

Transmitted via Overnight Courier

GE 159 Plastics Avenue Pittsfield, MA 01201 USA

August 30, 2007

Mr. Richard Hull U.S. Environmental Protection Agency EPA New England One Congress Street, Suite 1100 Boston, Massachusetts 02114-2023

Re: GE-Pittsfield/Housatonic River Site

Groundwater Management Area 3 (GECD330)

Groundwater Quality and NAPL Monitoring Report for Spring 2007

Dear Mr. Hull:

Enclosed is a report entitled Groundwater Management Area 3 Groundwater Quality and NAPL Monitoring Report for Spring 2007 (Spring 2007 GMA 3 Report). This report summarizes activities performed at Groundwater Management Area (GMA) 3 (also known as the Plant Site 2 GMA) between January and June 2007, including the results of the spring 2007 round of sampling and analysis of groundwater for GMA 3 and the results of GE's non-aqueous phase liquid (NAPL) monitoring and recovery program in this area. In addition, this report describes recently proposed and/or approved modifications to the NAPL monitoring program and a discussion of upcoming interim groundwater quality monitoring activities to be conducted at GMA 3 in 2007, which will continue until such time as all required soil-related Removal Actions are completed within this GMA and a comprehensive long-term monitoring program may be developed.

Please contact me if you have any questions or comments.

Sincerely,

Richard W. Gates

Remediation Project Manager

Somber W. Octo /Mas for

Enclosure

G:\GE\GE_Pittsfield_CD_GMA_3\Reports and Presentations\Spring 2007 Monitoring Report\410711324Cvrl.tr.doc

cc: Dean Tagliaferro, EPA

Tim Conway, EPA (cover letter only).

Holly Inglis, EPA (CD-ROM)

Rose Howell, EPA (cover letter only) K.C. Mitkevicius, USACE (CD-ROM)

Linda Palmieri, Weston (2 hard copies & CD-ROM)

Anna Symington, MDEP (cover letter only)

Jane Rothchild, MDEP (cover letter only)

Susan Steenstrup, MDEP (2 copies)

Thomas Angus, MDEP (cover letter only)

Mayor James Ruberto, City of Pittsfield

Pittsfield Commissioner of Public Health

Nancy E. Harper, MA AG

Dale Young, MA EOEA

Michael Carroll, GE (cover letter only)

Andrew Silfer, GE (CD-ROM)

Rod McLaren, GE (cover letter only)

Mark Harkness, GE

Andrew Hogeland, GE Advanced Materials

Steven Deloye, GE Advanced Materials

Jeff Gardner, Berkshire Community College

Kevin Boland, CSX Transportation

Cheryl Grosso, United States Navy

James Nuss, ARCADIS BBL

James Bieke, Goodwin Procter

John Ciampa, SPECTRA

Public Information Repositories

GE Internal Repositories

General Electric Company Pittsfield, Massachusetts

Groundwater Management Area 3
Groundwater Quality and NAPL
Interim Monitoring Report for
Spring 2007

August 2007

Groundwater Management Area 3 – Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

Prepared for:

General Electric Company

Prepared by:
ARCADIS of New York, Inc.
6723 Towpath Road
P.O. Box 66
Syracuse
New York 13214-0066
Tel 315.446.9120
Fax 315.449.0017

Our Ref.: B0020186

Date:

August 2007

ARCADIS BBL Table of Contents

1.	Introdu	uction		1
	1.1	Genera	al	1
	1.2	Backgr	round Information	4
		1.2.1	GMA Description	4
		1.2.2	Interim Monitoring Program	6
		1.2.3	NAPL Monitoring Program	7
		1.2.4	Format of Document	7
2.	Field a	nd Ana	lytical Procedures	8
	2.1	Genera	al	8
	2.2	Well In	stallation and Development	8
	2.3	Ground	dwater Elevation Monitoring	8
	2.4	LNAPL	. Monitoring and Recovery	9
	2.5	Ground	dwater Sampling and Analysis	11
	2.6	Soil Ga	as Investigations	13
	2.7	LNAPL	Recovery Testing	13
3.	Groun	dwater .	Analytical Results	14
	3.1	Genera	al	14
	3.2	Ground	dwater Quality Results	14
		3.2.1	VOC Results	14
		3.2.2	SVOC Results	14
		3.2.3	Natural Attenuation Monitoring Results	15
4.	Asses	sment c	of Results	16
	4.1	Genera	al	16
	4.2	Perforr	mance Standards	16
		4.2.1	Groundwater Quality Performance Standards	16
		4.2.2	NAPL-Related Performance Standards	18

ARCADIS BBL Table of Contents

	4.3	Groundwate	r Quality	20
		4.3.1 Gro	oundwater Results Relative to GW-2 Performance Standards	20
		4.3.2 Gro	oundwater Results Relative to GW-3 Performance Standards	20
		4.3.3 Gro	oundwater Results Relative to Upper Concentration Limits	21
	4.4	Natural Atte	nuation Monitoring Results	21
	4.5	Overall Ass	essment of Analytical Results	22
	4.6	Evaluation	of NAPL Monitoring and Recovery Activities	23
		4.6.1 Ext	ent of NAPL	23
		4.6.2 NA	PL Recovery	24
5.	Propos	ed Ground	water and NAPL Monitoring Program Modifications	25
	5.1	General		25
	5.2	Interim Gro	undwater Quality Monitoring Program Modifications	25
	5.3	NAPL Moni	oring Program Modifications	25
	5.4	Soil Gas/Ind	door Air Quality Monitoring Program Modifications	26
6.	Schedu	le of Futur	e Activities	27
	6.1	General		27
	6.2	Field Activit	es Schedule	27
	6.3	Reporting S	chedule	28
Tal	bles			
	1	Groundwat	er Quaity Monitoring Program Summary	
	2	Groundwat	er Elevation/NAPL Monitoring Program Summary	
	3	Monitoring	Well Construction Summary	
	4	Groundwat	er Elevation Data – Spring 2007	
	5	Groundwat	er Elevation and LNAPL Monitoring/Recovery Data Summary	
	6	Field Parar	neter Measurements – Spring 2007	
	7	Compariso	n of Groundwater Analytical Results to MCP Method 1 GW-2 S	Standards

Table of Contents

ARCADIS BBL

- 8 Comparison of Groundwater Analytical Results to MCP Method 1 GW-3 Standards
- 9 Comparison of Groundwater Analytical Results to MCP UCLs for Groundwater
- 10 Natural Attenuation Parameter Analytical Results
- 11 Fall 2007 Interim Groundwater Quality Monitoring Activities

Figures

- 1 Groundwater Management Areas
- 2 Site Plan
- 3 Generalized Geologic Cross Section A-A'
- 4 Generalized Geologic Cross Section B-B'
- 5 Groundwater Elevation Contour Map Spring 2007
- 6 Historical Extent of NAPL
- 7 Extent of LNAPL Spring 2007 Monitoring Event

Appendix

- A Groundwater Monitoring Well Log
- B Groundwater Elevation and NAPL Monitoring / Recovery Data
- C Field Sampling Data
- D Spring 2007 Groundwater Analytical Results
- E Historical Groundwater Data
- F Data Validation Report

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

1. Introduction

1.1 General

On October 27, 2000, a Consent Decree (CD) executed in 1999 by the General Electric Company (GE), the United States Environmental Protection Agency (EPA), the Massachusetts Department of Environmental Protection (MDEP), and several other government agencies was entered by the United States District Court for the District of Massachusetts. The CD governs (among other things) the performance of response actions to address polychlorinated biphenyls (PCBs) and other hazardous constituents in soils, sediment, and groundwater in several Removal Action Areas (RAAs) located in or near Pittsfield, Massachusetts that collectively comprise the GE-Pittsfield/Housatonic River Site (the Site). For groundwater and non-aqueous-phase liquid (NAPL), the areas at and near the GE Pittsfield facility have been divided into five Groundwater Management Areas (GMAs), which are illustrated on Figure 1. These GMAs are described, together with the Performance Standards established for the response actions at and related to them in Section 2.7 of the Statement of Work for Removal Actions Outside the River (SOW) (Appendix E to the CD), with further details presented in Attachment H to the SOW (Groundwater/NAPL Monitoring, Assessment, and Response Programs). This report relates to the Plant Site 2 GMA, also known as and referred to herein as GMA 3.

On April 24, 2001, GE submitted a *Baseline Monitoring Program Proposal for Plant Site 2 Groundwater Management Area* (GMA 3 Baseline Monitoring Proposal). The GMA 3 Baseline Monitoring Proposal summarized the hydrogeologic information available at that time for GMA 3 and proposed groundwater and NAPL monitoring activities (incorporating as appropriate those activities currently in place at that time) for the baseline monitoring period at this GMA. EPA provided conditional approval of the GMA 3 Baseline Monitoring Proposal by letter dated November 21, 2001. Thereafter, certain modifications were made to the GMA 3 baseline monitoring program as a result of EPA approval conditions and/or findings during field reconnaissance of the selected monitoring locations and, subsequently, during implementation of the baseline monitoring program.

As part of the baseline program, GE was required to submit reports on a semi-annual basis to summarize the groundwater and NAPL monitoring and recovery results and, as appropriate, propose modification to the monitoring program. With regard to GMA 3, GE deferred the 2002 and 2003 sampling rounds (with EPA approval) because certain property access issues could not be resolved prior to the scheduled performance of those sampling events. However, GE continued to perform NAPL and groundwater elevation monitoring on an interim basis at all locations for which access was available and collected groundwater

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

samples from one well (78B-R) on a semi-annual basis for analysis of volatile organic compounds (VOCs) and, until fall 2003, PCBs.

The final property access issues were resolved in February 2004, and, beginning with the spring 2004 sampling event, GE commenced the full semi-annual baseline groundwater quality sampling program at GMA 3. The baseline monitoring program consisted of four semi-annual groundwater quality sampling events (with annual sampling conducted at select wells), quarterly groundwater elevation monitoring, and NAPL monitoring and recovery activities, followed by preparation and submittal of semi-annual reports summarizing the groundwater/NAPL monitoring results, comparing the groundwater results with applicable Performance Standards, and, as appropriate, proposing modifications to the monitoring program. The full monitoring program included sampling and analysis of PCBs, certain non-PCB constituents listed in Appendix IX of 40 CFR Part 264, plus three additional constituents -- benzidine, 2-chloroethylvinyl ether, and 1,2-diphenyhydrazine (Appendix IX+3), and/or certain constituents (i.e., natural attenuation parameters) to assess intrinsic and natural processes that may be influencing VOC concentrations in groundwater. The fourth baseline monitoring report for GMA 3, titled Groundwater Management Area 3 Baseline Groundwater Quality and NAPL Monitoring Interim Report for Fall 2005 (Fall 2005 GMA 3 Report), was submitted to EPA on February 26, 2006.

Section 6.1.3 of Attachment H to the SOW provides that if the two-year baseline period ends prior to the completion of soil-related response actions at all the RAAs within a GMA, GE may make a proposal to EPA to modify and/or extend the Baseline Monitoring Program based on the results of the initial assessment and the estimated timing of future response actions at the RAAs in the GMA. The approved GMA 3 Baseline Monitoring Proposal also allows GE to propose a modification and/or extension of the baseline monitoring program based on the results of the initial assessment and the estimated timing of future response actions.

Therefore, as the soil-related Removal Actions at the Unkamet Brook Area RAA within GMA 3 were not yet complete, the Fall 2005 GMA 3 Groundwater Quality Report contained a proposal to modify and extend baseline groundwater quality monitoring activities at GMA 3 (under a program referred to as the interim monitoring program) until such time as the soil-related Removal Actions at the Unkamet Brook Area RAA are completed and the specific components of a long-term groundwater quality monitoring program are determined.

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

EPA approved these modifications prior to the spring 2006 sampling event, which was conducted in April 2006. As part of the spring 2006 event, GE re-evaluated the previously-collected data in accordance with recent revisions to the Massachusetts Contingency Plan (MCP) that became effective on April 3, 2006. As a result of this re-evaluation, GE recommended adding three locations to the interim monitoring program. The results of the spring 2006 were presented in the Groundwater Management Area 3 Groundwater Quality and NAPL Monitoring Interim Report for Spring 2006, which was conditionally approved by EPA's letter dated December 7, 2006, which required adding one further location to the interim monitoring program. As the 2006 annual interim groundwater quality sampling event was conducted in the spring, the 2007 annual interim groundwater quality sampling event will be conducted in the fall.

The *Groundwater Management Area 3 NAPL Monitoring Report for Fall 2006* (Fall 2006 GMA 3 Monitoring Report) presented the results of the semi-annual groundwater elevation and NAPL monitoring activities performed at this GMA during October 2006, as well as other groundwater elevation and NAPL monitoring/recovery activities performed between July and December 2006. The Fall 2006 GMA 3 Monitoring Report also proposed the installation of a new monitoring well and the performance of LNAPL recovery testing at select wells to evaluate the need to expand the existing LNAPL recovery system. The Fall 2006 GMA 3 Monitoring Report was conditionally approved by EPA by letter dated April 19, 2007.

The Fall 2006 GMA 3 Monitoring Report also summarized the results of the soil gas migration assessment, which had been completed in the fall 2006 and previously submitted to EPA in a separate report titled Soil Gas Migration Assessment Report for Groundwater Management Area 3 (Migration Assessment Report) on October 20, 2006. The Migration Assessment Report was conditionally approved by EPA by letter dated February 17, 2006. In that letter, EPA concurred with GE's conclusion that the constituents detected were all below the OSHA guidance values for workplace exposure, but did not concur with GE's conclusion that there is no clear link between soil gas, groundwater, and NAPL plumes located below the building slabs and observed indoor air concentrations. In response to Condition Nos. 2 and 3 of the February 17, 2006 letter stipulated, GE conducted an inspection of Buildings 51 and 59 to identify potential pathways for soil gas migration to indoor air and developed and proposed a plan for EPA approval for conducting periodic subsurface soil gas and indoor air monitoring, below and within Buildings 51 and 59. The results of the inspection and the proposed monitoring plan were presented in GE's letter to EPA titled Soil Gas Migration Assessment Report and Sampling Plan (Supplemental Assessment Report and Sampling Plan) to EPA on March 16, 2007. The Supplemental Assessment Report and Sampling Plan was conditionally approved by EPA in letter dated June 25, 2007. To address EPA's approval conditions contained in that letter, GE revisited

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

each of the possible migration pathways identified in the Supplemental Assessment Report and Sampling Plan to: (1) determine whether any of those possible migration pathways constituted unsealed penetrations to the underlying soil, and (2) seal those possible migration pathways that did constitute unsealed penetrations to the underlying soil and could readily be addressed. An *Addendum to the Soil Gas Migration Assessment Report and Sampling Plan*, which summarized those activities and proposed additional activities regarding penetrations that extend or may extend to the underlying soil, but that GE was not able to address or seal during the available timeframe, was submitted to EPA on July 24, 2007.

As part of the overall interim monitoring program for GMA 3, GE is required to submit reports after each groundwater sampling event to summarize the groundwater/NAPL monitoring results and related activities and, as appropriate, propose modifications to the monitoring program. This *Groundwater Management Area 3 Groundwater Quality and NAPL Monitoring Report for Spring 2007* (Spring 2007 GMA 3 Report) presents the results of groundwater quality and NAPL monitoring activities performed at this GMA during May 2007, as well as other routine groundwater elevation and NAPL monitoring/recovery activities performed between January and June 2007 (henceforth referred to as Spring 2007). Given that the annual interim groundwater quality sampling for 2007 will be performed in fall 2007, the groundwater quality sampling performed in spring 2007 consisted of the natural attenuation parameter sampling.

The GMA 3 groundwater elevation/NAPL monitoring program is summarized in Table 1. This report also describes the upcoming groundwater quality and NAPL monitoring activities for GMA 3 and presents the schedule for their performance.

1.2 Background Information

1.2.1 GMA Description

GMA 3 encompasses the portion of the Unkamet Brook Area (as defined in the CD and SOW) located to the east of Plastics Avenue, and occupies an area of approximately 103 acres (as shown on Figures 1 and 2). This area includes the eastern portion of GE's Pittsfield facility, which is generally bounded by Dalton Avenue to the north, Merrill Road to the south, Plastics Avenue to the west, and railroad tracks to the east. GMA 3 also contains commercial/recreational properties located between Merrill Road and the Housatonic River to the southeast of the facility. Unkamet Brook extends from northwest to southeast through the interior of this GMA, although a portion of the brook in the center of the area flows through underground culverts. The GE-owned portion of this GMA located west of Unkamet Brook is mostly paved and covered with large buildings. The GE-owned

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

portion to the east of Unkamet Brook, as well as much of the land between Merrill Road and the Housatonic River, is undeveloped except for the area associated with Building OP-3 and the commercial area along Merrill Road.

Several well pairs or closely-spaced shallow and deep well clusters have been installed within GMA 3. The approximate depth of a well in a cluster can be identified by the letter contained in the well name (e.g., cluster 39 contains wells 39A, 39B-R, 39D-R, and 39E) which represents the well series, specifically:

- A-series wells are generally screened approximately 45 to 50 feet below ground surface (bgs);
- B-series wells are generally screened at or near the water table, approximately 15 to 25 feet bgs;
- C-series wells are generally screened approximately 95 to 100 feet bgs;
- D-series wells are generally screened approximately 70 to 75 feet bgs; and
- E-series wells are generally screened at depths greater than 150 feet bgs.

Most of the GMA 3 well clusters consist of an A-series well paired with a B-series well, and sometimes one or more of the deeper series wells. In addition, there are individual wells installed at the RAA which were completed based on proposals by GE or EPA conditional approval letters. The specifications of the wells monitored at GMA 3 in Spring 2007 are listed in Table 3. Prior monitoring data from the well clusters has indicated that the vertical component of the hydraulic gradient is variable at GMA 3. In general, groundwater flows downward in the northern part of the GMA, moves laterally across the central areas, and rises to the south, near the Housatonic River.

Groundwater at GMA 3 generally flows in a southeasterly direction toward the Housatonic River, usually with a pattern that mimics the existing topography. However, localized variations in the flow direction exist due to fill materials used beneath building foundations in the GE Plastics area and the presence of Unkamet Brook. The subsurface conditions across GMA 3 are illustrated on cross-sections A-A' and B-B', presented as Figures 3 and 4, respectively. The locations of these cross-sections are provided on Figure 2. Figure 5 illustrates groundwater elevations and flow direction using data collected during the spring 2007 monitoring round. The horizontal hydraulic gradients are somewhat variable within GMA 3, but generally decrease toward the Housatonic River, corresponding to a flattening in the ground surface topography.

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

The presence of NAPL in this area has been documented in prior GE reports. NAPL has been observed near Building 59 in coarse gravel that was assumed to be fill material for the foundation of that building. NAPL also has been observed in the vicinity of Building 51, which NAPL may have originated from the leakage of underground storage tanks located on the northeast side of that building. Previous investigations have identified the NAPL as a light non-aqueous phase liquid (LNAPL) in the soil at and above the groundwater table interface. The LNAPL observed east of Building 51 has been analyzed and determined to be composed of multiple constituents, including PCBs, polynuclear aromatic hydrocarbons (PAHs), ethylbenzene, xylenes, 1,2,4-trichlorobenzene, and 1,4-dichlorobenzene, among other constituents.

Distribution of the LNAPL has been confined to the vicinity of Buildings 51 and 59, along the western boundary of the GMA, due primarily to: (a) the generally low hydraulic gradients in this area; (b) the difference in grain size between the coarse fill materials near and beneath the buildings and the grain size of the surrounding native soils; (c) an apparent groundwater mound present between Buildings 59 and 119, to the south of the NAPL area; and (d) the ongoing LNAPL recovery efforts (both automated and manual) conducted by GE. Prior to spring 2007, dense non-aqueous phase liquid (DNAPL) had not been encountered within any of the monitoring wells within GMA 3. However, DNAPL was observed on one occasion in a single monitoring well located to the south of the former interior landfill. Locations where NAPL has been previously documented are shown on Figure 6. The extent of NAPL observed in spring 2007 is illustrated on Figure 7. A discussion of the current extent of NAPL and the results of NAPL monitoring and recovery activities is provided in Section 3.3.

1.2.2 Interim Monitoring Program

As discussed in Section 1.1, the CD and the SOW provide the framework for the performance of groundwater-related activities at a number of GMAs, including the implementation of groundwater monitoring, assessment, and recovery programs. In general, these programs consist of a baseline monitoring program conducted over a period of at least two years to establish existing groundwater conditions and a long-term monitoring program performed to assess groundwater conditions over time and to verify the attainment of the Performance Standards for groundwater. The baseline monitoring program was to be initiated at GMA 3 in the spring of 2002, but, as discussed above, access issues prevented performance of the full baseline monitoring program until spring 2004. The fall 2005 sampling event constituted the fourth baseline sampling event at the majority of the wells in GMA 3. The baseline sampling program was concluded with the spring 2006 sampling event. Beginning in spring 2006, as approved by EPA, an interim groundwater quality monitoring program was initiated, consisting of annual sampling (in the

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

spring season) for the analysis of VOCs and natural attenuation parameters at 22 monitoring wells, plus annual sampling (alternating between the spring and fall seasons) for the analysis of VOCs at one additional well (Well 6B-R). In addition, as noted above, GE's re-evaluation of the data performed following the spring 2006 sampling event and EPA conditions in its December 7, 2006 conditional approval letter led to the addition of four locations to the interim monitoring program. Specifically, the interim program now also includes well 51-14 for VOC analysis, due to the decrease in the GW-2 standard for carbon tetrachloride, and wells 82B-R, 114A, and 114B-R for PCB analysis. The components of the interim groundwater quality monitoring program at GMA 3 as approved by EPA are summarized in Table 1. The next round of alternating spring/fall sampling will be conducted in fall 2007. Therefore, the groundwater quality sampling conducted in spring 2007 consisted of the natural attenuation sampling.

1.2.3 NAPL Monitoring Program

In addition to the wells that were sampled during the baseline monitoring period (each of which continues to be monitored for groundwater elevations on a semi-annual basis during the interim monitoring period), 27 monitoring wells are routinely monitored for groundwater elevation and the presence of NAPL on an established weekly, monthly, or quarterly schedule. The groundwater elevation/NAPL monitoring schedule for GMA 3 is summarized in Table 2. The well locations are shown on Figure 2.

1.2.4 Format of Document

The remainder of this report is presented in four sections. Section 2 describes the groundwater- and NAPL-related activities performed at GMA 3 in Spring 2007. Section 3 presents the analytical results obtained during the spring 2007 sampling event. Section 4 provides a summary of the applicable groundwater quality and NAPL-related Performance Standards under the CD and SOW, an assessment of the groundwater quality results from spring 2007, including comparisons to the currently applicable groundwater quality Performance Standards and to the Upper Concentration Limits (UCLs) for groundwater, and an evaluation of the NAPL monitoring/recovery results. Section 4 proposes certain modifications to the current NAPL monitoring programs. Finally, Section 5 addresses the schedule for future field and reporting activities related to groundwater quality and NAPL presence at GMA 3, including upcoming modifications to the groundwater and NAPL monitoring programs.

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

2. Field and Analytical Procedures

2.1 General

In addition to the spring 2007 interim monitoring event, activities conducted at GMA 3 during the spring 2007 included routine measurement of groundwater/NAPL levels, removal of LNAPL, additional assessment activities related to the soil gas investigation performed within and in the vicinity of Buildings 51 and 59, and LNAPL recovery testing at specific wells. Monitoring and recovery of LNAPL (if present) were routinely performed at the monitoring wells that are included in the NAPL monitoring program. All wells that were gauged for groundwater elevations and/or monitored for LNAPL during spring 2007 are identified in Table 2, and a site plan showing the groundwater monitoring/sampling locations described in this report is presented on Figure 2. This section discusses the field procedures used to conduct those field activities and the methods used to analyze the groundwater samples. All activities were performed in general accordance with GE's approved Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP).

2.2 Well Installation and Development

On April 3, 2007, GE installed one new monitoring well (GMA3-16) at the location of Unkamet Brook pre-design investigation soil boring RAA10-N-Y-18, as required by EPA's conditional approval letter dated December 7, 2006. The location of this new well is shown on Figure 2. Table 3 shows the survey data and well construction detail for this new well, along with the other existing wells utilized in the GMA 3 monitoring program. The monitoring well log for well GMA3-16 is presented in Appendix A.

Following installation, the new monitoring well was developed to remove fine materials (e.g., fine sand, silt, clay) that may have accumulated in the filter pack and to ensure that the well screen was transmitting groundwater representative of the surrounding formation. Development was performed by surging the saturated portion of the well screen with a surge block and removing groundwater with a submersible pump and a positive displacement pump. Development of the well was continued until temperature/pH/conductivity field parameters stabilized and the purged groundwater was relatively free of sediment (i.e., less than 50 NTU).

2.3 Groundwater Elevation Monitoring

The spring 2007 semi-annual groundwater elevation monitoring round was performed between April 24 and 27, 2007. This activity involved the collection of groundwater level data at the locations listed in Table 3. Groundwater levels and NAPL thicknesses (where

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

NAPL is present) were measured in accordance with the procedures specified in GE's approved FSP/QAPP. The groundwater elevation data presented in Table 4 from wells screened across or near the water table were used to prepare a groundwater elevation contour map for spring 2007 (Figure 5). A summary of all groundwater elevation data collected in spring 2007 is provided in Table 4 and the monitoring data are included in Appendix B.

Groundwater elevations were, on average, approximately 0.86 feet higher than the elevations measured during the respective prior seasonal monitoring event in spring 2006 at water table monitoring locations measured during both monitoring events. Consistent with prior data, groundwater was found to generally flow toward the Housatonic River, with some localized variations in the vicinity of Buildings 51 and 59.

As discussed in the Fall 2006 GMA 3 Monitoring Report, the fall 2006 groundwater elevation data from well GMA3-6 was found to be anomalous and was not utilized in the preparation of the groundwater elevation contour maps for that report. The depth to water recorded at this well in 2006 was approximately six feet lower than measured during previous years. This well was resurveyed on April 16, 2007 and it was discovered that the measuring point elevation stored in the project database had not been updated following modifications made to the well during construction activities in this area. The corrected measuring point elevation was utilized to calculate the spring 2007 groundwater elevation at well GMA3-6 and the data obtained was used in the development of the spring 2007 groundwater elevation contours. The groundwater elevation calculated using the corrected datum was consistent with historical data at this location.

2.4 LNAPL Monitoring and Recovery

This section describes the results of the LNAPL monitoring and recovery activities performed by GE within GMA 3 from January through June 2007, including the April 2007 semi-annual monitoring event and other routine and non-routine monitoring/recovery activities conducted during that period. These activities primarily include the operation of the automated LNAPL recovery system at well 51-21, the routine measurement of groundwater elevations and NAPL thickness (if present), and the manual removal of NAPL if sufficient thickness is present. All activities were performed in accordance with GE's approved FSP/QAPP.

Approximately three weeks prior to the semi-annual monitoring event, GE monitored all wells where the presence of NAPL was noted during the prior year and manually removed any NAPL which was present. The purpose of these bailing rounds is to ensure that any NAPL present in a well is also present in the surrounding formation and not remnant oil

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

which may have been trapped in the well since the prior removal event. These bailing round activities provide a consistent basis to compare the current presence and thickness of NAPL between wells that may otherwise be subject to varying NAPL removal schedules.

Routine NAPL monitoring was conducted at the monitoring wells listed in Table 2 on a semi-annual, quarterly, monthly, and/or weekly basis. Table 5 summarizes the spring 2007 NAPL removal data on a well-by-well basis, and Table B-1 (Appendix B) presents a summary of all of the spring 2007 NAPL measurements and removal quantities (when performed) for each well at GMA 3. Approximately 36.9 gallons of LNAPL were recovered between January and June 2007 at GMA 3. Approximately 86% of this total (31.8 gallons) was removed by the automated skimmer system at well 51-21, and the remainder was manually recovered during routine monitoring events. Since 1997, approximately 1,269 gallons of LNAPL have been removed from GMA 3 as part of GE's NAPL monitoring and recovery program. (This value was incorrectly reported in section 3.4 of the Fall 2006 NAPL report as 1,190, the correct value was reported as 1,232 in section 2.3 of the same report.) During the spring 2007 monitoring event DNAPL was observed for the first time at monitoring well GMA3-16. Approximately 0.01 gallons of DNAPL was removed from this well during that monitoring round. No DNAPL has been observed in that well, or any other wells within GMA 3, since that initial and isolated observation.

Figure 6 depicts the historical maximum extent of NAPL observed at GMA 3. That figure represents a compilation of past investigations and shows the maximum lateral extent of NAPL that has been observed and documented in prior GE reports, and is not indicative of current conditions. Figure 7 indicates the extent of NAPL observed during the semi-annual monitoring event conducted at GMA 3 in spring 2007. As shown on Figures 6 and 7, the northern (upgradient) extent of LNAPL has decreased since the onset of the periodic LNAPL monitoring and recovery activities conducted in this area. Two new observations of NAPL were observed at GMA 3 during isolated monitoring events conducted in spring 2007. These observations (LNAPL at well GMA3-11 and DNAPL at well GMA3-16) are discussed in detail below.

During the April 2007 semi-annual monitoring event, an LNAPL thickness of 0.09 feet was recorded at well GMA3-11. This was the first LNAPL observation at this well, which is located approximately 100 feet downgradient of the existing LNAPL area near Buildings 51 and 59. However, since NAPL removal is generally not performed during the semi-annual monitoring event, the instrument reading indicating the presence of NAPL was not visually confirmed. No LNAPL was observed at this well during monthly monitoring events conducted in May and June 2007. EPA and MDEP were notified of these observations on June 29, 2007 and the well was added to the weekly monitoring program beginning in July 2007. No LNAPL has been observed during any of the weekly monitoring rounds that have

General Electric Company Pittsfield, Massachusetts

been conducted to date and an instrument error is suspected to be the source of the anomalous reading in the semi-annual monitoring event. Figure 6 has been updated to reflect this apparent detection of LNAPL at well GMA3-11. However, the nearby LNAPL area is not shown to extend to this well, since the data is suspect.

DNAPL was observed in new well GMA3-16 during the spring 2007 monitoring event, which was the first monitoring event conducted at this location after its installation and development. Approximately 0.04 feet of DNAPL was measured at the base of the well and a total of approximately 0.05 liters of DNAPL was removed. EPA and MDEP were notified of this observation on April 29, 2007 and the well was added to the weekly monitoring program beginning in May 2007. No DNAPL has been observed since the initial accumulation was observed and removed from the well. Consistent with prior monitoring results, DNAPL was not encountered in any of the other monitoring wells gauged during spring 2007.

2.5 Groundwater Sampling and Analysis

The spring 2007 interim sampling event was performed between May 5 and 8, 2007. Low-flow sampling techniques using either a bladder or peristaltic pump were utilized for the purging and collection of groundwater samples during this sampling event. The specific sampling method utilized, as well as a summary of any deviations from the low-flow sampling method specified in the FSP/QAPP, are listed in Appendix B. Each monitoring well was purged until field parameters (including temperature, pH, specific conductivity, oxidation-reduction potential, dissolved oxygen, and turbidity) stabilized or the well was pumped dry. The field parameters were measured during purging and immediately prior to sampling at all monitoring wells. The data are summarized in Table 6 and the field sampling records are contained in Appendix C. A general summary of the spring 2007 field measurement results, collected just prior to sampling, for the monitoring event is provided below:

Parameter	Units	Range
Turbidity	Nephelometric turbidity units	1 – 26
pH	pH units	3.5 – 9.15
Specific Conductivity	Millisiemens per centimeter	0.25 – 616.3
Oxidation-Reduction Potential	Millivolts	-281.9 – 224.9
Dissolved Oxygen	Milligrams per liter	0.00 - 7.38
Temperature	Degrees Celsius	7.34 - 17.04

ARCADIS BBI

General Electric Company Pittsfield, Massachusetts

As shown above and in Table 6 for this sampling event, none of the groundwater samples extracted from the monitoring wells had turbidity levels greater than the target level of 50 NTU upon stabilization. These results indicate that the sampling and measurement procedures utilized during this sampling event were effective in obtaining groundwater samples with low turbidity. The groundwater samples were shipped via overnight courier to SGS Environmental Services of Wilmington, North Carolina.

The groundwater quality samples were collected from wells sampled for natural attenuation parameters, and, therefore, the samples were submitted for analysis of VOCs using Method 8260B, and for the following additional parameters using the associated EPA Methods:

Parameter	EPA Method
Alkalinity (total)	310
Chloride	325
Dissolved Organic Carbon	360
Ethane, Ethene, Methane	8319
Iron	6000
Nitrate Nitrogen	353.1
Nitrite Nitrogen	354.1
Sulfate (turbidimetric)	375

Select natural attenuation samples were also analyzed for two SVOCs that are breakdown byproducts of chlorobenzene (2-chlorophenol and 4-chlorophenol), using EPA Method 8270C.

Following receipt of the analytical data from the laboratory, the preliminary results were reviewed for completeness and compared to the MCP Method 1 GW-2 and GW-3 standards, and to the MCP Upper Concentration Limits (UCLs) for groundwater, as applicable. The preliminary analytical results were presented in the next monthly report on overall activities at the GE-Pittsfield/Housatonic River Site. Finally, the data were validated in accordance with the FSP/QAPP and the validated results were utilized in the preparation of this report. The data validation report is provided in Appendix F. As discussed in the data validation report, 100% of the spring 2007 groundwater quality data are considered to be useable. The validated analytical results are summarized in Section 3 and discussed in Section 4 below.

General Electric Company Pittsfield, Massachusetts

2.6 Soil Gas Investigations

The inspections and initial sealing activities conducted by GE to determine which of the possible migration pathways identified in the Supplemental Assessment Report and Sampling Plan (including floor slab penetrations, manholes, cracks, pump pits, floor drains, and areas where a concrete slab is not present; collectively referred to herein as "penetrations") may extend to the underlying soil were described in GE's July 24, 2007 Addendum to Soil Gas Investigation Summary Report and Soil Gas Migration Assessment Report. As noted above, those activities were conducted pursuant to EPA's June 25, 2007 conditional approval letter to GE. As discussed in Section 6.2 below, samples of sub-slab soil gas and indoor air will be collected in and around the area of Buildings 51 and 59 by GE in fall 2007.

2.7 LNAPL Recovery Testing

As proposed in the Fall 2006 GMA 3 Monitoring Report and conditionally approved by EPA in a letter dated April 19, 2007, GE performed LNAPL recovery testing at wells 51-8, 51-17, 59-3R, GMA3-10, and GMA3-12 over a three-day period between May 15 and May 17, 2007. The results of the LNAPL recovery testing were submitted to EPA on July 17, 2007 in a letter report titled Groundwater Management Area 3 LNAPL Recovery Assessment -Spring 2007. As discussed in that report, none of the wells that were tested exhibited overall LNAPL recovery rates greater than the 0.5 liters/hour rate established in the FSP/QAPP that would trigger consideration of that well as a candidate for the installation of a recovery system. Nonetheless, GE proposed to install a new LNAPL recovery system at or near monitoring well 59-3R because GE wishes to attempt to aggressively recover LNAPL in this area, particularly in light of the observation of LNAPL at well GMA3-11 during the spring 2007 NAPL monitoring event, located approximately 100 feet downgradient of the previously delineated extent of LNAPL in this area. If approved by EPA, the proposed skimmer system will be operated for a period of at least one year, after which GE will assess the LNAPL recovery results to determine if the recovery volume is sufficient to justify continued operation of the system.

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

3. Groundwater Analytical Results

3.1 General

This section presents a description of the spring 2007 groundwater analytical results. A summary of the full validated spring 2007 data set is provided in Appendix D, while the data validation report on these results is presented in Appendix F. Tables 7, 8, and 9 summarize the validated results for detected constituents in groundwater relative to the MCP Method 1 GW-2 and GW-3 standards and the MCP UCLs for groundwater, respectively. An assessment of these results relative to those groundwater quality standards and UCLs is provided in Section 4. Also, Table 10 provides a summary of the detected VOCs and natural attenuation parameters at the wells monitored for indications of natural attenuation processes.

3.2 Groundwater Quality Results

3.2.1 VOC Results

Groundwater samples from 22 monitoring wells were analyzed for VOCs during the spring 2007 sampling event. The VOC analytical results are summarized in Table 9 (for constituents detected in one or more groundwater sample) and Appendix D (for all constituents analyzed). VOCs were not detected above laboratory detection limits in one of the groundwater samples, while up to 10 individual VOCs were observed in one or more of the remaining 21 samples. The most commonly observed VOCs were chlorobenzene (detected in 15 groundwater samples, plus one duplicate) and benzene (detected in 13 groundwater samples, plus one duplicate). Total VOC concentrations ranged from non-detect (in monitoring well 111A-R) to an estimated concentration of 230 parts per million (ppm) in natural attenuation monitoring well 2A.

3.2.2 SVOC Results

Groundwater samples from seven monitoring wells were analyzed for 2-chlorophenol and 4-chlorophenol. All SVOC analyses were performed using EPA Method 8270C. The SVOC analytical results for the constituents analyzed are summarized in Table 9 and Appendix D. The constituent 2-chlorophenol was observed in 3 wells (16A, 89A, and 95B-R) at estimated concentrations ranging from 0.0072 ppm to an estimated concentration of 0.028 ppm. The constituent 4-chlorophenol was detected in a single well (95B-R) at a concentration of 0.020 ppm.

General Electric Company Pittsfield, Massachusetts

3.2.3 Natural Attenuation Monitoring Results

Groundwater samples from 22 monitoring wells were analyzed for natural attenuation parameters as part of the spring 2007 interim sampling event. The analytical results for these parameters (along with any detected VOCs or SVOCs) are provided in Table 10 and Appendix D. A summary of the natural attenuation sampling results is provided below:

Parameter	Number Of Detects	Result Range (ppm)
Alkalinity	22	21-590
Chloride	22	1.1-1,800
Dissolved Organic Carbon	17	ND-36.00
Ethane	1	ND-0.051
Ethene	3	ND-0.80
Dissolved Iron	7	ND-1.07
Methane	14	ND-1.57
Nitrate (Nitrogen)	5	ND-5.9
Nitrite (Nitrogen)	2	ND-0.0760
Sulfate (turbidimetric)	19	ND-190

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

4. Assessment of Results

4.1 General

This section discusses the groundwater quality Performance Standards, NAPL-related Performance Standards and the results of the interim groundwater sampling event and NAPL monitoring and recovery program at GMA 3 in spring 2007. In general, groundwater analytical results indicate the presence of the same constituents observed historically within GMA 3, and the ongoing NAPL recovery operations at GMA 3 have proven effective in removing LNAPL from the subsurface and in preventing LNAPL migration. A comparison of groundwater data to performance standards is presented in Tables 7 through 9. A summary of the NAPL monitoring schedule is provided in Table 2.

4.2 Performance Standards

4.2.1 Groundwater Quality Performance Standards

The Performance Standards applicable to response actions for groundwater at GMA 3 are set forth in Section 2.7 and Attachment H (Section 4.1) of the SOW. In general, the Performance Standards for groundwater quality are based on the groundwater classification categories designated in the MCP. The MCP identifies three potential groundwater categories that may be applicable to a given site. One of these, GW-1 groundwater, applies to groundwater that is a current or potential source of potable drinking water. None of the groundwater at any of the GMAs at the Site is classified as GW-1. However, the remaining MCP groundwater categories are applicable to GMA 3 and are described below:

- GW-2 groundwater is defined as groundwater that is a potential source of vapors to the
 indoor air of buildings. Groundwater is classified as GW-2 if it is located within 30 feet
 of an existing occupied building and has an average annual depth below ground
 surface of 15 feet or less. Under the MCP, volatile constituents present within GW-2
 groundwater represent a potential source of organic vapors to the indoor air of the
 overlying and nearby occupied structures.
- GW-3 groundwater is defined as groundwater that discharges to surface water. By MCP definition, all groundwater at a site is classified as GW-3 since it is considered to be ultimately discharged to surface water. In accordance with the CD and SOW, all groundwater at GMA 3 is considered as GW-3.

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

The CD and the SOW allow for the establishment of standards for GW-2 and GW-3 groundwater at the GMAs through use of one of three methods, as generally described in the MCP. The first, known as Method 1, consists of the application of pre-established numerical "Method 1" standards set forth in the MCP for both GW-2 and GW-3 groundwater (310 CMR 40.0974). These "default" standards have been developed to be conservative and will serve as the initial basis for evaluating groundwater at GMA 3. The current MCP Method 1 GW-2 and GW-3 standards for the constituents detected in the spring 2005 sampling event are listed in Tables 7 and 8, respectively. (In the event of any discrepancy between the standards listed in these tables and those published in the MCP, the latter will be controlling.) For constituents for which Method 1 standards do not exist, the MCP provides procedures, known as Method 2, for developing such standards (Method 2 standards) for both GW-2 (310 CMR 40.0983(2)) and GW-3 (310 CMR 40.0983(4)) groundwater. For such constituents that are detected in groundwater during the baseline monitoring program, Attachment H to the SOW states that in the Baseline Monitoring Program Final Report, GE must propose to develop Method 2 standards using the MCP procedures or alternate procedures approved by EPA, or provide a rationale for why such standards need not be developed. For constituents whose concentrations exceed the applicable Method 1 (or Method 2) standards, GE may develop and propose to EPA alternative GW-2 and/or GW-3 standards based on a site-specific risk assessment. This procedure is known as Method 3 in the MCP. Upon EPA approval, these alternative riskbased GW-2 and/or GW-3 standards may be used in lieu of the Method 1 (or Method 2) standards. Of course, whichever method is used to establish such groundwater standards, GW-2 standards will be applied to GW-2 groundwater and GW-3 standards will be applied to GW-3 groundwater.

Based on consideration of the above points, the specific groundwater quality Performance Standards for GMA 3 consist of the following:

- At monitoring wells designated as compliance points to assess GW-2 groundwater (i.e., groundwater located at an average depth of 15 feet or less from the ground surface and within 30 feet of an existing occupied building), groundwater quality shall achieve any of the following:
 - (a) the Method 1 GW-2 groundwater standards set forth in the MCP (or, for constituents for which no such standards exist, Method 2 GW-2 standards once developed, unless GE provides and EPA approves a rationale for not developing such Method 2 standards); or

ARCADIS BBI

General Electric Company Pittsfield, Massachusetts

- (b) alternative risk-based GW-2 standards developed by GE and approved by EPA as
 protective against unacceptable risks due to volatilization and transport of volatile
 chemicals from groundwater to the indoor air of nearby occupied buildings; or
- (c) a condition, based on a demonstration approved by EPA, in which constituents in the groundwater do not pose an unacceptable risk to occupants of nearby occupied buildings via volatilization and transport to the indoor air of such buildings.
- 2. Groundwater quality shall ultimately achieve the following standards at the perimeter monitoring wells designated as compliance points for GW-3 standards:
 - (a) the Method 1 GW-3 groundwater standards set forth in the MCP (or, for constituents for which no such standards exist, Method 2 GW-3 standards once developed, unless GE provides and EPA approves a rationale for not developing such Method 2 standards); or
 - (b) alternative risk-based GW-3 standards proposed by GE and approved by EPA as protective against unacceptable risks in surface water due to potential migration of constituents in groundwater.

These Performance Standards are to be applied to the results of the individual monitoring wells included in the monitoring program. Several monitoring wells have been designated as the compliance points for attainment of the Performance Standards identified above. In addition, at GMA 3, a number of wells are designated as natural attenuation monitoring wells, which are used to evaluate natural attenuation mechanisms in groundwater. The GW-2, GW-3, and natural attenuation monitoring wells at this GMA were identified in the GMA 3 Baseline Monitoring Proposal Addendum and are listed in Table 1.

4.2.2 NAPL-Related Performance Standards

Under the CD and SOW, GE is required to perform monitoring, recovery, assessment, and other response activities related to NAPL until the applicable NAPL-related Performance Standards are ultimately achieved. The NAPL-related Performance Standards are set forth in Section 2.7 and Attachment H (Section 4.0) of the SOW. They consist of the following:

1. Containment, defined as no discharge of NAPL to surface waters and/or sediments, which shall include no sheens on surface water and no bank seeps of NAPL.

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

- 2. For areas near surface waters in which there is no physical containment barrier between the wells and the surface water, elimination of measurable NAPL (i.e., detectable with an oil/water interface probe) in wells near the surface water bank that could potentially discharge NAPL into the surface water, in order to prevent such discharge and assist in achieving groundwater quality Performance Standards.
- 3. For areas adjacent to physical containment barriers, prevention of any measurable LNAPL migration around the ends of the physical containment barriers.
- 4. For NAPL areas not located adjacent to surface waters, reduction in the amount of measurable NAPL to levels which eliminate the potential for NAPL migration toward surface water discharge areas or beyond GMA boundaries, and which assist in achieving groundwater quality Performance Standards.
- 5. For NAPL detected in wells designed to assess GW-2 groundwater (i.e., located at average depths of 15 feet or less from the ground surface and within a horizontal distance of 30 feet from an existing occupied building), a demonstration that constituents in the NAPL do not pose an unacceptable risk to occupants of such building via volatilization and transport to the indoor air of such building. Such demonstration may include assessment activities such as: NAPL sampling, soil gas sampling, desk-top modeling of potential volatilization of chemicals from the NAPL (or associated groundwater) to the indoor air of the nearby occupied buildings, or sampling of the indoor air of such buildings. If necessary, GE shall propose corrective actions, including, but not limited to, containment, recovery, or treatment of NAPL and impacted groundwater.

In addition to these Performance Standards, GE has developed and implemented site-wide criteria for NAPL monitoring and manual recovery requirements, standard procedures for assessment of new NAPL occurrences, and the feasibility of the installation of new recovery systems. In response, GE proposed several NAPL monitoring program guidelines in the Fall 2001 NAPL Monitoring Report for GMA 1 (conditionally approved by EPA on August 29, 2002) and subsequently implemented the approved guidelines across all GMAs. Those guidelines were incorporated into GE's *Field Sampling Plan/Quality Assurance Project Plan* (FSP/QAPP).

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

4.3 Groundwater Quality

The analytical results from the spring 2007 groundwater sampling event were compared to the applicable MCP Method 1 GW-2 and GW-3 standards and to the UCLs for groundwater. These comparisons are summarized in Tables 7, 8, and 9 (for the GW-2 standards, GW-3 standards, and UCLs, respectively) and are discussed in the following subsections.

4.3.1 Groundwater Results Relative to GW-2 Performance Standards

Groundwater samples were collected from one designated GW-2 monitoring well (16B-R) in spring 2007. The spring 2007 groundwater analytical results for all detected constituents subject to MCP Method 1 GW-2 standards and a comparison of those results with the applicable MCP Method 1 GW-2 standards are presented in Table 7. None of the spring 2007 sample results from GW-2 monitoring well 16B-R exceeded the GW-2 standards and total VOC concentrations were well below 5 ppm (the level specified in the SOW as a notification level for GW-2 wells within 30 feet of a school or occupied residential structure and as a trigger level for the proposal of interim response actions).

