4                          | regarding dep                | th to water                   |                            |                              | 971.79                             |  |  |
| BM-2A        | 986.32                                 | 9/23/2004 | 9.05                          | See Note 4 regarding depth to water |                              |                               |                            | 977.27                       |                                    |  |  |
| BM-2A        | 986.32                                 | 9/30/2004 | 12.70                         | See Note 4                          | regarding dep                | oth to water                  |                            |                              | 973.62                             |  |  |

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 4. A survey reference point (BM-2A) was established on the Lyman Street Bridge. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

# TABLE 21-13 ACTIVE DNAPL RECOVERY SYSTEMS MONTHLY SUMMARY NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

| Recovery<br>System  | Date                           | Total<br>Gallons<br>Recovered |
|---------------------|--------------------------------|-------------------------------|
| System 1            | September 2003                 | 26.0                          |
|                     | October 2003                   | 56.0                          |
|                     | November 2003                  | 27.0                          |
|                     | December 2003                  | 47.0                          |
|                     | January 2004                   | 24.0                          |
|                     | February 2004                  | 25.5                          |
|                     | March 2004                     | 25.3                          |
|                     | April 2004                     | 26.4                          |
|                     | May 2004                       | 16.0                          |
|                     | June 2004                      | 16.5                          |
|                     | July 2004                      | 14.3                          |
|                     | August 2004                    | 14.6                          |
|                     | September 2004                 | 16.5                          |
| System 2            | September 2003                 | 390.0                         |
|                     | October 2003                   | 227.0                         |
|                     | November 2003                  | 146.0                         |
|                     | December 2003                  | 182.0                         |
|                     | January 2004                   | 128.0                         |
|                     | February 2004                  | 139.0                         |
|                     | March 2004                     | 112.0                         |
|                     | April 2004                     | 320.0                         |
|                     | May 2004                       | 138.8                         |
|                     | June 2004                      | 97.2                          |
|                     | July 2004                      | 16.2                          |
|                     | August 2004                    | 226.0                         |
|                     | September 2004                 | 129.6                         |
| Total Automated DNA | PL Removal for September 2004: | 146.1 Gallons                 |

- 1. System 1 wells are NS-15, NS-30, and NS-32.
- 2. System 2 wells are N2SC-01I, N2SC-03I, and N2SC-14.
- 3. There was no downtime during the month of September 2004.

## TABLE 21-14 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

# CONSENT DECREE MONTHLY STATUS REPORT GROUNDWATER MANAGEMENT AREA 1 - NEWELL STREET AREA II MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL September 2004

|       |              | Depth    | Depth to        | LNAPL  | LNAPL    | September 2004 |  |
|-------|--------------|----------|-----------------|--------|----------|----------------|--|
| Well  | Date to Wate |          | LNAPL Thickness |        | Removed  | Removal        |  |
| Name  |              | (ft BMP) | (ft BMP)        | (feet) | (liters) | (liters)       |  |
| NS-10 | 9/29/2004    | 7.88     | 7.55            | 0.33   | 0.816    | 0.816          |  |

Total LNAPL Removal for September 2004: 0.816 liters

Note:

0.215 gallons

1. ft BMP - feet Below Measuring Point.

## TABLE 21-15 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

# CONSENT DECREE MONTHLY STATUS REPORT GROUNDWATER MANAGEMENT AREA 1 - NEWELL STREET AREA II MEASUREMENT AND REMOVAL OF RECOVERABLE DNAPL September 2004

| Well<br>Name | Date      | Depth<br>to Water<br>(ft BMP) | Depth to<br>DNAPL<br>(ft BMP) | DNAPL<br>Thickness<br>(feet) | DNAPL<br>Removed<br>(liters) | September 2004<br>Removal<br>(liters) |
|--------------|-----------|-------------------------------|-------------------------------|------------------------------|------------------------------|---------------------------------------|
| MW-1D        | 9/29/2004 | 11.70                         | 39.20                         | 0.32                         | 0.197                        | 0.197                                 |
| MW-1S        | 9/29/2004 | 11.10                         | 24.85                         | 0.42                         | 0.259                        | 0.259                                 |
| N2SC-02      | 9/29/2004 | 10.45                         | 40.35                         | 0.07                         | 0.043                        | 0.043                                 |
| N2SC-07      | 9/29/2004 | 9.81                          | 38.08                         | 0.08                         | 0.049                        | 0.049                                 |
| N2SC-08      | 9/29/2004 | 10.13                         | 40.37                         | 2.21                         | 0.129                        | 0.129                                 |
| N2SC-09I     | 9/29/2004 | 11.85                         | 43.38                         | 0.16                         | 0.099                        | 0.099                                 |
| N2SC-13I     | 9/29/2004 | 8.90                          | 40.6                          | 0.42                         | 1.038                        | 1.038                                 |
| N2SC-16      | 9/29/2004 | 10.24                         | 41.83                         | 0.07                         | 0.173                        | 0.173                                 |

Total DNAPL Removal for September 2004: 1.987 liters

Note: 0.524 gallons

1. ft BMP - feet Below Measuring Point.

# TABLE 21-16 ROUTINE WELL MONITORING NEWELL STREET AREA II GROUNDWATER MANAGEMENT AREA 1

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

| Well<br>Name | Measuring<br>Point Elev.<br>(feet) | Date      | Depth<br>to Water<br>(ft BMP) | Depth to<br>LNAPL<br>(ft BMP) | LNAPL<br>Thickness<br>(feet) | Depth to<br>DNAPL<br>(ft BMP) | Total<br>Depth<br>(ft BMP) | DNAPL<br>Thickness<br>(feet) | Corrected<br>Water Elev.<br>(feet) |
|--------------|------------------------------------|-----------|-------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------|------------------------------|------------------------------------|
| MW-1D        | 987.20                             | 9/29/2004 | 11.70                         |                               | 0.00                         | 39.20                         | 39.52                      | 0.32                         | 975.50                             |
| MW-1S        | 986.60                             | 9/29/2004 | 11.10                         |                               | 0.00                         | 24.85                         | 25.27                      | 0.42                         | 975.50                             |
| N2SC-02      | 985.56                             | 9/29/2004 | 10.45                         |                               | 0.00                         | 40.35                         | 40.42                      | 0.07                         | 975.11                             |
| N2SC-07      | 984.61                             | 9/29/2004 | 9.81                          |                               | 0.00                         | 38.08                         | 38.16                      | 0.08                         | 974.80                             |
| N2SC-08      | 986.07                             | 9/29/2004 | 10.13                         |                               | 0.00                         | 40.37                         | 42.58                      | 2.21                         | 975.94                             |
| N2SC-09I     | 987.77                             | 9/29/2004 | 11.85                         |                               | 0.00                         | 43.38                         | 43.54                      | 0.16                         | 975.92                             |
| N2SC-13I     | 984.75                             | 9/29/2004 | 8.90                          |                               | 0.00                         | 40.6                          | 41.02                      | 0.42                         | 975.85                             |
| N2SC-16      | 985.62                             | 9/29/2004 | 10.24                         |                               | 0.00                         | 41.83                         | 41.90                      | 0.07                         | 975.38                             |
| NS-10        | 984.59                             | 9/29/2004 | 7.88                          | 7.55                          | 0.33                         |                               | 19.20                      | 0.00                         | 977.02                             |

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.

# TABLE 21-17 ROUTINE WELL MONITORING SILVER LAKE AREA GROUNDWATER MANAGEMENT AREA 1

## CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

### September 2004

| Well<br>Name         | Measuring<br>Point Elev.<br>(feet) | Date      | Depth<br>to Water<br>(ft BMP) | Depth to<br>LNAPL<br>(ft BMP) | LNAPL<br>Thickness<br>(feet)        | Depth to<br>DNAPL<br>(ft BMP) | Total<br>Depth<br>(ft BMP) | DNAPL<br>Thickness<br>(feet) | Corrected<br>Water Elev.<br>(feet) |
|----------------------|------------------------------------|-----------|-------------------------------|-------------------------------|-------------------------------------|-------------------------------|----------------------------|------------------------------|------------------------------------|
| Staff Gauge with     | nin Silver Lak                     | е         |                               |                               |                                     |                               |                            |                              |                                    |
| Silver Lake<br>Gauge | NA                                 | 9/3/2004  | 0.50                          | See Note 3                    | ee Note 3 regarding depth to water  |                               |                            |                              |                                    |
| Silver Lake<br>Gauge | NA                                 | 9/10/2004 | 1.12                          | See Note 3                    | See Note 3 regarding depth to water |                               |                            |                              |                                    |
| Silver Lake<br>Gauge | NA                                 | 9/17/2004 | 0.50                          | See Note 3                    | See Note 3 regarding depth to water |                               |                            |                              |                                    |
| Silver Lake<br>Gauge | NA                                 | 9/23/2004 | 1.30                          | See Note 3                    | See Note 3 regarding depth to water |                               |                            |                              |                                    |
| Silver Lake<br>Gauge | NA                                 | 9/30/2004 | 0.88                          | See Note 3                    | regarding der                       | oth to water                  |                            |                              | NA                                 |

- 1. ft BMP feet Below Measuring Point.
- 2. NA indicates information not available.
- 3. A new Silver Lake Gauge has been installed and will be surveyed to obtain a new horizontal datum. "Depth to Water" values provided refer to feet above the datum, rather than feet below the measuring point.

# ITEM 22 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS J & K (GMA 2) (GECD320) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

| a. | <b>Activities</b> | <b>Undertaken/Completed</b> |
|----|-------------------|-----------------------------|
|    |                   | ·                           |

None

b. Sampling/Test Results Received

None

c. Work Plans/Reports/Documents Submitted

None

d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Initiate semi-annual groundwater elevation monitoring for fall 2004.

e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

f. Proposed/Approved Work Plan Modifications

None

# ITEM 23 GROUNDWATER MANAGEMENT AREAS PLANT SITE 2 (GMA 3) (GECD330) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

## a. Activities Undertaken/Completed

- Conducted monthly monitoring and NAPL bailing round in the vicinity of Buildings 51 and 59. Approximately 25.01 liters (6.60 gallons) of LNAPL were removed by the automatic skimmer located in well 51-21 and an additional 11.23 liters (2.96 gallons) of LNAPL were manually removed from the wells in this area.
- Developed replacement monitoring wells 6B-R, 82B-R, 95B-R, 111A-R, and 114B-R and existing wells 109A and 109B.
- Conducted well purge water sampling, as identified in Table 23-1.

## b. Sampling/Test Results Received

See attached tables.

### c. Work Plans/Reports/Documents Submitted

None

#### d. Upcoming Scheduled and Anticipated Activities (next six weeks)

- Continue ongoing groundwater and NAPL monitoring and recovery activities, including performance of fall 2004 semi-annual monitoring event.
- Decommission wells 54B, 89D, and 95C and install replacement monitoring well 54B-R (see Item 23.e below).
- Install replacement well 89D-R or new well 109D (see Item 23.f below).
- Initiate fall 2004 baseline sampling and analysis round.

### e. General Progress/Unresolved Issues/Potential Schedule Impacts

The decommissioning of wells 54B, 89D, and 95C and installation of replacement wells 54B-R and 89D-R have been delayed due to the presence of standing water at these locations. EPA has approved a revised location for well 54B-R and this well will be installed shortly.

# ITEM 23 (cont'd) GROUNDWATER MANAGEMENT AREAS PLANT SITE 2 (GMA 3) (GECD330) SEPTEMBER 2004

## f. Proposed/Approved Work Plan Modifications

GE and EPA are discussing the potential replacement of the inaccessible 89 well cluster with the nearby 109 well cluster. If implemented, a new well (109D) would be installed in place of well 89D-R.

## TABLE 23-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

## GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name              | Field Sample ID    | Sample Date | Matrix | Laboratory | Analyses                        | Date Received |
|---------------------------|--------------------|-------------|--------|------------|---------------------------------|---------------|
| Purge Water Drum Sampling | GMA3-B0674-WATER-1 | 9/14/04     | Water  | SGS        | PCB, SVOC, RCRA Metals (8)      | 9/22/04       |
| Purge Water Drum Sampling | GMA3-B0688-WATER-1 | 9/14/04     | Water  | SGS        | PCB, VOC, SVOC, RCRA Metals (8) | 9/22/04       |

## TABLE 23-2 DATA RECEIVED DURING SEPTEMBER 2004

# PURGE WATER DRUM SAMPLING GROUNDWATER MANAGEMENT AREA 3 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

|                  | Sample ID:      | GMA3-B0674-WATER-1 | GMA3-B0688-WATER-1 |
|------------------|-----------------|--------------------|--------------------|
| Parameter        | Date Collected: | 09/14/04           | 09/14/04           |
| Volatile Organic | s               |                    |                    |
| None Detected    |                 | NA                 |                    |
| PCBs-Unfiltered  | I               |                    |                    |
| Aroclor-1254     |                 | 0.00015            | 0.000042 J         |
| Total PCBs       |                 | 0.00015            | 0.000042 J         |
| Semivolatile Org | ganics          |                    |                    |
| None Detected    |                 |                    |                    |
| Inorganics-Unfil | tered           |                    |                    |
| Arsenic          |                 | ND(0.00500)        | 0.0130             |
| Barium           |                 | 0.0300             | 0.160              |
| Cadmium          |                 | ND(0.00100)        | 0.00140            |
| Chromium         |                 | 0.00230 B          | 0.0260             |
| Lead             |                 | ND(0.00500)        | 0.0140             |
| Mercury          |                 | ND(0.000200)       | 0.000370           |
| Silver           |                 | 0.00180 B          | 0.00260 B          |

#### Notes:

- 1. Samples were collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, volatiles, semivolatiles, and metals.
- NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. Only those constituents detected in one or more samples are summarized.
  - -- Indicates that all constituents for the parameter group were not detected.

#### Data Qualifiers:

#### Organics (volatiles, semivolatiles, dioxin/furans)

J - Indicates an estimated value less than the practical quantitation limit (PQL).

#### Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

# TABLE 23-3 MEASUREMENT AND REMOVAL OF RECOVERABLE LNAPL GROUNDWATER MANAGEMENT AREA 3

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

| Well    | Date      | Depth<br>to Water | Depth to<br>LNAPL | LNAPL<br>Thickness | LNAPL<br>Removed | September 2004<br>Removal |
|---------|-----------|-------------------|-------------------|--------------------|------------------|---------------------------|
| Name    | Date      | (ft BMP)          | (ft BMP)          | (feet)             | (liters)         | (liters)                  |
| 51-05   | 9/24/2004 | 10.29             | 9.80              | 0.49               | 0.302            | 0.302                     |
| 51-08   | 9/3/2004  | 12.34             | 10.88             | 1.46               | 0.894            | 3.744                     |
|         | 9/10/2004 | 12.40             | 10.95             | 1.45               | 0.894            |                           |
|         | 9/17/2004 | 12.10             | 11.02             | 1.08               | 0.666            |                           |
|         | 9/24/2004 | 11.85             | 10.45             | 1.40               | 0.864            |                           |
|         | 9/30/2004 | 11.05             | 10.36             | 0.69               | 0.426            |                           |
| 51-15   | 9/24/2004 | 10.03             | 9.78              | 0.25               | 0.154            | 0.154                     |
| 51-16R  | 9/24/2004 | 9.75              | 9.74              | 0.01               | 0.006            | 0.006                     |
| 51-17   | 9/24/2004 | 10.75             | 9.50              | 1.25               | 0.771            | 0.771                     |
| 51-19   | 9/24/2004 | 10.55             | 9.80              | 0.75               | 0.463            | 0.463                     |
| 51-21   | 9/1/2004  | 15.48             | Р                 | < 0.01             | 4.548            | 25.014                    |
|         | 9/8/2004  | 15.54             | Р                 | < 0.01             | 5.685            |                           |
|         | 9/16/2004 | 15.56             | Р                 | < 0.01             | 5.685            |                           |
|         | 9/23/2004 | 14.87             | Р                 | < 0.01             | 4.548            |                           |
|         | 9/29/2004 | 14.79             | Р                 | < 0.01             | 4.548            |                           |
| 59-03R  | 9/24/2004 | 11.90             | 10.98             | 0.92               | 0.568            | 0.568                     |
| 59-07   | 9/24/2004 | 11.26             | 11.25             | 0.01               | 0.006            | 0.006                     |
| GMA3-10 | 9/3/2004  | 11.87             | 11.25             | 0.62               | 0.382            | 1.584                     |
|         | 9/10/2004 | 11.98             | 11.33             | 0.65               | 0.401            |                           |
|         | 9/17/2004 | 11.75             | 11.31             | 0.44               | 0.271            |                           |
|         | 9/24/2004 | 11.25             | 10.88             | 0.37               | 0.228            |                           |
|         | 9/30/2004 | 11.24             | 10.75             | 0.49               | 0.302            |                           |
| GMA3-12 | 9/3/2004  | 12.00             | 11.62             | 0.38               | 0.939            | 3.509                     |
|         | 9/10/2004 | 12.07             | 11.70             | 0.37               | 0.914            |                           |
|         | 9/17/2004 | 11.97             | 11.70             | 0.27               | 0.667            |                           |
|         | 9/24/2004 | 11.45             | 11.20             | 0.25               | 0.618            |                           |
|         | 9/30/2004 | 11.25             | 11.10             | 0.15               | 0.371            |                           |
| UB-PZ-3 | 9/24/2004 | 11.95             | 11.60             | 0.35               | 0.122            | 0.122                     |

Total Automated LNAPL Removal at well 51-21 for September 2004: 25.014 liters

6.60 Gallons

Total Manual LNAPL Removal at all other wells for September 2004: 11.229 liters

2.96 Gallons

Total LNAPL Removed for September 2004: 36.243 liters 9.56 Gallons

1. ft BMP - feet Below Measuring Point.

Notes:

2. P indicates that LNAPL or DNAPL is present at a thickness that is < 0.01 feet. The corresponding thickness is recorded as such.

# TABLE 23-4 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 3

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

|         | Measuring   |           | Depth    | Depth to | LNAPL     | Depth to | Total    | DNAPL     | Corrected   |
|---------|-------------|-----------|----------|----------|-----------|----------|----------|-----------|-------------|
| Well    | Point Elev. | Date      | to Water | LNAPL    | Thickness | DNAPL    | Depth    | Thickness | Water Elev. |
| Name    | (feet)      |           | (ft BMP) | (ft BMP) | (feet)    | (ft BMP) | (ft BMP) | (feet)    | (feet)      |
| 006B-R  | NA          | 9/16/2004 | 6.99     |          | 0.00      |          | 14.95    | 0.00      | NA          |
| 51-05   | 996.44      | 9/24/2004 | 10.29    | 9.80     | 0.49      |          | 12.53    | 0.00      | 986.61      |
| 51-08   | 997.08      | 9/3/2004  | 12.34    | 10.88    | 1.46      |          | 14.66    | 0.00      | 986.10      |
| 51-08   | 997.08      | 9/10/2004 | 12.40    | 10.95    | 1.45      |          | 14.66    | 0.00      | 986.03      |
| 51-08   | 997.08      | 9/17/2004 | 12.10    | 11.02    | 1.08      |          | 14.66    | 0.00      | 985.98      |
| 51-08   | 997.08      | 9/24/2004 | 11.85    | 10.45    | 1.40      |          | 14.66    | 0.00      | 986.53      |
| 51-08   | 997.08      | 9/30/2004 | 11.05    | 10.36    | 0.69      |          | 14.66    | 0.00      | 986.67      |
| 51-15   | 996.43      | 9/24/2004 | 10.03    | 9.78     | 0.25      |          | 14.50    | 0.00      | 986.63      |
| 51-16R  | 996.39      | 9/24/2004 | 9.75     | 9.74     | 0.01      |          | 14.56    | 0.00      | 986.65      |
| 51-17   | 996.43      | 9/24/2004 | 10.75    | 9.50     | 1.25      |          | 14.50    | 0.00      | 986.84      |
| 51-19   | 996.43      | 9/24/2004 | 10.55    | 9.80     | 0.75      |          | 14.06    | 0.00      | 986.58      |
| 51-21   | 1,001.49    | 9/1/2004  | 15.48    | Р        | < 0.01    |          | NM       | 0.00      | 986.01      |
| 51-21   | 1,001.49    | 9/8/2004  | 15.54    | Р        | < 0.01    |          | NM       | 0.00      | 985.95      |
| 51-21   | 1,001.49    | 9/16/2004 | 15.56    | Р        | < 0.01    |          | NM       | 0.00      | 985.93      |
| 51-21   | 1,001.49    | 9/23/2004 | 14.87    | Р        | < 0.01    |          | NM       | 0.00      | 986.62      |
| 51-21   | 1,001.49    | 9/29/2004 | 14.79    | Р        | < 0.01    |          | NM       | 0.00      | 986.70      |
| 59-03R  | 997.64      | 9/24/2004 | 11.90    | 10.98    | 0.92      |          | 17.04    | 0.00      | 986.60      |
| 59-07   | 997.96      | 9/24/2004 | 11.26    | 11.25    | 0.01      |          | 23.54    | 0.00      | 986.71      |
| 095B-R  | NA          | 9/17/2004 | 5.76     |          | 0.00      |          | 14.62    | 0.00      | NA          |
| 109A    | 990.03      | 9/15/2004 | 7.10     |          | 0.00      |          | 52.96    | 0.00      | 982.93      |
| 109B    | 989.06      | 9/15/2004 | 5.95     |          | 0.00      |          | 11.60    | 0.00      | 983.11      |
| 111A-R  | NA          | 9/16/2004 | 13.49    |          | 0.00      |          | 52.03    | 0.00      | NA          |
| 114B-R  | NA          | 9/17/2004 | 5.91     |          | 0.00      |          | 15.90    | 0.00      | NA          |
| GMA3-4  | 994.60      | 9/16/2004 | 7.23     |          | 0.00      |          | 13.38    | 0.00      | 987.37      |
| GMA3-10 | 997.54      | 9/3/2004  | 11.87    | 11.25    | 0.62      |          | 18.02    | 0.00      | 986.25      |
| GMA3-10 | 997.54      | 9/10/2004 | 11.98    | 11.33    | 0.65      |          | 18.02    | 0.00      | 986.16      |
| GMA3-10 | 997.54      | 9/17/2004 | 11.75    | 11.31    | 0.44      |          | 18.02    | 0.00      | 986.20      |
| GMA3-10 | 997.54      | 9/24/2004 | 11.25    | 10.88    | 0.37      |          | 18.02    | 0.00      | 986.63      |
| GMA3-10 | 997.54      | 9/30/2004 | 11.24    | 10.75    | 0.49      |          | 18.02    | 0.00      | 986.76      |
| GMA3-12 | 997.84      | 9/3/2004  | 12.00    | 11.62    | 0.38      |          | 21.24    | 0.00      | 986.19      |
| GMA3-12 | 997.84      | 9/10/2004 | 12.07    | 11.70    | 0.37      |          | 21.24    | 0.00      | 986.11      |
| GMA3-12 | 997.84      | 9/17/2004 | 11.97    | 11.70    | 0.27      |          | 21.24    | 0.00      | 986.12      |
| GMA3-12 | 997.84      | 9/24/2004 | 11.45    | 11.20    | 0.25      |          | 21.24    | 0.00      | 986.62      |
| GMA3-12 | 997.84      | 9/30/2004 | 11.25    | 11.10    | 0.15      |          | 21.24    | 0.00      | 986.73      |
| UB-PZ-3 | 998.15      | 9/24/2004 | 11.95    | 11.60    | 0.35      |          | 13.35    | 0.00      | 986.53      |

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.

# ITEM 24 GROUNDWATER MANAGEMENT AREAS PLANT SITE 3 (GMA 4) (GECD340) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

## a. Activities Undertaken/Completed

- Initiated semi-annual groundwater elevation monitoring and OPCA-related groundwater quality sampling and analysis for fall 2004.
- Conducted well purge water sampling, as identified in Table 24-1.

## b. Sampling/Test Results Received

See attached tables.

## c. Work Plans/Reports/Documents Submitted

None

## d. Upcoming Scheduled and Anticipated Activities (next six weeks)

Complete semi-annual groundwater elevation monitoring and OPCA-related groundwater quality sampling and analysis for fall 2004.

## e. General Progress/Unresolved Issues/Potential Schedule Impacts

No issues

### f. Proposed/Approved Work Plan Modifications

None

## TABLE 24-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

## GROUNDWATER MANAGEMENT AREA 4 GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name              | Field Sample ID    | Sample Date | Matrix | Laboratory | Analyses                   | Date Received |
|---------------------------|--------------------|-------------|--------|------------|----------------------------|---------------|
| Purge Water Drum Sampling | GMA4-B0689-WATER-1 | 9/14/04     | Water  | SGS        | PCB, SVOC, RCRA Metals (8) | 9/22/04       |

## TABLE 24-2 DATA RECEIVED DURING SEPTEMBER 2004

# PURGE WATER DRUM SAMPLING GROUNDWATER MANAGEMENT AREA 4 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

|                     | Sample ID:      | GMA4-B0689-WATER-1 |
|---------------------|-----------------|--------------------|
| Parameter           | Date Collected: | 09/14/04           |
| PCBs-Unfiltered     |                 |                    |
| Aroclor-1254        |                 | 0.00023            |
| Total PCBs          |                 | 0.00023            |
| Semivolatile Organ  |                 |                    |
| None Detected       |                 |                    |
| Inorganics-Unfilter | ed              |                    |
| Barium              |                 | 0.00840            |
| Chromium            |                 | 0.00360 B          |
| Silver              |                 | 0.00170 B          |

#### Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, semivolatiles, and metals.
- Only detected constituents are summarized.
- 3. -- Indicates that all constituents for the parameter group were not detected.

#### **Data Qualifiers:**

#### Inorganics

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

# TABLE 24-3 ROUTINE WELL MONITORING GROUNDWATER MANAGEMENT AREA 4

# CONSENT DECREE MONTHLY STATUS REPORT GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS September 2004

| Well<br>Name          | Measuring<br>Point Elev.<br>(feet) | Date         | Depth<br>to Water<br>(ft BMP) | Depth to<br>LNAPL<br>(ft BMP) | LNAPL<br>Thickness<br>(feet) | Depth to<br>DNAPL<br>(ft BMP) | Total<br>Depth<br>(ft BMP) | DNAPL<br>Thickness<br>(feet) | Corrected<br>Water Elev.<br>(feet) |
|-----------------------|------------------------------------|--------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------|------------------------------|------------------------------------|
| <b>Commercial Str</b> | eet Area (Sou                      | th of GMA 4) |                               |                               |                              |                               |                            |                              |                                    |
| GMA4-5                | 993.34                             | 9/27/2004    | 10.90                         |                               | 0.00                         |                               | 18.18                      | 0.00                         | 982.44                             |
| GMA4-5                | 993.34                             | 9/28/2004    | 10.89                         |                               | 0.00                         |                               | 18.18                      | 0.00                         | 982.45                             |
| MW-1                  | 984.34                             | 9/27/2004    | 7.96                          |                               | 0.00                         |                               | 14.76                      | 0.00                         | 976.38                             |
| MW-2                  | 983.12                             | 9/27/2004    | 7.36                          |                               | 0.00                         |                               | 13.76                      | 0.00                         | 975.76                             |
| MW-3                  | 986.73                             | 9/27/2004    | 9.88                          |                               | 0.00                         |                               | 15.00                      | 0.00                         | 976.85                             |
| MW-3                  | 986.73                             | 9/28/2004    | 9.98                          |                               | 0.00                         |                               | 15.00                      | 0.00                         | 976.75                             |
| MW-4                  | 985.73                             | 9/27/2004    | 9.08                          |                               | 0.00                         |                               | 14.30                      | 0.00                         | 976.65                             |
| MW-5                  | 983.53                             | 9/27/2004    | 8.83                          |                               | 0.00                         |                               | 17.53                      | 0.00                         | 974.70                             |
| MW-6                  | 987.65                             | 9/27/2004    | 8.86                          |                               | 0.00                         |                               | 17.63                      | 0.00                         | 978.79                             |
| MW-6                  | 987.65                             | 9/28/2004    | 8.86                          |                               | 0.00                         |                               | 17.63                      | 0.00                         | 978.79                             |
| MW-7                  | 984.73                             | 9/27/2004    | 2.65                          |                               | 0.00                         |                               | 14.68                      | 0.00                         | 982.08                             |
| MW-8                  | 984.94                             | 9/27/2004    | 5.98                          |                               | 0.00                         |                               | 14.66                      | 0.00                         | 978.96                             |
| MW-10                 | 988.87                             | 9/27/2004    | 8.09                          |                               | 0.00                         |                               | 17.67                      | 0.00                         | 980.78                             |

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.

# ITEM 25 GROUNDWATER MANAGEMENT AREAS FORMER OXBOWS A & C (GMA 5) (GECD350) SEPTEMBER 2004

\* All activities described below for this item were conducted pursuant to the Consent Decree.

## a. Activities Undertaken/Completed

Conducted well purge water sampling, as identified in Table 25-1.

## b. <u>Sampling/Test Results Received</u>

See attached tables.

## c. Work Plans/Reports/Documents Submitted

None

## d. <u>Upcoming Scheduled and Anticipated Activities (next six weeks)</u>

Initiate semi-annual groundwater elevation monitoring for fall 2004.

## e. <u>General Progress/Unresolved Issues/Potential Schedule Impacts</u>

No issues

## f. Proposed/Approved Work Plan Modifications

None

## TABLE 25-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

## GROUNDWATER MANAGEMENT AREA 5 GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name              | Field Sample ID    | Sample Date | Matrix | Laboratory | Analyses                   | Date Received |
|---------------------------|--------------------|-------------|--------|------------|----------------------------|---------------|
| Purge Water Drum Sampling | GMA5-F0478-WATER-1 | 9/14/04     | Water  | SGS        | PCB, SVOC, RCRA Metals (8) | 9/22/04       |

## TABLE 25-2 DATA RECEIVED DURING SEPTEMBER 2004

# PURGE WATER DRUM SAMPLING GROUNDWATER MANAGEMENT AREA 5 GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS (Results are presented in parts per million, ppm)

| Parameter       | Sample ID:<br>Date Collected: | GMA5-F0478-WATER-1<br>09/14/04 |  |  |  |  |  |  |
|-----------------|-------------------------------|--------------------------------|--|--|--|--|--|--|
| PCBs-Unfiltered | k                             |                                |  |  |  |  |  |  |
| Aroclor-1254    |                               | 0.00018                        |  |  |  |  |  |  |
| Total PCBs      |                               | 0.00018                        |  |  |  |  |  |  |
| Semivolatile Or | ganics                        |                                |  |  |  |  |  |  |
| None Detected   |                               |                                |  |  |  |  |  |  |
| Inorganics-Unfi | Inorganics-Unfiltered         |                                |  |  |  |  |  |  |
| Arsenic         |                               | 0.00640                        |  |  |  |  |  |  |
| Barium          |                               | 0.00770                        |  |  |  |  |  |  |
| Cadmium         |                               | 0.000830 B                     |  |  |  |  |  |  |
| Chromium        |                               | 0.00480 B                      |  |  |  |  |  |  |
| Silver          |                               | 0.00210 B                      |  |  |  |  |  |  |

#### Notes:

- 1. Sample was collected by Blasland, Bouck & Lee, Inc., and submitted to SGS Environmental Services, Inc. for analysis of PCBs, semivolatiles, and metals.
- 2. Only detected constituents are summarized.
- 3. Indicates that all constituents for the parameter group were not detected.

#### Data Qualifiers:

#### **Inorganics**

B - Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).

## Attachment A

NPDES Sampling Records and Results September 2004



## TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

## NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name   | Field Sample ID | Sample Date | Matrix | Laboratory | Analyses     | Date Received |
|----------------|-----------------|-------------|--------|------------|--------------|---------------|
| NPDES Sampling | 001-A5951       | 9/13/04     | Water  | SGS        | Oil & Grease | 9/22/04       |
| NPDES Sampling | 001-A5953       | 9/13/04     | Water  | SGS        | PCB          | 9/22/04       |
| NPDES Sampling | 001-A5954       | 9/13/04     | Water  | SGS        | TSS          | 9/22/04       |
| NPDES Sampling | 004-A5931       | 9/6/04      | Water  | SGS        | Oil & Grease | 9/14/04       |
| NPDES Sampling | 005-A5921/A5924 | 8/30/04     | Water  | SGS        | PCB          | 9/7/04        |
| NPDES Sampling | 005-A5939/A5940 | 9/7/04      | Water  | SGS        | BOD          | 9/14/04       |
| NPDES Sampling | 005-A5939/A5940 | 9/7/04      | Water  | SGS        | PCB, TSS     | 9/14/04       |
| NPDES Sampling | 005-A5957/A5960 | 9/13/04     | Water  | SGS        | PCB          | 9/22/04       |
| NPDES Sampling | 005-A5981/A5982 | 9/21/04     | Water  | SGS        | PCB          | 9/29/04       |
| NPDES Sampling | 005-A5990/A5991 | 9/28/04     | Water  | SGS        | PCB          |               |
| NPDES Sampling | 09A-A5917       | 8/26/04     | Water  | SGS        | TSS, BOD     | 9/2/04        |
| NPDES Sampling | 09A-A5974       | 9/19/04     | Water  | SGS        | TSS          | 9/29/04       |
| NPDES Sampling | 09B-A5925       | 8/30/04     | Water  | SGS        | TSS, BOD     | 9/7/04        |
| NPDES Sampling | 09B-A5930       | 9/5/04      | Water  | SGS        | TSS          | 9/14/04       |
| NPDES Sampling | 09B-A5941       | 9/7/04      | Water  | SGS        | BOD          | 9/14/04       |
| NPDES Sampling | 09B-A5950       | 9/12/04     | Water  | SGS        | TSS          | 9/22/04       |
| NPDES Sampling | 09B-A5961       | 9/13/04     | Water  | SGS        | BOD          | 9/22/04       |
| NPDES Sampling | 09B-A5975       | 9/19/04     | Water  | SGS        | TSS          | 9/29/04       |
| NPDES Sampling | 09B-A5983       | 9/21/04     | Water  | SGS        | BOD          | 9/29/04       |
| NPDES Sampling | 09B-A5988       | 9/27/04     | Water  | SGS        | TSS, BOD     |               |
| NPDES Sampling | 09C-A5926       | 8/28/04     | Water  | SGS        | Oil & Grease | 9/7/04        |
| NPDES Sampling | 09C-A5928       | 8/30/04     | Water  | SGS        | Oil & Grease | 9/14/04       |
| NPDES Sampling | 09C-A5942       | 9/8/04      | Water  | SGS        | Oil & Grease | 9/22/04       |
| NPDES Sampling | 09C-A5967       | 9/16/04     | Water  | SGS        | Oil & Grease | 9/27/04       |
| NPDES Sampling | 09C-A5994       | 9/28/04     | Water  | SGS        | Oil & Grease |               |
| NPDES Sampling | 64G-A5922       | 8/30/04     | Water  | SGS        | Oil & Grease | 9/7/04        |
| NPDES Sampling | 64G-A5935       | 9/6/04      | Water  | SGS        | Oil & Grease | 9/14/04       |
| NPDES Sampling | 64G-A5958       | 9/13/04     | Water  | SGS        | Oil & Grease | 9/22/04       |
| NPDES Sampling | 64G-A5978       | 9/20/04     | Water  | SGS        | Oil & Grease | 9/29/04       |
| NPDES Sampling | 64G-A5986       | 9/27/04     | Water  | SGS        | Oil & Grease |               |
| NPDES Sampling | 64T-A5919       | 8/30/04     | Water  | SGS        | Oil & Grease | 9/7/04        |
| NPDES Sampling | 64T-A5933       | 9/6/04      | Water  | SGS        | Oil & Grease | 9/14/04       |
| NPDES Sampling | 64T-A5955       | 9/13/04     | Water  | SGS        | Oil & Grease | 9/22/04       |
| NPDES Sampling | 64T-A5976       | 9/20/04     | Water  | SGS        | Oil & Grease | 9/29/04       |
| NPDES Sampling | 64T-A5984       | 9/27/04     | Water  | SGS        | Oil & Grease |               |

## TABLE A-1 DATA RECEIVED AND/OR SAMPLES COLLECTED DURING SEPTEMBER 2004

## NPDES PERMIT MONITORING GENERAL ELECTRIC COMPANY - PITTSFIELD MASSACHUSETTS

| Project Name   | Field Sample ID | Sample Date | Matrix | Laboratory | Analyses              | Date Received |
|----------------|-----------------|-------------|--------|------------|-----------------------|---------------|
| NPDES Sampling | A5944R          | 9/13/04     | Water  | SGS        | Acute Toxicity Test   | 9/24/04       |
| NPDES Sampling | A5944R          | 9/13/04     | Water  | SGS        | Chronic Toxicity Test | 9/29/04       |
| NPDES Sampling | A5944RCN        | 9/13/04     | Water  | SGS        | CN                    | 9/22/04       |
| NPDES Sampling | A5944RTM        | 9/13/04     | Water  | SGS        | Metals (10)           | 9/22/04       |
| NPDES Sampling | A5945C          | 9/13/04     | Water  | SGS        | Acute Toxicity Test   | 9/24/04       |
| NPDES Sampling | A5945C          | 9/13/04     | Water  | SGS        | Chronic Toxicity Test | 9/29/04       |
| NPDES Sampling | A5945CCN        | 9/13/04     | Water  | SGS        | CN                    | 9/22/04       |
| NPDES Sampling | A5945CDM        | 9/13/04     | Water  | SGS        | Filtered Metals (8)   | 9/22/04       |
| NPDES Sampling | A5945CTM        | 9/13/04     | Water  | SGS        | Metals (10)           | 9/22/04       |
| NPDES Sampling | A5946R          | 9/15/04     | Water  | SGS        | Chronic Toxicity Test | 9/29/04       |
| NPDES Sampling | A5946RCN        | 9/15/04     | Water  | SGS        | CN                    | 9/22/04       |
| NPDES Sampling | A5946RTM        | 9/15/04     | Water  | SGS        | Metals (10)           | 9/22/04       |
| NPDES Sampling | A5947C          | 9/15/04     | Water  | SGS        | Chronic Toxicity Test | 9/29/04       |
| NPDES Sampling | A5947CCN        | 9/15/04     | Water  | SGS        | CN                    | 9/22/04       |
| NPDES Sampling | A5947CDM        | 9/15/04     | Water  | SGS        | Filtered Metals (8)   | 9/22/04       |
| NPDES Sampling | A5947CTM        | 9/15/04     | Water  | SGS        | Metals (10)           | 9/22/04       |
| NPDES Sampling | A5948R          | 9/17/04     | Water  | SGS        | Chronic Toxicity Test | 9/29/04       |
| NPDES Sampling | A5948RCN        | 9/17/04     | Water  | SGS        | CN                    | 9/27/04       |
| NPDES Sampling | A5948RTM        | 9/17/04     | Water  | SGS        | Metals (10)           | 9/27/04       |
| NPDES Sampling | A5949C          | 9/17/04     | Water  | SGS        | Chronic Toxicity Test | 9/29/04       |
| NPDES Sampling | A5949CCN        | 9/17/04     | Water  | SGS        | CN                    | 9/27/04       |
| NPDES Sampling | A5949CDM        | 9/17/04     | Water  | SGS        | Filtered Metals (8)   | 9/27/04       |
| NPDES Sampling | A5949CTM        | 9/17/04     | Water  | SGS        | Metals (10)           | 9/27/04       |
| NPDES Sampling | OCT04WK1        | 9/28/04     | Water  | SGS        | Cu, Pb, Zn            |               |
| NPDES Sampling | SEP04WK1        | 8/30/04     | Water  | SGS        | Cu, Pb, Zn            | 9/7/04        |
| NPDES Sampling | SEP04WK2        | 9/7/04      | Water  | SGS        | Cu, Pb, Zn            | 9/14/04       |
| NPDES Sampling | SEP04WK4        | 9/21/04     | Water  | SGS        | Cu, Pb, Zn            | 9/29/04       |

## TABLE A-2 DATA RECEIVED DURING SEPTEMBER 2004

## NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

|                          | Sample ID:     | 001-A5951 | 001-A5953  | 001-A5954 | 004-A5931 | 005-A5921/A5924 | 005-A5939/A5940 | 005-A5957/A5960 |
|--------------------------|----------------|-----------|------------|-----------|-----------|-----------------|-----------------|-----------------|
| Parameter Da             | ate Collected: | 09/13/04  | 09/13/04   | 09/13/04  | 09/06/04  | 08/30/04        | 09/07/04        | 09/13/04        |
| PCBs-Unfiltered          |                |           |            |           |           |                 |                 |                 |
| Aroclor-1254             |                | NA        | 0.00017    | NA        | NA        | 0.000033 J      | ND(0.000065)    | 0.000019 J      |
| Aroclor-1260             |                | NA        | 0.000031 J | NA        | NA        | ND(0.000065)    | ND(0.000065)    | ND(0.000065)    |
| Total PCBs               |                | NA        | 0.000201   | NA        | NA        | 0.000033 J      | ND(0.000065)    | 0.000019 J      |
| Inorganics-Unfiltered    |                |           |            |           |           |                 |                 |                 |
| Aluminum                 |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Cadmium                  |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Calcium                  |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Chromium                 |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Copper                   |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Cyanide                  |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Lead                     |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Magnesium                |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Nickel                   |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Silver                   |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Zinc                     |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Inorganics-Filtered      |                |           |            |           |           |                 |                 |                 |
| Aluminum                 |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Cadmium                  |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Chromium                 |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Copper                   |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Lead                     |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Nickel                   |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Silver                   |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Zinc                     |                | NA        | NA         | NA        | NA        | NA              | NA              | NA              |
| Conventionals            |                |           |            |           |           |                 |                 |                 |
| Biological Oxygen Demand | d (5-day)      | NA        | NA         | NA        | NA        | NA              | ND(2.0)         | NA              |
| Oil & Grease             |                | ND(5.0)   | NA         | NA        | ND(5.0)   | NA              | NA              | NA              |
| Total Suspended Solids   |                | NA        | NA         | 5.00      | NA        | NA              | ND(5.00)        | NA              |

# NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

|                       | Sample ID:      | 005-A5981/A5982 | 09A-A5917 | 09A-A5974 | 09B-A5925 | 09B-A5930 | 09B-A5941 | 09B-A5950 | 09B-A5961 |
|-----------------------|-----------------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter             | Date Collected: | 09/21/04        | 08/26/04  | 09/19/04  | 08/30/04  | 09/05/04  | 09/07/04  | 09/12/04  | 09/13/04  |
| PCBs-Unfiltered       | ·               |                 |           |           |           |           |           |           |           |
| Aroclor-1254          |                 | 0.000022 J      | NA        |
| Aroclor-1260          |                 | ND(0.000065)    | NA        |
| Total PCBs            |                 | 0.000022 J      | NA        |
| Inorganics-Unfiltered |                 |                 |           |           |           |           |           |           |           |
| Aluminum              |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Cadmium               |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Calcium               |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Chromium              |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Copper                |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Cyanide               |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Lead                  |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Magnesium             |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Nickel                |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Silver                |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Zinc                  |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Inorganics-Filtered   |                 |                 |           |           |           |           |           |           |           |
| Aluminum              |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Cadmium               |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Chromium              |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Copper                |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Lead                  |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Nickel                |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Silver                |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Zinc                  |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Conventionals         | ·               | ·               | ·         | <u> </u>  | ·         | ·         |           |           | <u> </u>  |
| Biological Oxygen Dem | and (5-day)     | NA              | 1.9 B     | NA        | ND(2.0)   | NA        | 1.9 B     | NA        | ND(2.0)   |
| Oil & Grease          |                 | NA              | NA        | NA        | NA        | NA        | NA        | NA        | NA        |
| Total Suspended Solid | S               | NA              | 7.00      | 6.00      | 9.00      | 5.00      | NA        | 7.00      | NA        |

# NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

|                         | Sample ID:     | 09B-A5975 | 09B-A5983 | 09C-A5926 | 09C-A5928 | 09C-A5942 | 09C-A5967 | 64G-A5922 | 64G-A5935 | 64G-A5958 |
|-------------------------|----------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Parameter D             | ate Collected: | 09/19/04  | 09/21/04  | 08/28/04  | 08/30/04  | 09/08/04  | 09/16/04  | 08/30/04  | 09/06/04  | 09/13/04  |
| PCBs-Unfiltered         |                |           |           |           |           |           |           |           |           |           |
| Aroclor-1254            |                | NA        |
| Aroclor-1260            |                | NA        |
| Total PCBs              |                | NA        |
| Inorganics-Unfiltered   |                |           |           |           |           |           |           |           |           |           |
| Aluminum                |                | NA        |
| Cadmium                 |                | NA        |
| Calcium                 |                | NA        |
| Chromium                |                | NA        |
| Copper                  |                | NA        |
| Cyanide                 |                | NA        |
| Lead                    |                | NA        |
| Magnesium               |                | NA        |
| Nickel                  |                | NA        |
| Silver                  |                | NA        |
| Zinc                    |                | NA        |
| Inorganics-Filtered     |                |           |           |           |           |           |           |           |           |           |
| Aluminum                |                | NA        |
| Cadmium                 |                | NA        |
| Chromium                |                | NA        |
| Copper                  |                | NA        |
| Lead                    |                | NA        |
| Nickel                  |                | NA        |
| Silver                  |                | NA        |
| Zinc                    | j              | NA        |
| Conventionals           |                |           |           | ·         |           |           |           | ·         |           |           |
| Biological Oxygen Deman | d (5-day)      | NA        | 1.7 B     | NA        |
| Oil & Grease            |                | NA        | NA        | ND(5.0)   | ND(5.0)   | ND(5.0)   | 2.1 B     | ND(5.0)   | ND(5.0)   | ND(5.0)   |
| Total Suspended Solids  |                | ND(5.00)  | NA        |

# NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

| Parameter             | Sample ID:<br>Date Collected: | 64G-A5978<br>09/20/04 | 64T-A5919<br>08/30/04 | 64T-A5933<br>09/06/04 | 64T-A5955<br>09/13/04 | 64T-A5976<br>09/20/04 | A5944RCN<br>09/13/04 | A5944RTM<br>09/13/04 | A5945CCN<br>09/13/04 |
|-----------------------|-------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|
| PCBs-Unfiltered       | Date Conected.                | 03/20/04              | 00/30/04              | 03/00/04              | 03/13/04              | 03/20/04              | 03/13/04             | 03/13/04             | 03/13/04             |
| Aroclor-1254          |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |
| Aroclor-1260          |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |
| Total PCBs            |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |
| Inorganics-Unfiltere  | d                             |                       |                       | •                     | •                     | •                     | •                    |                      |                      |
| Aluminum              |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | ND(0.100)            | NA                   |
| Cadmium               |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | 0.000760 B           | NA                   |
| Calcium               |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | 18.0                 | NA                   |
| Chromium              |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | 0.00420 B            | NA                   |
| Copper                |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | 0.00310 B            | NA                   |
| Cyanide               |                               | NA                    | NA                    | NA                    | NA                    | NA                    | 0.00180 B            | NA                   | 0.0630               |
| Lead                  |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | ND(0.00500)          | NA                   |
| Magnesium             |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | 5.90                 | NA                   |
| Nickel                |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | 0.00200 B            | NA                   |
| Silver                |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | 0.00180 B            | NA                   |
| Zinc                  |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | 0.00590 B            | NA                   |
| Inorganics-Filtered   |                               |                       |                       |                       |                       |                       |                      |                      |                      |
| Aluminum              |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |
| Cadmium               |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |
| Chromium              |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |
| Copper                |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |
| Lead                  |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |
| Nickel                |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |
| Silver                |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |
| Zinc                  |                               | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |
| Conventionals         |                               | ·                     |                       |                       | ·                     |                       |                      |                      |                      |
| Biological Oxygen Der | mand (5-day)                  | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |
| Oil & Grease          |                               | ND(5.0)               | ND(5.0)               | ND(5.0)               | ND(5.0)               | ND(5.0)               | NA                   | NA                   | NA                   |
| Total Suspended Soli  | ds                            | NA                    | NA                    | NA                    | NA                    | NA                    | NA                   | NA                   | NA                   |

# NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

|                      | Sample ID:      | A5945CDM    | A5945CTM    | A5946RCN  | A5946RTM    | A5947CCN | A5947CDM    | A5947CTM    | A5948RCN  |
|----------------------|-----------------|-------------|-------------|-----------|-------------|----------|-------------|-------------|-----------|
| Parameter            | Date Collected: | 09/13/04    | 09/13/04    | 09/15/04  | 09/15/04    | 09/15/04 | 09/15/04    | 09/15/04    | 09/17/04  |
| PCBs-Unfiltered      |                 |             |             |           |             |          |             |             |           |
| Aroclor-1254         |                 | NA          | NA          | NA        | NA          | NA       | NA          | NA          | NA        |
| Aroclor-1260         |                 | NA          | NA          | NA        | NA          | NA       | NA          | NA          | NA        |
| Total PCBs           |                 | NA          | NA          | NA        | NA          | NA       | NA          | NA          | NA        |
| Inorganics-Unfiltere | ed              |             |             |           |             |          |             |             |           |
| Aluminum             |                 | NA          | ND(0.100)   | NA        | 0.0750 B    | NA       | NA          | ND(0.100)   | NA        |
| Cadmium              |                 | NA          | 0.000730 B  | NA        | ND(0.00100) | NA       | NA          | 0.000840 B  | NA        |
| Calcium              |                 | NA          | 78.0        | NA        | 21.0        | NA       | NA          | 76.0        | NA        |
| Chromium             |                 | NA          | 0.00170 B   | NA        | ND(0.00500) | NA       | NA          | 0.00250 B   | NA        |
| Copper               |                 | NA          | 0.00470 B   | NA        | ND(0.00500) | NA       | NA          | 0.00520     | NA        |
| Cyanide              |                 | NA          | NA          | 0.00300 B | NA          | 0.0410   | NA          | NA          | 0.00350 B |
| Lead                 |                 | NA          | ND(0.00500) | NA        | ND(0.00500) | NA       | NA          | ND(0.00500) | NA        |
| Magnesium            |                 | NA          | 31.0        | NA        | 7.30        | NA       | NA          | 31.0        | NA        |
| Nickel               |                 | NA          | 0.00180 B   | NA        | ND(0.00500) | NA       | NA          | 0.00260 B   | NA        |
| Silver               |                 | NA          | 0.00190 B   | NA        | ND(0.00500) | NA       | NA          | 0.00240 B   | NA        |
| Zinc                 |                 | NA          | 0.00830 B   | NA        | 0.00760 B   | NA       | NA          | 0.0110 B    | NA        |
| Inorganics-Filtered  |                 |             |             |           |             |          |             |             |           |
| Aluminum             |                 | ND(0.100)   | NA          | NA        | NA          | NA       | ND(0.100)   | NA          | NA        |
| Cadmium              |                 | 0.00110     | NA          | NA        | NA          | NA       | ND(0.00100) | NA          | NA        |
| Chromium             |                 | 0.00500     | NA          | NA        | NA          | NA       | 0.00280 B   | NA          | NA        |
| Copper               |                 | 0.00520     | NA          | NA        | NA          | NA       | 0.00330 B   | NA          | NA        |
| Lead                 |                 | ND(0.00500) | NA          | NA        | NA          | NA       | ND(0.00500) | NA          | NA        |
| Nickel               |                 | 0.00340 B   | NA          | NA        | NA          | NA       | 0.00240 B   | NA          | NA        |
| Silver               |                 | 0.00130 B   | NA          | NA        | NA          | NA       | 0.00140 B   | NA          | NA        |
| Zinc                 |                 | 0.0110 B    | NA          | NA        | NA          | NA       | 0.0140 B    | NA          | NA        |
| Conventionals        |                 |             |             |           |             |          |             |             |           |
| Biological Oxygen De | mand (5-day)    | NA          | NA          | NA        | NA          | NA       | NA          | NA          | NA        |
| Oil & Grease         |                 | NA          | NA          | NA        | NA          | NA       | NA          | NA          | NA        |
| Total Suspended Soli | ids             | NA          | NA          | NA        | NA          | NA       | NA          | NA          | NA        |

# NPDES PERMIT MONITORING SAMPLING GENERAL ELECTRIC COMPANY - PITTSFIELD, MASSACHUSETTS

(Results are presented in parts per million, ppm)

|                         | Sample ID:      | A5948RTM    | A5949CCN | A5949CDM    | A5949CTM    | SEP04WK1    | SEP04WK2    | SEP04WK4    |
|-------------------------|-----------------|-------------|----------|-------------|-------------|-------------|-------------|-------------|
| Parameter D             | Date Collected: | 09/17/04    | 09/17/04 | 09/17/04    | 09/17/04    | 08/30/04    | 09/07/04    | 09/21/04    |
| PCBs-Unfiltered         |                 |             |          |             |             |             |             |             |
| Aroclor-1254            |                 | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| Aroclor-1260            |                 | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| Total PCBs              |                 | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| Inorganics-Unfiltered   |                 |             |          |             |             |             |             |             |
| Aluminum                |                 | ND(0.100)   | NA       | NA          | ND(0.100)   | NA          | NA          | NA          |
| Cadmium                 |                 | ND(0.00100) | NA       | NA          | ND(0.00100) | NA          | NA          | NA          |
| Calcium                 |                 | 20.0        | NA       | NA          | 67.0        | NA          | NA          | NA          |
| Chromium                |                 | ND(0.00500) | NA       | NA          | ND(0.00500) | NA          | NA          | NA          |
| Copper                  |                 | 0.00270 B   | NA       | NA          | 0.00540     | 0.00740     | 0.00300 B   | 0.00360 B   |
| Cyanide                 |                 | NA          | 0.0580   | NA          | NA          | NA          | NA          | NA          |
| Lead                    |                 | ND(0.00500) | NA       | NA          | ND(0.00500) | ND(0.00500) | ND(0.00500) | ND(0.00500) |
| Magnesium               |                 | 6.70        | NA       | NA          | 27.0        | NA          | NA          | NA          |
| Nickel                  |                 | ND(0.00500) | NA       | NA          | 0.00220 B   | NA          | NA          | NA          |
| Silver                  |                 | ND(0.00500) | NA       | NA          | ND(0.00500) | NA          | NA          | NA          |
| Zinc                    |                 | 0.00570 B   | NA       | NA          | 0.00790 B   | 0.0110 B    | 0.00450 B   | 0.0200 B    |
| Inorganics-Filtered     |                 |             |          |             |             |             |             |             |
| Aluminum                |                 | NA          | NA       | ND(0.100)   | NA          | NA          | NA          | NA          |
| Cadmium                 |                 | NA          | NA       | ND(0.00100) | NA          | NA          | NA          | NA          |
| Chromium                |                 | NA          | NA       | ND(0.00500) | NA          | NA          | NA          | NA          |
| Copper                  |                 | NA          | NA       | 0.00360 B   | NA          | NA          | NA          | NA          |
| Lead                    |                 | NA          | NA       | ND(0.00500) | NA          | NA          | NA          | NA          |
| Nickel                  |                 | NA          | NA       | ND(0.00500) | NA          | NA          | NA          | NA          |
| Silver                  |                 | NA          | NA       | ND(0.00500) | NA          | NA          | NA          | NA          |
| Zinc                    |                 | NA          | NA       | 0.0180 B    | NA          | NA          | NA          | NA          |
| Conventionals           | -               |             |          |             |             |             |             |             |
| Biological Oxygen Deman | d (5-day)       | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| Oil & Grease            |                 | NA          | NA       | NA          | NA          | NA          | NA          | NA          |
| Total Suspended Solids  |                 | NA          | NA       | NA          | NA          | NA          | NA          | NA          |

#### Notes:

- 1. Samples were collected by General Electric Company, and were submitted to SGS Environmental Services, Inc. for analysis of PCBs, cyanide, TSS, BOD, oil & grease, and metals (filtered and unfiltered).
- 2. NA Not Analyzed.
- 3. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 4. With the exception of inorganics, only those constituents detected in one or more sample are summarized.

#### Data Qualifiers:

#### Organics

J - Indicates an estimated value less than the practical quantitation limit (PQL).

#### Inorganics and Conventional Parameters

B - Indicates an estimated value between the instrument detection limit (IDL) and PQL.

# Attachment B

NPDES Discharge Monitoring Reports August 2004



FERMITTEE MAME/AUDIESS (Include Facility Name/ Location (f D(fferent)

NAME GENERAL ELECTRIC CORPORATION

ADDRESSATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATION TITTSFIELD ATTRI- MICHAEL T CARROLL EUGEE

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

TO 04

01

MA0003891 PERMIT NUMBER

YEAR MO DAY

08

FROM

04

001 DISCHARGE NUMBER

08

MAJOR (SUBR W ) F - FINAL

Form Approved. OMB No. 2040-0004

DISCHARGE TO SILVER LAKE

YEAR MO DAY \*\*\* NO DISCHARGE | | \*\*\* 31

| PARAMETER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | QU                                                                                                                                     | UANTITY OR LOADIN                                                                                                          | NG                                                            | QUALI          | ITY OR CONCENTR      | RATION         | 0.00         | NO. | FREQUENCY      | SAMPLI    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|----------------------|----------------|--------------|-----|----------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AVERAGE                                                                                                                                | MAXIMUM                                                                                                                    | UNITS                                                         | MINIMUM        | AVERAGE              | MAXIMUM        | UNITS        | EX  | OF<br>ANALYSIS | 77.00     |
| Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *****                                                                                                                                  | ****                                                                                                                       |                                                               | 6.8            | *****                | 7.9            | ( 12)        | 0   | 01/0           | 7 GR      |
| 0400 1 0 0<br>FFLUENT GROSS VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *** **********************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ***                                                                                                                                    | 林林林林林 林                                                                                                                    | ***                                                           | 6.0<br>MINIMUM | 各种种种类型               | 9.0<br>MAXIMUM | SU           |     | NEEKLY         | YRANG-    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        | 1.9                                                                                                                        | ( 26)                                                         | ****           | ***                  |                | MODE .       | 0   | 01/30          | 80 CP     |
| the second of the second of the second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 138<br>OVA OM                                                                                                                          | DAILY MX                                                                                                                   | LBS/DY                                                        | ****           | ***                  | *****          | ****         |     | ONCE/<br>MONTH | COMPO     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        | 0                                                                                                                          | ( 26)                                                         | *****          | ****                 | 0              | ( 19)        | 0   |                |           |
| The state of the s | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        | DAILY MX                                                                                                                   | LBS/DY                                                        | <b>分科查查</b>    | ****                 | DAILY MX       | MG/L<br>MG/L |     | MONTH          | GRAB      |
| The same of the sa | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        | 0.0003                                                                                                                     | ( 26)<br>LBS/DY                                               | ****           | ****                 | *****          |              | 0   |                |           |
| the state of the same tar and the same tar the same tar the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>*****</b>                                                                                                                           | REPORT<br>DAILY MX                                                                                                         | LBS/DY                                                        | ****           | ****                 | *****          | ****         |     | DNCE/<br>MONTH | ORAB<br>H |
| OW, IN CONDUIT OR RU TREATMENT PLANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Carlo | 44 44                                                                                                                                  | 0.629                                                                                                                      | ( 03)<br>MGD                                                  | ****           | *****                | ****           |              | 0   |                |           |
| 0050 1 0 0<br>FLUENT GROSS VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.10<br>MO AVG                                                                                                                         | 2.55<br>DAILY MX                                                                                                           | MGD                                                           | ****           | ****                 | *****          | ****         |     | CONTIN         | RCOR      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                                                                            |                                                               |                |                      |                |              |     |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                                                                            |                                                               |                |                      |                |              |     | 1.7            |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SAMPLE<br>MEASUREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                                                                            | 3 4                                                           |                |                      |                |              |     |                |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PERMIT<br>REQUIREMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        |                                                                                                                            |                                                               |                |                      |                |              |     |                |           |
| ME/TITLE PRINCIPAL EXECUTIVE O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | y under penalty of law that the<br>ed under my direction or supe                                                                       | pervision in accordance with a                                                                                             | a system declared                                             |                | 1                    |                | TELEPHONE    | F   | D              | ATE       |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on Prog. submitte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | re that qualified personnel pro<br>ted. Based on my inquiry of the<br>e persons directly responsible<br>ted is, to the best of my know | roperly gather and evaluate the telephone or persons who me for gathering the information whether and belief true account. | the information<br>manage the system,<br>ion, the information | m.7.           | Canol                |                | 13,494-350   |     |                | 9 2       |
| TURES OF SPINITES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l am av                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                        | nt penalties for submitting fals<br>imprisonment for knowing vi                                                            | lee Information                                               |                | TURE OF PRINCIPAL EX | ARE COD        |              | 10  | 2007           | 9         |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE AT THE DISCHARGE FROM DIL/WATER SEPERATOR.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f D(forent)

NAME GENERAL ELECTRIC CORPORATION

ADDRESSATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

LOCATION TITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MACOO3891 PERMIT NUMBER

FROM 04

004 1 DISCHARGE NUMBER

 MONITORING PERIOD

 YEAR
 MO
 DAY
 YEAR
 MO
 DAY

 04
 08
 01
 TO
 04
 08
 31

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W )

F - FINAL

DISCHARGE TO SILVER LAKE

\*\*\* NO DISCHARGE |\_\_| \*\*\*

NOTE: Read instructions before completing this form.

| TN: MICHAEL T CARR                                  |                       |                                                                                                       | ANTITY OR LOADIN                                                                                 | 1G                                                              | QUALIT                                | TY OR CONCENTR     | ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F 1 97 3      | NO. | FREQUENCY      | SAMPLE |
|-----------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|----------------|--------|
| ranoweren                                           | X                     | AVERAGE                                                                                               | MAXIMUM                                                                                          | UNITS                                                           | MINIMUM                               | AVERAGE            | MAXIMUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UNITS         | 5   | ANALYSIS       | 11176  |
|                                                     | SAMPLE<br>MEASUREMENT | ****                                                                                                  | ****                                                                                             |                                                                 | 7.1                                   | ****               | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( 12)<br>SU   | 0   | 01/07          |        |
| OO P O O                                            | PERMIT<br>REQUIREMENT | *****                                                                                                 | *****                                                                                            | ***                                                             | 6.0<br>MINIMUM                        | 林林林林林              | 9.0<br>MAXIMUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | su            |     |                |        |
| & GREASE                                            | SAMPLE<br>MEASUREMENT | ****                                                                                                  | 0                                                                                                | ( 26)<br>LBS/DY                                                 | ****                                  | *****              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ( 19)<br>MG/L | 0   | 01/30          |        |
| 56 P O O<br>COMMENTS BELOW                          | PERMIT<br>REQUIREMENT | ****                                                                                                  | DATEX MX                                                                                         |                                                                 | ****                                  | ***                | DAILY MX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |     | ONCE/<br>MONTH | GRAB   |
| YCHLORINATED<br>HENYLS (PCBS)                       | SAMPLE<br>MEASUREMENT | ****                                                                                                  | NODI [9]                                                                                         | LBS/DY                                                          | *****                                 | *****              | 2008<br>A 190<br>1902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100           |     | 200            | NUAT   |
| 16 P 0 0                                            | PERMIT<br>REQUIREMENT | ****                                                                                                  | REPORT<br>DAILY MX                                                                               | LBS/DY                                                          | ****                                  | ****               | Plant 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ****          |     | TRLY           | GHAB   |
| W, IN CONDUIT OR<br>U TREATMENT PLANT               | SAMPLE                | 0.007                                                                                                 | 0.032                                                                                            | ( 03)<br>MGD                                                    | *****                                 | ****               | See 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | 0   |                |        |
| 50 P O O COMMENTS BELOW                             | PERMIT<br>REQUIREMENT | 0.38<br>MO AVO                                                                                        | 2.09<br>DAILY MX                                                                                 |                                                                 | ****                                  | ***                | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ***           |     | MONTH<br>MONTH | RCDF   |
| Le L.M. 13 1 Jan 1 4 1 Cut - Act day has been ton v | SAMPLE<br>MEASUREMENT |                                                                                                       |                                                                                                  |                                                                 |                                       |                    | Laterier Lat |               | 3   | hier           |        |
|                                                     | PERMIT<br>REQUIREMENT |                                                                                                       |                                                                                                  |                                                                 |                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |                |        |
|                                                     | SAMPLE<br>MEASUREMENT |                                                                                                       |                                                                                                  |                                                                 |                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |                |        |
|                                                     | PERMIT<br>REQUIREMENT |                                                                                                       |                                                                                                  |                                                                 |                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |                |        |
| 100                                                 | SAMPLE<br>MEASUREMENT |                                                                                                       |                                                                                                  |                                                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |                |        |
|                                                     | PERMIT<br>REQUIREMENT |                                                                                                       |                                                                                                  |                                                                 |                                       |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |     |                |        |
| ME/TITLE PRINCIPAL EXECUTIVE                        | E OFFICER   prepare   | red under my direction or su                                                                          | t this document and all attack<br>supervision in accordance wit                                  | th a system design                                              | sed                                   | 10                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TELEPHON      | NE  | D              | DATE   |
| Michael T. Carroll<br>Mgr. Pittsfield Remediati     | to assur              | ure that qualified personnel j<br>itted. Based on my inquiry o<br>see persons directly responsib      | I properly gather and evaluat<br>of the person or persons who<br>lible for gathering the informa | te the information<br>o manage the syste<br>ation, the informat | em, atlon                             | 1. Carrol          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13 494-3      | 500 | 2004           | 9 2    |
| TYPED OR PRINTED                                    | 1 1 am aw             | itted is, to the best of my kno<br>nware that there are significa<br>ling the possibility of fine and | nowledge and belief, true, account penalties for submitting i                                    | false information,                                              | SIGNA                                 | ATURE OF PRINCIPAL | EXECUTIVE AF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REA NUMBE     | ER  | YEAR           | мо     |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE IN PLANT MANHOLE STATION ON 004.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f D(forent)

GENERAL ELECTRIC CORPORATION

ADDRESSATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATION TITTSFIELD

MA 01201

ATTN: MICHAEL T CARROLL, EHS&F

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

TO

MA0003891 PERMIT NUMBER

YEAR MO DAY

OB

OI

FROM

04

005 1 DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY U4 OB .51 MAJOR (SUBR W )

F - FINAL WATERS TO HOUSATONIC RIVER

\*\*\* NO DISCHARGE |

NOTE: Read instructions before completing this form.

Form Approved.

OMB No. 2040-0004

| PARAMETER                                         |                             | QU                                                                                      | ANTITY OR LOADIN                                                                             | NG                                                            | QUALI   | TY OR CONCENTE                        | RATION   |          | NO. | FREQUENCY      | SAIVIFL |
|---------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------|---------------------------------------|----------|----------|-----|----------------|---------|
|                                                   |                             | AVERAGE                                                                                 | MAXIMUM                                                                                      | UNITS                                                         | MINIMUM | AVERAGE                               | MAXIMUM  | UNITS    | EX  | ANALYSIS       | TYPE    |
| OD, 5-DAY<br>(20 DEG. C)                          | SAMPLE<br>MEASUREMENT       | 0                                                                                       | 0                                                                                            | ( 26)<br>LBS/DY -                                             | *****   | *****                                 | ****     |          | 0   | 01/30          | CF      |
| O310 T O O<br>EE COMMENTS BELOW                   | PERMIT<br>REQUIREMENT       | 70<br>MD AVG                                                                            | 135<br>DAILY MX                                                                              | LBS/DY                                                        | *****   | *****                                 | 林林林林林    | ****     |     | ONGE/<br>MONTH | COMP    |
| DLIDS, TOTAL<br>USPENDED                          | SAMPLE<br>MEASUREMENT       | 0                                                                                       | 0                                                                                            | ( 26)<br>LBS/DY -                                             | *****   | ****                                  | *****    |          | 0   | 01/30          | CI      |
|                                                   | PERMIT<br>REQUIREMENT       | MO AVG                                                                                  | DAILY MX                                                                                     | LBS/DY                                                        | *****   | ****                                  | *****    | ****     |     | DNCE/<br>MONTH | CUMP    |
| IL & GREASE                                       | SAMPLE<br>MEASUREMENT       | ****                                                                                    | 2.0                                                                                          | ( 26)<br>LBS/DY                                               | *****   | ****                                  | 0.4      | MG/L     | 0   | 01/07          | GI      |
| 0556 T O O<br>SE COMMENTS BELOW                   | PERMIT<br>REQUIREMENT       | ****                                                                                    | DAILY MX                                                                                     | LBS/DY                                                        | *****   | *****                                 | DAILY MX | MG/L     |     | HEEKLY         | GRAB    |
| CHENYLS (PCBS)                                    | SAMPLE<br>MEASUREMENT       | 0.0001                                                                                  | 0.0003                                                                                       | ( 26)<br>LBS/DY                                               | ****    | ****                                  | *****    |          | 0   | 01/07          | С       |
| 7516 T O O<br>EE COMMENTS BELOW                   | PERMIT<br>REQUIREMENT       | 0.01<br>MO AVG                                                                          | 0.03<br>DAILY MX                                                                             | LBS/DY                                                        | *****   | *****                                 | *****    | ****     |     | NEEKLY         | COMP    |
| LOW, IN CONDUIT OR<br>TRU TREATMENT PLANT         | SAMPLE<br>MEASUREMENT       | 0.212                                                                                   | 0.408                                                                                        | ( 03)<br>MGD                                                  | ****    | ****                                  | ****     |          | 0   | 99/99          | R       |
| DOSO T O O<br>SE COMMENTS BELOW                   | PERMIT<br>REQUIREMENT       | 2.09<br>MD AVG                                                                          | 2.09<br>DAILY MX                                                                             | MGD                                                           | *****   | *****                                 | *****    | ****     |     | CONTIN<br>UOUS | RCOR    |
|                                                   | SAMPLE<br>MEASUREMENT       |                                                                                         |                                                                                              |                                                               |         |                                       | Pr.      |          |     |                |         |
|                                                   | PERMIT<br>REQUIREMENT       |                                                                                         |                                                                                              |                                                               |         | <b>拉毛</b> 克                           |          |          |     |                |         |
|                                                   | SAMPLE<br>MEASUREMENT       |                                                                                         |                                                                                              |                                                               | Y       |                                       |          | 7-1<br>  |     |                |         |
|                                                   | PERMIT<br>REQUIREMENT       |                                                                                         |                                                                                              |                                                               |         |                                       |          |          |     |                |         |
| ME/TITLE PRINCIPAL EXECUTIVE                      | OFFICER   1 certify         | under penalty of law that t                                                             | his document and all attach<br>pervision in accordance with                                  | ments were                                                    |         |                                       |          | TELEPHON | VE. | DA             | TE      |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | to assure submitte or those | that qualified personnel p<br>d. Based on my inquiry of<br>persons directly responsible | the person or persons who is<br>efor gathering the informat<br>wiedge and belief, true, accu | the information<br>manage the system,<br>ion, the information |         | 1. Canoli                             | 41       | 3 494-35 | 500 | 2004           | 9 2     |
| TYPED OR PRINTED                                  |                             |                                                                                         | t penalties for submitting fa<br>imprisonment for knowing                                    |                                                               |         | TURE OF PRINCIPAL<br>CER OR AUTHORIZE |          | EA NUMBE | R   | YEAR M         | 0 0     |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 8 + 9 OF PERMIT FOR SAMPLING REQUIREMENTS. SEE DMR(S) 064G + 064T FOR FURTHER PARAMETERS.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location if Different)

NAME GENERAL ELECTRIC CORPORATION

ADDRESSATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

ATTN: MICHAEL T CARROLL, EHS&F

LOCATION ITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

**MONITORING PERIOD** 

TO

04

DAY

OI

MA0003891 PERMIT NUMBER

YEAR MO

FROM 04

08

064 G DISCHARGE NUMBER

YEAR MO DAY

OB

MAJOR (SUBR W )

31

F - FINAL GROUNDWATER TREATMENT (005)

\*\*\* NO DISCHARGE | \_ | \*\*\*

NOTE: Read instructions before completing this form.

rorm Approved

OMB No. 2040-0004

| PARAMETER                                     |                                              | QUA                                                                                                                      | NTITY OR LOADII                                                                                                     | NG                                                                              | QUAL           | ITY OR CONCENT                           | RATION             |             | NO. | FREQUENC | TYPE .         |
|-----------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------|------------------------------------------|--------------------|-------------|-----|----------|----------------|
|                                               |                                              | AVERAGE                                                                                                                  | MAXIMUM                                                                                                             | UNITS                                                                           | MINIMUM        | AVERAGE                                  | MAXIMUM            | UNITS       | -   | ANALYSI  | STIFE          |
| H                                             | SAMPLE<br>MEASUREMENT                        | ****                                                                                                                     | ****                                                                                                                |                                                                                 | 7.2            | *****                                    | 7.4                | ( 12)<br>SU | 0   | 99/99    | RCD            |
| 0400 T O O<br>SEE COMMENTS BELOW              | PERMIT<br>REQUIREMENT                        | ****                                                                                                                     | * ****                                                                                                              | ***                                                                             | 6.0<br>MINIMUM | *****                                    | 9.0<br>MAXIMUM     | SU          |     | WEEKL    | YRANG-         |
| ASE NEUTRALS & ACID<br>(METHOD 625), TOTAL    | SAMPLE<br>MEASUREMENT                        | ****                                                                                                                     | ****                                                                                                                |                                                                                 | *****          | NODI [9]                                 | NODI [9]           | ( 19)       |     |          |                |
| 6030 T 0 0                                    | PERMIT<br>REQUIREMENT                        | ****                                                                                                                     | *****                                                                                                               | ****<br>****                                                                    | *****          | MD AVQ                                   | DAILY MX           |             |     | OTRLY    | GRAB           |
| OLATILE COMPOUNDS,                            | SAMPLE<br>MEASUREMENT                        | ****                                                                                                                     | ****                                                                                                                |                                                                                 | *****          | NODI [9]                                 | NODI [9]           | ( 19)       |     |          |                |
| 78732 T O O<br>SEE COMMENTS BELOW             | PERMIT<br>REQUIREMENT                        | ****                                                                                                                     | *****                                                                                                               | ***                                                                             | *****          | REPORT<br>MD AVG                         | REPORT<br>DAILY MX | MG/L        |     | GTRLY    | PRAB           |
|                                               | SAMPLE<br>MEASUREMENT                        |                                                                                                                          |                                                                                                                     |                                                                                 |                |                                          | 100 P              |             |     |          |                |
|                                               | PERMIT<br>REQUIREMENT                        |                                                                                                                          |                                                                                                                     |                                                                                 |                |                                          |                    |             |     |          |                |
|                                               | SAMPLE<br>MEASUREMENT                        |                                                                                                                          |                                                                                                                     |                                                                                 |                |                                          |                    |             |     | A. A.    | gart.<br>Stock |
|                                               | PERMIT<br>REQUIREMENT                        |                                                                                                                          |                                                                                                                     |                                                                                 |                |                                          |                    |             |     |          |                |
|                                               | SAMPLE<br>MEASUREMENT                        |                                                                                                                          |                                                                                                                     | TENTE STORY                                                                     |                |                                          |                    |             |     |          |                |
|                                               | PERMIT<br>REQUIREMENT                        |                                                                                                                          |                                                                                                                     |                                                                                 |                |                                          |                    |             |     |          |                |
|                                               | SAMPLE<br>MEASUREMENT                        |                                                                                                                          |                                                                                                                     |                                                                                 |                |                                          |                    |             |     |          | 5674           |
|                                               | PERMIT:<br>REQUIREMENT                       |                                                                                                                          |                                                                                                                     |                                                                                 |                |                                          |                    |             |     |          |                |
| NAME/TITLE PRINCIPAL EXECUTIVE                |                                              | under penalty of law that the under my direction or sup                                                                  |                                                                                                                     |                                                                                 | ned .          | 10                                       |                    | TELEPHO     | NE  | L as     | DATE           |
| Michael T. Carroll Mgr. Pittsfield Remediatio | n Prog. to assure submitte or those submitte | that qualified personnel pr<br>d. Based on my inquiry of<br>persons directly responsible<br>d is, to the best of my know | operly gather and evaluat<br>the person or persons who<br>for gathering the informa<br>riedge and belief, true, acc | e the information<br>manage the syst<br>ation, the informa-<br>turate, and comp | lete.          | 7. Caro                                  | 4                  | 13 494-3    | 500 | 2004     | 9 21           |
| TYPED OR PRINTED                              |                                              | re that there are significant<br>the possibility of fine and                                                             |                                                                                                                     |                                                                                 |                | ATURE OF PRINCIPAL<br>FICER OR AUTHORIZI | ED AGENT           | DE NUMBE    | R   | YEAR     | MO DA          |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE COMMENTS FOR 0051. SEE PAGE 8 + 9 OF PERMIT. PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f D(fferent)

NAME GENERAL ELECTRIC CORPORATION

ADDRESSATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATION TITTEFTELD MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

MA0003891 PERMIT NUMBER

YEAR MO DAY

064 T DISCHARGE NUMBER

YEAR MO DAY

MAJOR (SUBR W.)

F - FINAL WASTEWATER TREATMENT (005)

rorm approved.

OMB No. 2040-0004

FROM 04 08 01 TO 04 08 31 \*\*\* NO DISCHARGE ! | \*\*\*

| PARAMETER                                      |                      | QU.                                                                                                                                | ANTITY OR LOAD!                                                                        | NG                                                          | QUAL           | ITY OR CONCENTE                          | RATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | NO.    | FREQUENCY<br>OF                    | SAMPLE<br>TYPE |
|------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|------------------------------------|----------------|
|                                                |                      | AVERAGE                                                                                                                            | MAXIMUM                                                                                | UNITS                                                       | MINIMUM        | AVERAGE                                  | MAXIMUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UNITS     |        | ANALYSIS                           | 1176           |
| To pul                                         | SAMPLE<br>MEASUREMEN | *****                                                                                                                              | ****                                                                                   |                                                             | 7.1            | *****                                    | 8.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ( 12)     | 0      | 99/99                              | RCDR           |
| DO400 T O O<br>BEE COMMENTS BELOW              | PERMIT<br>REQUIREMEN | ******                                                                                                                             | *****                                                                                  | ****                                                        | 6.0<br>MINIMUM | ****                                     | 9.0<br>MAXIMUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SU        |        | NEEKLY                             | RANG-(         |
| DIBENZOFURAN                                   | SAMPLE<br>MEASUREMEN | ******<br>IT                                                                                                                       | *****                                                                                  |                                                             | *****          | NODI [6]                                 | NODI [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ( 55)     |        |                                    |                |
| B1302 T O O<br>BEE COMMENTS BELOW              | PERMIT<br>REQUIREMEN | ******                                                                                                                             | *****                                                                                  | ****                                                        | ****           | MD AVG                                   | DAILY MX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PPT       |        | DNCE/<br>MONTH                     | COMPOS         |
|                                                | SAMPLE<br>MEASUREMEN | NT .                                                                                                                               |                                                                                        |                                                             |                |                                          | y 400<br>Dates<br>House                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |        |                                    |                |
|                                                | PERMIT<br>REQUIREMEN | т                                                                                                                                  |                                                                                        |                                                             |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                    |                |
|                                                | SAMPLE<br>MEASUREMEN | VT                                                                                                                                 |                                                                                        |                                                             |                |                                          | Tan-s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |        | 7,5<br>2,5<br>50,0<br>50,0<br>50,0 |                |
|                                                | PERMIT<br>REQUIREMEN | т                                                                                                                                  |                                                                                        |                                                             |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                    |                |
| 7 S.       | SAMPLE<br>MEASUREMEN | VT                                                                                                                                 |                                                                                        |                                                             |                |                                          | Secretary Secret |           |        |                                    |                |
|                                                | PERMIT<br>REQUIREMEN | т                                                                                                                                  |                                                                                        |                                                             |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Buz a     |        |                                    |                |
| 4 9                                            | SAMPLE<br>MEASUREMEN | VT .                                                                                                                               |                                                                                        |                                                             |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                    |                |
| 3 - N - N - N - N - N - N - N - N - N -        | PERMIT<br>REQUIREMEN | т                                                                                                                                  |                                                                                        |                                                             |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                    |                |
|                                                | SAMPLE<br>MEASUREMEN | NT .                                                                                                                               |                                                                                        |                                                             |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                    |                |
|                                                | PERMIT<br>REQUIREMEN |                                                                                                                                    |                                                                                        |                                                             |                |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |        |                                    |                |
| NAME/TITLE PRINCIPAL EXECUTIV                  |                      | rtify under penalty of law that to<br>pared under my direction or su                                                               |                                                                                        |                                                             | ned            | 10                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TELEPHON  | IE .   | D                                  | ATE            |
| Michael T. Carroll<br>Mgr. Pittsfield Remediat | to a                 | ssure that qualified personnel prolited. Based on my inquiry of nose persons directly responsible mitted is, to the best of my kno | roperly gather and evaluat<br>the person or persons who<br>e for gathering the informs | e the information<br>manage the syst<br>ation, the informa- | nem, M.        | 1. Can                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 494-35  | 00     | 2004                               | 9 21           |
| TYPED OR PRINTED                               | lan                  | natted is, to the best of my kno<br>n aware that there are significan<br>ading the possibility of fine and                         | nt penalties for submitting                                                            | false Information                                           | , SIGN         | ATURE OF PRINCIPAL<br>FICER OR AUTHORIZE | EVENITE /F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IEA NUMBE | 140 00 |                                    | AO DAY         |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 8 + 9 OF PERMIT. SEE COMMENTS FOR 0051.