4.3.2 Groundwater Results Relative to GW-3 Performance Standards

A total of five monitoring wells at GMA 3 designated as GW-3 monitoring wells (89B, 90B, 95B-R, 111B-R, and 114B-R) were sampled in spring 2007. The spring 2007 groundwater analytical results for all detected constituents and a comparison of those results with the applicable MCP Method 1 GW-3 standards are presented in Table 8. As shown in Table 8, the GW-3 standard for chlorobenzene (1 ppm) was exceeded at two wells (95B-R and 114 B-R) at concentrations of 9.7 ppm and 2.0 ppm, respectively.

The SOW requires that interim response actions must be proposed for baseline sampling results which exceed Method 1 GW-3 standards at downgradient perimeter monitoring wells, in which: (a) such an exceedence had not previously been detected, or (b) there was a previous exceedance of the Method 1 GW-3 standard and the groundwater concentration is greater than or equal to 100 times the GW-3 standard (if the exceedance was not previously addressed). These interim response actions may include: (1) further assessment activities, such as resampling, increasing the sampling frequency to quarterly, additional well installation, and/or continuing the baseline monitoring program; (2) active response actions; and/or (3) the conduct of a site-specific risk evaluation and proposal of alternative risk-based GW-3 Performance Standards.

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

For the two wells where the Method 1 GW-3 standards for chlorobenzene was exceeded (95B-R and 114B-R), historical VOC data has shown similar or greater concentrations than those detected during spring 2007. In addition, these wells are located in the vicinity of a known chlorobenzene plume. Therefore, GE's proposed response action to address these exceedances is to continue the interim monitoring program, as discussed further in Section 5 below.

4.3.3 Groundwater Results Relative to Upper Concentration Limits

In addition to comparing the spring 2007 groundwater analytical results with applicable MCP Method 1 GW-2 and GW-3 standards, all detected constituents have also been compared with the groundwater UCLs specified in the MCP (310 CMR 40.0996(7)), as presented in Table 9. The results shown on Table 9 indicate that one constituent (chlorobenzene) was detected at levels above the applicable UCL. The UCL for chlorobenzene is 10 ppm, which was exceeded at natural attenuation wells 2A (170 ppm), 16A (40 ppm), 39B-R (11 ppm), and 89D-R (31 ppm). None of these was a first-time exceedance, and none of the wells included in the monitoring program as GW-2 or GW-3 monitoring points contained any constituents at concentrations above the MCP UCLs for groundwater.

The screened intervals of two of these four wells are positioned at depths of approximately 50 feet bgs, indicating that the elevated chlorobenzene levels are associated with the midlevel groundwater unit, which is consistent with prior investigation results showing that the VOC plume is primarily present in the A-series wells to the south of the former Waste Stabilization Basin. Well 39B-R is a water table well located immediately adjacent to the downgradient edge of the former Waste Stabilization Basin. Although the UCL was exceeded for the second time at well 89D-R, which is a 77-foot deep well located beneath the VOC plume, the concentrations of VOCs have generally decreased significantly from their historical levels at locations with large historical databases (see Appendix E). In Section 5, GE proposes to continue the current natural attenuation monitoring at these locations to further assess the VOC concentrations in groundwater at this area.

4.4 Natural Attenuation Monitoring Results

In addition to collecting and analyzing groundwater samples for comparison with the applicable MCP Method 1 groundwater standards and UCLs, groundwater samples from 22 monitoring wells were analyzed for natural attenuation parameters to assess intrinsic and natural processes that could mitigate groundwater impacts. The analytical results for these parameters (along with any detected VOCs) are provided in Table 10 and Appendix D. In addition, Table E-1 in Appendix E provides a summary of all available natural attenuation

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

analytical data (as well as data for selected VOCs analyzed during the natural attenuation monitoring rounds) for the wells that were analyzed for these parameters in spring 2007.

As illustrated in Appendix E, the concentrations of VOCs have decreased significantly from their historical high levels at most locations that have large historical databases. Although the concentrations of VOCs are generally stable or indicate a decreasing trend at GMA 3, natural attenuation parameters can be variable at individual monitoring wells or on a spatial basis (both vertically and horizontally). Several natural attenuation parameters have remained relatively stable over time (e.g., alkalinity), or have only been occasionally observed at low levels (e.g., ethane and ethene). Chlorobenzene breakdown byproducts (i.e., 2- and 4-chlorophenol) are also observed in several wells, indicating the continued natural degradation of this constituent. GE will continue to track changes in concentrations of natural attenuation parameters during the course of the interim monitoring program and will provide updated assessments of these results in future interim summary reports following sampling events when natural attenuation data is collected (i.e., after the spring groundwater quality monitoring rounds). A complete assessment of the natural attenuation parameters and their significance with respect to natural breakdown of VOC constituents in groundwater will be presented in the Baseline Assessment Final Report for this GMA.

4.5 Overall Assessment of Analytical Results

Graphs illustrating historical concentrations of total VOCs, including the spring 2007 concentrations, are provided in Appendix E for all wells sampled in spring 2007 that have been previously sampled and analyzed for those constituents. In addition, Appendix E contains graphs of historical concentrations of individual constituents (e.g., chlorobenzene) that exceeded the applicable MCP Method 1 GW-3 standards or UCLs at monitoring wells during any of the prior baseline monitoring program sampling events that were analyzed for those constituents in spring 2007.

The spring 2007 monitoring event constitutes the sixth or seventh sampling event at many locations sampled under the GMA 3 groundwater quality monitoring program. Thus the amount of data available to assess any season-specific trends in constituent concentrations is somewhat limited in certain wells, while other wells have an extensive historical database. Based on a review of the Concentration vs. Time graphs presented in Appendix E, it appears that concentrations of total VOCs have decreased in comparison to historical high levels in many of the wells downgradient of the former Waste Stabilization Basin, (i.e., the area known to contain the greatest VOC concentrations) where several years of prior data are available. While slight increases have been observed in a few wells during the baseline monitoring program, the constituent concentrations are in general well below historical high levels. During the fall 2005 sampling event, a general increase in VOC concentrations was

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

observed at the 114 well cluster, particularly well 114A. Results from the last three monitoring rounds, however, indicate lower total VOC concentrations for well 114A, indicating that the data generated in December 2005 for that well may be anomalous.

4.6 Evaluation of NAPL Monitoring and Recovery Activities

4.6.1 Extent of NAPL

The historical maximum extent of measurable LNAPL at GMA 3 is illustrated on Figure 6. The extent of LNAPL observed during the Spring 2007 semi-annual monitoring event is shown on Figure 7. These figures show a significant decrease in the extent of measurable LNAPL observed in spring 2007 compared to the known maximum extent, particularly along the northeastern edge of the LNAPL area. This reduction in LNAPL extent on the northeastern portion of the LNAPL plume is likely attributable to GE's active NAPL recovery program, which includes an automatic skimmer system in well 51-21 and routine manual recovery of LNAPL at surrounding locations.

The extent of LNAPL has increased slightly to the southwest, as LNAPL was observed (once) at well GMA3-11 (to the west of building 59) for the first time in April 2007. Well GMA 3-11 is monitored monthly, and this was the only LNAPL observation at this well during the monitoring period.

The extent of LNAPL to the east of Building 51 was slightly different than the prior monitoring event. Specifically, LNAPL was observed in wells 51-5 and 51-16R during the spring 2007 monitoring event, but was not observed in wells 51-5 or 51-16R during the fall 2006 monitoring event. The extent of LNAPL to the west of Building 51 shows a slight increase from fall 2006 due to the presence of LNAPL observed in well GMA3-13 during the spring 2007 monitoring event. However, wells 51-5, 51-16R, and GMA3-13 all previously contained LNAPL and these differences likely represent relatively minor changes near the edges of the LNAPL plume.

A new well, GMA3-16, was installed in March 2007 at the location of Unkamet Brook Area pre-design investigation soil boring RAA10-N-Y-18. This well was installed to further assess NAPL in this area, as NAPL was observed during the drilling of the pre-design soil boring. This well has been monitored on a weekly basis since April 27, 2007. DNAPL was observed and removed for the first time during the spring 2007 monitoring/bailing rounds and has not been noted since. Figures 6 and 7 reflect this new observation of the isolated DNAPL occurrence in GMA 3.

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

GE has also monitored well GMA4-3, located in GMA 4 across Plastics Avenue from well GMA3-13. NAPL has never been detected in that well. Moreover, in EPA's December 7, 2006 conditional approval letter, EPA required GE to include GMA 4 wells 60B and RF-14 in the groundwater elevation table and contour map for GMA 3. Accordingly, GE has included those wells in this report. Except for the potential presence of LNAPL in well GMA3-11 (based on a single suspect instrument reading), the reduction of LNAPL along the northern edge of the LNAPL area and occasional variations in LNAPL presence in well GMA3-13, the extent of LNAPL has remained relatively consistent in recent years.

4.6.2 NAPL Recovery

As discussed in Section 2.4, approximately 36.9 gallons of LNAPL were recovered at GMA 3 in spring 2007. Of this total, approximately 31.6 gallons were removed by the automated skimmer system at well 51-21, and the remaining 5.3 gallons were manually recovered from other monitoring wells (see Table 5). For comparison, over the same time period in spring 2006, approximately 32.8 gallons of LNAPL were recovered at GMA 3 (approximately 24.9 gallons by the automated skimmer system at well 51-21, and approximately 7.9 gallons from other monitoring wells), indicating that LNAPL recovery has been generally consistent with the prior year. Since 1997, approximately 1,269 gallons of LNAPL have been removed from GMA 3 as part of GE's NAPL monitoring and recovery program. This total removal volume has been corrected since the previous GMA 3 report to reflect a revision in the LNAPL removal volume cited for the spring 2005 season, which was incorrectly reported in the Spring 2005 GMA 3 report, as well as in the subsequent Spring 2006 GMA 3 Report. In Spring 2005, approximately 34 gallons of LNAPL were removed at GMA 3. Of this total, approximately 20 gallons were removed by the automated skimmer system at well 51-21 and the remaining 14 gallons were removed manually.

Based on the fact that the vast majority of the LNAPL removal at GMA 3 is accomplished by the automated skimmer system at well 51-21, GE proposed to conduct an LNAPL recovery test on specific wells to determine if additional recovery systems would be effective in removing LNAPL. GE conducted the test from May 15 – 17, 2007, and presented the results in the *LNAPL Recovery Assessment – Spring 2007* letter submitted to the EPA on July 17, 2007. As noted above, none of the wells that were tested exhibited overall LNAPL recovery rates greater than the 0.5 liters/hour rate established in the FSP/QAPP that would trigger consideration of that well as a candidate for the installation of a recovery system. Nonetheless, in that letter, because GE wishes to attempt to aggressively recover LNAPL in this area, GE proposed to install a new LNAPL recovery system at or near monitoring well 59-3R to be operated for a period of at least one year after which GE will assess the LNAPL recovery results to determine if the recovery volume is sufficient to justify continued operation of the system.

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

5. Proposed Groundwater and NAPL Monitoring Program Modifications

5.1 General

The interim monitoring program now being conducted is designed to continue the natural attenuation monitoring program and obtain additional data from locations where it is not yet clear whether the initial baseline groundwater quality results indicate that the well may require future monitoring in a long-term program.

This section contains a description of proposed and recently approved/required modifications to the interim groundwater quality and NAPL monitoring program. These modifications are proposed in response to the results of GE's assessment of its NAPL monitoring/recovery data, the spring 2007 soil gas/indoor air investigations, and EPA approval conditions related to recent GE submittals.

5.2 Interim Groundwater Quality Monitoring Program Modifications

As required in EPA's December 7, 2006 conditional approval letter related to the Spring 2006 GMA 3 Report, GE will analyze filtered samples from well 114A for PCBs during interim groundwater quality monitoring events where similar samples are collected from well 114B-R. The next such interim sampling event is scheduled for fall 2007. In spring 2008, these wells will also be sampled and analyzed for VOCs and natural attenuation parameters.

5.3 NAPL Monitoring Program Modifications

GE proposed in its July 17, 2007 letter to EPA to install a skimmer at or near monitoring well 59-3R based on the results of the spring 2007 LNAPL recovery testing, even though that well does not meet the normal criteria for automated recovery systems. If space limitations exist between Buildings 51 and 59, GE also proposed the addition of a new LNAPL recovery well as near as possible to monitoring well 59-3R to allow the associated storage hut to be constructed without interfering with other operations at the facility. GE will monitor the new system for a period of at least one year, after which GE will assess the LNAPL recovery results to determine if the recovery volume is sufficient to justify continued operation of the system.

GE will continue to monitor for the presence of NAPL in wells GMA3-11 and GMA3-16 on a weekly basis through the fall 2007 monitoring period to further assess the isolated NAPL observations in these wells during the spring 2007 monitoring event. The results of that

General Electric Company Pittsfield, Massachusetts

monitoring, along with any proposals to modify the monitoring schedule at these wells will be included in the next semi-annual report. No other changes to GE's ongoing NAPL monitoring or recovery activities at GMA 3 are proposed at this time.

5.4 Soil Gas/Indoor Air Quality Monitoring Program Modifications

As described GE's July 24, 2007 letter to EPA, five penetrations within Building 51 that may extend to the underlying soil were unable to be sealed during the recent inspections. GE is currently evaluating those locations further and will attempt, if possible, to seal those penetrations with concrete and/or concrete grout. GE also proposed to submit a follow-up report to EPA, summarizing the results of those activities, within 60 days of EPA's approval of that. If any of those penetrations is unable to be sealed, GE will also include in that report a proposal for the collection and analysis of soil gas samples in the vicinity of the unsealed penetration(s) in accordance with Condition 2 of EPA's June 25, 2007 letter. That sampling, if necessary, will be performed in conjunction with the material/product inventory and soil gas/indoor air sampling activities scheduled for Buildings 51 and 59 in fall 2007.

GMA 3 – Groundwater Quality & NAPL Interim Monitoring Report for Spring 2007

General Electric Company Pittsfield, Massachusetts

6. Schedule of Future Activities

6.1 General

This section addresses the schedule for future groundwater quality monitoring activities and reporting for GMA 3. This schedule assumes that the modifications to the interim groundwater monitoring program proposed in Section 5 will be implemented following EPA approval.

6.2 Field Activities Schedule

GE will continue its routine groundwater elevation and NAPL monitoring according to the current schedule approved by EPA. In accordance with the approved semi-annual monitoring schedule, the fall 2007 groundwater elevation monitoring and NAPL monitoring event is scheduled to be completed in October 2007. GE will conduct a NAPL bailing round approximately one to two weeks prior to the fall 2007 semi-annual NAPL monitoring event.

As mentioned in the July 17, 2007 letter to EPA, GE proposed to install a skimmer at or near monitoring well 59-3R based on the results of the spring 2007 LNAPL recovery testing. If space limitations exist between Buildings 51 and 59, GE also proposed the addition of a new LNAPL recovery well as near as possible to monitoring well 59-3R to allow the associated storage hut to be constructed without interfering with other operations at the facility. GE will monitor the new system for a period of at least one year, after which GE will assess the LNAPL recovery results to determine if the recovery volume is sufficient to justify continued operation of the system.

The next natural attenuation monitoring event (conducted each spring) is scheduled for April 2008. GE will sample 22 wells, analyzing for VOCs and the natural attenuation parameters listed in Table 1.

Unlike the natural attenuation sampling, interim groundwater sampling activities alternate between the spring and fall seasons on an annual basis. The next interim sampling event is scheduled for October 2007, when groundwater samples will be collected and analyzed from five monitoring wells (including well 114A, where PCB sampling will be added to the interim monitoring program) for the constituents listed in Table 11.

In accordance with EPA's June 25, 2007 approval letter of GE's March 2007 Supplemental Soil Gas Migration Assessment Report and Sampling Plan (Report and Sampling Plan), GE will also conduct subsurface soil gas and indoor air sampling within Buildings 51 and 59, as well as conduct an inventory of products as specified in the Report and Sampling Plan.

General Electric Company Pittsfield, Massachusetts

Additional soil gas sampling activities may be proposed and conducted in Building 51 if GE is unable to seal the remaining potential penetrations discussed in GE's July 24, 2007 letter to EPA. GE will conduct the product inventory and any approved soil gas/indoor air sampling activities in conjunction with the fall 2007 interim groundwater sampling event, or sequentially after completion of the groundwater sampling activities. The results shall be included with the GMA 3 groundwater monitoring report for Fall 2007. Soil gas and indoor air sampling will be conducted annually thereafter and the resulted will be submitted with the fall groundwater monitoring report for GMA 3.

Prior to performance of field activities, GE will provide EPA with 7 days advance notice to allow the assignment of field oversight personnel.

6.3 Reporting Schedule

GE will submit a Fall 2007 Groundwater Elevation and NAPL Monitoring Report for Fall 2007 for GMA 3 by February 28, 2008. That report will primarily present the groundwater elevation monitoring results and NAPL monitoring and recovery data for the period of July 2007 through December 2007. It will also contain a summary of other activities related to groundwater quality and NAPL monitoring recovery conducted at GMA 3 during that time period and any proposals to modify those activities, if applicable. In addition, GE will include the results of the soil gas monitoring and the inventory at Buildings 51 and 59 with the groundwater monitoring report for GMA 3 for Fall 2007.

GE will also continue to provide the results of its ongoing groundwater, NAPL, soil gas, and indoor monitoring activities and NAPL recovery efforts (including any results associated with the proposed LNAPL skimmer system to be installed in GMA 3) in its monthly reports on overall activities at the GE-Pittsfield/Housatonic River Site.

Tables

Table 1
Groundwater Quality Monitoring Program Summary
Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007

Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts

Well Number	Well Designation / Analytical Category	Sampling Schedule	Analyses	Comments
2A	Natural Attenuation	Annual ⁽¹⁾	See Note 3	
6B-R	GW-3 Perimeter	Annual ⁽²⁾	voc	
16A	Natural Attenuation	Annual ⁽¹⁾	See Note 3	
16B-R	GW-2 Sentinel/Natural Attenuation	Annual ⁽¹⁾	See Note 4	
16C-R	Natural Attenuation	Annual ⁽¹⁾	See Note 4	
39B-R	Natural Attenuation	Annual ⁽¹⁾	See Note 3	
39D-R	Natural Attenuation	Annual ⁽¹⁾	See Note 4	
39E	Natural Attenuation	Annual ⁽¹⁾	See Note 4	
43A	Natural Attenuation	Annual ⁽¹⁾	See Note 4	
43B	Natural Attenuation	Annual ⁽¹⁾	See Note 4	
51-14	GW-2 Sentinel	Annual (2)	voc	
82B-R	GW-3 Perimeter	Annual (2)	PCB	
89A	Natural Attenuation	Annual ⁽¹⁾	See Note 3	
89B	GW-3 Perimeter/Natural Attenuation	Annual ⁽¹⁾	See Note 3	
89D-R	Natural Attenuation	Annual ⁽¹⁾	See Note 4	
90A	Natural Attenuation	Annual ⁽¹⁾	See Note 4	
90B	GW-3 Perimeter/Natural Attenuation	Annual ⁽¹⁾	See Note 4	
95A	Natural Attenuation	Annual ⁽¹⁾	See Note 3	
95B-R	GW-3 Perimeter/Natural Attenuation	Annual ⁽¹⁾	See Note 3	
111A-R	Natural Attenuation	Annual ⁽¹⁾	See Note 4	

Table 1
Groundwater Quality Monitoring Program Summary

Well Number	Well Designation / Analytical Category	Sampling Schedule	Analyses	Comments
111B-R	GW-3 Perimeter/Natural Attenuation	Annual ⁽¹⁾	See Note 4	
114A	Natural Attenuation	Annual (1,2)	See Note 5	Interim sampling for PCBs to be added in fall 2007.
114B-R	GW-3 Perimeter/Natural Attenuation	Annual (1,2)	See Note 5	
115A	Natural Attenuation	Annual ⁽¹⁾	See Note 4	
115B	Natural Attenuation	Annual ⁽¹⁾	See Note 4	

- 1. Wells sampled under the natural attenuation monitoring program are sampled on an annual basis in the spring.
- 2. Wells proposed for annual interim groundwater quality sampling, are sampled for the listed parameters during the interim period between the completion of the baseline monitoring program and the initiation of a long-term monitoring program. The sampling schedule alternates between the spring and fall seasons each year, with the next sampling round scheduled for fall 2007.
- 3. Samples analyzed for: VOCs, two SVOCs (2-chlorophenol and 4-chlorophenol), and for Natural Attenuation Parameters (methane, ethane, ethane, ethane, ethene, chloride, nitrate, nitrite, alkalinity, dissolved organic carbon, sulfate, and dissolved iron).
- 4. Samples analyzed for: VOCs and for Natural Attenuation Parameters (methane, ethane, ethene, chloride, nitrate, nitrite, alkalinity, dissolved organic carbon, sulfate, and dissolved iron).
- 5. Samples analyzed for: VOCs and Natural Attenuation Parameters (methane, ethane, ethene, chloride, nitrate, nitrite, alkalinity, dissolved organic carbon, sulfate, and dissolved iron) during the spring natural attenuation sampling rounds, and for PCBs (filtered samples only)during the alternating spring/fall interim sampling rounds.

Table 2 **Groundwater Elevation/NAPL Monitoring Program Summary**

Well Number	Monitoring Frequency ⁽¹⁾	Manual NAPL Removal Criteria ⁽²⁾	Comments
GMA 3 Monitorir	ng Wells	Onteria	
2A	Semi-Annual	Any Recoverable	
6B-R	Semi-Annual	Any Recoverable	
16A	Semi-Annual	Any Recoverable	
16B-R	Semi-Annual	Any Recoverable	
16C-R	Semi-Annual	Any Recoverable	
39B-R	Semi-Annual	Any Recoverable	
39D-R	Semi-Annual	Any Recoverable	Well 39D-R installed as a replacement for well 39D.
39E	Semi-Annual	Any Recoverable	
43A	Semi-Annual	Any Recoverable	
43B	Semi-Annual	Any Recoverable	
51-05	Monthly	Standard Criteria	
51-06	Monthly	Standard Criteria	
51-07	Monthly	Standard Criteria	
51-07	Weekly	Standard Criteria	
51-09	Monthly	Standard Criteria	
51-09	Monthly	Standard Criteria	
51-12	-	Standard Criteria	
51-12	Monthly Monthly	Standard Criteria	
51-14	Monthly	Standard Criteria	
51-15	Monthly	Standard Criteria	
51-16R	Monthly	Standard Criteria	
51-17	Monthly	Standard Criteria	
51-18	Monthly	Standard Criteria	
51-19	Monthly	Standard Criteria	
51-21	Quarterly	Any Recoverable	LNAPL skimmer present in well.
54B-R	Semi-Annual	Any Recoverable	
59-01	Monthly	Standard Criteria	
59-03R	Monthly	Standard Criteria	
59-07	Monthly	Standard Criteria	
78B-R	Monthly	Any Recoverable	
82B-R	Semi-Annual	Any Recoverable	
89A	Semi-Annual	Any Recoverable	
89B	Semi-Annual	Any Recoverable	
89D-R	Semi-Annual	Any Recoverable	
90A	Semi-Annual	Any Recoverable	
90B	Semi-Annual	Any Recoverable	
95A	Semi-Annual	Any Recoverable	
95B-R	Semi-Annual	Any Recoverable	
111A-R	Semi-Annual	Any Recoverable	
111B-R	Semi-Annual	Any Recoverable	
114A	Semi-Annual	Any Recoverable	
114B-R	Semi-Annual	Any Recoverable	
115A	Semi-Annual	Any Recoverable	
115B	Semi-Annual	Any Recoverable	
GMA3-1	None	None	Installation of this well has been deferred until re-routing of Unkamet Brook is completed.

Table 2
Groundwater Elevation/NAPL Monitoring Program Summary

Groundwater Quality and NAPL Monitoring Interim Report For Spring 2007 Groundwater Management Area 3

General Electric Company - Pittsfield, Massachusetts

Well Number	Monitoring Frequency ⁽¹⁾	Manual NAPL Removal Criteria ⁽²⁾	Comments
GMA3-2	Semi-Annual	Any Recoverable	
GMA3-3	Semi-Annual	Any Recoverable	
GMA3-4	Semi-Annual	Any Recoverable	
GMA3-5	Semi-Annual	Any Recoverable	
GMA3-6	Semi-Annual	Any Recoverable	
GMA3-7	Quarterly	Any Recoverable	Monitored in place of UB-PZ-1.
GMA3-8	Semi-Annual	Any Recoverable	
GMA3-9	Semi-Annual	Any Recoverable	
GMA3-10	Weekly	Standard Criteria	
GMA3-11	Monthly	Any Recoverable	
GMA3-12	Weekly	Standard Criteria	
GMA3-13	Weekly	Any Recoverable	
GMA3-14	Monthly	Any Recoverable	
GMA3-15	Quarterly	Any Recoverable	Monitored in place of UB-PZ-2.
GMA3-16	Weekly	Any Recoverable	This well was installed March 2007.
OBG-2	Semi-Annual	Any Recoverable	
UB-MW-10	Monthly	Any Recoverable	
UB-PZ-3	Monthly	Any Recoverable	
GMA 4 Monitorin	g Wells		
60B-R	Semi-Annual	Any Recoverable	
GMA4-3	Monthly	Any Recoverable	
RF-14	Semi-Annual	Any Recoverable	
GMA 3 Staff Gau	ges		
GMA3-SG-1	Semi-Annual	Not Applicable	
GMA3-SG-2	Semi-Annual	Not Applicable	
GMA3-SG-3	Semi-Annual	Not Applicable	
GMA3-SG-4	Semi-Annual	Not Applicable	

- 1. Monitoring consists of periodic depth to water and NAPL thickness measurements, if present and may also consist of manual removal of NAPL if a thickness greater than the well-specific criteria is observed during a monitoring event.
- 2. Standard LNAPL Removal Criteria: LNAPL is manually removed from a well with this designation if a thickness of greater than 0.25 feet is observed during a monitoring event. At other wells, any recoverable quantities of LNAPL will be removed (except at well 51-21, which is equipped with an automated skimmer).
- 3. Any NAPL observed during the bailing round conducted prior to the spring and fall semi-annual monitoring events is manually removed.
- 4. No NAPL is manually removed from any wells during the spring and fall semi-annual monitoring events, provided that NAPL was removed during the bailing round.
- 5. No NAPL is manually removed from any wells during non-routine data collection activities.

Table 3
Monitoring Well Construction Summary
Groundwater Quality and NAPL Monitoring Interim Report For Spring 2007
Groundwater Management Area 3
General Electric Company - Pittsfield, Massachusetts

Well ID	Survey Co	ordinatos	Well Diameter	Ground Surface Elevation	Measuring Point Elevation	Depth to Top of Screen	Screen Length	Top of Screen Elevation	Base of Screen Elevation	Average Depth to Groundwater	Average Groundwater Elevation
Well ID	Northing	Easting	(inches)	(ft AMSL)	(ft AMSL)	(ft bgs)	(ft)	(ft AMSL)	(ft AMSL)	(ft bgs)	(ft AMSL)
2A	537005.10	138853.90	1.00	991.50	994.16	45.00	5.00	946.50	941.50	5.8	985.75
6B-R	537191.50	138910.00	2.00	991.40	993.62	2.00	10.00	989.40	979.40	4.8	986.64
16A	536730.50	139115.60	2.00	991.50	991.77	44.00	6.00	947.50	941.50	6.9	984.62
16B-R	536738.18	139076.37	2.00	991.80	994.87	3.08	10.00	988.72	978.72	6.2	985.62
16C-R	536734.00	139112.40	2.00	991.40	993.23	90.00	10.00	901.40	891.40	7.8	983.65
16E	536730.30	139112.70	1.00	991.40	992.14	144.00	6.00	847.40	841.40	7.2	984.18
39B-R	536938.60	138862.60	2.00	992.29	991.97	4.00	10.00	988.29	978.29	6.8	985.52
39D-R	536941.50	138854.80	2.00	992.30	994.73	55.00	10.00	937.30	927.30	6.3	985.95
39D	536948.40	138857.90	4.00	992.34	992.16	56.00	10.00	936.34	926.34	6.4	985.95
39E	536932.10	138851.00	4.00	992.34	992.21	225.00	10.00	767.34	757.34	6.4	985.95
43A	538081.20	137905.90	1.00	991.90	993.79	45.00	5.00	946.90	941.90	5.1	986.76
43B	538081.20	137904.40	1.00	991.90	993.61	15.00	5.00	976.90	971.90	4.2	987.72
51-05	536750.50	138335.60	2.00	996.91	996.44	5.00	10.00	991.91	981.91	10.2	986.75
51-06	536937.64	138194.32	2.00	997.57	997.36	5.00	10.00	992.57	982.57	10.5	987.08
51-07	536843.80	138244.60	2.00	997.26	997.08	5.00	10.00	992.26	982.26	10.2	987.08
51-08 51-09	536677.80 536563.70	138317.00 138370.30	2.00	997.39 997.76	997.08	5.00	10.00	992.39	982.39	10.8	986.57
51-09	536860.00	138370.30	2.00	997.76	997.70	5.00 5.00	10.00	992.76	982.76 979.62	9.8	987.96
51-11	536497.30	138518.50	2.00	994.62	994.37 996.55	5.00	10.00 10.00	989.62 991.83	981.83	8.3 7.3	986.30 989.56
51-12	536917.10	138579.80	2.00	997.68	996.55	5.00	10.00	991.68	982.68	8.8	988.84
51-13	536771.40	138502.60	2.00	996.93	996.77	5.00	10.00	991.93	981.93	10.3	986.66
51-15	536808.20	138306.30	2.00	996.68	996.43	5.00	10.00	991.68	981.68	10.0	986.69
51-16R	536830.20	138347.60	2.00	996.70	996.39	5.00	10.00	991.70	981.70	9.7	986.97
51-17	536769.90	138377.40	2.00	996.48	996.43	5.00	10.00	991.48	981.48	9.6	986.87
51-18	536902.90	138463.40	2.00	997.38	997.12	5.00	10.00	992.38	982.38	10.6	986.77
51-19	536823.20	138414.80	2.00	996.65	996.43	5.00	10.00	991.65	981.65	10.1	986.51
51-21	536767.70	138442.35	4.00	996.70*	1,001.49	5.00	10.00	991.70	981.70	9.9	986.84
54B-R	537827.30	139113.60	2.00	989.00	991.49	3.00	10.00	986.00	976.00	2.2	986.76
59-01	536488.80	138238.60	2.00	997.78	996.72	4.00	20.00	993.78	973.78	10.2	987.58
59-03R	536501.00	138260.70	2.00	997.82	997.64	7.30	10.00	990.52	980.52	11.1	986.74
59-07	536517.40	138296.10	2.00	998.27	997.96	4.00	20.00	994.27	974.27	11.4	986.84
78B-R	537551.80	138716.50	2.00	989.11	988.83	1.82	10.00	987.29	977.29	1.8	987.34
82B-R	536937.40	139621.60	2.00	987.80	989.90	2.00	10.00	985.80	975.80	2.5	985.32
89A	536030.80	139413.40	1.00	983.60	985.76	43.00	5.00	940.60	935.60	0.7	982.85
89B	536031.60	139411.70	2.00	983.10	986.03	4.00	3.00	979.10	976.10	-0.4	983.50
89D-R	536072.20	139434.90	2.00	984.40	987.11	67.50	10.00	916.90	906.90	1.4	983.00
90A	536254.90	139765.40	1.00	986.50	988.07	45.00	5.00	941.50	936.50	3.6	982.89
90B	536251.60	139761.00	2.00	986.50	989.10	8.00	3.00	978.50	975.50	3.9	982.59
95A	535822.10	139769.60	1.00	985.30	987.18	45.00	5.00	940.30	935.30	4.3	981.04
95B-R	535637.20	139722.30	2.00	984.30	986.24	3.00	10.00	981.30	971.30	3.5	980.76
95C	535823.20	139780.30	1.00	985.30	988.16	95.00	5.00	890.30	885.30	1.2	984.07
111A-R	535824.10	139087.80	2.00	995.10	997.35	40.00	10.00	955.10	945.10	11.4	983.70
111B-R	535828.40	139092.00	2.00	994.80	997.48	7.18	10.00	987.62	977.62	11.6	983.16

Table 3
Monitoring Well Construction Summary
Groundwater Quality and NAPL Monitoring Interim Report For Spring 2007
Groundwater Management Area 3
General Electric Company - Pittsfield, Massachusetts

Well ID	Survey Co	pordinates	Well Diameter	Ground Surface Elevation	Measuring Point Elevation	Depth to Top of Screen	Screen Length	Top of Screen Elevation	Base of Screen Elevation	Average Depth to Groundwater	Average Groundwater Elevation
	Northing	Easting	(inches)	(ft AMSL)	(ft AMSL)	(ft bgs)	(ft)	(ft AMSL)	(ft AMSL)	(ft bgs)	(ft AMSL)
114A	535499.50	139775.20	1.00	983.20	986.16	45.00	5.00	938.20	933.20	3.6	979.64
114B-R	535503.90	139786.90	2.00	983.50	985.54	4.00	10.00	979.50	969.50	4.2	979.32
115A	535499.50	139775.20	1.00	986.69	988.53	36.00	5.00	950.69	945.69	7.8	978.94
115B	535496.90	139796.60	1.00	988.25	990.90	11.00	5.00	977.25	972.25	8.4	979.83
GMA3-2	536596.40	138956.60	2.00	992.25	991.94	5.19	10.00	987.06	977.06	7.9	984.36
GMA3-3	538094.20	138178.20	2.00	990.86	990.45	2.00	10.00	988.86	978.86	2.1	988.78
GMA3-4	537044.70	138021.80	2.00	994.94	994.60	3.57	10.00	991.37	981.37	7.6	987.39
GMA3-5	537323.20	139766.90	2.00	991.50	993.67	4.00	10.00	987.50	977.50	5.5	986.02
GMA3-6	537021.50	138342.30	2.00	997.74	997.49	8.00	10.00	989.74	979.74	11.9	985.88
GMA3-7	536291.70	138397.40	2.00	1000.45	1000.17	10.00	10.00	990.45	980.45	12.9	987.56
GMA3-8	536339.60	138899.10	2.00	994.50	996.24	5.00	10.00	989.50	979.50	8.7	985.80
GMA3-9	537383.20	138385.60	2.00	992.90	992.39	3.00	10.00	989.90	979.90	5.1	987.82
GMA3-10	536659.10	138056.40	2.00	997.78	997.54	9.00	10.00	988.78	978.78	10.0	987.83
GMA3-11	536353.70	138147.90	2.00	997.78	997.25	9.00	10.00	988.78	978.78	9.8	988.03
GMA3-12	536469.20	138169.70	4.00	998.04	997.84	7.00	15.00	991.04	976.04	10.3	987.77
GMA3-13	536534.30	138035.90	2.00	998.00	997.73	8.06	10	989.94	979.94	9.8	988.24
GMA3-14	536710.30	137953.20	2.00	997.66	997.42	7.25	10	990.41	980.41	9.3	988.32
GMA3-15	536710.30	137953.20	2.00	994.60	996.74	6.00	10.00	988.60	978.60	6.0	988.61
GMA3-16	537542.70	138665.00	2.00	989.80	989.26	2.00	10.00	987.80	977.80	1.3	988.46
OBG-2	537209.10	139475.80	3.00	992.24	992.20	3.00	11.40	989.24	977.84	5.0	987.21
UB-MW-10	536908.10	138278.30	1.00	996.21	995.99	8.00	10.00	988.21	978.21	9.4	986.81
UB-PZ-3	536480.10	138110.00	1.00	998.55	998.15	11.00	5.00	987.55	982.55	11.8	986.71

- 1. The listed wells were scheduled to be utilized during spring 2007 for interim groundwater quality sampling or groundwater elevation monitoring.
- 2. ft AMSL: Feet above mean sea level
- 3. ft bgs: Feet below ground surface

Table 4
Groundwater Elevation Data - Spring 2007
Groundwater Quality and NAPL Monitoring Interim Report For Spring 2007
Groundwater Management Area 3
General Electric Company - Pittsfield, Massachusetts

Well Number	Overall Average Groundwater (ft AMSL)	Average Spring Groundwater (ft AMSL)	Spring 2007 Groundwater (ft AMSL)	Spring 2007 LNAPL Thickness (ft)	Spring 2007 DNAPI Thickness (ft)
GMA3 Monitoring Wells Scr		(IT AWISE)	(It AWISE)	(II)	(11)
02A	985.75	986.58	NA	NA	NA
6B-R	986.64	987.30	987.37	0.00	0.00
16B-R	985.62	985.87	985.09	0.00	0.00
39B-R	985.52	986.18	986.61	0.00	0.00
43B	987.72	987.86	988.08	0.00	0.00
51-05	986.75	986.73	987.86	0.02	0.00
51-06	987.08	987.12	988.07	0.00	0.00
51-07	987.08	986.91	987.85	0.00	0.00
51-08	986.57	986.71	987.58	0.03	0.00
51-09	987.96	988.17	988.51	0.00	0.00
51-11	986.30	986.90	987.61	0.00	0.00
51-12	989.56	989.60	989.80	0.00	0.00
51-13	988.84	987.52	<987.61	0.00	0.00
51-14	986.66	986.65	987.37	0.00	0.00
51-15	986.69	986.76	987.59	0.00	0.00
51-16R	986.97	986.82	987.56	0.00	0.00
51-17	986.87	986.89	987.70	0.26	0.00
51-18	986.77	986.73	987.52	0.00	0.00
51-19	986.51	986.64	987.31	0.01	0.00
51-21	986.84	986.46	987.47	<0.01	0.00
54B-R	986.76	987.19	987.42	0.00	0.00
59-01	987.58	986.94	987.68	0.00	0.00
59-03R	986.74	986.74	987.72	1.16	0.00
59-07	986.84	986.84	987.75	0.01	0.00
78B-R	987.34	987.64	988.03	0.00	0.00
82B-R	985.32	986.50	987.08	0.00	0.00
89B	983.50	983.30	984.07	0.00	0.00
90B	982.59	983.19	984.03	0.00	0.00
95B-R	980.76	980.96	981.59	0.00	0.00
111B-R	983.16	983.74	984.50	0.00	0.00
114B-R	979.32	979.65	980.73	0.00	0.00
115B	979.83	979.93	981.79	0.00	0.00
GMA3-2	984.36	985.07	986.09	0.00	0.00
GMA3-3	988.78	989.83	989.85	0.00	0.00
GMA3-4	987.39	988.15	988.89	0.00	0.00
GMA3-5	986.02	986.66	987.35	0.00	0.00
GMA3-6	985.88	986.24	987.91	0.00	0.00
GMA3-7	987.56	987.45	988.14	0.00	0.00
GMA3-8	985.80	986.98	987.48	0.00	0.00
GMA3-9	987.82	988.31	988.94	0.00	0.00
GMA3-10	987.83	987.42	987.85	0.55	0.00
GMA3-11	988.03	987.67	988.13	0.09	0.00
GMA3-12	987.77	987.23	987.75	0.06	0.00
GMA3-13	988.24	987.37	987.86	0.26	0.00
GMA3-14	988.32	987.50	988.02	0.00	0.00
GMA3-15	988.61	986.34	986.80	0.00	0.00
GMA3-16	988.46	988.46	988.46	0.00	0.04
OBG-2	987.21	987.80	988.43	0.00	0.00
UB-MW-10	986.81	986.81	987.73	0.00	0.00
UB-PZ-3	986.71	986.49	986.15	0.00	0.00

Table 4
Groundwater Elevation Data - Spring 2007

	Overall Average	Average Spring	Spring 2007	Spring 2007 LNAPL	Spring 2007 DNAPL
Well Number	Groundwater	Groundwater	Groundwater	Thickness	Thickness
	(ft AMSL)	(ft AMSL)	(ft AMSL)	(ft)	(ft)
GMA4 Monitoring Wells Scr	eened at Water Table				
60B-R	987.62	987.79	989.14	0.00	0.00
GMA4-3	986.71	986.71	987.85	0.00	0.00
RF-14	990.74	1,017.14	994.98	0.00	0.00
Monitoring Wells Screened	Below Water Table				
16A	984.62	985.45	985.86	0.00	0.00
16C-R	983.65	985.28	986.46	0.00	0.00
39D-R	985.95	986.48	987.13	0.00	0.00
39E	986.51	987.07	987.78	0.00	0.00
43A	986.76	987.71	988.70	0.00	0.00
89A	982.85	983.68	984.15	0.00	0.00
89D-R	983.00	983.76	984.23	0.00	0.00
90A	982.89	983.78	985.25	0.00	0.00
95A	981.04	981.07	981.56	0.00	0.00
111A-R	983.70	984.65	985.23	0.00	0.00
114A	979.64	979.99	981.45	0.00	0.00
115A	978.94	981.04	982.63	0.00	0.00
GMA 3 Staff Gauges					
GMA3-SG-2	NA	NA	984.66	0.00	0.00
GMA3-SG-3	NA	NA	991.45	0.00	0.00
GMA3-SG-4	NA	NA	990.49	0.00	0.00

- 1. Groundwater elevation/NAPL thickness data collected between April 24 through April 27, 2007.
- 2. Groundwater elevations denoted <## indicate that the well was dry on the date measured and the referenced elevation represents the base of well elevation.
- 3. Average groundwater elevations based on available seasonal groundwater elevation data since 2000.
- 4. NA Data Not Available

Table 5
Groundwater Elevation and LNAPL Monitoring/Recovery Data Summary
Groundwater Quality and NAPL Monitoring Interim Report For Spring 2007

			Depth t	o Water	LN	NAPL Observatio	ns	LNAPL Recovery (6)	
Well Name	Number of Measurements	Measuring Point Elevation (Feet AMSL)	Minimum (Feet BMP)	Maximum (Feet BMP)	Times Observed	Minimum Thickness (Feet)	Maximum Thickness (Feet)	LNAPL Recovery (Liters)	LNAPL Recovery (Gallons)
GMA3 Monitor	ing Wells								
6B-R	1	993.62	6.25	6.25	0			0.00	0.00
16A	1	991.77	5.91	5.91	0			0.00	0.00
16B-R	1	994.87	9.78	9.78	0			0.00	0.00
16C-R	1	993.23	6.77	6.77	0			0.00	0.00
39B-R	1	991.97	5.36	5.36	0			0.00	0.00
39D-R	1	994.73	7.6	7.60	0			0.00	0.00
39E	1	992.21	4.43	4.43	0			0.00	0.00
43A	1	993.79	5.09	5.09	0			0.00	0.00
43B	1	993.61	5.53	5.53	0			0.00	0.00
51-05	5	996.44	7.63	10.30	2	0.02	0.04	0.01	0.00
51-06	7	997.36	9.29	11.60	0			0.00	0.00
51-07	7	997.08	9.23	10.80	0			0.00	0.00
51-08	26	997.08	9.53	12.65	26	0.02	1.3	6.30	1.66
51-09	5	997.70	9.19	10.72	0			0.00	0.00
51-11	6	994.37	6.6	9.20	0			0.00	0.00
51-12	6	996.55	6.62	7.60	0			0.00	0.00
51-13	6 ³	997.42	NA	NA	NA	NA	NA	0.00	0.00
51-14	6	996.77	9.4	11.30	0			0.00	0.00
51-15	6	996.43	8.84	10.75	3	0.02	0.05	0.01	0.00
51-16R	6	996.39	8.83	10.85	4	0.01	0.2	0.00	0.00
51-17	6	996.43	8.97	11.30	6	0.19	1.27	2.34	0.62

Table 5
Groundwater Elevation and LNAPL Monitoring/Recovery Data Summary
Groundwater Quality and NAPL Monitoring Interim Report For Spring 2007

			Depth t	o Water	LN	NAPL Observation	ns	LNAPL Re	covery ⁽⁶⁾
Well Name	Number of Measurements	Measuring Point Elevation (Feet AMSL)	Minimum (Feet BMP)	Maximum (Feet BMP)	Times Observed	Minimum Thickness (Feet)	Maximum Thickness (Feet)	LNAPL Recovery (Liters)	LNAPL Recovery (Gallons)
51-18	6	997.12	9.6	11.10	0			0.00	0.00
51-19	6	996.43	9.13	11.03	6	0.01	0.13	0.05	0.01
51-21	26	1001.49	13.8	16.90	25	<0.01	0.01	119.56	31.58
54B-R	1	991.49	4.07	4.07	0			0.00	0.00
59-01	6	997.52	9.84	11.31	1	0.02	0.02	0.00	0.00
59-03R	6	997.64	11	12.50	6	0.48	1.16	1.99	0.52
59-07	6	997.96	10.22	12.13	6	0.01	0.06	0.04	0.01
78B-R	5	988.83	0.8	1.84	0			0.00	0.00
82B-R	1	989.90	2.82	2.82	0			0.00	0.00
89A	1	985.76	1.61	1.61	0			0.00	0.00
89B	1	986.03	1.96	1.96	0			0.00	0.00
89D-R	1	987.11	2.88	2.88	0			0.00	0.00
90A	1	988.07	2.82	2.82	0			0.00	0.00
90B	1	989.10	5.07	5.07	0			0.00	0.00
95A	1	987.18	5.62	5.62	0			0.00	0.00
95B-R	1	986.24	4.65	4.65	0			0.00	0.00
111A-R	1	997.35	12.12	12.12	0			0.00	0.00
114A	1	986.16	4.71	4.71	0			0.00	0.00
115A	1	988.53	5.90	5.90	0			0.00	0.00
115B	1	990.90	9.11	9.11	0			0.00	0.00
GMA3-2	1	991.94	5.85	5.85	0			0.00	0.00
GMA3-3	1	990.45	0.6	0.60	0			0.00	0.00

Table 5
Groundwater Elevation and LNAPL Monitoring/Recovery Data Summary
Groundwater Quality and NAPL Monitoring Interim Report For Spring 2007

			Depth t	o Water	LN	NAPL Observatio	ns	LNAPL Recovery ⁽⁶⁾	
Well Name	Number of Measurements	Measuring Point Elevation (Feet AMSL)	Minimum (Feet BMP)	Maximum (Feet BMP)	Times Observed	Minimum Thickness (Feet)	Maximum Thickness (Feet)	LNAPL Recovery (Liters)	LNAPL Recovery (Gallons)
GMA3-4	1	994.60	5.71	5.71	0			0.00	0.00
GMA3-5	1	993.67	6.32	6.32	0			0.00	0.00
GMA3-6	1	997.49	15.31	15.31	0			0.00	0.00
GMA3-7	2	1000.17	12.03	13.21	0			0.00	0.00
GMA3-8	1	996.24	8.76	8.76	0			0.00	0.00
GMA3-9	1	992.39	3.45	3.45	0			0.00	0.00
GMA3-10	26	997.54	10.2	11.95	26	0.07	0.85	4.05	1.07
GMA3-11	6	997.25	9.2	11.05	1	0.09	0.09	0.00	0.00
GMA3-12	26	997.84	10.15	12.61	26	0.03	0.6	2.67	0.71
GMA3-13	26	997.73	10.11	11.99	26	0.03	0.45	2.30	0.61
GMA3-14	6	997.42	9.4	11.04	0			0.00	0.00
GMA3-15	2	996.74	9.94	10.94	0			0.00	0.00
GMA3-16	10	989.26	0.8	2.04	0			0.00	0.00
OBG-2	1	992.20	3.77	3.77	0			0.00	0.00
UB-MW-10	6	995.99	8.26	9.75	0			0.00	0.00
UB-PZ-3	6	998.15	10.5	12.57	5	0.15	0.25	0.22	0.06

Table 5
Groundwater Elevation and LNAPL Monitoring/Recovery Data Summary

			Depth to Water		LN	NAPL Observatio	LNAPL Recovery ⁽⁶⁾		
Well Name	Number of Measurements	Measuring Point Elevation (Feet AMSL)	Minimum (Feet BMP)	Maximum (Feet BMP)	Times Observed	Minimum Thickness (Feet)	Maximum Thickness (Feet)	LNAPL Recovery (Liters)	LNAPL Recovery (Gallons)
GMA4 Monitori	ing Wells (Adjacen	t to GMA3)							
RF-14	1	1,001.59	6.61	6.61	0			0.00	0.00
GMA4-3	6	1,003.95	16.1	18.00	0			0.00	0.00
60B-R	1	1,002.79	13.65	13.65	0			0.00	0.00

Total amount of LNAPL Recovered - January 2007 through June 2007: 139.54 liters

36.86 gallons

- 1. --- indicates LNAPL was not present in a measurable quantity
- 2. NA indicates information not available.
- 3. Groundwater was not present in the well at the time measurements were conducted.
- 4. ft BMP = Feet Below Measuring Point
- 5. ft AMSL = Feet Above Mean Sea Level
- 6. LNAPL was recovered via an automated skimmer at well 51-21 and was manually removed from the remaining wells.