PAGE

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f D(fferent)

NAME GENERAL ELECTRIC CORPORATION

ADDRESSATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATION ITTSFIELD

MA 01201

ATTN: MICHAEL T CARROLL, EHS&F

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

007 1 DISCHARGE NUMBER

MONITORING PERIOD YEAR MO DAY YEAR MO DAY FROM 04 OB UL TO

Form Approved. OMB No. 2040-0004

MAJOR (SUBR W ) F - FINAL

DISCHARGE TO HOUSATONIC RIVER

\*\*\* NO DISCHARGE | | \*\*\*

NOTE: Read instructions before completing this form.

| PARAMETER                                         |                       | QU                                                                                                                       | ANTITY OR LOADII                                                                                                                                                                       | NG                                                                                 | QUAL            | ITY OR CONCENT    | RATION                                      |          | NO.    | FREQUENCY      | SAMPL |
|---------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------|-------------------|---------------------------------------------|----------|--------|----------------|-------|
|                                                   |                       | AVERAGE                                                                                                                  | MAXIMUM                                                                                                                                                                                | UNITS                                                                              | MINIMUM         | AVERAGE           | MAXIMUM                                     | UNITS    | EX     | ANALYSIS       | TYPE  |
| EMPERATURE, WATER<br>EG. FAHRENHEIT               | SAMPLE<br>MEASUREMENT | ****                                                                                                                     | *****                                                                                                                                                                                  |                                                                                    | *****           | 67                | 67                                          | ( 15)    | 0      | 01/30          | GR    |
| 0011 W Q O<br>EE COMMENTS BELOW                   | PERMIT<br>REQUIREMENT | 计计计计计                                                                                                                    | ****                                                                                                                                                                                   | ***                                                                                | ****            | 70<br>MD AVG      | 75<br>DAILY MX                              | DEG. F   |        | DNCE/<br>MONTH | SRAB  |
| -1                                                | SAMPLE<br>MEASUREMENT | ****                                                                                                                     | *****                                                                                                                                                                                  | E U                                                                                | 6.8             | ****              | 7.6                                         | ( 12)    | 0      | 01/07          | GR    |
| 0400 W O O<br>EE COMMENTS BELOW                   | PERMIT<br>REQUIREMENT | *****                                                                                                                    | *****                                                                                                                                                                                  | ***                                                                                | 6. 0<br>MINIMUM | *****             | 9.0<br>MAXIMUM                              | SU<br>SU |        | WEEKLY         | RANG- |
|                                                   | SAMPLE<br>MEASUREMENT | ****                                                                                                                     | ****                                                                                                                                                                                   | 8 1 3                                                                              | *****           | NODI [9]          | NODI [9]                                    | (51)     |        | 9              |       |
| 9516 W O O<br>EE COMMENTS BELOW                   | PERMIT<br>REQUIREMENT | *****                                                                                                                    | *****                                                                                                                                                                                  | ***                                                                                | *****           | MD AVG            | DAILY MX                                    | PPB      |        | GTRLY          | BRAB  |
|                                                   | SAMPLE<br>MEASUREMENT | 0.053                                                                                                                    | 0,101                                                                                                                                                                                  | MGD                                                                                | *****           | ****              | 100 ********<br>1000 ********************** |          | 0      | 26/30          | CA    |
| 0050 W O O<br>EE COMMENTS BELOW                   | PERMIT<br>REQUIREMENT | REPORT<br>MO AVG                                                                                                         | DAILY MX                                                                                                                                                                               | MGD                                                                                | *****           | *****             | *****                                       | ****     |        | ONCE/<br>MONTH | CALCT |
|                                                   | SAMPLE<br>MEASUREMENT |                                                                                                                          |                                                                                                                                                                                        |                                                                                    |                 |                   |                                             |          | 100    |                |       |
| 2000<br>2000<br>2000<br>2000                      | PERMIT<br>REQUIREMENT |                                                                                                                          |                                                                                                                                                                                        |                                                                                    |                 |                   |                                             | Ö.       |        |                |       |
|                                                   | SAMPLE<br>MEASUREMENT |                                                                                                                          |                                                                                                                                                                                        | 3                                                                                  |                 |                   |                                             | )        |        |                |       |
|                                                   | PERMIT<br>REQUIREMENT |                                                                                                                          |                                                                                                                                                                                        |                                                                                    |                 |                   |                                             |          |        |                |       |
|                                                   | SAMPLE<br>MEASUREMENT |                                                                                                                          |                                                                                                                                                                                        |                                                                                    |                 |                   |                                             |          |        |                |       |
|                                                   | PERMIT<br>REQUIREMENT |                                                                                                                          |                                                                                                                                                                                        |                                                                                    |                 |                   |                                             |          |        |                |       |
| AME/TITLE PRINCIPAL EXECUTIVE C                   | OFFICER I certify     | under penalty of law that th                                                                                             | his document and all attachs<br>ervision in accordance with                                                                                                                            | ments were                                                                         |                 |                   | In                                          | TELEPHON | E .    | DA             | TE    |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | or those pubmittee    | that qualified personnel pr<br>d. Based on my inquiry of<br>persons directly responsible<br>d is, to the best of my know | revision in accordance with<br>operly gather and evaluate<br>the person or persons who r<br>for gathering the informati<br>dedge and belief, true, accu<br>penalties for submitting fa | the information<br>manage the system<br>ion, the information<br>rate, and complete | n, Mr           | Ture of PRINCIPAL | 41:                                         |          |        |                | 2/    |
| TYPED OR PRINTED                                  | Including             | the possibility of fine and i                                                                                            | Imprisonment for knowing                                                                                                                                                               | riolations.                                                                        |                 | ICER OR AUTHORIZE | I ADD                                       | A NUMBER | 1 12 0 | YEAR M         | O DAY |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SAMPLE AT MANHOLE PRIOR TO CITY STORM DRAIN.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location of Different)

NAME GENERAL ELECTRIC CORPORATION

ADDRESSATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATION ITTSFIELD

MA 01201

MO DAY YEAR

FROM 04

MA0003891

**PERMIT NUMBER** 

OB

MONITORING PERIOD YEAR MO DAY 04 OB 31

009 1

DISCHARGE NUMBER

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

OI

MAJOR (SUBR W ) F - FINAL

PROCESSES TO UNKAMET BROOK

\*\*\* NO DISCHARGE |

Form Approved.

OMB No. 2040-0004

| PARAMETER                                        |                       | QU                                                                                         | ANTITY OR LOADIN                                                                                                             | VG                                                         | QUAL           | ITY OR CONCENTE   | RATION         |             | NO.        | FREQUENCY | SAMPL |
|--------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------|-------------------|----------------|-------------|------------|-----------|-------|
|                                                  |                       | AVERAGE                                                                                    | MAXIMUM                                                                                                                      | UNITS                                                      | MINIMUM        | AVERAGE           | MAXIMUM        | UNITS       | EX         | ANALYSIS  | TYPE  |
| OD, 5-DAY<br>(20 DEG. C)                         | SAMPLE<br>MEASUREMENT | 0.3                                                                                        | 1.2                                                                                                                          | ( 26)<br>LBS/DY                                            | *****          | ****              | *****          |             | 0          | 01/07     | СР    |
| 00310 V 0 0<br>SEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT | 106<br>MD AVG                                                                              | 438<br>DAILY MX                                                                                                              | LBS/DY                                                     | *****          | *****             | ****           | ****        |            | MEENLY    | COMPC |
| Н                                                | SAMPLE<br>MEASUREMENT | ****                                                                                       | *****                                                                                                                        | 50                                                         | 6.9            | *****             | 7.4            | ( 12)<br>SU | 0          | 01/07     | GR    |
| 00400 V O O<br>SEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT | *****                                                                                      | *****                                                                                                                        | ***                                                        | 6.0<br>MINIMUM | ****              | 9.0<br>MAXIMUM | su          | - 1<br>- 1 | WEEKLY    | RANG- |
| SULIDS, TOTAL<br>SUSPENDED                       | SAMPLE<br>MEASUREMENT | 0.7                                                                                        | 2.5                                                                                                                          | ( 26)<br>LBS/DY                                            | *****          | *****             | *****          |             | 0          | 01/07     | СР    |
| 00530 V 0 0<br>SEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT | MO AVG                                                                                     | DAILY MX                                                                                                                     | LBS/DY                                                     | *****          | ****              | *****          | ****        |            | WEEKLY    | COMPO |
| JIL & GREASE                                     | SAMPLE<br>MEASUREMENT | ****                                                                                       | 0                                                                                                                            | LBS/DY                                                     | *****          | *****             | not 0          | MG/L        | 0          | 01/07     | GR    |
| 00556 V O O<br>SEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT | *****                                                                                      | DAILY MX                                                                                                                     | LBS/DY                                                     | *****          | *****             | DAILY MX       | MG/L        | 200 m      | WEEKLY    | GKAB  |
| POLYCHLORINATED<br>BIPHENYLS (PCBS)              | SAMPLE<br>MEASUREMENT | ****                                                                                       | ****                                                                                                                         |                                                            | *****          | (NODI [9]         | NODI [9]       | ( 19)       |            |           |       |
| 39516 V O O<br>SEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT | ****                                                                                       | 林林林林林 林                                                                                                                      | ***                                                        | *****          | REPORT<br>MO AVG  | DAILY MX       | MG/L        |            | TRLY      | BARE  |
| FLOW, IN CONDUIT OR<br>THRU TREATMENT PLANT      | SAMPLE<br>MEASUREMENT | 0.021                                                                                      | 0.295                                                                                                                        | ( 03)                                                      | *****          | *****             | *****          |             | 0          | 99/99     |       |
| 50050 V O O<br>BEE COMMENTS BELOW                | PERMIT<br>REQUIREMENT | REPORT<br>MD AVG                                                                           | DAILY MX                                                                                                                     | MGD                                                        | ****           | *****             | *****          | ****        |            | UOUS      | RCORD |
|                                                  | SAMPLE<br>MEASUREMENT |                                                                                            |                                                                                                                              |                                                            |                |                   |                |             |            | 10.0      |       |
|                                                  | PERMIT REQUIREMENT    |                                                                                            |                                                                                                                              |                                                            |                |                   |                |             |            |           |       |
| NAME/TITLE PRINCIPAL EXECUTIVE                   |                       |                                                                                            | his document and all attach<br>pervision in accordance with                                                                  |                                                            |                | - 0               |                | TELEPHON    | IE         | DA        | ATE   |
| Michael T. Carroll<br>Mgr. Pittsfield Remediatio | to assur              | e that qualified personnel p<br>ed. Based on my inquiry of<br>persons directly responsible | roperly gather and evaluate<br>the person or persons who is<br>e for gathering the informat<br>wiedge and belief, true, accu | the information<br>manage the system<br>ion, the informati | n, M           | T. Caro           | el 41          | 3 494-35    | 00         | 2004      | 9 21  |
| TYPED OR PRINTED                                 | l am aw               | are that there are significan                                                              | nt penalties for submitting fa<br>imprisonment for knowing                                                                   | ise information,                                           | SIGNA          | TURE OF PRINCIPAL |                | EA NUMBER   | R          | YEAR N    | 10 DA |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE DMRS 009A + 009B. REPORT SUM OF LOAD 09A + 09B, FOR BOD, TSS, FLOW. SAMPLE SEE PAGE 11 OF PERMIT. AT DISCHARGE POINT TO BROOK FOR PH, OIL & GREASE, AND PCB.

PAGE

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f Different)

NAME GENERAL ELECTRIC CORPORATION

ADDRESSATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

ATTN: MICHAEL T CARROLL, EHS&F

LOCATION TITTSFIELD

MA 01201

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

YEAR MO DAY

OB

UI

FROM U4

009 A DISCHARGE NUMBER MAJOR

MONITORING PERIOD YEAR MO DAY 31 Form Approved. OMB No. 2040-0004

(SUBR W ) F - FINAL

09A SAMPLE POINT BEFORE 009

\*\*\* NO DISCHARGE

NOTE: Read instructions before completing this form.

| PARAMETER                                                                                                                                                                                                                        |                       | QUANTITY OR LOADING                                                                                                                                                                                                                                           |                                                              |                 | QUALI              | QUALITY OR CONCENTRATION |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       | SAMPLE |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------|--------------------|--------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------|
|                                                                                                                                                                                                                                  |                       | AVERAGE                                                                                                                                                                                                                                                       | MAXIMUM                                                      | UNITS           | MINIMUM            | AVERAGE                  | MAXIMUM   | UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | EX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ANALYSIS                                                                                                              | TYPE   |
| to form that their day is their a                                                                                                                                                                                                | SAMPLE<br>MEASUREMENT | 0.1                                                                                                                                                                                                                                                           | 0.3                                                          | ( 26)<br>LBS/DY | ****               | *****                    | ****      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01/07                                                                                                                 | СР     |
|                                                                                                                                                                                                                                  | PERMIT<br>REQUIREMENT | MD AVG                                                                                                                                                                                                                                                        | DAILY MX                                                     | LBS/DY          | *****              | ****                     | *****     | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WEEKLY                                                                                                                | COMPO  |
|                                                                                                                                                                                                                                  | SAMPLE<br>MEASUREMENT | 0.04                                                                                                                                                                                                                                                          | 0.1                                                          | ( 26)<br>LBS/DY | ****               | ****                     | ****      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 01/07                                                                                                                 | СР     |
|                                                                                                                                                                                                                                  | PERMIT<br>REQUIREMENT | MD AVG                                                                                                                                                                                                                                                        | DAILY MX                                                     | LBS/DY          | ****               | ****                     | ****      | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VEEKLY                                                                                                                | COMPO  |
| -LOW, IN CONDUIT OR<br>THRU TREATMENT PLANT                                                                                                                                                                                      | SAMPLE<br>MEASUREMENT | 0.001                                                                                                                                                                                                                                                         | 0.013                                                        | ( 03)<br>MGD    | *****              | *****                    | *****     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99/99                                                                                                                 | RC     |
| 50050 V O O<br>SEE COMMENTS BELOW                                                                                                                                                                                                | PERMIT<br>REQUIREMENT | MO AVG                                                                                                                                                                                                                                                        | DAILY MX                                                     | MGD             | ****               | *****                    | ****      | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTIN<br>UOUS                                                                                                        | RCORD  |
|                                                                                                                                                                                                                                  | SAMPLE<br>MEASUREMENT |                                                                                                                                                                                                                                                               |                                                              |                 |                    |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contraction of the contraction o | 1 10 000                                                                                                              |        |
|                                                                                                                                                                                                                                  | PERMIT<br>REQUIREMENT |                                                                                                                                                                                                                                                               |                                                              |                 | The Market of Late |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |        |
|                                                                                                                                                                                                                                  | SAMPLE<br>MEASUREMENT |                                                                                                                                                                                                                                                               |                                                              | 1000            |                    |                          | Service 3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 3000                                                                                                                |        |
|                                                                                                                                                                                                                                  | PERMIT<br>REQUIREMENT |                                                                                                                                                                                                                                                               |                                                              |                 |                    |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |        |
|                                                                                                                                                                                                                                  | SAMPLE<br>MEASUREMENT |                                                                                                                                                                                                                                                               | 0                                                            | 3 3             |                    |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |        |
|                                                                                                                                                                                                                                  | PERMIT<br>REQUIREMENT |                                                                                                                                                                                                                                                               |                                                              |                 |                    |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |        |
| 917 56,                                                                                                                                                                                                                          | SAMPLE<br>MEASUREMENT |                                                                                                                                                                                                                                                               |                                                              | 8 5 3           |                    |                          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1873<br>1873 - 1873 - 1873 - 1873 - 1873 - 1873 - 1873 - 1873 - 1873 - 1873 - 1873 - 1873 - 1873 - 1873 - 1873 - 1873 |        |
|                                                                                                                                                                                                                                  | PERMIT REQUIREMENT    |                                                                                                                                                                                                                                                               |                                                              |                 |                    |                          |           | Control of the contro |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |        |
| NAME/TITLE PRINCIPAL EXECUTIVE O                                                                                                                                                                                                 | OFFICER 1 Certify     | under penalty of law that                                                                                                                                                                                                                                     | this document and all attach                                 | ments were      |                    |                          | T         | TEL EDUOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D.4                                                                                                                   |        |
| Michael T. Carroll  Mgr. Pittsfield Remediation Prog.  prepared under my direction or s to assure that qualified personnel submitted. Based on my inquiry or those persons directly responsis submitted is, to the best of my kn |                       | upervision in accordance with a system designed<br>properly gather and evaluate the information<br>of the person or persons who manage the system,<br>obe for gathering the information, the information<br>owiedge and belief, true, accurate, and complete. |                                                              | M. T. Carroll   |                    |                          | 3 494-35  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 2/                                                                                                                  |        |
| TYPED OR PRINTED                                                                                                                                                                                                                 | I am awı              | ire that there are significa                                                                                                                                                                                                                                  | nt penalties for submitting fa<br>i imprisonment for knowing | lee Information |                    | TURE OF PRINCIPAL E      |           | EA NUMBE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YEAR M                                                                                                                | O DAY  |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 11 OF PERMIT. SEE DMR 0091.

SAMPLE AT 09A.

BIASE Chartestand At and several and the second and

NAME GENERAL ELECTRIC CORPORATION ADDRESSATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATION ITTSFIELD

MA 01201

ATTN: MICHAEL T CARROLL, EHS&F

DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

TO

174

OI

MA0003891 PERMIT NUMBER

FROM U4

YEAR MO DAY

OB

009 B DISCHARGE NUMBER

31

YEAR MO DAY

MAJOR (SUBR W )

F - FINAL 09B SAMPLE POINT PRIOR TO 009

\*\*\* NO DISCHARGE | | \*\*\*

NOTE: Read instructions before completing this form.

OMB No. 2040-0004

| PARAMETER                                                                                                                                                                                                                                     |                       | Q                                                                                                                                      | QUANTITY OR LOADING                                                                                                                       |                   | QUALITY OR CONCENTRATION |                                             |                                                              |          |      | FREQUENCY              | SAMPLE |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------|---------------------------------------------|--------------------------------------------------------------|----------|------|------------------------|--------|
|                                                                                                                                                                                                                                               |                       | AVERAGE                                                                                                                                | MAXIMUM                                                                                                                                   | UNITS             | MINIMUM                  | AVERAGE                                     | MAXIMUM                                                      | UNITS    | EX   | ANALYSIS               | TYPE   |
| CO DEG. C)                                                                                                                                                                                                                                    | SAMPLE<br>MEASUREMENT | 0.5                                                                                                                                    | 1.0                                                                                                                                       | ( 26)             | ****                     | ****                                        | ****                                                         |          | 0    | 01/DW                  | СР     |
| 00310 V O O<br>BEE COMMENTS BELOW                                                                                                                                                                                                             | PERMIT<br>REQUIREMENT | 106<br>MD AVG                                                                                                                          | DAILY MX                                                                                                                                  | LBS/DY            | *****                    | *****                                       | ****                                                         | ****     |      | WEEKLY                 | COMPO  |
| GOLIDS, TOTAL<br>SUSPENDED                                                                                                                                                                                                                    | SAMPLE<br>MEASUREMENT | 1.2                                                                                                                                    | 2.5                                                                                                                                       | ( 26)<br>LBS/DY - | *****                    | *****                                       | ****                                                         |          | 0    | 01/DW                  | СР     |
| 00530 V 0 0<br>SEE COMMENTS BELOW                                                                                                                                                                                                             | PERMIT<br>REQUIREMENT | 213<br>MO AVG                                                                                                                          | DAILY MX                                                                                                                                  | LBS/DY            | *****                    | *****                                       | *****                                                        | ****     |      | WEEKLY                 | COMPU  |
| LOW, IN CONDUIT OR<br>THRU TREATMENT PLANT                                                                                                                                                                                                    | SAMPLE<br>MEASUREMENT | 0.020                                                                                                                                  | 0.292                                                                                                                                     | ( 03)<br>MGD      | *****                    | ****                                        | *****                                                        | 13 T E   | 0    | 99/99                  | RC     |
| 50050 V O O<br>SEE COMMENTS BELOW                                                                                                                                                                                                             | PERMIT<br>REQUIREMENT | REPORT<br>MO AVG                                                                                                                       | DAILY MX                                                                                                                                  | MGD               | ***                      | ****                                        | ****                                                         | ****     |      | UDUS                   | RCORD  |
|                                                                                                                                                                                                                                               | SAMPLE<br>MEASUREMENT |                                                                                                                                        |                                                                                                                                           | 100               | ξ - ξ                    |                                             |                                                              |          |      | Can<br>Suncy           |        |
| Manus<br>Sara                                                                                                                                                                                                                                 | PERMIT<br>REQUIREMENT |                                                                                                                                        |                                                                                                                                           |                   |                          |                                             |                                                              |          |      |                        |        |
|                                                                                                                                                                                                                                               | SAMPLE<br>MEASUREMENT |                                                                                                                                        |                                                                                                                                           |                   |                          |                                             | SUNA<br>SUNA<br>SUNA<br>SUNA<br>SUNA<br>SUNA<br>SUNA<br>SUNA |          |      | \1)<br>\2,2\1<br>\2003 |        |
|                                                                                                                                                                                                                                               | PERMIT<br>REQUIREMENT |                                                                                                                                        |                                                                                                                                           |                   |                          |                                             |                                                              |          |      |                        |        |
|                                                                                                                                                                                                                                               | SAMPLE<br>MEASUREMENT |                                                                                                                                        |                                                                                                                                           |                   |                          |                                             |                                                              |          | l ä  | C <sub>T</sub>         |        |
|                                                                                                                                                                                                                                               | PERMIT<br>REQUIREMENT |                                                                                                                                        |                                                                                                                                           |                   |                          |                                             |                                                              |          |      |                        |        |
|                                                                                                                                                                                                                                               | SAMPLE<br>MEASUREMENT |                                                                                                                                        |                                                                                                                                           |                   |                          |                                             |                                                              |          |      |                        |        |
|                                                                                                                                                                                                                                               | PERMIT<br>REQUIREMENT |                                                                                                                                        |                                                                                                                                           |                   |                          |                                             |                                                              |          |      |                        |        |
| NAME/TITLE PRINCIPAL EXECUTIVE                                                                                                                                                                                                                |                       |                                                                                                                                        | this document and all attach<br>spervision in accordance with                                                                             |                   |                          |                                             |                                                              | TELEPHON | IE   | DA                     | TE     |
| Michael T. Carroll  Mgr. Pittsfield Remediation Prog.  to assure that qualified personnel property g submitted. Based on my inquiry of the person or those persons directly responsible for gath submitted is, to the best of my knowledge as |                       | properly gather and evaluate<br>of the person or persons who in<br>the for gathering the information<br>owledge and belief, true, accu | the information<br>manage the system,<br>ion, the information<br>rate, and complete.                                                      |                   | 7. Caroll                | 41                                          | 3 494-35                                                     |          | 2004 | 9 21                   |        |
|                                                                                                                                                                                                                                               |                       |                                                                                                                                        | that there are significant penalties for submitting false information,<br>he possibility of fine and imprisonment for knowing violations. |                   |                          | OFFICER OR AUTHORIZED AGENT  AREA CODE NUMB |                                                              |          |      | YEAR M                 | O DAY  |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

SEE PAGE 11 OF PERMIT. SEE DMR 0091; SAMPLE AT 09B.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f D(fferent)

NAME GENERAL ELECTRIC CORPORATION

ADDRESSATTN: JEFFREY G. RUEBESAM

100 WODDLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTSFIELD

MA 01201

ATTN: MICHAEL T CARROLL, EHS&F

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES)
DISCHARGE MONITORING REPORT (DMR)

TO

DAY

UL

MA0003891 PERMIT NUMBER

FROM

MO

CE

SUM A DISCHARGE NUMBER

YEAR

MONITORING PERIOD

MAJOR (SUBR W ) F - FINAL

Form Approved.

OMB No. 2040-0004

\*\*\* NO DISCHARGE | | \*\*\*

NOTE: Read instructions before completing this form.

METALS: 001, 004, 005, 007, 009, 011

| PARAMETER                                         |                           | QUA                                                                                | ANTITY OR LOADIN                                                                                                          | IG                                                             | QUALIT  | Y OR CONCENTRA      | ATION                                   |               | NO.  | FREQUENCY      | SHIVIT LL      |
|---------------------------------------------------|---------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|---------|---------------------|-----------------------------------------|---------------|------|----------------|----------------|
|                                                   |                           | AVERAGE                                                                            | MAXIMUM                                                                                                                   | UNITS                                                          | MINIMUM | AVERAGE             | MAXIMUM                                 | UNITS         | 5    | ANALYSIS       | TYPE           |
| HOSPHORUS, TOTAL                                  | SAMPLE<br>MEASUREMENT     | ****                                                                               | 0.4                                                                                                                       | ( 26)<br>LBS/DY                                                | *****   | *****               | ****                                    |               | 0    | 03/30          | СР             |
| 0665 1 0 0 S<br>FFLUENT GROSS VALUE               | PERMIT<br>REQUIREMENT     | *****                                                                              | REPORT<br>DAILY MX                                                                                                        | LBS/DY                                                         | *****   | *****               | ****                                    | *****<br>**** | -1   | DNCE/<br>MONTH | COMPO          |
| TCKEL<br>OTAL RECOVERABLE                         | SAMPLE<br>MEASUREMENT     | ****                                                                               | 0.02                                                                                                                      | ( 26)<br>LBS/DY                                                | ****    | *******             | ******                                  |               | 0    | 03/30          | СР             |
| 1074 1 0 0<br>FFLUENT GROSS VALUE                 | PERMIT<br>REQUIREMENT     | ****                                                                               | DAILY MX                                                                                                                  | LBS/DY                                                         | *****   | ****                | *****                                   | ***           |      | MONTH          | EDEC MARKETINE |
| TOTAL RECOVERABLE                                 | SAMPLE<br>MEASUREMENT     | ****                                                                               | 0.02                                                                                                                      | ( 26)<br>LBS/DY                                                | *****   | *****               | *****                                   | 2             | 0    | 03/30          | СР             |
| 1079 1 0 0<br>FFLUENT GROSS VALUE                 | PERMIT<br>REQUIREMENT     | ****                                                                               | DAILY MX                                                                                                                  | LBS/DY                                                         | *****   | *****               | *****                                   | ****          |      | MONTH          |                |
| INC<br>OTAL RECOVERABLE                           | SAMPLE<br>MEASUREMENT     | ****                                                                               | 0.3                                                                                                                       | LBS/DY                                                         | *****   | *****               | *****                                   | \$ 2 %        | 0    | 02/07          | СР             |
| 1094 1 0 0<br>FFLUENT GROSS VALUE                 | PERMIT<br>REQUIREMENT     | *****                                                                              | DAILY MX                                                                                                                  | LBS/DY                                                         | ****    | *****               | *****                                   | ***           |      | WEEKLY         |                |
| LUMINUM, TOTAL<br>(AS AL)                         | SAMPLE<br>MEASUREMENT     | ***                                                                                | 1.8                                                                                                                       | ( 26)<br>LBS/DY                                                | *****   | ****                | ****                                    |               | 0    | 03/30          | СР             |
| 1105 1 0 0<br>FFLUENT GROSS VALUE                 | PERMIT<br>REQUIREMENT     | 存在於本格特                                                                             | REPORT<br>DAILY MX                                                                                                        | LBS/DY                                                         | ****    | ****                | *****                                   | ****          |      | MONTH          |                |
| ADMIUM<br>OTAL RECOVERABLE                        | SAMPLE<br>MEASUREMENT     | ****                                                                               | 0.004                                                                                                                     | LBS/DY                                                         | *****   | *****               | 58 ************************************ |               | 0    |                | СР             |
| 1113 1 0 0<br>FFLUENT GROSS VALUE                 | PERMIT<br>REQUIREMENT     | ****                                                                               | DAILY MX                                                                                                                  | LBS/DY                                                         | *****   | *****               | *****                                   | ****          |      | MONTH          |                |
| EAD<br>OTAL RECOVERABLE                           | SAMPLE<br>MEASUREMENT     | *****                                                                              | 0.06                                                                                                                      | ( 26)<br>LBS/DY                                                | *****   | *****               | ****                                    |               | 0    | 1              | CP             |
| 1114 1 0 0<br>FFLUENT GROSS VALUE                 | PERMIT<br>REQUIREMENT     | ****                                                                               | DAILY MX                                                                                                                  | LBS/DY                                                         | ****    | ****                | *****                                   | ****          |      | HEEKLY         | CUMPL          |
| AME/TITLE PRINCIPAL EXECUTIVE                     |                           |                                                                                    | his document and all attach<br>pervision in accordance with                                                               |                                                                |         | 10                  | 1                                       | TELEPHON      | VE . | D              | ATE            |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation | to assure t<br>submitted. | hat qualified personnel p<br>Based on my inquiry of<br>ersons directly responsible | roperly gather and evaluate<br>the person or persons who<br>e for gathering the informat<br>wledge and belief, true, accu | the information<br>manage the system,<br>tion, the information | m.      | 7. Carol            | 41                                      | 3 494-35      | 000  | 2004           | 9 21           |
| TYPED OR PRINTED                                  | 1 am awar                 | e that there are significan                                                        | at penalties for submitting for<br>imprisonment for knowing                                                               | alse Information,                                              | SIGNA   | TURE OF PRINCIPAL E |                                         | EA NUMBE      | R    | YEAR N         | 10 DA          |

COMMENTS AND EXPLANATION OF ANY VIOLATIONS (Reference all attachments here)

COMPOSITE PROPORTIONATE TO FLOW.

PERMITTEE NAME/ADDRESS (Include Facility Name/Location (f D(ferent)

GENERAL ELECTRIC CORPORATION

ADDRESSATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILIT

LOCATION

# NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

MONITORING PERIOD

MA0003891 PERMIT NUMBER

SUM A DISCHARGE NUMBER MAJOR (SUBR W ) F - FINAL

Form Approved. OMB No. 2040-0004

METALS: 001, 004, 005, 007, 009, 011

\*\*\* NO DISCHARGE |

| TV   | Myself started W. L. Au |     | and the total the total the total | METABLE |       |              |        | 10 | CHALL     | THIN O | LEMO |      |         |
|------|-------------------------|-----|-----------------------------------|---------|-------|--------------|--------|----|-----------|--------|------|------|---------|
|      | SENERAL E               | · 1 | ECTRIC CO                         | AL MINA |       |              | YEAR   | МО | DAY       | Per 50 | YEAR | МО   | DAY     |
| LION | PITTSFIEL               | D.  |                                   | MA      | 01201 | FROM         | 04     | 08 | OI        | TO     | 04   | 08   | 31      |
| N:   | MICHAEL                 | T   | CARROLL                           | EHS&F   |       |              |        |    |           | 1      |      |      | *       |
|      | DADAMETER               |     |                                   |         |       | OLIANTITY OR | LOADIA | ıc | - Comment |        | 0110 | LITY | D CONOR |

| PARAMETER                                         |                       | QU                            | ANTITY OR LOADIN                                          | NG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | QUALI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TY OR CONCENTRA       | ATION   |          | NO.                | FREQUENCY              | SAMPLE |
|---------------------------------------------------|-----------------------|-------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|----------|--------------------|------------------------|--------|
|                                                   |                       | AVERAGE                       | MAXIMUM                                                   | UNITS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MINIMUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AVERAGE               | MAXIMUM | UNITS    | EX                 | ANALYSIS               | TYPE   |
| HROMIUM<br>OTAL RECOVERABLE                       | SAMPLE<br>MEASUREMENT | *****                         | 0.02                                                      | ( 26)<br>LBS/DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ****                  | ****    |          | 0                  | 03/30                  | СР     |
| 1118 1 0 0<br>FFLUENT GROSS <mark>VALUE</mark>    | PERMIT<br>REQUIREMENT | ***                           | REPORT<br>DAILY MX                                        | LBS/DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *****                 | *****   | ****     |                    | DNCE/<br>MONTH         | COMPOS |
| DPPER                                             | SAMPLE<br>MEASUREMENT | *****                         | 0.14                                                      | ( 24)<br>LBS/DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ****                  | ***     |          | 0                  | 02/07                  | СР     |
| 1119 1 0 0<br>FFLUENT GROSS VALUE                 | PERMIT<br>REQUIREMENT | ****                          | REPORT<br>DAILY MX                                        | LBS/DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *****                 | ****    | ****     |                    | WEEKLY                 | COMPO  |
| YANIDE, TOTAL<br>ECOVERABLE                       | SAMPLE<br>MEASUREMENT | ****                          | 0.08                                                      | (26)<br>LBS/DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ****                  | *****   |          | 0                  | 03/30                  | СР     |
| 8248 1 0 0<br>FFLUENT GROSS VALUE                 | PERMIT<br>REQUIREMENT | *****                         | DAILY MX                                                  | LBS/DY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *****                 | *****   | ****     |                    | DNCE/<br>MONTH         | SHAB   |
|                                                   | SAMPLE<br>MEASUREMENT |                               |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |          | 1017<br>1 1<br>1 1 | Control of Association |        |
|                                                   | PERMIT<br>REQUIREMENT |                               |                                                           | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |          |                    |                        |        |
|                                                   | SAMPLE<br>MEASUREMENT |                               |                                                           | The state of the s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |          |                    | TATALON OF             |        |
| **                                                | PERMIT<br>REQUIREMENT |                               |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Control of the Contro |                       |         |          |                    |                        |        |
|                                                   | SAMPLE<br>MEASUREMENT |                               |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |          |                    |                        |        |
|                                                   | PERMIT<br>REQUIREMENT |                               |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |          |                    |                        |        |
|                                                   | SAMPLE<br>MEASUREMENT |                               |                                                           | 2 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55 EL 91<br>100 St EL |         |          |                    | party.                 |        |
|                                                   | PERMIT REQUIREMENT    |                               |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         |          |                    |                        |        |
| AME/TITLE PRINCIPAL EXECUTIVE                     | OFFICER   I certify i | under penalty of law that the | his document and all attachs                              | ments were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |         | TELEPHON | IE                 | DA                     | TE     |
| Michael T. Carroll<br>Mgr. Pittsfield Remediation |                       |                               | 1 1                                                       | 7. Caro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | el 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3 494-35              | 00      | 2004     | 21                 |                        |        |
| TYPED OR PRINTED                                  | l am awa              | re that there are significan  | t penalties for submitting fa<br>imprisonment for knowing | ise information,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nformation, SIGNATURE OF PRINCIPAL EXECUTIVE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |         | A NUMBE  | R                  | YEAR M                 | O DAY  |

COMPOSITE PROPORTIONATE TO FLOW.

NAME GENERAL ELECTRIC CORPORATION ADDRESSATTN: JEFFREY G. RUEBESAM

100 WOODLAWN AVENUE

PITTSFIELD

MA 01201

FACILITY GENERAL ELECTRIC COMPANY

LOCATIONPITTSFIELD

MA 01201

DISCHARGE MONITORING REPORT (DMR)

MA0003891 PERMIT NUMBER

SUM B DISCHARGE NUMBER MAJOR (SUBR W )

F - FINAL TOXICS: 001, 004, 005, 007, 009, 011

\*\*\* NO DISCHARGE | | \*\*\*

ו טוווו הףףוטיסע.

OMB No. 2040-0004

|      |      | N  | ONITO | RING | PERIO | D  |     |
|------|------|----|-------|------|-------|----|-----|
|      | YEAR | МО | DAY   | 3    | YEAR  | МО | DAY |
| FROM | 04   | 08 | 01    | ТО   | 04    | 08 | 31  |
|      |      | -  | -     |      |       |    |     |

| PARAMETER                                             |                       | QUA                                                                                                                           | INTITY OR LOADI                                                                                                        | VG                                                                        | QUALIT              | Y OR CONCENTRA                                                        | ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         | NO.  | FREQUENCY<br>OF | SAMPLE |
|-------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------|-----------------|--------|
|                                                       |                       | AVERAGE                                                                                                                       | MAXIMUM                                                                                                                | UNITS                                                                     | MINIMUM             | AVERAGE                                                               | MAXIMUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | UNITS                                   | EX   | ANALYSIS        | TYPE   |
| NOEL STAT 7DAY CHR C                                  | SAMPLE<br>MEASUREMENT | ***                                                                                                                           | ****                                                                                                                   |                                                                           | 100                 | ***                                                                   | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % 23)                                   | 0    | 01/30           | СР     |
| TBD3B 1 0 0<br>EFFLUENT GROSS VALUE                   | PERMIT<br>REQUIREMENT | *****                                                                                                                         | *****                                                                                                                  | ***                                                                       | REPORT<br>DAILY MIN | ****                                                                  | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ER-<br>CENT                             |      | INCE/<br>MONTH  | COMPO  |
| NOAEL STAT 48HR ACU                                   | SAMPLE<br>MEASUREMENT | ****                                                                                                                          | *****                                                                                                                  |                                                                           | NODI [8]            | *****                                                                 | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ( 23)                                   |      |                 |        |
| TDAGE 1 0 0<br>EFFLUENT GROSS VALUE                   | PERMIT<br>REQUIREMENT | ****                                                                                                                          | *****                                                                                                                  | ***                                                                       | REPORT<br>DAILY MN  | *****                                                                 | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PER-<br>CENT                            | -1   | ONCE/<br>MONTH  | COMPO: |
| NDAEL STATRE 48HR AC                                  | SAMPLE<br>MEASUREMENT | ****                                                                                                                          | ****                                                                                                                   |                                                                           | 100                 | ****                                                                  | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>%</b> 23)                            | 0    | 01/30           | 01/30  |
| TDM3D 1 0 0<br>EFFLUENT GROSS VALUE                   | PERMIT<br>REQUIREMENT | ****                                                                                                                          | <b>非非非非非</b> 4                                                                                                         | ***                                                                       | 35<br>DAILY MN      | *****                                                                 | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PER-<br>CENT                            | 1000 | MONTH           | COMPO  |
|                                                       | SAMPLE<br>MEASUREMENT |                                                                                                                               |                                                                                                                        |                                                                           |                     |                                                                       | Code<br>Vision<br>Investigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |      | G Constant      |        |
|                                                       | PERMIT<br>REQUIREMENT |                                                                                                                               |                                                                                                                        |                                                                           |                     |                                                                       | les a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |      |                 |        |
|                                                       | SAMPLE<br>MEASUREMENT |                                                                                                                               |                                                                                                                        |                                                                           |                     |                                                                       | Secretary Secret |                                         |      | 200-            |        |
| 00043                                                 | PERMIT<br>REQUIREMENT |                                                                                                                               |                                                                                                                        |                                                                           |                     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |      |                 |        |
|                                                       | SAMPLE<br>MEASUREMENT |                                                                                                                               |                                                                                                                        |                                                                           |                     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |      | 1               |        |
|                                                       | PERMIT<br>REQUIREMENT |                                                                                                                               |                                                                                                                        |                                                                           |                     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |      |                 |        |
|                                                       | SAMPLE<br>MEASUREMENT |                                                                                                                               |                                                                                                                        |                                                                           |                     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 7 7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      | 2 - Ges         |        |
|                                                       | PERMIT<br>REQUIREMENT |                                                                                                                               |                                                                                                                        |                                                                           |                     |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |      |                 |        |
| NAME/TITLE PRINCIPAL EXECUTIVE                        | OFFICER   1 certify a | inder penalty of law that the<br>under my direction or supe                                                                   | is document and all attach                                                                                             | ments were                                                                | м                   | 10                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TELEPHON                                | E    | DA              | TE     |
| Michael T. Carroll  Mgr. Pittsfield Remediation Prog. |                       | that qualified personnel pro<br>I. Based on my inquiry of the<br>persons directly responsible<br>I is, to the best of my know | perly gather and evaluate<br>he person or persons who i<br>for gathering the informat<br>ledge and belief, true, accu- | the information<br>manage the syste<br>ion, the information, and complete | m, Me               | m. Caroll                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3 494-350                               | 00   | 2004            | 9 21   |
| l am aw                                               |                       | re that there are significant<br>the possibility of fine and in                                                               | penalties for submitting fa<br>apprisonment for knowing                                                                | ise information,<br>violations.                                           | SIGNAT              | SIGNATURE OF PRINCIPAL EXECUTIVE OFFICER OR AUTHORIZED AGENT CODE NUM |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |      | YEAR M          | O DAY  |

MONTHLY DRY WEATHER TESTING. COMPOSITE PROPORTIONATE TO FLOW. FOR JULY, AUG., SEPT. REPORT ACUTE AND CHRONIC. SEE DMR SUMC FOR QUARTERLY WET WEATHER ACUTE. SUBMIT THIS DMR WITH A NODI '9' WHEN SUBMITTING WET WEATHER REGULTS ON DMR SUMC

# Attachment C

Toxicity Evaluation of Wastewaters
Discharged From the General Electric
Plant; Pittsfield, Massachusetts
[Samples Collected in September 2004]



# Toxicity Evaluation of Wastewaters Discharged from The General Electric Plant Pittsfield, Massachusetts

Samples collected in September 2004

#### Submitted to:

General Electric
Area Environmental & Facility Programs
100 Woodlawn Avenue
Pittsfield, Massachusetts 01201

SGS Sample ID: TA4-I0-P283

Study Director: Ken Holliday

22 September 2004

SGS Environmental Services
1258 Greenbrier Street
Charleston, West Virginia 25311-1002
Tel: 304.346.0725 Fax: 304.346.0761
www.sgs.com

# **Signatures and Approval**

**Submitted by:** 

SGS Environmental Services

1258 Greenbrier Street

Charleston, West Virginia 25311-1002

Tel: 304.346.0725 Fax: 304.346.0761

www.sgs.com

September 22, 2004

Date

Ken Holliday Study Director ken\_holliday@sgs.com

Titshina L. Mim's

**Technical Writer** 

September 22, 2004

**Project Manager** 

barbara\_hensley@sgs.com

September 22, 2004

Date

# Whole Effluent Toxicity Test Report Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

| _  |      |      |     |     |   |
|----|------|------|-----|-----|---|
| Fx |      | ıto. | a 1 | n n |   |
|    | _, , |      |     |     | t |

September 22, 2004

Date

Authorized signature

Jeannie Latterner

Name

QA/QC Manager

Title

SGS Environmental Services

Laboratory

# **Table of Contents**

|                                                        | Page |
|--------------------------------------------------------|------|
| Signatures and Approval                                | 2    |
| Whole Effluent Toxicity Test Report Certification      | 3    |
| Summary                                                | 6    |
| 1.0 Introduction                                       | 7    |
| 1.1 Background                                         | 7    |
| 1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977) | 8    |
| 1.3 Objective of the General Electric Study            | 8    |
| 2.0 Materials and Methods                              | 9    |
| 2.1 Protocol                                           | 9    |
| 2.2 Effluent Sample                                    | 9    |
| 2.3 Dilution Water                                     | 10   |
| 2.4 Reference Control Water                            | 10   |
| 2.5 Test Organisms                                     | 11   |
| 2.6 Test Procedures                                    | 11   |
| 2.7 Test Monitoring                                    | 12   |
| 2.8 Reference Toxicity Tests                           | 13   |
| 3.0 Statistics                                         | 14   |
| Flowchart for determination of the LC50                | 15   |
| 4.0 Results                                            | 16   |
| 4.1 Effluent Toxicity Test                             | 16   |
| 4.2 Reference Toxicity Test                            | 16   |
| Reference Documents                                    | 17   |
| Appendix I - References                                | 22   |
| Appendix II – Chain of Custody                         | 40   |
| Appendix III - Bench Data                              | 42   |
| Appendix IV - U.S. EPA Region I Toxicity Test Summary  | 48   |

# **List of Tables**

|         |                                                                                                                                                             | Page |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table 1 | Matheda and detection limits of chemical analyses of                                                                                                        | 18   |
| Table 1 | Methods and detection limits of chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)               |      |
| Table 2 | Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)                    | 19   |
| Table 3 | The water quality measurements recorded during the 48-hour static toxicity test exposing <i>Daphnia pulex</i> to General Electric Pittsfield Plant effluent | 20   |
| Table 4 | Cumulative percent mortalities recorded during the 48-hour static toxicity test exposing <i>Daphnia pulex</i> to General Electric Pittsfield Plant effluent | 21   |

# **Summary**

# Static Acute Toxicity Test with *Daphnia pulex*

Sponsor:

General Electric

Protocol Title:

Acute Aquatic Toxicity Testing, SGS Document

Control Number 7002, version 4.0

SGS Study Number:

TA4-I0-P283

Test Material:

Composite effluent from the General Electric

Company located in Pittsfield, Massachusetts

GE Sample ID:

A5945C

Dilution Water:

Water from the Housatonic River (grab sample)

GE Sample ID:

A5944R

Dates Collected:

September 12, 2004 to September 13, 2004

Date Received:

September 14, 2004

Test Dates:

September 14, 2004 to September 16, 2004

**Test Concentrations:** 

100% effluent 75% effluent 50% effluent 35% effluent 15% effluent 5% effluent

dilution water control reference control

secondary reference control (sodium thiosulfate)

Results:

The 48-hour LC50 value was determined to be >100% effluent. The No-Observed-Acute-

Effect-Level (NOAEL) was observed to be 100%

effluent.