Table 6
Field Parameter Measurements - Spring 2007

Groundwater Quality and NAPL Monitoring Interim Report For Spring 2007

Well Number	Turbidity (NTU)	Temperature (degrees Celsius)	pH (standard units)	Specific Conductivity (mS/cm)	Oxidation- Reduction Potential (mV)	Dissolved Oxygen (mg/L)
2A	16	11.02	7.65	0.417	-34.4	0.24
16A	16	11.89	7.90	6.124	-159.2	0.16
16B-R	6	10.99	3.50	1.829	55.0	1.67
16C-R	1	11.75	6.95	0.251	54.0	1.46
39B-R	1	8.66	9.15	616.3	84.0	0.00
39D-R	2	12.64	8.85	0.317	12.7	2.93
39E	2	11.73	6.22	0.274	87.3	2.80
43A	6	15.68	7.25	1.049	-94.9	0.26
43B	2	10.40	7.93	1.148	-112.4	3.02
89A	26	17.04	7.92	1.972	-210.4	1.56
89B	3	15.03	7.06	0.787	-63.0	1.99
89D-R	2	10.62	8.46	2.521	-115.9	0.23
90A	5	10.08	4.33	0.387	-69.4	0.50
90B	1	7.34	8.65	0.273	58.2	4.34
95A	10	14.59	6.41	0.284	-120.8	0.18
95B-R	3	10.01	7.63	1.026	-103.9	3.02
111A-R	8	13.92	8.99	506.1	197.1	0.04
111B-R	4	12.90	7.51	0.692	224.9	7.38
114A	19	16.22	8.80	0.261	-216.7	2.10
114B-R	3	12.85	5.58	0.962	0.5	0.24
115A	9	11.54	8.19	0.297	-281.9	2.90

Table 6 Field Parameter Measurements - Spring 2007

Groundwater Quality and NAPL Monitoring Interim Report For Spring 2007 Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts

Well Number	Turbidity	Temperature	рН	Specific Conductivity	Oxidation- Reduction Potential	Dissolved Oxygen
	(NTU)	(degrees Celsius)	(standard units)	(mS/cm)	(mV)	(mg/L)
115B	3	8.52	5.90	0.529	48.9	0.86

- 1. Measurements collected during spring 2007 GMA 3 baseline monitoring program sampling activities conducted between May 5 and 8, 2007
- 2. Well parameters were generally monitored continuously during purging by low-flow techniques. Final parameter readings are presented.
- 3. NTU Nephelometric Turbidity Units
- 4. mS/cm Millisiemens per centimeter
- 5. mV Millivolts
- 6. mg/L Milligrams per liter (ppm)

Table 7 Comparison of Groundwater Analytical Results to MCP Method 1 GW-2 Standards

Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007 Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

	Sample ID:	Method 1 GW-2	16B-R
Parameter	Date Collected:	Standards	05/08/07
Volatile Organics			
Acetone		50	0.0072 J [0.0035 J]
Benzene		2	0.0014 [0.0012]
Chlorobenzene		0.2	0.0051 J [0.0024 J]
Total VOCs		5	0.014 J [0.0071 J]

Notes:

- 1. Samples were collected by ARCADIS BBL, and submitted to SGS Environmental Services, Inc. for analysis of volatiles, selected semivolatiles and natural attenuation parameters.
- Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP), General Electric Company, Pittsfield, Massachusetts, ARCADIS BBL (approved March 15, 2007 and re-submitted March 30, 2007).
- 3. Only volatiles are presented for the MCP Method 1 GW-2 Standards Comparison.
- 4. Only detected volatiles are summarized.
- 5. Field duplicate sample results are presented in brackets.
- 6. Total VOCs are being compared to the notification level in the SOW of 5 ppm, as there is no GW-2 Standard for Total VOCs.

Data Qualifiers:

Organics (volatiles)

J - Indicates that the associated numerical value is an estimated concentration.

Table 8 Comparison of Groundwater Analytical Results to MCP Method 1 GW-3 Standards

Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007 Groundwater Management Area 3 General Electric Compnay - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

	Sample ID:	Method 1 GW-3	89B	90B	95B-R	111B-R	114B-R	
Parameter	Date Collected:	Standards	05/09/07	05/08/07	05/10/07	05/08/07	05/10/07	
Volatile Organics								
Benzene		10	0.017	0.00027 J	2.3	0.00038 J	0.10	
Chlorobenzene		1	0.15	0.0017	9.7	0.0020 J	2.0	
Vinyl Chloride		50	ND(0.0050)	ND(0.0010)	ND(0.40)	ND(0.0010)	0.11	
Semivolatile Org	janics							
2-Chlorophenol		40	ND(0.010)	NA	0.0090 J	NA	NA	
4-Chlorophenol		Not Listed	ND(0.010) J	NA	0.020 J	NA	NA	

Notes:

- 1. Samples were collected by ARCADIS BBL, and submitted to SGS Environmental Services, Inc. for analysis of volatiles, selected semivolatiles and Natural Attenuation Parameters.
- Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP), General Electric Company, Pittsfield, Massachusetts, ARCADIS BBL (approved March 15, 2007 and re-submitted March 30, 2007).
- NA Not Analyzed
- 4. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 5. Only those constituents detected in one or more samples are summarized.
- 6. Shading indicates that value exceeds GW-3 Standards.

Data Qualifiers:

Organics (volatiles, semivolatiles)

J - Indicates that the associated numerical value is an estimated concentration.

Natural Attenuation Parameters

J - Indicates that the associated numerical value is an estimated concentration.

Table 9
Comparison of Groundwater Analytical Results to MCP UCLs for Groundwater

Parameter	Sample ID: Date Collected:	MCP UCL for GroundWater	2A 05/14/07	16A 05/07/07	16B-R 05/08/07	16C-R 05/07/07
Volatile Organ			3371 3731	0000000	***************************************	00,01,01
1,4-Dioxane		Not Listed	ND(800) J	ND(80) J	ND(0.10) J [ND(0.10) J]	ND(0.10) J
Acetone		100	ND(40) J	ND(4.0) J	0.0072 J [0.0035 J]	ND(0.0050) J
Benzene		100	38	15	0.0014 [0.0012]	0.0027
Chlorobenzene		10	170	40	0.0051 J [0.0024 J]	0.015
Chloromethane		Not Listed	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Ethylbenzene		100	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Toluene		80	6.6 J	0.84	ND(0.0010) [ND(0.0010)]	0.00023 J
Trichloroethene		50	14	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Vinyl Chloride		100	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Xylenes (total)		100	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Semivolatile O	rganics					
2-Chlorophenol		100	ND(0.010)	0.028 J	NA	NA
4-Chlorophenol		Not Listed	ND(0.010) J	ND(0.050) J	NA	NA

Table 9
Comparison of Groundwater Analytical Results to MCP UCLs for Groundwater

	Sample ID:	MCP UCL	39B-R	39D-R	39E	43A	43B				
Parameter	Date Collected:	for GroundWater	05/07/07	05/14/07	05/14/07	05/09/07	05/09/07				
Volatile Organi	Volatile Organics										
1,4-Dioxane		Not Listed	ND(40) J	ND(0.10) J	ND(0.10) J	0.19 J	ND(0.10) J				
Acetone		100	ND(2.0) J	ND(0.0050) J	ND(0.0050) J	ND(0.0050) J	ND(0.0050) J				
Benzene		100	0.66	ND(0.0010)	0.00031 J	ND(0.0010)	ND(0.0010)				
Chlorobenzene		10	11	0.014	0.00051 J	ND(0.0010)	ND(0.0010)				
Chloromethane		Not Listed	ND(0.40)	0.00046 J	0.00053 J	ND(0.0010)	0.00050 J				
Ethylbenzene		100	ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)				
Toluene		80	0.10 J	ND(0.0010)	0.00067 J	0.00067 J	ND(0.0010)				
Trichloroethene		50	0.092 J	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)				
Vinyl Chloride		100	ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)				
Xylenes (total)		100	ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)				
Semivolatile Or	Semivolatile Organics										
2-Chlorophenol		100	ND(0.050)	NA	NA	NA	NA				
4-Chlorophenol		Not Listed	ND(0.050) J	NA	NA	NA	NA				

Table 9
Comparison of Groundwater Analytical Results to MCP UCLs for Groundwater

_	Sample ID:	MCP UCL	89A	89B	89D-R	90A	90B
Parameter	Date Collected:	for GroundWater	05/09/07	05/09/07	05/09/07	05/08/07	05/08/07
Volatile Organ	ics						
1,4-Dioxane		Not Listed	ND(8.0) J	ND(0.50) J	ND(80) J	ND(0.10) J	ND(0.10) J
Acetone		100	ND(0.40) J	ND(0.025) J	ND(4.0) J	ND(0.0050) J	ND(0.0050) J
Benzene		100	0.33	0.017	8.3	ND(0.0010)	0.00027 J
Chlorobenzene		10	2.5	0.15	31	0.0011	0.0017
Chloromethane		Not Listed	ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Ethylbenzene		100	0.076 J	ND(0.0050)	0.75 J	ND(0.0010)	ND(0.0010)
Toluene		80	ND(0.080)	ND(0.0050)	0.54 J	ND(0.0010)	ND(0.0010)
Trichloroethene)	50	ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Vinyl Chloride		100	ND(0.080)	ND(0.0050)	0.98	ND(0.0010)	ND(0.0010)
Xylenes (total)		100	0.056 J	ND(0.0050)	1.9	ND(0.0010)	ND(0.0010)
Semivolatile O	rganics						
2-Chlorophenol		100	0.0072 J	ND(0.010)	NA	NA	NA
4-Chlorophenol		Not Listed	ND(0.010) J	ND(0.010) J	NA	NA	NA

Table 9
Comparison of Groundwater Analytical Results to MCP UCLs for Groundwater

Sample ID: Parameter Date Collected:		MCP UCL for GroundWater	95A 05/10/07	95B-R 05/10/07	111A-R 05/07/07	111B-R 05/08/07
Volatile Organi		101 Groundwater	00/10/01	00/10/01	00/01/01	00/00/07
1,4-Dioxane		Not Listed	ND(0.10) J [ND(0.10) J]	ND(40) J	ND(0.10) J	ND(0.10) J
Acetone		100	ND(0.0050) J [ND(0.0050) J]	ND(2.0) J	ND(0.0050) J	ND(0.0050) J
Benzene		100	ND(0.0010) [ND(0.0010)]	2.3	ND(0.0010)	0.00038 J
Chlorobenzene		10	ND(0.0010) [ND(0.0010)]	9.7	ND(0.0010)	0.0020 J
Chloromethane		Not Listed	0.00049 J [0.00063 J]	ND(0.40)	ND(0.0010)	ND(0.0010)
Ethylbenzene		100	ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Toluene		80	ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Trichloroethene		50	ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Vinyl Chloride		100	ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Xylenes (total)		100	ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Semivolatile O	rganics					
2-Chlorophenol	_	100	ND(0.010) [ND(0.010)]	0.0090 J	NA	NA
4-Chlorophenol		Not Listed	ND(0.010) J [ND(0.010) J]	0.020 J	NA	NA

Table 9
Comparison of Groundwater Analytical Results to MCP UCLs for Groundwater

	Sample ID:	MCP UCL	114A	114B-R	115A	115B					
Parameter	Date Collected:	for GroundWater	05/10/07	05/10/07	05/14/07	05/14/07					
Volatile Organic	/olatile Organics										
1,4-Dioxane		Not Listed	ND(0.10) J	ND(8.0) J	ND(0.10) J	ND(0.10) J					
Acetone		100	ND(0.0050) J	ND(0.40) J	ND(0.0050) J	ND(0.0050) J					
Benzene		100	ND(0.0010)	0.10	ND(0.0010)	ND(0.0010)					
Chlorobenzene		10	ND(0.0010)	2.0	ND(0.0010)	ND(0.0010)					
Chloromethane		Not Listed	0.00070 J	ND(0.080)	0.00040 J	0.00055 J					
Ethylbenzene		100	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)					
Toluene		80	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)					
Trichloroethene		50	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)					
Vinyl Chloride		100	ND(0.0010)	0.11	ND(0.0010)	ND(0.0010)					
Xylenes (total)		100	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)					
Semivolatile Or	ganics										
2-Chlorophenol		100	NA	NA	NA	NA					
4-Chlorophenol		Not Listed	NA	NA	NA	NA					

Notes:

- 1. Samples were collected by ARCADIS BBL, and submitted to SGS Environmental Services, Inc. for analysis of volatiles, selected semivolatiles and Natural Attenuation Parameters.
- 2. Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP), General Electric Company, Pittsfield, Massachusetts, ARCADIS BBL (approved March 15, 2007 and re-submitted March 30, 2007).
- 3. NA Not Analyzed.
- 4. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 5. Only those constituents detected in one or more samples are summarized.
- 6. Field duplicate sample results are presented in brackets.
- 7. Shading indicates that value exceeds UCL Standards.

Data Qualifiers:

Organics (volatiles, semivolatiles)

J - Indicates that the associated numerical value is an estimated concentration.

Natural Attenuation Parameters

- B Indicates an estimated value between the instrument detection limit (IDL) and (PQL).
- J Indicates that the associated numerical value is an estimated concentration.

Table 10
Natural Attenuation Parameter Analytical Results

Sample ID: Parameter Date Collected:	2A 05/14/07	16A 05/07/07	16B-R 05/08/07	16C-R 05/07/07	39B-R 05/07/07
Volatile Organics	00/11/01	00/01/01	33,00,0	00/01/01	00/01/01
1,4-Dioxane	ND(800) J	ND(80) J	ND(0.10) J [ND(0.10) J]	ND(0.10) J	ND(40) J
Acetone	ND(40) J	ND(4.0) J	0.0072 J [0.0035 J]	ND(0.0050) J	ND(2.0) J
Benzene	38	15	0.0014 [0.0012]	0.0027	0.66
Chlorobenzene	170	40	0.0051 J [0.0024 J]	0.015	11
Chloromethane	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.40)
Ethylbenzene	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.40)
Toluene	6.6 J	0.84	ND(0.0010) [ND(0.0010)]	0.00023 J	0.10 J
Trichloroethene	14	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)	0.092 J
Vinyl Chloride	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.40)
Xylenes (total)	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)	ND(0.40)
Semivolatile Organics					
2-Chlorophenol	ND(0.010)	0.028 J	NA	NA	ND(0.050)
4-Chlorophenol	ND(0.010) J	ND(0.050) J	NA	NA	ND(0.050) J
Natural Attenuation Parameters					
Alkalinity	180	450	520 [530]	130	310
Chloride	10	1800	300 [280]	1.1	98
Dissolved Iron	ND(0.100) J	1.07	ND(0.100) [ND(0.100)]	ND(0.100)	0.0121 B
Dissolved Organic Carbon	3.80	36.0	6.80 [6.80]	ND(1.00)	6.50
Ethane	ND(0.020)	ND(0.020)	ND(0.020) [ND(0.040)]	ND(0.020)	ND(0.020)
Ethene	ND(0.020)	0.35	ND(0.020) [ND(0.040)]	ND(0.020)	ND(0.020)
Methane	ND(0.00720)	0.793	1.05 [1.13]	ND(0.00720)	0.162
Nitrate Nitrogen	ND(0.0500)	ND(0.0500)	ND(0.0500) [ND(0.0500)]	0.120	0.310
Nitrite Nitrogen	0.0760	ND(0.100)	ND(0.100) [ND(0.10) J]	ND(0.0100)	ND(0.0100)
Sulfate (turbidimetric)	25.0	ND(2.00)	14.0 [12.0]	6.40	7.30

Table 10
Natural Attenuation Parameter Analytical Results

Parameter	Sample ID: Date Collected:	39D-R 05/14/07	39E 05/14/07	43A 05/09/07	43B 05/09/07	89A 05/09/07	89B 05/09/07
Volatile Organ		00/14/01	00/14/01	00/03/01	00/03/01	00/03/01	00/03/01
1,4-Dioxane		ND(0.10) J	ND(0.10) J	0.19 J	ND(0.10) J	ND(8.0) J	ND(0.50) J
Acetone		ND(0.0050) J	ND(0.0050) J	ND(0.0050) J	ND(0.0050) J	ND(0.40) J	ND(0.025) J
Benzene		ND(0.0010)	0.00031 J	ND(0.0010)	ND(0.0010)	0.33	0.017
Chlorobenzene		0.014	0.00051 J	ND(0.0010)	ND(0.0010)	2.5	0.15
Chloromethane)	0.00046 J	0.00053 J	ND(0.0010)	0.00050 J	ND(0.080)	ND(0.0050)
Ethylbenzene		ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	0.076 J	ND(0.0050)
Toluene		ND(0.0010)	0.00067 J	0.00067 J	ND(0.0010)	ND(0.080)	ND(0.0050)
Trichloroethene)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.080)	ND(0.0050)
Vinyl Chloride		ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.080)	ND(0.0050)
Xylenes (total)		ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)	0.056 J	ND(0.0050)
Semivolatile C	rganics						
2-Chloropheno		NA	NA	NA	NA	0.0072 J	ND(0.010)
4-Chloropheno	l	NA	NA	NA	NA	ND(0.010) J	ND(0.010) J
Natural Attenu	ation Parameters						
Alkalinity		130	21.0	490	590	360	170
Chloride		5.5	170	25	59	440	140
Dissolved Iron		ND(0.100) J	0.0364 J	ND(0.100) J	ND(0.100) J	ND(0.100) J	ND(0.100) J
Dissolved Orga	nic Carbon	ND(1.00)	2.00	1.80	2.50	5.60	2.60
Ethane		ND(0.020)	ND(0.020)	ND(0.020)	ND(0.20)	ND(0.020)	ND(0.020)
Ethene		ND(0.020)	ND(0.020)	ND(0.020)	ND(0.20)	ND(0.020)	ND(0.020)
Methane		ND(0.00720)	ND(0.00720)	0.0460	0.802	0.738	0.188
Nitrate Nitroger	1	ND(0.0500)	0.670	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)
Nitrite Nitrogen		ND(0.0100)	ND(0.0100)	ND(0.0100)	ND(0.0100)	ND(0.100)	ND(0.0100)
Sulfate (turbidir	metric)	22.0	4.80	93.0	ND(2.00)	ND(2.00)	7.50

Table 10
Natural Attenuation Parameter Analytical Results

Sample ID:	89D-R	90A	90B	95A	95B-R
Parameter Date Collected:	05/09/07	05/08/07	05/08/07	05/10/07	05/10/07
Volatile Organics					
1,4-Dioxane	ND(80) J	ND(0.10) J	ND(0.10) J	ND(0.10) J [ND(0.10) J]	ND(40) J
Acetone	ND(4.0) J	ND(0.0050) J	ND(0.0050) J	ND(0.0050) J [ND(0.0050) J]	ND(2.0) J
Benzene	8.3	ND(0.0010)	0.00027 J	ND(0.0010) [ND(0.0010)]	2.3
Chlorobenzene	31	0.0011	0.0017	ND(0.0010) [ND(0.0010)]	9.7
Chloromethane	ND(0.80)	ND(0.0010)	ND(0.0010)	0.00049 J [0.00063 J]	ND(0.40)
Ethylbenzene	0.75 J	ND(0.0010)	ND(0.0010)	ND(0.0010) [ND(0.0010)]	ND(0.40)
Toluene	0.54 J	ND(0.0010)	ND(0.0010)	ND(0.0010) [ND(0.0010)]	ND(0.40)
Trichloroethene	ND(0.80)	ND(0.0010)	ND(0.0010)	ND(0.0010) [ND(0.0010)]	ND(0.40)
Vinyl Chloride	0.98	ND(0.0010)	ND(0.0010)	ND(0.0010) [ND(0.0010)]	ND(0.40)
Xylenes (total)	1.9	ND(0.0010)	ND(0.0010)	ND(0.0010) [ND(0.0010)]	ND(0.40)
Semivolatile Organics					
2-Chlorophenol	NA	NA	NA	ND(0.010) [ND(0.010)]	0.0090 J
4-Chlorophenol	NA	NA	NA	ND(0.010) J [ND(0.010) J]	0.020 J
Natural Attenuation Parameters					
Alkalinity	330	160	130	130 [130]	260
Chloride	630	9.3	8.0	1.4 [1.4]	140
Dissolved Iron	ND(0.100) J	0.0670 B	3.62	ND(0.100) J [ND(0.100) J]	ND(0.100) J
Dissolved Organic Carbon	9.20	ND(1.00)	4.80	ND(1.00) [ND(1.00)]	4.30
Ethane	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020) [ND(0.020)]	0.051
Ethene	0.80	ND(0.020)	ND(0.020)	ND(0.020) [ND(0.020)]	0.044
Methane	1.06	0.108	0.0830	0.134 [0.0880]	1.57
Nitrate Nitrogen	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500) [ND(0.0500)]	ND(0.0500)
Nitrite Nitrogen	ND(0.100)	ND(0.0100)	ND(0.0100)	ND(0.0100) [ND(0.0100)]	ND(0.100)
Sulfate (turbidimetric)	2.80	21.0	2.00	4.40 [4.20]	3.80

Table 10 Natural Attenuation Parameter Analytical Results

Sample ID	: 111A-R	111B-R	114A	114B-R	115A	115B		
Parameter Date Collected	: 05/07/07	05/08/07	05/10/07	05/10/07	05/14/07	05/14/07		
Volatile Organics								
1,4-Dioxane	ND(0.10) J	ND(0.10) J	ND(0.10) J	ND(8.0) J	ND(0.10) J	ND(0.10) J		
Acetone	ND(0.0050) J	ND(0.0050) J	ND(0.0050) J	ND(0.40) J	ND(0.0050) J	ND(0.0050) J		
Benzene	ND(0.0010)	0.00038 J	ND(0.0010)	0.10	ND(0.0010)	ND(0.0010)		
Chlorobenzene	ND(0.0010)	0.0020 J	ND(0.0010)	2.0	ND(0.0010)	ND(0.0010)		
Chloromethane	ND(0.0010)	ND(0.0010)	0.00070 J	ND(0.080)	0.00040 J	0.00055 J		
Ethylbenzene	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)		
Toluene	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)		
Trichloroethene	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)		
Vinyl Chloride	ND(0.0010)	ND(0.0010)	ND(0.0010)	0.11	ND(0.0010)	ND(0.0010)		
Xylenes (total)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)		
Semivolatile Organics								
2-Chlorophenol	NA	NA	NA	NA	NA	NA		
4-Chlorophenol	NA	NA	NA	NA	NA	NA		
Natural Attenuation Parameters								
Alkalinity	140	150	130	210	160	250		
Chloride	92	11	3.8	170	1.2	13		
Dissolved Iron	0.0101 B	ND(0.100)	0.0434 J	ND(0.100) J	ND(0.100) J	ND(0.100) J		
Dissolved Organic Carbon	1.20	1.10	1.20	2.50	ND(1.00)	ND(1.00)		
Ethane	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)		
Ethene	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)		
Methane	ND(0.00720)	ND(0.00720)	0.285	0.205	ND(0.00720)	ND(0.00720)		
Nitrate Nitrogen	ND(0.0500)	5.90	ND(0.0500)	ND(0.0500)	ND(0.0500)	0.110		
Nitrite Nitrogen	ND(0.0100)	ND(0.0100)	ND(0.0100)	ND(0.0500)	ND(0.0100)	ND(0.0100)		
Sulfate (turbidimetric)	71.0	190	3.40	12.0	4.20	14.0		

Notes:

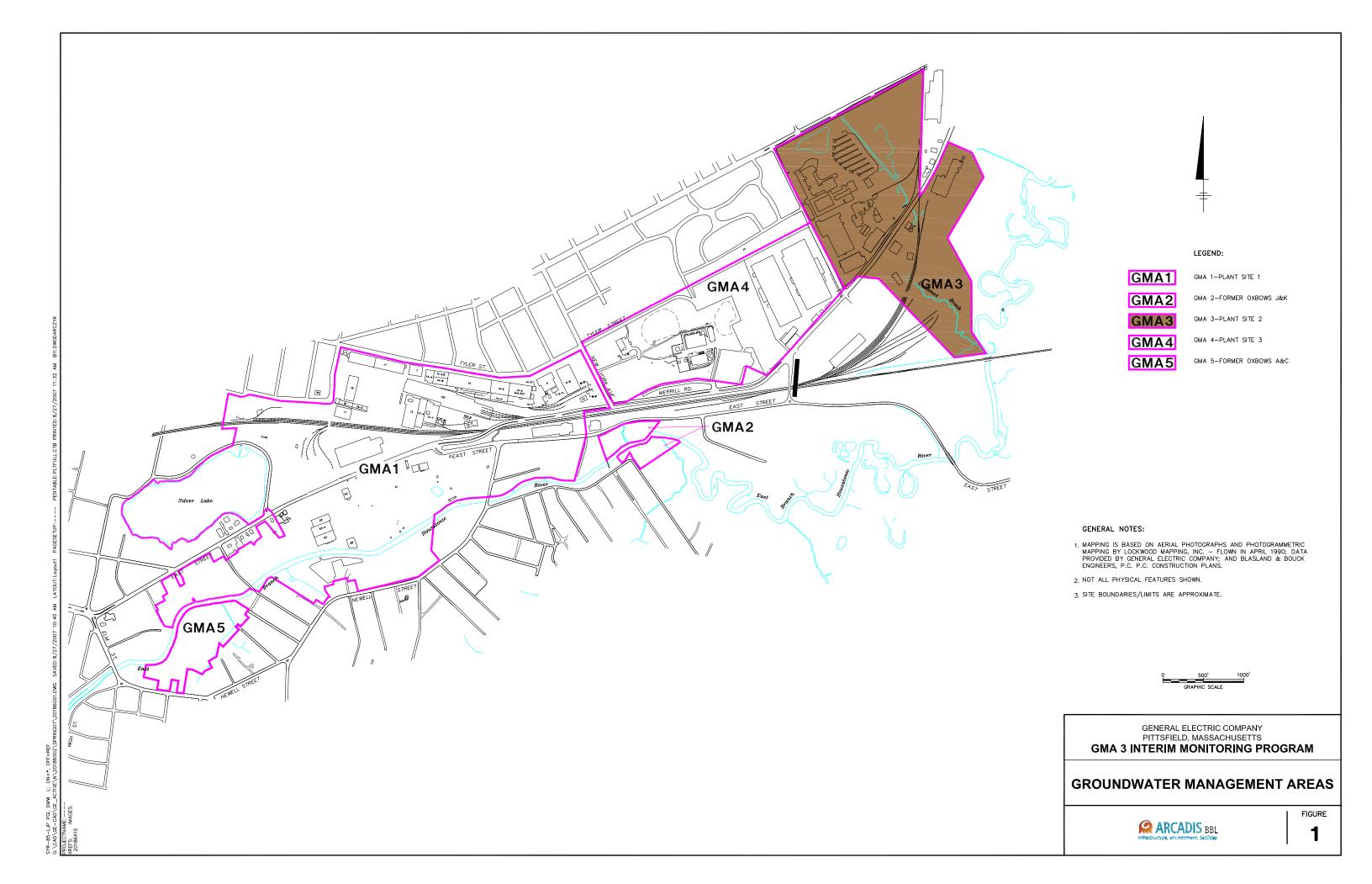
- Samples were collected by ARCADIS BBL, and submitted to SGS Environmental Services, Inc. for analysis of volatiles, selected semivolatiles and natural
 attenuation parameters.
- Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP), General Electric Company, Pittsfield, Massachusetts, ARCADIS BBL (approved March 15, 2007 and re-submitted March 30, 2007).
- 3. NA Not Analyzed.
- 4. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 5. Only those constituents detected in one or more samples are summarized.
- 6. Field duplicate sample results are presented in brackets.

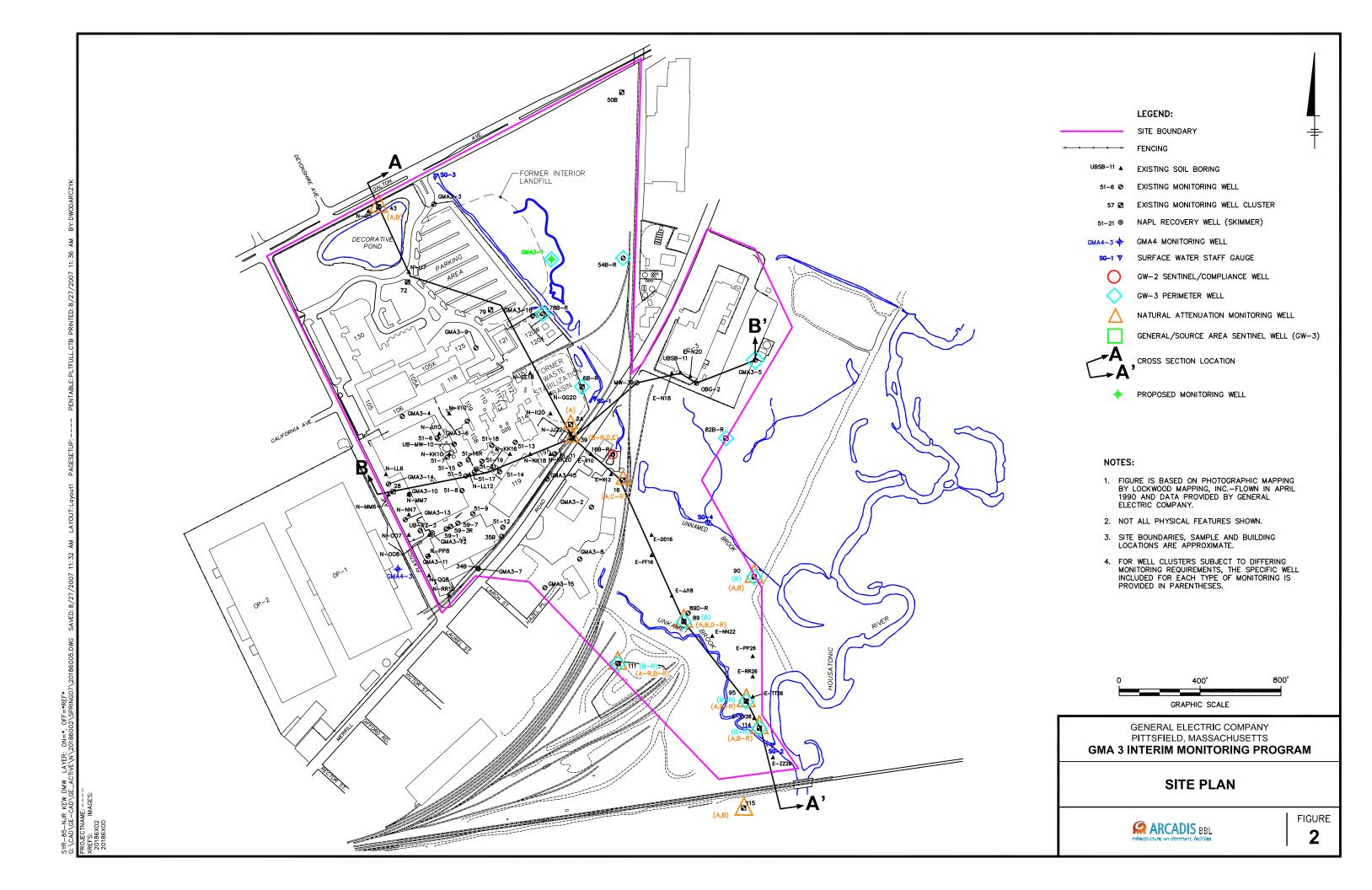
Data Qualifiers:

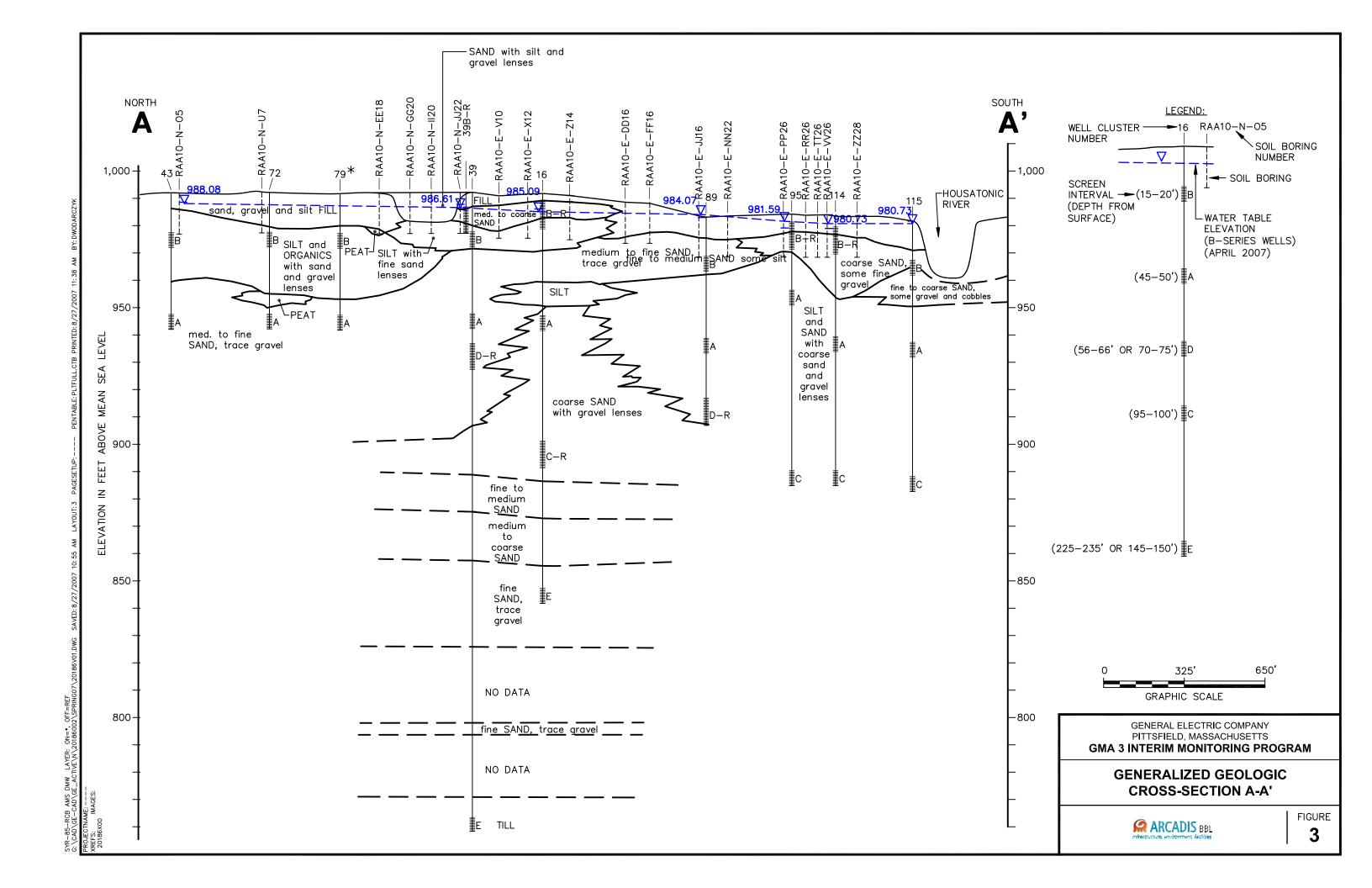
Organics (volatiles, semivolatiles)

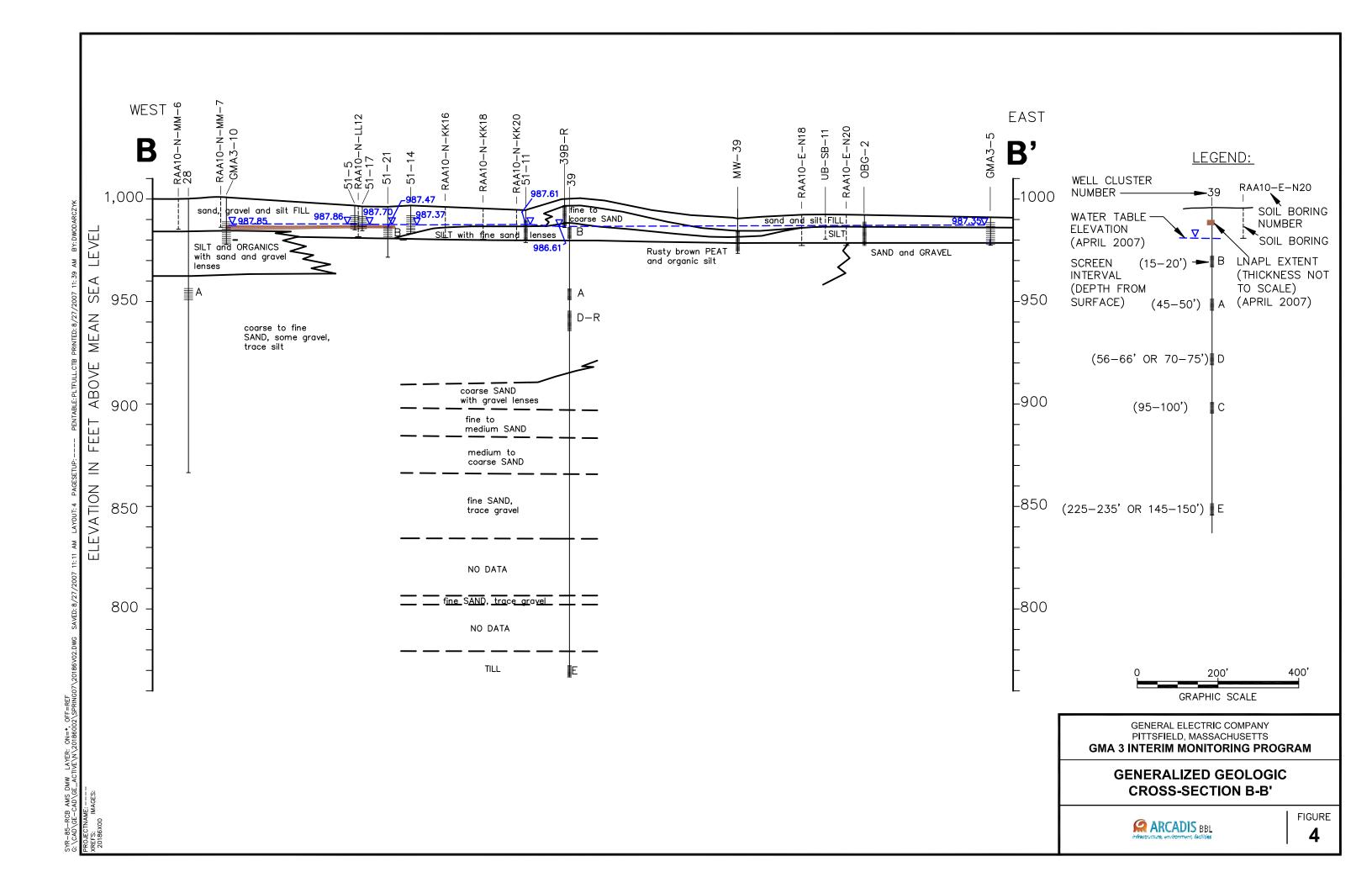
J - Indicates that the associated numerical value is an estimated concentration.

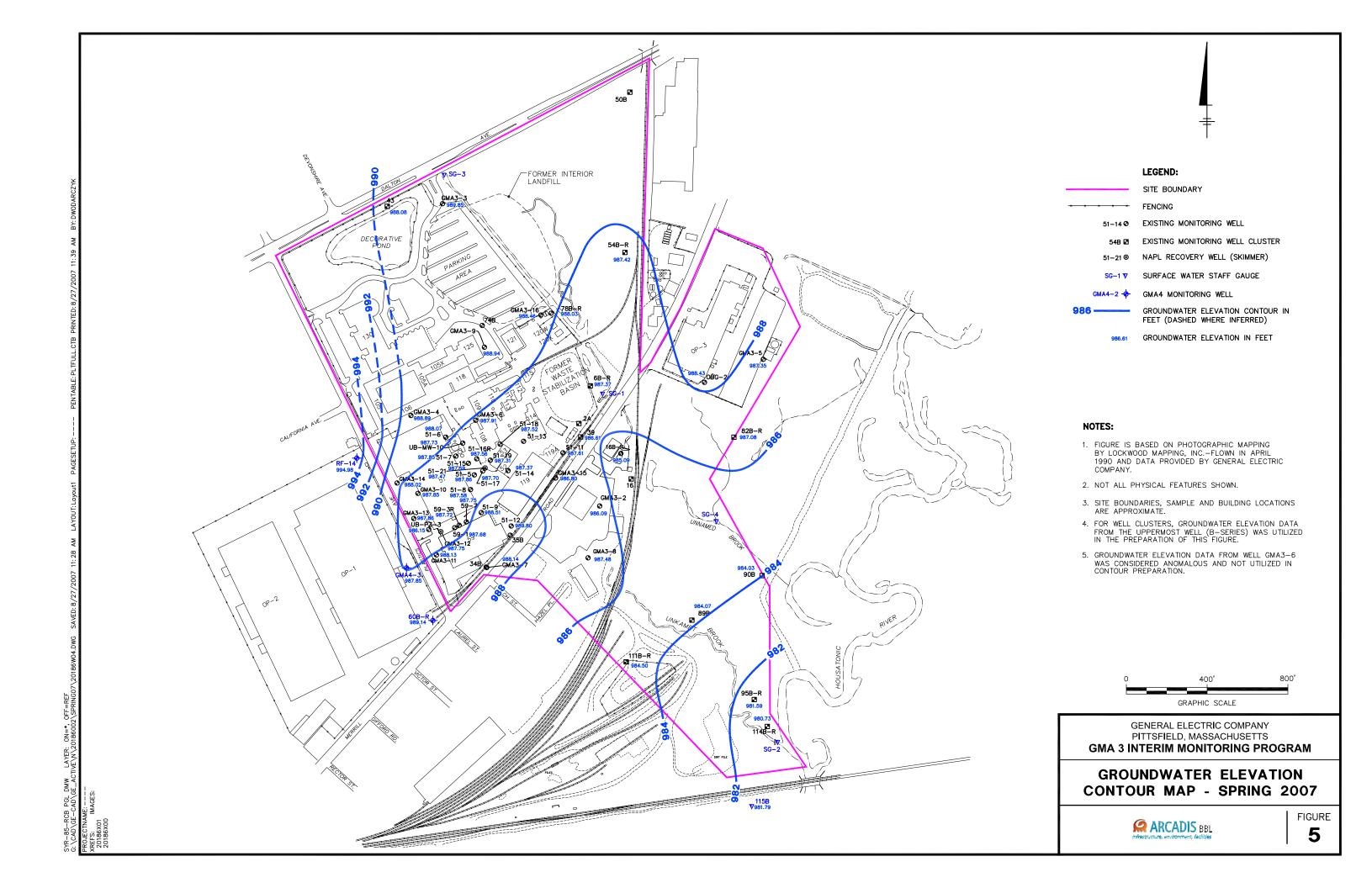
Natural Attenuation Parameters

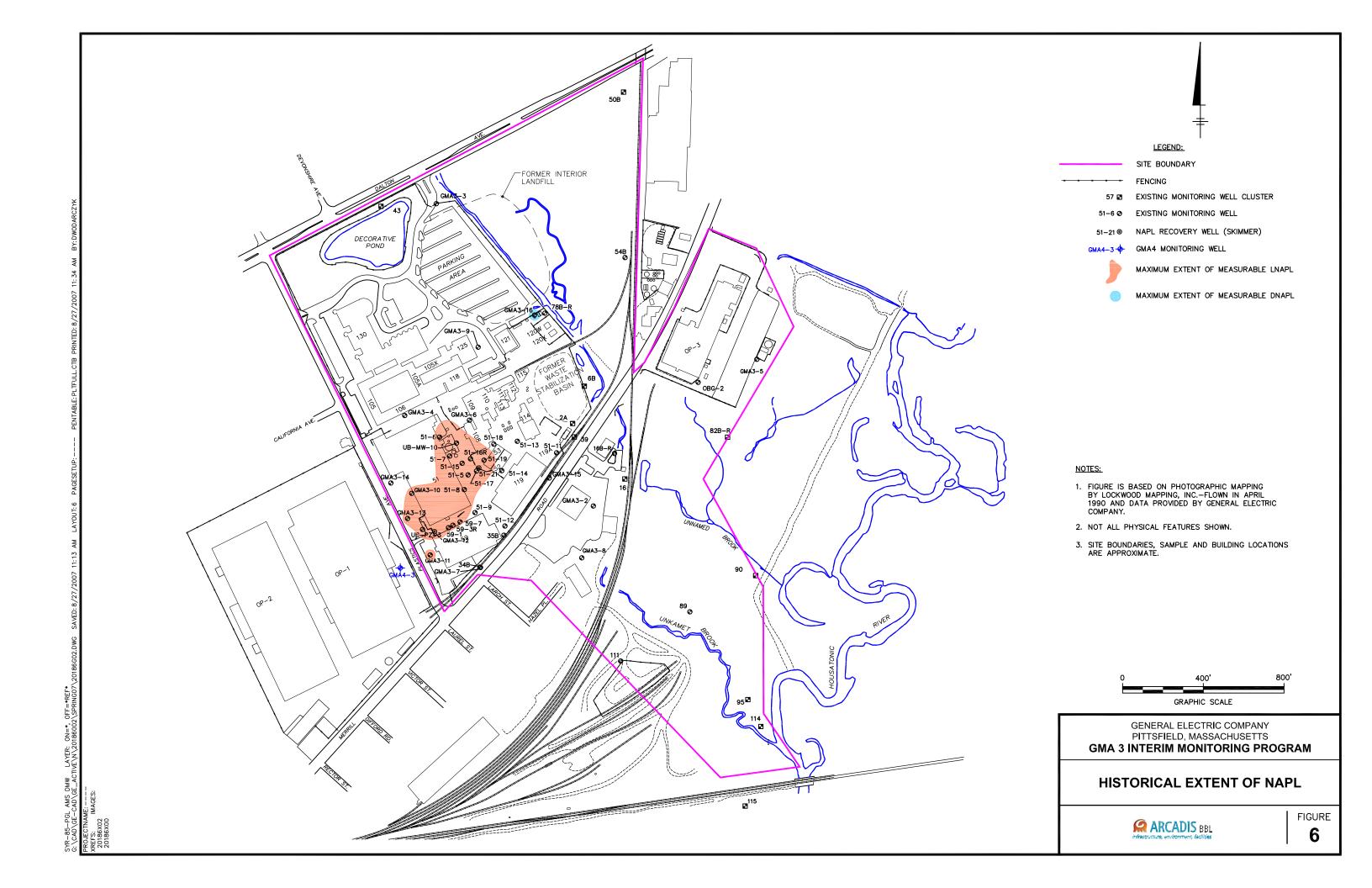

- B Indicates an estimated value between the instrument detection limit (IDL) and (PQL).
- J Indicates that the associated numerical value is an estimated concentration.

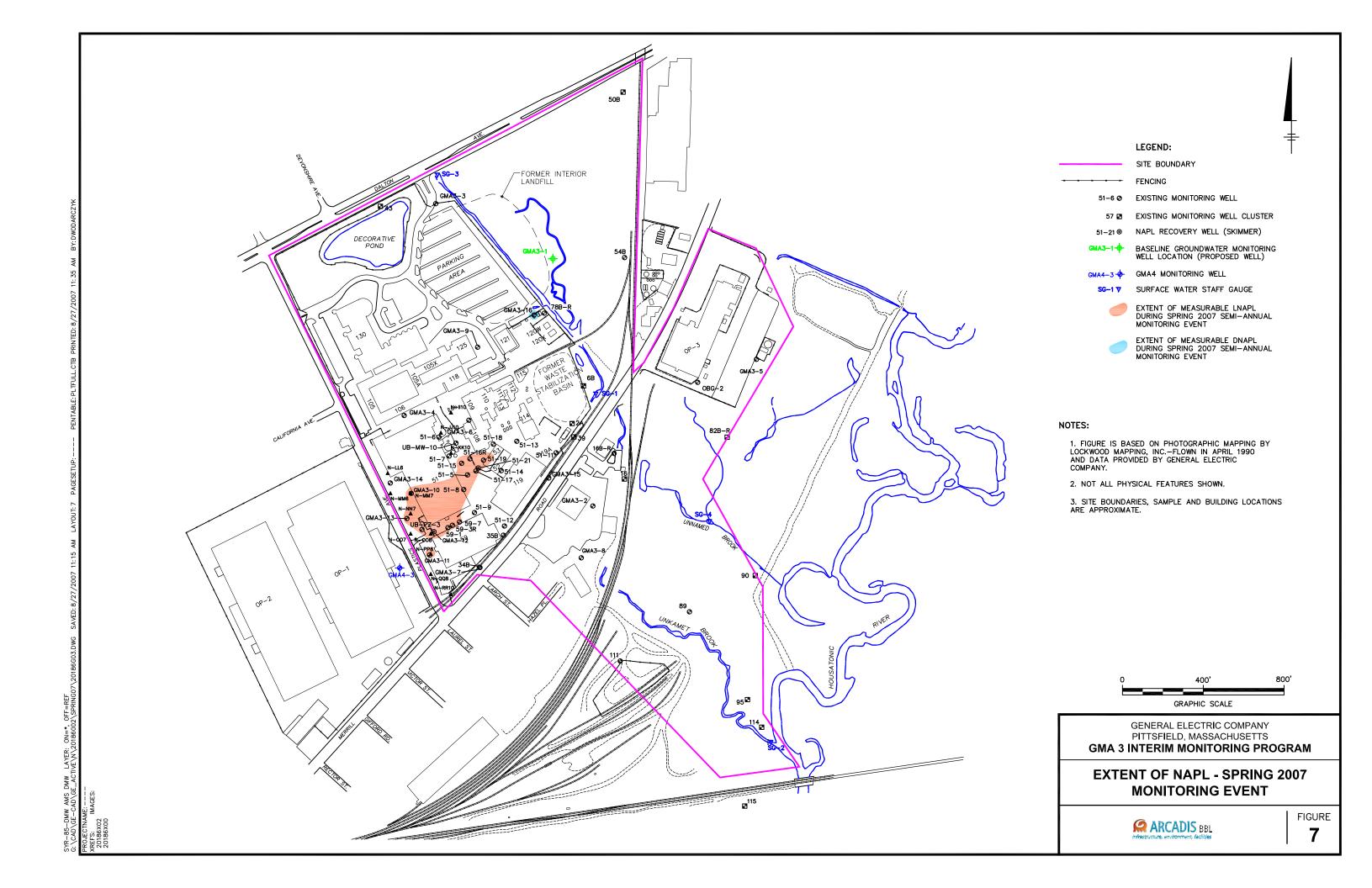

Table 11
Fall 2007 Interim Groundwater Quality Monitoring Activities

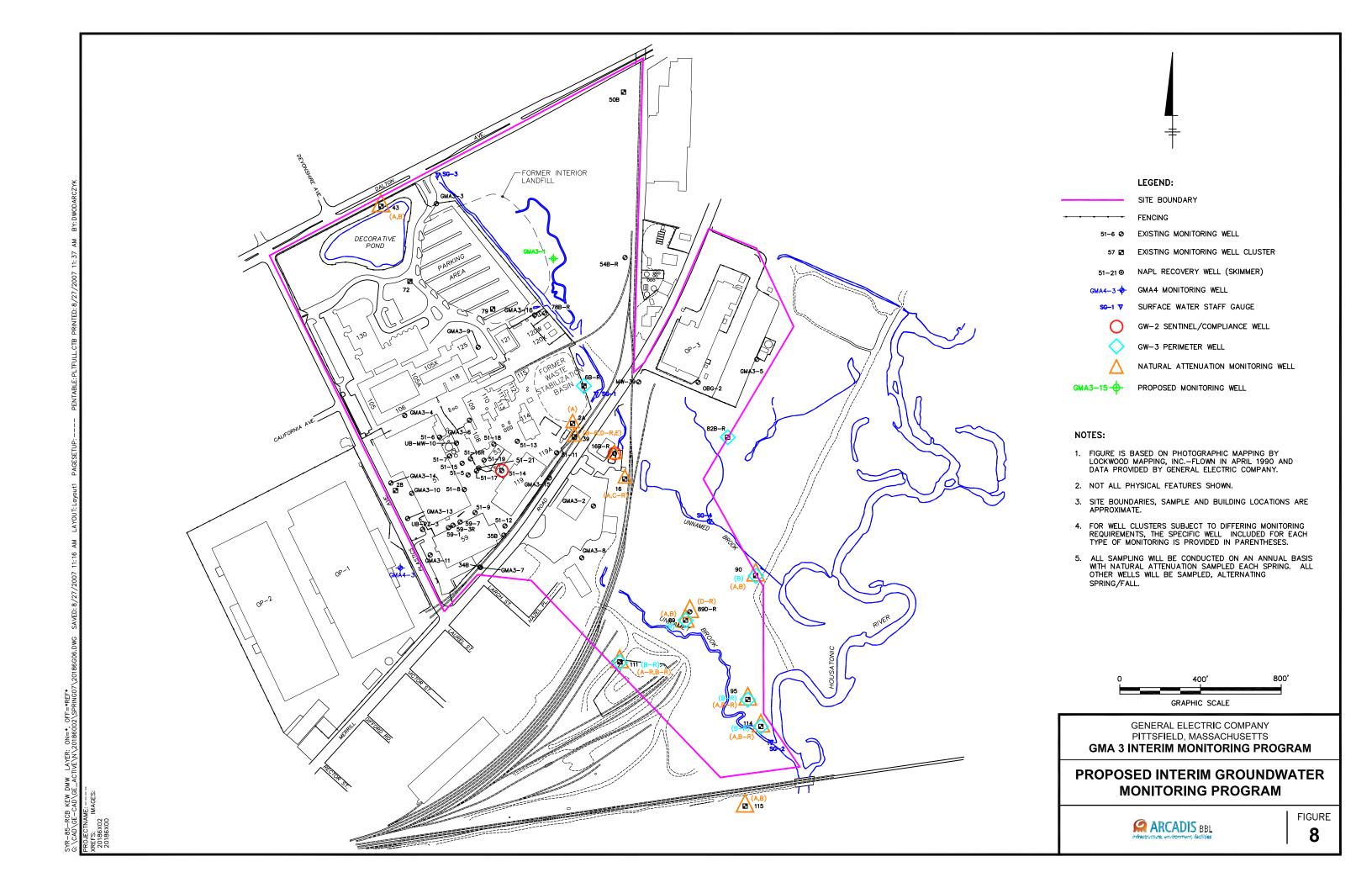

Well Number	Well Designation / Analytical Category	Analyses	Comments
6B-R	GW-3 Perimeter	VOC	
51-14	GW-2 Sentinel	VOC	
82B-R	GW-3 Perimeter	PCB	
114A	Natural Attenuation	PCB (filtered samples only)	Interim sampling for PCBs to be added in fall 2007.
114B-R	GW-3 Perimeter/Natural Attenuation	PCB (filtered samples only)	




Figures







ARCADIS BBL

Appendices

ARCADIS BBL

Appendix A

Groundwater Monitoring Well Log

Date Start/Finish: 4/03/07

Drilling Company: ABBL
Driller's Name: D. Richmond/R. Fisk
Drilling Method: HSA

Bit Size: 6-1/4" OD Auger Size: 4-1/4" ID Rig Type: CME 55

Sampling Method: 2' x 2" Split Spoon

Northing: 537542.70 Easting: 138665

Casing Elevation: 989.26

Borehole Depth: 13.3' Below Grade

Surface Elevation: 989.80

Geologist: Dave Cornell

Well/Boring ID: GMA3-16

Client: General Electric Company

Location: GMA 3, Merrill Ave.

Pittsfield Massachusetts

DEPTH	ELEVATION	Sample Run Number	Sample/Int/Type	Recovery (feet)	Blows / 6 Inches	PID Headspace (ppm)	Geologic Column	Stratigraphic Description	Well/Boring Construction
	_								9" Flushmounted curb box. Locking J-Plug
0 9	90 -							ASPHALT	Concrete (0-1' bgs)
-	-							SUBSTRATE	Bentonite seal (1'-
	4								2" SCH 40 PVC
	_	1	2-4	1.8	7 7 12 10	0.7		Brown fine to medium SAND, some fine to coarse subangular Gravet, blue green in color with a faint odor and sheen, non-plastic, salurated.	riser (0.6'-2' bgs)
-5	985 -	2	4-6	0.5	5 24 1 3	3.5	\$\frac{1}{2}\frac{1}{2	WOOD (root) Brown fine to medium SAND, blue-black in color, faint odor and sheen, non-plastic, saturated.	
		3	6-8	1.4	4 3 5	24.2		Gray to dark gray fine to medium SAND, some subangular Gravet, trave Silt, moderate odor, non plastic, salurated.	2" SCH 40 PVC 0.020" slotted well screen (2.0'-12.0' bgs)
-	980	4	8-10	1.3	2 WOR 2 1	16.6		Gray to dark gray fine to medium SAND, little Gravel, fainl odor, non- plastic, salurated.	
- 10		5	10-12	1,8	3 5 2	14.5	4 4	Gray fine to medium SAND, trace to little fine to coarse subangular Gravel, strong odor, trace NAPL. Brown PEAT.	#2 Silica Sandpack (1.8' - 13.3' bgs)
-					1		TT		1.3'x2.0" PVC Sump (12.0'-13.3' bgs)
- 15	975 -					wedpowerphotocolindended BERASHA, CORRECCION			

Infrastructure, environment, facilities

Remarks: NA = Not Applicable/Available; bgs = below ground surface; HSA = Hollow Stem Auger

Project: 201.86.001 Data File:GMA3-16.dat

ARCADIS BBL

Appendix B

Groundwater Elevation and NAPL Monitoring/Recovery Data

Table B-1
Groundwater Elevation and Monitoring Recovery/Data
January 2007 - June 2007
Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007

Groundwater Management Area 3
General Electric Company - Pittsfield, Massachusetts

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected	LNAPL	DNAPL
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.	Removed	Removed
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)	(Liters)	(Liters)
006B-R	993.62	4/26/2007	6.25		0.00		14.59	0.00	987.37		
016A	991.77	4/26/2007	5.91		0.00		50.95	0.00	985.86		
016B-R	994.87	4/26/2007	9.78		0.00		16.23	0.00	985.09		
016C-R	993.23	4/26/2007	6.77		0.00		102.10	0.00	986.46		
039B-R	991.97	4/26/2007	5.36		0.00		13.82	0.00	986.61		
039D-R	994.73	4/26/2007	7.60		0.00		63.35	0.00	987.13		
039E	992.21	4/26/2007	4.43		0.00		>202.00	0.00	987.78		
043A	993.79	4/26/2007	5.09		0.00		51.28	0.00	988.70		
043B	993.61	4/26/2007	5.53		0.00		21.21	0.00	988.08		
054B-R	991.49	4/26/2007	4.07		0.00		15.50	0.00	987.42		
078B-R	988.83	2/27/2007	Well Buried Under	Ice & Snow	NA			NA	NA		
078B-R	988.83	3/27/2007	Submerged under v	water	NA			NA	NA		
078B-R	988.83	4/26/2007	0.80		0.00		11.70	0.00	988.03		
078B-R	988.83	5/29/2007	1.60		0.00		11.73	0.00	987.23		
078B-R	988.83	6/26/2007	1.84		0.00		11.74	0.00	986.99		
082B-R	989.90	4/26/2007	2.82		0.00		11.63	0.00	987.08		
089A	985.76	4/27/2007	1.61		0.00		47.20	0.00	984.15		
089B	986.03	4/27/2007	1.96		0.00		8.87	0.00	984.07		
089D-R	987.11	4/26/2007	2.88		0.00		79.20	0.00	984.23		
090A	988.07	4/26/2007	2.82		0.00		51.52	0.00	985.25		
090B	989.10	4/26/2007	5.07		0.00		12.70	0.00	984.03		
095A	987.18	4/26/2007	5.62		0.00		7.01	0.00	981.56		
095B-R	986.24	4/27/2007	4.65		0.00		13.52	0.00	981.59		
111A-R	997.35	4/26/2007	12.12		0.00		52.05	0.00	985.23		
111B-R	997.48	4/26/2007	12.98		0.00		19.70	0.00	984.50		
114A	986.16	4/26/2007	4.71		0.00		52.18	0.00	981.45		
114B-R	985.54	4/26/2007	4.81		0.00		5.08	0.00	980.73		
115A	988.53	4/26/2007	5.90		0.00		42.70	0.00	982.63		
115B	990.90	4/26/2007	9.11		0.00		15.68	0.00	981.79		
51-05	996.44	1/23/2007	10.20		0.00		11.60	0.00	986.24		
51-05	996.44	2/27/2007	9.09	9.05	0.04		11.63	0.00	987.39		
51-05	996.44	4/13/2007	8.60	8.58	0.02		11.30	0.00	987.86	0.012	
51-05	996.44	5/29/2007	7.63		0.00		11.52	0.00	988.81		
51-05	996.44	6/26/2007	10.30		0.00		14.35	0.00	986.14		
51-06	997.36	1/23/2007	10.46		0.00		14.50	0.00	986.90		
51-06	997.36	2/27/2007	11.60		0.00		14.45	0.00	985.76		
51-06	997.36	3/27/2007	Ice Observed Inside	e PVC	NA		14.45	NA	NA		

Table B-1
Groundwater Elevation and Monitoring Recovery/Data
January 2007 - June 2007
Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007
Groundwater Management Area 3

General Electric Company - Pittsfield, Massachusetts

	Measuring Point Elev.	Date	Depth to Water	Depth to LNAPL	LNAPL Thickness	Depth to DNAPL	Total Depth	DNAPL Thickness	Corrected Water Elev.	LNAPL Removed	DNAPL Removed
Name	(feet)	Duic	(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)	(Liters)	(Liters)
51-06	997.36	4/13/2007	9.90		0.00		14.48	0.00	987.46		
51-06	997.36	4/27/2007	9.29		0.00		14.45	0.00	988.07		
51-06	997.36	5/29/2007	10.22		0.00		14.53	0.00	987.14		
51-06	997.36	6/26/2007	10.80		0.00		14.50	0.00	986.56		
51-07	997.08	1/23/2007	10.43		0.00		11.22	0.00	986.65		
51-07	997.08	2/27/2007	Well Buried Under	Ice & Snow	NA			NA	NA		
51-07	997.08	3/27/2007	Buried Under Ice &	Snow	NA			NA	NA		
51-07	997.08	4/13/2007	9.90		0.00		11.22	0.00	987.18		
51-07	997.08	4/27/2007	9.23		0.00		11.20	0.00	987.85		
51-07	997.08	5/29/2007	10.22		0.00		11.24	0.00	986.86		
51-07	997.08	6/26/2007	10.80		0.00		11.23	0.00	986.28		
51-08	997.08	1/3/2007	11.80	10.90	0.90		14.65	0.00	986.12	0.555	
51-08	997.08	1/10/2007	11.80	10.66	1.14		14.66	0.00	986.34	0.703	
51-08	997.08	1/15/2007	10.80	10.60	0.20		14.65	0.00	986.47		
51-08	997.08	1/23/2007	10.61	10.55	0.06		14.64	0.00	986.53		
51-08	997.08	1/30/2007	10.86	10.75	0.11		14.65	0.00	986.32		
51-08	997.08	2/6/2007	11.30	10.85	0.45		14.65	0.00	986.20	0.278	
51-08	997.08	2/13/2007	11.95	11.07	0.88		14.65	0.00	985.95	0.543	
51-08	997.08	2/21/2007	11.85	11.10	0.75		14.68	0.00	985.93	0.463	
51-08	997.08	2/27/2007	12.54	11.30	1.24		14.68	0.00	985.69	0.765	
51-08	997.08	3/7/2007	12.65	11.35	1.30		14.67	0.00	985.64	0.802	
51-08	997.08	3/14/2007	12.35	11.20	1.15		14.63	0.00	985.80	0.709	
51-08	997.08	3/20/2007	11.70	10.90	0.80		14.65	0.00	986.12	0.494	
51-08	997.08	3/28/2007	11.60	10.35	1.25		14.66	0.00	986.64	0.771	
51-08	997.08	4/3/2007	10.28	10.22	0.06		14.68	0.00	986.86		
51-08	997.08	4/13/2007	10.14	10.11	0.03		14.65	0.00	986.97	0.019	
51-08	997.08	4/18/2007	9.63	9.60	0.03		14.64	0.00	987.48		
51-08	997.08	4/24/2007	9.53	9.50	0.03		14.64	0.00	987.58		
51-08	997.08	5/2/2007	9.71	9.68	0.03		14.68	0.00	987.40		
51-08	997.08	5/8/2007	9.83	9.80	0.03		14.64	0.00	987.28		
51-08	997.08	5/15/2007	10.05	10.02	0.03		14.63	0.00	987.06	0.019	
51-08	997.08	5/23/2007	10.29	10.26	0.03		14.64	0.00	986.82		
51-08	997.08	5/29/2007	10.43	10.40	0.03		14.63	0.00	986.68		
51-08	997.08	6/6/2007	10.54	10.50	0.04		14.64	0.00	986.58		
51-08	997.08	6/13/2007	10.65	10.63	0.02		14.64	0.00	986.45		
51-08	997.08	6/20/2007	10.84	10.81	0.03		14.64	0.00	986.27		
51-08	997.08	6/26/2007	11.33	11.04	0.29		14.64	0.00	986.02	0.179	

Table B-1
Groundwater Elevation and Monitoring Recovery/Data
January 2007 - June 2007
Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007

Groundwater Management Area 3
General Electric Company - Pittsfield, Massachusetts

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)	LNAPL Removed (Liters)	DNAPL Removed (Liters)
51-09	997.70	1/23/2007	10.72		0.00		11.58	0.00	986.98		
51-09	997.70	2/27/2007	Dry at 11.58 ft		NA		11.58	NA	<986.12		
51-09	997.70	3/27/2007	9.75		0.00		11.58	0.00	987.95		
51-09	997.70	4/27/2007	9.19		0.00		11.58	0.00	988.51		
51-09	997.70	5/29/2007	10.00		0.00		11.60	0.00	987.70		
51-11	994.37	1/23/2007	7.81		0.00		13.48	0.00	986.56		
51-11	994.37	2/27/2007	9.20		0.00		13.54	0.00	985.17		
51-11	994.37	3/27/2007	6.60		0.00		13.55	0.00	987.77		
51-11	994.37	4/27/2007	6.76		0.00		13.48	0.00	987.61		
51-11	994.37	5/29/2007	8.00		0.00		13.52	0.00	986.37		
51-11	994.37	6/26/2007	8.65		0.00		13.55	0.00	985.72		
51-12	996.55	1/23/2007	7.38		0.00		13.29	0.00	989.17		
51-12	996.55	2/27/2007	Well Buried Under	Ice & Snow	NA			NA	NA		
51-12	996.55	3/27/2007	6.62		0.00		13.30	0.00	989.93		
51-12	996.55	4/27/2007	6.75		0.00		13.31	0.00	989.80		
51-12	996.55	5/29/2007	7.40		0.00		13.30	0.00	989.15		
51-12	996.55	6/26/2007	7.60		0.00		13.32	0.00	988.95		
51-13	997.42	1/23/2007	Dry at 9.80 feet		NA		9.90	NA	<987.62		
51-13	997.42	2/27/2007	Dry at 9.80 ft		NA		9.80	NA	<987.62		
51-13	997.42	3/27/2007	Dry at 9.83 ft		NA		9.80	NA	<987.59		
51-13	997.42	4/27/2007	Dry		NA		9.81	NA	<987.59		
51-13	997.42	5/29/2007	Dry at 9.81 ft		NA		9.81	NA	<987.61		
51-13	997.42	6/26/2007	Dry at 9.80 feet		NA		9.81	NA	<987.62		
51-14	996.77	1/23/2007	10.44		0.00		14.71	0.00	986.33		
51-14	996.77	2/27/2007	11.30		0.00		14.78	0.00	985.47		
51-14	996.77	3/27/2007	10.32		0.00		14.72	0.00	986.45		
51-14	996.77	4/27/2007	9.40		0.00		14.72	0.00	987.37		
51-14	996.77	5/29/2007	10.37		0.00		14.75	0.00	986.40		
51-14	996.77	6/26/2007	11.02		0.00		14.73	0.00	985.75		
51-15	996.43	1/23/2007	9.97	9.92	0.05		14.40	0.00	986.51		
51-15	996.43	2/27/2007	10.75	10.70	0.05		14.40	0.00	985.73		
51-15	996.43	4/13/2007	9.40	9.38	0.02		14.40	0.00	987.05	0.012	
51-15	996.43	4/27/2007	8.84		0.00		14.37	0.00	987.59		
51-15	996.43	5/29/2007	9.76		0.00		14.40	0.00	986.67		
51-15	996.43	6/26/2007	10.25		0.00		11.40	0.00	986.18		
51-16R	996.39	1/23/2007	9.90	9.89	0.01		14.55	0.00	986.50		
51-16R	996.39	2/27/2007	10.85	10.65	0.20		14.55	0.00	985.73		

Table B-1
Groundwater Elevation and Monitoring Recovery/Data
January 2007 - June 2007
Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007
Groundwater Management Area 3

	Measuring		Depth	Depth to	LNAPL	Depth to	Total	DNAPL	Corrected	LNAPL	DNAPL
Well	Point Elev.	Date	to Water	LNAPL	Thickness	DNAPL	Depth	Thickness	Water Elev.	Removed	Removed
Name	(feet)		(ft BMP)	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)	(Liters)	(Liters)
51-16R	996.39	4/13/2007	9.40		0.00		14.52	0.00	986.99		
51-16R	996.39	4/27/2007	8.83		0.00		14.52	0.00	987.56		
51-16R	996.39	5/29/2007	9.74	9.72	0.02		14.55	0.00	986.67		
51-16R	996.39	6/26/2007	10.34	10.30	0.04		14.50	0.00	986.09		
51-17	996.43	1/23/2007	10.50	9.65	0.85		14.50	0.00	986.72	0.524	
51-17	996.43	2/27/2007	11.15	10.50	0.65		14.50	0.00	985.88	0.401	
51-17	996.43	4/13/2007	10.20	9.18	1.02		14.46	0.00	987.18	0.629	
51-17	996.43	4/27/2007	8.97	8.71	0.26		14.48	0.00	987.70		
51-17	996.43	5/29/2007	9.82	9.63	0.19		14.50	0.00	986.79		
51-17	996.43	6/26/2007	11.30	10.03	1.27		14.50	0.00	986.31	0.784	
51-18	997.12	1/23/2007	10.60		0.00		12.58	0.00	986.52		
51-18	997.12	2/27/2007	Well Buried Under	Ice & Snow	NA			NA	NA		
51-18	997.12	3/27/2007	10.60		0.00		12.60	0.00	986.52		
51-18	997.12	4/27/2007	9.60		0.00		12.63	0.00	987.52		
51-18	997.12	5/29/2007	10.55		0.00		12.58	0.00	986.57		
51-18	997.12	6/26/2007	11.10		0.00		12.58	0.00	986.02		
51-19	996.43	1/23/2007	10.43	10.40	0.03		14.08	0.00	986.03		
51-19	996.43	2/27/2007	11.03	10.90	0.13		14.04	0.00	985.52		
51-19	996.43	4/13/2007	9.70	9.62	0.08		14.06	0.00	986.80	0.049	
51-19	996.43	4/27/2007	9.13	9.12	0.01		14.05	0.00	987.31		
51-19	996.43	5/29/2007	10.12	10.04	0.08		14.10	0.00	986.38		
51-19	996.43	6/26/2007	10.59	10.56	0.03		14.10	0.00	985.87		
51-21	1001.49	1/3/2007	15.40	Р	< 0.01		NM	0.00	986.09	4.164	
51-21	1001.49	1/10/2007	15.10	Р	< 0.01		NM	0.00	986.39	2.271	
51-21	1001.49	1/16/2007	14.97	Р	< 0.01		NM	0.00	986.52	3.407	
51-21	1001.49	1/23/2007	15.03	Р	< 0.01		NM	0.00	986.46	1.137	
51-21	1001.49	1/31/2007	15.30	Р	< 0.01		NM	0.00	986.19	2.08	
51-21	1001.49	2/8/2007	16.02	Р	< 0.01		NM	0.00	985.47	4.164	
51-21	1001.49	2/16/2007	15.69	Р	< 0.01		NM	0.00	985.80	6.246	
51-21	1001.49	2/22/2007	15.80	Р	< 0.01		NM	0.00	985.69	8.338	
51-21	1001.49	2/28/2007	15.98	15.97	0.01		NM	0.00	985.52	10.410	
51-21	1001.49	3/8/2007	16.90	16.89	0.01		NM	0.00	984.60	6.246	
51-21	1001.49	3/13/2007	15.85	15.84	0.01		NM	0.00	985.65	16.656	
51-21	1001.49	3/22/2007	15.39	P	< 0.01		NM	0.00	986.10	5.300	
51-21	1001.49	3/30/2007	14.63	P	< 0.01		NM	0.00	986.86	3.142	
51-21	1001.49	4/6/2007	14.45	P	< 0.01		NM	0.00	987.04	3.146	
51-21	1001.49	4/11/2007	14.60	P	< 0.01		NM	0.00	986.89	2.085	

Table B-1
Groundwater Elevation and Monitoring Recovery/Data
January 2007 - June 2007
Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007
Groundwater Management Area 3

General Electric Company - Pittsfield, Massachusetts

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)	LNAPL Removed (Liters)	DNAPL Removed (Liters)
51-21	1001.49	4/19/2007	13.80	Р	< 0.01		NM	0.00	987.69	5.224	
51-21	1001.49	4/26/2007	14.02	Р	< 0.01		NM	0.00	987.47	2.274	
51-21	1001.49	5/3/2007	14.19	Р	< 0.01		NM	0.00	987.30	5.11	
51-21	1001.49	5/9/2007	14.32	Р	< 0.01		NM	0.00	987.17	3.03	
51-21	1001.49	5/15/2007	14.55	Р	< 0.01		NM	0.00	986.94	3.03	
51-21	1001.49	5/22/2007	14.70	Р	< 0.01		NM	0.00	986.79	1.14	
51-21	1001.49	5/30/2007	14.95		0.00		NM	0.00	986.54	8.34	
51-21	1001.49	6/15/2007	15.18	Р	< 0.01		NM	0.00	986.31	3.15	
51-21	1001.49	6/19/2007	15.30	Р	< 0.01		NM	0.00	986.19	1.14	
51-21	1001.49	2/28/2007	14.95	Р	< 0.01		NM	0.00	986.54	5.31	
51-21	1001.49	6/27/2007	14.98	Р	< 0.01		NM	0.00	986.51	3.03	
59-01	997.52	1/23/2007	10.90	10.88	0.02		11.43	0.00	986.64		
59-01	997.52	2/27/2007	Dry at 11.41 ft		NA		11.41	NA	<986.1		
59-01	997.52	4/13/2007	11.31		0.00		11.42	0.00	986.21		
59-01	997.52	4/27/2007	9.84		0.00		11.39	0.00	987.68		
59-01	997.52	5/29/2007	10.70		0.00		11.40	0.00	986.82		
59-01	997.52	6/26/2007	11.05		0.00		11.40	0.00	986.47		
59-03R	997.64	1/23/2007	11.60	11.00	0.60		17.05	0.00	986.60	0.370	
59-03R	997.64	2/27/2007	12.50	11.80	0.70		17.05	0.00	985.79	0.432	
59-03R	997.64	4/13/2007	11.36	10.53	0.83		17.03	0.00	987.05	0.512	
59-03R	997.64	4/27/2007	11.00	9.84	1.16		17.04	0.00	987.72		
59-03R	997.64	5/29/2007	11.28	10.80	0.48		17.04	0.00	986.81	0.296	
59-03R	997.64	6/26/2007	11.96	11.35	0.61		17.05	0.00	986.25	0.376	
59-07	997.96	1/23/2007	11.32	11.30	0.02		23.54	0.00	986.66		
59-07	997.96	2/27/2007	12.13	12.10	0.03		23.50	0.00	985.86		
59-07	997.96	4/13/2007	10.86	10.80	0.06		23.52	0.00	987.16	0.037	
59-07	997.96	4/27/2007	10.22	10.21	0.01		23.51	0.00	987.75		
59-07	997.96	5/29/2007	11.12	11.10	0.02		23.52	0.00	986.86		
59-07	997.96	6/26/2007	11.65	11.62	0.03		23.50	0.00	986.34		
GMA3-10	997.54	1/3/2007	11.36	11.25	0.11		17.93	0.00	986.28		
GMA3-10	997.54	1/10/2007	11.24	11.10	0.14		17.90	0.00	986.43		
GMA3-10	997.54	1/15/2007	11.09	10.92	0.17		17.89	0.00	986.61		
GMA3-10	997.54	1/23/2007	11.00	10.80	0.20		17.88	0.00	986.73		
GMA3-10	997.54	1/30/2007	11.06	10.90	0.16		17.88	0.00	986.63		
GMA3-10	997.54	2/6/2007	11.21	11.10	0.11		17.87	0.00	986.43		
GMA3-10	997.54	2/13/2007	11.54	11.27	0.27		17.84	0.00	986.25	0.167	
GMA3-10	997.54	2/21/2007	11.95	11.45	0.50		17.90	0.00	986.06	0.308	

Table B-1
Groundwater Elevation and Monitoring Recovery/Data
January 2007 - June 2007
Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007

Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts

Well	Measuring Point Elev.	Date	Depth to Water	Depth to	LNAPL Thickness	Depth to DNAPL	Total Depth	DNAPL Thickness	Corrected Water Elev.	LNAPL Removed	DNAPL Removed
Name	(feet)	0/07/0007	(ft BMP) 11.84	(ft BMP)	(feet)	(ft BMP)	(ft BMP)	(feet)	(feet)	(Liters)	(Liters)
GMA3-10	997.54	2/27/2007		11.56	0.28		_	0.00	985.96	0.173	
GMA3-10 GMA3-10	997.54 997.54	3/7/2007 3/14/2007	11.86	11.65	0.21 0.14		17.84 17.84	0.00	985.88 985.88		
GMA3-10 GMA3-10	997.54	3/14/2007	11.79 11.44	11.65 11.37	0.14		17.84	0.00	985.88		
GMA3-10	997.54	3/28/2007	11.06	10.90	0.07		17.83	0.00	986.63		
GMA3-10	997.54	4/3/2007	10.69	10.55	0.16		17.84	0.00	986.98		
GMA3-10 GMA3-10	997.54			10.35			17.85		987.16		
		4/13/2007	10.80		0.45			0.00		0.278	
GMA3-10	997.54	4/18/2007	10.50	9.90	0.60		17.84	0.00	987.60	0.370	
GMA3-10	997.54	4/24/2007	10.20	9.65	0.55		17.84	0.00	987.85	0.339	
GMA3-10	997.54	5/2/2007	10.60	9.75	0.85		17.84	0.00	987.73	0.524	
GMA3-10	997.54	5/8/2007	10.45	9.92	0.53		17.84	0.00	987.58	0.327	
GMA3-10	997.54	5/15/2007	10.80	10.09	0.71		17.83	0.00	987.40	0.438	
GMA3-10	997.54	5/23/2007	10.75	10.35	0.40		17.83	0.00	987.16	0.247	
GMA3-10	997.54	5/29/2007	10.85	10.50	0.35		17.84	0.00	987.02	0.216	
GMA3-10	997.54	6/6/2007	11.03	10.65	0.38		17.83	0.00	986.86	0.234	
GMA3-10	997.54	6/13/2007	11.15	10.76	0.39		17.84	0.00	986.75	0.241	
GMA3-10	997.54	6/20/2007	11.26	10.95	0.31		17.83	0.00	986.57	0.191	
GMA3-10	997.54	6/26/2007	11.21	11.12	0.09		17.83	0.00	986.41		
GMA3-11	997.25	1/23/2007	10.17		0.00		18.27	0.00	987.08		
GMA3-11	997.25	2/27/2007	11.05		0.00		18.30	0.00	986.20		
GMA3-11	997.25	3/27/2007	10.30		0.00		18.28	0.00	986.95		
GMA3-11	997.25	4/27/2007	9.20	9.11	0.09		18.38	0.00	988.13		
GMA3-11	997.25	5/29/2007	9.75		0.00		18.28	0.00	987.50		
GMA3-11	997.25	6/26/2007	10.40		0.00		18.30	0.00	986.85		
GMA3-12	997.84	1/3/2007	11.74	11.60	0.14		21.20	0.00	986.23		
GMA3-12	997.84	1/10/2007	11.58	11.40	0.18		21.25	0.00	986.43		
GMA3-12	997.84	1/15/2007	11.47	11.25	0.22		21.24	0.00	986.57		
GMA3-12	997.84	1/23/2007	11.35	11.16	0.19		21.25	0.00	986.67		
GMA3-12	997.84	1/30/2007	11.41	11.30	0.11		21.22	0.00	986.53		
GMA3-12	997.84	2/6/2007	11.54	11.48	0.06		21.24	0.00	986.36		
GMA3-12	997.84	2/13/2007	11.80	11.63	0.17		21.22	0.00	986.20		
GMA3-12	997.84	2/21/2007	12.10	11.80	0.30		21.24	0.00	986.02	0.741	
GMA3-12	997.84	2/27/2007	12.06	11.92	0.14		21.24	0.00	985.91		
GMA3-12	997.84	3/7/2007	12.61	12.01	0.60		21.24	0.00	985.79	0.370	
GMA3-12	997.84	3/14/2007	12.09	11.95	0.14		21.24	0.00	985.88		
GMA3-12	997.84	3/20/2007	12.03	11.68	0.35		21.24	0.00	986.14	0.865	
GMA3-12	997.84	3/28/2007	11.30	11.20	0.10		21.24	0.00	986.63		

Table B-1
Groundwater Elevation and Monitoring Recovery/Data
January 2007 - June 2007
Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007
Groundwater Management Area 3

General Electric Company - Pittsfield, Massachusetts

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)	LNAPL Removed (Liters)	DNAPL Removed (Liters)
GMA3-12	997.84	4/3/2007	11.00	10.86	0.14		21.24	0.00	986.97		
GMA3-12	997.84	4/13/2007	10.94	10.73	0.21		21.24	0.00	987.10	0.519	
GMA3-12	997.84	4/18/2007	10.30	10.25	0.05		21.23	0.00	987.59		
GMA3-12	997.84	4/24/2007	10.15	10.09	0.06		21.25	0.00	987.75		
GMA3-12	997.84	5/2/2007	10.30	10.21	0.09		21.24	0.00	987.62		
GMA3-12	997.84	5/8/2007	10.40	10.35	0.05		21.25	0.00	987.49		
GMA3-12	997.84	5/15/2007	10.62	10.55	0.07		21.24	0.00	987.29	0.173	
GMA3-12	997.84	5/23/2007	10.78	10.75	0.03		21.23	0.00	987.09		
GMA3-12	997.84	5/29/2007	11.00	10.92	0.08		21.24	0.00	986.91		
GMA3-12	997.84	6/6/2007	11.10	11.00	0.10		21.22	0.00	986.83		
GMA3-12	997.84	6/13/2007	11.31	11.19	0.12		21.22	0.00	986.64		
GMA3-12	997.84	6/20/2007	11.35	11.32	0.03		21.22	0.00	986.52		
GMA3-12	997.84	6/26/2007	11.57	11.50	0.07		21.21	0.00	986.34		
GMA3-13	997.73	1/3/2007	11.54	11.45	0.09		17.58	0.00	986.27	0.056	
GMA3-13	997.73	1/10/2007	11.35	11.30	0.05		17.58	0.00	986.43	0.031	
GMA3-13	997.73	1/15/2007	11.15	11.10	0.05		17.54	0.00	986.63	0.031	
GMA3-13	997.73	1/23/2007	11.09	10.95	0.14		17.56	0.00	986.77	0.086	
GMA3-13	997.73	1/30/2007	11.31	11.05	0.26		17.53	0.00	986.66	0.160	
GMA3-13	997.73	2/6/2007	11.35	11.28	0.07		17.51	0.00	986.45	0.043	
GMA3-13	997.73	2/13/2007	11.70	11.46	0.24		17.51	0.00	986.25	0.148	
GMA3-13	997.73	2/21/2007	11.90	11.60	0.30		17.51	0.00	986.11	0.185	
GMA3-13	997.73	2/27/2007	11.99	11.80	0.19		17.52	0.00	985.92	0.117	
GMA3-13	997.73	3/7/2007	11.98	11.85	0.13		17.52	0.00	985.87	0.080	
GMA3-13	997.73	3/14/2007	11.92	11.80	0.12		17.52	0.00	985.92	0.074	
GMA3-13	997.73	3/20/2007	11.58	11.53	0.05		17.51	0.00	986.20	0.031	
GMA3-13	997.73	3/28/2007	11.18	11.13	0.05		17.51	0.00	986.60	0.031	
GMA3-13	997.73	4/3/2007	10.80	10.75	0.05		17.51	0.00	986.98	0.031	
GMA3-13	997.73	4/13/2007	10.76	10.55	0.21		17.52	0.00	987.17	0.130	
GMA3-13	997.73	4/18/2007	10.55	10.10	0.45		17.51	0.00	987.60	0.278	
GMA3-13	997.73	4/24/2007	10.11	9.85	0.26		17.51	0.00	987.86	0.160	
GMA3-13	997.73	5/2/2007	10.30	9.95	0.35		17.50	0.00	987.76	0.216	
GMA3-13	997.73	5/8/2007	10.14	10.11	0.03		17.50	0.00	987.62	0.019	
GMA3-13	997.73	5/15/2007	10.34	10.30	0.04		17.50	0.00	987.43	0.025	
GMA3-13	997.73	5/23/2007	10.58	10.55	0.03		17.50	0.00	987.18	0.019	
GMA3-13	997.73	5/29/2007	10.88	10.68	0.20		17.50	0.00	987.04	0.123	
GMA3-13	997.73	6/6/2007	10.92	10.80	0.12		17.44	0.00	986.92	0.074	
GMA3-13	997.73	6/13/2007	11.02	10.95	0.07		17.48	0.00	986.78	0.043	

Table B-1
Groundwater Elevation and Monitoring Recovery/Data
January 2007 - June 2007
Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007

Groundwater Management Area 3
General Electric Company - Pittsfield, Massachusetts

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)	LNAPL Removed (Liters)	DNAPL Removed (Liters)
GMA3-13	997.73	6/20/2007	11.18	11.10	0.08	(It DIVII)	17.44	0.00	986.62	0.049	(Liters)
GMA3-13	997.73	6/26/2007	11.40	11.30	0.10		17.48	0.00	986.42	0.062	
GMA3-14	997.42	1/23/2007	10.47		0.10		16.74	0.00	986.95	0.002	
GMA3-14	997.42	2/27/2007	11.04		0.00		16.74	0.00	986.38		
GMA3-14	997.42	3/27/2007	10.55		0.00		16.74	0.00	986.87		
GMA3-14	997.42	4/27/2007	9.40		0.00		16.67	0.00	988.02		
GMA3-14	997.42	5/29/2007	10.30		0.00		16.74	0.00	987.12		
GMA3-14	997.42	6/26/2007	10.88		0.00		16.74	0.00	986.54		
GMA3-15	996.74	1/23/2007	10.94		0.00		17.19	0.00	985.80		
GMA3-15	996.74	4/26/2007	9.94		0.00		17.19	0.00	986.80		
GMA3-16	989.26	4/20/2007	Water at Top of PV		NA		13.00	NA	980.80 NA		
	989.26	4/13/2007		ı		12.96	13.00	0.04			0.05
GMA3-16			0.80		0.00				988.46		
GMA3-16	989.26	5/8/2007	1.28		0.00		13.02	0.00	987.98		
GMA3-16	989.26	5/15/2007	1.60		0.00		13.00	0.00	987.66		
GMA3-16	989.26	5/23/2007	1.50		0.00		13.00	0.00	987.76		
GMA3-16	989.26	5/29/2007	1.80		0.00		13.00	0.00	987.46		
GMA3-16	989.26	6/6/2007	1.00		0.00		13.00	0.00	988.26		
GMA3-16	989.26	6/13/2007	1.61		0.00		13.00	0.00	987.65		
GMA3-16	989.26	6/20/2007	2.00		0.00		13.00	0.00	987.26		
GMA3-16	989.26	6/26/2007	2.04		0.00		13.00	0.00	987.22		
GMA3-2	991.94	4/26/2007	5.85		0.00		14.76	0.00	986.09		
GMA3-3	990.45	4/26/2007	0.60		0.00		21.02	0.00	989.85		
GMA3-4	994.6	4/27/2007	5.71		0.00		13.18	0.00	988.89		
GMA3-5	993.67	4/26/2007	6.32		0.00		15.44	0.00	987.35		
GMA3-6	1003.22	4/27/2007	15.31		0.00		23.55	0.00	987.91		
GMA3-7	1000.17	1/23/2007	13.21		0.00		19.78	0.00	986.96		
GMA3-7	1000.17	4/26/2007	12.03		0.00		19.67	0.00	988.14		
GMA3-8	996.24	4/26/2007	8.76		0.00		15.52	0.00	987.48		
GMA3-9	992.39	4/27/2007	3.45		0.00		12.62	0.00	988.94		
OBG-2	992.2	4/26/2007	3.77		0.00		14.70	0.00	988.43		
UB-MW-10	995.99	1/23/2007	9.30		0.00		14.85	0.00	986.69		
UB-MW-10	995.99	2/27/2007	PVC is Iced Over		NA			NA	NA		
UB-MW-10	995.99	3/27/2007	9.35		0.00		14.78	0.00	986.64		
UB-MW-10	995.99	4/27/2007	8.26		0.00		14.67	0.00	987.73		
UB-MW-10	995.99	5/29/2007	9.20		0.00		14.74	0.00	986.79		
UB-MW-10	995.99	6/26/2007	9.75		0.00		14.70	0.00	986.24		
UB-PZ-3	998.15	1/23/2007	11.86	11.65	0.21		13.42	0.00	986.49		

Table B-1 Groundwater Elevation and Monitoring Recovery/Data January 2007 - June 2007

Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007 Groundwater Management Area 3

General Electric Company - Pittsfield, Massachusetts

Well Name	Measuring Point Elev. (feet)	Date	Depth to Water (ft BMP)	Depth to LNAPL (ft BMP)	LNAPL Thickness (feet)	Depth to DNAPL (ft BMP)	Total Depth (ft BMP)	DNAPL Thickness (feet)	Corrected Water Elev. (feet)	LNAPL Removed (Liters)	DNAPL Removed (Liters)
UB-PZ-3	998.15	2/27/2007	12.57	12.40	0.17		13.41	0.00	985.74	0.059	
UB-PZ-3	998.15	4/13/2007	10.50	10.35	0.15		13.42	0.00	987.79	0.023	
UB-PZ-3	998.15	4/27/2007	12.00		0.00		13.09	0.00	986.15		
UB-PZ-3	998.15	5/29/2007	11.65	11.40	0.25		13.91	0.00	986.73	0.087	
UB-PZ-3	998.15	6/26/2007	12.10	11.95	0.15		13.43	0.00	986.19	0.052	
Unkamet Brook S	Staff Gauges										
GMA3-SG-2	981.61	4/27/2007	3.05	See Note 6 re	garding depth	to water			984.66		
GMA3-SG-3	989.42	4/27/2007	2.03	See Note 6 re	garding depth	to water			991.45		
GMA3-SG-4	989.71	4/26/2007	0.78	See Note 6 re	garding depth	to water			990.49		
GMA 4 Monitorin	g Wells Adjac	ent to GMA3									
060B-R	1,002.79	4/24/2007	13.65		0.00		20.75	0.00	989.14		
GMA4-3	1,003.95	1/17/2007	17.40		0.00		26.25	0.00	986.55		
GMA4-3	1,003.95	2/27/2007	18.00		0.00		26.25	0.00	985.95	1	
GMA4-3	1,003.95	3/27/2007	17.55		0.00		26.25	0.00	986.40	1	
GMA4-3	1,003.95	4/24/2007	16.10		0.00		26.24	0.00	987.85		
GMA4-3	1,003.95	5/29/2007	16.85		0.00		26.25	0.00	987.10		
GMA4-3	1,003.95	6/26/2007	17.50		0.00		26.25	0.00	986.45		
RF-14	1,001.59	4/24/2007	6.61		0.00		22.62	0.00	994.98		

Notes:

- 1. ft BMP feet Below Measuring Point.
- 2. --- indicates LNAPL or DNAPL was not present in a measurable quantity.
- 3. NA indicates information not available.
- 4. NM indicates information not measured.
- 5. P indicates that LNAPL is present at a thickness that is < 0.01 feet, the corresponding thickness is recorded as such.
- 6. Survey reference points were established on the GMA 3 staff gauges. The "Depth to Water" value(s) provided in the above table refer to the vertical distance from the surveyed reference point to the water surface.