#### 1.0 Introduction

### 1.1 Background

In 1972, amendments were made to the Clean Water Act (CWA) prohibiting the discharge of any pollutant from a point source to waters of the United States, unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Since the passing of the 1972 amendments to the CWA, significant progress has been made in cleaning up industrial process wastewater and municipal sewage.

The purpose of the National Pollutant Discharge Elimination System (NPDES) Program is to protect human health and the environment. The Clean Water Act requires that all point sources discharging pollutants into waters of the United States must obtain an NPDES permit. By point sources, EPA means discrete conveyances such as pipes or man made ditches.

For many years, discharge limits were based on available technology for wastewater treatment. However, in 1984, the U.S. Environmental Protection Agency (EPA) released a national policy statement entitled "Policy for the Development of Water Quality-Based Permit Limitations for Toxic Pollutants" (U.S. EPA, 1984) which addresses the control of toxic pollutants beyond technology-based requirements in order to meet water quality standards. To implement the new policy, guidance was provided to the respective state and regional permit personnel in the EPA's "Technical Support Document for Water Quality-Based Toxics Control" (U.S. EPA, 1985; U.S. EPA, 1991). The EPA's policy statement and the support document recommended that, where appropriate, permit limits should be based on effluent toxicity as measured in aquatic toxicity tests.

# 1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977)

The Clean Water Act is a 1977 amendment to the Federal Water Pollution Control Act of 1972, which set the basic structure for regulating discharges of pollutants to waters of the United States. The law gave EPA the authority to set effluent standards on an industry basis (technology-based) and continued the requirements to set water quality standards for all contaminants in surface waters. The CWA makes it unlawful for any person to discharge any pollutant from a point source into navigable waters unless a permit (NPDES) is obtained under the Act. The 1977 amendments focused on toxic pollutants. In 1987, the CWA was reauthorized and again focused on toxic substances, authorized citizen suit provisions, and funded sewage treatment plants (POTWs) under the Construction Grants Program. The CWA provisions for the delegation by EPA of many permitting, administrative, and enforcement aspects of the law to state governments. In states with the authority to implement CWA programs, EPA still retains oversight responsibilities.

# 1.3 Objective of the General Electric Study

The objective of this study was to measure the acute toxicity of the composite wastewater discharged by the General Electric facility located in Pittsfield, Massachusetts, using *Daphnia pulex* under static conditions. Whereas *D. pulex* are not considered locally important, they are routinely used by regulatory agencies and contract laboratories nationwide for toxicity testing. A toxicity test was conducted from September 14, 2004 to September 16, 2004 at SGS Environmental Services, Charleston, West Virginia. All original raw data and the final report produced for this study are stored in SGS's archives at the above location.

#### 2.0 Materials and Methods

#### 2.1 Protocol

Procedures used in this acute toxicity test followed those described in the SGS Standard Operating Procedure (SOP) entitled *Acute Aquatic Toxicity Testing*, SGS document control number 7002, version 4.0. This SOP generally follows the standard methodology presented in *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms* (U.S. EPA, 1993. Additional SOPs used in this study are outlined below:

| Title                                        | Document<br>Number | Version |
|----------------------------------------------|--------------------|---------|
| Culture Waters for Aquatic Toxicity Testing  | 7005               | 4.0     |
| Culture of <i>Daphnia</i>                    | 7006               | 5.0     |
| Reference Toxicant Testing                   | 7008               | 5.0     |
| Sample Handling for Aquatic Toxicity Testing | 7009               | 4.0     |

Copies of these documents are included in the References section of this report.

# 2.2 Effluent Sample

The effluent sample (A5945C) was collected by GE personnel September 12, 2004 to September 13, 2004. Upon receipt at SGS on September 14, 2004, the sample temperature was 4.2° C. The effluent sample was characterized as having

| Parameter                          | Result |
|------------------------------------|--------|
| Total Hardness                     | 400    |
| Alkalinity (as CaCO <sub>3</sub> ) | 343    |
| pH                                 | 7.48   |
| Specific Conductance               | 767    |
| Dissolved Oxygen Concentration*    | 8.71   |

<sup>\*</sup>Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 20°C).

The effluent sample was observed to be clear and colorless.

#### 2.3 Dilution Water

Dilution water consisted of receiving water collected from the Housatonic River. The receiving water (A5944R) was collected by General Electric personnel on September 13, 2004. Upon receipt at SGS on September 14, 2004, the sample temperature was 4.2°C. The dilution water was characterized as having

| Parameter                       | Result |
|---------------------------------|--------|
| Total Hardness                  | 90     |
| Alkalinity (as CaCO₃)           | 69     |
| pH                              | 6.98   |
| Specific Conductance            | 128    |
| Dissolved Oxygen Concentration* | 8.67   |

<sup>\*</sup>Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 20°C).

The dilution water sample was observed to be slightly cloudy with a straw color.

#### 2.4 Reference Control Water

Water used in the reference control vessels was deionized (DI) water adjusted to the appropriate hardness (moderately hard reconstituted water) by the addition of reagent grade chemicals (U.S. EPA, 1993). Characterization of this water resulted in:

| Parameter             | Result |
|-----------------------|--------|
| Total Hardness        | 110    |
| Alkalinity (as CaCO₃) | 72     |
| pH                    | 7.07   |
| Specific Conductance  | 319    |
| Dissolved Oxygen      | 8.92   |

NPDES Permit No. MA000 3891 SGS ID number: TA4-I0-P283

September 22, 2004

Page 11

### 2.5 Test Organisms

Daphnids (*Daphnia pulex*), less than 24-hours old, were obtained from SGS laboratory cultures maintained in Charleston. The culture system consisted of twenty-four (24) 100 ml disposable plastic beakers each containing 80 ml of culture medium and one (1) daphnid. The culture medium was deionized (DI) water for which the hardness was raised by addition of reagent grade chemicals (U.S. EPA, 1993). Prior to use, the culture water was characterized:

Parameter Result

Total Hardness within range of 80-110 mg/L

Alkalinity (as CaCO<sub>2</sub>) within range of 60-70 mg/L

Alkalinity (as CaCO₃) pH

within range of 60-70 mg/L within range of 7.0 to 7.2

The culture area was maintained at a temperature of  $20^{\circ}$ C ( $\pm$   $1^{\circ}$ C) with a regulated photoperiod of 16 hours of light and 8 hours of darkness.

Daphnid cultures were fed a combination of green algae ( $Selanastrum \, capricorium$ ), approximately 4.0 x  $10^7$  cells/ml) and YCT (yeast, cereal leaves and trout chow). Approximately 1.0 ml of algae and 0.5 ml of YCT was added to each culture vessel daily. Three times per week, daphnids are transferred to fresh culture media.

Approximately twenty-four hours before test initiation, all immature daphnids were removed from the culture flasks. Offspring produced during the period were used in the toxicity test.

#### 2.6 Test Procedures

A subsample of the effluent and the dilution water (approximately 2250 ml) was analyzed by SGS for total phosphorus, chloride, total suspended solids, and total solids. The 48-hour toxicity test was conducted at concentrations of 100%, 75%, 50%, 35%, 15% and 5% effluent. Test concentrations were prepared by

NPDES Permit No. MA000 3891 SGS ID number: TA4-I0-P283

September 22, 2004

Page 12

diluting the appropriate volume of effluent with dilution water to a total volume of 250 ml. Test solutions were then divided into replicate (5 replicates per concentration) 30 ml medicine cups, each containing 20 ml of test solution. One set of five control beakers (containing Housatonic River water) and one set of five reference control beakers (containing moderately hard reconstituted water) were established and maintained under the same conditions as the exposure concentrations. A secondary set of five reference control beakers (containing sodium thiosulfate) was also maintained. Test solutions were placed in an incubator to maintain solution temperature of  $20^{\circ}\text{C}$  ( $\pm$   $1^{\circ}\text{C}$ ). Light was provided on a 16-hour light and 8-hour dark photoperiod. Florescent bulbs provided an illumination of 90 to 100 foot-candles in the test area.

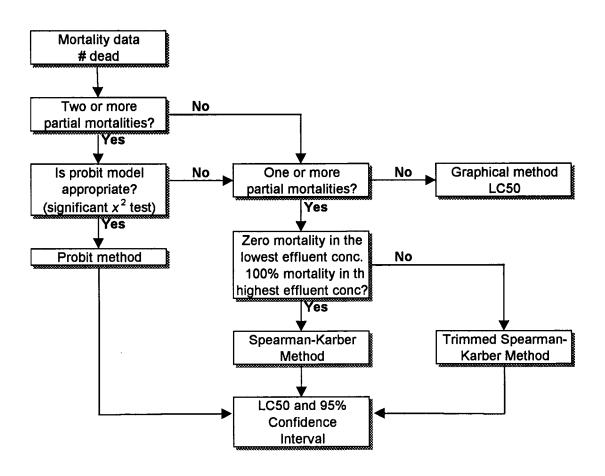
Prior to test initiation, daphnids less than 24-hours old were culled individually with a plastic pipette and placed into a 1000 ml holding beaker containing approximately 500 ml of reference water. The test was initiated when daphnids were individually transferred from the holding beaker to the test solutions (4 daphnids per replicate). The daphnids were fed prior to test initiation but were not fed during the exposure period.

### 2.7 Test Monitoring

The number of mortalities and observations in each replicate vessel were recorded at 24 and 48 hours of exposure and observed mortalities were removed from the test solutions. Biological observations and observations from the physical characteristics of each replicate test solution and control were also made and recorded at 0, 24 and 48 hours. Dissolved oxygen concentrations pH and temperature were measured at test initiation and at 24-hour intervals thereafter, in one replicate vessel (a) for each test concentration in which there were surviving organisms.

Total hardness concentrations were measured by the EDTA titrimetric method and total alkalinity concentrations were determined by potentiometric titration to an endpoint of pH 4.5 (APHA, 1989). Total residual chorine was measured by Hach test. Concentrations of ammonia were determined using a Buchi model 212 distillation unit and titrated automatically with a Brinkman titroprocessor. Specific conductivity was measured with a Cole Palmer Model 71250 salinity-conductivity-temperature meter and probe; pH was measured with a Fisher Scientific Accumet 910 pH meter and combination electrode; dissolved oxygen concentration was measured with an YSI Model 59 dissolved oxygen meter. Daily temperature measurements were performed with a Princo mercury thermometer and a Fisher minimum-maximum thermometer. Light intensity was measured with a General Electric type 217 light meter.

### 2.8 Reference Toxicity Test


A 48-hour reference toxicity test exposing *Daphnia pulex* to sodium chloride (NaCl) was conducted from September 14, 2004 to September 16, 2004. The reference test was conducted to establish the health of the test organisms. The reference toxicity test included five NaCl concentrations and a dilution water control (moderately hard reconstituted water). The nominal NaCl concentrations for the test with *Daphnia pulex* ranged from 625 to 10,000 mg of NaCl/L. Test methods were the same as those described above for the effluent test.

#### 3.0 Statistics

The concentration-response relationships observed were characterized by the median lethal concentrations (LC50), which is the concentration that is calculated to be lethal to 50 percent of the organisms within the test period. If no concentration caused mortality of 50%, then the LC50 value was determined to be greater than the highest concentration tested and no statistical analysis were performed. If at least one concentration caused mortality of greater than 50% of the test population, then a computer program (TOXSTAT 3.5) was used to calculate the LC50 value. Three statistical methods were available in the computer program: probit analysis, the Trimmed Spearman-Karber, and the Spearman-Karber methods. The graphical method is available if appropriate. Generally, to choose the best estimate of the LC50 value for a particular data set, the U.S. EPA flow chart on page 15 was followed.

The No-Observable-Acute-Effect-Level (NOAEL) was estimated for the acute toxicity test, and is defined as the highest concentration of effluent that produced  $\geq 90\%$  survival.

Flowchart 1. Determination of the LC50 from a Multi-Effluent-Concentration
Acute Toxicity Test



Flowchart for determination of the LC50 for multi-effluent-concentration acute toxicity tests.

#### 4.0 Results

### 4.1 Effluent Toxicity Test

The methods and detection limits of chemical analyses performed on the composite effluent sample and dilution water are summarized in Table 1. Results of the characterization and analysis of the effluent and the dilution water are presented in Table 2. Water quality parameters measured during the toxicity test are presented in Table 3. Daily and continuous monitoring of the test solutions established the temperature ranged from 19°C to 21°C throughout the exposure period. The effluent concentration was tested (expressed as %) and the corresponding percent mortalities recorded during the 48-hour toxicity test are presented in Table 4. Significant toxicity was not demonstrated in this examination. Based on the results of this study, the 48-hour LC<sub>50</sub> value was >100% effluent. The NOAEL value for this study was determined to be 100% effluent.

## 4.2 Reference Toxicity Test

SGS uses sodium chloride (NaCl) as a reference toxicant. The reference test was conducted from September 14, 2004 to September 16, 2004, and the resulting 48-hour LC50 was estimated by Trimmed Spearman-Karber Method to be 2253 mg NaCl/L (95% confidence intervals of 1908 to 2660 mg NaCl/L).

#### References

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17<sup>th</sup> Edition.
- U.S. Environmental Protection Agency. 1984. Development of water Quality-Based Permit Limitations for Toxic Pollutants. Federal Register 49(48): 90160-90190.
- U.S. Environmental Protection Agency. 1985. Technical Support Document for Water Quality-Based Toxics Control. Office of Water, Washington, DC.
- U.S. Environmental Protection Agency. 1991. Technical Support Document for Water Quality-Based Toxics Control. Office of Water, Washington, DC.
- U.S. Environmental Protection Agency. 1993. for *Measuring the Acute Toxicity of Effluents and Receiving Methods Waters to Freshwater and Marine Organisms*. EPA/600/4-90/027F.

NPDES Permit No. MA000 3891 SGS ID number: TA4-I0-P283 September 22, 2004 Page 18

Table 1. Methods and detection limits of chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River).

| <u>Parameters</u>        | Method                     | <b>Detection Limits</b> |
|--------------------------|----------------------------|-------------------------|
| Ammonia Nitrogen<br>as N | EPA 350.2                  | 1.0 mg/L                |
| Chloride                 | EPA 325.2                  | 1.0 mg/L                |
| Total Organic Carbon     | EPA 415.1                  | 1.0 mg/L                |
| Total Solids             | EPA 160.3                  | 10.0 mg/L               |
| Phosphorus, Total as P   | Standard Methods 4500-P    | 0.02 mg/L               |
| Total Residual Chlorine  | Standard Methods 4500-Cl G | 0.01 mg/L               |
| Total Suspended Solids   | EPA 160.2                  | 5.0 mg/L                |

Table 2. Results of the characterization and analyses of the General **Electric Pittsfield Plant effluent and the dilution water** (Housatonic River).

| Parameter               | Effluent<br>(A5945C) | Housatonic River<br>(A5944R) |
|-------------------------|----------------------|------------------------------|
| Temperature             | 20.7°C               | 20.7°C                       |
| pH                      | 7.48                 | 6.98                         |
| Alkalinity (as CaCO₃)   | 343 mg/L             | 69 mg/L                      |
| Hardness (as CaCO₃)     | 400 mg/L             | 90 mg/L                      |
| Dissolved Oxygen        | 8.71 mg/L            | 8.67 mg/L                    |
| Specific Conductivity   | 767 μmhos/cm         | 128 μmhos/cm                 |
| Salinity                | N/A                  | N/A                          |
| Total Residual Chlorine | ND                   | ND                           |
| Ammonia as N (0-Hour)   | ND                   | ND                           |
| Total Phosphorus as P   | ND                   | ND                           |
| Chloride                | 130 mg/L             | 12 mg/L                      |
| Total Suspended Solids  | ND                   | 5.0 mg/L                     |
| Total Solids            | 620 mg/L             | 100 mg/L                     |
| Total Organic Carbon    | 4.8 mg/L             | 7.1 mg/L                     |

Dissolved oxygen concentrations recorded after samples were aerated and warmed to approximately 20°C.

N/A = not applicable ND = non detectable

Table 3. The water quality measurements recorded during the 48hour static toxicity test exposing Daphnia pulex to General **Electric Pittsfield Plant effluent.** 

|                        | рН   |      |      | 0    | Dissolved<br>Oxygen<br>(mg/L) |      |      | Temperature<br>(°C) |      |  |
|------------------------|------|------|------|------|-------------------------------|------|------|---------------------|------|--|
| Matrix<br>↓            | 0    | 24   | 48   | 0    | 24                            | 48   | 0    | 24                  | 48   |  |
| Reference Control      | 7.07 | 7.12 | 7.13 | 8.92 | 8.72                          | 8.64 | 20.7 | 19.6                | 20.3 |  |
| Secondary Ref Control  | 7.13 | 7.20 | 7.22 | 8.98 | 8.77                          | 8.68 | 20.7 | 19.6                | 20.3 |  |
| Dilution Water Control | 6.98 | 7.04 | 7.09 | 8.67 | 8.54                          | 8.51 | 20.7 | 19.6                | 20.3 |  |
| 5% Effluent            | 7.04 | 7.05 | 7.08 | 8.67 | 8.70                          | 8.67 | 20.7 | 19.6                | 20.3 |  |
| 15% Effluent           | 7.19 | 7.22 | 7.27 | 8.69 | 8.71                          | 8.62 | 20.7 | 19.6                | 20.3 |  |
| 35% Effluent           | 7.27 | 7.23 | 7.28 | 8.72 | 8.70                          | 8.67 | 20.7 | 19.6                | 20.3 |  |
| 50% Effluent           | 7.32 | 7.28 | 7.25 | 8.74 | 8.72                          | 8.64 | 20.7 | 19.6                | 20.3 |  |
| 75% Effluent           | 7.39 | 7.41 | 7.38 | 8.73 | 8.75                          | 8.70 | 20.7 | 19.6                | 20.3 |  |
| 100% Effluent          | 7.48 | 7.45 | 7.48 | 8.71 | 8.68                          | 8.61 | 20.7 | 19.6                | 20.3 |  |

Dissolved oxygen, pH and temperature were measured in one replicate test chamber (A) for each concentration and controls.

The appearance of the effluent was clear, with some sediment.

Reference Control

= moderately hard synthetic water

Secondary Control

= moderately hard synthetic water and 0.1 N sodium thiosulfate

(Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>)

Dilution Water Control

= receiving water collected from the Housatonic River

NPDES Permit No. MA000 3891 SGS ID number: TA4-I0-P283

September 22, 2004

Page 21

Table 4. Cumulative percent mortalities recorded during the 48hour static toxicity test exposing *Daphnia pulex* to General Electric Pittsfield Plant effluent.

|                         | Cumulative Perc |   |   |   |   |      | ent Mortality (%) 48-Hour |   |   |   |   | <del></del> |
|-------------------------|-----------------|---|---|---|---|------|---------------------------|---|---|---|---|-------------|
| <b>Test Matrix</b><br>↓ | A               | В | С | D | E | Mean | A                         | В | С | D | E | Mean        |
| Reference Control       | 0               | 0 | 0 | 0 | 0 | 0    | 0                         | 0 | 0 | 0 | 0 | 0           |
| Secondary Ref Control   | 0               | 0 | 0 | 0 | 0 | 0    | 0                         | 0 | 0 | 0 | 0 | 0           |
| Dilution Water Control  | 0               | 0 | 0 | 0 | 0 | 0    | 0                         | 0 | 0 | 0 | 0 | 0           |
| 5% Effluent             | 0               | 0 | 0 | 0 | 0 | 0    | 0                         | 0 | 0 | 0 | 0 | 0           |
| 15% Effluent            | 0               | 0 | 0 | 0 | 0 | 0    | 0                         | 0 | 0 | 0 | 0 | 0           |
| 35% Effluent            | 0               | 0 | 0 | 0 | 0 | 0    | 0                         | 0 | 0 | 0 | 0 | 0           |
| 50% Effluent            | 0               | 0 | 0 | 0 | 0 | 0    | 0                         | 0 | 0 | 0 | 0 | 0           |
| 75% Effluent            | 0               | 0 | 0 | 0 | 0 | 0    | 0                         | 0 | 0 | 0 | 0 | 0           |
| 100% Effluent           | 0               | 0 | 0 | 0 | 0 | 0    | 0                         | 0 | 0 | 0 | 0 | 0           |

Reference Control Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Control = moderately hard synthetic water

= moderately hard synthetic water and sodium thiosulfate (0.1 N)

Dilution Water Control = receiving water collected from the Housatonic River

## Appendix I References

Document Title:

**Acute Aquatic Toxicity Testing** 

Method Reference:
Document File Name:

**CT&E/USEPA** 7002-04 DOC

**Revision Number:** 

4.0

**Effective Date:** 

October 20, 1998

UNCONTROLLED

7002.

Page 1 of 6

Approved by:

Jew Polleday
Supervisor

10/21/98

**Document Control Number:** 

Approved by:

MAQC Officer

10/20/98 Date

#### 1.0 SUMMARY

A 24-, 48-, or 96-hour test to determine the toxicity to freshwater aquatic animals of effluents.

#### 2.0 REFERENCES

- 2.1 Weber, Cornelius I., Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fourth Edition. EPA-600/4-90/027. U.S.EPA, Cincinnati, Ohio.
- 2.2 Reporting and Testing Guidance for Biomonitoring Required by the Ohio Environmental Protection Agency, October, 1991.
- 2.3 Toxics Management Program's Guidance for Conduction and Reporting the Results of Toxicity Tests in Fulfillment of VPDES Permit Requirements, Revised July 1992.

#### 3.0 SCREENING

3.1 Test Duration

24 Hours, 48 Hours or 96 Hours.

#### 3.2 Test Preparation

3.2.1 Measure the pH, D.O. and total residual chlorine of the 100% effluent and the control water. If the effluent pH falls outside of the range of 6.0-9.0, two parallel tests are set up in which one effluent is adjusted and the other is not. The pH is adjusted to 7.0 using additions of 1N NaOH and HCI, (other pH adjustment endpoints may be utilized depending on local requirements). The measured amount of acid or base is recorded on the bench sheet. If the D.O. is below 40% saturation or above 100% saturation, the effluent is aerated prior to test initiation. If the total chlorine is above 0.1 mg/L, two parallel tests are set up in which one

**Document Title:** 

**Acute Aquatic Toxicity Testing** 

Method Reference:
Document File Name:

CT&E/USEPA 7002-04.DOC

**Revision Number:** 

4.0

**Effective Date:** 

October 20, 1998

UNCONTROLLED COPY

7002.

#### Page 2 of 6

effluent is dechlorinated and the other is not (Dechlorination may be prohibited; permit is checked to determine if dechlorination is allowed). The effluent is dechlorinated by the addition of anhydrous sodium thiosulfate. The measured amount is recorded on the bench sheet. Care is taken to add the least amount of sodium thiosulfate needed to decrease the TRC level below 0.10 mg/L. Typically, adjustment of effluent is unnecessary.

**Document Control Number:** 

- 3.2.2 Twenty organisms per concentration are used in acute screening tests.
- 3.2.3 This is a static, non-renewal test, using Ceriodaphnia dubia, Daphnia pulex, Daphnia magna, or Pimephales promelas (Fathead minnow).
- 3.2.4 Water quality (D.O., pH, conductivity, hardness, alkalinity and TRC), is measured at the time of test initiation. At test termination, temperature, D.O. conductivity and pH are measured. The final mortality and percent effected counts are recorded. Temperature is maintained at 25°± 1°C for Daphnia, and 20° ± 1°C for fathead minnows. Facilities exist to perform both fish and Daphnia tests at either temperature.
- 3.3 Test Results

No statistical analysis is performed on screening data.

#### 4.0 DEFINITIVE TEST

- 4.1 Pimephales promelas (Fathead Minnows)
  - 4.1.1 Test Duration

48-Hours or 96-Hours

- 4.1.2 Static non-renewal
- 4.1.3 Test Preparation
  - 4.1.3.1 This test is comprised of a control and an effluent dilution series usually consisting of 100%, 50%, 25%, 12.5% and 6.25% (unless otherwise indicated).
  - 4.1.3.2 The sample is brought up to test temperature in a room temperature water bath. Chemical parameters are checked and

**Document Title:** 

**Acute Aquatic Toxicity Testing** 

Method Reference:
Document File Name:

CT&E/USEPA 7002-04.DOC

**Revision Number:** 

4.0

**Effective Date:** 

October 20, 1998

**Document Control Number:** 

7002.

#### Page 3 of 6

recorded. If the pH, D.O. or chlorine fall outside the acceptable testing range, the effluent may be adjusted (see screening; Test Preparation).

- 4.1.3.3 The dilutions are prepared in calibrated graduated cylinders using moderately hard synthetic water as dilution water. Other dilution water may be used if specified.
- 4.1.3.4 Approximately 400 ml of test solution is placed in each of two 800 ml disposable plastic beakers.

#### 4.1.4 Loading

Ten (10) organisms are placed in each beaker. CT&E uses fish which are less than 14 days old and are hatched within the same 24 hour period. A loading limit of 0.8 g/l is observed. Fish are loaded by first transferring them to a shallow dish where they are easily transferred into the test solutions with wide-bore pipettes.

#### 4.1.5 Test Temperature

20° C (± 1)

#### 4.1.6 Daily Procedures

- 4.1.6.1 At the end of each 24 hours, the pH, D.O. and temperatures are checked and recorded. At this time mortalities are also recorded.
- 4.1.6.2 If a 96 hour static acute test is required, the test solution may be renewed at 48 hours. Renewal is accomplished by siphoning old test solution and debris and replacing with fresh solution of the appropriate concentration.
- 4.1.6.3 At the end of 48 hours or 96 hours the final mortalities and percent affected are recorded along with the final water qualities (D.O., pH, conductivity).

#### 4.1.7 Feeding

Organisms are allowed to feed only prior to test initiation, and prior to renewal at 48 hours in a 96 hour test.

Document Title:

**Acute Aquatic Toxicity Testing** 

Method Reference:
Document File Name:

CT&E/USEPA 7002-04.DOC

**Revision Number:** 

4.0

Effective Date:

October 20, 1998

UNCONTROLLED

**Document Control Number:** 

7002.

#### Page 4 of 6

- 4.2 Ceriodaphnia dubia, Daphnia magna, and Daphnia pulex
  - 4.2.1 Test Duration

48-Hours

- 4.2.2 Static Non-renewal
- 4.2.3 Test Preparation
  - 4.2.3.1 This test is comprised of a control and a dilution series consisting of 100%, 50%, 25%, 12.5% and 6.25% of the effluent (unless otherwise indicated).
  - 4.2.3.2 The sample is brought up to test temperature in a room temperature waterbath. Chemical parameters are checked and recorded. If the pH, D.O. or chlorine fall outside the acceptable testing range, the effluent may be adjusted (see screening; Test Preparation).
  - 4.2.3.3 The dilutions are prepared in beakers using moderately hard synthetic water (see Section II; Dilution Waters and Culture Media), unless other dilution water is specified. At least 25 ml. of each dilution are placed in five 30 ml. testing vessels.

#### 4.2.4 Loading

4.2.4.1 Four organisms are placed in each vessel. The *Daphnids* are loaded with a disposable polyethylene transfer pipette and are gently released below the surface of the water to avoid the risk of injury.

#### 4.2.5 Test Temperature

The test is conducted in a constant temperature incubator at 25° ±1° C(To satisfy local requirements tests may be conducted at other temperatures).

Document Title:

**Acute Aquatic Toxicity Testing** 

Method Reference:
Document File Name:

CT&E/USEPA 7002-04.DOC

**Revision Number:** 

4.0

**Effective Date:** 

October 20, 1998

UNGONTROLLED

**Document Control Number:** 

7002.

#### Page 5 of 6

#### 4.2.6 Daily Procedure

- 4.2.6.1 At 24 and 48 hours the mortalities and number adversely effected are noted.
- 4.2.6.2 Due to the fragile structure of *Daphnia* organisms, dissolved oxygen, hardness alkalinity, specific conductance and pH readings are not taken after the organisms have been added to the sample. These analyses could cause injury to the *Daphnia* organisms.

#### 4.2.7 Photoperiod

16 hours light, 8 hours dark.

#### 4.2.8 Feeding

Organisms are allowed to feed prior to test initiation; they are not fed for the duration of the test.

#### 5.0 TEST DATA

- 5.1 Pimephales promelas, Ceriodaphnia dubia, Daphnia magna and Daphnia pulex
  - 5.1.1 Mortality and adverse effects are used as the endpoints for a definitive test.
  - 5.1.2 Chemical parameters checked before test initiation, at 24 hours, 48 hours, 72 hours and 96 hours.
  - 5.1.3 Mortalities recorded at 24 hours, 48 hours, 72 hours and 96 hours.
  - 5.1.4 Any atypical behavior or complications are recorded.

#### 6.0 DATA ANALYSIS

#### 6.1 Introduction

Data from acute effluent toxicity tests are used to estimate the LC50 and EC50. The LC50 is a point estimate of the effluent concentration that is expected to cause lethality to 50% of the test organisms. The EC50 is a point estimate of

Document Title:

**Acute Aquatic Toxicity Testing** 

Method Reference:
Document File Name:

CT&E/USEPA 7002-04.DOC

**Revision Number:** 

4.0

Effective Date:

October 20, 1998

UNCONTROLLED

CODY

**Document Control Number:** 

7002

#### Page 6 of 6

the effluent concentration that is expected to cause and adverse effects to 50% of the test organisms.

- 6.2 Methods for Estimating the LC50 & EC50
  - 6.2.1 The flow chart (Figure 6) on page 76 of the manual, Methods for Measuring the Acute Toxicity of Effluents and Receiving Water to Freshwater and Marine Organisms (Fourth Edition), EPA-600/4-90-27F, Appendix A, Sections 4.4.1 through 4.4.3. is observed for determination of the LC50 for multi-concentration acute toxicity tests.
  - 6.2.2 Several statistics packages, including Toxstat® 3.4, are available for data analysis.

#### 7.0 REPORT PREPARATION

- 7.1 CT&E Acute Toxicity Test Reports Typically Contain the Following Information:
  - 7.1.1 Test background information Includes client, NPDES or state permit number, sampling point reference number, date collected and received, collector's name, type and date of test, dilution water used, test results, and chain of custody forms.
  - 7.1.2 Results LC50 & EC50 values and analysis method used; Any comments concerning the test results.
  - 7.1.3 Initial Characterization of the Effluent Sample Raw Data Sheets: Includes dissolved oxygen (DO), pH, specific conductivity, hardness, alkalinity and a description of the sample source.
  - 7.1.4 Reference Toxicity Data

**Document Title:** 

**Culture Waters for Aquatic Toxicity Testing** 

Method Reference:

CT&E/USEPA

Document File Name: 7005-04.DOC **Revision Number:** 

4.0

**Effective Date:** 

October 20, 1998

UNCONTROLLED

Page 1 of 3

Document Control Number:

7005

Approved by: Was Malliclay
Supervisor

Approved by: Was U. Wark

AAQC Officer

#### 1.0 Summary

This document describes the preparation of various waters used for the culture of aquatic organisms.

#### 2.0 **Moderately-Hard Synthetic Water**

- 2.1 Place 19 liter of de-ionized, or equivalent, water in a properly cleaned and labeled plastic carboy.
- 2.2 Add 1.20 g of MgSO<sub>4</sub>, 1.92 g NaHCO<sub>3</sub> and 0.08g KCl to the carboy.
- 2.3 Aerate overnight.
- 2.4 Add 1.20 g of CaSO<sub>4</sub>·2H<sub>2</sub>O to 1 liter of de-ionized or equivalent water in a separate flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 19 liter above and mix well.
- 2.5 Aerate vigorously for 24 hours to stabilize the medium.

#### 3.0 **Hard Synthetic Water**

- 3.1 Place 9 liter of de-ionized, or equivalent, water in a properly cleaned and labeled plastic carboy.
- 3.2 Add 1.20 g of MgSO<sub>4</sub>, 1.92 g NaHCO<sub>3</sub> and 0.08g KCI to the carboy.
- 3.3 Aerate overnight.
- 3.4 Add 1.20 g of CaSO<sub>4</sub>'2H<sub>2</sub>O to 1 liter of de-ionized, or equivalent water in a separate flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 9 liter above and mix well.
- 3.5 Aerate vigorously for 24 hours to stabilize the medium.

**Document Title:** 

**Culture Waters for Aquatic Toxicity Testing** 

Method Reference:

CT&E/USEPA

Document File Name:

7005-04.DOC

**Revision Number:** 

4.0

**Effective Date:** 

October 20, 1998

UNCONTROLLED

CODY

Document Control Number:

7005.

#### Page 2 of 3

#### 4.0 Synthetic Water Solutions

#### 4.1 KCL Stock Solution

- 4.1.1 Place 8 g of crystalline, reagent grade KCL in a 1 liter volumetric flask.
- 4.1.2 Bring the volume to one liter with distilled water.
- 4.1.3 Aerate vigorously for several hours before using.
- 4.1.4 Store in a 1 liter polyethylene bottle.

#### 4.2 MgSO<sub>4</sub> Stock Solution

- 4.2.1 Place 120 g of regent water, anhydrous MgSO<sub>4</sub> powder in a 1 liter volumetric flask.
- 4.2.2 Bring the volume to one liter with distilled water.
- 4.2.3 Aerate vigorously for several hours before using.
- 4.2.4 Store in a 1 liter polyethylene bottle.

#### 4.3 NaHCO<sub>3</sub> Stock Solution

- 4.3.1 Place 96 g of reagent grade NaHCO<sub>3</sub> powder in a 1 liter volumetric flask.
- 4.3.2 Bring the volume to 1 liter with distilled water
- 4.3.3 Aerate vigorously for several hours before using.
- 4.3.4 Store in a 1 liter polyethylene bottle.

#### 5.0 Activated Carbon Treated Tap Water Diluent

- 5.1 Fill a 5-gallon carboy with water from the treatment system using the attached hose. Water should be allowed to flow slowly through the hose into the sink for 2-3 minutes before filling the carboy. Flow rate to fill the carboy should be slow.
- 5.2 One or two long airstones are placed in the filled carboy. Water is aerated vigorously for 48-hours.
- 5.3 Total residual chlorine must be checked on water from newly filled carboys before using.
- 5.4 Alkalinity, hardness and pH are checked on samples from dechlorinated water carboys according to the Laboratory Procedure Checklist.
- 5.5 Log information on the Dechlorinated Tap Water and Cechlorimeter log sheet including the carboy number and date filled.

Document Title:

**Culture Waters for Aquatic Toxicity Testing** 

Method Reference:
Document File Name:

CT&E/USEPA 7005-04.DOC

Revision Number:

4.0

**Effective Date:** 

October 20, 1998

UNCONTROLLED

COPY

**Document Control Number:** 

7005

#### Page 3 of 3

#### 6.0 Synthetic Sea Water Preparation

- 6.1 Fill a clean carboy with dechlorinated water to approximately the 25-gallon mark.
- The newly filled carboy should be checked for the presence of chlorine and the results recorded on the saltwater carboy log sheet. If chlorine is present, two 4-inch airstones (adjusted to a moderately heavy air flow) should be introduced and the water aerated until a level of <0.01 mg/L is reached.
- 6.3 A sufficient amount of synthetic salt is added to the carboy to obtain the required salinity (usually 20 ppt).
- 6.4 All information should be logged on the Saltwater Carboy log sheet.

Document Title:

Culture of Daphnia

Method Reference:

**CT&E/USEPA 7006-05.DOC** 

Document File Name: Revision Number:

5.0

Effective Date:

March 12, 2001

UNCONTROLLED COPY

Page 1 of 3

**Document Control Number:** 

7006

Approved by:

Hen Hallida Supervisor

Approved by:

ed by: MANO Officer

3/23/200/ Date

1.0 Summary

This document describes the procedure for the culture of *Ceriodaphnia dubia*, *Daphnia pulex*, *Daphnia magna* that are used in aquatic toxicity testing.

#### 2.0 Mass Stock Cultures of Ceriodaphnia dubia, Daphnia pulex, and Daphnia magna

- 2.1 Stock cultures are maintained in 1000 ml beakers/jars with 900 mls of culture media at 20  $\pm$  1° C. These cultures are maintained only as a back-up source of organisms.
- 2.2 Culture media for *Ceriodaphnia dubia* and *Daphnia pulex* is moderately-hard synthetic water. Culture media for *Daphnia magna* is hard synthetic water (see document control number 7005.04, "Culture Waters for Aquatic Toxicity Testing").
- 2.3 Many cultures are maintained simultaneously with an informal rotation cycle. New cultures are started with young produced by individual cultures. These cultures are maintained for approximately 3 weeks after which they are discarded.
- 2.4 Cultures are fed YCT (yeast, cerophyll, digested trout chow/flake food) and algae (Selanastrum capricorium) on Monday, Wednesday and Friday. Feeding, as well as culture rotation, temperature and all other relevant data is recorded by species in a log book.
- 2.5 Stock cultures are also fed algae and YCT. These feedings are recorded in the log book.

#### 3.0 Individual Cultures of Ceriodaphnia dubia, Daphnia pulex, Daphnia magna

3.1 Cultures of *Daphnia magna* and *Daphnia pulex* are maintained in 100 ml plastic beakers. Twenty-four (24) beakers with one organism each are kept at all times to ensure continuous availability of neonates for testing. Cultures of individual *Ceriodaphnia dubia* are maintained in 30 ml sterile plastic medicine cups. One to two cultures of approximately 100 organisms each are kept at all times.

**Document Title:** 

Culture of Daphnia

Method Reference:

CT&E/USEPA Document File Name: 7006-05.DOC

Revision Number:

5.0

**Effective Date:** 

March 12, 2001

UNCONTROLLED

**Document Control Number:** 

7006

#### Page 2 of 3

3.2 Cultures are renewed three times per week. Organisms are fed daily.

#### 4.0 **Obtaining Neonates for Testing**

- 4.1 Cultures of Ceriodaphnia are started by placing one neonate into a 30 ml disposable plastic cup containing approximately 20 ml of Moderately Hard Synthetic Water. New Ceriodaphnia cultures are started every ten to fourteen days. D. magna and D. pulex are replaced whenever mortality occurs.
- 4.2 The individual cultures are transferred to fresh media three times per week. Synthetic water, algae and YCT are mixed prior to pouring into culture vessel to ensure uniformity of media. The old media and neonates are kept for stock cultures for several weeks and then discarded.
- 4.3 To assure neonates for chronic tests are of a very similar age, transfer of individual brood stock to fresh media should be made the morning of the test. The cultures are then checked approximately every two hours to find an adequate number of neonates all released with an 8 hour period. For acute tests, individuals are either transferred less than 24 hours before a test or the young are separated from adults less than 24 hours before a test.
- 4.4 Young used in chronic testing are obtained from adults who have produced at least three broods, with no less than 8 neonates in their third or subsequent brood. Neonates are then distributed in a "blocking" procedure, i.e., neonates from the same organism are placed in one replication of each concentration.