ARCADIS BBL

Appendix C

Field Sampling Data

Well No Key No		MS	MSD		Site/GMA Name		3 GE 1	Pittsfield	<u>J</u>
•	ckground (ppm)) 1	-	Jain	•		/07		
	eadspace (ppm)				Date Weather		Total Co.	10-01	 -
	. 4.1				Weather	Sunny,	Clear , VI	(d 108	
WELL INFOR	RMATION						Sample Time	1-1-	
Referen	ce Point Marked	? Y N					Sample III		F /2:3
	f Reference Poin		Meas, From	i 1			Duplicate IE	——————————————————————————————————————	
	Well Diamete	r	_				MS/MSE		11181
· Scre	en Interval Depti	45-5	Meas. From	t			Split Sample ID		37 MIO U
W	ater Table Depth	, <u>`</u> ,,,					Opin Carripis IE	·	
	Well Depth	55,00	_ Meas. From	TIC		Required	Analytics	al Parameters:	Collected
Length	of Water Column	55	_	1.40		(X)		s (Std. list)	(X)
Volume	e of Water in Wel	I	-			()		(Exp. list)	. ()
intake Deptr	of Pump/Tubing	47.5	_ Meas. From		_	(X)		vocs ImAel	1
						(Δ)		is (Total)	γ (χ)
Reference Po	int Identification:					()		(Dissolve 1)	1 1
TIC: Top of in	iner (PVC) Casin	g				()		organics (Total)	()
	Outer (Protective)) Casing				()		anics (Dissolved)	()
Grade/8GS: 0	Ground Surface					(,)		ide (Dissolved)	()
						()	,	ide (Dissolved)	()
Redevelop?	YN					()		Ds/PCDFs	()
			-			()	Pesticida	s/Herbicides	()
						(X)		Attenuation	(X)
						()		(Specify)	()
	INFORMATION	1610							, ,
	Pump Start Time								
	Pump Stop Time		-		Evacuation Me	thod: Bailer () Bladder i	oump () ,	
	utes of Pumping				Peristaltic Pum	ıp(X) ∧ Su	bmersible Pump (ecify ()
	Water Removed				Pump Type:	Gec	pump	YST SS	6 KPS
D	id Weil Go Dry?	Y N			Sampleş collec	ted by same me	thod as evaquatio	n? 🐬 N (spec	ify)
		🗻	*						
	Water Quality M	leter Type(s) / Si	enal Numbers:		***************************************			· · · · · · · · · · · · · · · · · · ·	····
	Pump	Yotal				I		,	
Time	Rate	Gallons	Water	Temp.	pH	Sp. Cond.	Turbidity	DO	ORP
l "ille	(L/min.)	Removed	Level	(Celsius)		(mS/cm)	(NTU)	(mg/l)	(mV)
1055	2 - 2	Removed	(ft TIC)	[3%]*	[0.1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	[10 mV]*
1059	LOC)		1.74				10		
1180	200		7.95	11.20	7.50	0.418	16	0.97	237.7
110)	100		1.70	10.88	7.14	0.4/8	5	(3.43)	242.2
11 1C	208		~ .45	10.84	7.09	0416	4	0,37	224,1
1115	200		1.95	16,85	7.07	0.415	8	C.27	2012
112C	200		7,95	10.86	7.14	0414	 	0.32	146.0
1125	200		7.95	10.92	7./5	C.414	16	O-37	112.9
1130	200		7.45	10.98	7,32	0.414	16	0,24	69.4
* The stabilization	on criteria for eac	h field paramete	r (three consec		ollected at 3- to :		ls) is listed in each	solumn hooding	
OBSERVATION		•	,	and towarings o		o minate sterve	is is is led in each	column neading.	
ODSERVATIO!	NS/SAMPLING M	ETHOD DEVIA	TIONS		~~				
ODSERVATIO!	NS/SAMPLING M	METHOD DEVIA	TIONS						
COSERVATION	NS/SAMPLING N	METHOD DEVIA	TIONS						
OBSERVATION	NS/SAMPLING N	METHOD DEVIA	TIONS						
	NS/SAMPLING N	METHOD DEVIA	TIONS	4					
SAMPLE DEST	NS/SAMPLING N	METHOD DEVIA	TIONS	1			•		t
SAMPLE DEST Laboratory:	NS/SAMPLING N	METHOD DEVIA		4			\$,
SAMPLE DEST Laboratory:	NS/SAMPLING N	METHOD DEVIA			Field Sampling		•		,

185-11 81	2A mojuso		
Well No.		Site/GMA Name	
*		Sampling Personnel	
		Date	
		Weather	

WELL INFORMATION - See Page 1

Time	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH [0,1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]	DO (mg/l)	ORP (mV)
1135	200		7.95	11,00	7.39	0.414	15.6	[10% or 0.1 mg/l]*	[10 mV]*
1140	200		7.95	11.01	7.60	0.415	14.0	0.34	3,2
1145	760		7.45	10.92	7.53	0415	12,0	0,28	-18.0
<u>//50</u>	200		7.95	10.97	By 7.57		12.0	0.34	-27.0
1155	200		7,95	10.98	7.57	0.416	1.1	0.36	-23.8
1200	200		7.95	10,94	7.59	0.416	10	0.34	-7/2 7
1205	20C		796	11,01	7.61	0.416	E	0.27	-32.2
1210	700		7.96	10.94	7.70	0417	6	0.25	-318
12/5	200		1.96	11-C7	7066	0.417	Ť	0.77	-35.5
1220	200		7.96	10.97	7.69	0.418	_ 5	0.22	~34.4
1270	200			11.02	7.65	0.417		0.24	-34.4
				+					- / (
····									
									
			·						
				~					
									
							-		
									
									
		<u> </u>							

THE SIZURIZATION CRITICAL TOT EACH field parameter (three concention as a first in the concention and the concention as a first in the concention and the concention are a first in the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the concention are a first in the concention and the	
The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is	s listed in each asluma hazatu.
ODOGEN CANADA CONTRACTOR OF THE CONTRACTOR OF TH	s listed in each coldinit heading,
OBSERVATIONS/SAMPLING METHOD DEVIATIONS	· ·
THE MENTION OF A VIOLES	
	

	7-3			_	site/GMA Name pling Personnel Date Weather	KIC RA	3/B 5/7/0 4 63°F	Pittsfiel	<u>d</u>
Height of	ce Point Marked Reference Poin Well Diamete	t r	Meas. From		,		Sample Time Sample ID Duplicate ID MS/MSD	16/4	
	en Interval Depti ater Table Depti	10.42	Meas. From		<u> </u>		Split Sample ID		
•	Well Depth of Water Column of Water in Wel	44.4	Meas. From ع	776		Required	VOC:	i Parameters: s (Std. list) (Exp. list)	Collected (>V)
Intake Depth	of Pump/Tubing		Meas, From	Trc		(19)	s	vocs limited	() (>d)
TIC: Top of In	nt Identification: ner (PVC) Casin Duter (Protective Ground Surface	-				() () () () () () ()	PCBs i Metals/Inorga Metals/Inorga EPA Cyani PAC Cyani PCDE Pesticide	s (Total) Dissolved) rganics (Total) Inics (Dissolved) de (Dissolved) de (Dissolved) de (Dissolved) ds/PCDFs s/Herbicides Attenuation	() () () () () ()
P P Minu	INFORMATION ump Start Time ump Stop Time stes of Pumping Vater Removed	9 40 1 3 20 140			Evacuation Me Peristallic Pum			(Specify) 'ump (EX) Other/Spec	() ify-()
	kt Well Go Dry? Water Quality M	Y N	1	7	Pump Type: Samples collec	ted by same m	ethod as evacuation	D	
	Water Quality M Pump Rate	Y N leter Type(s) / S Total Gallons	Serial Numbers: Water Level	Temp. (Celsius)	Samples collec	Sp. Cond. (mS/cm)	Hach : Turbidity (NTU)	N (specify Z / 00 / P / Tu v	0RP (mV)
Di	kt Well Go Dry? Water Quality M Pump	Y (N) leter Type(s) / S Total	Serial Numbers:	•	Samples collect	Sp. Cond.	Hach : Turbidity (NTU)	N (specify	ORP
Di	Water Quality M Pump Rate (L/min.)	Y N leter Type(s) / S Total Gallons	Water Level (ft TIC)	(Celsius)	Samples collec	Sp. Cond. (mS/cm)	Hach : Turbidity (NTU)	N (specify Z / 00 / P / Tu v	0RP (mV)
Di	Water Quality M Pump Rate (Umin.)	Y N leter Type(s) / S Total Gallons	Water Level (ft TIC)	(Celsius)	Samples collec	Sp. Cond. (mS/cm)	Turbidity (NTU) [10% or 1 NTU]*	N (specify Z / 00 / P / Tu v	0RP (mV)
71me 1:745 1:050 1:055	Water Quality M Pump Rate (Umin.)	Y N leter Type(s) / S Total Gallons	Water Level (ft TIC)	(Celsius)	Samples collec	Sp. Cond. (mS/cm)	Hach : Turbidity (NTU)	N (specify Z / 00 / P / Tu v	0RP (mV)
Time 1745 1050 1065 100	Water Quality M Pump Rate (Umin.)	Y N leter Type(s) / S Total Gallons	Water Level (ft TIC)	(Celsius)	Samples collec	Sp. Cond. (mS/cm)	Turbidity (NTU) [10% or 1 NTU]*	N (specify Z / 00 / P / Tu v	0RP (mV)
71me 1:245 1:050 1:055 1:100 1:105	Water Quality M Pump Rate (Umin.)	Y N leter Type(s) / S Total Gallons	Water Level (ft TIC)	(Celsius)	Samples collec	Sp. Cond. (mS/cm)	Turbidity (NTU) [10% or 1 NTU]*	N (specify Z / 00 / P / Tu v	0RP (mV)
Time 1745 1050 1065 100	Water Quality M Pump Rate (Umin.)	Y N leter Type(s) / S Total Gallons	Water Level (ft TIC) 8.52. 8.90 9.38 9.73 9.90 9.92	(Celsius)	Samples collec	Sp. Cond. (mS/cm)	Turbidity (NTU) [10% or 1 NTU]*	N (specify Z / 00 / P / Tu v	0RP (mV)
71me 1:245 1:050 1:055 1:100 1:105	Water Quality M Pump Rate (Umin.)	Y N leter Type(s) / S Total Gallons	Water Level (ft TIC)	(Celsius)	Samples collec	Sp. Cond. (mS/cm)	Turbidity (NTU) [10% or 1 NTU]*	N (specify Z / 00 / P / Tu v	0RP (mV)
Time 1745 1050 1065 1100 1105 1115 1020 • The stabilization	Water Quality M Pump Rate M(Umin.) 200 200 criteria for each	Y R leter Type(s) / S Total Gallons Removed	Water Level (R TIC) 8.52. 8,90 9.38 9.73 9.90 9.92 10.02 10.19 ler (three consecut	(Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) (10% or 0.1 mg/l)*	0RP (mV)

	WELL INFOR	MATION - See F	laco d			Date Weather				
	Time	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO (mg/t)	ORP (mV)
25	102	200		10-24	[5%]	[0.1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/i]*	[10 mV
~_	1130	200		10,28				78		
مار	1135	900		10.31				85		ļ
8 85	1140	160		10.32				120		
	1145			9,55				140		
	1150			9.78				70		
	1156			9.69				56		
	13-100			9.66				47		
			·	9.66.	10.17	00-	\	48		
İ	1315			9,67	12.62	8.33	6116	30	0.45	-151,
	1220			9.60	12.20 12.18	8,20	6.113	38	0.22	-/42,
ĺ	1225			9.58	11.83	704	6.11	17	0.16	<u>-/54.</u>
	123D			9,58	11.89	7.9.2	6.124	17	0.16	-150
	1235	\checkmark			11.89	7.90	6.124		0.17.	<u>-160</u> -159
							0.10()	/ (9	0,10	. / 3/
		•					***************************************			
ļ										
-										
-										
-										
-										~
ŀ										
 										·
┢										***************************************
F										
										
<u>L</u>	The stabilization	r criteria for each	field paramete	r (three consecu	five readings col	Igotod at 2. to 5) is listed in each co		

1205 - Hockets up VSI
G:IGEIGE_Pittefloid_Genoral_ConlidentianReports and Presentations PSP_QAPP UpdateREV64VAllachment D-2GWsamplorm.uls

Weil No	o/b/	SZ			au min	CU	12/1-	011.C	e li
Key No	7-0			=	Site/GMA Nam	———————————————————————————————————————	Of the	Setts fiel	d
PID Ba	ckground (ppn	n) i		San	npling Personn		CIKAI	3	
					,Dat		<u> </u>		
					Weathe	r <u>′′ \$</u>		<u>7,2</u>	
VELL INFOR	RMATION						()	1200	1155
Referen	ice Point Market	1? Y N					Sample Tim		1100
	of Reference Poi		Meas Emi	m			Sample II		<u>K</u>
	Well Diamet		Micas. 7 To:		·		Duplicate II	- <u>179 </u>	<u>'</u>
- Scre	en Interval Dep		Meas. From	m			MS/MS(,	
	Vater Table Dep		Meas. From		 -	-	Split Sample II	·	,
	Well Dept		Meas, From	·		Da			
Length	of Water Colum		Σ_	"	_	Required		al Parameters:	Collected
	e of Water in We					(*/ 2)		s (\$td. list)	()0)
	n of Pump/Tubin		— Meas Fron	n		(*)		s (Exp. list)	()
•		<u> </u>		"		()		SVOCs	()
eference Poi	int Identification:					()		Bs (Total)	()
	ner (PVC) Casi					· ()		(Dissolved)	()
	Outer (Protective					()		organics (Total)	()
	Ground Surface					()		anics (Dissolved)	()
						()		ide (Dissolved)	()
edèvelop?	Y N					()		ide (Dissolved)	()
						()		Ds/PCDFs	()
						()		es/Herbicides	()
						()0)	Natural	Attenuation	(حاد)
ACUATION	INFORMATION	4	•			()	Other	(Specify)	()
	ump Start Time								
Min	Pump Stop Time utes of Pumping				Evacuation Me	thod: Bailer () Bladder i	, () qmu ^c	
7417110	aces of a multiplita								
Volume of V	Nater Removed				Peristaltic Pun		bmersible Pump (ecify ()
Di	Vater Removed id Well Go Dry?	YN			Pump Type:	op() Su	bmersible Pump (
Di	Vater Removed id Well Go Dry?	Y N feter Type(s) / S Total	Serial Numbers:	Temp.	Pump Type:	ted by same me	ethod as evacuation) Other/Sp	ORP
Di	Vater Removed id Well Go Dry? Water Quality N	Y N feter Type(s) / S	Serial Numbers: Water Level	(Celsius)	Pump Type: Samples collect	sp () Sunted by same me Sp. Cond. (mS/cm)	ethod as evacuation Turbidity (NTU)) Other/Sp N? Y N (spec	ORP
Di	Water Removed id Well Go Dry? Water Quality N Pump Rate	Y N feter Type(s) / S Total Gallons	Serial Numbers: Water Level (ft TIC)	1	Pump Type: Samples collec	ted by same me	ethod as evacuation) Other/Sp n? Y N (spec	ORP
Di	Water Removed id Well Go Dry? Water Quality N Pump Rate	Y N feter Type(s) / S Total Gallons	Serial Numbers: Water Level	(Celsius)	Pump Type: Samples collect	sp () Sunted by same me Sp. Cond. (mS/cm)	ethod as evacuation Turbidity (NTU)) Other/Sp N? Y N (spec	ORP
Di	Water Removed id Well Go Dry? Water Quality N Pump Rate	Y N feter Type(s) / S Total Gallons	Serial Numbers: Water Level (ft TIC)	(Celsius)	Pump Type: Samples collect	sp () Sunted by same me Sp. Cond. (mS/cm)	ethod as evacuation Turbidity (NTU)) Other/Sp N? Y N (spec	ORP
Di	Water Removed id Well Go Dry? Water Quality N Pump Rate	Y N feter Type(s) / S Total Gallons	Serial Numbers: Water Level (ft TIC)	(Celsius)	Pump Type: Samples collect	sp () Sunted by same me Sp. Cond. (mS/cm)	ethod as evacuation Turbidity (NTU)) Other/Sp N? Y N (spec	ORP
Di	Water Removed id Well Go Dry? Water Quality N Pump Rate	Y N feter Type(s) / S Total Gallons	Serial Numbers: Water Level (ft TIC)	(Celsius)	Pump Type: Samples collect	sp () Sunted by same me Sp. Cond. (mS/cm)	ethod as evacuation Turbidity (NTU)) Other/Sp N? Y N (spec	ORP
Di	Water Removed id Well Go Dry? Water Quality N Pump Rate	Y N feter Type(s) / S Total Gallons	Serial Numbers: Water Level (ft TIC)	(Celsius)	Pump Type: Samples collect	sp () Sunted by same me Sp. Cond. (mS/cm)	ethod as evacuation Turbidity (NTU)	DO (mg/l) [10% or 0.1 mg/l]*	ORP
Di	Water Removed id Well Go Dry? Water Quality N Pump Rate	Y N feter Type(s) / S Total Gallons	Serial Numbers: Water Level (ft TIC)	(Celsius)	Pump Type: Samples collect	sp () Sunted by same me Sp. Cond. (mS/cm)	ethod as evacuation Turbidity (NTU)) Other/Sp N? Y N (spec	ORP
Di	Water Removed id Well Go Dry? Water Quality N Pump Rate	Y N feter Type(s) / S Total Gallons	Serial Numbers: Water Level (ft TIC)	(Celsius)	Pump Type: Samples collect	sp () Sunted by same me Sp. Cond. (mS/cm)	ethod as evacuation Turbidity (NTU)	DO (mg/l) [10% or 0.1 mg/l]*	ORP
Di	Water Removed id Well Go Dry? Water Quality N Pump Rate	Y N feter Type(s) / S Total Gallons	Serial Numbers: Water Level (ft TIC)	(Celsius)	Pump Type: Samples collect	sp () Sunted by same me Sp. Cond. (mS/cm)	ethod as evacuation Turbidity (NTU)	DO (mg/l) [10% or 0.1 mg/l]*	ORP
Di	Water Removed id Well Go Dry? Water Quality N Pump Rate	Y N feter Type(s) / S Total Gallons	Serial Numbers: Water Level (ft TIC) 7,67 7,74 7,97 8:.05	(Celsius) [3%]* 10,(04) 9,91	Pump Type: Samples collect pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l]*	ORP
Di	Water Removed id Well Go Dry? Water Quality N Pump Rate	Y N feter Type(s) / S Total Gallons	Water Level (ft TIC) 7.74 7.91 805 831	(Celsius)	Pump Type: Samples collect	sp () Sunted by same me Sp. Cond. (mS/cm)	ethod as evacuation Turbidity (NTU)	DO (mg/l) [10% or 0.1 mg/l]*	ORP
Di	Water Removed id Well Go Dry? Water Quality N Pump Rate	Y N feter Type(s) / S Total Gallons	Serial Numbers: Water Level (ft TIC) 7,67 7,74 7,97 8:.05	(Celsius) 13%1* 10.04 9.91	Pump Type: Samples collect pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l)*	ORP (mV) [10 mV]*
Time 735 745 550 550 775 775 775	Water Removed id Welf Go Dry? Water Quality Mater al Material Material Material	Y N feter Type(s) / S Total Gallons Removed	Water Level (ft TIC) 7,74 7,91 8,05 9,31 10,4	(Celsius) 13%1* 10.04 9.91 8.78 8.78	Pump Type: Samples collect pH [0.1.unils]* 4,91 4,91 4,89 4,54 4,53	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]* 743 37 74 30	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 35 40 45 50 55 200 215 220 se stabilizatio	Water Removed id Welf Go Dry? Water Quality Mater Quality Mater Quality Mater Quality Mater Quality Mater Quality Mater Quality Material Material Science (L/mln.)	Y N feter Type(s) / S Total Gallons Removed	Serial Numbers: Water Level (ft TIC) 7,74 7,91 8,05 8,31	(Celsius) 13%1* 10.04 9.91 8.78 8.78	Pump Type: Samples collect pH [0.1.unils]* 4,91 4,91 4,89 4,54 4,53	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 35 40 45 55 000 015 020 020 035 035 035 035 035 03	Nater Removed id Welf Go Dry? Water Quality Mater als for each system of the control of	Y N feter Type(s) / S Total Gallons Removed	Serial Numbers: Water Level (ft TIC) 7,74 7,91 8,05 8,31	(Celsius) 13%1* 10.04 9.91 8.78 8.78	Pump Type: Samples collect pH {0.1.units}* 4,91 4,91 4,89 4,54 4,53 collected at 3- to	(mS/cm) [3%]* Sp. Cond. (mS/cm) [3%]* (0.971 (0.971 (1.499) (5-minute interva	Turbidity (NTU) [10% or 1 NTU]* 743 37 74 30	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 35 40 45 55 000 000 000 000 00	Water Removed id Welf Go Dry? Water Quality Mater Quality Mater Quality Mater Quality Mater Quality Mater Quality Mater Quality Material Material Science (L/mln.)	Y N feter Type(s) / S Total Gallons Removed	Serial Numbers: Water Level (ft TIC) 7,74 7,91 8,05 8,31	(Celsius) 13%1* 10.04 9.91 8.78 8.78	Pump Type: Samples collect pH {0.1.units}* 4,91 4,91 4,89 4,54 4,53 collected at 3- to	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]* 743 374 30 Is) is listed in each	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 35 40 45 55 000 000 000 000 00	Nater Removed id Welf Go Dry? Water Quality Mater als for each system of the control of	Y N feter Type(s) / S Total Gallons Removed	Serial Numbers: Water Level (ft TIC) 7,74 7,91 8,05 8,31	(Celsius) 13%1* 10.04 9.91 8.78 8.78	Pump Type: Samples collect pH {0.1.units}* 4,91 4,91 4,89 4,54 4,53 collected at 3- to	(mS/cm) [3%]* Sp. Cond. (mS/cm) [3%]* (0.971 (0.971 (1.499) (5-minute interva	Turbidity (NTU) [10% or 1 NTU]* 743 374 30 Is) is listed in each	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 35 40 45 55 000 000 000 000 00	Nater Removed id Welf Go Dry? Water Quality Mater als for each system of the control of	Y N feter Type(s) / S Total Gallons Removed	Water Level (ft TIC) 7,74 7,91 8,,05 8,31 10,4 10,01	(Celsius) 13%1* 10.04 9.91 8.78 8.78	Pump Type: Samples collect pH {0.1.units}* 4,91 4,91 4,89 4,54 4,53 collected at 3- to	(mS/cm) [3%]* Sp. Cond. (mS/cm) [3%]* (0.971 (0.971 (1.499) (5-minute interva	Turbidity (NTU) [10% or 1 NTU]* 743 374 30 Is) is listed in each	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 35 40 45 55 000 015 020 020 035 035 035 035 035 03	Water Removed id Well Go Dry? Water Quality Mater al Company Control of the Control of th	Y N feter Type(s) / S Total Gallons Removed	Water Level (ft TIC) 7,74 7,91 8,,05 8,31 10,4 10,01	(Celsius) 13%1* 10.04 9.91 8.78 8.78	Pump Type: Samples collect pH {0.1.units}* 4,91 4,91 4,89 4,54 4,53 collected at 3- to	(mS/cm) [3%]* Sp. Cond. (mS/cm) [3%]* (0.971 (0.971 (1.499) (5-minute interva	Turbidity (NTU) [10% or 1 NTU]* 743 374 30 Is) is listed in each	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 35 40 45 50 000 e stabilization SERVATION SUMP	Water Removed id Well Go Dry? Water Quality Mater al for each	Y N feter Type(s) / S Total Gallons Removed	Water Level (ft TIC) 7,74 7,91 8,,05 8,31 10,4 10,01	(Celsius) 13%1* 10.04 9.91 8.78 8.78	Pump Type: Samples collect pH {0.1.units}* 4,91 4,91 4,89 4,54 4,53 collected at 3- to	(mS/cm) [3%]* Sp. Cond. (mS/cm) [3%]* (0.971 (0.971 (1.499) (5-minute interva	Turbidity (NTU) [10% or 1 NTU]* 743 374 30 Is) is listed in each	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 35 40 45 50 65 200 e stabilization SERVATION SUMP	Water Removed id Well Go Dry? Water Quality Mater al for each	Y N feter Type(s) / S Total Gallons Removed	Water Level (ft TIC) 7,74 7,91 8,,05 8,31 10,4 10,01	(Celsius) 13%1* 10.04 9.91 8.78 8.78	Pump Type: Samples collect pH {0.1.units}* 4,91 4,91 4,89 4,54 4,53 collected at 3- to	(mS/cm) [3%]* Sp. Cond. (mS/cm) [3%]* (0.971 (0.971 (1.499) (5-minute interva	Turbidity (NTU) [10% or 1 NTU]* 743 374 30 Is) is listed in each	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 35 40 45 50 55 20 a stabilizatio ERVATION SCULT PLE DESTI aboratory:	Water Removed id Well Go Dry? Water Quality Mater al for each	Y N feter Type(s) / S Total Gallons Removed	Water Level (ft TIC) 7,74 7,91 8,,05 8,31 10,4 10,01	(Celsius) 13%1* 10.04 9.91 8.78 8.78	Pump Type: Samples collect pH {0.1.units}* 4,91 4,91 4,89 4,54 4,53 collected at 3- to	(mS/cm) [3%]* Sp. Cond. (mS/cm) [3%]* (0.971 (0.971 (1.499) (5-minute interva	Turbidity (NTU) [10% or 1 NTU]* 743 374 30 Is) is listed in each	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*

4	
Site/GMA Name	t
Sampling Personnel	
Date	
Weather	
	Sampling Personnel Date

Well	No	16B-R		s	ATER SAMPLI			PA	t	
WELL INF	Pump Rate (L/min.)	≥ Page 1		Samp	oling Personnel Date Weather					
Time	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH [0,1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l)	ORP (mV)	
1025			11.54	8,76	4.43	1.618	73 ==	[10% or 0.1 mg/l]*	[10 mV]	
1030	>	,	11.52	8.77	4,410	1,691	30	6,53		
10.36	-		11,55	8,75	4,41	1,733		6,61	14.4	
1040)		<u> </u>				55/	6,01		
1045			12.71				180		<u></u>	
<u> </u>										
1100	_						32			
1056	,		12.97	10.44	4.89	2.018		2.30	-39.	
1100			12.95	10,33	4,65	2.001	29	0.00	-35,(
1105			12.83	10,97	, .	1,972	23	0.70	11 /	
1110			12.81	10.88	4.66	1,916	12	0.64	<u>- 16.6</u> - 20 -	
1115			1282	10.98	4,54	1,888	14	0.64	<u> 18,6</u>	
1130			自35	11.59	4.35	1.837	19	0.79	70	
<u>1125</u>	,		12.78	11.05	4.32	1.825	9	1,18		
1130	ļ		12.72	11.45	3.88	1817	10	1.89.8	10.6	
7135			12.68	11.24	3,69	1.809	8,	1,30	47, 4	
1140			1271	10,94	3,55	1,821		110	<u> </u>	
N45	ļ		12,62	11.10		1,819	-7		61.7	
1250		,	12.61	10.99	3.50	1.829	6		<u> 1</u> 557	
1855	Sam	puc	0	1145				1101	D O 10	
···									··-·	
										
									······································	
										
~					j	1				

* The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.
OBSERVATIONS/SAMPLING METHOD DEVIATIONS
Accorded blooks a property of the
The state of the s
MS While YET.
* reconnected 11ct

Well No	\mathcal{L}_{2}	1-0	,		1.	سسہ دیر	Peter Cil	A char	1 =
Key No				- ,	Site/GMA Nam	——————————————————————————————————————	IIII Stick	d argy	/ Q
-	ckground (ppm	<u> </u>		Sam	pling Personne	1121	1/2/13	. 0	·
	leadspace (ppm				Dat		44 1,70	<i>10</i> /	
	Transpared (pp	·			Weathe	· M	my a	05	
WELL INFOR	RMATION .						Sample Time	16/6	$^{\prime}$
Referen	nce Point Marked	? Y N					Sample IIIII	16	-12
Height c	of Reference Poin	nt	Meas, From	ı <u></u>			Duplicate II		<u>-C-1≤ </u>
	Well Diamete		1				MS/MSI		
	en interval Depti		Meas. From	·			Split Sample ID		
v	Vater Table Depti		Meas. From	TIC					
	Well Depti		Meas. From			Required	Analytica	i Parameters:	Collected
	of Water Columi					(<i>2</i> 0)	voc	s (Std. list)	$\langle \boldsymbol{>} \rangle$
	e of Water in Wei		-			()	VOCs	(Exp. list)	()
іптаке Берті	h of Pump/Tubing	910	Meas. From		_	()		VOCs	()
Reference Ro	int Identification:					()	PCE	is (Total)	()
	nner (PVC) Casin	10				()		(Dissolved)	()
	Outer (Protective	-				()		rganics (Total)	(')
	Ground Surface	, county				(')		anks (Dissolved)	()
						()		ide (Dissoived)	()
Redevelop?	Y N					. ()		ide (Dissolved) Ds/PCDFs	()
						()		es/Herbicides	()
						(%)		Attenuation	() (X 1)
	•					()		(Specify)	()
	NFORMATION	1/12/							, ,
	Pump Start Time								
	Pump Stop Time	7) ~		Evacuation Me	•) Bladder F	omp(),	
	utes of Pumping				Peristaltic Pun	/ *	bmersible Pump () Other/Spa	ecify ()
	Water Removed Did Well Go Dry?				Pump Type:	- heo	pump.		
_	A Well Go Diy!	(")	,		Samples colle	cted by same me	thod as evaduatio	n? Y N (speci	fy)
	Water Quality M	feter Type(s) / S	Serial Numbers:						
y	-				,				
	Pump	Total	Water	Temp.	pН	Sp. Cond.	Turbidity	DO	ORP
Time	Rate	Gallons	Level	(Celsius)	:	(mS/cm)	(NTU)	(mg/l)	(mV)
1.440	(L/min.)	Removed	(ft TIC)	[3%]	[0,1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/i]*	. [10 mV]*
1440	250	Í	118	Ilalah	6,05	0.755	4	2.92	143
1445	200		1278	11 44	6.05	0 752	-	271	127 0
1460	1200		10 00	164	4.05	0.00	3	2.11	126
1700	200		13021	1161	10-15	0.256		2.47	1/8.4
1435	200	•	13.82	11 40	174	0.757	う	2 43	1058
1500	200		14 10	1/1/0	1000	13757	~ >	3.40	104.0
1000	200		17017	1677 _	621	Uoli)L	<u></u>	2.00	91.7
14/14	1.41						-,	2 2 3 3 1	911
1001	200	·	14.31	11.61	6.29	0.656		しんん ひし	//.lal
1510	200		14.31	11.61	6.27	0.656	2	2.20	CZ 9
1510 1516	200 200		14.60	11.67	6.35	0.252	2	2.19	85.9
1510 1515	200 200		14.31 14.60 14.76	11.61 11.48 11.68	6.29 6.35 6.46	0.25Z 6.25Z	2	2.19	85.9
15(0) 15(7) 15(5) • The stabilizati	200 200 ion criteria for eac	ch field paramet	14.37 14.60 14.76 er (three consecu	//.6/ //.48 //.68 utive readings o	6.27 6.35 6.46 collected at 3- to	0.25Z 0.25Z 6.25Z 5-minute interval	2 2 Is) is listed in each	2.19 2.10 column heading.	85.9 76.8
15(0) 15(0) 15(5) • The stabilizati OBSERVATION	200 200	in field paramet	14.60 14.76 er (three consecu	//.48 //.48 //.68 utive readings o	6.27 6.35 6.46 collected at 3- to	0.25Z 0.25Z 6.25Z 5-minute interval	2 2 Is) is listed in each	2.19 2.10 column heading.	85.9 76.8
1510 1515 1515 The stabilizati	200 200 ion criteria for eac	ch field paramet	14.60 14.7b er (three consecu	//.48 //.48 //.68 //.68	6.35 6.46 collected at 3- to	0.25Z 0.25Z 6.25Z 5-minute interval	2 2 Is) is listed in each	2.19 2.10 column heading.	85.9 76.8
15/0 15/5 * The stabilizati OBSERVATION	200 200 ion criteria for eac	ch field paramet	14.60 14.7b er (three consecu	// . 6 / // . 48 // . 6 8 utive readings o	6.35 6.46	0.25Z 0.25Z 6.25Z 5-minute interval	2 2 Is) is listed in each	2.19 2.10 column heading.	85.9
15/0 15/5 * The stabilizati OBSERVATION	200 200 ion criteria for eac	ch field paramet	14.60 14.7b er (three consecu	// . 6 / // . 48 // . 6 8 utive readings o	6.35 6.46 collected at 3- to	0.25Z 0.25Z 6.25Z 5-minute interval		2,19 2.10 column heading.	85.9
15/0 15/5 15/5 * The stabilizati OBSERVATION	200 200 ion criteria for eac	th field paramet	14.37 14.76 14.76 er (three consecu	// . 6 / // . 48 // . 6 8 utive readings o	6.35 6.46 collected at 3- to	0.25Z 0.25Z 6.25Z 5-minute interval		2,19 2.10 column heading.	85.9
OBSERVATION	200 200 con criteria for each NS/SAMPLING N	METHOD DEVIA	ATIONS	// . 6 / // . 48 // . 6 8 utive readings o	6.35 6.46 collected at 3- to	0.25Z 0.25Z 6.25Z 5-minute interval		2,/9 2./0 column heading.	85.9
SAMPLE DEST	200 200 ion criteria for eac NS/SAMPLING N	METHOD DEVIA	ATIONS	11.48 11.48 11.68 utive readings o	6.35 6.46 collected at 3- to	0.25Z 0.25Z 6.25Z 5-minute interval		2,/9 2./0 column heading.	85.9
OBSERVATION	200 200 ion criteria for eac NS/SAMPLING N	AETHOD DEVIA	ATIONS _	// . 48 // . 48 // . 68 utive readings o	6.35 6.46 collected at 3- to	0.25Z 0.25Z 6.25Z 5-minute interval		2,/9 2./0 column heading,	85.9 76.8

Well No. 16C-R	Site/GMA Name GE Pittsfield GHA3	
,	Sampling Personnel	
,	Date MAY 7, 200 7	
	Weather Summy GOS	******

Rate (Umin.) 200 200 200 200 200 200 200 200 200	Gallons Removed	Level (RTIC) 14.86 14.96 15.02 15.11 15.26 15.34 15.44 15.52 15.49	(Celsius) [3%]* 11.69 11.60 11.67 11.67 11.69 11.69 11.75	[0.1 units]* 6.48 6.51 6.58 6.63 6.68 6.77 6.84 6.91 6.95	(mS/cm) [3%]* 0.257 0.251 0.251 0.251 0.251 0.251 0.251 0.251 0.251	(NTU) [10% or 1 NTU] 2 2 1 2 2 3 2 4 1 7	(mg/l) [10% or 0.1 mg/l]* 2.05 1.95 1.84 1.78 1.76 1.69 1.58 1.51	ORP (mV) [10 mV]* 76.0 73.6 68.6 65.9 61.3 58.7 57.4 56.0 54.2
200 200 200 200 200 200 200 200	Removed	14.86 14.96 15.02 15.11 15.26 15.34 15.44 15.52 15.49	11.69 11.74 11.60 11.67 11.69 11.64 11.69 11.76	6.48 6.51 6.58 6.63 6.68 6.77 6.84 6.91	0.252 0.251 0.251 0.251 0.251 0.251 0.251 0.251	2 2 1 2 2 2 3	2.05 1.95 1.84 1.78 1.76 1.69 1.58 1.51	10 myr 76.0 73.6 68.6 65.9 61.3 58.7 57.4 56.0
260 200 200 200 200 200 200 200		14.96 15.02 15.11 15.26 15.34 15.44 15.52 15.49	11.69 11.74 11.60 11.67 11.69 11.64 11.69 11.76	6.51 6.58 6.63 6.68 6.77 6.84 6.81 6.91	0.251 0.25/ 0.25/ 0.25/ 0.25/ 0.25/ 0.25/ 0.25/	2 1 2 2 2 3	1.95 1.84 1.78 1.76 1.69 1.58	73.6 68.6 65.9 61.3 58.7 57.4 56.0
200 200 200 200 200 200 200			11.74 11.60 11.67 11.69 11.64 11.69 11.76	6.58 6.63 6.68 6.77 6.84 6.81 6.91	0.25/ 0.25/ 0.25/ 0.5025/ 0.25/ 0.25/ 0.25/	7 1 2 2 3	1.92 1.84 1.78 1.76 1.69 1.58 1.51	68.6 65.9 61.3 58.7 57.4 56.0
200 200 200 200 200 200			11.69 11.64 11.69 11.76	6.63 6.68 6.77 6.84 6.81 6.91	0.25 0.25 0.50.25 0.25 0.25 0.25	1 2 2 3	1.84 1.78 1.76 1.69 1.58 1.51	68.6 65.9 61.3 58.7 57.4 56.0
200 200 200 200 200			11.69 11.64 11.69 11.76	6.68 6.77 6.84 6.81 6.91	0.25/ 0.50.25/ 0.25/ 0.25/ 0.25/	2 3	1.84 1.78 1.76 1.69 1.58 1.51	68.6 65.9 61.3 58.7 57.4 56.0
200 200 200 200			11.69 11.64 11.69 11.76	6.68 6.77 6.84 6.81 6.91	0.25/ 0.50.25/ 0.25/ 0.25/ 0.25/	2 3	1.78 1.76 1.69 1.58 1.51	65.9 61.3 58.7 57.4 56.0
200 200 200			!1.64 11.69 11.76	6.84 6.81 6.91	0.251 0.251 0.251 0.251	2 3	1.69 1.58 1.51	61.3 58.7 57.4 56.0
200 200			11.69 11.76	6.84 6.81 6.91	0,251 0.251 0.251	3	1.69 1.58 1.51	58.7 57.4 56.0
200			11.69 11.76	6.87 6.91	0.251		1.58	57.4 56.0
			11.76	6.91	0.251	<i>f</i>	1.51	56.0
			//.75				<u> </u>	000
				W			1 . 47 to project !	T4. /_
			1				7	
,								
	-							
								

The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.
OBSERVATIONS/SAMPLING METHOD DEVIATIONS

Well No	. <u> </u>	Bul		. \$	ite/GMA Name	(ZMA-3		
Key No				Samp	iling Personnel	Eine	SAB		
	ckground (ppm)		-	_,	Date	5/7/	U7		
Well He	eadspace (ppm)			· ·	Weather	Sunny,	clear, 60	Š	
WELL INFOR	MATION						Sanapia Tima		
	ce Point Marked	? Y N						39-13-	172
	f Reference Poin		Meas. From				Duplicate ID		<u></u>
•	Well Diamete				~		MS/MSD		
∘ Scre	ел Interval Depti	4-14'	Meas. From	Ground	_		Split Sample ID		
W	ater Table Depti		Meas. From	TIC	-		, ,		
	Well Depth		Meas. From	TIC	_	Required	Analytica	l Parameters:	Collected
Length	of Water Columr of Water in Wel	8.88	. .			(X 2)	VOC	s (Std. list)	(><)
	or vvaler in vvei of Pump/Tubing		Meas, From			() ('ab' ,		(Exp. list)	()
mana Dopa	TOTT GITTET GOING	' <u>.</u>	Weas. 1-10/11		-	(X))		vocs limited	(\boldsymbol{x})
Reference Po	int Identification:					()		s (Total) (Dissolved)	(·)
TIC: Top of In	iner (PVC) Casin	g				()		rganics (Total)	()
TOC: Top of 0	Outer (Protective) Casing				()		inics (Dissolved)	()
Grade/BGS: (Ground Surface					()		ide (Dissolved)	()
	. 6					» ()	PAC Cyani	ide (Dissolved)	()
Redévelop?	YN		•			()	PCDD	s/PCDFs	()
						()		s/Herbicides	()
						(20)		Attenuation	(>0)
EVACUATION	INFORMATION					()	Outer	(Specify)	()
F	ump Start Time	i the	100						
F	Pump Stop Time	1250	<u>)</u>		Evacuation Me	thod: Bailer () Bladder F	Pump () ,	
	utes of Pumping	110			Peristaltic Pum		bmersible Pump (ecify ()
	Nater Removed	5.73	allons		Pump Type:	<u> </u>			
υ	id Well Go Dry?	Y W			Samples collec	ted by same me	thod as evacuation	n? (Y) N (specii	fy)
	Water Quality tv	leter Tyne(s) / S	erial Numbers:	Y51-5	~ 176 An 1	5 c .,	1 7.0	OP Turb	·
	,				1		ach C/D	075 2 4 5 5	1 21 100 416-0
	Pump	Total	Water	Temp.	рН	Sp. Cond.	Turbidity	DO	ORP
Time	Rate	Gallons	Level	(Celsius)	}	(mS/cm)	(NTU)	(mg/l)	(mV)
1100	(L/min.)	Removed	(ft TIC)	[3%]•	(0.1 units)*	[3%]*	Ţ	[10% or 0.1 mg/i]*	[10 mV]*
1100	200	0	4.95				20	V	
1110	200		4.45	8.67	7.85	635.0	12	*0.00	119.2
1115	200	-0-	4.95	8.66	808	624.1	6	*070C1	105.5
1120	200		4.45	8.68	8.09	621.2	4	40.00	103,4
1/25	200		4.95	8.66	8.22	617.4	4 3	*C.00	98.6
1150	200		4,95	8.71	6.31	613.4	3	80.00	92.9
1135	200		4.95	8.75	8.55	612.7	į	*6.00	89.1
			سروسر نكشك	(2 (1)	0 711		ı	(2 ()	
1140	200		4.95	8.69	43.17	101Z · 1	1 1	(7.07)	20. I
1140	200	ch field paramet		4.64 utive readings or	G74 ollected at 3- to	612 · 1 5-minute interva	ls) is listed in each	O.O.I	68.
1140 The stabilizati	200		er (three consec				ls) is listed in each	column heading.	00,
1140 The stabilizati	200 on criteria for eac NS/SAMPLING N		er (three consec	utive readings o	ollected at 3- to	5-minute interva		column heading.	00. 12.06
// 40 The stabilizati DBSERVATIO	200 on criteria for eac NS/SAMPLING N	METHOD DEVIA	er (three consec	utive readings o	ollected at 3- to	5-minute interva	Is) is listed in each	column heading.	DO level
11 40 The stabilizati	200 on criteria for eac NS/SAMPLING N	METHOD DEVIA	er (three consec	utive readings o	ollected at 3- to	5-minute interva		column heading.	DO level
11 40 The stabilizati	200 on criteria for eac NS/SAMPLING N	METHOD DEVIA	er (three consec	utive readings o	ollected at 3- to	5-minute interva		column heading.	DO levels
Û 40 The stabilizati OBSERVATIOI	ON CITICAL PORTION	METHOD DEVIA	er (three consec	utive readings o	ollected at 3- to	5-minute interva		column heading.	DO levels
The stabilization of the stabi	On criteria for each NS/SAMPLING MYST MYST MYSTIMATION SGS	METHOD DEVIA	er (three consec	utive readings o	ollected at 3- to	5-minute interva		column heading.	DO levels
The stabilization of the stabilization of the stabilization of the stable of the stabl	On criteria for each NS/SAMPLING MATION TINATION JGS LPJ	METHOD DEVIA	er (three consec	utive readings of	ear to 12	5-minute interva		column heading.	DO levels
The stabilization of the stabi	On criteria for each NS/SAMPLING MYST MYST MYSTIMATION SGS	METHOD DEVIA	er (three consec	utive readings of	ollected at 3- to	5-minute interva		column heading.	DO level
The stabilization of the stabilization of the stabilization of the stable of the stabl	On criteria for each NS/SAMPLING MATION TINATION JGS LPJ	METHOD DEVIA	er (three consec	utive readings of	ear to 12	5-minute interva		column heading.	DO levels

Well No.	39 B-R	Site/GMA Name	<u>GMA-3</u>	
*		Sampling Personnel	EMC SAB	
		Date	<u> 5-7-07</u>	
		Weather	Sunny, Clear	, mid 60s.

WELL INFORMATION - See Page 1

Time	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
1145	200		4.95	8.70	9.02	612.3	1	0.00	84.7
1150	200		4.95	8.72	9.20	613.4	ı	0.00	82.0
1155	200		4.95	18.8	9.18	614.7	ſ	0.00	81.9
1200	200		4.95	8.59	9.15	616.6	1	0.00	83.9
1205	200		4.95	8.66	9.15	6/6.3	/	0.00	84.0
ļ							<u> </u>		0 1.0
						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
						\ \ \ \ \	~		
				**************************************					· · · · · ·
	,).				
					,				
				·····					
			.						
		-							
									
	+								
	n criteria for and	ı							

The etabilization enterior for analytical state of the st
The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.
at a manufacture intervalsy is listed at each column neading.
OBSERVATIONS/SAMPLING METHOD DEVIATIONS
210110110

	o	D-R		Site/GMA Nam		3/60-1	J171240	20	
Key N				San	ıpling Personnı	el K/C			
	ickground (ppm)				Dat	te	5/14/0	7	· · · · · · · · · · · · · · · · · · ·
, Well H	leadspace (ppm))			Weathe	erSu r	inu br	25	
							0		
WELL INFOR							Sample Tim	e 🙇 .	1410
Referen	ice Point Marked	? Y N					Sample II		0
Height c	of Reference Poin	ıt	Meas. From	n			Duplicate II		<u> </u>
	Well Diameter	ر 2"			_		MS/MS(
· Scre	en Interval Deptr	30-66	Meas. From	n				***************************************	
V	Vater Table Depth	8,29	_	n			Split Sample II	· · · · · · · · · · · · · · · · · · ·	
	Well Depth		Meas. From	n		Required	A		
Length	of Water Column	1				· _		al Parameters:	Collected
Volume	e of Water in Wei	1				(X)		s (Std. list)	(X)
	h of Pump/Tubing		Meas, Fron	,		()		s (Exp. list)	()
-	,				_	()		SVOCs	()
Reference Po	int Identification:					()		3s (Total)	()
	ner (PVC) Casin	•				()		(Dissolved)	()
	Outer (Protective)					()		organics (Total)	()
	Ground Surface	Casing				()	Metals/Inorg	anics (Dissolved)	ή)
Ф70007BCB: 1	Cround Surace					()	EPA Cyan	ide (Dissolved)	()
Redévelop?	YN					()	PAC Cyan	ide (Dissolved)	()
reduterop;	1 14					()	PCDI	Ds/PCDFs	()
	•					()	Pesticide	es/Herbicides	()
						(1)	Naturai	Attenuation	(v)
EN/AGI/ATTON						()	Other	(Specify)	· · · · · · · · · · · · · · · · · · ·
	INFORMATION	an i	200-						, ,
	Pump Start Time								
F	Pump Stop Time				Evacuation Me	ethod: Bailer () Bladder (oump () ,	
	utes of Pumping				Peristaltic Pun		ibmersible Pump (ecify ()
	Water Removed		~		Pump Type:		Don	, onensp	echy ()
D	id Well Go Dry?	\vee (N)				cted by same me	ethod as evacuatio	n? Y N (speci	¥.)
-		_	1			,		n? Y N (spec	шуу
	Water Quality Me	efor Tune/el / S		**					
	•	ordi rybelett o	Serial Numbers:						
	·	cici type(s)/ c	erial Numbers:		7	,			
	Pump	Total	erial Numbers:	Тетр.	/ Hq	Sp. Cond.	Turbidity	DO	
Time	Pump		,	1	Нд	Sp. Cond.	Turbidity	DO	ORP
Time	,	Total	Water	(Celsius)		(mS/cm)	(NTU)	(mg/l)	(mV)
Time	Pump Rate (Umin.)	Total Gallons	Water Level	1	[0.1 units]*	1 -	(NTU) [10% or 1 NTU]*		(mV)
Time 1330 1335	Pump MCRate	Total Gallons	Water Level	(Celsius)	[0.1 units]*	(mS/cm) [3%]*	(NTU)	(mg/t) [10% or 0.1 mg/l]*	(mV) [10 mV]*
Time 1330 1335	Pump Rate (Umin.)	Total Gallons	Water Level (ft TIC) & 40 & 54	(Celsius)	[0.1 units]* 8,66	(mS/cm) (3%)* 0,3 0,316	(NTU) [10% or 1 NTU]*	(mg/l) [10% or 0.1 mg/l]*	(mV)
1330 1335 1340	Pump Rate (Umin.)	Total Gallons	Water Level	(Celsius) 13%1* 12.79 12.63	[0.1 units]*	(ms/cm) (3%)* 0,3 0,3/6 0,3/6	(NTU) [10% or 1 NTU]*	(mg/t) [10% or 0.1 mg/l]*	(mV) [10 mV]*
1330 1335 1340 1345	Pump Rate (Umin.)	Total Gallons	Water Level (ft TIC) & . 40 & . 54 8 . 68 8 . 69	(Celsius)	[0.1 units]* 8,66	(mS/cm) (3%)* 0,3 0,316	(NTU) [10% or 1 NTU]*	(mg/l) [10% or 0.1 mg/l]*	(mV) [10 mV]*
1335 1335 1340 1345 1350	Pump Rate (Umin.)	Total Gallons Removed	Water Level (ft TIC) & 40 8 , 54 8 , 68 8 , 68	(Celsius) 13%1* 12.79 12.63	10.1 units)* 8.66 8.72	(ms/cm) (3%)* 0,3 0,3/6 0,3/6	(NTU) [10% or 1 NTU]*	(mg/l) [10% or 0.1 mg/l/ 8. 60 4, 79	(mV) [10 mV]* 74, 9 66, 2 49.6
1330 1335 1340 1345	Pump Rate (Umin.)	Total Gallons Removed	Water Level (ft TIC) & . 40 & . 54 8 . 68 8 . 69	(Celsius) 13%1* 12.79 12.63	(0.1 units)* 8.66 8.76 8.73 8.83	(mS/cm) (3%)* 0,3 0,316 0,316	3 2 2 2 2 2 2	(mg/l) [10% or 0.1 mg/l] 8. 60 4, 79 3.36	(mV) [10 mV]* 74, 9 66, 2 49, 6 35,10
1335 1335 1340 1345 1350	Pump Rate (Umin.)	Total Gallons Removed	Water Level (ft TIC) & 40 8 , 54 8 , 68 8 , 68	(Celsius) 13%1* 12.79 12.63	8.66 8.66 8.72 8.83 8.85	(ms/cm) (3%)* 0,3 0,3/6 0,3/6 0,3/6 0,3/5 0.3/6	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(mg/l) [10% or 0.1 mg/l] 8. 60 4, 79 3.36	(mV) [10 mV]· 74.9 66.2 49.6 36.6 20.0
1335 1345 1345 1350 1355 1365 1800	Pump Rate (Umin.)	Total Gallons Removed	Water Level (ft TIC) & 40 8 , 54 8 , 68 8 , 68	(Celsius) 13%1* 12.79 12.63 12.93 13.04 12.74 12.76	(0.1 units)* 8.66 8.72 8.83 8.85 8.78 8.77	(ms/cm) (3%)* 0,316 0,316 0,316 0,315 0,316 0,316	3 2 2 2 2 2 2	(mg/l) [10% or 0.1 mg/l)* 8. L. D 4, 79 3.36 3.00 2.94 2.91	(mV) [10 mV]* 74.9 66.2 49.6 35.6 20.0 15.2
1335 1340 1345 1350 1355 1365 1406	Pump MRate (Umin.)	Total Gallons Removed	Water Level (ft TIC) 8,54 8,68 8,69 8,65 8,69	(Celsius) 13%1* 12.79 12.63 12.93 13.04 12.74 12.76 12.64	8.66 8.66 8.72 8.83 8.85 8.77 8.77	(ms/cm) (3%)* 0.316 0.316 0.316 0.315 0.316 0.316	(NTU) [10% or 1 NTU] 3 R R R R R R R R R R R R	(mg/l) [10% or 0.1 mg/l] ² & . L. D 4, 79 3, 36 3,00 2,94 2,91 2,92	(mV) [10 mV]* 74.9 66.2 49.6 35.6 20.0 15.2
1335 1340 1345 1350 1355 1406 1406	Pump Rate (Imin.) 200 on criteria for each	Total Gallons Removed	Water Level (ft TIC) 8,54 8,68 8,69 8,69 8,70 8,70 er (three consec	(Celsius) 13%1* 12.79 12.63 12.93 13.04 12.74 12.76 12.64	8.66 8.66 8.72 8.83 8.85 8.77 8.77	(ms/cm) (3%)* 0.316 0.316 0.316 0.315 0.316 0.316	(NTU) [10% or 1 NTU] 3 R R R R R R R R R R R R	(mg/l) [10% or 0.1 mg/l] ² & . L. D 4, 79 3, 36 3,00 2,94 2,91 2,92	(mV) [10 mV]· 74.9 66.2 49.6 36.6 20.0
1335 1340 1345 1350 1355 1406 1406 The stabilization	Pump (Rate (Mmin.) 200 on criteria for each	Total Gallons Removed Tield paramete	Water Level (ft TIC) 8,54 8,68 8,69 8,69 8,70 8,70 er (three consec	(Celsius) 13%1* 12.79 12.63 12.93 13.04 12.74 12.76 12.64	8.66 8.66 8.72 8.83 8.85 8.77 8.77	(ms/cm) (3%)* 0.316 0.316 0.316 0.315 0.316 0.316	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(mg/l) [10% or 0.1 mg/l] ² & . L. D 4, 79 3, 36 3,00 2,94 2,91 2,92	(mV) [10 mV]* 74.9 66.2 49.6 35.6 20.0 15.2
1335 1340 1345 1350 1355 1406 1406	Pump (Rate (Umin.) 200 On criteria for each	Total Gallons Removed Tield paramete	Water Level (ft TIC) 8,54 8,68 8,69 8,69 8,70 8,70 er (three consec	(Celsius) 13%1* 12.79 12.63 12.93 13.04 12.74 12.76 12.64	8.66 8.66 8.72 8.83 8.85 8.77 8.77	(ms/cm) (3%)* 0.316 0.316 0.316 0.315 0.316 0.316	(NTU) [10% or 1 NTU] 3 R R R R R R R R R R R R	(mg/l) [10% or 0.1 mg/l] ² & . L. D 4, 79 3, 36 3,00 2,94 2,91 2,92	(mV) [10 mV]* 74.9 66.2 49.6 35.6 20.0 15.2
1335 1340 1345 1350 1355 1406 1406 The stabilization	Pump (Rate (Mmin.) 200 on criteria for each	Total Gallons Removed Tield paramete	Water Level (ft TIC) 8, 40 8, 54 8, 68 8, 68 8, 70 8, 70 6, 70 6, 70 6, 70 6, 70	(Celsius) 13%1* 12.79 12.63 12.93 13.04 12.74 12.76 12.64	8.66 8.66 8.72 8.83 8.85 8.77 8.77	(ms/cm) (3%)* 0.316 0.316 0.316 0.315 0.316 0.316	(NTU) [10% or 1 NTU] 3 R R R R R R R R R R R R	(mg/l) [10% or 0.1 mg/l] ² & . L. D 4, 79 3, 36 3,00 2,94 2,91 2,92	(mV) [10 mV]* 74.9 66.2 49.6 35.6 20.0 15.2
1335 1340 1345 1350 1355 1406 1406 The stabilization	Pump (Rate (Mmin.) 200 on criteria for each	Total Gallons Removed Tield paramete	Water Level (ft TIC) 8, 40 8, 54 8, 68 8, 68 8, 70 8, 70 6, 70 6, 70 6, 70 6, 70	(Celsius) 13%1* 12.79 12.63 12.93 13.04 12.74 12.76 12.64	8.66 8.66 8.72 8.83 8.85 8.77 8.77	(ms/cm) (3%)* 0.316 0.316 0.316 0.315 0.316 0.316	(NTU) [10% or 1 NTU] 3 R R R R R R R R R R R R	(mg/l) [10% or 0.1 mg/l] ² & . L. D 4, 79 3, 36 3,00 2,94 2,91 2,92	(mV) [10 mV]* 74.9 66.2 49.6 35.6 20.0 15.2
1335 1340 1345 1350 1355 1406 1406 The stabilization	Pump (Rate (Mmin.) 200 on criteria for each	Total Gallons Removed Tield paramete	Water Level (ft TIC) 8, 40 8, 54 8, 68 8, 68 8, 70 8, 70 6, 70 6, 70 6, 70 6, 70	(Celsius) 13%1* 12.79 12.63 12.93 13.04 12.74 12.76 12.64	8.66 8.66 8.72 8.83 8.85 8.77 8.77	(ms/cm) (3%)* 0.316 0.316 0.316 0.315 0.316 0.316	(NTU) [10% or 1 NTU] 3 R R R R R R R R R R R R	(mg/l) [10% or 0.1 mg/l] ² & . L. D 4, 79 3, 36 3,00 2,94 2,91 2,92	(mV) [10 mV]* 74.9 66.2 49.6 35.6 20.0 15.2
1335 1340 1345 1350 1355 1400 1406 The stabilization Sarv	Pump Rate (Minin.) 200 on criteria for each NS/SAMPLING MI	Total Gallons Removed Tield paramete	Water Level (ft TIC) 8, 40 8, 54 8, 68 8, 68 8, 70 8, 70 6, 70 6, 70 6, 70 6, 70	(Celsius) 13%1* 12.79 12.63 12.93 13.04 12.74 12.76 12.64	8.66 8.66 8.72 8.83 8.85 8.77 8.77	(ms/cm) (3%)* 0.316 0.316 0.316 0.315 0.316 0.316	(NTU) [10% or 1 NTU] 3 R R R R R R R R R R R R	(mg/l) [10% or 0.1 mg/l] ² & . L. D 4, 79 3, 36 3,00 2,94 2,91 2,92	(mV) [10 mV]* 74.9 66.2 49.6 35.6 20.0 15.2
1335 1340 1345 1350 1355 1406 • The stabilization OBSERVATION SAMPLE DEST	Pump Rate Pimin.) Pon criteria for each NS/SAMPLING MINATION	Total Gallons Removed Tield paramete	Water Level (ft TIC) 8, 40 8, 54 8, 68 8, 68 8, 70 8, 70 6, 70 6, 70 6, 70 6, 70	(Celsius) 13%1* 12.79 12.63 12.93 13.04 12.74 12.76 12.64	8.66 8.66 8.72 8.83 8.85 8.77 8.77	(ms/cm) (3%)* 0,316 0,316 0,316 0,315 0,316 0,317 5-minute interva	(NTU) [10% or 1 NTU] 3 R R R R R R R R R R R R	(mg/l) [10% or 0.1 mg/l] ² & . L. D 4, 79 3, 36 3,00 2,94 2,91 2,92	(mV) [10 mV]* 74.9 66.2 49.6 35.6 20.0 15.2
1335 1340 1345 1350 1355 1406 The stabilization Sarvation Sarvation Sarvation	Pump Rate (Minin.) 200 INATION	Total Gations Removed	Water Level (ft TIC) 8, 40 8, 54 8, 68 8, 68 8, 70 8, 70 er (three consecutions	(Celsius) 13%1* 12.79 12.63 12.93 13.04 12.74 12.76 12.64	[0.1 units]* 8,66 8,72 8,83 8,85 8.78 8,77 8,85 oliected at 3- to	(ms/cm) (3%)* 0,316 0,316 0,316 0,315 0,316 0,317 5-minute interva	(NTU) [10% or 1 NTU] 3 R R R R R R R R R R R R	(mg/l) [10% or 0.1 mg/l] ² & . L. D 4, 79 3, 36 3,00 2,94 2,91 2,92	(mV) [10 mV]* 74.9 66.2 49.6 35.6 20.0 15.2
1335 1340 1345 1350 1355 1406 • The stabilization OBSERVATION SAMPLE DESTI Laboratory: Delivered Via:	Pump Rate (Minin.) 200 INATION	Total Gations Removed	Water Level (ft TIC) 8, 40 8, 54 8, 68 8, 68 8, 70 8, 70 er (three consecutions	(Celsius) 13%1* 12.79 12.63 12.93 13.04 12.74 12.76 12.64	[0.1 units]* 8,66 8,72 8,83 8,85 8.78 8,77 8,85 oliected at 3- to	(ms/cm) (3%)* 0,316 0,316 0,316 0,315 0,316 0,317 5-minute interva	(NTU) [10% or 1 NTU] 3 R R R R R R R R R R R R	(mg/l) [10% or 0.1 mg/l] ² & . L. D 4, 79 3, 36 3,00 2,94 2,91 2,92	(mV) [10 mV]* 74.9 66.2 49.6 35.6 20.0 15.2
1335 1340 1345 1350 1355 1406 • The stabilization OBSERVATION SAMPLE DESTI Laboratory: Delivered Via:	Pump Rate (Minin.) 200 INATION	Total Gations Removed	Water Level (ft TIC) 8, 40 8, 54 8, 68 8, 68 8, 70 8, 70 er (three consecutions	(Celsius) [3%]* 12.79 12.63 12.93 13.04 12.74 12.76 12.64 utive readings of	[0.1 units]* 8,66 8,72 8,83 8,85 8.78 8,77 8,85 oliected at 3- to	(ms/cm) (3%)* 0.316 0.316 0.315 0.315 0.316 0.375	(NTU) [10% or 1 NTU] 3 R R R R R R R R R R R R	(mg/l) [10% or 0.1 mg/l] 8.40 4,79 3.36 3.00 2.94 2.91 2.93 column heading.	(mV) [10 mV]* 74.9 66.2 49.6 35.6 20.0 15.2

	. <u>39 E</u>				Site/GMA Name	· GMA	3 Be +	Pite Fiel	9
)			Sam	pling Personne	KIO			
	ckground (ppm)				Date	e	5/14/0	7	
Weil H	eadspace (ppm)			-	Weathe	rSv2	224	601<	
WELL INFOR	RMATION						Sample Time	2 0 1	= 1251
Referen	ce Point Marked?	YN					Sample II		2/02
Height o	f Reference Point	t	Meas, From	I			•	· · · · · · · · · · · · · · · · · · ·	
·	Well Diameter			· •			Duplicate ID		
Scre	en Interval Depth		3 Store Emm	·			MS/MSE		·
	ater Table Depth		-	' 			Split Sample IL		
		1				Required	8 41		
Length	of Water Column				_			il Parameters:	Collected
	of Water in Well		•			(> (>		s (Std. list)	$\langle \sim \rangle$
	of Pump/Tubing		Maas Erom			()		(Exp. list)	()
	, et , ett p, raemg		IVICES. F TOTAL			()		VOCs	()
Reference Po	int Identification:					()		ls (Totai)	()
	ner (PVC) Casing	,				()		(Dissolved)	()
	Outer (Protective)					()		organics (Total)	()
	Ground Surface	Casing				, ()		anics (Dissolved)	()
0,200,200.	Olouria Guilace					()		ide (Dissolved)	()
Redevelop?	YN					()		ide (Dissolved)	()
addiciop;						()		Ds/PCDFs	()
						()		s/Herbicides	()
						(\mathcal{F})	Natural	Attenuation	(x)
EVACUATION	INFORMATION					()	Other	(Specify)	()
	ump Start Time	1145							
	ump Stop Time					ethod: Bailer (•	Pump(),	•
	utes of Pumping				Peristattic Purr		bmersible Pump (ecify ()
	Water Removed				Pump Type:		o pum		
Đ	id Well Go Dry?	Y N			Samples coiled	cted by same me	thod as evacuatio	n? Y N (spec	ify)
	Water Quality Mo	eter Type(s) / Se	i rial Numbers:						
	n	-r. 4. 4							
Time	Pump	Total	Water	Temp.	pH	Sp. Cond.	Turbidity	DO	ORP
1 line	Rate	Gallons	Level	(Celsius)	1	(mS/cm)	(NTU)	(mg/l)	(mV)
	(L/min.)	Removed	(ft TIC)	[3%]*	[0.1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	[10 mV]*
1155					ļ		7		
1300	200		5,14	12.81	6.17	0.274	\mathcal{L}	7.50	209.1
1205	ï			12.25	5.81	0.274	<u>2</u>	4.49	20,5
1210				11.95	5,62	0,274	α	3.09	179.8
1215				11.97	5,91	0,275	2	288	145.1
191D				11, 34	6.08	0.215	1	278	1217
D:25				11.70	6,13	0.274		270	110 8
1230	V		5.30	11.76	6,18	0.274	٦	$\frac{2}{2}$	9011
	on criteria for eacl			utivo condinas a		5 3 3 7 7	ls) is listed in each	α	
OBSERVATIO	NS/SAMPLING M	ETHOD DEVIAT	IONS	udve readings d	collected at 3- to	5-minute interval	ls) is listed in each	column heading.	
				·			,		
				····					
SAMPLE DEST	INATION	ι		*					
Laboratory:									
Delivered Via:									
Airbill #;				1	Field Sampling	Coordinator: _			
						_			

			2	GROUNDWAT	TER SAMPLI	NG LOG		·	
Well No. VELL INFORM	SG-D	1	396	-	ie/GMÅ Name ing Personnel Date Weather	GMA 210 511 3000	3/66	Piles	Reld
Time	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
1235			53 ,3	11,72	6.19	0,274	2	275	95,1
1240				11.72	(e.al	0.273	à	2.79	88.5
12,45				11.73	6.22	1224	a,	2.80	9 7-3
Say	~ ple		1250						
	3								

		-				
					. 1	
	,					
The stabilization editor	rio for each E-ld					
		eter (three consecutive rea	dings collected at 3- to 5-n	ninute intervals) is lis	ted in each column he	eading,
DBSERVATIONS/SAM	IPLING METHOD DEV	iations <u> </u>	·			
		·				
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

Well No.		134		s	iite/GMA Name	GMA 3	3 /GEF	Petrofie	<i>sol</i>
Key No.		-37	<del></del>	Samp	oling Personnel	P.	4.B		
PID Baci	kground (ppm)	·			Date	5/9	107		
Well Hea	adspace (ppm)				Weather	Sunny,	Clear M	id 608	
WELL INFORM		. 🚓					Sample Time	1145	
	e Point Marked?						Sample III	<u> 434</u>	·
Height of i	Reference Poin		Meas. From				Duplicate ID	·	
Q	Well Diameter						MS/MSE	)	
	n interval Depth	<b>6</b> 77 7 4	Meas. From				Split Sample ID		
vva	iter Table Depth Well Depth	·	Meas, From Meas, From		_				
i enath o	f Water Column		_ weas. Fibri		<del></del>	Required		il Parameters:	Collected
_	of Water in Wei		_			$\langle \mathcal{O} \rangle$		s (Std. list)	( 🛠 )
	of Pump/Tubing		Meas. From			( )		(Exp. list)	( )
·	,					( )		VOCs	( )
Reference Poin	t Identification:					( )		ls (Totai) (Dissolved)	( )
TIC: Top of Inn	er (PVC) Casin	9				( )		rganics (Total)	( )
TOC: Top of O	uter (Protective)	Casing				( )		anics (Dissolved)	( )
Grade/BGS: G	round Surface					( )		ide (Dissolved)	( )
						( )		ide (Dissolved)	( )
Redevelop?	Y N					( )	PCDI	Ds/PCDFs	( )
						( )/	Pesticide	s/Herbicides	( )
						( <b>/</b> )	Natural	Attenuation	( X )
57/4 GU 4 MIG 11						( )	Other	(Specify)	( )
EVACUATION		9.25°							
	imp Start Time	1275	-						
	mp Stop Time es of Pumping	14as	·•			thod: Bailer (	•	omp()	
	ater Removed		-		Peristaltic Pum		bmersible Pump (		pecify ( )
	Well Go Dry?	Y (N)	-		Pump Type:		mp Z		ur closure
2,0	· · · · · · · · · · · · · · · · · · ·	' (6)			Samples-colled	ted by same me	thod as evacuatio	n? 🕢 N (spe	cify) $A2T22$
* 1	Water Quality M	eter Type(s) / S	erial Numbers:						
	Pump	Total	Water	Yemp.	pH	Sp. Cond.	Turbidity	DO	ORP
Time	Rate	Gallons	Level	(Celsius)		(mS/cm)	(NTU)	(mg/l)	(mV)
	(L/min.)	Removed	(ft TIC)	[3%]*	{0.1 units}*	[3%]*	[10% or 1 NTU]*		
0940	200		7.40				1/	,	
0945	200		11.69	1264	7071	0.577	14	1.22	165,4
0950	200		13.28	12.26	7.56	0.574	17	7.64	-1752
0955	200		14.01	12,30	7.49	0.570	19	0.54	-137.7
1000	200	·	15.41	12.30	1	0.563	19	0.45	-1342
1005	200		16.65	12.48	7,54	0.560	19	0,33	-121.5
1010	200		17.74	12.61	7.58	0,560	23	0.36	-,115,5
1015	200		18.28	12.54		0.562	27	0.28	-186.6
The stabilization				utive readings of	ollected at 3- to	5-minute interva	ls) is listed in each	column heading.	
									4.
				***************************************					
SAMPLE DESTI				1					
Laboratory: _									
Delivered Via:		····							
_						Coordinator:			

Well No.	43	A . ,	Site/GMA Name	GM A-3	
<b>)</b>	,		Sampling Personnel	<u> </u>	
			Date	_ 5/9/07	-
			Weather	Sunny Clear	- NO.14 100S

WELL	INFORMATION - See Page 1	í

	, Pump	Total	Water	Temp.	рН	Sp. Cond.	Troubidit.	1 00	<del>)</del>
Time	Rate	Gallons	Level	(Celsius)	<b>F</b>	(mS/cm)	Turbidity (NTU)	DO (mg/l)	ORP
1020	(L/min.)	Removed	(ft TIC)	[3%]*	[0,1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	(mV) [10 m√]*
<u> </u>	700	<u> </u>	19.39	12.63	7.68	0.563	35	0.30	167.1
1025	200	<u> </u>	19.96	12.70	7.55	0.705	34	0.25	-162.4
1030	1200	<del> </del>	20,43	12.95	6.98	0.820	32	0.26	-174 =
1055	1200		20.79	13.34	7.03	0.850	3)	0.77	-11/2 9
1040	200	ļ	2/16	13.94	6.92	0.903	28	0.33	-1149
1045	200	ļ	20.48	13.62	6.96	0.920	26	0.39	-//7.5
1050	200		21.80	13.95	6.95	0.930	25	0.51	-106.5
1035	100		22.10	14.38	6.97	0.953	19	0.58	-977
1100	200		22.29	14,30	7.09	0.988	17	0.46	-101.4
1105	200		22.52	14.41	7.09	0.992	15	0.38	-92.8
1110	200		22.72	15,09	7.08	1,002	13	0-39	-98./
1115	200		22.87	15.22	7.18	1.014	17"	0.37	911
1120	700		22.96	15.55	7.17	1.017	17	0.28	- 82.7
1/25	200		23.10	15.63	7.23	1.026	(/)	0.27	005
1130	ZOC		23.15	15.54	7.24	1.037	8	0.25	-87.3 -a23
1/35	2 <i>cc</i>		23.22	15.76	7.19	1.043	7	0.25	-86.5
1140	200		23.30	15.68	7.25	1.049	6		-94.9
Sam	pled	at	1145	-1				C 8 C C S	16
,	1								
					<del></del>				
									1

*The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.
ODD THE PROPERTY OF THE PROPER
OBSERVATIONS/SAMPLING METHOD DEVIATIONS

Well No	43 5	3		<b>.</b>	Site/GMA Name	· GMA	3/6/6	PHSFIELD	)
Key No	·	-37			oling Personne		- Jan Carlon	//->III (2	
PID Ba	ckground (ppm)	)1	· · ·	_	Date	1.	7		<del></del>
Well He	eadspace (ppm)	)		<del></del>	Weathe	7,7	1/0+,70	<b>から</b>	
									·
WELL INFOR	MATION					$\circ$	Sample Time	1010	<b>`</b>
Referen	ce Point Marked	YN					Sample II		<del> </del>
Height o	f Reference Poin	t	_ Meas. From	١			Duplicate ID		<del></del>
	Well Diameter		<b>-</b> 4				MS/MSE		
	en Interval Depth		Meas. From	ı			Split Sample ID		
W	ater Table Depth	5.82	Meas. From	·	_		,,		
	Well Depth	21.77	Meas, From		_	Required	Analytica	al Parameters:	Collected
Length	of Water Column	1	_		-	( <b>X</b> )		s (Std. list)	(X, ,
Volume	of Water in Well	1	_			( )		(Exp. list)	( ' '
Intake Depth	of Pump/Tubing	17.5	Meas, From	ı		( )		VOCs	( )
					<del>-</del>	( )		r (Total)	( )
Reference Poi	nt Identification:					( )		(Dissolved)	( )
TIC: Top of In	ner (PVC) Casin	g				( )		organics (Total)	( )
TOC: Top of C	Outer (Protective)	) Casing				( )		anks (Dissolved)	( )
	Sround Surface					( )		ide (Dissolved)	( )
						( )	· ·	ide (Dissolved) ide (Dissolved)	( )
Redevelop?	Y N					( )		os/PCDFs	( )
						( )		es/Herbicides	, ,
						(7)		Attenuation	( )
						( )		(Specify)	$(\mathcal{X})$
EVACUATION	INFORMATION			•		,	Odles	(apediy)	( )
þ	ump Start Time	925							
P	ump Stop Time	1050			Evacuation Me	ethod: Bailer (	) Bladdori	³ump ( ) ,	
	ites of Pumping	7			Peristaltic Puri		bmersible Pump (	-	
Volume of V	Vater Removed				Pump Type:	Cane	onersione Pointp (	Other/Spe	eesty. ( )
D	id Well Go Dry?	Y (N)				ted by same me	thod as evacuatio	n2 (23) N (2	
		_	ŧ		Complet conce	sica by same me	unou as evaçuatio	n? (Special	(V)
	Water Quality M	eter Type(s) / Se	erial Numbers:						,
1						<del></del>		· · · · · · · · · · · · · · · · · · ·	
Time	Pump	Total	Water	Temp.	pH	Sp. Cond.	Turbidity	DO	ORP
1 une	Rate	Gallons	Level	(Cetsius)		(mS/cm)	(NTU)	(mg/t)	(mV)
070	(L/min.)	Removed	(ft TIC)	[3%]*	[0.1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	[10 mV]*
930	200		6,42				Ce		
935			8,31	10,15	7.61	1,148	<u> </u>	3,73	-94,3
940			<u>8,52.</u>	9,96	7.67	1,149	8	3,48	-97,7
445			8,65	10112	7,76	1,145	- 8	3,18	-99,9
950			8.70	10,14	7,75	1.145	86	3,02	-1037
955			8.73	10.19	7.77	1.145	3	299	-104/4
1000			C.74	10.27	7.28	1,145	Ž	2.91	1000
1006			8,79	10,40	7.93	1,148	2	2 0 7	112 1
* The stabilization	on criteria for eac	h field naramete	r (three concor	utus madinas s		(1,1,0)	ls) is listed in each	<u> </u>	-1164
OPPEDVATION	IS/SAMPLING M	errunn nei aa	rione consec	unve readings of	ollected at 3- to	5-minute interva	s) is listed in each	column heading.	•
		\	IONS	<del></del>					
<u>~ 50</u>	mplec	<u> ac</u>	1010						
	1								
		,,	·					······································	
SAMPLE DEST				•					
Laboratory:									
Delivered Via:			···-					1	
Airbill #:			<del></del>	F	ield Sampling	Coordinator:			

1A/e	89	A				~ . A 1A	7		
	y No. 177	<u> </u>	<del></del>		ite/GMA Name				
	D Background (ppm)	<del></del>		Samp	ding Personne	7	<u>/f C</u>		
w	ell Headspace (ppm)		· · · · · · · · · · · · · · · · · · ·		Date Weather		Mid 70s	·	
<u>~</u> .,		<del></del>		····	********		<u>, 114 / US</u>		
WELL IN	IFORMATION						Sample Time	1/0	<b>O</b>
Rei	erence Point Marked	YN					Sample (C	100	GA
Hei	ght of Reference Poin	t	Meas. From		_		Duplicate ID	,	_
	Well Diamete	~	<del></del>				MS/MSD		
,	Screen Interval Depti		Meas. From				Split Sample ID		
	Water Table Depth		Meas. From		and a				
t a	Well Depthingth of Water Column		_ Meas, From	716	_	Required		i Parameters:	Collected
	olume of Water in Wel		<b>-</b>			( 1		s (Std. list)	( <i>T</i> )
	Depth of Pump/Tubing		- Mass Emm			( )		(Exp. list)	( )
WILLIAM E	separ or rampropring	<del></del>	Ivieas. Flom			( <b>X</b> ')	· ·	vocs limited	( K)
Reference	e Point Identification:					( )		s (Total)	( )
	of Inner (PVC) Casin	σ				( )		(Dissolved)	( )
	p of Outer (Protective	-				( )		rganics (Total)	( )
	SS: Ground Surface	,				( )		anics (Dissolved) ide (Dissolved)	( )
						( )	•	ide (Dissolved)	( )
Redevelo	pp? Y N					( )	-	os/PCDFs	( )
						( )		s/Herbicides	
						(X)		Attenuation	( ) ( <b>)</b> 2')
	•					( )	•	(Specify)	( )
EVACUA	TION INFORMATION								, ,
	Pump Start Time								
	Pump Stop Time					thod: Bailer (	) Bladder F	ump ( ) qmu ^c	
	Minutes of Pumping		-		Peristallic Pum	op (e) Su	bmersible Pump (	) Other/Spa	ecify·( )
Volum	e of Water Removed		•		Pump Type:	Geo A			
	Did Well Go Dry?	Y N			Samples collec	ted by same me	thod as evacuation	n? N (speci	fy)
	Water Quality M	leter Type(s) / S	erial Numbers:	1					
			1	1	!	,			
Time	Pump	Total	Water	Temp.	pН	Sp. Cond.	Turbidity	DO	ORP
1 11/11	Rate (L/min.)	Gallons	Level	(Celsius)		(mS/cm)	(NTU)	(mg/l)	(mV)
1450	A	Removed	(ft TIC)	[3%]	[0.1.units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	[10 mV]*
<u> </u>	<del>-</del>		3.63				53		
1455	200		3.81				51		
150c	··		4,04				45		
1509	5		4.17	15,68	9,17	0,314	48	2.26	-/33.9
/5/C	)		4.25	14.89	9,42	0,3/5	47	1,67	-1979
1815			01,28	14.47	9,40	1,396	63	1 409	-2504
1520		<del></del>	4133		<u> </u>	שונוו	73	1,101	00001
1525		······································	11.70			<u>}</u>	7 (X		
		- Caid	101151				(0 4		
	ilization criteria for eac ATIONS/SAMPLING N			utive readings o	oilected at 3- to	5-minute interva	ls) is listed in each	column heading.	
			·						
							,		
	<del></del>								
SAMPLE	DESTINATION			•	-				
	itory:								
Delivered	Via:								
Airi	)ii #:		· · · · · · · · · · · · · · · · · · ·	ī	Field Sampling	Coordinator:			
				•	a camping	viumatoi.			

Well No.	89 ATION - See F	8A ·		=	te/GMA Name ing Personnel Date Weather	KIC, C	A3/GE Pitte Reld EMC 7 S Sunny		
Time	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm)	Turbidity (NTU)	DO (mg/l)	ORP (mV)
530			4.39	[5/6]	[O. S dists]	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	[10 mV]*

		Pump	Total	Water	Temp.	рН	Sp. Cond.	Turbidity	DO	ORP
1	Time	Rate	Gallons	Level	(Celsius)		(mS/cm)	(NTU)	(mg/i)	(mV)
	y	(L/min.)	Removed	(ft TIC)	[3%]*	[0.1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	[10 mV]*
	1530			41.39				52		
	1535			4,38				43		
	1540			4.38	17.35	8.00	1.946	He	1,7/	-220.2
	1545			4.39	17.02	7.90	1,946	37	1.56	-222
ı	1650			4.39	17.08	7.93	1.960	28	1.50	-219.8
	1555			4.39	16.97	1	1.963	27	1.58	
	1560			4.39	17.04	7.92	1,972	26	1.56	-217.3 -210.4
ł	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0120	2+ 11	200 -				~ •	7.00	-010.7
ľ	<del></del>									
l		<del>                                     </del>		,						
t	<del></del>		<del> </del>			<u> </u>				
ŀ	·····			···	· · · · · · · · · · · · · · · · · · ·		ļ			
ŀ		*		· · · · · · · · · · · · · · · · · · ·						
ŀ										
-		1						ŀ		
-	<del></del>					,				
L									***************************************	
L						1				
L					***					
I										
Γ					·····			~		
ľ										
r										
H										
H										
H										
-										
L										
Γ			١							
۱	<u></u>		,					1	1	1

*The stabilization criteria for each field parameter (three consecutive readings collected at 3-t	to 5-minute intervals) is listed in each column beading
OBSERVATIONS/SAMPLING METHOD DEVIATIONS	The state of
	$\sigma c_{\mu}$
	<del></del>
	<u> </u>

Well No	. B'	93			011.10M4 N	(-1	1A -3		
Key No					Site/GMA Nam pling Personne	· ~			
, PID Ba	ckground (ppm)	) —		Jan					
	eadspace (ppm)				Dat Weathe			7/7/	
				_	***************************************	75911	y, mid	707	
WELL INFOR							Sample Tim	. 17.15	5
Referen	ce Point Marked	YN					Sample I		15
Height o	f Reference Poin	t	Meas. Fron	1			Duplicate II		·/
	Well Diameter		~				MS/MSI		
	en interval Depth		_ Meas. From	·			Split Sample II		
W	/ater Table Depth		_ Meas. From	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			•		
Lamadh	Well Depth		_ Meas. From	TIC	_	Required	Analytic	al Parameters:	Collected
	of Water Column		••			( X )	Voc	s (Std. list)	( X)
	of Water in Well		-			( )		s (Exp. list)	( )
пиаке Бери	of Pump/Tubing	<u></u>	_ Meas, From	·	_	( <b>X</b> )		svocs limited	( ×)
Reference Po	int Identification:					( )	PC	Bs (Totaí)	( )
	ner (PVC) Casing	2				( )	PCBs	(Dissolved)	( )
	Outer (Protective)					( )		organics (Total)	( )
	Fround Surface	Casing				( )		anics (Dissolved)	( )
						( )		ide (Dissolved)	( )
Redevelop?	Y N					( )		ide (Dissolved)	( )
						( )		Os/PCDFs	( )
						( 90 )		es/Herbicides Attenuation	( )
	•					(20)		(Specify)	( X)
EVACUATION	INFORMATION	1100	-			( <b>p</b>	Otile	(ореску)	( )
P	ump Start Time	1600	2						
P	ump Stop Time	1750	$\supset$		Evacuation Me	ethod: Bailer (	) Bladder i	Jump ( )	
	ites of Pumping				Peristaltic Pun	4	ıbmersible Pump		ecify ( )
	Vater Removed				Pump Type:	- Cre	own	<u> </u>	-5, ( )
Đì	id Well Go Dry?	YN			Samples collec	cted by same me	ethod as evacuation	n? Y N (spec	f _V )
	Mindon County A A		1		1/7				
	Water Quality Me	eter Type(s)/Se	nai Numbers:	····	10+	22(-	2		
	Pump	Total	Water	Temp.		1	T	_	Ţ
Time	Rate	Gallons	Level	(Celsius)	₽H	Sp. Cond.	Turbidity	DO	ORP
	(L/min.)	Removed	(ft TIC)	[3%]*	[0.1 units]*	(mS/cm) [3%]*	(NTU)	(mg/l)	(mV)
1625	200		3.10	VI. 17.	(0.1. 0.1.0.)	[0.8]	20	[10% or 0.1 mg/l]*	[10 mV]*
1/31)	200		3.10	14/04	1. 71	0,805	22	2 (2)	30.0
112	200			1/1 00	0-11		25	3,58	-38.9
1616			3.10	14.00	1.04	0 804	- ([	<u>3.42</u>	-45,4
1640	200		3.10	15.58	6,49	0.799	පි	2,39	-48.2
1445	200		3.10	15.88	7.05	0.796		2.10	-57.5
1650	740		310	15.71	7.11	0.787	4-200	1.96	-59.7
1655	200		3,10	15.63	6.98	2787	3	1.90	-56.2
1700	700		3.10	15.55	6.91	0.785	3	1.90	-57.9
* The stabilization	n criteria for each	ı field parameter	(three consecu	itive readings o	ollected at 3- to	5-minute interva	ls) is listed in each	ootuma haadina	~,,,
OBSERVATION	IS/SAMPLING M	ETHOD DEVIAT	IONS				io) io listed #1 eacil	column neading.	
						***************************************	+		
······································									
			<del></del>	4					
SAMPLE DEST		*		•					
Laboratory:			·						
Delivered Via:			<del></del>						
Airbill #:_				F	ield Sampling	Coordinator:			

Well No.	_89	<u>B</u>			te/GMA Name ling Personnel Date Weather	Sylva Sylva Suna	43 (1016)	1C	
WELL INFORM	MATION - See P	age 1					Q .		
Time	Pump * Rate (L/min.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
1705	200		3.10	15.08	7.01	0.787	3	1.98	-60.0
170	200	<b>\</b>	3,10	15,03	7.06	0.787	3	1,99	-63.0
San	holed	) at		7/5					
	)								
						<u> </u>			
						``			
								и	
								г.	
	,		}		· · · · · · · · · · · · · · · · · · ·	····			····
									<del></del>
						•			
		· · · · · ·							<del></del>
									<del>*************************************</del>
							,		
		,							
The stabilization	n criteria for each	n field parameter	r (three consecu TIONS	tive reádings col	lected at 3- to 5-	minute intervals	) is listed in each c	olumn heading.	

Well No.	89B-	<u>R</u>		. Si	te/GMA Name	GEP	ittofield/	JHA3		
Key No.	<del></del>			Sampl	ling Personnel	_RADIK	40 6		,	
PID Bac	kground (ppm)		·		Date	MAYA	1001			
Well He	adspace (ppm)			-	Weather	Scenny	low 80	) 9		
WELL INFORM	MATION					·	Sample Time	1615		
Reference	e Point Marked?	ΥN					Sample iD	<u>89 P</u>	-R	
Height of	Reference Point		Meas. From		<del>-</del>		Duplicate ID			
	Well Diameter	·	_				MS/MSD			
Scree	n Interval Depth		Meas. From		~		Split Sample ID			
Wa	ater Table Depth Well Depth	1/2 00 11	Meas. From Meas. From	11C	•	Required	Analytica	! Parameters:	Collected	
Length o	of Water Column		•		•	(i/s		(Std. list)	(1)	
Volume	of Water in Well		•			( )		(Exp. list)	( )	
	of Pump/Tubing		Meas. From	TIC		( )		VOCs	( )	
•	-		-		_	( )		s (Total)	( )	
Reference Poin	nt Identification:					( )		(Dissolved)	( )	
	ner (PVC) Casing	1				( )		rganics (Total)	( )	
TOC: Top of O	uter (Protective)	Casing				( )		nics (Dissolved)	( )	
Grade/BG\$: G	round Surface	_				( )	_	de (Dissolved)	( )	
						( )	•	ide (Dissolved)	( )	
Redévelop?	Y N					( )		s/PCDFs	( )	
				:		( )	Pesticide	s/Herbicides	( )	
						( 1/)	Natural.	Attenuation	(1)	
	,					( )	Other	(Specify)	( )	
Pump Start Time 1445										
	ump Stop Time	11035			Evacuation Me			Pump ( ) ,		
	tes of Pumping				Peristaltic Pum		bmersible Pump (			
	Vater Removed							56 MPS #4		
Đi	d Well Go Dry?	Y N			Samples collec	ted by same me	thod as evacuation	n? 😗 N (speci	(y) I COT BY CO	
	Mater Overlike 64	ata a Tura a (a) I S	i naint Normala a ann					•		
	Water Quality M	eter (ype(s)/ S	enai Numbers: .		· · · · · · · · · · · · · · · · · · ·				·	
	Pump	Total	Water	Temp.	pН	Sp. Cond.	Turbidity	DO	ORP	
Time	Rate	Gallons	Level	(Celsius)		(mS/cm)	(NTU)	(mg/l)	(mV)	
	(L/min.)	Removed	(ft TIC)	[3%]*	[0.1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	[10 mV]*	
1505	200 .		4.15	11-31	9.21	2.851	27	15.65	-104.7	
1510	200		4.70	10.88	7.99	2.847	16	1.49	-91.6	
1515	200		4,19	10.67	8.06	2.832	16	0.86	-87.4	
1520	700		4.19	10.86	7.99	2-781	14	0.60	- 99.8	
1525	200		4.18	10.71	7.93	2.767		0.49	-99.9	
1530	200		4.18	10.64	7.98	2.700	8	0.42	-105.2	
									4	
1535	200		4.18	10.77	8.11	2.653	6	0.36	-110,4	
1535 1540			4.18	10.77	8.11	2.653	6	0.36 0.34	-110.6	
1535 1540	200 200	h field paramete	4,18 4,18 er (three consecu	******		·	(s) is listed in each	<del></del>	-110.6	
	200 200 on criteria for eac			******		·	ls) is listed in each	<del></del>	-110.6	
OBSERVATION	200 200 on criteria for each	ETHOD DEVIA	TIONS	utive readings of	ollected at 3- to	·		<del></del>	-110.6 -110.6	
	200 200 on criteria for eac			utive readings of		·	Is) is listed in each	<del></del>	-110.6	
OBSERVATION	200 200 on criteria for each	ETHOD DEVIA	TIONS	utive readings of	ollected at 3- to	·		<del></del>	-110.6	
OBSERVATION	200 200 on criteria for each	ETHOD DEVIA	TIONS	utive readings of	ollected at 3- to	·		<del></del>	-110.6	
OBSERVATION TIED	200 200 on criteria for eac NS/SAMPLING N	ETHOD DEVIA	TIONS	utive readings of	ollected at 3- to	·		<del></del>	-110.6	
OBSERVATION TIED	DO DO CITERIA FOR EACH	METHOD DEVIA	tions bottom	utive readings of	ollected at 3- to	·		<del></del>	-110.6	
OBSERVATION Tical SAMPLE DEST Laboratory:	DO DO CITERIA FOR EACH NS/SAMPLING NEW YEAR OF THE PROPERTY OF	METHOD DEVIA	tions bottom	utive readings of	ollected at 3- to	·		<del></del>	-110.6	
OBSERVATION TIED	DO DO CITERIA FOR EACH NS/SAMPLING NEW YEAR OF THE PROPERTY OF	METHOD DEVIA	tions bottom	ative readings of	ollected at 3- to	5-minute interva		<del></del>	-110.6	

Well No. 89 D-R	SITE/GMA Name GE PHSfield/GMAS
, S	Sampling Personnel RAB/KLC
	Date MAY 9, ZOOT
	Weather Sunny low 805

WELL	INFORMATION -	- See	Pane 1

	Pump	Total	Water	Temp.	рН	Sp. Cond.	Trankijs		<del></del>
Time	Rate	Gallons	Level	(Celsius)	P(1)	(mS/cm)	Turbidity (NTU)	DO (mg/l)	ORP
	(L/min.)	Removed	(fit TIC)	[3%]*	[0.1 units]*	[3%]*	[10% or 1 NTU]*	(10% or 0.1 mg/i]*	(mV) [10 mV]*
1545	<u>Zoo</u>		4.18	10.53	8.18.	2.599	5	0,31	-109.8
1550	200		4.18	10.63	8.23	2.584	3	0.29	-1704
1555	200		14,18	10.59	8.14	2.518	3	0.26	-177 A
1600	200		4.18	10.63	8.12	2.553	3 **	0.26	-176.5
1605	200		4.18	10.53	8.41	2.534	à	0.24	-17/7
1610	200		4.18	10.71	8.42	2,571		0.25	-118/
1613	200		4.18	10.70	8.46	2.523	2	0,24	-111
1616	200		4.18	10:62	8.46	2.521	$\mathcal{Z}$	0.23	-115 9
San	pled	at	1615						-1770
								····	
				+		<u>-</u>			
								,	
	,								
			· · · · · · · · · · · · · · · · · · ·						
			<del></del>						
			-						
	<u></u> ,				1				
		,							
								Į.	