#### **DAPHNIA** Food 5.0

#### 5.1 Digested Flake Food

- 5.1.1 Add 5g flake food to 1 L deionized water. Mix well in a blender and place in a 2 L separatory funnel. To digest, aerate this mixture at room temperature for one week.
- 5.1.2 At end of the digestion period, remove aeration and allow to settle.
- 5.1.3 Drain sediment. Place supernatant in a beaker and allow to settle in refrigerator overnight.
- 5.1.4 Filter through fine mesh.

**Document Title:** 

Culture of Daphnia

Method Reference:

CT&E/USEPA

Document File Name: 7006-05.DOC

**Revision Number:** 

5.0

Effective Date:

March 12, 2001

UNCONTROLLED

**Document Control Number:** 

7006

#### Page 3 of 3

#### 5.2 Cerophyll®

- 5.2.1 Add 5g Cerophyll® to 1 L deionized water. Mix in a blender on high speed for 5 minutes.
- 5.2.2 Remove from blender and allow to settle in refrigerator overnight.
- 5.2.3 Retain supernatant for combined YCT food.
- 5.3 Yeast
  - 5.3.1 Add 5g dry yeast to 1 L deionized water. Mix in a blender at low speed.
  - 5.3.2 Do not allow mixture to settle.
- 5.4 Combined YCT Food
  - 5.4.1 Mix equal parts of each of the above preparations in large clean beakers.
  - 5.4.2 Pour well mixed YCT into small screw cap bottles. Freeze until needed.

Document Title:

Reference Toxicant Testing

Method Reference:

CT&E/USEPA 7008-05.DOC

Document File Name: Revision Number:

5.0

Effective Date:

March 12, 2001

UNCONTROLLED

COPY

7008

| Page | 1 | of | 2 |
|------|---|----|---|
| 5-   | • | •• | _ |

Approved by: Kan Holliday

Approved by: ANQC Officer

3/23/2001 Date

**Document Control Number:** 

3/23/2001 Date

#### 1.0 Summary

To insure that healthy organisms are used in testing, CT&E performs monthly QA/QC tests on all in-house cultured organisms. CT&E uses Sodium Chloride as a reference toxicant.

#### 2.0 Pimephales promelas

- 2.1 48 hour static acute toxicity tests are run at 20°C (±1°C) using fish 1 to 14 days old.
- 2.2 This test consists of a control and a dilution series of 10g/L, 9g/L, 8g/L, 7g/L, and 6g/L, of sodium chloride. Other dilution series may be used.
- 2.3 The dilutions are prepared in 800 ml disposable plastic beakers using moderately hard synthetic water. 500 mls of test solution is placed in each of two replications. Water quality values are measured and recorded at this time.
- 2.4 Ten organisms are placed in each replicate. Fish are loaded by first siphoning them into a shallow pan from which they are transferred to the beakers with a large bore pipette.
- 2.5 The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

## 3.0 Daphnids (Ceriodaphnia dubia, Daphnia magna, Daphnia pulex)

- 3.1 48 hour static acute tests are performed at 25°C (±1°C) using organisms less than 24 hours old.
- 3.2 These tests consist of a control and a five dilution series. The concentration of the reference toxicant is varied depending on species.
  - 3.2.1 Ceriodaphnia dubia, Daphnia pulex: 10, 5, 2.5, 1.25, 0.625 grams/L

**Document Title:** 

Reference Toxicant Testing

Method Reference:

CT&E/USEPA 7008-05.DOC

Document File Name: Revision Number:

5.0

**Effective Date:** 

March 12, 2001

UNCONTROLLED

COPY

Page 2 of 2

**Document Control Number:** 

7008

- 3.2.2 Daphnia magna: 10, 5, 2.5, 1.25, 0.625 grams/L
- 3.3 Dilutions are prepared using moderately hard synthetic water. 20 mls of each dilution are placed in each of 5 plastic medicine cups.
- Four organisms are placed in each test vessel. The *Daphnids* are loaded with a disposable plastic pipette. Organisms are gently released below the surface of the water to minimize risk of injury.
- 3.5 The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

#### 4.0 Data Analysis

- 4.1 Toxicity tests are conducted on a monthly basis.
- 4.2 The LC<sub>50</sub> is calculated according to EPA protocols.
- 4.3 Results from these tests are incorporated into Q-sum charts. These records are kept in monthly files.

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference: Document File Name:

CT&E/USEPA

**Revision Number:** 

7009-04.DOC 4.0

**Effective Date:** 

October 20, 1998

INCONTROLLED

7009

Page 1 of 3

Approved by: New Hollislay
Supervisor

Approved by: Mall Work

AAQC Officer

**Document Control Number:** 

#### 1.0 Summary

This document describes the manner in which sample waters (effluents, wastewaters, etc.) are handled from point of collection to testing.

#### 2.0 Sample Handling

#### 2.1 Sampling Personnel

CT&E's sampling personnel are trained and experienced in the techniques for collecting samples according to NPDES permit requirements. This includes the use of automatic sampling equipment and the measurement of various field parameters.

#### 2.2 Sample Containers

Sample containers used by CT&E are disposable plastic cubitainers®.

#### 2.3 Sample Collection Points

For NPDES permit required tests, the sample will be collected at the point specified in the discharge permit unless otherwise directed by the regulatory agency.

#### 2.4 Sample Shipment

Samples are placed on ice (sufficient to maintain 0-4°C) in a cooler and are transported as quickly as possible to the laboratory.

#### 2.5 Laboratory Handling of Samples

Upon delivery to the laboratory, the effluent samples are inspected, given a sample control number and stored at 4° C until used for testing.

**Document Title:** 

Sample Handling for Aquatic Toxicity Testing

**Method Reference:** 

CT&E/USEPA

Document File Name:

7009-04.DOC

Revision Number:

4.0

Effective Date:

October 20, 1998

INCONTROLLE

**Document Control Number:** 7009.

#### Page 2 of 3

#### 2.6 Sample Holding Time

Samples will be tested within 24 hours upon receipt in the laboratory. The maximum lapsed time for collection of a grab or composite sample and the initiation of test, or for test solution renewal, will not exceed 36-hours for Chronic and Acute Testing.

#### LABORATORY ENVIRONMENT 3.0

#### 3.1 Laboratory Arrangement

The aquatic toxicity testing laboratory is divided into two separate areas: (1) the culturing laboratory and (2) the testing laboratory. See attached diagram for details of laboratory layout.

#### 3.2 Temperature

The aquatic toxicity testing laboratory air temperature is maintained at 20  $\pm$  1 $^{\circ}$  C throughout the year by a central heating and cooling system which is regulated by thermostats. Temperatures are continuously recorded by thermographs.

#### 3.3 Water

Several waters are available for use in the laboratory. CT&E has access to municipally supplied water, well water and reagent water from which synthetic water is prepared. Waters used for culturing and testing are analyzed semiannually for priority pollutants and other contaminants. A detailed report is available.

#### 3.4 Lighting

Ambient laboratory lighting is regulated with a 16 hour day/8 hour night photoperiod controlled by an electronic timing system in the culturing and testing areas.

#### LABORATORY EQUIPMENT 4.0

#### 4.1 General

Instruments used for the measurement of physical and chemical parameters are calibrated prior to use in testing. Any instrument that exceeds the calibration limits is taken out of service and corrective action is taken.

7009

## CT&E Environmental Services Inc. **Standard Operating Procedure**

**Document Title:** 

Sample Handling for Aquatic Toxicity Testing

Method Reference:

Document File Name:

7009-04.DOC

**Revision Number:** 

4.0

**Effective Date:** 

October 20, 1998

**Document Control Number:** 

Page 3 of 3

#### 4.2 Balances

Analytical balances are calibrated against standard weights prior to use. All calibration results and adjustments are recorded in bound books.

#### 4.3 **Water Quality Meters**

Meters are calibrated prior to use using known standards and the manufacturer's instructions. Records of calibration are kept in logbooks. Detailed procedures for the operation of these meters are found in SOP's for each specific instrument.

#### 4.4 Reagents

All reagents are stored in a separate area. Expired reagents and chemicals are discarded.

#### 4.5 Test Containers

All test containers are either clean reusable glassware or new, disposable plastic beakers.

#### 5.0 **EQUIPMENT CLEANING PROCEDURES**

- 5.1 Equipment used in culturing or testing is washed in the following manner:
  - 5.1.1 Soak 15 minutes and scrub with detergent in tap water.
  - 5.1.2 Rinse three times with tap water.
  - 5.1.3 Rinse once with 20% nitric acid.
  - 5.1.4 Rinse twice with deionized water.
  - 5.1.5 Rinse once with full-strength, pesticide-grade acetone.
  - 5.1.6 Rinse well with deionized water.
  - 5.1.7 Invert and air dry.
  - 5.1.8 All equipment and test chambers are rinsed with deionized water immediately prior to use for each test.

# Appendix II Chain of Custody

100 Woodlawn Ave. Pittsfield, MA 01201 General Electric Co.

Dry Weather Acute Aquatic Toxicity for Sept. 2064

E/100-E8EJ-0I-HML

Chain of Custody #: 083 0413 04-0/

Split Sample Citix 1 SEPT 2004

(See below) Remarks 098-500 Date/Time reservative Chilled Chilled H2S04 Chilled Date/Time Chilled H2S04 Additional Comments: The effluent sample being analyzed for toxicity is a flow proportioned composite. Each outfall sample (Print) Mark Washews hay Definitive Test(LC50 and NOAEL), Static acute toxicity, 48 hr w/ Daphnia pulex Chloride, TSS, Total Solids, Alkalinity Chloride, TSS, Total Solids, Alkalinity dilution water for definitive test Specific Conductance, CL2 Total Phosphorus, TOC, NH3 Total Phosphorus, TOC, NH3 Specific Conductance, CL2 09A-Housatonic River water Parameters to be Analyzed Sampled By: Received By: 005-64G- 700 mg 007-Received By: is a 24-hour composite. The sample collection times for each outfall are as follows: plastic plastic 1000 ml. 1 Gallon 1 Gallon 500 ml. plastic plastic plastic 500 ml. plastic The time of compositing the final flow-proportioned sample was CT&E Environmental Services Inc. to 9/13/64 1100 AN Date/Time 9-(3-64 005-64T- 700AM Analytical Lab: Time Date/Time Ç \$ 21/6 001- 740, 004 ASA456 ASPココス Relinquished By: Relinquished By: Sample # **VPDES PERMIT** Project #

# Appendix III Bench Data

# General Electric - 48-hour Acute Biotoxicity Bench Sheet

General Electric

Client:

TA4-10-P285-001/002 ပ 00/14/04 04/14/04 Temp. Range: Date Received: Date Analyzed: 艺 Analyst(s): Lab. No.: Age: <24 hours Water 11:00 Housavanic River Time: Daphnia pulex 48-Hour Static Acute Ache 00/12-15/04 FUPLUENT Dry Weather Source of dilution water: Sample Date: Test Species: Type of Test: Project: Source:

Beginning Total Chlorine:

09/11/04

09/14/04

Time: Date:

Ending

| Concentration→ | Housatonic<br>River<br>Control | MHSW    | MHSW<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Effluent<br>5% | Effluent<br>15% | Effluent<br>35% | Effluent<br>50% | Effluent<br>75% | Effluent<br>100% |
|----------------|--------------------------------|---------|-------------------------------------------------------|----------------|-----------------|-----------------|-----------------|-----------------|------------------|
| START          |                                |         |                                                       |                |                 |                 |                 |                 |                  |
| Temperature    | 4.02                           | £.02    | 4.62                                                  | 7.87           | 40%             | C 26            | 1 %             | ļ               | i                |
| Hardness       | 90                             | 011     | 110                                                   |                | 1.2             | + 5             | +               | 4               | 4.6              |
| D.0.           | 49.8                           | 268     | 808                                                   | 270            | 9,0             |                 | 6               |                 | 004              |
| Ha             | 86 7                           | 1 1 1 1 | 3 6                                                   | 1001           | 2002            | 2+5             | Ø. +4           | 8.73            | 8.71             |
| Alkalinity     | 00/                            | tor 10- | 71,7                                                  | 1.04           | 7.19            | 7.27            | 7.32            | 7.39            | 7.48             |
| C. Condition   | e                              | 111     | ۸+                                                    |                |                 |                 | <del></del>     |                 | 343              |
| Sp. Conduct.   | 128                            | 319     | 329                                                   | ±81            | 238             | 242             | 7757            | 218             | 7/7              |
| 24 HOUR        |                                |         |                                                       |                |                 |                 |                 | 2               | 101              |
| No. Surviving  | 22                             | 25      | 20                                                    | 18             | R               | 00              | 1               | ,               |                  |
| Temperature    | 7.51                           | 15.6    | 101                                                   | 197            | 3 3             | 9               | 3               | 8               | 99               |
| 0.0            | TO O                           | 010     | 1 1 2                                                 | 3 5            | 9.2.2           | 14.6            | 146             | 19.6            | 19.6             |
|                | 1-1-0                          | 277     | 4 + 1                                                 | æ.             | 8-71            | 8.70            | 8.72            | 54.0            | 89.8             |
| E (            | +0+                            | 7.12    | 7.20                                                  | 7.05           | 71.F            | 7.25            | 2.28            | 7/1/2           | 3/1/5            |
| Sp. Conduct.   | 134                            | 328     | 531                                                   | 451            | 722             | 573             | 0//             | 7.7.            |                  |
| 48 HOUR        |                                |         |                                                       |                |                 |                 | 200             | Z Z             | 121              |
| No. Survivina  | 10                             | 00      | 1                                                     | ,              | ,,,             |                 |                 |                 |                  |
| Temperature    | 2 %                            | 3       | , 8                                                   | 8              | 0               | Q,              | 2               | 9               | 9                |
| 2000           | 3                              | \$ \$   | 62                                                    | 20.3           | 203             | 20.3            | 20.5            | 70.3            | 40.2             |
|                | 8.57                           | 864     | 808                                                   | 50.67          | 29.8            | 40,0            | 200             | 24.0            | 01.1             |
| PH             | 7.09                           | 7.13    | 77.4                                                  | 4.08           | 7.73            | 7 78            | 1 201           | 10,10           | 100              |
| Sp. Conduct.   | 139                            | 332     | 226                                                   | 190            | 202             | 200             | 1.6.            | 2 1             | 2                |
|                |                                |         | 447                                                   | 2              | 224             | 100             | 1001            | 714             | 188              |

Method Reference: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fourth Edition. EPA-600/4-90/027F. U.S.EPA, Cincinnati, Ohio.

f:\public\forms\bioassay\GE bench sheet-acute.doc

## **Acute Biotoxicity Bench Sheet**

| Client:          | 90                         |             |       |               |          |
|------------------|----------------------------|-------------|-------|---------------|----------|
| Project:         | lefevence Toxicant         |             | La    | b. No.:       |          |
|                  |                            |             |       | Date Received |          |
| Sample Date:     | Time:                      |             |       | Date Analyzed | •        |
| Source:          |                            |             |       | Analyst:K\    |          |
| Source of diluti | on water: Hoderately Hound | Synthoti    | o Wa  | nter          |          |
| Test Species:    | Daphnia pulex              | Age:        |       | Temp. Ra      | ange: °C |
| Type of Test:    | 48 hour static Acute       | - <i>'.</i> |       |               |          |
| Total Chlorine:  |                            |             | .     | Beginning     | Ending   |
|                  |                            |             | Date: | 09/14/04      | 01/16/04 |
|                  |                            | .7          | Time: | 1500          | 1500     |

|               |         | <br>                                  |      | 1                                     |          |        |
|---------------|---------|---------------------------------------|------|---------------------------------------|----------|--------|
| Concentration | Control | 425                                   | 1250 | 2500                                  | 5000     | 10000  |
| START         |         |                                       |      | · · · · · · · · · · · · · · · · · · · |          | _1     |
| Temperature   | 20 B    | 20.8                                  | 20.8 | 70.8                                  | 70.8     | 70.8   |
| Hardness      | 110     |                                       |      |                                       |          | 110    |
| D.O.          | 89      | 89                                    | 8.9  | 8.9                                   | 8.9      | 8.9    |
| pН            | 1.0     | 7.1                                   | 7.1  | 7.1                                   | 7.2      | 7,2    |
| Alkalinity    | 66      |                                       |      | <del></del>                           |          | 70     |
| Sp. Conduct.  | 324     | <br>1168                              | 2470 | 4170                                  | 8120     | 11340  |
| 24 HOUR       |         | · · · · · · · · · · · · · · · · · · · |      | 1 1 0                                 | 1 0,120  | 111340 |
| Temperature   | 20.1    | 20.1                                  | 20.1 | 20.1                                  | 20.1     | 70-1   |
| No. Surviving | 20      | 20                                    | 20   | 14                                    | 6        | 0      |
| 48 HOUR       |         | <br>l                                 |      | 1 1                                   | <u> </u> |        |
| Temperature   | 19.6    | 19.6                                  | 19.6 | 19.6                                  | 19.6     | 19.6   |
| No. Surviving | 20      | 20                                    | 19   | 8                                     | 0        | 0      |

Note: All results expressed in mg/L unless otherwise designated. < = less than

Note: Number in parenthesis equals number not adversely effected ( $EC_{50}$ ). This number is used in calculating  $EC_{50}$  value.

Note: Due to fragile structure of *Daphnia* organisms, dissolved oxygen (DO), hardness, alkalinity, specific conductance, and pH reading could not be taken after the organisms are added to the sample. Doing so would cause injury to the organisms.

Method Reference: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Manne

FOR REFERENCE, CITE:

HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS. ENVIRON. SCI. TECHNOL. 11(7): 714-719;

CORRECTION 12(4):417 (1978).

DATE: 09/14/04 CHEMICAL: NaCl

TEST NUMBER: -

DURATION: 48 HOURS

SPECIES: Dp

RAW DATA:

CONCENTRATION (MG/L) 625.001250.002500.005000.00\*\*\*\*\*\*

NUMBER EXPOSED: 20 20 20 20 20 20 MORTALITIES: 20 20 20 20 20 1 12 20 20 MORTALITIES: 0

SPEARMAN-KARBER TRIM: 0.00%

SPEARMAN-KARBER ESTIMATES: LC50:

R ESTIMATES: LC50: 2253.13
95% LOWER CONFIDENCE: 1908.10
95% UPPER CONFIDENCE: 2660.54

# Appendix IV U.S. EPA Region I Toxicity Test Summary

## **Toxicity Test Summary Sheet**

| Facility Name:           | General Electric Co.              | Test Sta                        | irt Date: <u>Septe</u>                  | mber 14, 2004    |
|--------------------------|-----------------------------------|---------------------------------|-----------------------------------------|------------------|
| NPDES Permit No          | umber: <u>MA 000 3891</u>         | Pipe Number:                    | 001, 005-64T,                           | 005-64G,         |
|                          |                                   |                                 | 09A, 09B                                |                  |
| Test Type                | Test Species                      | Sample Typ                      |                                         | ole Method       |
| ☑ Acute                  | ☐ Fathead minnow                  | ☐ Prechlorinate                 |                                         |                  |
| ☐ Chronic<br>☐ Modified* | ☐ Ceriodaphnia                    | ☐ Dechlorinated                 |                                         | •                |
| ☐ 24-hour                | ☑ Daphnia pulex<br>□ Mysid Shrimp | ☐ Chlorine<br>☐ Spiked at lab   | □ Flow<br>□ Othe                        |                  |
| Screening                | ☐ Menidia                         | ☐ Spiked at lab ☐ Chlorinated o |                                         | ſ                |
| oc. cci mig              | ☐ Sea Urchin                      | site                            | •                                       |                  |
|                          | □ Champia                         | ☐ Unchlorinated                 |                                         |                  |
|                          | ☐ Selenastrum                     |                                 |                                         |                  |
|                          | □ Other                           |                                 |                                         |                  |
| *Modified (Chronic r     | eporting acute values)            |                                 |                                         |                  |
| Dilution Water           |                                   | _                               |                                         |                  |
|                          | aters collected at a point        |                                 |                                         |                  |
| River);                  | or other sources of con           | tamination (Recei               | ving water name                         | : Housatonic     |
|                          | face water of known qu            | ality and a harnes              | s etc to genera                         | ally reflect the |
|                          | cs of the receiving water         |                                 | s, etc. to genera                       | my reflect the   |
|                          | iter prepared using either        | •                               | or equivalent dei                       | onized water     |
|                          | grade chemicals; or dei           |                                 |                                         |                  |
| or artificial s          | ea salts mixed with deio          | nized water;                    |                                         | •                |
| -                        | ater and hypersaline brir         | ne; or                          |                                         |                  |
| other                    |                                   |                                 |                                         |                  |
| Effluent sampling        | date(s): Sentembe                 | or 12 2004 to S                 | ontombor 12                             | 004              |
| Linacine Sampling        | Jace(3). Septembe                 | er 12, 2004 to S                | ptember 13, 2                           | 004              |
| Effluent concentr        | rations tested (in %):            | 100 75                          | 50 35                                   | 15 5             |
|                          |                                   | nit limit concentra             |                                         |                  |
|                          | •                                 |                                 |                                         |                  |
| Was effluent salir       |                                   |                                 |                                         |                  |
|                          | alue? <u>N/A</u> ppt              |                                 |                                         |                  |
| With sea salts?          | N/A Hypersalin                    | e brine solution?               | N/A                                     |                  |
| Actual effluent co       | oncentrations tested after        | er salinity adjustm             | ent                                     |                  |
|                          | N/A N/A N/A                       |                                 |                                         |                  |
| Reference Toxica         | nt Test Date: Septe               | mber 14, 2004                   | -<br>to September 1                     | 6, 2004          |
|                          |                                   |                                 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                  |
| N/A= not applicable      |                                   |                                 |                                         |                  |

## **Permit Limits & Test Results**

### Test Acceptability Criteria

| MEAN CONTROL SURVIVAL: | 100% | MEAN CONTROL REPRODUCTION | :N/A |
|------------------------|------|---------------------------|------|
| MEAN CONTROL WEIGHT:   | N/A  | MEAN CONTROL CELL COUNT:  | N/A  |

| Lim    | its |               | Results |
|--------|-----|---------------|---------|
| LC50   | N/A | 48-hr LC50    | >100%   |
|        |     | Upper Value   | N/A     |
|        |     | Lower Value   | N/A     |
|        |     | Data Analysis |         |
|        |     | Method used:  | N/A     |
| A-NOEC | N/A | A-NOEC        | 100%    |
| C-NOEC | N/A | C-NOEC        | N/A     |
|        |     | LOEC          | N/A     |
| IC25   | N/A | IC25          | N/A     |
| IC50   | N/A | IC50          | N/A     |

N/A = not applicable

## Attachment D

Chronic Effects of the Process Wastewaters
Discharged from the General Electric
Plant; Pittsfield, Massachusetts
[Samples Collected in September 2004]



NPDES Permit No. MA000 3891 SGS ID number: TA4-I0-P284 September 30, 2004 Page 1

# Chronic Effects of the Process Wastewaters Discharged from the General Electric Plant Pittsfield, Massachusetts

Samples collected in September 2004

Submitted to:

General Electric
Area Environmental & Facility Programs
100 Woodlawn Avenue
Pittsfield, Massachusetts 01201

SGS Sample ID: TA4-I0-P284

Study Director: Ken Holliday

30 September 2004

SGS Environmental Services
1258 Greenbrier Street
Charleston, West Virginia 25311-1002
Tel: 304.346.0725 Fax: 304.346.0761
www.sgs.com

## **Signatures and Approval**

Submitted by:

SGS Environmental Services

1258 Greenbrier Street

Charleston, West Virginia 25311-1002

Tel: 304.346.0725 Fax: 304.346.0761

www.sgs.com

Ken Holliday

**Study Director** 

kholliday@sgs.com

30 September 2004

Date

Titshina L. Mims

Technical Writer

30 September 2004

Date

Barbara Hensley

Project Manager

barbara\_hensley@sgs.com

30 September 2004

Date

NPDES Permit No. MA000 3891 SGS ID number: TA4-I0-P284 September 30, 2004 Page 3

## Whole Effluent Toxicity Test Report Certification

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Executed on: 30 September 2004

Date

Aptrorized signature

Jeannie Latterner

Name

QA/QC Manager

Title

SGS Environmental Services

Laboratory

ilatterner@sqs.com

## **Table of Contents**

|                                                        | Page |
|--------------------------------------------------------|------|
| Signatures and Approval                                | 2    |
| WET Test Report Certification                          | 3    |
| List of Tables                                         | 5    |
| Executive Summary                                      | 6    |
| Summary of Test Conditions and Test Results            | 7    |
| 1.0 Introduction                                       | 10   |
| 1.1 Background                                         | 10   |
| 1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977) | 11   |
| 1.3 The Chronic Toxicity Test                          | 11   |
| 1.4 Objective of the General Electric Study            | 11   |
| 2.0 Materials and Methods                              | 13   |
| 2.1 Protocol                                           | 13   |
| 2.2 Effluent Sample                                    | 13   |
| 2.3 Dilution Water                                     | 15   |
| 2.4 Reference Control Water                            | 16   |
| 2.5 Secondary Reference Control                        | 16   |
| 2.6 Test Organisms                                     | 16   |
| 2.7 Test Procedures                                    | 17   |
| 2.8 Test Monitoring                                    | 18   |
| 2.9 Reference Toxicity Tests                           | 19   |
| 3.0 Statistics                                         | 20   |
| Flowchart for Statistical Analysis of Data             | 21   |
| 4.0 Results                                            | 22   |
| 4.1 Effluent Toxicity Test                             | 22   |
| 4.2 Reference Toxicity Test                            | 23   |
| 5.0 Reference Documents                                | 23   |
| Appendix I – References                                | 30   |
| Appendix II - Chain of Custody                         | 49   |
| Appendix III - Bench Data                              | 53   |
| Appendix IV - Statistical Sheets                       | 71   |

# **Table of Contents**

|                                                  |                                                                                                                                                                                                                            | Page |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Appendix V - l                                   | J.S. EPA Region I Toxicity Test Summary                                                                                                                                                                                    | 76   |
| Appendix VI – 7-day Reference Toxicant Test Data |                                                                                                                                                                                                                            |      |
|                                                  | List of Tables                                                                                                                                                                                                             | Page |
| Table 1                                          | Methods used for the chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River)                                                                                         | 24   |
| Table 2a                                         | Sample #1: Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River) for the 7-day short-term chronic toxicity test with Ceriodaphnia dubia | 25   |
| Table 2b                                         | Sample #2: Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River) for the 7-day short-term chronic toxicity test with Ceriodaphnia dubia | 26   |
| Table 2c                                         | Sample #3: Results of the characterization and analysis of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River) for the 7-day short-term chronic toxicity test with Ceriodaphnia dubia | 27   |
| Table 3                                          | The water quality measurements recorded during the 7-day short-term chronic toxicity test exposing <i>Ceriodaphnia dubia</i> to General Electric Pittsfield Plant effluent                                                 | 28   |
| Table 4                                          | Summary of the mean survival and reproduction recorded during the 7-day short-term chronic toxicity test exposing <i>Ceriodaphnia dubia</i> to General Electric Pittsfield Plant effluent                                  | 29   |

# **Executive Summary**

The following is a summary of the toxicity results exposing *Ceriodaphnia dubia* to effluent collected from the General Electric Company, Pittsfield, Massachusetts. Effluent samples were collected from September 12, 2004 to September 17, 2004. The freshwater species, *Ceriodaphnia dubia*, was exposed to the effluent under static-renewal conditions. Acute endpoints were derived 48-hours into the chronic studies.

**Acute Toxicity Evaluation** 

| Species Species    | Exposure Period | LC <sub>50</sub> weffluent | NOAEL<br>% effluent |
|--------------------|-----------------|----------------------------|---------------------|
| Ceriodaphnia dubia | 48 hours        | >100%                      | 100%                |

**Chronic Toxicity Evaluation** 

| Species               | Endpoint     | Exposure<br>Period | NOCEL<br>%<br>effluent | LOCEL<br>%<br>effluent | MAWC<br>%<br>effluent |
|-----------------------|--------------|--------------------|------------------------|------------------------|-----------------------|
|                       | 2            |                    |                        |                        |                       |
| Ceriodaphnia<br>dubia | Survival     | 7 days             | 100%                   | >100%                  | ≥100%                 |
| Ceriodaphnia<br>dubia | Reproduction | 7 days             | 100%                   | >100%                  | ≥100%                 |

# **Summary of Test Conditions and Test Results**

# Static Renewal Short-Term Toxicity Test with Ceriodaphnia dubia

Sponsor:

General Electric

Protocol Title:

Chronic Aquatic Toxicity Testing, SGS Document

Control Number 7003, version 4.0

Study Number:

TA4-I0-P284

Test Material:

Composite effluent from the General Electric

Company located in Pittsfield, Massachusetts

GE Sample ID:

A5945C, A5947C and A5949C

Dilution Water:

Water from the Housatonic River

Dilution Water ID:

A5944R, A5946R and A5948R

Dates Collected:

Dates Received:

09/14/04, 09/16/04, 09/18/04

Test Dates:

09/14/04 to 09/21/04

**Test Concentrations:** 

100% effluent 75% effluent 50% effluent 25% effluent 12.5 effluent 6.25% effluent

dilution water control (Housatonic River)

reference control (moderately hard reconstituted

water)

secondary reference control (sodium thiosulfate)

Test Type:

Chronic static renewal

Temperature:

25°C (± 1°C)

Light Intensity:

90 to 100 foot-candles

Photoperiod:

16 hours light, 8 hours dark

Size of Test Chamber:

30 ml medicine cups

Test Solution Volume:

20 ml per medicine cup

Renewal of solutions:

Test solutions were renewed daily using the most recently collected effluent sample.

Age of Organisms:

The test organisms were less than 24-hours old and were all hatched within an 8-hour period of

each other.

Number of Neonates per test chamber:

1 daphnid per test chamber (replicate)

Number of Replicate Test Chambers per

treatment:

10 test chambers (replicates) per concentration

Feeding regime:

Daphnid cultures were fed a combination of green algae (Selenastrum capricorium) and YCT

(yeast, cereal leaves and trout chow).

Aeration:

The effluent sample was supersaturated by

aeration prior to use in the test.

Results:

LC<sub>50</sub> The 48-hour LC<sub>50</sub> value was determined

to be >100% effluent.

NOAEL The No-Observed-Acute-Effect-Level

(NOAEL), based on survival, was observed to be 100% effluent

NOCEL The No-Observed-Chronic-Effect-Level,

based on reproduction, was determined

to be 100% effluent

LOCEL The Lowest-Observed-Chronic-Effect-Level, based on reproduction, was determined to be >100% effluent

MAWC The Maximum Acceptable Wastewater Concentration was calculated to be ≥100% effluent.

#### 1.0 Introduction

### 1.1 Background

In 1972, amendments were made to the Clean Water Act (CWA) prohibiting the discharge of any pollutant from a point source to waters of the United States, unless the discharge is authorized by a National Pollutant Discharge Elimination System (NPDES) permit. Since the passing of the 1972 amendments to the CWA, significant progress has been made in cleaning up industrial process wastewater and municipal sewage.

The purpose of the National Pollutant Discharge Elimination System (NPDES) Program is to protect human health and the environment. The Clean Water Act requires that all point sources discharging pollutants into waters of the United States must obtain an NPDES permit. By point sources, EPA means discrete conveyances such as pipes or man made ditches.

For many years, discharge limits were based on available technology for wastewater treatment. However, in 1984, the U.S. Environmental Protection Agency (EPA) released a national policy statement entitled "Policy for the Development of Water Quality-Based Permit Limitations for Toxic Pollutants" (U.S. EPA, 1984) which addresses the control of toxic pollutants beyond technology-based requirements in order to meet water quality standards. To implement the new policy, guidance was provided to the respective state and regional permit personnel in the EPA's "Technical Support Document for Water Quality-Based Toxics Control" (U.S. EPA, 1985; U.S. EPA, 1991). The EPA's policy statement and the support document recommended that, where appropriate, permit limits should be based on effluent toxicity as measured in aquatic toxicity tests.

## 1.2 Clean Water Act, 33 U.S.C. s/s 1251 et seq. (1977)

The Clean Water Act is a 1977 amendment to the Federal Water Pollution Control Act of 1972, which set the basic structure for regulating discharges of pollutants to waters of the United States. The law gave EPA the authority to set effluent standards on an industry basis (technology-based) and continued the requirements to set water quality standards for all contaminants in surface waters. The CWA makes it unlawful for any person to discharge any pollutant from a point source into navigable waters unless a permit (NPDES) is obtained under the Act. The 1977 amendments focused on toxic pollutants. In 1987, the CWA was reauthorized and again focused on toxic substances, authorized citizen suit provisions, and funded sewage treatment plants (POTWs) under the Construction Grants Program. The CWA provisions for the delegation by EPA of many permitting, administrative, and enforcement aspects of the law to state governments. In states with the authority to implement CWA programs, EPA still retains oversight responsibilities.

### 1.3 The Chronic Toxicity Test

The acute toxicity test is used for predicting the maximum allowable concentrations of industrial waste waters that can be discharged into a receiving system. Chronic toxicity tests produce data that is useful in predicting the wastewater concentrations not likely to harm a resident population of invertebrates or fish.

# **1.4** Objective of the General Electric Study

The objective of this study was to measure the chronic toxicity of the composite process wastewater discharged by the General Electric facility located in Pittsfield, Massachusetts, using *Ceriodaphnia dubia* under static renewal conditions. Whereas *Ceriodaphnia dubia* are not considered locally important, they are routinely used by regulatory agencies and contract laboratories nationwide for toxicity testing. A short-term chronic toxicity test was conducted from

September 14, 2004 to September 21, 2004 at SGS Environmental Services, Charleston, West Virginia. All original raw data and the final report produced for this study are stored in SGS's archives at the above location.

#### 2.0 Materials and Methods

#### 2.1 Protocol

Procedures used in this chronic toxicity test followed those described in the SGS Standard Operating Procedure (SOP) entitled *Chronic Aquatic Toxicity Testing*, SGS document control number 7003, version 4.0. This SOP generally follows the standard methodology described by the U.S. Environmental Protection Agency.

Additional SOPs used in this study are outlined below:

| Title                                        | Document<br>Number | Version |
|----------------------------------------------|--------------------|---------|
| Culture Waters for Aquatic Toxicity Testing  | 7005               | 4.0     |
| Daphnia, Culture of                          | 7006               | 5.0     |
| Reference Toxicant Testing                   | 7008               | 5.0     |
| Sample Handling for Aquatic Toxicity Testing | 7009               | 4.0     |

Copies of these documents are included in the References section of this report.

# 2.2 Effluent Sample

The first effluent sample (A5945C) was collected by GE personnel from September 12, 2004 to September 13, 2004, and was used to initiate the short-term chronic test and renewal of the test solutions on Day 1 and Day 2. Upon receipt at SGS on September 14, 2004, the sample temperature was 4.2° C. The effluent sample was characterized as having

Sample #1 - collected from 09/12/04 to 09/13/04

| Parameter             | Result |  |  |
|-----------------------|--------|--|--|
| Total Hardness        | 260    |  |  |
| Alkalinity (as CaCO₃) | 235    |  |  |
| рН                    | 7.65   |  |  |

# Sample #1 - collected from 09/12/04 to 09/13/04

| <u>an an a</u> |        |  |
|-------------------------------------------------|--------|--|
| Parameter                                       | Result |  |
| Specific Conductance                            | 938    |  |
| Dissolved Oxygen Concentration*                 | 8.48   |  |
| Appearance                                      | Clear  |  |

The second effluent sample (A5947C) was collected by GE personnel from September 14, 2004 to September 15, 2004, and was used for renewal of test solutions on Day 3 and Day 4. Upon receipt at SGS on September 16, 2004, the sample temperature was 4.7° C. The effluent sample was characterized as having

Sample #2 - collected from 09/14/04 to 09/15/04

| Parameter                       | Result |  |
|---------------------------------|--------|--|
| Total Hardness                  | 270    |  |
| Alkalinity (as CaCO₃)           | 205    |  |
| pH                              | 7.78   |  |
| Specific Conductance            | 882    |  |
| Dissolved Oxygen Concentration* | 8.64   |  |
| Appearance                      | Clear  |  |
|                                 |        |  |

The third effluent sample (A5949C) was collected by GE personnel from September 16, 2004 to September 17, 2004, and was used for renewal of test solutions on Days 5, 6 and 7. Upon receipt at SGS on September 18, 2004, the sample temperature was 3.8° C. The effluent sample was characterized as having

Sample #3 - collected from 09/16/04 to 09/17/04

| Result |  |  |  |
|--------|--|--|--|
| 400    |  |  |  |
| 304    |  |  |  |
| 7.31   |  |  |  |
| 1091   |  |  |  |
| 8.54   |  |  |  |
| Clear  |  |  |  |
|        |  |  |  |

<sup>\*</sup>Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 20°C).

#### 2.3 Dilution Water

Dilution water consisted of receiving water collected from the Housatonic River and was collected as a "grab" sample. The first dilution water sample (A5944R) was collected by General Electric personnel on September 13, 2004, and was used with the Day 1 and Day 2 test. Upon receipt at SGS, the sample temperature was 4.2°C. The dilution water sample was characterized as having

| Dilution Water #1        | Collected 09/13/04 |
|--------------------------|--------------------|
| Parameter                | Result             |
| Total Hardness           | 100                |
| Alkalinity (as CaCO₃)    | 74                 |
| рН                       | 6.58               |
| Specific Conductance     | 219                |
| Dissolved Oxygen Concent | ration* 8.61       |
| Appearance:              | Slight yellow      |
|                          | color              |

The second dilution water sample (A5946R) was collected by General Electric personnel on September 15, 2004, and was used with the Day 3 and Day 4 tests. Upon receipt at SGS, the sample temperature was 4.7°C. The dilution water sample was characterized as having

| Dilution Water #2            | Collected 09/15/04 |
|------------------------------|--------------------|
| Parameter                    | Result             |
| Total Hardness               | 210                |
| Alkalinity (as CaCO₃)        | 74                 |
| pH                           | 7.31               |
| Specific Conductance         | 219                |
| Dissolved Oxygen Concentrate | tion* 8.58         |
| Appearance:                  | Slight yellow      |
|                              | color              |

The third dilution water sample (A5948R) was collected by General Electric personnel on September 17, 2004, and was used with the Day 5, 6 and 7 tests. Upon receipt at SGS, the sample temperature was 3.8°C. The dilution water sample was characterized as having

| Dilution Water #3         | Collected 9/17/04 |
|---------------------------|-------------------|
| Parameter                 | Result            |
| Total Hardness            | 210               |
| Alkalinity (as CaCO₃)     | 97                |
| pH                        | 6.67              |
| Specific Conductance      | 226               |
| Dissolved Oxygen Concentr | ation* 8.67       |
| Appearance:               | Slight yellow     |
|                           | color             |

<sup>\*</sup>Dissolved oxygen concentration was recorded after sample was aerated and warmed to approximately 25°C).

#### 2.4 Reference Control Water

Water used in the reference control vessels was deionized (DI) water adjusted to the appropriate hardness (moderately hard reconstituted water) by the addition of reagent grade chemicals (U.S. EPA, 1993). Characterization of this water resulted in:

| Parameter             | Result    |
|-----------------------|-----------|
| Total Hardness        | 100 - 110 |
| Alkalinity (as CaCO₃) | 69 - 76   |
| pH                    | 6.9 - 7.1 |
| Specific Conductance  | 338 - 360 |

# 2.5 Secondary Reference Control

A secondary reference control consisted of deionized (DI) water adjusted to the appropriate hardness (moderately hard reconstituted water) and sodium thiosulfate (0.1 N).

# 2.6 Test Organisms

Ceriodaphnia dubia→

Daphnids (*Ceriodaphnia dubia*), less than 24-hours old, were obtained from SGS laboratory cultures maintained in Charleston. The culture system consisted of twenty-four



(24) 100 ml disposable plastic beakers each containing 80 ml of culture medium

and one (1) daphnid. The culture medium was deionized (DI) water for which the hardness was raised by addition of reagent grade chemicals (U.S. EPA, 1993). Prior to use, the culture water was characterized:

#### **Parameter**

#### Result

Total Hardness Alkalinity (as CaCO₃) PH within range of 80-110 mg/L within range of 60-75 mg/L within range of 7.0 to 7.2

The culture area was maintained at a temperature of 25°C ( $\pm$ 1°C) with a regulated photoperiod of 16 hours of light and 8 hours of darkness.

Daphnid cultures were fed a combination of green algae ( $Selenastrum \, capricorium$ ), approximately 4.0 x 10<sup>7</sup> cells/ml and YCT (yeast, cereal leaves and trout chow). Approximately 1.0 ml of algae and 0.5 ml of YCT was added to each culture vessel daily. Three times per week, daphnids are transferred to fresh culture media.