* The stabilization criteria for each field parameter (three consecution of	
*The stabilization criteria for each field parameter (three consecutive readings	collected at 3- to 5-minute intervals) is listed in each column heading
OBSERVATIONS/SAMPLING METHOD DEVIATIONS	an oddin tolding.
OBSERVATIONS/SAMPLING METHOD DEVIATIONS	
***************************************	
	· · · · · · · · · · · · · · · · · · ·

Well No.	. 90	A		s	ite/GMA Name	AMA	3 CO P	ittsfiel.	ر)	
Key No.	ey No.				ling Personnel	E/C	PAR	171-1-01	<u> </u>	
PID Bac	kground (ppm)	,	*	- '	Date	6/8/10	7			
	adspace (ppm)			_	Weather		J 760	- 0		
				_		X-4-21Y	7			
WELL INFOR	MATION (						Sample Time		<u>`</u>	
Referenc	e Point Marked?	YN					Sample ID			
Height of	Reference Point	·	_ Meas, From				Duplicate ID			
	Well Diameter		-		<del></del>		MS/MSD			
√ Scree	en Interval Depth	45-50	Meas, From		-		Split Sample ID			
W	ater Table Depth	4.95					, ,			
	Well Depth	-51.5	Meas. From		_	Required	Analytica	l Parameters:	Collected	
-	of Water Column		_			( <b>)</b>	VOC	s (Std. list)	$(\boldsymbol{\varkappa})$	
Volume	of Water in Well		_			( )	VOÇs	(Exp. list)	( )	
Intake Depth	of Pump/Tubing	47.5	_ Meas. From		_	( )	S	VOCs	( )	
						( )	PCB	s (Total)	( )	
Reference Poli	nt Identification:					( )	PCBs (	(Dissolved)	{ }	
TIC: Top of Inner (PVC) Casing						( )	Metals/ino	( )		
	outer (Protective)	Casing				( )	Metals/Inorga	anics (Dissolved)	( )	
Grade/BGS: G	iround Surface					( )	EPA Cyani	ide (Dissolved)	( )	
		f				( )	PAC Cyani	ide (Dissolved)	( )	
Redevelop?	Y N					( )	PCDD	s/PCDFs	( )	
						( )	Pesticide	s/Herbicides	( )	
						( <i>&gt;</i> 0)	Natural	Attenuation	( 🔊)	
						( )	Other	(Specify)	( )	
	INFORMATION	1:CA .	1450							
	ump Start Time	7,00	730							
	ump Stop Time	1640	-		Evacuation Me	thod: Bailer (	) Bladder F	oump ( ) qmu		
	tes of Pumping		•	Peristaltic Pump ( X / Submersible Pump ( ) Other/Specify ( )						
	Vater Removed				Pump Type:	- 500	DUMD.			
IJ	d Well Go Dry?	Y (P)	_		Samples collec	ted by same me	thod as evacuation	n? Y N (specif	у)	
	·	eter Type(s)/S	edal Numbers:	VSI S		·	thod as evacuation	n? Y N (specif	у)	
	d Well Go Dry? Water Quality M	eter Type(s) / S	erial Numbers:	VSI «	Samples collect	·	thod as evacuation	n? Y N (specif	у)	
	·	eter Type(s) / S	erial Numbers: Water	VSI S		·	thod as evacuation	n? Y N (specif		
	Water Quality M				556214	1 <u>P</u> S		DO	ORP	
	Water Quality M	Total	Water	Temp.	556214	1PS Sp. Cond.	Turbidity	DO (mg/l)		
	Water Quality M Pump Rate (L/min.)	Total Gallons	Water Level	Temp. (Celsius)	5562 /L ph	1PS Sp. Cond. (mS/cm)	Turbidity (NTU)	DO (mg/l)	ORP (mV)	
	Water Quality M Pump Rate	Total Gallons	Water Level	Temp. (Celsius)	5562 /L ph	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU)	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV)	
	Water Quality M Pump Rate (L/min.)	Total Gallons	Water Level (ff TIC) 5,55	Temp. (Celsius) [3%]*	5562 /L ph	1PS Sp. Cond. (mS/cm)	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l)	ORP (mV)	
	Water Quality M Pump Rate (L/min.)	Total Gallons	Water Level	Temp. (Celsius) (3%)*  10,95 10,78	5562 /L ph	Sp. Cond. (mS/cm) [3%]*  0, 168 0, 168	Turbidity (NTU) [10% or 1 NTU]* 54 49	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV)	
	Water Quality M Pump Rate (L/min.)	Total Gallons	Water Level (ff TIC) 5,55	Temp. (Celsius) [3%]*	5562 /L ph	Sp. Cond. (mS/cm) [3%]*  O, 168 (), 168 (), 176	Turbidity (NTU) [10% or 1 NTU]* 54 49 36	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV)	
Time 1450 1500 1505 1510	Water Quality M Pump Rate (L/min.)	Total Gallons	Water Level (ff TIC) 5,55	Temp. (Celsius) (3%)*  10,95 10,78	55(2)C pH [0.1 units]* 21,93 4,88 4,68 4,73	Sp. Cond. (mS/cm) [3%]*  0, 168 0, 168	Turbidity (NTU) [10% or 1 NTU]* 54 49	DO (mg/l) (10% or 0.1 mg/l)*  /, 95  1, 70  1-, 15  0, 97	ORP (mV)	
Time 1450 1500 1506 1510 1515 1520	Water Quality M Pump Rate (L/min.)	Total Gallons	Water Level (ff TIC) 5,55	Temp. (Celsius) [3%]*  10,95 10,78	5562 /L ph	Sp. Cond. (mS/cm) [3%]*  O, 168 (), 168 (), 176	Turbidity (NTU) [10% or 1 NTU]* 54 49 36	DO (mg/l) [10% or 0.1 mg/l] ² /, 95 1,70 1-,75 0.97 0.68	ORP (mV)	
Time 1450 1 <b>\$</b> 00 1505 1510 1515 1520 1625	Water Quality M Pump Rate (L/min.)	Total Gallons	Water Level (ff TIC) 5,55	Temp. (Celsius) [3%]*  10,95 10,78	55(2)C pH [0.1 units]* 21,93 4,88 4,68 4,73	Sp. Cond. (mS/cm) [3%]*  O, 168 (), 168 (), 176	Turbidity (NTU) [10% or 1 NTU]* 54 49 36	DO (mg/l) (10% or 0.1 mg/l)*  /, 95  1, 70  1-, 15  0, 97	ORP (mV)	
Time 1450 1506 1506 1515 1520 1535 1530	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft Tic) 5,55 5,49 5,48 5,50 5,50 5,50	Temp. (Celsius) [3%]*  10,95 10,78 10,40 10,53 10,11 10,47 10,06	556 16 pH [0.1 units]* 4,93 4,88 4,73 4,88 4,73 4,166	Sp. Cond. (mS/cm) [3%)*  O, 168  O, 168  O, 340  O, 340  O, 318	Turbidity (NTU) [10% or 1 NTU]* 54 49 36 30 31	DO (mg/l) [10% or 0.1 mg/l]*  1, 95  1, 70  1-, 15  0,97  0,68  0,63	ORP (mV)	
Time 1450 1506 1506 1516 1520 1530 The stabilization	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft Tic) 5,55 5,49 5,48 5,50 5,50 5,50 4r (three consecu	Temp. (Celsius) [3%]*  10,95 10,78 10,40 10,53 10,11 10,47 10,06	556 16 pH [0.1 units]* 4,93 4,88 4,73 4,88 4,73 4,166	Sp. Cond. (mS/cm) [3%)*  O, 168  O, 168  O, 340  O, 340  O, 318	Turbidity (NTU) [10% or 1 NTU]* 54 49 36 30 33	DO (mg/l) [10% or 0.1 mg/l]*  1, 95  1, 70  1-, 15  0,97  0,68  0,63	ORP (mV) [10 mV]* - 40.7 - 31.7 34.6 - 87.5 - 25.9	
Time 1450 1506 1506 1516 1520 1530 The stabilization	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft Tic) 5,55 5,49 5,48 5,50 5,50 5,50 4r (three consecu	Temp. (Celsius) [3%]*  10,95 10,78 10,40 10,53 10,11 10,47 10,06	556 16 pH [0.1 units]* 4,93 4,88 4,73 4,88 4,73 4,166	Sp. Cond. (mS/cm) [3%)*  O, 168  O, 168  O, 340  O, 340  O, 318	Turbidity (NTU) [10% or 1 NTU]* 54 49 36 30 31	DO (mg/l) [10% or 0.1 mg/l]*  1, 95  1, 70  1-, 15  0,97  0,68  0,63	ORP (mV) [10 mV]* - 40.7 - 31.7 34.6 - 87.5 - 25.9	
Time 1450 1506 1506 1516 1520 1530 The stabilization	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft Tic) 5,55 5,49 5,48 5,50 5,50 5,50 4r (three consecu	Temp. (Celsius) [3%]*  10,95 10,78 10,40 10,53 10,11 10,47 10,06	556 16 pH [0.1 units]* 4,93 4,88 4,73 4,88 4,73 4,166	Sp. Cond. (mS/cm) [3%)*  O, 168  O, 168  O, 340  O, 340  O, 318	Turbidity (NTU) [10% or 1 NTU]*  49  36  30  33	DO (mg/l) [10% or 0.1 mg/l]*  1, 95  1, 70  1-, 15  0,97  0,68  0,63	ORP (mV) [10 mV]* - 40.7 - 31.7 34.6 - 87.5 - 25.9	
Time 1450 1506 1506 1516 1520 1530 The stabilization	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft Tic) 5,55 5,49 5,48 5,50 5,50 5,50 4r (three consecu	Temp. (Celsius) [3%]*  10,95 10,78 10,40 10,53 10,11 10,47 10,06	556 16 pH [0.1 units]* 4,93 4,88 4,73 4,88 4,73 4,166	Sp. Cond. (mS/cm) [3%)*  O, 168  O, 168  O, 340  O, 340  O, 318	Turbidity (NTU) [10% or 1 NTU]* 54 49 36 30 31	DO (mg/l) [10% or 0.1 mg/l]*  1, 95  1, 70  1-, 15  0,97  0,68  0,63	ORP (mV) [10 mV]* - 40.7 - 31.7 34.6 - 87.5 - 25.9	
Time 1450 1506 1506 1516 1520 1530 The stabilization	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft Tic) 5,55 5,49 5,48 5,50 5,50 5,50 4r (three consecu	Temp. (Celsius) [3%]*  10,95 10,78 10,40 10,53 10,11 10,47 10,06	556 16 pH [0.1 units]* 4,93 4,88 4,73 4,88 4,73 4,166	Sp. Cond. (mS/cm) [3%)*  O, 168  O, 168  O, 340  O, 340  O, 318	Turbidity (NTU) [10% or 1 NTU]*  49  36  30  33	DO (mg/l) [10% or 0.1 mg/l]*  1, 95  1, 70  1-, 15  0,97  0,68  0,63	ORP (mV) [10 mV]* - 40.7 - 31.7 34.6 - 87.5 - 25.9	
Time 1456 1506 1506 1516 1530 1530 The stabilization	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft Tic) 5,55 5,49 5,48 5,50 5,50 5,50 4r (three consecu	Temp. (Celsius) [3%]*  10,95 10,78 10,40 10,53 10,11 10,47 10,06	556 16 pH [0.1 units]* 4, 93 4, 88 4, 73 4, 88 4, 73 4, 66	Sp. Cond. (mS/cm) [3%)*  O, 168  O, 168  O, 340  O, 340  O, 318	Turbidity (NTU) [10% or 1 NTU]*  49  36  30  33	DO (mg/l) [10% or 0.1 mg/l]*  1, 95  1, 70  1-, 15  0,97  0,68  0,63	ORP (mV) [10 mV]* - 40.7 - 31.7 34.6 - 87.5 - 25.9	
Time  1450 1505 1505 1515 1530 1530 The stabilization OBSERVATION	Pump Rate (L/min.)  200  on-criteria for each is/SAMPLING M	Total Gallons Removed  The field parameter SETHOD DEVIA	Water Level (ft Tic) 5,55 5,49 5,48 5,50 5,50 5,50 4 cr (three consecutions	Temp. (Celsius) [3%]*  10,95 10,78 10,40 10,53 10,11 10,47 10,06	556 16 pH [0.1 units]* 4, 93 4, 88 4, 73 4, 88 4, 73 4, 66	Sp. Cond. (mS/cm) [3%)*  O, 168  O, 168  O, 340  O, 340  O, 318	Turbidity (NTU) [10% or 1 NTU]*  49  36  30  33	DO (mg/l) [10% or 0.1 mg/l]*  1, 95  1, 70  1-, 15  0,97  0,68  0,63	ORP (mV) [10 mV]* - 40.7 - 31.7 34.6 - 87.5 - 25.9	
Time  1450  1500  1506  1515  1530  1530  The stabilization  OBSERVATION  SAMPLE DEST  Laboratory:	Pump Rate (L/min.)  On-criteria for each	Total Gallons Removed  The field parameter sethod devices the sethod d	Water Level (ft Tic) 5,55 5,49 5,48 5,50 5,50 5,50 4 cr (three consecutions	Temp. (Celsius) [3%]*  10,95 10,78 10,40 10,53 10,11 10,47 10,06	556 16 pH [0.1 units]* 4, 93 4, 88 4, 73 4, 88 4, 73 4, 66	Sp. Cond. (mS/cm) [3%)*  O, 168  O, 168  O, 340  O, 340  O, 318	Turbidity (NTU) [10% or 1 NTU]*  49  36  30  33	DO (mg/l) [10% or 0.1 mg/l]*  1, 95  1, 70  1-, 15  0,97  0,68  0,63	ORP (mV) [10 mV]* - 40.7 - 31.7 34.6 - 87.5 - 25.9	
Time  1450  1505  1505  1515  1530  The stabilization  SAMPLE DEST  Laboratory: Delivered Via:	Pump Rate (L/min.)  200  on-criteria for each is/SAMPLING M	Total Gallons Removed  The field parameter settled DEVIA	Water Level (ft Tic) 5,55 5,49 5,48 5,50 5,50 5,50 4 cr (three consecutions	Temp. (Celsius) [3%]*  10,95 10,78 10,40 10,53 10,11 10,47 10,06 utive readings of	556 16 pH [0.1 units]* 4, 93 4, 88 4, 73 4, 88 4, 73 4, 66	1PS  sp. Cond. (mS/cm) [3%)*  O, 168  O, 168  O, 168  O, 339  O, 330  O, 340  O, 3186  5-minute interva	Turbidity (NTU) [10% or 1 NTU]*  49  36  30  33	DO (mg/l) [10% or 0.1 mg/l]*  1, 95  1, 70  1-, 15  0,97  0,68  0,63	ORP (mV) [10 mV]* - 40.7 - 31.7 34.6 - 87.5 - 25.9	

Well No. 90A				Site/GMA Name Sampling Personnel Date Sonny high 70's							
WELL INFORM	ATION - See i	age 1					9 9	-			
Time :	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV)		
1535	200	5,50	5,50	10.09	4,49	0.375	11	1.257	[10 mV]* -63.C		
1540			·	10.11	4, 38	0.379	8	0,71	-63		
1545			<u> </u>	10.24	4.40	0.379	10	0.63	- 58.1		
1550				10.09	4.34	0.386	4	0,54	-63.4		
1533	-V		-	10:08	4.33	12,387	5	0,50	- 1.9.		
·									011		
	· · · · · · · · · · · · · · · · · · ·										
	·										
						\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
	2				f						
					,						
	·										
					<del></del>						
<del></del>											
The stabilization	criteria for eacl	n field parameter	(three consecut	ive readings coll	ected at 3- to 5-	minute intervals)	is listed in each co	olumn heading.			

Well No.	(	7013		s	ite/GMA Name	GH	nA-3 .		
Key No.			<u> </u>	_ ,	ling Personnel				
PID Bac	kground (ppm)				Date	5/8			<del></del>
Well He	adspace (ppm)			- -	Weather	Sunny	, Clear , a	1id 70	
						2	•		
WELL INFORT							Sample Time	1600	
	e Point Marked?	Υ 'N			*		Sample ID	90	<u> </u>
Height of	Reference Point	$\sim$ $\sim$	_ Meas. From		<del></del>				
Saraa	Well Dlameter   Interval Depth	0 11	- Meas. From						
	ater Table Depth	27	_ ivieas. From Meas. From		-		Split Sample ID		
***	Well Depth		_ Meas. From		_	Required	Analytical	Parameters:	Collegatord
Length o	of Water Column					(4 <u>C</u> V)		(Std. list)	Collected
	of Water in Welf		_			( )		(Exp. list)	( )
intake Depth	of Pump/Tubing	9.5	_ Meas, From			( )		/OCs	( )
			-		<del>-</del> ,	( )		s (Total)	( )
Reference Poir	nt Identification:					( )		Dissolved)	( )
TIC: Top of inr	ner (PVC) Casing	i				( )	Metals/Inor	ganics (Total)	( )
TOC: Top of C	outer (Protective)	Casing				( )		nics (Dissolved)	( )
Grade/BGS: G	round Surface					( )	EPA Cyani	de (Dissoived)	( )
						( )	PAC Cyani	de (Dissolved)	( )
Redevelop?	YN					( )	PCDD	s/PCDFs	( )
						()	Pesticide	s/Herbicides	()
						$\mathcal{X}$	Natural	Attenuation	$(\nearrow)$
EMAGUATION			_			120	Other	(Specify)	( )
	INFORMATION	1450	)						
	ump Start Time	11-41	5						
	ump Stop Time tes of Pumping	10-10	-			thod: Bailer (	•	'ump ( )	
	vater Removed	***************************************	-		Peristaltic Pum		omersible Pump(	) Other/Spe	cify ( )
	d Well Go Dry?	× 🔊	<u>.</u>		Pump Type:		2 Pump	0 00 11 (0-1-1)	
2.	o wen ob bry:	' ()			Samples collec	ted by same me	inod as evacuation	n? 🕎 N (specif	у)
	Water Quality Me	eter Type(s) / S	erial Numbers:	JSA 1	5561				
<u> </u>			I	/	<del></del>	,			
Time	Pump Rate	Total Gallons	Water	Temp.	pH	Sp. Cond.	Turbidity	DO	ORP
Time	(Umin.)	Removed	Level (ft TIC)	(Celsius)	(0.1	(mS/cm)	(NTU)	(mg/l)	(mV)
11/156	<b>5</b>	(temoved		[3%]*	[0.1 units]*	[3%]	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	[10 mV]*
1000	200	·	6.40	8.39	7.65	0.305		4-69	\$ 79.2
1500	200		6.41	833	7.66	0.309	<u>45                                    </u>	4.67	80.7
1505	200		4.6.41	7.89	7.86	0.299	23	4.49	90.7
1510	200		6.41	880	7.8%	0. 287	16	4.11	75.0
1515	200		6.40	7.47	8.08	0.287	/0	440	78.7
1520	200		6.42	7.42	8.18	0.280	7	4.54	74.4
1525	200		6-42	7.18	8.51	0.277	4	4.49	7.69
1530	200		6.43	7.44	8.75	0.274	2	4.26	68.3
* The stabilization	on criteria for eac	h field paramet	er (three consec	utive readings o			ls) is listed in each		10,0,0
	NS/SAMPLING M					o minoto marta	3) 10 1000 11 02011	column neading.	
					······································				
					***************************************	<del></del>	····		
					····	<del></del> ,	<del> </del>		
			····						·
SAMPLE DEST	INATION	,					•		
					Field Sampling	Coordinator			,
						- 39191101011			·
	\								٠.

Well No. 90 S	Site/GMA Name	SMC SAB GMA-3.
	Sampling Personnel	Emc , SAB
	Date	5/8/07
	Weather	Sunny, Clear, Mid 70;
L INFORMATION - See Page 1		

WELL	INFORMATION	- See Page 1
------	-------------	--------------

Time	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
1535	Zev		6.42	7.18	8.81	0-274	2	4.27	62.6
1540	200		6.43	7.34	8.73	0.274	2	4.27	61.4
1545	200		6.43	7.38	8.70	0.273	1	4.30	59.1
1550	200		6.43	7.34	8.65	0.273	1	4.34	58.2
1555					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		1		50. 2
					<u> </u>	<del>                                     </del>			
				<b></b>		ļ			
		·							
		ì							
,				<u></u>					
								,	
				*				<u>,                                    </u>	
					· · · · · · · · · · · · · · · · · · ·				
					<u>-</u>				
					~				

* The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.
OBSERVATIONS/SAMPLING METHOD DEVIATIONS

Well No	. 95A	<del>t</del>		9	Site/GMA Name	GA	11A-3		
Key No		<b>4</b>		_	pling Personne		k LC		
PID Bad	ckground (ppm)	,			Date		110/01		······································
	eadspace (ppm)				Weather	Senni	Y, Hylo-	7 છેડું	
WELL INFOR	MATION						Sample Time	1/40	
Referen	ce Point Marked?	(A) N	· ·				Sample II	The second second	
Height o	f Reference Point		Meas, From				Duplicate ID		# 3
	Well Diameter		_		<del></del>		MS/MSE		
	en Interval Depth		Meas. From	***************************************	_		Split Sample ID	)	
W	ater Table Depth		Meas. From						
		<u> 8292</u>	Meas. From			Required	<u>Analytica</u>	l Parameters;	Collected
٠.	of Water Column	~	-			(X)	voc	s (Std. list)	(入)
	of Water in Well		-			( )		(Exp. list)	( )
итаке Бери	of Pump/Tubing	41.0	Meas. From			( <b>%</b> )		vocs hufted	(X)
Reference Poi	int Identification:					( 1		Ss (Total)	( )
	iner (PVC) Casing	1				( )		(Dissolved)	( )
	Outer (Protective)	=				( )		organics (Total)	( )
	Ground Surface	Cabing				( )	-	anics (Dissolved) ide (Dissolved)	( )
						( )		ide (Dissolved)	( )
Redevelop?	Y N					( )		Os/PCDFs	( )
						( )		es/Herbicides	( )
						(X)		Attenuation	(X)
						( )		(Specify)	( )
EVACUATION	INFORMATION	1015							
	ump Start Time								
	oump Stop Time	1200			Evacuation Me			Իսութ ( ) -	
	utes of Pumping				Peristaltic Pun		Ibmersible Pump	() Other/Spi	ecify ( )
	Water Removed				Pump Type:	Geo R	,		
Ü	id Well Go Dry?	A (N)	}		Samples collec	cted by same me	ethod as evacuation	n?(_Y') N (speci	fy)
	Water Quality M	eter Type(s) / Se	erial Numbers:		,				
	Pump	Total	Water	<b>*</b>		T 0 0 1	T =	T	1
Time	Rate	Gallons	Level	Temp. (Celsius)	pΗ	Sp. Cond.	Turbidity	00	ORP
14110	(L/min.)	Removed	(ft TIC)	(3%)*	[0.1 units]*	(mS/cm) [3%]*	(NTU)	(mg/l) [10% or 0.1 mg/l]*	(mV)
1020	200		12.02	(0,0)	[O. ) Gilles	[0.0]	44	(30% OF O. 1 Ing/ij	[10 mV]*
11975	702		14.14				37		
1030	200		14.14		<del> </del>	<del>                                     </del>	10		
1035			15.53			<u> </u>			
	700						58		
1040	200		15.77	.0	5 // 0		5/		
1045	260		15,89	13,92	5.40	0,274	44	0.24	-99.8
1050	200		16,10	14.00	5.87	0,276	36	O 27	-102.2
1085	200		1.Cox 18	1426	6.12	0277	30	025	-97.2
* The stabilizati	on criteria for eac	h field paramete	r (three consec					column heading. «	
OBSERVATIO	NS/SAMPLING N			<u> 7050 </u>	- 1040	: purque	duell /	no reading	gs due
		12	spike	in for	rbidity	de sea	dings.		
							<u> </u>		
				····	•				·
SAMPLE DEST	FINATION				•				
Laboratory:									
Delivered Via:									
Airbill #:					Field Sampling	Coordinator:			

Well No.	95	<b>A</b> .		<b>~</b>	te/GMA Name	<u>CM</u> EMC	A-S KLC		
4				oampi	Date	5/	10/01		
					Weather	Sunny	High 70	i Mc	
WELL INFOR	MATION - See P	age 1							
Time	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	р́Н [0,1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) (10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
1100	200		18.25	14.11	6.21	0.277	24	ES 123	-102.1
1105	200		16.38	13.69	6.23	0.277	19	19	-108.9
1110	200	***************************************	16.25	14,19	6.15	0.279	15	.18	-104.6
1115	200		15.99	14.17	6.17	0.280	14	.17	-103.1
1120	200		15.72	14.28	6.19	0,252	13	./6	-104.2
1125	260		15.63	14.36	6.27	0.282	111	.16	-1139
1130	200		15.61	14.65	6.36	0.281	10	.17	- 118.1
1135	200		15.58	14.59	6.41	0.284	10	.18	- 120.6
1146	Mac			MPLE	at	1140 -		10	1 -0.0
				<del></del>					
							,		
							· · · · · · · · · · · · · · · · · · ·		
					· .				
	*						ŧ	,	
									<del></del>
					-				
									<del></del>
									<del></del>
		·							***************************************
		,					,		
* The of the st	an astasis for	ab Salai							
OBSERVATION	on criteria for each	AT REID PARAMET	er (three consec TIONS	curve readings o	collected at 3- to	5-minute interv	als) is listed in eac	h column heading.	٠
		<del></del>				<del></del>			

\$3

Well No	· 95B-	-R			Site/GMA Name	GE PiH	s Field		,
	· <u>* 253</u>			Sam	Jing Personnel	KA			
	kground (ppm)				Date	Slioloy			<del></del>
Well He	adspace (ppm)				Weather	Sw 7	O°		
WELL INFOR	MATION						Sample Time	1210	
Reference	e Point Marked?	M RY		<b>,</b>		,		95 B- R	
Height of	Reference Point	$\overline{}$	Meas. From	To Tic			Duplicate ID		
-				- المناسبين المناسبي	_		MS/MSD		
Scree	en Interval Depth	<b>3-/3</b>	Meas. From	BGS			Split Sample ID		····
		a) :	_ Meas. From	Tic	<del></del>		- 6 02		
	Well Depth	13.4	Meas. From		<del></del>	Required	Analytica	l Parameters:	Collected
Length	of Water Column			_		(×)		s (Std. list)	( <b>X</b> )
Volume	of Water in Well		<del>-</del>	200		( )		(Exp. list)	
intake Depth	of Pump/Tubing	9	_ Meas. From	<b>D</b> 02	~~	( <b>)</b>	s	voes limited	(*()
						( ' )	PCB	s (Total)	( )
	•					( )	PCBs :	(Dissolved)	( )
		•				( )	Metals/Inc	rganics (Total)	( )
	Height of Reference Point  Well Diameter  Screen Interval Depth  Water Table Depth  Well Depth  Length of Water Column  Volume of Water in Well ake Depth of Pump/Tubing  Top of Inner (PVC) Casing  Top of Outer (Protective) Casing  te/BGS: Ground Surface  Pump Start Time Pump Stop Time Minutes of Pumping  Did Well Go Dry?  Water Quality Meter Type(s) / Serial Number  Time  Pump  Rate (L/min.)  Removed  (ft TIC)  70  70  70  70  70  70  70  70  70  7					( )	Metals/Inorga	anics (Dissolved)	( )
Grade/BGS: (	Fround Surface					( )	EPA Cyan	ide (Dissolved)	( )
Badassland	V 11					( )	PAC Cyan	ide (Dissolved)	( )
Kede lalob t	† N					( )	PCDE	s/PCDFs	( )
						( )		s/Herbicides	( )
						$(\mathcal{K})$		Attenuation	(X)
EVACUATION	INFORMATION					( )	Other	(Specify)	( )
		1050							
	-	100	-	1	Evacuation Me	others Dalles (	\ D1=44=5		
		•	-		Peristaltic Pum	•		omb ( )	
		<del>1</del> .00	•		Pump Type:	· · · //	bmersible Pump(	) Other/Spi	ecify ( )
		~ ~	-			-1	PLINA D.	n? Y N (speci	£.5
	•				outipies conce	ned by Saint inc	arou as evacuation	n? Y N (speci	іу)
	Water Quality Me	eter Type(s) / S	erial Numbers:	<u>YSI</u>					
· · · · · · · · · · · · · · · · · · ·	Pump	Total	Water	Temp.	Hq	Sp. Cond.	Turbidite	DO.	000
Time	1 ' 1			(Celsius)	) P''	(mS/cm)	Turbidity (NTU)	DO (mg/l)	ORP
	(L/min.)	Removed	(ft TIC)	[3%]*	[0.1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	(mV) [10 mV]*
11:00	200		10.08	10.84	727	1.040	77	415	-131
NIDS	200		Đ .	1054	7 28	1052	18	3.45	-131.7
0111		.,,,,	7	10.78	7.36	1.055	16	3.05	-1326
1115			60	15,10	7 (17)		12		
				0/5	7.90	1.0.58	13	3,03	-131.0
1120			6,09	9.60	7.45	1:056		3.05	117.6
1125			6.09	9.48	7.48	1.D54	10	3.02	-112.7
1130			6.09	4.62	7.48	1.049	10	2.99	110.D
1135			610	9,68	7.49	1.046	5	3.00	1094
* The stabilization	on criteria for each	h field paramete	r (three consec	utive readings o	ollected at 3- to	5-minute interva	is) is listed in each		
	NS/SAMPLING M								
				· · · · · · · · · · · · · · · · · · ·					
	·	···							
<b>)</b>									<del>,</del>
SAMPLE DEST	INATION				Tire	white de	to Star	+ 25 N	14
					. 003	<u> </u>			
,									
Delivered Via:	<u></u>								
Delivered Via: Airbill #:		***************************************	·		Flaid Someli	Coordinator:			

Well No95 B-R	SITE/GMA Name GMA 3 GE P. HSGIN	
<b>,</b>	Sampling Personnel VA	
	Date _5/10/07	
	Weather Scan 70°	

	Pump	Total	Water	Temp.	рН	Sp. Cond.	Turbidity	οσ	T
Time	Rate	Gallons	Level	(Celsius)		(mS/cm)	(NTU)	(mg/l)	ORP
	(L/min.)	Removed	(ft TIC)	[3%]*	[0.1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/[]*	(mV) [10 mV]*
1140	700		6009	9.67	7.54	1.043	6	302	-109.4
11 45			6.09	9.91	7.70	1.038	$\Box$	3.05	101.
1150			6.09	10.04	7.65	1.036	Ц	3.05	-101.0
1155			6.10	9.93	7.65	1.037	7	9 : 5	104.7
200		<u></u>	6.10	10.01	7.63	1	3		-103.6
Samo	red	at 1.	B1D -	10.01	1.0-	1.026	٦	3,02	-103,9
2911	Lucy (	<u> </u>	A VU						
					<del> </del>				
					<u> </u>				,
			<del></del>						
				•		·			
									-
	,				·				······
					1				
		***************************************							
		~							
			<del></del>	- ,	í				
			` `						
						_			
							***		
···								···	
	<del></del>		<del></del>						
7 The -4-1-19 -41 -		3						ļ	

,	ļ		1					<del></del>		<del> </del>
		[								ļ
	<del></del>								·	
		غ	1							
*The stabilization criter OBSERVATIONS/SAM	IPLING METHO	OFVIATIO	иs <u>Ж</u> _(	bap	· Med	ium c	SOR			

Well No. Key No.		-R		<del></del> -	ite/GMA Name		M43-	Che Pit	Astiel.
•	kground (ppm)		·	oamp	ling Personne		<u> </u>	<b>.</b>	
	adspace (ppm)			<del></del>	Date				
******	acobace (bhiii)			<b></b>	Weather	· SUNY	V ron,	<u> </u>	
WELL INFOR	WATION '						Q	16-40	
	e Point Marked?	YN					Sample Time		
	Reference Point		Mass Emm			•	Sample ID		) - R
. I totalise of	Well Diameter		_ Meas, From	· · · · · · · · · · · · · · · · · · ·	_		Duplicate ID		
. Seesa	n Interval Depth	- 4 4		Groun	1		MS/MSD		
	ater Table Depth	15 46			Ē,		Split Sample ID		
***	Well Depth		Meas, From Meas, From	***************************************		De eviles et	41-11-		
Length o	of Water Column				_	Required ( <b>≫</b> )		l Parameters:	Collected
-	of Water in Well	4			÷	,, ,		s (Std. list)	$(\mathcal{F})$
	of Pump/Tubing	£1.—1 1		TIL		( )		(Exp. list)	( )
mene Sepai	or rumprisoning		Meas. From		-	( )		VOCs	( )
Reference Poir	nt Identification:					( )		s (Total)	( , )
	ner (PVC) Casing	_				( )		(Dissolved)	( )
	uter (Protective)	•				( )		rganics (Total)	( )
Grade/BGS: G		Casing				( )		nics (Dissolved)	( )
Craderboo. G	nound Sunace					( )		ide (Dissolved)	( )
Redèvelop?	Y (Ñ)		•			( )		ide (Dissolved)	( )
	. (9					( )		s/PCDFs	( )
						( )		s/Herbicides	( )
						( <i>7</i> 5)		Attenuation	$(\boldsymbol{x})$
EVACUATION	INFORMATION					( )	Other	(Specify)	( )
	ump Start Time	143C	>						
	ump Stop Time	11/10	_		F	and a second of			
	tes of Pumping	100	-	ŧ	Evacuation Me	_ ,		oump ( ) ,	
	les of Fumping   later Removed		allons		Peristaltic Pun	~	bmersible Pump(	) Other/Spa	ecify ( )
	d Well Go Dry?	TA9	ALCO TO		Pump Type:		ump 2		
	TAICH OO DIAL							. ( )	
	,	' ()			Samples collec	cted by same me	thod as evacuation	n? 🔾 N (specif	fy)
	•	oter Tyma(s) / S	arial Numbers	Y51 - 5-				• • •	
	Water Quality M	eter Type(s) / S	t erial Numbers:	Y51-5	Samples collect			n? ON (specif OP Tub,	
	Water Quality M	~			56 MJ=	rs +/.	210	OP Tust,	dinter
	•	eter Type(s) / S  Total  Gallons	Water	Temp.		Sp. Cond.	Turbidity	OP Tuck,	orp
	Water Quality M	Total	Water Level	Temp. (Celsius)	56 MJ=	Sp. Cond.	Turbidity (NTU)	DO Turt,	ORP (mV)
Time	Water Quality M Pump Rate	Total Gallons Removed	Water	Temp.	56 MJ=	Sp. Cond.	Turbidity (NTU) [10% or 1 NTU]*	OP Tuck,	orp
Time / 1440	Water Quality M Pump Rate (Umin.)	Total Gallons	Water Level (ft TIC)	Temp. (Celsius) [3%]*	56 MJ=	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU)	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 1440 1445	Water Quality M Pump Rate	Total Gallons Removed	Water Level (RTIC)	Temp. (Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) (10% or 0.1 mg/l)*	ORP (mV) [10 mV]*
Time 1440 1445	Water Quality M Pump Rate (Umin.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	56 MJ=	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 1440 1445 1450	Water Quality M Pump Rate (Umin.)	Total Gallons Removed	Water Level (RTIC)	Temp. (Celsius) [3%]  (3) 1.5]  14.07  13.93	pH [0.1 units]*  9.75 9.71	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DP 75.26,  DO (mg/l)  [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 1440 1445	Water Quality M Pump Rate (Umin.)	Total Gallons Removed	Water Level (RTIC)	Temp. (Celsius) [3%]* [3%]* [14.07] [13.93]	1 pH [0.1 units]* 9.75 9.71 9.40	Sp. Cond. (mS/cm) [3%]* SIS. 5 616. 2 514. 7	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l) (10% or 0.1 mg/l)*	ORP (mV) [10 mV]*
Time 1440 1445 1450	Water Quality M Pump Rate (Umin.)	Total Gallons Removed	Water Level (RTIC)	Temp. (Celsius) [3%]  (3) 1.5]  14.07  13.93	pH [0.1 units]*  9.75 9.71	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	DP 75.26,  DO (mg/l)  [10% or 0.1 mg/l]*	ORP (mV) [10 mV]*
Time 1440 1445 1450	Water Quality M Pump Rate (Umin.)	Total Gallons Removed	Water Level (RTIC)	Temp. (Celsius) [3%]* [3%]* [14.07] [13.93]	9.75 9.71 9.60	Sp. Cond. (mS/cm) [3%]* SIS. 5 616. 2 514. 7	Turbidity (NTU) [10% or 1 NTU]*	DP 75.26,  DO (mg/l)  [10% or 0.1 mg/l]*	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3
Time 1440 1445 1450	Water Quality M Pump Rate (Umin.)	Total Gallons Removed	Water Level (RTIC) 15:10 15:80 16,79 17,34 17,91	Temp. (Celsius) [3%]* [3%]* [14.07] [13.93]	1 pH [0.1 units]* 9.75 9.71 9.40	Sp. Cond. (mS/cm) [3%]* SIS. 5 616. 2 514. 7	Turbidity (NTU) [10% or 1 NTU]*	DP 75.26,  DO (mg/l)  [10% or 0.1 mg/l]*	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time 1440 1445 1450	Water Quality M Pump Rate (Umin.)	Total Gallons Removed	Water Level (RTIC) 15:10 15,80 16,79 17,34 17,91	Temp. (Celsius) [3%]*  [31.5]  14.07  13.93  14.05  13.91  13.69  14.00	9.75 9.75 9.76 9.60 9.60 9.61	Sp. Cond. (mS/cm) [3%]* S15.5 616.2 614.7 615.6 617.2 6110.0	Turbidity (NTU) [10% or 1 NTU]*  7  7  5  4	DP 75.26,  DO (mg/l)  [10% or 0.1 mg/l]*	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time  1440 1445 1455 1466 1600 1606 1610	Water Quality M Pump Rate (L/min.)	Total Gallons Removed	Water Level (RTIC) 15:10 15:80 16:79 17:34 17:91 18:06 18:20	Temp. (Celsius) [3%]  217.57  14.07  13.93  14.05  13.69  14.20  13.69  14.20	1 pH [0.1 units]*  9.75  9.71  9.60  9.61  9.55	Sp. Cond. (mS/cm) [3%]*  SIS. S 616. Z 614. 7 615. 6 517. 2 6110. 0 615. 6	Turbidity (NTU) [10% or 1 NTU]*  7  7  5  5  4  6	DO (mg/l) (10% or 0.1 mg/l)*  0.00 0.05 0.05 0.05 0.05 0.05 0.05	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time  1440  1445  1456  1456  1606  1610  1615  The stabilization	Pump Rate (L/min.)  200	Total Gallons Removed	Water Level (RTIC) 15:10 15,80 16,79 17,34 17,91 18,06 18,20 er (three consect	Temp. (Celsius) [3%]  217.57  14.07  13.93  14.05  13.69  14.20  13.69  14.20	1 pH [0.1 units]*  9.75  9.71  9.60  9.61  9.55	Sp. Cond. (mS/cm) [3%]*  SIS. S 616. Z 614. 7 615. 6 517. 2 6110. 0 615. 6	Turbidity (NTU) [10% or 1 NTU]*  7  7  5  4	DO (mg/l) (10% or 0.1 mg/l) (0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.0	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time  1440 1445 1455 1466 1600 1606 1610	Pump Rate (L/min.)  200	Total Gallons Removed	Water Level (RTIC) 15:10 15,80 16,79 17,34 17,91 18,06 18,20 er (three consect	Temp. (Celsius) [3%]  217.57  14.07  13.93  14.05  13.69  14.20  13.69  14.20	1 pH [0.1 units]*  9.75  9.71  9.60  9.61  9.55	Sp. Cond. (mS/cm) [3%]*  SIS. S 616. Z 614. 7 615. 6 517. 2 6110. 0 615. 6	Turbidity (NTU) [10% or 1 NTU]*  7  7  5  5  4  6	DO (mg/l) (10% or 0.1 mg/l) (0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.0	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time  1440  1445  1456  1456  1606  1610  1615  The stabilization	Pump Rate (L/min.)  200	Total Gallons Removed	Water Level (RTIC) 15:10 15,80 16,79 17,34 17,91 18,06 18,20 er (three consect	Temp. (Celsius) [3%]  217.57  14.07  13.93  14.05  13.69  14.20  13.69  14.20	1 pH [0.1 units]*  9.75  9.71  9.60  9.61  9.55	Sp. Cond. (mS/cm) [3%]*  SIS. S 616. Z 614. 7 615. 6 517. 2 6110. 0 615. 6	Turbidity (NTU) [10% or 1 NTU]*  7  7  5  5  4  6	DO (mg/l) (10% or 0.1 mg/l) (0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.0	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time  1440  1445  1456  1456  1606  1610  1615  The stabilization	Pump Rate (L/min.)  200	Total Gallons Removed	Water Level (RTIC) 15:10 15,80 16,79 17,34 17,91 18,06 18,20 er (three consect	Temp. (Celsius) [3%]  217.57  14.07  13.93  14.05  13.69  14.20  13.69  14.20	1 pH [0.1 units]*  9.75  9.71  9.60  9.61  9.55	Sp. Cond. (mS/cm) [3%]*  SIS. S 616. Z 614. 7 615. 6 517. 2 6110. 0 615. 6	Turbidity (NTU) [10% or 1 NTU]*  7  7  5  5  4  6	DO (mg/l) (10% or 0.1 mg/l) (0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.0	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time  1440  1445  1456  1456  1606  1610  1615  The stabilization	Pump Rate (L/min.)  200	Total Gallons Removed	Water Level (RTIC) 15:10 15,80 16,79 17,34 17,91 18,06 18,20 er (three consect	Temp. (Celsius) [3%]  217.57  14.07  13.93  14.05  13.69  14.20  13.69  14.20	1 pH [0.1 units]*  9.75  9.71  9.60  9.61  9.55	Sp. Cond. (mS/cm) [3%]*  SIS. S 616. Z 614. 7 615. 6 517. 2 6110. 0 615. 6	Turbidity (NTU) [10% or 1 NTU]*  7  5  4  6  4  Is) is listed in each	DO (mg/l) (10% or 0.1 mg/l) (0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.0	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time  1440  1445  1456  1456  1606  1610  1615  The stabilization	Pump Rate (L/min.)  200	Total Gallons Removed	Water Level (RTIC) 15:10 15,80 16,79 17,34 17,91 18,06 18,20 er (three consect	Temp. (Celsius) [3%]  217.57  14.07  13.93  14.05  13.69  14.20  13.69  14.20	1 pH [0.1 units]*  9.75  9.71  9.60  9.61  9.55	Sp. Cond. (mS/cm) [3%]*  SIS. S 616. Z 614. 7 615. 6 517. 2 6110. 0 615. 6	Turbidity (NTU) [10% or 1 NTU]*  7  5  4  6  4  Is) is listed in each	DO (mg/l) (10% or 0.1 mg/l) (0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.0	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time  1440  1445  1456  1456  1606  1610  1615  The stabilization	Pump Rate (L/min.)  200 on criteria for each	Total Gallons Removed	Water Level (RTIC) 15:10 15,80 16,79 17,34 17,91 18,06 18,20 er (three consect	Temp. (Celsius) [3%]  217.57  14.07  13.93  14.05  13.69  14.20  13.69  14.20	1 pH [0.1 units]*  9.75  9.71  9.60  9.61  9.55	Sp. Cond. (mS/cm) [3%]*  SIS. S 616. Z 614. 7 615. 6 517. 2 6110. 0 615. 6	Turbidity (NTU) [10% or 1 NTU]*  7  5  4  6  4  Is) is listed in each	DO (mg/l) (10% or 0.1 mg/l) (0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.0	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time  1440  1445  1450  1450  1606  1610  1615  The stabilization  OBSERVATION	Pump Rate (L/min.)  200  on criteria for each	Total Gallons Removed	Water Level (RTIC) 15:10 15,80 16,79 17,34 17,91 18,06 18,20 er (three consect	Temp. (Celsius) [3%]  217.57  14.07  13.93  14.05  13.69  14.20  13.69  14.20	1 pH [0.1 units]*  9.75  9.71  9.60  9.61  9.55	Sp. Cond. (mS/cm) [3%]*  SIS. S 616. Z 614. 7 615. 6 517. 2 6110. 0 615. 6	Turbidity (NTU) [10% or 1 NTU]*  7  5  4  6  4  Is) is listed in each	DO (mg/l) (10% or 0.1 mg/l) (0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.0	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time  1440  1445  1455  1466  1600  1605  1610  1515  The stabilization  OBSERVATION  SAMPLE DEST  Laboratory:	Pump Rate (L/min.)  200 on criteria for each	Total Gallons Removed	Water Level (RTIC) 15:10 15,80 16,79 17,34 17,91 18,06 18,20 er (three consect	Temp. (Celsius) [3%]  217.57  14.07  13.93  14.05  13.69  14.20  13.69  14.20	1 pH [0.1 units]*  9.75  9.71  9.60  9.61  9.55	Sp. Cond. (mS/cm) [3%]*  SIS. S 616. Z 614. 7 615. 6 517. 2 6110. 0 615. 6	Turbidity (NTU) [10% or 1 NTU]*  7  5  4  6  4  Is) is listed in each	DO (mg/l) (10% or 0.1 mg/l) (0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.0	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time  1440  1445  1456  1600  1605  1610  1615  The stabilization  OBSERVATION  SAMPLE DEST  Laboratory: Delivered Via:	Pump Rate (L/min.)  200  on criteria for each IS/SAMPLING Notes INATION SGJ LPJ	Total Gallons Removed	Water Level (RTIC) 15:10 15,80 16,79 17,34 17,91 18,06 18,20 er (three consect	Temp. (Celsius) [3%]  11.57  13.93  14.05  13.69  14.20  13.69  14.20  13.69  utive readings of	pH  [0.1 units]*  9,75  9,71  9,60  9,61  9,55  oliected at 3- to	Sp. Cond. (mS/cm) [3%]*  SIS. 5 616. 2 616. 6 517. 2 6110. 0 515. 6	Turbidity (NTU) [10% or 1 NTU]*  7  5  4  6  4  Is) is listed in each	DO (mg/l) (10% or 0.1 mg/l) (0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.0	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6
Time  1440  1445  1455  1466  1600  1605  1610  1515  The stabilization  OBSERVATION  SAMPLE DEST  Laboratory:	Pump Rate (L/min.)  200  on criteria for each IS/SAMPLING Notes INATION SGJ LPJ	Total Gallons Removed	Water Level (RTIC) 15:10 15,80 16,79 17,34 17,91 18,06 18,20 er (three consect	Temp. (Celsius) [3%]  11.57  13.93  14.05  13.69  14.20  13.69  14.20  13.69  utive readings of	pH  [0.1 units]*  9,75  9,71  9,60  9,61  9,55  oliected at 3- to	Sp. Cond. (mS/cm) [3%]*  SIS. S 616. Z 614. 7 615. 6 517. 2 6110. 0 615. 6	Turbidity (NTU) [10% or 1 NTU]*  7  5  4  6  4  Is) is listed in each	DO (mg/l) (10% or 0.1 mg/l) (0.00 0.05 0.05 0.05 0.05 0.05 0.05 0.0	ORP (mV) [10 mV]* 184.0 185.4 186.4 187.3 189.6