Approximately twenty-four hours before test initiation, all immature daphnids were removed from the culture flasks. Offspring produced during the period were used in the toxicity test. All Ceriodaphnia dubia were used in the test were ≤24 hours old and all were produced within an 8-hour period.

#### 2.7 Test Procedures

A subsample of the effluent and the dilution water (approximately 2250 ml), from each of the three sampling events, was analyzed by SGS for total phosphorus, chloride, total suspended solids, and total solids. The short-term chronic toxicity test was conducted at concentrations of 100%, 75%, 50%, 25%, 12.5% and 6.25% effluent. Test concentrations were prepared from this solution by diluting the appropriate volume of effluent with dilution water to a total volume of 800 ml. Test solutions were then divided into replicate (10

replicates per concentration) 30 ml medicine cups, each containing 20 ml of test solution. One set of ten control beakers (containing Housatonic River water), one set of ten reference control beakers (containing moderately hard reconstituted water), and one set of ten secondary reference control beakers (containing moderately hard reconstituted water and sodium thiosulfate) were established and maintained under the same conditions as the exposure concentrations. Test solutions were placed in an incubator to maintain solution temperature of 25°C ( $\pm$  1°C). Light was provided on a 16-hour light and 8-hour dark photoperiod. Florescent bulbs provided an illumination of 90 to 100 footcandles in the test area.

Prior to test initiation, daphnids less than 24-hours old were culled individually with a plastic pipette and placed into a 1000 ml holding beaker containing approximately 500 ml of reference water. The test was initiated when daphnids were individually transferred from the holding beaker to the test solutions (5 daphnids per replicate). The renewal of the test solutions was conducted daily by transferring the adult organisms to freshly prepared solutions. The daphnids were fed prior to test initiation and immediately following renewal of the test solutions.

## 2.8 Test Monitoring

The number of mortalities and observations in each replicate vessel were recorded at 0, 24, 48, 72, 96, 120, 144 and 168 hours of exposure and observed mortalities were removed from the test solutions. Biological observations and observations from the physical characteristics of each replicate test solution and control were also made and recorded at 0, 24, 48, 72, 96, 120, 144 and 168 hours. Dissolved oxygen concentrations pH and temperature were measured at test initiation and at 24-hour intervals thereafter, in one replicate vessel (a) for each test concentration in which there were surviving organisms.

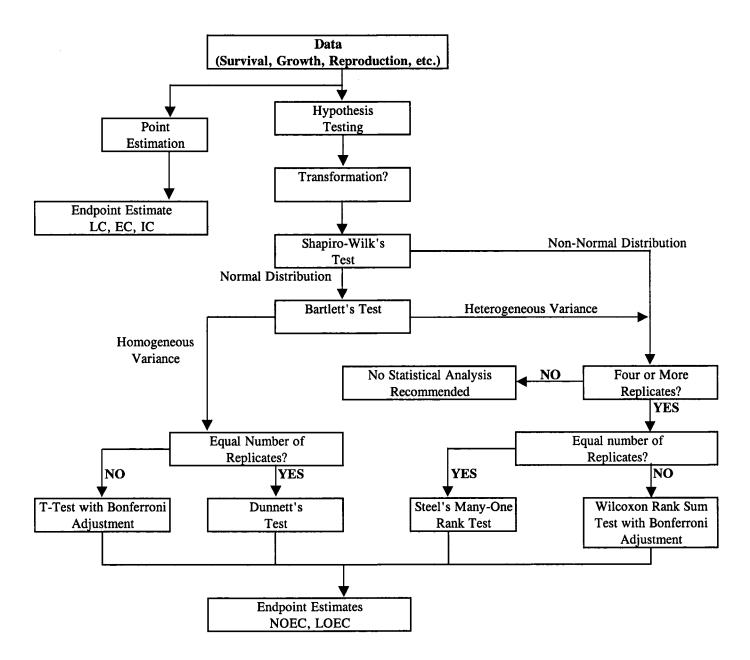
Total hardness concentrations were measured by the EDTA titrimetric method and total alkalinity concentrations were determined by potentiometric titration to an endpoint of pH 4.5 (APHA, 1989). Total residual chorine was measured by Hach test. Concentrations of ammonia were determined using a Buchi model 212 distillation unit and titrated automatically with a Brinkman titroprocessor. Specific conductivity was measured with a Cole Palmer Model 71250 salinity-conductivity-temperature meter and probe; pH was measured with a Fisher Scientific Accumet 910 pH meter and combination electrode; dissolved oxygen concentration was measured with a YSI Model 59 dissolved oxygen meter. Daily temperature measurements were performed with a Princo mercury thermometer and a Fisher minimum-maximum thermometer. Light intensity was measured with a General Electric type 217 light meter.

#### 2.9 Reference Toxicity Test

A chronic reference toxicity test exposing *Ceriodaphnia dubia* to sodium chloride (NaCl) was conducted from September 13, 2004 to September 20, 2004. The reference test was conducted to establish the health of the test organisms. The reference toxicity test included five NaCl concentrations and a dilution water control (moderately hard reconstituted water). The nominal NaCl concentrations for the test with *Ceriodaphnia dubia* was 500, 1000, 2000, 3000 and 4000 mg of NaCl/L. Test methods were the same as those described above for the effluent test.

#### 3.0 Statistics

All data generated during the test was tabulated, summarized and analyzed by SGS. The data generated at the end of 48 hours were analyzed and when appropriate a median lethal concentration ( $LC_{50}$ ) was calculated. This value was derived using a computerized statistical method (TOXSTAT 3.5), which was also used to calculate confidence levels were possible for each test organism.


If partial mortalities were observed in at least two concentrations, the probit analysis, which yields  $LC_{50}$  values and 95 percent confidence levels, was used. When fewer than two partial mortalities were observed, the moving average method, binomial method, or non-linear interpolation, was used to generate  $LC_{50}$ s. The final report specifies the statistical methods used.

The Shapiro-Wilk's test and Bartlett's test are performed on all other chronic data to test for normality of data distribution and homogeneity of variance between treatments.

Concentrations above the NOECL for survival were excluded from the hypothesis tests for reproduction and growth. If assumptions of parametric analysis (Shapiro-Wilk's test and Bartlett's test) are met, the reproduction data will be analyzed using Dunnett's procedure or the T-test with Bonferroni Adjustment. If assumptions are not met, Steel's Many-One Rank test or Wilcoxon Rank Sum test with Bonferroni Adjustment (non-parametric analyses) are used to analyze data. Fisher's Exact is used to analyze Ceriodaphnia survival data. The final report specifies the statistical methods used.

Generally, to choose the best estimate values for a particular data set, the U.S. EPA flow chart on page 21 was followed.

### Flowchart for Statistical Analysis of Data



#### 4.0 Results

### 4.1 Effluent Toxicity Test

The methods and detection limits of chemical analyses performed on the composite effluent sample and dilution water are summarized in Table 1. Results of the characterization and analysis of the effluent and the dilution water are presented in Table 2. Water quality parameters measured during the toxicity test are presented in Table 3. Daily and continuous monitoring of the test solutions established the temperature ranged from 24°C to 26°C throughout the exposure period. The effluent concentration was tested (expressed as %) and the corresponding percent mortalities recorded during the 48-hour toxicity test are presented in Table 4.

The percent survival and number of offspring produced during the 7-day exposure to C. dubia are presented in Table 4. The 48-hour  $LC_{50}$  value was determined to be >100% effluent, since no concentrations caused  $\geq$ 50% mortality during the first 48 hours of the study. At test termination, 100% survival was observed among C. dubia exposed to all effluent concentrations and the controls. Based on statistical analysis of the survival data, the NOCEL was determined to be 100% effluent.

By day seven,  $\geq$ 60% of the reference control organisms had produced at least three broods with a minimum of 15 young per female.

|        | Mean Number of Offspring per Effluent Concentration |       |          |                   |           |                        |         |         |         |  |  |
|--------|-----------------------------------------------------|-------|----------|-------------------|-----------|------------------------|---------|---------|---------|--|--|
|        |                                                     | Efflu | ent Cond | Dilution<br>water | Reference | Secondary<br>Reference |         |         |         |  |  |
|        | 6.25                                                | 12.5  | 25       | 50                | 75        | 100                    | control | Control | Control |  |  |
| Mean → | 23.3                                                | 23.5  | 24.5     | 22.7              | 23.5      | 25.9                   | 23.1    | 23.9    | 25.3    |  |  |

(Secondary reference control = sodium thiosulfate)

Statistical analyses of *C. dubia* reproduction using Dunnett's did not established a difference between the 100% effluent concentration and the control group. based on reproduction, was therefore determined to be 100% The Lowest-Observed-Chronic-Effect-Level (LOCEL), based reproduction, was determined to be >100% effluent. The Maximum-Acceptable-Wastewater-Concentration (MAWC) was calculated to be 100% effluent.

#### 4.2 **Reference Toxicity Test**

SGS uses sodium chloride (NaCl) as a reference toxicant. The reference test was conducted from September 8, 2004 to September 10, 2004, and the resulting 48-hour LC<sub>50</sub> was estimated by Spearman-Karber Trim to be 1238 mg of NaCl/L (95% confidence intervals of 1037 to 1479 mg NaCl/L).

#### 5.0 References

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation (APHA). 1989. Standard Methods for the Examination of Water and Wastewater. 17th Edition.
- U.S. Environmental Protection Agency. 1984. Development of water Quality-Based Permit Limitations for Toxic Pollutants. Federal Register 49(48):90160-90190.
- U.S. Environmental Protection Agency. 1985. Technical Support Document for Water Quality-Based Toxics Control. Office of Water, Washington, DC.
- U.S. Environmental Protection Agency. 1991. Technical Support Document for Water Quality-Based Toxics Control. Office of Water, Washington, DC.
- Weber, Cornelius I., et al., Short Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Fourth Edition. EPA-600/4-91/002. U.S.EPA, Cincinnati, Ohio.

Table 1. Methods and detection limits of chemical analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River).

| <u>Parameters</u>        | Method                     | <b>Detection Limits</b> |
|--------------------------|----------------------------|-------------------------|
| Ammonia Nitrogen<br>as N | EPA 350.2                  | 1.0 mg/L                |
| Chloride                 | EPA 325.2                  | 1.0 mg/L                |
| Total Organic Carbon     | EPA 415.1                  | 1.0 mg/L                |
| Total Solids             | EPA 160.3                  | 10.0 mg/L               |
| Phosphorus, Total as P   | EPA 365.2                  | 0.02 mg/L               |
| Total Residual Chlorine  | Standard Methods 4500-Cl G | 0.01 mg/L               |
| Total Suspended Solids   | EPA 160.2                  | 5.0 mg/L                |

Table 2a. Sample #1 – collected from 09/12/04 to 09/13/04
Dilution water collected on 09/13/04
Results of the characterization and analyses of the General Electric Pittsfield Plant effluent and the dilution water (Housatonic River).

| (Housatonic River).     |                      |                              |  |  |
|-------------------------|----------------------|------------------------------|--|--|
| Parameter               | Effluent<br>(A5945C) | Housatonic River<br>(A5944R) |  |  |
| Temperature             | 24.8°C               | 24.8°C                       |  |  |
| pH                      | 7.65                 | 6.58                         |  |  |
| Alkalinity (as CaCO₃)   | 235                  | 74                           |  |  |
| Hardness (as CaCO₃)     | 260                  | 100                          |  |  |
| Dissolved Oxygen*       | 8.48                 | 8.61                         |  |  |
| Specific Conductivity   | 938                  | 219                          |  |  |
| Salinity                | N/A                  | N/A                          |  |  |
| Total Residual Chlorine | ND                   | ND                           |  |  |
| Ammonia as N (0-Hour)   | ND                   | ND                           |  |  |
| Total Phosphorus as P   | ND                   | ND                           |  |  |
| Chloride                | 130 mg/L             | 12 mg/L                      |  |  |
| Total Suspended Solids  | ND                   | 5.0 mg/L                     |  |  |
| Total Solids            | 620 mg/L             | 100 mg/L                     |  |  |
| Total Organic Carbon    | 4.8 mg/L             | 7.1 mg/L                     |  |  |
| Description             | clear                | slight yellow color          |  |  |

<sup>\*</sup>Dissolved oxygen concentrations recorded after samples were aerated and warmed to approximately 20°C.

ND = non detectable

N/A = not applicable

Table 2b. Sample #2 - collected from 09/14/04 to 09/15/04 Dilution water collected on 09/15/04 Results of the characterization and analyses of the General **Electric Pittsfield Plant effluent and the dilution water** (Housatonic River).

| (Housatonic River).     | =661                 | Harrackovia Birrar        |  |  |
|-------------------------|----------------------|---------------------------|--|--|
| Parameter               | Effluent<br>(A5947C) | Housatonic River (A5946R) |  |  |
| Temperature             | 25.7°C               | 25.7°C                    |  |  |
| pH                      | 7.78                 | 7.31                      |  |  |
| Alkalinity (as CaCO₃)   | 205                  | 74                        |  |  |
| Hardness (as CaCO₃)     | 270                  | 210                       |  |  |
| Dissolved Oxygen        | 8.64                 | 8.58                      |  |  |
| Specific Conductivity   | 882                  | 219                       |  |  |
| Salinity                | N/A                  | N/A                       |  |  |
| Total Residual Chlorine | ND                   | ND                        |  |  |
| Ammonia as N (0-Hour)   | ND                   | ND                        |  |  |
| Total Phosphorus as P   | ND                   | ND                        |  |  |
| Chloride                | 160 mg/L             | 14 mg/L                   |  |  |
| Total Suspended Solids  | ND                   | ND                        |  |  |
| Total Solids            | 580 mg/L             | 110 mg/L                  |  |  |
| Total Organic Carbon    | 4.6 mg/L             | 5.9 mg/L                  |  |  |
| Description             | Clear                | Slight yellow color       |  |  |

Dissolved oxygen concentrations recorded after samples were aerated and warmed to approximately 20°C.

N/A = not applicable ND = non detectable

Sample #3 - collected from 09/16/04 to 09/17/04 Table 2c. Dilution water collected on 09/17/04 Results of the characterization and analyses of the General **Electric Pittsfield Plant effluent and the dilution water** (Housatonic River).

| (nousatonic kiver).     | Effluent   | <b>Housatonic River</b> |  |  |
|-------------------------|------------|-------------------------|--|--|
| Parameter               | (A5949C)   | (A5948R)                |  |  |
| Temperature             | 24.8°C     | 24.8°C                  |  |  |
| рН                      | 7.31       | 6.67                    |  |  |
| Alkalinity (as CaCO₃)   | 304        | 97                      |  |  |
| Hardness (as CaCO₃)     | 400        | 210                     |  |  |
| Dissolved Oxygen        | 8.54       | 8.67                    |  |  |
| Specific Conductivity   | 1091       | 226                     |  |  |
| Salinity                | N/A        | N/A                     |  |  |
| Total Residual Chlorine | ND         | ND                      |  |  |
| Ammonia as N (0-Hour)   | ND         | ND                      |  |  |
| Total Phosphorus as P   | 0.036 mg/L | 0.040 mg/L              |  |  |
| Chloride                | 150 mg/L   | 15 mg/L                 |  |  |
| Total Suspended Solids  | ND         | 5.0 mg/L                |  |  |
| Total Solids            | 640 mg/L   | 140 mg/L                |  |  |
| Total Organic Carbon    | 4.3 mg/L   | 5.3 mg/L                |  |  |
| Description             | Clear      | Slight yellow color     |  |  |

0 N/A = not applicable ND = non detectable approximately 20°C.

Table 3. The water quality measurements (ranges) recorded during the 7-day short-term chronic toxicity test exposing Ceriodaphnia dubia to General Electric Pittsfield Plant effluent.

| Sample<br>↓                                           | рН        | Dissolved<br>Oxygen<br>mg/L | Temperature<br>(°C) | Conductivity<br>μmhos/cm |
|-------------------------------------------------------|-----------|-----------------------------|---------------------|--------------------------|
| Dilution Water Control                                | 6.58-7.31 | 8.58-8.77                   | 24.8-25.8           | 208-226                  |
| Reference Control                                     | 7.02-7.11 | 8.80-8.92                   | 24.8-25.8           | 317-331                  |
| Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> Control | 7.09-7.17 | 8.84-8.99                   | 24.8-25.8           | 320-338                  |
| 6.25% effluent                                        | 6.70-7.39 | 8.58-8.73                   | 24.8-25.8           | 231-358                  |
| 12.5% effluent                                        | 6.89-7.44 | 8.54-8.69                   | 24.8-25.8           | 322-416                  |
| 25% effluent                                          | 7.08-7.57 | 8.57-8.67                   | 24.8-25.8           | 458-657                  |
| 50% effluent                                          | 7.19-7.66 | 8.50-8.68                   | 24.8-25.8           | 577-799                  |
| 75% effluent                                          | 7.24-7.74 | 8.56-8.65                   | 24.8-25.8           | 794-947                  |
| 100% effluent                                         | 7.31-7.78 | 8.48-8.64                   | 24.8-25.8           | 870-1091                 |

Dilution Water Control Reference Control Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Control = receiving water collected from the Housatonic River

= moderately hard synthetic water

= moderately hard synthetic water and sodium thiosulfate (0.1 N)

Table 4. Summary of the mean survival and reproduction recorded during the 7-day short-term chronic toxicity test exposing Ceriodaphnia dubia to General Electric Pittsfield Plant effluent.

| Effluent<br>Concentration                             |      |          |          | Days    |      |      |      | - |
|-------------------------------------------------------|------|----------|----------|---------|------|------|------|---|
| (%)                                                   | 1    | 2        | 3        | 4       | 5    | 6    | 7    |   |
| Reference Control                                     | 100% | 100%     | 100%     | 100%    | 100% | 100% | 100% | _ |
| Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> Control | 100% | 100%     | 100%     | 100%    | 100% | 100% | 100% |   |
| Control                                               | 100% | 100%     | 100%     | 100%    | 100% | 100% | 100% |   |
| 6.25                                                  | 100% | 100%     | 100%     | 100%    | 100% | 100% | 100% |   |
| 12.5                                                  | 100% | 100%     | 100%     | 100%    | 100% | 100% | 100% |   |
| 25                                                    | 100% | 100%     | 100%     | 100%    | 100% | 100% | 100% |   |
| 50                                                    | 100% | 100%     | 100%     | 100%    | 100% | 100% | 100% |   |
| 75                                                    | 100% | 100%     | 100%     | 100%    | 100% | 100% | 100% |   |
| 100                                                   | 100% | 100%     | 100%     | 100%    | 100% | 100% | 100% |   |
|                                                       | Num  | ber of ( | Offsprin | g Produ | ıced |      |      | M |
| Reference Control                                     | 0    | 0        | 0        | 38      | 10   | 83   | 108  | 2 |
| Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> Control | 0    | 0        | 0        | 40      | 17   | 78   | 118  | 2 |
| Control                                               | 0    | 0        | 0        | 38      | 5    | 90   | 98   | 2 |
| 6.25                                                  | 0    | 0        | 0        | 40      | 14   | 71   | 108  | 2 |
| 12.5                                                  | 0    | 0        | 0        | 34      | 18   | 78   | 105  | 2 |
| 25                                                    | 0    | 0        | 0        | 32      | 18   | 73   | 122  | 2 |
| 50                                                    | 0    | 0        | 0        | 35      | 1    | 93   | 98   | 2 |
| 75                                                    | 0    | 0        | 0        | 34      | 7    | 85   | 109  | 2 |
| 100                                                   | 0    | 0        | 0        | 37      | 13   | 102  | 107  | 2 |

Actual number of mortalities (if any) is presented in parentheses.

Reference Control = r

= moderately hard synthetic water

Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Control

= moderately hard synthetic water and sodium thiosulfate (0.1 N)

Dilution Water Control = receiving water collected from the Housatonic River

Appendix I References

Document Title:

**Acute Aquatic Toxicity Testing** 

Method Reference:
Document File Name:

CT&E/USEPA 7002-04.DOC

**Revision Number:** 

4.0

Effective Date:

October 20, 1998

UNCONTROLLED

COPY

7002.

| Page | 1 | of | 6 |
|------|---|----|---|
|------|---|----|---|

ved by: Ken Holleday

0/21/98 Date

**Document Control Number:** 

Approved by:

AMOS M. Work

16/20/98 Date

#### 1.0 SUMMARY

A 24-, 48-, or 96-hour test to determine the toxicity to freshwater aquatic animals of effluents.

#### 2.0 REFERENCES

- 2.1 Weber, Comelius I., *Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms.*, Fourth Edition. EPA-600/4-90/027. U.S.EPA, Cincinnati, Ohio.
- 2.2 Reporting and Testing Guidance for Biomonitoring Required by the Ohio Environmental Protection Agency, October, 1991.
- 2.3 Toxics Management Program's Guidance for Conduction and Reporting the Results of Toxicity Tests in Fulfillment of VPDES Permit Requirements, Revised July 1992.

#### 3.0 SCREENING

3.1 Test Duration

24 Hours, 48 Hours or 96 Hours.

- 3.2 Test Preparation
  - 3.2.1 Measure the pH, D.O. and total residual chlorine of the 100% effluent and the control water. If the effluent pH falls outside of the range of 6.0-9.0, two parallel tests are set up in which one effluent is adjusted and the other is not. The pH is adjusted to 7.0 using additions of 1N NaOH and HCl, (other pH adjustment endpoints may be utilized depending on local requirements). The measured amount of acid or base is recorded on the bench sheet. If the D.O. is below 40% saturation or above 100% saturation, the effluent is aerated prior to test initiation. If the total chlorine is above 0.1 mg/L, two parallel tests are set up in which one

032

Document Title:

**Acute Aquatic Toxicity Testing** 

Method Reference:

Document File Name:

CT&E/USEPA 7002-04.DOC

**Revision Number:** 

4.0

**Effective Date:** 

October 20, 1998

UNCONTROLLED

SOPY

Page 2 of 6

**Document Control Number:** 

7002.

effluent is dechlorinated and the other is not (Dechlorination may be prohibited; permit is checked to determine if dechlorination is allowed). The effluent is dechlorinated by the addition of anhydrous sodium thiosulfate. The measured amount is recorded on the bench sheet. Care is taken to add the least amount of sodium thiosulfate needed to decrease the TRC level below 0.10 mg/L. Typically, adjustment of effluent is unnecessary.

- 3.2.2 Twenty organisms per concentration are used in acute screening tests.
- 3.2.3 This is a static, non-renewal test, using Ceriodaphnia dubia, Daphnia pulex, Daphnia magna, or Pimephales promelas (Fathead minnow).
- 3.2.4 Water quality (D.O., pH, conductivity, hardness, alkalinity and TRC), is measured at the time of test initiation. At test termination, temperature, D.O. conductivity and pH are measured. The final mortality and percent effected counts are recorded. Temperature is maintained at 25°± 1°C for Daphnia, and 20° ± 1°C for fathead minnows. Facilities exist to perform both fish and Daphnia tests at either temperature.
- 3.3 Test Results

No statistical analysis is performed on screening data.

#### 4.0 DEFINITIVE TEST

- 4.1 Pimephales promelas (Fathead Minnows)
  - 4.1.1 Test Duration

48-Hours or 96-Hours

- 4.1.2 Static non-renewal
- 4.1.3 Test Preparation
  - 4.1.3.1 This test is comprised of a control and an effluent dilution series usually consisting of 100%, 50%, 25%, 12.5% and 6.25% (unless otherwise indicated).
  - 4.1.3.2 The sample is brought up to test temperature in a room temperature water bath. Chemical parameters are checked and

١,

033

Document Title:

**Acute Aquatic Toxicity Testing** 

Method Reference:
Document File Name:

CT&E/USEPA 7002-04.DOC

**Revision Number:** 

4.0

**Effective Date:** 

October 20, 1998

**Document Control Number:** 

7002.

Page 3 of 6

recorded. If the pH, D.O. or chlorine fall outside the acceptable testing range, the effluent may be adjusted (see screening; Test Preparation).

- 4.1.3.3 The dilutions are prepared in calibrated graduated cylinders using moderately hard synthetic water as dilution water. Other dilution water may be used if specified.
- 4.1.3.4 Approximately 400 ml of test solution is placed in each of two 800 ml disposable plastic beakers.

#### 4.1.4 Loading

Ten (10) organisms are placed in each beaker. CT&E uses fish which are less than 14 days old and are hatched within the same 24 hour period. A loading limit of 0.8 g/l is observed. Fish are loaded by first transferring them to a shallow dish where they are easily transferred into the test solutions with wide-bore pipettes.

### 4.1.5 Test Temperature

20° C (± 1)

#### 4.1.6 Daily Procedures

- 4.1.6.1 At the end of each 24 hours, the pH, D.O. and temperatures are checked and recorded. At this time mortalities are also recorded.
- 4.1.6.2 If a 96 hour static acute test is required, the test solution may be renewed at 48 hours. Renewal is accomplished by siphoning old test solution and debris and replacing with fresh solution of the appropriate concentration.
- 4.1.6.3 At the end of 48 hours or 96 hours the final mortalities and percent affected are recorded along with the final water qualities (D.O., pH, conductivity).

#### 4.1.7 Feeding

Organisms are allowed to feed only prior to test initiation, and prior to renewal at 48 hours in a 96 hour test.

٠,

Document Title:

**Acute Aquatic Toxicity Testing** 

Method Reference:

CT&E/USEPA 7002-04.DOC

Document File Name: Revision Number:

4.0

Effective Date:

October 20, 1998

UNCONTROLLED

Page 4 of 6

**Document Control Number:** 

7002.

- 4.2 Ceriodaphnia dubia, Daphnia magna, and Daphnia pulex
  - 4.2.1 Test Duration

48-Hours

- 4.2.2 Static Non-renewal
- 4.2.3 Test Preparation
  - 4.2.3.1 This test is comprised of a control and a dilution series consisting of 100%, 50%, 25%, 12.5% and 6.25% of the effluent (unless otherwise indicated).
  - 4.2.3.2 The sample is brought up to test temperature in a room temperature waterbath. Chemical parameters are checked and recorded. If the pH, D.O. or chlorine fall outside the acceptable testing range, the effluent may be adjusted (see screening; Test Preparation).
  - 4.2.3.3 The dilutions are prepared in beakers using moderately hard synthetic water (see Section II; Dilution Waters and Culture Media), unless other dilution water is specified. At least 25 ml. of each dilution are placed in five 30 ml. testing vessels.

#### 4.2.4 Loading

4.2.4.1 Four organisms are placed in each vessel. The *Daphnids* are loaded with a disposable polyethylene transfer pipette and are gently released below the surface of the water to avoid the risk of injury.

#### 4.2.5 Test Temperature

The test is conducted in a constant temperature incubator at  $25^{\circ} \pm 1^{\circ}$  C(To satisfy local requirements tests may be conducted at other temperatures).

Document Title:

**Acute Aquatic Toxicity Testing** 

Method Reference:
Document File Name:

CT&E/USEPA 7002-04.DOC

**Revision Number:** 

4.0

Effective Date: October 20, 1998

UNCONTROLLED

**Document Control Number:** 

7002.

### Page 5 of 6

#### 4.2.6 Daily Procedure

- 4.2.6.1 At 24 and 48 hours the mortalities and number adversely effected are noted.
- 4.2.6.2 Due to the fragile structure of *Daphnia* organisms, dissolved oxygen, hardness alkalinity, specific conductance and pH readings are not taken after the organisms have been added to the sample. These analyses could cause injury to the *Daphnia* organisms.

#### 4.2.7 Photoperiod

16 hours light, 8 hours dark.

#### 4.2.8 Feeding

Organisms are allowed to feed prior to test initiation; they are not fed for the duration of the test.

#### 5.0 TEST DATA

- 5.1 Pimephales promelas, Ceriodaphnia dubia, Daphnia magna and Daphnia pulex
  - 5.1.1 Mortality and adverse effects are used as the endpoints for a definitive test.
  - 5.1.2 Chemical parameters checked before test initiation, at 24 hours, 48 hours, 72 hours and 96 hours.
  - 5.1.3 Mortalities recorded at 24 hours, 48 hours, 72 hours and 96 hours.
  - 5.1.4 Any atypical behavior or complications are recorded.

### 6.0 DATA ANALYSIS

#### 6.1 Introduction

Data from acute effluent toxicity tests are used to estimate the LC50 and EC50. The LC50 is a point estimate of the effluent concentration that is expected to cause lethality to 50% of the test organisms. The EC50 is a point estimate of

Document Title:

**Acute Aquatic Toxicity Testing** 

Method Reference:
Document File Name:

7002-04.DOC

Revision Number: Effective Date:

4.0

October 20, 1998

UNCONTROLLED

CODY

Page 6 of 6

**Document Control Number:** 

7002

the effluent concentration that is expected to cause and adverse effects to 50% of the test organisms.

# 6.2 Methods for Estimating the LC50 & EC50

- 6.2.1 The flow chart (Figure 6) on page 76 of the manual, Methods for Measuring the Acute Toxicity of Effluents and Receiving Water to Freshwater and Marine Organisms (Fourth Edition), EPA-600/4-90-27F, Appendix A, Sections 4.4.1 through 4.4.3. is observed for determination of the LC50 for multi-concentration acute toxicity tests.
- 6.2.2 Several statistics packages, including Toxstat® 3.4, are available for data analysis.

## 7.0 REPORT PREPARATION

- 7.1 CT&E Acute Toxicity Test Reports Typically Contain the Following Information:
  - 7.1.1 Test background information Includes client, NPDES or state permit number, sampling point reference number, date collected and received, collector's name, type and date of test, dilution water used, test results, and chain of custody forms.
  - 7.1.2 Results LC50 & EC50 values and analysis method used; Any comments concerning the test results.
  - 7.1.3 Initial Characterization of the Effluent Sample Raw Data Sheets: Includes dissolved oxygen (DO), pH, specific conductivity, hardness, alkalinity and a description of the sample source.
  - 7.1.4 Reference Toxicity Data

# 037

# CT&E Environmental Services Inc. Standard Operating Procedure

**Document Title:** 

**Culture Waters for Aquatic Toxicity Testing** 

Method Reference:

CT&E/USEPA 7005-04.DOC

Document File Name: **Revision Number:** 

4.0

Effective Date:

October 20, 1998

UNCONTROLLED

Page 1 of 3

Document Control Number:

7005

Approved by: Was Mallislay

Approved by: MANGC Officer

#### 1.0 Summary

This document describes the preparation of various waters used for the culture of aquatic organisms.

#### 2.0 **Moderately-Hard Synthetic Water**

- Place 19 liter of de-ionized, or equivalent, water in a properly cleaned and 2.1 labeled plastic carboy.
- Add 1.20 g of MgSO<sub>4</sub>, 1.92 g NaHCO<sub>3</sub> and 0.08g KCl to the carboy. 2.2
- 2.3 Aerate overnight.
- Add 1.20 g of CaSO₄2H₂O to 1 liter of de-ionized or equivalent water in a 2.4 separate flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 19 liter above and mix well.
- Aerate vigorously for 24 hours to stabilize the medium. 2.5

#### 3.0 **Hard Synthetic Water**

- 3.1 Place 9 liter of de-ionized, or equivalent, water in a properly cleaned and labeled plastic carboy.
- 3.2 Add 1.20 g of MgSO<sub>4</sub>, 1.92 g NaHCO<sub>3</sub> and 0.08g KCl to the carboy.
- 3.3 Aerate overnight.
- Add 1.20 g of CaSO₄ 2H₂O to 1 liter of de-ionized, or equivalent water in a 3.4 separate flask. Stir on magnetic stirrer until calcium sulfate is dissolved and add to the 9 liter above and mix well.
- 3.5 Aerate vigorously for 24 hours to stabilize the medium.

038

Document Title:

**Culture Waters for Aquatic Toxicity Testing** 

Method Reference:

CT&E/USEPA 7005-04.DOC

Document File Name: Revision Number:

4.0

Effective Date:

October 20, 1998

UNCONTROLLED

COPY

7005.

#### Page 2 of 3

**Document Control Number:** 

# 4.0 Synthetic Water Solutions

## 4.1 KCL Stock Solution

- 4.1.1 Place 8 g of crystalline, reagent grade KCL in a 1 liter volumetric flask.
- 4.1.2 Bring the volume to one liter with distilled water.
- 4.1.3 Aerate vigorously for several hours before using.
- 4.1.4 Store in a 1 liter polyethylene bottle.

## 4.2 MgSO<sub>4</sub> Stock Solution

- 4.2.1 Place 120 g of regent water, anhydrous MgSO<sub>4</sub> powder in a 1 liter volumetric flask.
- 4.2.2 Bring the volume to one liter with distilled water.
- 4.2.3 Aerate vigorously for several hours before using.
- 4.2.4 Store in a 1 liter polyethylene bottle.

#### 4.3 NaHCO<sub>3</sub> Stock Solution

- 4.3.1 Place 96 g of reagent grade NaHCO<sub>3</sub> powder in a 1 liter volumetric flask.
- 4.3.2 Bring the volume to 1 liter with distilled water
- 4.3.3 Aerate vigorously for several hours before using.
- 4.3.4 Store in a 1 liter polyethylene bottle.

# 5.0 Activated Carbon Treated Tap Water Diluent

- 5.1 Fill a 5-gallon carboy with water from the treatment system using the attached hose. Water should be allowed to flow slowly through the hose into the sink for 2-3 minutes before filling the carboy. Flow rate to fill the carboy should be slow.
- 5.2 One or two long airstones are placed in the filled carboy. Water is aerated vigorously for 48-hours.
- 5.3 Total residual chlorine must be checked on water from newly filled carboys before using.
- 5.4 Alkalinity, hardness and pH are checked on samples from dechlorinated water carboys according to the Laboratory Procedure Checklist.
- 5.5 Log information on the Dechlorinated Tap Water and Cechlorimeter log sheet including the carboy number and date filled.

1

039

**Document Title:** 

**Culture Waters for Aquatic Toxicity Testing** 

Method Reference:

CT&E/USEPA 7005-04.DOC

Document File Name: **Revision Number:** 

4.0

Effective Date:

October 20, 1998

UNCONTROLLED

Page 3 of 3

**Document Control Number:** 

7005

#### Synthetic Sea Water Preparation 6.0

- Fill a clean carboy with dechlorinated water to approximately the 25-gallon mark. 6.1
- 6.2 The newly filled carboy should be checked for the presence of chlorine and the results recorded on the saltwater carboy log sheet. If chlorine is present, two 4inch airstones (adjusted to a moderately heavy air flow) should be introduced and the water aerated until a level of <0.01 mg/L is reached.
- A sufficient amount of synthetic salt is added to the carboy to obtain the 6.3 required salinity (usually 20 ppt).
- 6.4 All information should be logged on the Saltwater Carboy log sheet.

# 040

# CT&E Environmental Services Inc. Standard Operating Procedure

Document Title:

Culture of Daphnia

Method Reference:

CT&E/USEPA

Document File Name:

7006-05.DOC

Revision Number: Effective Date: 5.0

March 12, 2001

UNCONTROLLED

COPY

Page 1 of 3

**Document Control Number:** 

7006

Approved by:

Approved by:

Wen Hallido

MANOC OFFICER

3/23/200/

1.0 Summary

This document describes the procedure for the culture of Ceriodaphnia dubia, Daphnia pulex, Daphnia magna that are used in aquatic toxicity testing.

- 2.0 Mass Stock Cultures of Ceriodaphnia dubia, Daphnia pulex, and Daphnia magna
  - 2.1 Stock cultures are maintained in 1000 ml beakers/jars with 900 mls of culture media at  $20 \pm 1^{\circ}$  C. These cultures are maintained only as a back-up source of organisms.
  - 2.2 Culture media for *Ceriodaphnia dubia* and *Daphnia pulex* is moderately-hard synthetic water. Culture media for *Daphnia magna* is hard synthetic water (see document control number 7005.04, "Culture Waters for Aquatic Toxicity Testing").
  - 2.3 Many cultures are maintained simultaneously with an informal rotation cycle. New cultures are started with young produced by individual cultures. These cultures are maintained for approximately 3 weeks after which they are discarded.
  - 2.4 Cultures are fed YCT (yeast, cerophyll, digested trout chow/flake food) and algae (Selanastrum capricorium) on Monday, Wednesday and Friday. Feeding, as well as culture rotation, temperature and all other relevant data is recorded by species in a log book.
  - 2.5 Stock cultures are also fed algae and YCT. These feedings are recorded in the log book.
- 3.0 Individual Cultures of Ceriodaphnia dubia, Daphnia pulex, Daphnia magna
  - Cultures of Daphnia magna and Daphnia pulex are maintained in 100 ml plastic beakers. Twenty-four (24) beakers with one organism each are kept at all times to ensure continuous availability of neonates for testing. Cultures of individual Ceriodaphnia dubia are maintained in 30 ml sterile plastic medicine cups. One to two cultures of approximately 100 organisms each are kept at all times.

**Document Title:** 

Culture of Daphnia

Method Reference:

CT&E/USEPA 7006-05.DOC

Document File Name: Revision Number:

5.0

Effective Date:

March 12, 2001

UNCONTROLLED COPY

**Document Control Number:** 

7006

Page 2 of 3

3.2 Cultures are renewed three times per week. Organisms are fed daily.

## 4.0 **Obtaining Neonates for Testing**

- Cultures of Ceriodaphnia are started by placing one neonate into a 30 ml 4.1 disposable plastic cup containing approximately 20 ml of Moderately Hard Synthetic Water. New Ceriodaphnia cultures are started every ten to fourteen days. D. magna and D. pulex are replaced whenever mortality occurs.
- The individual cultures are transferred to fresh media three times per week. 4.2 Synthetic water, algae and YCT are mixed prior to pouring into culture vessel to ensure uniformity of media. The old media and neonates are kept for stock cultures for several weeks and then discarded.
- 4.3 To assure neonates for chronic tests are of a very similar age, transfer of individual brood stock to fresh media should be made the morning of the test. The cultures are then checked approximately every two hours to find an adequate number of neonates all released with an 8 hour period. For acute tests, individuals are either transferred less than 24 hours before a test or the young are separated from adults less than 24 hours before a test.
- 4.4 Young used in chronic testing are obtained from adults who have produced at least three broods, with no less than 8 neonates in their third or subsequent brood. Neonates are then distributed in a "blocking" procedure, i.e., neonates from the same organism are placed in one replication of each concentration.

## 5.0 **DAPHNIA** Food

- 5.1 Digested Flake Food
  - 5.1.1 Add 5g flake food to 1 L deionized water. Mix well in a blender and place in a 2 L separatory funnel. To digest, aerate this mixture at room temperature for one week.
  - 5.1.2 At end of the digestion period, remove aeration and allow to settle.
  - 5.1.3 Drain sediment. Place supernatant in a beaker and allow to settle in refrigerator overnight.
  - 5.1.4 Filter through fine mesh.

**Document Title:** 

Cuiture of Daphnia

Method Reference:

CT&E/USEPA

Document File Name:

7006-05.DOC

**Revision Number: Effective Date:** 

5.0

March 12, 2001

UNCONTROLLED COPY

Page 3 of 3

**Document Control Number:** 

## 5.2 Cerophyll®

- 5.2.1 Add 5g Cerophyll<sup>®</sup> to 1 L deionized water. Mix in a blender on high speed for 5 minutes.
- 5.2.2 Remove from blender and allow to settle in refrigerator overnight.
- 5.2.3 Retain supernatant for combined YCT food.

## 5.3 Yeast

- 5.3.1 Add 5g dry yeast to 1 L deionized water. Mix in a blender at low speed.
- 5.3.2 Do not allow mixture to settle.

## 5.4 Combined YCT Food

- 5.4.1 Mix equal parts of each of the above preparations in large clean beakers.
- 5.4.2 Pour well mixed YCT into small screw cap bottles. Freeze until needed.

Document Title:

Reference Toxicant Testing

Method Reference: Document File Name:

**CT&E/USEPA** 7008-05.DOC

**Revision Number:** 

5.0

Effective Date:

March 12, 2001

INCONTROLLED

COPY

Page 1 of 2

**Document Control Number:** 

7008

Approved by:

Kan Hollistan

Approved by: ANGC Officer

3/23/2001 Date

## 1.0 Summary

To insure that healthy organisms are used in testing, CT&E performs monthly QA/QC tests on all in-house cultured organisms. CT&E uses Sodium Chloride as a reference toxicant.

## 2.0 Pimephales promelas

- 2.1 48 hour static acute toxicity tests are run at 20°C (±1°C) using fish 1 to 14 days old.
- 2.2 This test consists of a control and a dilution series of 10g/L, 9g/L, 8g/L, 7g/L, and 6g/L, of sodium chloride. Other dilution series may be used.
- 2.3 The dilutions are prepared in 800 ml disposable plastic beakers using moderately hard synthetic water. 500 mls of test solution is placed in each of two replications. Water quality values are measured and recorded at this time.
- Ten organisms are placed in each replicate. Fish are loaded by first siphoning them into a shallow pan from which they are transferred to the beakers with a large bore pipette.
- 2.5 The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

## 3.0 Daphnids (Ceriodaphnia dubia, Daphnia magna, Daphnia pulex)

- 3.1 48 hour static acute tests are performed at 25°C (±1°C) using organisms less than 24 hours old.
- 3.2 These tests consist of a control and a five dilution series. The concentration of the reference toxicant is varied depending on species.
  - 3.2.1 Ceriodaphnia dubia, Daphnia pulex: 10, 5, 2.5, 1.25, 0.625 grams/L

## 044

## CT&E Environmental Services Inc. Standard Operating Procedure

Document Title:

Reference Toxicant Testing

Method Reference:

CT&E/USEPA

Document File Name: Revision Number:

7008-05.DOC

Revision Number Effective Date: 5.0

March 12, 2001

UNCONTROLLED

COPY

Page 2 of 2

**Document Control Number:** 

7008

- 3.2.2 Daphnia magna: 10, 5, 2.5, 1.25, 0.625 grams/L
- 3.3 Dilutions are prepared using moderately hard synthetic water. 20 mls of each dilution are placed in each of 5 plastic medicine cups.
- Four organisms are placed in each test vessel. The *Daphnids* are loaded with a disposable plastic pipette. Organisms are gently released below the surface of the water to minimize risk of injury.
- 3.5 The test is terminated at 48 hours. At this time, mortalities are recorded along with final water quality data.

## 4.0 Data Analysis

- 4.1 Toxicity tests are conducted on a monthly basis.
- 4.2 The LC<sub>50</sub> is calculated according to EPA protocols.
- 4.3 Results from these tests are incorporated into Q-sum charts. These records are kept in monthly files.

045

**Document Title:** 

Sample Handling for Aquatic Toxicity Testing

Method Reference: Document File Name:

CT&E/USEPA 7009-04.DOC

October 20, 1998

Revision Number:

Effective Date:

4.0

**Document Control Number:** 

7009

UNCONTROLLED

Page 1 of 3

10/21/98 15/20/98

Approved by: How Hollichay
Supervisor

Approved by: Mall Work

PAVQC Officer

## 1.0 Summary

This document describes the manner in which sample waters (effluents, wastewaters, etc.) are handled from point of collection to testing.

## 2.0 Sample Handling (

## 2.1 Sampling Personnel

CT&E's sampling personnel are trained and experienced in the techniques for collecting samples according to NPDES permit requirements. This includes the use of automatic sampling equipment and the measurement of various field parameters.

## 2.2 Sample Containers

Sample containers used by CT&E are disposable plastic cubitainers®.

## 2.3 Sample Collection Points

For NPDES permit required tests, the sample will be collected at the point specified in the discharge permit unless otherwise directed by the regulatory agency.

## 2.4 Sample Shipment

Samples are placed on ice (sufficient to maintain 0-4°C) in a cooler and are transported as quickly as possible to the laboratory.

## 2.5 Laboratory Handling of Samples

Upon delivery to the laboratory, the effluent samples are inspected, given a sample control number and stored at 4° C until used for testing.

046

Document Title:

Sample Handling for Aquatic Toxicity Testing

Method Reference:
Document File Name:

CT&E/USEPA 7009-04.DOC

Revision Number:

4.0

Effective Date:

October 20, 1998

MOONTROLLED

OPY

7009.

Page 2 of 3

**Document Control Number:** 

## 2.6 Sample Holding Time

Samples will be tested within 24 hours upon receipt in the laboratory. The maximum lapsed time for collection of a grab or composite sample and the initiation of test, or for test solution renewal, will not exceed 36-hours for Chronic and Acute Testing.

## 3.0 LABORATORY ENVIRONMENT

## 3.1 Laboratory Arrangement

The aquatic toxicity testing laboratory is divided into two separate areas: (1) the culturing laboratory and (2) the testing laboratory. See attached diagram for details of laboratory layout.

## 3.2 Temperature

The aquatic toxicity testing laboratory air temperature is maintained at 20  $\pm$  1° C throughout the year by a central heating and cooling system which is regulated by thermostats. Temperatures are continuously recorded by thermographs.

## 3.3 Water

Several waters are available for use in the laboratory. CT&E has access to municipally supplied water, well water and reagent water from which synthetic water is prepared. Waters used for culturing and testing are analyzed semiannually for priority pollutants and other contaminants. A detailed report is available.

## 3.4 Lighting

Ambient laboratory lighting is regulated with a 16 hour day/8 hour night photoperiod controlled by an electronic timing system in the culturing and testing areas.

## 4.0 LABORATORY EQUIPMENT

## 4.1 General

Instruments used for the measurement of physical and chemical parameters are calibrated prior to use in testing. Any instrument that exceeds the calibration limits is taken out of service and corrective action is taken.

•

047

**Document Title:** 

Sample Handling for Aquatic Toxicity Testing

Method Reference:

Document File Name: **Revision Number:** 

7009-04.DOC 4.0

Effective Date:

October 20, 1998

## Page 3 of 3

**Document Control Number:** 

7009

## 4.2 Balances

Analytical balances are calibrated against standard weights prior to use. All calibration results and adjustments are recorded in bound books.

## 4.3 **Water Quality Meters**

Meters are calibrated prior to use using known standards and the manufacturer's instructions. Records of calibration are kept in logbooks. Detailed procedures for the operation of these meters are found in SOP's for each specific instrument.

## 4.4 Reagents

All reagents are stored in a separate area. Expired reagents and chemicals are discarded

## 4.5 **Test Containers**

All test containers are either clean reusable glassware or new, disposable plastic beakers.

## 5.0 **EQUIPMENT CLEANING PROCEDURES**

- Equipment used in culturing or testing is washed in the following manner: 5.1
  - 5.1.1 Soak 15 minutes and scrub with detergent in tap water.
  - 5.1.2 Rinse three times with tap water.
  - 5.1.3 Rinse once with 20% nitric acid.
  - 5.1.4 Rinse twice with deionized water.
  - 5.1.5 Rinse once with full-strength, pesticide-grade acetone.
  - 5.1.6 Rinse well with deionized water.
  - 5.1.7 Invert and air dry.
  - 5.1.8 All equipment and test chambers are rinsed with deionized water immediately prior to use for each test.

## Appendix II Chains of Custody

Chain of Custody Record General Electric Co. 100 Woodlawn Ave. Pittsfield, MA 01201

## TA4-IO-P384-001/2 Chain of Custody # 086091304

Sopt 2004 Chronic Toxicity . Comp. #

| Project # NPDES PERMIT                                        | CTREEN                                                                                                                                                                                                               | Analytical Lab:<br>CT&E Environmental Services Inc. |                     | Sampled By: Mar Hilling Mary College                                                | 164          |             |
|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------|-------------------------------------------------------------------------------------|--------------|-------------|
| Sample #                                                      | Date                                                                                                                                                                                                                 | Time Conta                                          | Containers          | 7-                                                                                  | Preservative | Remarks     |
| A5945E                                                        | 45945 6 9/12 to 9/13/04                                                                                                                                                                                              | 4 110gm                                             | 1 Gallon<br>plastic | Definitive Test( NOCEL), Static reproductive chronic toxicity, 7-day w/Ceriodaphnia |              | (See below) |
| A5445A                                                        | 4/12 to 4/13/04                                                                                                                                                                                                      | //                                                  | 1000 ml.<br>plastic | Chloride, TSS,Total Solids, Alkalinity<br>Specific Conductance, CL2                 | Chilled      |             |
| ASTYSE                                                        | AS945R 9/12 to 9/13/64                                                                                                                                                                                               | 4 1100AN                                            | 500 ml.<br>plastic  | Total Phosphorus, TGC, NH3                                                          | H2804        |             |
|                                                               |                                                                                                                                                                                                                      |                                                     |                     |                                                                                     |              |             |
| 2 ASSUYR                                                      | 9/13/04                                                                                                                                                                                                              | 8-30 h                                              | 1 Gallon<br>plastic | Housatonic River water<br>dilution water for chronic fast                           | Chilled      |             |
| 2 ASGYYR                                                      | 9/13/04                                                                                                                                                                                                              | 830 /21                                             | 1000 ml.<br>plastic | Chloride, TSS,Total Solids, Alkalinity<br>Specific Conductance, CL2                 | Chilled      |             |
| 2 ASSYYR                                                      | 9/13/04                                                                                                                                                                                                              | 836ANI                                              | 500 mt.<br>plastic  | Total Phosphorus, TOC, NH3                                                          | H2S04        |             |
|                                                               |                                                                                                                                                                                                                      |                                                     |                     |                                                                                     |              |             |
| Relinquished By:                                              | a security                                                                                                                                                                                                           | Date/Time<br>9-/3-04                                | Rec                 | Received By:                                                                        | Date/Time    | (70h)       |
| Relinquished By:                                              |                                                                                                                                                                                                                      | Date/Time                                           | Rece                | ) \                                                                                 | -            | WW. C 70    |
| Additional Comments is a 24-hour composit 001- $\gamma 40$ 00 | Additional Comments: The effluent sample being analyzed for toxicity is a flow-proportion is a 24-hour composite. The sample collection times for each outfall are as follows: 001- 740, 004 005-641- 700 $^{\circ}$ | g analyzed for toxic<br>times for each outfa        | ity is a flow-      | hed composite. Each outfall sa                                                      |              |             |
| The time of composit                                          | The time of compositing the final flow-proportioned sampl                                                                                                                                                            | ned sample was                                      | 1100 A.M.           |                                                                                     |              |             |

100 Woodlawn Ave. Pittsfield, MA 01201 Chain of Custody Record General Electric Co.

SEPT 2004 Chronic Toxicity · Comp. # 2

Chain of Custody #: 126,091504

|             | Project#<br>NPDES PERMIT                                                                                                                                                  |                                                                       | Analytical Lab                                   | Analytical Lab:<br>CT&E Environmental Services Inc. |                                                           | Sampled By:                                                                                                                      | 11/3/11      |                           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------|
|             | Sample #                                                                                                                                                                  | Date                                                                  |                                                  | Time Conta                                          | Containers                                                | 7-                                                                                                                               | Preservative | Damade                    |
| Λ           | A5947C                                                                                                                                                                    | 1/6 0 4/6                                                             | 40/5                                             | 1100 m                                              | 1 Gallon<br>plastic                                       | Definitive Test( NOCEL), Static reproductive chronic toxicity, 7-day w/Cerlodaphnia                                              |              | (See below)               |
| $\sim$      | A5947C                                                                                                                                                                    | 40/51/6 of 41/6                                                       | 40/51                                            | 1100 m                                              | 1000 mil.<br>plastic                                      | Chloride, TSS, Total Solids, Alkalinity<br>Specific Conductance, CL2                                                             | Chilled      |                           |
| $^{\wedge}$ | AS947C                                                                                                                                                                    | 1/6 of 1/6                                                            | 15-104                                           | 1100011                                             | 500 ml.<br>plastic                                        | Total Phosphorus, TOC, NH3                                                                                                       | H2504        |                           |
|             |                                                                                                                                                                           |                                                                       |                                                  |                                                     |                                                           |                                                                                                                                  |              |                           |
|             | AS946R                                                                                                                                                                    | 9/15/64                                                               | 2                                                | 30<br>AM                                            | 1 Gallon<br>plastic                                       | Housatonic River water<br>dilution water for chronic fest                                                                        | Chilled      | 32                        |
|             | ASGYCR                                                                                                                                                                    | 9/15/104                                                              | م                                                | 830 AM                                              | 1000 ml.<br>plastic                                       | Chloride, TSS,Total Solids, Alkalinity<br>Specific Conductance, CL2                                                              | Chilled      |                           |
| \           | A5946R                                                                                                                                                                    | 9/15/104                                                              | 6                                                | 830 AM                                              | 500 ml.<br>plastic                                        | Total Phosphorus, TOC, NH3                                                                                                       | H2S04        |                           |
|             | #                                                                                                                                                                         |                                                                       |                                                  |                                                     |                                                           |                                                                                                                                  |              |                           |
|             | Relinquished By:                                                                                                                                                          | Jake,                                                                 | Date/Time                                        | to-                                                 | Rece                                                      | Received By:                                                                                                                     | 9            | , ,                       |
|             | Relinquished By:                                                                                                                                                          |                                                                       | Date/Time                                        | •                                                   | Rece                                                      | Received By:                                                                                                                     | Date Time    | 107                       |
|             | Additional Comments: The effluent sample being analyzed for toxicity is a flow-proposis a 24-hour composite. The sample collection times for each outfall are as follows: | nts: The effluent sample site. The sample collection $757 \times 004$ | mple being analyze collection times for 005-64T. | yzed for toxici<br>for each outfa                   | toxicity is a flow-proutfall are as follow 005-64G-70/4/4 | for toxicity is a flow-proportioned composite. Each outfall sample ach outfall are as follows:  005-646-7004-4 007- 09A- 09A- 09 | =            | 101 CTSS<br>47x<br>735 AM |
| لبيني       | The time of compositing the final flow-proportioned sample                                                                                                                | ig the final flow-pro                                                 | portioned sa                                     | mple was                                            | /(00 A.M.                                                 |                                                                                                                                  | •            | <del></del>               |
|             |                                                                                                                                                                           |                                                                       |                                                  |                                                     |                                                           |                                                                                                                                  |              |                           |

Chain of Custody Record General Electric Co. 100 Woodlawn Ave. Pittsfield, MA 01201 Sept 2004 Chronic Toxicity . Comp. # 3

Chain of Custody #: 084091704

| ntiliners  1 Gallon  1 Gal |     | Project #<br>NPDES PERMIT                                | CT&E                                                                                                                                                                                  | Analytical Lab:<br>Environmental Ser | Analytical Lab:<br>CT&E Environmental Services Inc. |                     | Sampled By:                                                      | 20,14)                    | 1            |             | ]      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------|---------------------|------------------------------------------------------------------|---------------------------|--------------|-------------|--------|
| 1 Gallon Definitive Test (NOCEL), Static reproductive Chilled 1000 ml. Chloride, TSS, Total Solids, Alkalinity Chilled 1000 ml. Chloride, TSS, Total Solids, Alkalinity Chilled 1000 ml. Total Phosphorus, TOC, NH3 H2SO4 1000 ml. Total Phosphorus, TOC, NH3 H2SO4 1000 ml. Chloride, TSS, Total Solids, Alkalinity Chilled 1000 ml. Total Phosphorus, TOC, NH3 H2SO4 1000 ml. Total Phosphorus, TOC, NH3 M2SO4 1000 ml. Total Phosphorus, TOC, NH3 M2SO4 1000 ml. Total Phosphorus, TOC, NH3 M2SO4 1000 ml. Total Phosphorus M2SO4 |     | Sample #                                                 |                                                                                                                                                                                       | F                                    | me Conta                                            | iners               |                                                                  | pez                       | Preservative | Ramarke     | - 1    |
| 1000 mi. Chloride, TSS, Total Solids, Akkalmity Chilled 500 mi. Total Phosphorus, TOC, NH3 H2SO4 1 plastic Allution water for chronic test 1000 mi. Chloride, TSS, Total Solids, Alkalinity Chilled plastic Specific Conductance, CL2 500 mi. Total Phosphorus, TOC, NH3 H2SO4 plastic Solids, Alkalinity Chilled SOM mi. Total Phosphorus, TOC, NH3 H2SO4 plastic Total Phosphorus, TOC, NH3 H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 1 | ASG49C.                                                  | 4/16 to 91/p                                                                                                                                                                          | 104                                  | 11 00<br>11 Am                                      | 1 Gallon<br>plastic | Definitive Test( NOCEL), Static<br>chronic toxicity, 7-day w/Cen | reproductive<br>lodaphnia | Chilled      | (See below) | -      |
| S00 mi.  Total Phosphorus, TOC, NH3  H2SO4  1 Gallon  Housatonic River water  1 Gallon  Chloride, TSS, Total Solids, Alkalinity plastic  S00 mi. Total Phosphorus, TOC, NH3  Received By  Xicity is a flow-propertioned composite. Each outfall sample  utfall are as follows:  1 Gallon  H2SO4  Passic  Sol mi. Total Phosphorus, TOC, NH3  H2SO4  Passic  Sol mi. Total Phosphorus  Sol  |     | A55496C                                                  | 1/6 to 9/17/                                                                                                                                                                          | 50/                                  | 11 00 Ary                                           | 1000 ml.<br>plastic | Chloride, TSS, Total Solids, A<br>Specific Conductance,          | Alkalinity<br>CL2         | Chilled      |             | 1      |
| 1 Gallon Housatonic River water plastic dilution water for chronic test Chilled 1000 ml. Chloride, TSS, Total Solids, Alkalinity Chilled 500 ml. Total Phosphorus, TOC, NH3 H2SO4 plastic Total Phosphorus, TOC, NH3 H2SO4  Received By xicity is a flow-proportioned composite. Each outfall sample 1   OU A.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ^ | ASTHUC                                                   | 9/16 to 9/17                                                                                                                                                                          | 104                                  | 1100,444                                            | 500 ml.<br>plastic  | Total Phosphorus, TOC,                                           | NH3                       | H2S04        |             |        |
| 1 Gallon Housatonic River water for chronic test 1000 ml. Chloride, TSS, Total Solids, Alkalinity plastic Specific Conductance, CL2 500 ml. Total Phosphorus, TOC, NH3 H2SO4  Second By  Received By  Xicity is a flow-propertioned composite. Each outfall sample to the second State of the  |     |                                                          |                                                                                                                                                                                       |                                      |                                                     |                     |                                                                  |                           |              |             |        |
| 1000 mJ. Chloride, TSS, Total Solids, Alkalinity Chilled  Specific Conductance, CL2  SOO mJ. Total Phosphorus, TOC, NH3 H2SO4  Plastic Total Phosphorus, TOC, NH3 H2SO4  Received By:  Xicity is a flow-propertioned composite. Each outfall sample  15-646- 704-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | A5948R                                                   | 4/11/04                                                                                                                                                                               | 20                                   | 30<br>AM                                            | 1 Gallon<br>plastic | Housatonic River wat<br>dilution water for chronic               | er<br>: test              | Chilled      |             | ži.    |
| Flace ived By  Received By  Xicity is a flow-proportioned composite. Each outfall sample  15-64G- 70'4rv 007- 09A- 09B- 50'0  15-64G- 70'4rv 007- 09A- 09B- 50'0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ASGY8R                                                   | 4/17/04                                                                                                                                                                               | 0                                    | No.                                                 | 1000 ml.<br>plastic | Chloride, TSS,Total Solids, A<br>Specific Conductance,           | Ukalinity<br>CL2          | Chilled      |             |        |
| Received By Received By xicity is a flow-propertioned composite. Each outfall sample utfall are as follows:  15-64G-704-14-04  15-64G-704- |     | ASGYSR                                                   | ł                                                                                                                                                                                     | S                                    | 30 AM                                               | 500 ml.<br>plastic  | Total Phosphorus, TOC, I                                         | NH3                       | H2504        |             |        |
| Received By Received By xicity is a flow-proportioned composite. Each outfall sample utfall are as follows:  15-64G- 70/4rv, 007-  16-17-04  17-04  17-04  17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04  18-17-04   |     |                                                          |                                                                                                                                                                                       |                                      |                                                     |                     |                                                                  |                           |              |             | $\top$ |
| xicity is a flow-propertioned composite. Each outfall sample utfall are as follows:    \( \text{OO} \text{A.M.} \)   \( \text{OO} \text{A.M.} \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | ~                                                        | all series                                                                                                                                                                            | Date/Time                            | 40-                                                 | Rece                |                                                                  |                           | ate/Time     |             |        |
| xicity is a flow-proportioned composite. Each outfall suffall are as follows: 15-64G- $7^{60}$ Ary 007- $//00$ A.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | 7                                                        |                                                                                                                                                                                       | Date/Time                            |                                                     | Rece                |                                                                  | \<br>\                    | 1-1 +-0 +    | 1400        | - 58°C |
| //00 A.M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | Additional Comments: is a 24-hour composite 001. 745 004 | The effluent sample be . The sample collection $\gamma \gamma \gamma$ | ing analy<br>n times for             | zed for toxici<br>or each outfal                    | ty is a flow-p      | ropertioned composite. Each                                      | h outfall san             | uple 6098.   | 200         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | The time of compositin                                   | ig the final flow-proport                                                                                                                                                             | ioned san                            | npie was                                            | 1/00 A.M            |                                                                  | ~                         |              |             |        |

## Appendix III Bench Data

General Electric Project: Client:

Lab. No.: TA4-10-9284-001/002 Date Received: 9/14/04 9/14/04 Date Analyzed: = 8 Time: 9/12-13/04 Sample Date:

ပ Temp. Range: Analyst(s): KH/JH < 24 hrs Age: Housatonic River Source: Effluent composite Source of dilution water: Test Species:

Ceriodaphnia dubia 7-day chronic Total Chlorine: Type of Test:

|           | 1 -     | <del></del> |
|-----------|---------|-------------|
| Ending    | 0/15/04 | 8]]         |
| Beginning | 0/14/04 | 1100        |
|           | Date:   | Time:       |
|           |         |             |

|                | Housatonic |         | MHSW                                          | Effluent | Effluent | Effluent | Effluent | Effluent | Effluent |
|----------------|------------|---------|-----------------------------------------------|----------|----------|----------|----------|----------|----------|
| Concentration→ | River      | Control | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | 6.25%    | 12.5%    | 25%      | 20%      | 75%      | 100%     |
|                | Control    |         | Control                                       |          |          |          |          | 1        | )        |
| Initial        |            |         |                                               |          |          |          |          |          |          |
| Temperature    | 24.8       | 24.8    | 24.8                                          | 842      | 34.8     | 34.8     | 24.8     | 74.8     | 211.8    |
| Hardness       | 001        | 20      | 0/1                                           |          |          |          |          | 2        | 26       |
|                | ,          | •       |                                               |          |          |          |          |          | 100      |
| 0.0.           | 861        | 8.12    | 26.80                                         | e<br>B   | 8.N4     | a string | a<br>S   | 000      | 200      |
| Hd             | 6.58       | BOL     | 7.13                                          | 25       | 6.89     | 7/7      | 7 77     | 0, 1     | 0,7      |
|                |            |         |                                               | 4        | 200      | 1:12     | 7.56     | 4.47     | 7.67     |
| Alkalinity     | 34         | 99      | 75                                            |          |          |          |          |          | 582      |
| Sp. Conduct.   | 219        | 326     | 338                                           | 543      | 277      | מטח      | (40.14   | 970      | 25.0     |
|                |            |         |                                               |          |          |          |          |          |          |

| End           |      |       |      |      |        |      |      |                                        |        |
|---------------|------|-------|------|------|--------|------|------|----------------------------------------|--------|
| No. Surviving | to   | 0     | 0/   | 9    | Q      | 9    | 0/   | 0)                                     | 3      |
| Temperature   | 25.3 | 25.3  | 25.5 | 25.3 | 25.3   | 25.2 | 25.2 | 752                                    | 70.2   |
| D.0.          | 45.8 | t t 8 | 208  | 200  | 30     | 0    | 200  | 7.00                                   | 27.50  |
|               | ,    |       | 0    | 2000 | ę<br>o | 6.0  | 3    | g<br>à                                 | 8.75   |
| рн            | 6.61 | 7.11  | 4.19 | 6.77 | 6.92   | 7.10 | 7    | 7.50                                   | 7.62   |
| Sp. Conduct.  | 272  | 3.10  | 3.48 | 857  | 340    | 1977 | 7/9  | 27.0                                   | 977    |
|               |      |       |      |      |        |      |      | ֓֞֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜ | \<br>' |

DAY

Method Reference: Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fourth Edition. EPA-600/4-91/002. U.S.EPA, Cincinnati, Ohio.

Lab. No.: TA4-10-P284-001 General Electric Project:

Client:

a/15/04 Date Received: 9/14/04 Date Analyzed: Time: 1100 9/12-13/04 Sample Date:

Analyst(s): KH/JH Source: Effluent composite

Temp. Range: < 24 hrs Age: Housatonic River Ceriodaphnia dubia 7-day chronic Source of dilution water: Test Species: Type of Test:

ွ

0/11/0d Ending 100 9/15/04 Beginning 1100 Date: Time:

7/2

Total Chlorine:

| Concentration→ | Housatonic<br>River | MHSW<br>Control | MHSW<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Effluent<br>6.25% | Effluent<br>12.5% | Effluent<br>25% | Effluent<br>50% | Effluent<br>75% | Effluent<br>100% |
|----------------|---------------------|-----------------|-------------------------------------------------------|-------------------|-------------------|-----------------|-----------------|-----------------|------------------|
| Initial        | 201100              |                 | Control                                               |                   |                   |                 |                 |                 |                  |
| Temperature    | 1.52                | 1.22            | 25.1                                                  | 25.1              | 1.52              | 25.1            | 1.32            | 136             | 76.1             |
| Hardness       | 011                 | 110             | 100                                                   |                   |                   |                 |                 | î               | 2/10             |
| D.O.           | 8.71                | 8.90            | 74.8                                                  | 24.00             | 869               | 8.62            | 09.80           | 863             | of a             |
| pH             | 29.9                | 7.10            | 7.14                                                  | 2.02              | 46.9              | 7.23            | 75.5            | 437             | 75.7             |
| Alkalinity     | <b>+ + t</b>        | 89              | 65                                                    |                   |                   |                 |                 | ,+              | 7.76             |
| Sp. Conduct.   | 209                 | 15 2            | × ×                                                   | 1231              | 248               | 797             | 444             | 010             | 100              |

| No. Surviving         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10                                                                               | End           |      |      |      |      |        |       |         |       |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|------|------|------|--------|-------|---------|-------|------|
| Derature         15.6         75.6         75.6         75.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.6         25.1         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7         24.7 | No. Surviving | 01   | Q    | 01   | 91   | 01     | 9     | 9       | Ş     | 2    |
| 8.64         8.79         8.81         8.64         8.61         8.57         8.55         8.53           Conduct.         2.16         341         350         232         245         4m         263         8/4         4m         261         8/4         161         8/4         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         161         <                                     | Temperature   | 9.57 | 25.6 | 25.5 | 25.6 | 75-6   | 25.6  | 25.6    | 732   | 3 6  |
| Conduct. 216 341 350 232 245 490 584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0           | 790  | a    | 100  | 27.0 | 110    | 1 6   | 200     | 9-1-1 | 9.50 |
| 6.68 7.15 7.21 6.57 6.14 7.29 7.44 7.61<br>. 216 342 350 232 245 490 CB3 814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |      | 2    | 9.0  | 0.61 | Ģ<br>Ø | 8.5 + | 80<br>V | くいめ   | ない。  |
| 216 342 350 232 345 4AD CB3 BIY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ЬН            | 6.68 | 4.15 | 7.71 | 6.57 | 6.14   | 7.79  | hht     | 192   | 725  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sp. Conduct.  | 216  | 342  | 350  | 232  | 345    | 480   | 583     | 7/8   | 922  |

N

Method Reference: Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fourth Edition EPA-600/4-91/002. U.S.EPA, Cincinnati, Ohio.

Lab. No.: 144- 10- P 284-005/004  $^{\circ}$ 40/51/04 Date Received: a/14/04 Ending 100 Temp. Range: Date Analyzed: Analyst(s): KH/JH Beginning 9/10/04 100 < 24 hrs Date: Time: Age: <u>8</u> Housatonic River Time: Ceriodaphnia dubia 7-day chronic 9/14-15/04 Source: Effluent composite General Electric Source of dilution water: Total Chlorine: Sample Date: Test Species: Type of Test: Project: Client:

| Concentration→ | Housatonic<br>River<br>Control | MHSW | MHSW<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>Control | Effluent<br>6.25% | Effluent<br>12.5% | Effluent<br>25% | Effluent<br>50% | Effluent<br>75% | Effluent<br>100% |
|----------------|--------------------------------|------|------------------------------------------------------------------|-------------------|-------------------|-----------------|-----------------|-----------------|------------------|
| Initial        |                                |      |                                                                  |                   |                   |                 |                 |                 |                  |
| Temperature    | £.52                           | 25.7 | £.52                                                             | £.2Z              | £.52              | £.\$Z           | £:5Z            | 75.7            | 25.7             |
| Hardness       | 210                            | 011  | 011                                                              |                   |                   |                 |                 |                 | 270              |
| D.O.           | 858                            | €8.8 | 168                                                              | 8.58              | 8.60              | 3               | 863             | 8.64            | 179.8            |
| Н              | 7.31                           | 7.10 | 7.15                                                             | 7.39              | hh: t             | 7.57            | クツナ             | 7.74            | 27. [            |
| Alkalinity     | <i>71</i> ±                    | 71   | 7.5                                                              |                   |                   |                 |                 |                 | 205              |
| Sp. Conduct.   | 6/2                            | 320  | 334                                                              | 304               | 416               | 558             | 619             | 464             | 288              |

| No. Surviving | 01   | 0)   | Q     | 9    | 01   | 01   | 10   | 9    | 9    |
|---------------|------|------|-------|------|------|------|------|------|------|
| Temperature   | 25.1 | 1.52 | 1.52  | 1.52 | 75.1 | 7.52 | 1.52 | 1.52 | 75.1 |
| D.O.          | 44.8 | 8 60 | 8.63  | 8.45 | 25.8 | 8 45 | 15.8 | 8.5% | 03.8 |
| . Hd          | 7.30 | 7.15 | 17. E | 14.7 | 7.8  | 7.56 | 7.68 | 14.6 | 7.77 |
| Sp. Conduct.  | 211  | 328  | 331   | 316  | 423  | 566  | 529  | 787  | 800  |

DAY

W

Method Reference: Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fourth Edition. EPA-600/4-91/1002. U.S. EPA, Cincinnati, Ohio.

Lab. No.: TA4- 10- 9784-003,  $^{\circ}$ 9/10/04 9/17/04 Temp. Range: Date Received: Date Analyzed: Analyst(s): KH/JH < 24 hrs Age: 100 Housatonic River Time: Ceriodaphnia dubia 7-day chronic Source: Effluent composite 9/14-15/04 General Electric Source of dilution water: Sample Date: Test Species: Type of Test: Project: Client:

|                |                                |                 |                                                                  |                   | lime:             | 1100 :io        |                 | 100             |                  |
|----------------|--------------------------------|-----------------|------------------------------------------------------------------|-------------------|-------------------|-----------------|-----------------|-----------------|------------------|
| Concentration→ | Housatonic<br>River<br>Control | MHSW<br>Control | MHSW<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>Control | Effluent<br>6.25% | Effluent<br>12.5% | Effluent<br>25% | Effluent<br>50% | Effluent<br>75% | Effluent<br>100% |
| Initial        |                                |                 |                                                                  |                   |                   |                 |                 |                 |                  |
| Temperature    | 25.6                           | 25.6            | 9:52                                                             | 25.6              | 25.52             | 25.6            | 25.6            | 9732            | 25.6             |
| Hardness       | BB                             | 100             | 011                                                              |                   |                   |                 |                 |                 | 076              |
| D.O.           | 8.67                           | 8.80            | 688                                                              | 865               | 19.8              | 863             | 00.8            | 80              | 45.0             |
| рН             | 7.24                           | 77.11           | ±1.E                                                             | 15.5              | 7.42              | 7.51            | 7.54            | 7.59            | 69.1             |
| Alkalinity     | 23                             | 79              | 69                                                               |                   |                   |                 |                 |                 | 7.14             |
| Sp. Conduct.   | 208                            | 418             | ar E                                                             | 358               | 404               | 2+5             | 628             | 28              | A                |

2/10/04

Beginning a/1 = /64

Date:

Total Chlorine:

Ending

| End           |      |      |      |       |       |      |      |      |      |
|---------------|------|------|------|-------|-------|------|------|------|------|
| No. Surviving | 9/   | 0)   | Q    | Ó     | 9     | 9    | 9    | 0    | 0    |
| Temperature   | 24.6 | 246  | 24.6 | 246   | 246   | 74.6 | 746  | 24.6 | 74%  |
| D.O.          | 8.52 | 8.68 | 45.8 | 15.50 | 8.50  | 8.50 | 845  | 8:8  | 8.50 |
| . Hd          | 7.30 | 7.19 | 17.5 | 7.37  | 7.48  | 4.58 | 7.59 | 7.63 | 7.73 |
| Sp. Conduct.  | 216  | 328  | 334  | 363   | 7/1/7 | 584  | 449  | 8/6  | 48   |

DAY 4

Method Reference: Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms, Fourth Edition. EPA-600/4-91/002. U.S.EPA, Cincinnati, Ohio.

General Electric

Client:

Lab. No.: TA4- 10-7284-005/606  $^{\circ}$ Ending σ Temp. Range: Date Received: Date Analyzed: Analyst(s): KH/JH Beginning < 24 hrs Age: 100 Housatonic River Time: Ceriodaphnia dubia 9/10-17/04 7-day chronic Source: Effluent/composite n/d Source of dilution water: Total Chlorine: Sample Date: Test Species: Type of Test: Project:

2/10/04

4/18/04

Date: Time:

|                |                                |      |                                                                  |                   | Time:             | e: = 8          | 0               | <b>3</b>        |                  |
|----------------|--------------------------------|------|------------------------------------------------------------------|-------------------|-------------------|-----------------|-----------------|-----------------|------------------|
| Concentration→ | Housatonic<br>River<br>Control | MHSW | MHSW<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>Control | Effluent<br>6.25% | Effluent<br>12.5% | Effluent<br>25% | Effluent<br>50% | Effluent<br>75% | Effluent<br>100% |
| Initial        |                                |      |                                                                  |                   |                   |                 |                 |                 |                  |
| Temperature    | 24.8                           | 24.8 | 24.8                                                             | 24.6              | 8.72              | 872             | 24.8            | 748             | 24.8             |
| Hardness       | 210                            | 001  | 011                                                              |                   |                   |                 | 7               | į               | (10)             |
| D.0.           | 8.67                           | 88.8 | 8.84                                                             | 865               | 49.8              | 864             | 298             | 85 &            | 42.0             |
| H              | 6.67                           | 7.04 | 01 E                                                             | 8.9               | 85.9              | 7.12            | 100             | 77.5            | 721              |
| Alkalinity     | 46                             | £9   | 75                                                               |                   |                   |                 |                 | 7 - 1           | 42               |
| Sp. Conduct.   | 276                            | 318  | 344                                                              | 187               | 40                | 638             | 768             | 77.6            | 1601             |

| End           |      |      |      |       |      |      |      |      |      |
|---------------|------|------|------|-------|------|------|------|------|------|
| No. Surviving | 0)   | 0    | 0)   | 9/    | 0    | 0/   | 0    | 01   | 0/   |
| Temperature   | 7.57 | 7.52 | 25.7 | 2.52  | 25.5 | 7 32 | 75.7 | 232  | 100  |
| D.0.          | 8.54 | 8.72 | 8.49 | 758   | 158  | 75.8 | 87.0 | 3    | 0 21 |
| . Hd          | 74.9 | 7.10 | 7.19 | 4.6.0 | 704  | 7 19 | 777  | 1271 | 12,1 |
| Sp. Conduct.  | 234  | 322  | 336  | 762   | 418  | 879  | 180  | 0/8  | 7.76 |

DAY

S

Method Reference: Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fourth Edition. EPA-600/4-91/002. U.S.EPA, Cincinnati, Ohio.

Client:

Lab. No.: TA4- 10- P284-005/660 ပ Date Received: Q/18/04 Ending 9/20/04 9/19/04 Temp. Range: Date Analyzed: Analyst(s): KH/JH Beginning 9/10/04 < 24 hrs Date: Time: Age: 1100 Housatonic River Time: Ceriodaphnia dubia 7-day chronic Source: Effluent composite General Electric Source of dilution water: Total Chlorine: Test Species: Type of Test: Project:

|                |                                            |                 |                                                                  |                   |                   |                 |                 |                 | _                |
|----------------|--------------------------------------------|-----------------|------------------------------------------------------------------|-------------------|-------------------|-----------------|-----------------|-----------------|------------------|
| Concentration→ | Housatonic MHSW<br>River Contro<br>Control | MHSW<br>Control | MHSW<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub><br>Control | Effluent<br>6.25% | Effluent<br>12.5% | Effluent<br>25% | Effluent<br>50% | Effluent<br>75% | Effluent<br>100% |
| Initial        |                                            |                 |                                                                  |                   |                   |                 |                 |                 |                  |
| Temperature    | 1.52                                       | 1.52            | 1.52                                                             | 1.52              | 1.32              | 78.1            | 1.52            | 120             | 75.1             |
| Hardness       | 220                                        | 011             | 011                                                              |                   |                   |                 |                 |                 | 292              |
| D.O.           | 8.77                                       | 8.92            | 65.8                                                             | 14.8              | 89.8              | 8.67            | 898             | 598             | 79.8             |
| ЬН             | 6.74                                       | 7.07            | 7.15                                                             | 189               | 6.97              | 2,10            | 42.£            | 7.20            | 420              |
| Alkalinity     | 101                                        | Zt              | 74                                                               |                   |                   |                 |                 |                 | 3/6              |
| Sp. Conduct.   | 218                                        | 320             | 334                                                              | 263               | 394               | 459             | 165±            | 476             | 10.43            |
|                |                                            |                 |                                                                  |                   |                   | )               |                 | -               | •                |

| End           |      |      |      |      |      |       |      |      |      |
|---------------|------|------|------|------|------|-------|------|------|------|
| No. Surviving | 8724 | 248  | 24.8 | 24.8 | 248  | 24.6  | 24.8 | 24.8 | 24.8 |
| Temperature   | 10   | 0)   | 01   | 0    | Q    | 0     | 01   | 0    | 2    |
| D.0.          | 8,64 | 8.40 | 25.8 | 20.8 | 858  | 8.55  | 8 58 | 20.0 | 200  |
| . Hd          | 18.9 | 7.11 | 12.F | 01.9 | 2.10 | 7.12  | 7.29 | 256  | 727  |
| Sp. Conduct.  | £77  | 334  | 739  | 742  | 217  | F 90) | 8/4  | 454  | 1010 |

Method Reference: Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fourth Edition EPA-600/4-91/002. U.S.EPA, Cincinnati, Ohio.

Client:

Lab. No.: TA4-10- P784-05/006 ွ 9/18/04 40/02/0 4/5/104 Ending Temp. Range: Date Received: Date Analyzed: Analyst(s): KH/JH Beginning 9/20/04 < 24 hrs Date: Time: Age: Time: 1100 Housatonic River Ceriodaphnia dubia 7-day chronic Source: Effluent composite General Electric Source of dilution water: Total Chlorine: Sample Date: Test Species: Type of Test: Project:

|                |                     |                 |                                                       |                   |                   | 3               |                 | 000             | _                |
|----------------|---------------------|-----------------|-------------------------------------------------------|-------------------|-------------------|-----------------|-----------------|-----------------|------------------|
| Concentration→ | Housatonic<br>River | MHSW<br>Control | MHSW<br>Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> | Effluent<br>6.25% | Effluent<br>12.5% | Effluent<br>25% | Effluent<br>50% | Effluent<br>75% | Effluent<br>100% |
| Initial        | COLLEGI             |                 | Control                                               |                   |                   |                 |                 |                 |                  |
| Temperature    | 8152                | 25.8            | 25.8                                                  | 25.8              | 25.8              | 25.8            | 882             | 25.8            | 25.8             |
| Hardness       | 200                 | 110             | 0))                                                   |                   |                   |                 |                 |                 | 770              |
| D.0.           | 8.70                | 18:8            | 18:8                                                  | 14.8              | 89.88             | 8.64            | 79.8            | 298             | a v              |
| pH             | 6.64                | 70E             | 7.09                                                  | 6.79              | 18,0              | 4.08            | 7.27            | 7.28            | 27.70            |
| Alkalinity     | 201                 | 20              | <del>5</del> ±                                        |                   |                   |                 |                 |                 | 2/6              |
| Sp. Conduct.   | 2 14                | 326             | 350                                                   | 062               | 768               | 019             | ±5±             | 116             | 1068             |
|                |                     |                 |                                                       |                   |                   |                 |                 |                 |                  |

| 14.7<br>4.74<br>5.89<br>5.79                           | End           |      |      |       |      |      |      |      |      |      |
|--------------------------------------------------------|---------------|------|------|-------|------|------|------|------|------|------|
| 8.57 24.7 24.7 24.7 24.7 24.7 24.7 24.7 24.            | No. Surviving | 9)   | Ø    | Ø     | 9    | 0    | 0    | 0)   | 9    | 8    |
| 8.57 8.60 8.60 8.58 851<br>6.72 711 717 6.84 6.74 7.11 | Temperature   | 4.42 | 74.7 | 24.7  | 543  | 74.7 | 74.7 | 74.7 | 74.7 | 747  |
| 11.7 46.9 48.9 41.7 11.7 5.69                          | D.0.          | 8.S7 | 858  | 09.80 | 8    | 82.8 | 100  | 222  | a    | 47 8 |
| 219 229 229 298 201                                    | . Hd          | 6.72 | 7.11 | 7.17  | 6.84 | 75.9 | 11/2 | 7.2/ | 777  | 7.76 |
| 10 100                                                 | Sp. Conduct.  | 2/9  | 338  | 339   | 228  | 282  | 619  | 494  | 226  | 4401 |

Method Reference: Methods for Measuring the Chronic Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms., Fourth Edition. EPA-600/4-91/002. U.S.EPA, Cincinnati, Ohio.

Page 1 of 2

| Lab. No.        | 4200284 | Test Organism | 6: 45:            | أيحي لينماع |          | _      |
|-----------------|---------|---------------|-------------------|-------------|----------|--------|
|                 | 1201-01 | -             | <br>Start Date:   | 4-14-04     | Time:    | 1100   |
| Client;         | GE      | Lot No.       | End Date:         | 9-21-04     | End Time | 11(00) |
| Effluent/Sample | •       | Age:          | <br>Investigators |             |          |        |
|                 |         | •             | <br>              |             |          |        |

| Conc.   | 1     |    |                                                  |              |                                                  | Re             | olicate  |          |              |              |    | No. of                                           | No. of       | Young                                 |
|---------|-------|----|--------------------------------------------------|--------------|--------------------------------------------------|----------------|----------|----------|--------------|--------------|----|--------------------------------------------------|--------------|---------------------------------------|
| Control | Day   | 1  | 2                                                | 3            | 4                                                | 5              | 6        | 7        | 8            | 9            | 10 | Young                                            | Adults       | per<br>Adult                          |
|         | 1     | 1  |                                                  |              |                                                  | 1              |          |          |              |              | 1  |                                                  |              |                                       |
|         | 2     |    | <del>                                     </del> | <del> </del> | <del> </del>                                     | <del> </del> - | 1        | <b> </b> | <del> </del> | <del> </del> |    | -                                                | <del> </del> |                                       |
|         | 3     |    |                                                  | <del> </del> | <del>                                     </del> | -              | <b>†</b> |          | <del> </del> | <del> </del> | ļ  |                                                  |              | · · · · · · · · · · · · · · · · · · · |
|         | 4     | 5  | 4                                                | 3            | 0                                                | 4              | 5        | 4        | 4            | 4            | 5  |                                                  |              |                                       |
|         | 5     | 0  | 0                                                | 0            | 5                                                | 0              | 0        | 0        | 0            | 0            | 0  |                                                  |              |                                       |
|         | 6     | 8  | 10                                               | 8            | 10                                               | 8              | 10       | 9        | 9            | 10           | 8  |                                                  |              | <del></del>                           |
|         | 7     | 13 | 11                                               | 11           | 12                                               | 12             | 0        | 13       | 13           | 0            | 13 |                                                  |              |                                       |
|         | 8     |    |                                                  |              |                                                  |                |          |          |              |              |    |                                                  |              | <del></del>                           |
|         | total | 26 | 25                                               | 22           | 27                                               | 24             | 15       | 26       | 26           | 14           | 26 | <del>                                     </del> |              |                                       |

| Conc.  | 1     |    |    |              |              | Rep                                              | olicate                                          |     |              |              |              | No. of       | No. of | Young        |
|--------|-------|----|----|--------------|--------------|--------------------------------------------------|--------------------------------------------------|-----|--------------|--------------|--------------|--------------|--------|--------------|
| -6.25% | Day   | 1  | 2  | 3            | 4            | 5                                                | 6                                                | 7   | 8            | 9            | 10           | Young        | Adults | per<br>Adult |
|        | 1     |    |    |              |              | T                                                |                                                  |     |              |              | 1            |              |        |              |
|        | 2     |    |    |              | <del> </del> | <del> </del>                                     | <del>                                     </del> |     | <del> </del> | <del> </del> | <del> </del> |              |        |              |
|        | 3     |    |    | <del> </del> |              | <del>                                     </del> | <del>                                     </del> |     | <del> </del> | <del> </del> | <del> </del> | <del> </del> |        |              |
|        | 4     | 0  | 4  | 4            | 5            | 4                                                | 5                                                | 5   | 4            | 3            | 4            |              |        |              |
|        | 5     | 2  | 0  | 1            | 0            | 0                                                | 7                                                | 0   | 0            | 0            | 0            |              |        |              |
|        | 6     | 10 | 9  | 10           | 7            | 10                                               | 0                                                | 8   | 9            | 11           | 9            |              |        |              |
|        | 7     | 0  | 12 | 13           | 8            | 13                                               | 12                                               | 13  | 12           | 13           | 12           |              |        |              |
|        | 8     |    |    |              |              |                                                  |                                                  | · · |              |              |              |              |        |              |
|        | total | 12 | 25 | 28           | 20           | 27                                               | 24                                               | 26  | 25           | 27           | 25           |              |        |              |

| Conc.         |       |    |      |    |                                                  | Rep          | licate   |              |                                                  |             |    | No. of       | No. of | Young        |
|---------------|-------|----|------|----|--------------------------------------------------|--------------|----------|--------------|--------------------------------------------------|-------------|----|--------------|--------|--------------|
| Z°C+<br>12.5% | Day   | 1  | 2    | 3  | 4                                                | 5            | 6        | 7            | 8                                                | 9           | 10 | Young        | Adults | per<br>Adult |
|               | 1     | ļ  |      |    |                                                  |              |          |              |                                                  |             |    |              |        |              |
|               | 2     |    |      |    | <u> </u>                                         | <del> </del> |          | <b>-</b>     | <del> </del>                                     | <del></del> |    |              |        |              |
|               | 3     |    |      |    | <del>                                     </del> | <del> </del> | <u> </u> | <del> </del> | <del>                                     </del> |             |    | <del> </del> | 1      |              |
|               | 4     | 5  | 4    | 3  | 4                                                | 5            | 5        | 4            | 3                                                | 4           | 3  |              |        |              |
|               | 5     | 0  | 0    | 8  | 0                                                | 0            | 0        | 0            | 8                                                | 0           | 1  |              |        |              |
|               | 6     | 7  | x-9  | 9  | 9                                                | 7            | 10       | 7            | 0                                                | 10          | 10 |              |        |              |
|               | 7     | 12 |      | 12 | 13                                               | 12           | 12       | 11           | 12                                               | 13          | 12 |              |        |              |
|               | 8     |    |      |    |                                                  |              |          |              | 1                                                | 1           |    |              |        |              |
|               | total | 24 | X-13 | 32 | 26                                               | 24           | 27       | 22           | 13                                               | 27          | 26 |              |        |              |

## Biotoxicity Bench Sheet 061

Page 1 of 2

Lab. No. 4IOP284 Test Organism Start Date: 9.14-04 Time: 1(00 Client: End Date: 9.14-04 End Time: 1(00 Effluent/Sample Age: Investigators

6.25%

| Conc.    | 1     |                                                  |          |              |                                                  | Rep | licate |              |                |              |              | No. of       | No. of       | Young        |
|----------|-------|--------------------------------------------------|----------|--------------|--------------------------------------------------|-----|--------|--------------|----------------|--------------|--------------|--------------|--------------|--------------|
| Control- | Day   | 1                                                | 2        | 3            | 4                                                | 5   | 6      | 7            | 8              | 9            | 10           | Young        | Adults       | per<br>Adult |
|          | 1     | 1                                                |          |              |                                                  |     |        | T            |                |              |              |              |              |              |
|          | 2     |                                                  | <u> </u> | <del> </del> | <del>                                     </del> |     |        | <del> </del> | 1              | <del> </del> | <del> </del> | <del> </del> | <del> </del> |              |
|          | 3     | <del>                                     </del> |          | <del> </del> |                                                  |     |        |              | <del> </del> - | <del> </del> | <del> </del> | <del> </del> |              |              |
|          | 4     | 3                                                | 4        | 5            | 4                                                | 6   | 4      | 4            | 3              | 3            | 4            |              |              |              |
|          | 5     | 0                                                | 0        | 6            | 0                                                | 0   | 0      | 0            | 8              | 0            | 0            |              | -            |              |
|          | 6     | 10                                               | 9        | 0            | 9                                                | 7   | 8      | 9            | 0              | 10           | 9            |              |              | *            |
|          | 7     | 11                                               | 12       | 13           | 11                                               | 12  | 13     | 11           | 14             | 0            | (1           |              |              |              |
|          | 8     |                                                  |          |              |                                                  |     |        |              |                |              |              |              |              |              |
|          | total | 24                                               | 25       | 24           | 24                                               | 24  | 25     | 24           | 25             | 13           | 24           |              |              |              |

バルバ

| Conc. |       |    |              |    |    | Rep | licate       |              |              |              |              | No. of       | No. of | Young        |
|-------|-------|----|--------------|----|----|-----|--------------|--------------|--------------|--------------|--------------|--------------|--------|--------------|
| 6.25% | Day   | 1  | 2            | 3  | 4  | 5   | 6            | 7            | 8            | 9            | 10           | Young        | Adults | per<br>Adu   |
|       | 1     |    |              |    |    |     |              |              |              |              |              |              |        | 1            |
|       | 2     |    | †            | †  | †  |     | <del> </del> |        | <del> </del> |
|       | 3     |    | <del> </del> | 1  |    |     |              | +            | 1            | <del> </del> | -            |              |        | <u> </u>     |
|       | 4     | 6  | 4            | 3  | 4  | 3   | Z            | 3            | 4            | 3            | 2            |              |        |              |
|       | 5     | 0  | 0            | 8  | 0  | 0   | 9            | 0            | 0            | 0            | 1            |              |        |              |
|       | 6     | 10 | 9            | 0  | 8  | 7   | 7            | 9            | 0            | 8            | 10           |              |        |              |
|       | 7     | 12 | 11           | 12 | 10 | (1  | 0            | 13           | 12           | 11           | 13           |              |        |              |
|       | 8     |    |              |    |    |     |              | •            |              |              | ·            |              |        |              |
|       | totai | 18 | 24           | 23 | 22 | 21  | 18           | 25           | 26           | 22           | 26           |              |        |              |

25%

| Conc. |       |    |                                                  |                                                  |    | Rep | licate       |              |              |    |              | No. of       | No. of | Young        |
|-------|-------|----|--------------------------------------------------|--------------------------------------------------|----|-----|--------------|--------------|--------------|----|--------------|--------------|--------|--------------|
| 12.5% | Day   | 1  | 2                                                | 3                                                | 4  | 5   | 6            | 7            | 8            | 9  | 10           | Young        | Adults | per<br>Adult |
|       | 1     |    |                                                  |                                                  |    | 1   |              |              |              |    |              |              |        |              |
|       | 2     |    |                                                  | <u> </u>                                         |    |     | <del> </del> | <del> </del> |              |    | <u> </u>     | <del> </del> |        | <del></del>  |
|       | 3     |    | <del>                                     </del> | <del>                                     </del> |    | ļ   | <u> </u>     |              | <del> </del> | ļ  | <del> </del> |              |        |              |
|       | 4     | 3  | 2                                                | 4                                                | 4  | 4   | 3            | 2            | 3            | 4  | 3            |              |        |              |
|       | 5     | 7  | 8                                                | 0                                                | 0  | 0   | 0            | 3            | 0            | 0  | 0            |              |        |              |
|       | 6     | 0  | 0                                                | 9                                                | 10 | 9   | 8            | 10           | 10           | 9  | 8            |              |        |              |
|       | 7     | 12 | 9                                                | 13                                               | 13 | 14  | 12           | 12           | 12           | 14 | 11           |              |        |              |
|       | 8     |    |                                                  |                                                  |    |     |              |              |              |    | <del>-</del> | T            |        |              |
|       | total | 22 | 19                                               | 26                                               | 27 | 27  | 23           | 27           | 25           | 27 | 22           |              |        |              |

Page 2 of 2

Lab. No. Client: Effluent/Sample UIUPGEY GE

Test Organism
Lot No.
Age:

Start Date: End Date: Investigators 9-14-04

Time:

1100

50%

| Conc. |       |    | · /- |                                                  |              | Re                                               | plicate                                          |                |              |              |              | No of        | T.               | T           |
|-------|-------|----|------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|----------------|--------------|--------------|--------------|--------------|------------------|-------------|
| 25%   | Day   | 1  | 2    | 3                                                | 4            | 5                                                | 6、                                               | 7              | 8            | 9            | 10           | Young        | No. of<br>Adults | Youn<br>per |
|       | 1     |    |      |                                                  |              | <del>                                     </del> | <del>                                     </del> | <del> </del> - | +            | -            | <del> </del> | <del> </del> |                  | Adu         |
|       | 2     |    |      | <del>                                     </del> | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del> </del>   | <del> </del> | <del> </del> |              |              |                  |             |
| ·     | 3     |    | 1    | <del> </del>                                     | <del> </del> | <del> </del>                                     | <del> </del>                                     | <del> </del>   |              | ļ            | ļ            | ļ            |                  |             |
|       | 4     | 3  | 4    | 3                                                | Z            | 4                                                | 3                                                | 2              | 4            | <del> </del> | <del> </del> |              |                  |             |
|       | 5     | 0  | 0    | 1                                                | 0            | 0                                                | 0                                                | 0              | <del> </del> | 6            | 4            |              |                  |             |
|       | 6     | 10 | 9    | 7                                                | 10           | a                                                | 8                                                | 10             | 0            | 0            | 0            |              |                  |             |
|       | 7     | 12 | 13   | 9                                                | 0            | 111                                              | 13                                               | 13             | 8            | 13           | 9            |              |                  |             |
|       | 8     |    |      | -                                                |              | <u> </u>                                         | 12                                               | '>             | 14           | 0            | 13           |              |                  |             |
|       | total | 25 | 26   | 20                                               | 12           | 24                                               | 24                                               | 25             | 26           | 14           | 26           |              |                  |             |

\.'2F

| Conc. | 1000     | <b>-</b> |     | ·                                                |              | Re           | plicate      |              |              |              | ~ ·          | No of        | l No. of         | T     |
|-------|----------|----------|-----|--------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------------|-------|
| -50%- | Day      | 1        | 2   | 3                                                | 4            | 5            | 6            | 7            | 8            | 9            | 10           | Young        | No. of<br>Adults | Young |
|       | 1        |          |     |                                                  |              | <del> </del> | +            | <del></del>  | +            | <del></del>  |              | <del> </del> | ļ                | Adu   |
|       | 2        | ļ ———    | 1   | <del> </del>                                     | <del> </del> | <del> </del> | +            | <del> </del> | <del> </del> | <del> </del> | <del> </del> | ļ            |                  |       |
|       | 3        |          | 1   | <del>                                     </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> | <del> </del> |              | ļ            |              |                  |       |
|       | 4        | 2        | 4   | 5                                                | 4            | 2            | 3            | 3            | 4            | 3            | /1           |              |                  |       |
|       | 5        | 0        | 0   | 6                                                | 0            | 1            | 0            | 0            | 0            | <del> </del> | 4            |              |                  |       |
|       | 6        | 9        | 8   | 0                                                | a            | 14           | <del> </del> | <del> </del> | <del> </del> | 0            | 0            |              |                  |       |
|       | 7        | 12       | 12  | <u> </u>                                         | <del> </del> |              | 9            | 8            | 9            | 9            | 10           |              |                  |       |
|       | 8        |          |     | 11                                               | 13           | 0            | 12           | 13           | 11           | 12           | 13           |              |                  |       |
|       | total    | 11       | 4.4 | 10                                               |              |              |              | ļ            |              |              |              |              |                  |       |
|       | <u> </u> | 23       | 24  | 22                                               | 26           | 17           | 24           | 24           | 24           | 14           | 27           |              |                  |       |

| Conc. | D     | <u> </u> |          | <del></del>  |              | Rep          | licate       |              |              |     |              | No. of | No.              | <del></del>  |
|-------|-------|----------|----------|--------------|--------------|--------------|--------------|--------------|--------------|-----|--------------|--------|------------------|--------------|
| 100%  | Day   | 1        | 2        | 3            | 4            | 5            | 6            | 7            | 8            | 9   | 10           | Young  | No. of<br>Adults | Young<br>per |
|       | 1     |          |          |              | <del> </del> | <del> </del> | <del> </del> | -            | <del> </del> |     | <del> </del> | ļ      |                  | Adul         |
|       | 2     |          | 1        |              | <del> </del> |     |              |        |                  |              |
|       | 3     |          |          | <del> </del> | <del> </del> | <del> </del> |              | <del> </del> | <del> </del> |     | ļ            |        |                  |              |
|       | 4     | 5        | 4        | 4            | 3            | 3            | 4            | 3            | 4            | 3   |              |        |                  | <del></del>  |
|       | 5     | 0        | 0        | 0            | 2            | 0            | 0            | 0            |              | -   | 4            |        |                  |              |
|       | 6     | 10       | 9        | 8            | 11           | 10           | 10           |              | 9            |     | 10           |        |                  |              |
|       | 7     | 13       | 14       | 7            | 14           | 12           | 12           | 11           |              | 17  | 13           |        |                  |              |
|       | 8     |          | <u> </u> | <u>-</u> -   |              |              | 1.2          | 13           | 10           | 1 2 | 0            |        |                  |              |
|       | total | 28       | 27       | 19           | 30           | 25           | 26           | 27           | 23           | 27  | 27           |        |                  |              |

## Appendix IV Statistical Sheets

Title: GE CD REPROD. SEPT 2004

File: GECDREP .904

Transform:

NO TRANSFORMATION

Kolmogorov Test for Normality

D = 0.2094

(p-value = 0.0000)

D\* = 2.0031

Critical D\* = 1.035 (alpha = 0.01 , N = 90) = 0.895 (alpha = 0.05 , N = 90)

Data FAIL normality test (alpha = 0.01). Try another transformation.

Warning - The first three homogeneity tests are sensitive to non-normality and should not be performed with this data as is.

Title: GE CD REPROD. SEPT 2004
File: GECDREP .904 Transform:

NO TRANSFORM

|       | Steel's Many-One | Rank Test              | - Но:       | Control        | <treatment< th=""></treatment<> |
|-------|------------------|------------------------|-------------|----------------|---------------------------------|
| GROUP | IDENTIFICATION   | MEAN IN ORIGINAL UNITS | RANK<br>SUM | CRIT.<br>VALUE | SIG<br>DF 0.05                  |
| 1     | CONTROL          | 23.1000                |             |                |                                 |
| 2     | CONTROL+         | 24.4000                | 110.50      | 73.00          | 10.00                           |
| 3     | 2' CONTROL       | 23.9000                | 110.00      | 73.00          | 10.00                           |
| 4     | 6.25%            | 23.2000                | 89.50       | 73.00          | 10.00                           |
| 5     | 12.5%            | 23.5000                | 99.00       | 73.00          | 10.00                           |
| 6     | 25%              | 24.5000                | 114.50      | 73.00          | 10.00                           |
| 7     | 50%              | 22.7000                | 96.00       | 73.00          | 10.00                           |
| 8     | 75%              | 23.5000                | 96.50       | 73.00          | 10.00                           |
| 9     | 100%             | 25.9000                | 129.50      | 73.00          | 10.00                           |

Critical values are 1 tailed ( k = 8 )

## Appendix V U.S. EPA Region I Toxicity Test Summary

## **Toxicity Test Summary Sheet**

| Facility Name:                                                                                                                                                                                                                                                                    | General Electric Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test Start Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ate: September 14, 2004                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| NPDES Permit N                                                                                                                                                                                                                                                                    | umber: MA 000 3891                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pipe Number: 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , 005-64T, 005-64G,                                                                                                                      |
|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>09A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , 09B                                                                                                                                    |
| Test Type                                                                                                                                                                                                                                                                         | Test Species                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample Method                                                                                                                            |
| □ Acute                                                                                                                                                                                                                                                                           | ☐ Fathead minnow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | □ Prechlorinated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | □ Grab                                                                                                                                   |
| ☑ Chronic                                                                                                                                                                                                                                                                         | ☐ Ceriodaphnia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Dechlorinated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ☑ Composite                                                                                                                              |
|                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ☐ Chlorine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ☐ Flow thru                                                                                                                              |
|                                                                                                                                                                                                                                                                                   | dubia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
| ☐ 24-hour                                                                                                                                                                                                                                                                         | ☐ Mysid Shrimp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | □ Spiked at lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | □ Other                                                                                                                                  |
| Screening                                                                                                                                                                                                                                                                         | □ Menidia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ☑ Chlorinated on-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |
| _                                                                                                                                                                                                                                                                                 | □ Sea Urchin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | site                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                   | □ Champia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | □ Unchlorinated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                   | □ Selenastrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                   | □ other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
| *Modified (Chronic                                                                                                                                                                                                                                                                | reporting acute values)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
| Dilution Water                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                   | raters collected at a noir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | at unstream of or away t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | from the discharge free                                                                                                                  |
|                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
| •                                                                                                                                                                                                                                                                                 | y or other sources or co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | indimination (Receiving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | water name: <u>moasacome</u>                                                                                                             |
|                                                                                                                                                                                                                                                                                   | urface water of known o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uality and a harness, et                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | c. to generally reflect the                                                                                                              |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uivalent deionized water                                                                                                                 |
|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                   | sea salts mixed with dei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                                                                                                                                        |
| Deionized w                                                                                                                                                                                                                                                                       | ater and hypersaline br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ine; or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |
| other                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          |
| Effluent samplin                                                                                                                                                                                                                                                                  | g date(s): September                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er 12, 2004 to Septemb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er 17, 2004                                                                                                                              |
|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del> </del>                                                                                                                             |
|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
| Effluent concent                                                                                                                                                                                                                                                                  | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                   | *(Peri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mit limit concentration):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                      |
| \\\ <b>e</b> \$\\\ \                                                                                                                                                                                                                                                              | inite and inches do No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
| • •                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ing bring colution? N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |
| with sea saits?                                                                                                                                                                                                                                                                   | iv/A nypersai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ille billie Solution: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · <u>···</u>                                                                                                                             |
| Actual effluent o                                                                                                                                                                                                                                                                 | concentrations tested af                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ter salinity adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          |
|                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mber 20, 2004                                                                                                                            |
| *Modified (Chronic  Dilution Water X Receiving w from toxicity River); Alternate su characterist Synthetic w and reagent or artificial s Deionized w other  Effluent samplin  Effluent concent  Was effluent sal If yes, to what w With sea salts?  Actual effluent c (in %): N/A | ☐ Mysid Shrimp ☐ Menidia ☐ Sea Urchin ☐ Champia ☐ Selenastrum ☐ other reporting acute values)  raters collected at a poir y or other sources of co  urface water of known quics of the receiving water ater prepared using eith t grade chemicals; or desea salts mixed with deivater and hypersaline browning date(s):  sea salts mixed with deivater and hypersaline browning date(s):  september search (in %):  "(Periodiction in the search of the search of the receiving water are using either that grade chemicals; or desea salts mixed with deivater and hypersaline browning date(s):  September search (in %):  "(Periodiction in the search of the sear | □ Spiked at lab ☑ Chlorinated on- site □ Unchlorinated  Int upstream of or away intamination (Receiving intamination inta | from the discharge, free water name: Housatonic c. to generally reflect the uivalent deionized water is with mineral water;  er 17, 2004 |

## **Permit Limits & Test Results**

Test Acceptability Criteria

MEAN CONTROL SURVIVAL: ≥90% MEAN CONTROL REPRODUCTION: \_\_\_N/A

MEAN CONTROL WEIGHT: \_\_N/A MEAN CONTROL CELL COUNT: \_\_\_N/A

| Lim              | nits | Result                 | :S    |
|------------------|------|------------------------|-------|
| LC <sub>50</sub> | N/A  | 48-hr LC <sub>50</sub> | >100% |
|                  |      | Upper Value            | N/A   |
|                  |      | Lower Value            | N/A   |
|                  |      | Data Analysis          |       |
|                  |      | Method used:           | N/A   |
| A-NOEC           | N/A  | A-NOEC                 | 100%  |
| C-NOEC           | N/A  | C-NOEC                 | 100%  |
|                  |      | LOEC                   | 100%  |
| IC25             | N/A  | IC25                   | N/A   |
| IC50             | N/A  | IC50                   | N/A   |

N/A = not applicable

## Appendix VI 7-Day Chronic Reference Toxicity Test Data

Page 2 of 2

| Lab. No.        |      | Test Organism | _CD      | Start Date:   | 9/3/04  | Time:    | 1500 |
|-----------------|------|---------------|----------|---------------|---------|----------|------|
| Client:         | ac   | Lot No.       |          | End Date:     | 9/20/04 | End Time | 1500 |
| Effluent/Sample | Nacl | Age:          | < 24 hrs | Investigators | KH      |          |      |

| Conc.                        |       |   |   |     |     | Rep | licate |   |   |   |     | No. of | No. of | Young        |
|------------------------------|-------|---|---|-----|-----|-----|--------|---|---|---|-----|--------|--------|--------------|
| 1000 ms/L<br><del>-25%</del> | Day   | 1 | 2 | 3   | 4   | 5   | 6      | 7 | 8 | 9 | 10  | Young  | Adults | per<br>Adult |
|                              | 1     |   |   |     |     |     |        |   |   |   |     |        |        |              |
|                              | 2     |   |   |     |     |     |        |   |   |   |     |        |        |              |
|                              | 3     |   |   |     |     |     |        |   |   |   |     |        |        |              |
|                              | 4     | 0 | 0 | 0   | 2   | 3   | 4      | 0 | 0 | 0 | 0   |        |        |              |
|                              | 5     | 4 | 3 | X-3 | X-0 | 0   | 0      | 3 | 3 | 0 | 3   |        |        |              |
|                              | 6     | 0 | 0 | 1   | 1   | 0   | 2      | 0 | 2 | 2 | X-0 |        |        |              |
|                              | 7     | 2 | 4 |     |     | 2   | 0      | 4 | 0 | 4 | 1   |        |        |              |
|                              | 8     |   |   | V   | V   |     |        |   |   |   | _   |        |        |              |
|                              | total | 6 | 7 | X-3 | x-2 | 5   | 6      | 7 | 5 | 6 | x-3 |        |        |              |

| Conc.        |       |     |     |     |          | Rep | licate |                |                         |          |     | No. of | No. of | Young        |
|--------------|-------|-----|-----|-----|----------|-----|--------|----------------|-------------------------|----------|-----|--------|--------|--------------|
| 200 vg/e 50% | Day   | 1   | 2   | 3   | 4        | 5   | 6      | 7              | 8                       | 9        | 10  | Young  | Adults | per<br>Adult |
|              | 1     |     |     |     |          |     |        |                |                         |          | ļ   |        |        |              |
|              | 2     |     |     |     |          |     |        |                |                         |          |     |        |        |              |
|              | 3     |     |     |     |          |     |        |                |                         | <u> </u> |     |        |        |              |
|              | 4     | 0   | 0   | 0   | 0        | 0   | 0      | 0              | 0                       | 0        | 0   |        |        |              |
|              | 5     | X-0 | 0   | 0   | x-2      | 0   | X-0    | 0              | 0                       | 3        | 3   |        |        |              |
|              | 6     | 1   | X-1 | X-0 |          | X-0 |        | X-0            | X-0                     | X-0      | 0   |        |        |              |
|              | 7     |     | 1   | ı   | 1        | 1   |        | 1              |                         | \ \ \    | X-0 |        |        |              |
|              | 8     | V   | V   | V   | <b>V</b> | V   | V      | $\overline{V}$ | $\overline{\mathbf{V}}$ | V        | 1   |        |        |              |
|              | total | X-0 | x-1 | x-Ø | X-Z      | x-0 | x-0    | X-0            | X-O                     | x-3      | X   |        |        |              |

| Conc.                       |       |     |     |     | •   | Rep | licate |     |     |     |     | No. of | No. of | Young        |
|-----------------------------|-------|-----|-----|-----|-----|-----|--------|-----|-----|-----|-----|--------|--------|--------------|
| Conc.<br>4000 mg/e<br>-100% | Day   | 1   | 2   | 3   | 4   | 5   | 6      | 7   | 8   | 9   | 10  | Young  | Adults | per<br>Adult |
|                             | 1     |     |     |     |     |     |        |     |     |     |     |        |        |              |
|                             | 2     |     |     |     |     |     |        |     |     |     |     |        |        |              |
|                             | 3     | X-0 | X-0 | x-0 | x-0 | X-0 | x-0    | x-0 | x-0 | x-0 | x.0 |        |        |              |
|                             | 4     |     | 1   | T 1 | 1   |     | ì      | 1   |     | 1   | ì   |        |        |              |
|                             | 5     |     |     |     |     |     |        |     |     |     |     |        |        |              |
|                             | 6     |     |     |     |     |     |        |     |     |     |     |        |        |              |
|                             | 7     |     |     |     |     |     |        |     |     |     |     |        |        |              |
|                             | 8     | V   | 1   | 1   | V   | V   | V      | V   | V   | V   | V   |        |        |              |
|                             | total | 7-0 | χ-0 | x-0 | x-0 | x-0 | ×0     | x-0 | x-0 | X-0 | X-0 |        |        |              |

Page 1 of 2

| Lab. No.        |      | Test Organism | CD       | Start Date:   | 9/13/04 | Time:    | 1500 |
|-----------------|------|---------------|----------|---------------|---------|----------|------|
| Client:         | OC.  | Lot No.       |          | End Date:     | 9/20/04 | End Time | 1500 |
| Effluent/Sample | NACL | Age:          | < 24 hrs | Investigators | KH      |          |      |

| Conc.   |       |    | Replicate |    |          |    |    |    |    | No. of   | No. of    | Young |        |              |
|---------|-------|----|-----------|----|----------|----|----|----|----|----------|-----------|-------|--------|--------------|
| Control | Day   | 1  | 2         | 3  | 4        | 5  | 6  | 7  | 8  | 9        | 10        | Young | Adults | per<br>Adult |
|         | 1     |    |           |    |          |    |    |    |    |          |           |       | · -    |              |
|         | 2     |    |           |    | <u> </u> | 1  |    |    |    | <u> </u> | $\dagger$ |       |        |              |
|         | 3     |    |           |    |          |    |    |    |    |          |           |       |        |              |
|         | 4     | 0  | 4         | 5  | 4        | 5  | 4  | 4  | 5  | 2        | 4         |       |        | <del></del>  |
|         | 5     | 4  | 0         | 0  | 0        | 1  | 0  | 0  | 0  | 3        | 0         |       |        |              |
|         | 6     | 0  | 9         | 8  | 9        | 10 | 9  | ю  | 9  | 10       | 9         |       |        |              |
|         | 7     | 10 | 13        | 13 | 12       | 11 | 12 | 14 | 12 | 13       | 0         |       |        |              |
|         | 8     |    |           |    |          |    |    |    |    |          |           |       |        |              |
|         | total | 14 | 26        | 26 | 25       | 27 | 25 | 28 | 26 | 28       | 13        | 1     |        |              |

| Conc.    |       |    | Replicate |    |    |    |    |    |    |    | No. of | No. of | Young  |              |
|----------|-------|----|-----------|----|----|----|----|----|----|----|--------|--------|--------|--------------|
| 250 mg/l | Day   | 1  | 2         | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10     | Young  | Adults | per<br>Adult |
|          | 1     |    |           |    |    |    |    |    |    |    |        |        |        |              |
|          | 2     |    |           |    |    |    |    |    |    |    |        |        |        |              |
|          | 3     |    |           |    |    |    |    |    |    |    |        |        |        |              |
|          | 4     | 5  | 4         | 4  | 3  | 4  | 3  | 4  | 4  | 3  | 2      |        |        |              |
|          | 5     | 0  | 0         | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 3      |        |        |              |
|          | 6     | 11 | 8         | 9  | 10 | 8  | 10 | 10 | 9  | 10 | 10     |        |        |              |
|          | 7     | 12 | 13        | 12 | 12 | 14 | 13 | 12 | 0  | 12 | 12     |        |        |              |
|          | 8     |    |           |    |    |    |    |    |    |    |        |        |        |              |
|          | total | 28 | 25        | 25 | 25 | 16 | 26 | 26 | 13 | 25 | 27     |        |        |              |

| Conc.             |       | Replicate |    |    |    |    |          |    |    | No. of | No. of | Young |        |              |
|-------------------|-------|-----------|----|----|----|----|----------|----|----|--------|--------|-------|--------|--------------|
| 500 ms/e<br>12.5% | Day   | 1         | 2  | 3  | 4  | 5  | 6        | 7  | 8  | 9      | 10     | Young | Adults | per<br>Adult |
|                   | 1     |           |    |    |    |    |          |    |    |        |        |       |        |              |
|                   | 2     |           |    |    |    |    |          |    |    |        |        |       |        |              |
|                   | 3     |           |    |    |    |    |          |    |    |        |        |       |        |              |
|                   | 4     | 4         | 3  | 2  | 4  | 3  | 4        | 3  | 4  | 3      | 4      |       |        |              |
|                   | 5     | 10        | 0  | 11 | 0  | 0  | 0        | 0  | 0  | 10     | 0      |       |        |              |
|                   | 6     | 13        | 9  | 0  | 9  | 8  | x-9      | 8  | 7  | 12     | 9      |       |        |              |
|                   | 7     | 0         | 12 | 13 | 12 | 13 | V        | 13 | 13 | 0      | 12     |       |        |              |
|                   | 8     |           |    |    |    |    | <b>_</b> |    |    |        |        |       |        |              |
|                   | total | 27        | 24 | 26 | 25 | 24 | X-13     | 24 | 24 | 25     | 25     |       |        |              |

## Fisher's Exact Test

IDENTIFICATION ALIVE DEAD TOTAL ANIMALS

\_\_\_\_\_\_

| IDENTIFICATION | VUTA | טממט | TOTAL MITHE |
|----------------|------|------|-------------|
|                |      |      |             |
| CONTROL        | 10   | 0    | 10          |
| 250mg/l        | 10   | 0    | 10          |
| TOTAL          | 20   | 0    | 20          |
|                |      |      |             |

Critical Fisher's value (10,10,10) (alpha=0.05) is 6.0. b value is 10. Since b is greater than 6.0 there is no significant difference between CONTROL and TREATMENT at the 0.05 level.

## Fisher's Exact Test

|                | NUMBER OF |      |               |  |  |  |
|----------------|-----------|------|---------------|--|--|--|
| IDENTIFICATION | ALIVE     | DEAD | TOTAL ANIMALS |  |  |  |
| CONTROL        | 10        | 0    | 10            |  |  |  |
| 500mg/l        | 9         | 1    | 10            |  |  |  |
| TOTAL          | 19        | 1    | 20            |  |  |  |

Critical Fisher's value (10,10,10) (alpha=0.05) is 6.0. b value is 9. Since b is greater than 6.0 there is no significant difference between CONTROL and TREATMENT at the 0.05 level.

## Fisher's Exact Test

|                | NUMBER OF |      |               |  |  |  |
|----------------|-----------|------|---------------|--|--|--|
| IDENTIFICATION | ALIVE     | DEAD | TOTAL ANIMALS |  |  |  |
| CONTROL        | 10        | 0    | 10            |  |  |  |
| 1000mg/l       | 7         | 3    | 10            |  |  |  |

20

Critical Fisher's value (10,10,10) (alpha=0.05) is 6.0. b value is 7. Since b is greater than 6.0 there is no significant difference between CONTROL and TREATMENT at the 0.05 level.

## Fisher's Exact Test

|                |       | NUMBI | ER OF         |
|----------------|-------|-------|---------------|
| IDENTIFICATION | ALIVE | DEAD  | TOTAL ANIMALS |
| CONTROL        | 10    | 0     | 10            |
| 2000mg/l       | 0     | 10    | 10            |
| TOTAL          | 10    | 10    | 20            |

Critical Fisher's value (10,10,10) (alpha=0.05) is 6.0. b value is 0. Since b is less than or equal to 6.0 there is a significant difference between CONTROL and TREATMENT at the 0.05 level.

## Fisher's Exact Test

|                |       | NUMBER OF |               |  |  |
|----------------|-------|-----------|---------------|--|--|
| IDENTIFICATION | ALIVE | DEAD      | TOTAL ANIMALS |  |  |
| CONTROL        | 10    | 0         | 10            |  |  |
| 4000mg/l       | 0     | 10        | 10            |  |  |
| TOTAL          | 10    | 10        | 20            |  |  |

Critical Fisher's value (10,10,10) (alpha=0.05) is 6.0. b value is 0. Since b is less than or equal to 6.0 there is a significant difference between CONTROL and TREATMENT at the 0.05 level.

Summary of Fisher's Exact Tests

\_\_\_\_\_

| GROUP | IDENTIFICATION | EXPOSED | DEAD | 0.05 | 074 |
|-------|----------------|---------|------|------|-----|
|       | CONTROL        | 10      | 0    |      |     |
| 1     | 250mg/l        | 10      | 0    |      |     |
| 2     | 500mg/l        | 10      | 1    |      |     |
| 3     | 1000mg/l       | 10      | 3    |      |     |
| 4     | 2000mg/l       | 10      | 10   | *    |     |
| 5     | 4000mg/l       | 10      | 10   | *    |     |
|       |                |         |      |      |     |

Title: CD REFTOX SEPT 2004
File: QCCDREP .904 Transform: NO TRANSFORMATION

Steel's Many-One Rank Test - Ho: Control<Treatment

| GROUP | IDENTIFICATION | MEAN IN<br>ORIGINAL UNITS | RANK<br>SUM | CRIT.<br>VALUE | DF    | SIG<br>0.05 |
|-------|----------------|---------------------------|-------------|----------------|-------|-------------|
| 1     | CONTROL        | 23.8000                   |             |                |       |             |
| 2     | 250 MG/L       | 24.6000                   | 100.50      | 76.00          | 10.00 |             |
| 3     | 500 MG/L       | 23.7000                   | 85.50       | 76.00          | 10.00 |             |
| 4     | 1000 MG/L      | 5.0000                    | 55.00       | 76.00          | 10.00 | *           |
| 5     | 2000 MG/L      | 0.9000                    | 55.00       | 76.00          | 10.00 | *           |

Critical values are 1 tailed ( k = 4 )

Title: CD REFTOX SEPT 2004

File: QCCDREP .904

Transform:

NO TRANSFORMATION

Shapiro - Wilk's Test for Normality

D = 613.0000W = 0.7169

Critical W = 0.9300 (alpha = 0.01 , N = 50) W = 0.9470 (alpha = 0.05 , N = 50)

\_\_\_\_\_\_

Data FAIL normality test (alpha = 0.01). Try another transformation.

Warning - The first three homogeneity tests are sensitive to non-normality and should not be performed with this data as is.

## **Acute Biotoxicity Bench Sheet**

| Client: GC                |                |              |         |               |                                       |
|---------------------------|----------------|--------------|---------|---------------|---------------------------------------|
| Project: Referen          | e Toxicont     |              | Lab     | . No.:        |                                       |
|                           |                |              |         | Date Received | i:                                    |
| Sample Date:              | Time:          |              |         | Date Analyzed | f:                                    |
| Source: Nacl              |                |              | ρ       | nalyst:       |                                       |
| Source of dilution water: | Moderativ Hara | × < 5,7      | nthetic | water         |                                       |
| Test Species:             | aphnia dubia   | Age:         |         | Temp. R       | ange: °C                              |
| Type of Test: 48 hou      | r' Arute       | <del>-</del> |         | ·             | · · · · · · · · · · · · · · · · · · · |
| Total Chlorine:           | nld            |              |         | Beginning     | Ending                                |
|                           |                |              | Date:   | 9/8/04        | 9/10/04                               |
|                           |                |              | Time:   | 1600          | 1600                                  |

| Concentration | Control | Soc         | 1000 | 2000     | 3000     | 4000      |
|---------------|---------|-------------|------|----------|----------|-----------|
| START         |         |             |      |          |          | 1 -(00-0- |
| Temperature   | 253     | 25.3        | 25.5 | 21.3     | 25.3     | 25,3      |
| Hardness      | 110     |             |      |          |          | 130       |
| D.O.          | 89      | 89          | 8.9  | 8.9      | 6.9      | 89        |
| рН            | 7.0     | 7.0         | 7.1  | 7.1      | 7.1      | 7.1       |
| Alkalinity    | 73      |             |      |          |          | 75        |
| Sp. Conduct.  | 338     | 2460        | 3210 | 4140     | 5180     | 7710      |
| 24 HOUR       |         |             |      |          | <u> </u> |           |
| Temperature   | 25.3    | 25.3        | 25.3 | 25.3     | 24.3     | 25.3      |
| No. Surviving | 20      | 20          | 20   | 17       | 11       | 0         |
| 48 HOUR       |         | <del></del> |      | <u> </u> | -        | <u> </u>  |
| Temperature   | 24.8    | 24.8        | 248  | 24.8     | 248      | 248       |
| No. Surviving | 20      | 20          | 1:3  | 4        | 0        | 0         |

Note: All results expressed in mg/L unless otherwise designated. < = less than

Note: Number in parenthesis equals number not adversely effected ( $EC_{50}$ ). This number is used in calculating  $EC_{50}$  value.

Note: Due to fragile structure of *Daphnia* organisms, dissolved oxygen (DO), hardness, alkalinity, specific conductance, and pH reading could not be taken after the organisms are added to the sample. Doing so would cause injury to the organisms.

Method Reference: Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshivater and Marine

FOR REFERENCE, CITE:

HAMILTON, M.A., R.C. RUSSO, AND R.V. THURSTON, 1977. TRIMMED SPEARMAN-KARBER METHOD FOR ESTIMATING MEDIAN LETHAL CONCENTRATIONS IN TOXICITY BIOASSAYS.

ENVIRON. SCI. TECHNOL. 11(7): 714-719;

CORRECTION 12(4):417 (1978).

DATE: 09/08/04 CHEMICAL: NaCl

TEST NUMBER: -

DURATION: 48 HOURS

SPECIES: CD

RAW DATA:

CONCENTRATION (MG/L) 500.001000.002000.003000.004000.00 NUMBER EXPOSED: 20 20 20 20 20

MORTALITIES: . 0 7 16 20 20

SPEARMAN-KARBER TRIM: 0.00%

SPEARMAN-KARBER ESTIMATES: LC50:

1238.42

95% LOWER CONFIDENCE: 1036.97 95% UPPER CONFIDENCE: 1478.99