	•			GROUNDWA	TER SAMPL	ING LOG			
, 3	MATION - See	AR.			ite/GMA Name ling Personnel Date Weather	KIC 5	3-66 5-07 1076	Pitts	Rield
Time	Pump Rate (L/min.)	Total Gallons Removed	Water Level (ft TIC)	Temp. (Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU)	DO (mg/l)	ORP (mV)
520			18.59	13,62	9,43	5/4.1	[10% or 1 NTU]*	[10% or 0.1 mg/l] 0.05	
525			18.90	13.82	9.13	507.a	9	0,05	193.3
530			13.10	13,94	9,09	506.8	<del> </del> -		195.4
636				13.92	9,99	506.1	8	0.04	197,2
				tı .		. `			
	k, '								

* The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.
OBSERVATIONS/SAMPLING METHOD DEVIATIONS

Well No		B(2		s	ite/GMA Name		GMA-3		
Key No.	-			Samp	ling Personnel	4 mg	588		
PID Bac	kground (ppm)				Date		05-08-00	7	<del></del>
Weil He	adspace (ppm)			~	Weather	Sunny		960°5	
WELL INFOR	MATION						Sample Time	1155	
Reference	e Point Marked?	Y N					Sample ID	HIBR	
Height of	Reference Point		Meas. From				Duplicate ID	THERM	
	Well Diameter		٠,				MS/MSD	1118R M	S/HS/)
Scree	en interval Depth	7.18 -17	•		<u></u>		Split Sample ID		<del></del>
W	ater Table Depth		Meas. From		···				
	Well Depth		Meas. From	<u> 110 </u>	<b></b>	Required	<u>Analytica</u>	l Parameters:	Callected
	of Water Column					(X)	VOC	s (Std. fist)	( <b>X</b> -)
	of Water in Well	1 . 1 2				( )	VOCs	(Exp. list)	( )
Intake Depth	of Pump/Tubing	14.5	Meas. From		_	( )	s	VOCs	( )
B.4 B.4						( )	PCB	s (Totai)	( )
	nt Identification:					( )	PCBs (	(Dissolved)	( )
	ner (PVC) Casing					( )	Metals/Ino	rganics (Total)	( )
	Outer (Protective)	Casing				( )	Metals/Inorga	inics (Dissolved)	( )
Grader 665. G	iround Surface					( )	EPA Cyan	ide (Dissolved)	( )
Redevelop?	Y N					( )	· ·	ide (Dissolved)	( )
Redevelopi	, 14					( )		s/PCDFs	( )
						( )		s/Herbicides	( )
						(火)		Attenuation	( x )
EVACUATION	INFORMATION					( )	Other	(Specify)	( )
	ump Start Time								
					F				
	tes of Pumping				Evacuation Met	•	=		
	Vater Removed				Peristaltic Puny	p() Su	bmersible Pump (	. ) Other/Spe	cify ( )
	d Well Go Dry?	Y (N)	·		Pump Type:	in d by Asses — a	thod as evacuation	a (C)	
•	+,				Samples Collect	ted by same me	anou as evacuation	n? (Y) N (specif	y)
	Water Quality Mo	eter Type(s) / Se	rial Numbers:						·
	Pump	Total	Water	Тетр.	рН	o. Cond.	Turbidity		
Time	Rate	Gallons	Level	(Celsius)	p.n	(mS/cm)	(NTU)	DO (******	ORP
	(L/min.)	Removed	(ft TIC)	[3%]*	[0.1 units]*	[3%]*	[10% or 1 NTU]*	(mg/f) {10% or 0.1 mg/f]*	(mV)
0955	200	0	13.71				248	(Tened of our ranging	[10 mV]*
1005	200		13,75				> 1000		
1010	200		13.74				> 1000		
1015	200		13,74			·	> 1000		
1020	200		13.72				7 1000		
1025	200		13.73				> 1000		
1030	200		13.73			~	818		
1035	200		13.73				551		
	on criteria for each			itive readings of	oilected at 3- to 5	5-minute interva	ls) is listed in each	column heading.	
······	······································								
				,					
SAMPLE DEST	INATION		•						
Laboratory:									
Delivered Via:									
Airbill #:			····	r	ield Sampling	Cnardinat			
		····		,	ora sampling	coordinator:			

Well No	SILE/GMA Name CAMA 3/GR PILESTOLA
,	Sampling Personnel SAB
	Date <u>5/8/07</u>
	Weather SVNN
ELL INFORMATION - See Page 1	4

!	Pump	Total	Water	Temp.	Hq	Sp. Cond.	Turbidity	DO	ORP
Time	Rate (L/min.)	Gallons Removed	Level (ft TIC)	(Celsius) [3%]*	[0.1 units]*	(mS/cm) [3%]*	(NTU) [10% or 1 NTU]*	(mg/l)	(mV)
1040	200		13.73				230	[10% or 0.1 mg/i]*	[10 mV]*
045			13.73				105		<del>                                     </del>
050			13.71				54		
055			13.72				34		
00			13,73	1250	9,19	0.70	a7	10.31	208.3
1105			13.73	1228	8.99	0.714	10	8,41	196.7
110		<del></del>	13,73	12.34	8.00	0.702		8,14	200.2
115			13,73	12.55	7.95	0.699	1a 8	7.91	200.D
120			13.72	12:29	7,60	0.698	6	777	2075
192			13,73	12.42	7.89	0.696	5	7.87	215,6
130			13,73	12.79	7. Teg	6.694	4	7.58	222.9
135			13123	12.86	7,569	6.693	5	7,46	223,8
140			13,72	12.89	7.53	0.693	4	7,44	2242
145			13,73	1291	7.52	0.693	4	7.41	2214
150			13,73	12,90	7,51	0.692	4	7.38	224.9
dat	1155								
-	<del></del>								
		,						-	

The stabilization criteria for each field parameter (three consecutive continue and the stabilization criteria for each field parameter (three consecutive continue and the stabilization criteria for each field parameter (three consecutive continue and the stabilization criteria).
The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.
DBSERVATIONS/SAMPLING METHOD DEVIATIONS

Well No Key No PIO Bac		~~ <u></u>		_	Site/GMA Name pling Personne Date	'KA_	HSField	GMA-	3
Well He	eadspace (ppm)	-		<u>.</u>	Weather		00		
WELL INFOR	MATION			-			Sample Time	1030	
	ce Point Marked?		1	)			Sample ID		AYA
Height of	f Reference Point		_ Meas. From	<u> Jic</u>			Duplicate (D		
	Well Diameter	-	5	<b>D</b> C-			MS/MSD		
	en Interval Depth ater Table Depth		Meas. From				Split Sample ID		
VV	Well Depth		_ Meas. From _ _ Meas. From	Tic	<del></del>	Required	01-4	. D	<b>-</b>
Length	of Water Column			-1,5-	<del></del>	( <b>%</b> )		I Parameters: s (Std. list)	Collected
	of Water in Well		-			( )		(Exp. list)	( <del>&gt;&gt;</del> )
Intaké Depth	of Pump/Tubing		Meas, From	<u>BGS</u>		( )		VOCs	( )
		45.0				. ( )	PCB	s (Total)	( )
	int Identification:					( )	PCBs (	(Dissolved)	( )
	iner (PVC) Casing Outer (Protective)					( )		rganics (Total)	( )
	Julei (Fratective) Ground Surface	Casing				( )	=	inics (Dissolved)	( )
	-round Gundou					( )		ide (Dissolved)	( )
Redevelop?	Y N					( )		ide (Dissolved) 0s/PCDFs	( )
						( )		s/Herbicides	1 1
						(X)		Attenuation	(X)
						( )	Other	(Specify)	( )
	INFORMATION	1440						4	
	Pump Start Time Pump Stop Time	16.35	•						
	utes of Pumping	10 3			Evacuation Me			nwb()	
	Water Removed	7.5			Peristattic Purr Pump Type:	ıtı (X) sı	binersible Pump (	) Other/Spi	ecify ( )
	id Well Go Dry?	Y (N)	•			ted by came me	thod as evacuation		
	· · · · · · · · · · · · · · · · · · ·							n? V N /onooi	6.A
					, i	ned by dame me	as evacuation	n? Y N (speci	ify)
	Water Quality M	eter Type(s) / Se	erial Numbers:	45	[†]	ned by dame me	anou as evacuation	n? Y N (speci	ify)
	· · · · · · · · · · · · · · · · · · ·				I,	7	THOO AS EVACUAÇÃO	n? Y N (speci	ify)
, ami'T	Pump	Total	Water	Temp.	[†]	Sp. Cond.	Turbidity	no	ORP
Time	Pump Rate	Total Gallons	Water Level	Temp. (Celsius)		Sp. Cond.	Turbidity (NTU)	DO (mg/l)	ORP (mV)
Time	Pump	Total	Water	Temp.	I,	Sp. Cond.	Turbidity (NTU) [10% or 1 NTU]*	DO (mg/l)	ORP
Time	Pump Rate (L/min.)	Total Gallons	Water Level	Temp. (Celsius) [3%]*	pH [0.1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU)*	DO (mg/l)	ORP (mV) [10 mV]*
Time	Pump Rate (Umin.)	Total Gallons	Water Level (ff TIC)	Temp. (Celsius) [3%]*	pH [0,1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	13. (66	ORP (mV) (10 mV)*
Time 14 45 14 50	Pump Rate (L/min.)	Total Gallons	Water Level (ff TIC)  12.4	Temp. (Celsius) [3%]*	pH [0.1 units]*  8. 90 8. 69	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]* 27 29	100 (mg/l) (10% or 0.1 mg/l)* 3: 66 2:32	ORP (mV) [10 mV]*
Time 14 45 14 50 14 55	Pump Rate (L/min.) 200 200 200	Total Gallons	Water Level (ff TIC)	Temp. (Celsius) [3%]*	pH [0,1 units]*	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]*	13. (66	ORP (mV) (10 mV)*
Time 14 45 14 50 14 55 1560	Pump Rate (L/min.)	Total Gallons	Water Level (ff TIC)  12.4	Temp. (Celsius) [3%]*	pH [0.1 units]*  8. 90 8. 69	Sp. Cond. (mS/cm) [3%]*	Turbidity (NTU) [10% or 1 NTU]* 27 29	100 (mg/l) (10% or 0.1 mg/l)* 3: 66 2:32	ORP (mV) (10 mV)*
14 45 14 50 14 55 1500 1505	Pump Rate (L/min.) 200 200 200	Total Gallons	Water Level (ff TIC)  12.4	Temp. (Celsius) [3%]*  13,78  13.08	pH [0.1 units]*  8.90 8.90 8.90	Sp. Cond. (mS/cm) [3%]* 0.311 0.301	Turbidity (NTU) [10% or 1 NTU]* 27 29	100 (mg/l) (10% or 0.1 mg/l)* 3: 66 2:32	ORP (mV) (10 mV)*
Time 14 45 14 50 14 55 1560 1505 1505	Pump Rate (L/min.) 200 200 200	Total Gallons	Water Level (ff TIC)  12.4	Temp. (Celsius) [3%]*  13,78  13.08	pH [0.1 units]*  8.90 8.90 8.90	Sp. Cond. (mS/cm) [3%]* 0.311 0.301	Turbidity (NTU) [10% or 1 NTU]* 37 29 3[ 32 35	100 (mg/l) (10% or 0.1 mg/l)* 3: 66 2:32	ORP (mV) (10 mV)*
Time 14 45 14 50 14 55 1500 1505 1510	Pump Rate (Umin.) 200 200 200 200 150	Total Gallons	Water Level (ff TIC)  12.4	Temp. (Celsius) [3%]*  13,78 13.08 12.21 1400 15.22	pH [0.1 units]*  7. 90 8. 90 8. 90 8. 90 8. 90 8. 90	Sp. Cond. (mS/cm) [3%]* 0.311 0.361 0.295 0.293 0.290	Turbidity (NTU) [10% or 1 NTU]* 37 29 3[ 32 35	100 (mg/l) (10% or 0.1 mg/l)* 3: 66 2:32	ORP (mV) (10 mV)*
14 45 14 50 14 55 1560 1505 1510	Pump Rate (L/min.) 200 200 200 200 150 150 150	. Total Gallons Removed	Water Level (fi Tic) 12.4 15.1 16.78 17.75 18.46 19.18	Temp. (Celsius) [3%]*  13.78  13.8  13.21  1400  15.22  15.52  15.78	PH [0.1 units]*  8.90 8.90 8.90 8.90 8.90 9.00 9.14	Sp. Cond. (mS/cm) [3%]* 0.311 0.301 0.295 0.293 0.290 0.288 0.277	Turbidity (NTU) [10% or 1 NTU]* 37 29 31 32 35 35 41 49	100 (mg/l) [10% or 0.1 mg/l)* 3. 66 2.32 2.15 1.95 1.85 1.87	ORP (mV) (10 mV)*
14 45 1450 1455 1560 1505 1510 1515	Pump Rate (L/min.) 200 200 200 200 150 150 150	Total Gallons Removed	Water Level (ff Tic) 12.4 15.1 16.78 17.75 18.46 19.18 19.84	Temp. (Celsius) [3%]*  13.78  13.8  13.21  1400  15.22  15.52  15.78	PH [0.1 units]*  8.90 8.90 8.90 8.90 8.90 9.00 9.14	Sp. Cond. (mS/cm) [3%]* 0.311 0.301 0.295 0.293 0.290 0.288 0.277	Turbidity (NTU) [10% or 1 NTU]*  37  29  31  32  35  31  41	100 (mg/l) [10% or 0.1 mg/l)* 3. 66 2.32 2.15 1.95 1.85 1.87	ORP (mV) (10 mV)*
14 45 1450 1455 1560 1505 1510 1515	Pump Rate (IJmin.)  Z00 Z00 Z00 L50 L50 L50 L50 L50 on criteria for each	Total Gallons Removed	Water Level (ff Tic) 12.4 15.1 16.78 17.75 18.46 19.18 19.84	Temp. (Celsius) [3%]*  13.78  13.8  13.21  1400  15.22  15.52  15.78	PH [0.1 units]*  8.90 8.90 8.90 8.90 8.90 9.00 9.14	Sp. Cond. (mS/cm) [3%]* 0.311 0.301 0.295 0.293 0.290 0.288 0.277	Turbidity (NTU) [10% or 1 NTU]* 37 29 31 32 35 35 41 49	100 (mg/l) [10% or 0.1 mg/l)* 3. 66 2.32 2.15 1.95 1.85 1.87	ORP (mV) (10 mV)*
14 45 1450 1455 1560 1505 1510 1515	Pump Rate (IJmin.)  Z00 Z00 Z00 L50 L50 L50 L50 L50 on criteria for each	Total Gallons Removed	Water Level (ff Tic) 12.4 15.1 16.78 17.75 18.46 19.18 19.84	Temp. (Celsius) [3%]*  13.78  13.8  13.21  1400  15.22  15.52  15.78	PH [0.1 units]*  8.90 8.90 8.90 8.90 8.90 9.00 9.14	Sp. Cond. (mS/cm) [3%]* 0.311 0.301 0.295 0.293 0.290 0.288 0.277	Turbidity (NTU) [10% or 1 NTU]* 37 29 31 32 35 35 41 49	100 (mg/l) [10% or 0.1 mg/l)* 3. 66 2.32 2.15 1.95 1.85 1.87	ORP (mV) (10 mV)*
14 45 1450 1455 1560 1505 1510 1515	Pump Rate (IJmin.)  Z00 Z00 Z00 L50 L50 L50 L50 L50 on criteria for each	Total Gallons Removed	Water Level (ff Tic) 12.4 15.1 16.78 17.75 18.46 19.18 19.84	Temp. (Celsius) [3%]*  13.78  13.8  13.21  1400  15.22  15.52  15.78	PH [0.1 units]*  8.90 8.90 8.90 8.90 8.90 9.00 9.14	Sp. Cond. (mS/cm) [3%]*  0.311  0.361  0.295  0.293  0.288  0.277  5-minute interva	Turbidity (NTU) [10% or 1 NTU]*  2 9  3   3 2  3 5  3 3  4   4 9  Is) is listed in each	100 (mg/l) [10% or 0.1 mg/l)* 3. 66 2.32 2.15 1.95 1.85 1.87	ORP (mV) (10 mV)*
14 45 14 50 14 55 1500 1505 1510 15 15 The stabilization	Pump Rate (L/min.)  Z00 Z00 Z00 L50 L50 L50 L50 on criteria for each	Total Gallons Removed	Water Level (ff Tic) 12.4 15.1 16.78 17.75 18.46 19.18 19.84	Temp. (Celsius) [3%]*  13.78  13.8  13.21  1400  15.22  15.52  15.78	PH [0.1 units]*  8.90 8.90 8.90 8.90 8.90 9.00 9.14	Sp. Cond. (mS/cm) [3%]* 0.311 0.301 0.295 0.293 0.290 0.288 0.277	Turbidity (NTU) [10% or 1 NTU]* 37 29 31 32 35 35 41 49	100 (mg/l) [10% or 0.1 mg/l)* 3. 66 2.32 2.15 1.95 1.85 1.87	ORP (mV) (10 mV)*
14 45 14 50 14 55 1500 1505 15 15 *The stabilization OBSERVATION	Pump Rate (L/min.)  ZoO ZoO ZoO L5O L5O L5O L5O On criteria for each	Total Gallons Removed  th field paramete	Water Level (ff TIC)  12.4 15.1 16.78 17.75 18.46 19.18 19.84 er (three consecutions	Temp. (Celsius) [3%]*  13.78  13.8  13.21  1400  15.22  15.52  15.78	PH [0.1 units]*  8.90 8.90 8.90 8.90 8.90 9.00 9.14	Sp. Cond. (mS/cm) [3%]*  0.311  0.361  0.295  0.293  0.288  0.277  5-minute interva	Turbidity (NTU) [10% or 1 NTU]*  2 9  3   3 2  3 5  3 3  4   4 9  Is) is listed in each	100 (mg/l) [10% or 0.1 mg/l)* 3. 66 2.32 2.15 1.95 1.85 1.87	ORP (mV) (10 mV)*
14 45 14 50 14 55 1500 1505 1505 1510 15 15 The stabilization OBSERVATION SAMPLE DEST Laboratory: Delivered Via:	Pump Rate (L/min.)  Z00 Z00 Z00 L50 L50 L50 L50 on criteria for each	Total Gallons Removed  th field paramete	Water Level (ff TIC)  12.4 15.1 16.78 17.75 18.46 19.18 19.84 er (three consecutions	Temp. (Celsius) [3%]*  13.78  13.8  13.21  1400  15.22  15.52  15.78	PH [0.1 units]*  8.90 8.90 8.90 8.90 8.90 9.00 9.14	Sp. Cond. (mS/cm) [3%]*  0.311  0.361  0.295  0.293  0.288  0.277  5-minute interva	Turbidity (NTU) [10% or 1 NTU]*  2 9  3   3 2  3 5  3 3  4   4 9  Is) is listed in each	100 (mg/l) [10% or 0.1 mg/l)* 3. 66 2.32 2.15 1.95 1.85 1.87	ORP (mV) (10 mV)*

Well No. 124	SITE/GMA Name Go PIHSFOLD GMA-3
<b>+</b>	Sampling Personnel VA
	Date 5/10/07
	Weather Sun 80°

WELL INFORMATION - See Page 1

<u> </u>	Pump	<del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del>	1 200			<del></del>	<del>,</del>		
Time	Rate	Total Gallons	Water Level	Temp. (Celsius)	pН	Sp. Cond.	Turbidity	DO	ORP
	(L/min.)	Removed	(ft TIC)	[3%]*	[0,1 units]*	(mS/cm) [3%]*	(NTU)	(mg/l) [10% or 0.1 mg/l]*	(mV)
1520	150		20.48	15.31	9.09	0.270	49	1.97	-950
1525	150		20.89	15.71	9,06	0.264	45	2,09	-192.3
1530	75	哲	28.65	15.48	9.03	0.262	39	2.11	-238.4
15 35	75		20.81	16.36	8.90	0257	43	2.01	-245.7
1540	75		20.79	16.23	8.85	0.258	35	2.10	-2432
1545	75		20.78	16 24	8.80	0.256	32	2.09	-246.5
1550	75		20,76	16.23	8.93	0.257	27	2.08	-231.4
1555	75		20.78	16.13	8.86	0 259	24	Z.11	-222 9
1600	٦5	<b>1</b>	20.76	16.19	880	0.259	てこ	2.08	-Z30 2
(605)			20.77	16.13	8.81	0.261	21	2.10	- 2 zo.0
1610			20.80	16 22	8.80	0.260	20	2.10	-218.0
1615	. V		20.79	16.22	8.80	125.0	19	2.10	-216.7
Sami	ded of	at 16	30 —						
	;						4		
					!				
					<u>-</u>				
			·						
		-							
					1				

The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.
OBSERVATIONS/SAMPLING METHOD DEVIATIONS

Well No.	114 13-	R		. \$	ite/GMA Name	GH43	IGE F	AHSREID	
Key No.				-	ling Personnel	KIC.	FILE	· · · · · · · · · · · · · · · · · · ·	
PID Back	(ground (ppm)	1	-	_	Date	5/10/0=	7-		····
Well Hea	adspace (ppm)			_	Weather	773	رم آل	) "	
WELL INFORM	MATION						Samala Tima	1600	
	Point Marked?	Y N					Sample Time		<del></del>
	Reference Point		Meas From				Dunlieste ID		
	Well Diameter		MOQD. CION		-				
· Scree	n Interval Depth		Meas. From						
	ter Table Depth						-p.v		<del></del>
		15,21	Meas. From		~	Required	Analytica	Parameters:	Collected
Length o	f Water Column					( <b>※</b> )	VOÇs	(Std. list)	( <b>X</b> )
Volume	of Water in Well					( )	VOCs	(Exp. list)	( )
Intake Depth	of Pump/Tubing	_9	Meas. From		_	( )	Sı	VOCs	( )
						( )	PCB:	s (Total)	( )
Reference Poin						( )	PCBs (	Dissolved)	( )
	er (PVC) Casing					( )		rganics (Total)	( )
•	uter (Protective)	Casing				( )		nics (Dissolved)	( )
Grade/BGS: G	round Surface					( )		de (Dissolved)	( )
Redèvelop?	Y N					( )	•	de (Dissolved) s/PCDFs	( )
· · · · · · · · · · · · · · · · · · ·						( )		s/Herbicides	( )
						$(\mathcal{N})$		Attenuation	( 14)
						( )		(Specify)	(24)
EVACUATION						, ,			` '
Pi	ımp Start Time	1440							
Pt	ımp Stop Time	1630			Evacuation Me	thod: Bailer (	) Bladder F	ump (💢) ,	
Minu	tes of Pumping				Peristaltic Pum	p(³) Suf	bmersible Pump (	) Other/Spe	cify- ( )
	ater Removed				Pump Type:				·
Die	d Well Go Dry?	Y N			Samples collec	ted by same me	thod as evacuation	n? Y N (specif	y)
•	Water Quality Me	eter Type(s) / Se	rial Numbers:						
······		* * * * * * * * * * * * * * * * * * * *							
	Pump	Totai	Water	Temp.	рН	Sp. Cond.	Turbidity	DO	ORP
Time	Rate	Gallons	Level	(Celsius)		(mS/cm)	(NTU)	(mg/l)	(mV)
1111	(L/min.)	Removed	(ft TIC)	[3%]*	[0.1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	[10 mV]*
1445	200		6.19				+01/01		
1460	200		6.19				54		
1455	200		6.19				52		
1500	200		6.19	/			42		
1505	200		6,19	13,50	7.29	0.966	46	0.7/0	-16.3
1510	200		10.19	1299	5.85	0.964	25	0.31	48
1515	200		10.19	17.87	5110	0.966	20	Orale	45
1520	200		0 1	12.85	5 <b>.5</b> 8	0,962	13	0.24	0.5
* The stabilization		h field naramete	r /three concec			<del></del>	ls) is listed in each		<u> </u>
OBSERVATION				anve readings o	Offected at 3- to	o-minute interva	is) is listed in each	column neading.	
Sin I	A STANSING IN	O IN A	1 .	CIN . O	matte	· · · · ·			
- IV 11-11C	a por	<del>3- 140</del>	· '''	4111 0	INCATTO	<u> </u>			
***************************************									
		·-····································			······································			· · · · · · · · · · · · · · · · · · ·	
SAMPLE DEST	NATION			3					
Laboratory:		•							
Delivered Via:									
Airbill #:					Field Sampling	Coordinator:			

Well No.	/14B-R	Site/GMA Name GMA3/CC Pitts Reld
<b>*</b>	4	Sampling Personnel KIC/EMC
	•	Date 5/10/07
	•	Weather 7015 Sonny, port clouded
WELL INFORMATION	V - See Page 1	9

,	1	MATION - See F	<del>-</del>					,	<u>U</u>	
	Time	Pump Rate	Total Gallons	Water Level	Temp.	pH	Sp. Cond.	Turbidity	DO	ORP
		(L/min.)	Removed	(ft TIC)	(Celsius) [3%]*	[0.1 units]*	(mS/cm) [3%]*	(NTU)	(mg/l) [10% or 0.1 mg/l]*	(mV)
	1525	200		6.19	12.84	5.68	0.005	10	0,23	-3.6
	1530	200		6,19	11.82	5.81	0.959	8	0,21	-7.4
	1535	200		6.19	12.05	5.77	0.958	Co	0.20	-77.1
	1540	200		6119	11.77	5.60	0.957	5	0.20	-13.6
	1545	200		6.19	11.79	5.78	0.957	4	0,20	-13,2
	1550	200		6.19	11.84	5,74	0.957	3	0.20	-18.6
	1555	200		6.19	11.87	5.71	0,958	3	0,23	-19.8
	Sam	pled	a+	16 OC						
		\					./		····	
										~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
									1	
ı										· · · · · · · · · · · · · · · · · · ·
		7		· ·						
ļ										
-										
-										
-										
-										
-										
ŀ										
-										
-	-	<u> </u>								
L										
L										
L										
*	The etablishis		- C-14	r Ohree concess						

The stabilization criteria for each field parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.
OBSERVATIONS/SAMPLING METHOD DEVIATIONS

	Well No.	1154			s	ite/GMA Name	611	43/0	JE AH	2) ev
	Key No.				Samp	ling Personnel	KI	<i>b l</i>		
	FID Dac	kground (ppm)				Date		5/19	107	
	Well He	adspace (ppm)				Weather	Sun	14 60	15.	
	WELL INFORM	MATION						<u> </u>	170 2	
		e Point Marked?	Y N					Sample Time		<u></u>
•		Reference Point		Mass Sam				Sample ID		
	i loight of	Well Diameter		141645. [10]				Duplicate ID		
	Scree	n Interval Depth		 Mess Emm				MS/MSD		
		iter Table Depth						Split Sample ID		
	***		4756	Meas. From		_	Required	Analistica	l Parameters:	Call at 1
	Length o	f Water Column	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			-	(V)		(Std. list)	Collected
		of Water in Well		-			(-)			(1-m)
		of Pump/Tubing		⊸ Meas, From			()		(Exp. list) VOCs	()
		er i empiriaems.					()			()
	Reference Poir	it Idenniication:					()		s (Total)	()
		er (PVC) Casing	,				()		(Dissolved)	()
		uter (Protective)					()		rganics (Total) inics (Dissolved)	()
	Grade/BGS: G						()	_	•	()
							()		de (Dissolved)	()
	Redévelop?	Y N					()	•	de (Dissolved) s/PCDFs	()
							()		s/Herbicides	()
									Attenuation	`
		•					()		(Specify)	()
	EVACUATION	INFORMATION	4				(/	Otrici	(Opecity)	()
	Pt	ımp Start Time	1010							
		ump Stop Time				Evacuation Me	thod: Bailer () Bladder i	ump(),	
		tes of Pumping				Peristaltic Pum		bmersible Pump (eify: ()
		ater Removed		_			· ·		,	·, ()
	Die	d Well Go Dry?	Y N	_		,	ted by same me	thed as evacuation	n? Y N (specif	·~
				1		, .	, , , , , , , , , , , , , , , , , , , ,		· · · · · · · · · · · · · · · · · · ·	"
		Water Quality Me	eter Type(s) / S	erial Numbers:						
		Pump	Total	Water	Temp.	pH	Sp. Cond.	Turbidity	ΟŒ	ORP
	Time	Rate	Gallons	Level	(Celsius)		(mS/cm)	(NTU)	(mg/l)	(mV)
		(L/min.)	Removed	(ft TIC)	[3%]*	[0.1 units]*	[3%]*	, ,	[10% or 0.1 mg/i]*	[10 mV!*
	1615			8.00				61	Transport and many	100,000
	1620			7.91				20		
A	11-20			700				$-\frac{2}{2}\frac{1}{2}$		
L	1005			7.82		100		95		
	1030				11,98	8,05	01292	29	4,06	-288,1
	1635				11.61	8,21	0,292	19	3.22	-303.5
	1640			7.70	11,75	8,20	0,292	18	3.02	- 288,5
	1645				11,62	R119	0,294	15	7 97	-286.4
	1650		······································		1 100	8115	0.293	13	2.94	
	L.C.	a criteria for each	h field narameti	er /three concec				ls) is listed in each		-d91.1
	OBSERVATION				unve readings of	Ollected at 3- to :	o-mnute interva-	is) is asted in each	column neading,	
	3 Sh	2 1	200	2)	61 0 1		~	1	1	
	- 	$\frac{1}{2}$	٥٠، (د	<u>, , , , , , , , , , , , , , , , , , , </u>	i jour	ce, a	grz C	010401	507	
		<i>J</i>		<u> </u>	····	<u> </u>		14 ht	re1)	
K	ROU	mente	d Y	>I (C)	1639	5			, <i>U</i>	
	SAMPLE DEST	NATION	*						,	
	Laboratory:		•		•					
	-									
	Airbill #;				F	Field Sampling	Coordinator			
	-				•					·

					Date		5/14/0	クチ	
LL INFORM	IATION - See P	ane 1			Weather	Syn.	4,60		
	Pump	Total	Water	Temp.	рН	So Cond		T	·
Time	Rate (L/min.)	Gallons Removed	Level (ft TIC)	(Celsius)		Sp. Cond. (mS/cm)	Turbidity (NTU)	DO (mg/l)	ORP (mV)
55	\	removed	(10.10)	[3%]*	[0.1 units]*	[3%]*	[10% or 1 NTU]*	[10% or 0.1 mg/l]*	[10 mV
100				11.86	8.18	0.296	11	a.88	_a/o
105				11.93	8,19	0,296	<u> </u>	0.88	-273
110		· ·	·····	11.68	8:30	0.295	9	889	\ \frac{1}{2}_{-}
715	· .		······································	11.54		0,297	10	5.68	<u>-27</u>
720	> <	2122	100	4 1		0,297		390	-a8
7		2000			1730				
						``			
			······································						

								-	·
			<u> </u>						
			· · · · · · · · · · · · · · · · · · ·						
									~~~~~~~
									······································
									<del></del>
									· · · · · · · · · · · · · · · · · · ·
							<del></del>		······································
						<del></del>	<del>-</del> ,		
		,							

Well No.	_ 45 [	Ó		. \$	iite/GMA Name	GHA 2	JGF 1	Pitts Calcu	Į.
Key No.	FX:	37		-	ling Personnel		PAB	THO HELL	,
PID Bac	kground (ppm)	ž .	•	'	Date	MAG	14 200	7	
Weil He	adspace (ppm)				Weather	Sum	777	•	
				<b></b>	***************************************	SAUNTE	f		<del></del>
WELL INFORM	MATION						Sample Time	17.15	
	e Point Marked?	YN					· ·		<del></del>
	Reference Point		Meas. From	*		,	Sample ID		
rieight of			_ Meas. From				Duplicate ID		
	Well Diameter						MS/MSD	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
*Scree	n Interval Depth	11 652	_ Meas. From	- / 4	_		Split Sample ID		
U-03 W			_ Meas, From		_				
	Well Depth		Meas. From	TIC		Required	<u>Anatytica</u>	l Parameters:	Collected
	of Water Column					( V	VOC	s (Std. list)	( 1)
	of Water in Well					( )	VOCs	(Exp. list)	( )
Intake Depth	of Pump/Tubing		Meas. From		_	( )	s	VOCs	( )
						( )	PCB	s (Total)	( )
Reference Poir	nt Identification:					( )			( )
TIC: Top of Inc	ner (PVC) Casing	g				( )		•	( )
		_				( )			( )
*		,				` '			( )
,						• •			( )
Redavelon?	V N					( )		. ,	( )
тодотоюр.						( )			( )
						( )/			( )
						( <b>(</b> )	Natural	Attenuation	( 4
						( )	Other	(Specify)	( )
		446	しつり						
Pi	ump Start Time	70,							
P	ump Stop Time	114	}		Evacuation Me	thod: Bailer (	) Bladder F	Pump ( ) ,	
Minu	tes of Pumping	15	-		Peristaltic Pum	p() Sul			cify·()
Volume of W	Vater Removed		_		Pump Type:	Acopin	10 Z YSI		
f Di	d Well Go Dry?	YN						n? Y N (specif	v)
			1		, ,	,		(4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,	,,
	Water Quality M	leter Type(s) / S	erial Numbers;		•			<b>*</b>	
					7		·		
	2		<del></del>						-,,-
	Pump !	Totat	Water	Temp.	На	Sp. Cond.	Turbidity	po	ORP
Time		· ·		Temp. (Celsius)	На	Sp. Cond.	Turbidity	DO (mg/l)	ORP (m)()
Time	Rate	Gallons	Level	(Celsius)	•	(mS/cm)	(NTU)	(mg/i)	(mV)
1605	Rate (L/min.)	· ·		,	pH {0.1.units}*	l '	(NTU)	(mg/i)	· •
1405	Rate (Umin.)	Gallons Removed	Level	(Celsius)	•	(mS/cm)	(NTU)	(mg/i)	(mV)
1405 1610	Rate (L/min.)	Gallons Removed	Level (ft TIC)	(Celsius)	•	(mS/cm)	(NTU)	(mg/i)	(mV)
1405 1610	Rate (Umin.)	Gallons Removed	Level (ft TIC)	(Celsius)	•	(mS/cm)	(NTU) [10% or 1 NTU]* 70]	(mg/i)	(mV)
1405	Rate (Umin.) 200 200 200	Gallons Removed	Level	(Celsius) [3%]*	{0,1.units}*	(mS/cm) [3%]*	(NTU)	(mg/i)	(mV) [10 mV]*
1405 1610	Rate (Umin.) 200 200 200	Gallons Removed	Level (ft TIC)	(Celsius) [3%]*	•	(mS/cm)	(NTU) [10% or 1 NTU]* 70]	(mg/i)	(mV)
1405 1610	Rate (Umin.)  200  200  200  200  200	Gallons Removed	Level (ft TIC)	(Celsius) [3%]*	[0.1 units]*	(mS/cm) [3%]*	(NTU) [10% or 1 NTU]* 70]	(mg/i)	(mV) [10 mV]*
1405 1610	Rate (Lmin.) 200 200 200 200 200 200	Gallons Removed	Level (ft TIC)	(Celsius) [3%]*	7.31	(mS/cm) [3%]*	(NTU) [10% or 1 NTU]* 20] 19 30 21	(mg/i)	(mV) [10 mV]*
1405 1610	Rate (Umin.)  200  200  200  200  200	Gallons Removed	Level (ft TIC)	(Celsius) [3%]*  9.16 8.76	7.31	(mS/cm) [3%]*	(NTU) [10% or 1 NTU]* ZOT T. 9 30 21 9	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84	(mV) [10 mV]*
1405 1610	Rate (Umin.)  200  200  200  200  200  200  200  2	Gallons Removed	Level (ft TIC)	(Celsius) [3%]*  9,16 8,76 8,58	7.31 (e.07 5.95	(mS/cm) [3%]*  0.572 0.565 0.556	(NTU) [10% or 1 NTU]* 20] 19 30 21	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84 1,76	(mv) [10 mV]*
1405 1610	Rate (Lmin.) 200 200 200 200 200 200	Gallons Removed	Level (ft TIC)	(Celsius) [3%]*  9.16 8.76 8.58 8,59	7.31	(mS/cm) [3%]*	(NTU) [10% or 1 NTU]* ZOT T. 9 30 21 9	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84	(mV) [10 mV]*
1405 1610	Rate (Lmin.) 200 200 200 200 200 200 200 200	Gallons Removed	Level (MTIC)   11.03   11.18   11.18   11.18   11.18	(Celsius) [3%]*  9.16 8.76 8.58 8,59	7.31 (e.07 5.95 5.84	(mS/cm) [3%]*  0.572 0.565 0.556	(NTU) [10% or 1 NTU]* ZOT T. 9 30 21 9	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84 1,76 1.31	(mv) [10 mV]*
1605 1615 1615 1625 1635 1635 1640	Rate (Umin.) 200 200 200 200 200 200 200	Gallons Removed	Level (MTIC)  11.03  11.18  11.18  11.18  11.18  11.18	9:16 8,76 8,58 8,59 8,55	7.31 (e,07 5.95 5.84 5.89	(ms/cm) [3%]* 0,512 0,565 0,556 0,548 0,544	(NTU) [10% or 1 NTU]* 20] 19 30 21 9 6 2	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84 1,76 1.13	(mv) [10 mV]*
Tic: Top of Inner (PVC) Casing									
1605 1615 1615 1625 1635 1635 1640 The stabilization	Rate (L/min.)  200 200 200 200 200 200 200 200 00 criteria for each	Gallons Removed  11.03  th field paramete METHOD DEVIA	Level (ft TIC)  11.03  11.18  11.18  11.18  11.18  11.18  er (three consecutions	9:16 8:76 8:58 8:59 8:55	7,31 (e,07 5,95 5,84 5,89	(ms/cm) [3%]* 0,512 0,565 0,556 0,548 0,544	(NTU) [10% or 1 NTU]* 20] 19 30 21 9 6 2	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84 1,76 1.13	(mv) [10 mV]*
1605 1615 1615 1625 1635 1635 1640 The stabilization	Rate (L/min.)  200 200 200 200 200 200 200 200 00 criteria for each	Gallons Removed  11.03  th field paramete METHOD DEVIA	Level (ft TIC)  11.03  11.18  11.18  11.18  11.18  11.18  er (three consecutions	9:16 8:76 8:58 8:59 8:55	7,31 (e,07 5,95 5,84 5,89	(ms/cm) [3%]* 0,512 0,565 0,556 0,548 0,544	(NTU) [10% or 1 NTU]* 20] 19 30 21 9 6 2	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84 1,76 1.13	(mv) [10 mV]*
1605 1615 1615 1625 1635 1635 1640 The stabilization	Rate (L/min.)  200 200 200 200 200 200 200 200 00 criteria for each	Gallons Removed  11.03  th field paramete METHOD DEVIA	Level (ft TIC)  11.03  11.18  11.18  11.18  11.18  11.18  er (three consecutions	9:16 8:76 8:58 8:59 8:55	7,31 (e,07 5,95 5,84 5,89	(ms/cm) [3%]* 0,512 0,565 0,556 0,548 0,544	(NTU) [10% or 1 NTU]*  7.07  7.9  3.0  2.1  9  2.4  4.1  Is) is fisted in each	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84 1,76 1.13	(mv) [10 mV]*
1605 1615 1615 1625 1635 1635 1640 The stabilization	Rate (L/min.)  200 200 200 200 200 200 200 200 00 criteria for each	Gallons Removed  11.03  th field paramete METHOD DEVIA	Level (ft TIC)  11.03  11.18  11.18  11.18  11.18  11.18  er (three consecutions	9:16 8:76 8:58 8:59 8:55	7,31 (e,07 5,95 5,84 5,89	(ms/cm) [3%]* 0,512 0,565 0,556 0,548 0,544	(NTU) [10% or 1 NTU]*  7.07  7.9  3.0  2.1  9  2.4  4.1  Is) is fisted in each	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84 1,76 1.13	(mv) [10 mV]*
1605 1615 1615 1625 1635 1635 1640 The stabilization	Rate (L/min.)  200 200 200 200 200 200 200 200 00 criteria for each	Gallons Removed  11.03  th field paramete METHOD DEVIA	Level (ft TIC)  11.03  11.18  11.18  11.18  11.18  11.18  er (three consecutions	9:16 8:76 8:58 8:59 8:55	7,31 (e,07 5,95 5,84 5,89	(ms/cm) [3%]* 0,512 0,565 0,556 0,548 0,544	(NTU) [10% or 1 NTU]*  7.07  7.9  3.0  2.1  9  2.4  4.1  Is) is fisted in each	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84 1,76 1.13	(mv) [10 mV]*
1605 1615 1615 1625 1630 1635 1640 The stabilization Unitial	Rate (Limin.)  200  200  200  200  200  200  200  2	Gallons Removed  11.03  th field paramete METHOD DEVIA	Level (ft TIC)  11.03  11.18  11.18  11.18  11.18  11.18  er (three consecutions	9:16 8:76 8:58 8:59 8:55	7,31 (e,07 5,95 5,84 5,89	(ms/cm) [3%]* 0,512 0,565 0,556 0,548 0,544	(NTU) [10% or 1 NTU]*  7.07  7.9  3.0  2.1  9  2.4  4.1  Is) is fisted in each	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84 1,76 1.13	(mv) [10 mV]*
1605 1615 1615 1625 1635 1635 1640 The stabilization Initial	Rate (L/min.)  200  200  200  200  200  200  200  2	Gallons Removed  11.03  th field paramete METHOD DEVIA	Level (ft TIC)  11.03  11.18  11.18  11.18  11.18  11.18  er (three consecutions	9:16 8:76 8:58 8:59 8:55	7,31 (e,07 5,95 5,84 5,89	(ms/cm) [3%]* 0,512 0,565 0,556 0,548 0,544	(NTU) [10% or 1 NTU]*  7.07  7.9  3.0  2.1  9  2.4  4.1  Is) is fisted in each	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84 1,76 1.13	(mv) [10 mV]*
1605 1615 1615 1625 1635 1635 1635 1640 The stabilization Initial  SAMPLE DEST Laboratory:	Rate (L/min.)  200  200  200  200  200  200  200  2	Gallons Removed  11.03  th field paramete METHOD DEVIA	Level (ft TiC)    1.03    1.18    1.18    1.18    1.18    1.18    1.18    1.18    1.18    1.18    1.18    1.18    1.18	9:16 8:76 8:58 8:59 8:55	7,31 (e,07 5,95 5,84 5,89	(ms/cm) [3%]* 0,512 0,565 0,556 0,548 0,544	(NTU) [10% or 1 NTU]*  7.07  7.9  3.0  2.1  9  2.4  4.1  Is) is fisted in each	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84 1,76 1.13	(mv) [10 mV]*
IGOS ILOVO I	Rate (L/min.)  200  200  200  200  200  200  200  2	Gallons Removed  11.03  th field paramete METHOD DEVIA	Level (ft TiC)    1.03    1.18    1.18    1.18    1.18    1.18    1.18    1.18    1.18    1.18    1.18    1.18    1.18	9:16 8:76 8:58 8:59 8:55	7,31 (e,07 5,95 5,84 5,89	(ms/cm) [3%]* 0,512 0,565 0,556 0,548 0,544	(NTU) [10% or 1 NTU]*  7.07  7.9  3.0  2.1  9  2.4  4.1  Is) is fisted in each	(mg/l) [10% or 0.1 mg/l]* 24,19 2,84 1,76 1.13	(mv) [10 mV]*

Well No	Site/GMA Name	GMA3 GE Pittsfield
,	Sampling Personnel	RABIEMC
	Date	MAY 14, 2007
	Weather	Sunry 703

WEL	. INFORMATION - See Page 1	

	Time	Pump Rate	Total Gallons	Water Level	Temp. (Celsius)	рН	Sp. Cond. (mS/cm)	Turbidity	DO	ORP
L		(L/min.)	Removed	(ft TIC)	[3%]*	[0,1 units]*	[3%]*	(NTU)	(mg/i)	(mV)
	1645	200		11.19	8.57	5.86	0.537	4	[10% or 0.1 mg/l]*	56.5
	1650	200		11.19	8.62	5.87	0.536	<del> </del>	0.94	55.0
	1655	200		11.19	8.64	5.89	0.57.9	7	0 90	53.7
	170C	7.00		11119	8.57	~ <del>~~~~~~~~~</del>		3	0.0	2 2 2
	,				900	0,10	10000		0.86	48.9
Γ			,							
			<u> </u>			<u> </u>				}
					ļ		<del> </del>		<del></del>	
						<del> </del>	,			
Г										
厂	<del></del>									
	·		<del>                                     </del>			,				
<u> </u>	·									
		,								
-									· · · · · · · · · · · · · · · · · · ·	
┝		<u> </u>								
		<del> </del>								
-										
	<u> </u>									
		<u> </u>		· · · · ·						
	<del></del>									
		<u> </u>								
		<u> </u>								
	······································									
	···-								-	
					1					<u>-</u>
			,							
	. ctabili-nii				<u></u>	<u> </u>			!	

ORDERNATION CHEEK to reach held parameter (three consecutive readings collected at 3- to 5-minute intervals) is listed in each column heading.	
OBSERVATIONS/SAMPLING METHOD DEVIATIONS	
THE METION PENALIONS	

# **ARCADIS** BBL

### Appendix D

Spring 2007 Groundwater Analytical Results

Table D-1 **Spring 2007 Groundwater Analytical Results** 

	Sample ID:	2A	16A	16B-R	16C-R
Parameter	Date Collected:	05/14/07	05/07/07	05/08/07	05/07/07
Volatile Organics					
1,1,1,2-Tetrachloro	ethane	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
1,1,1-Trichloroetha	ne	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
1,1,2,2-Tetrachloro	ethane	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
1,1,2-Trichloroetha	ne	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
1,1-Dichloroethane		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
1,1-Dichloroethene		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
1,2,3-Trichloroprop	ane	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
1,2-Dibromo-3-chlo	ropropane	ND(40) J	ND(4.0) J	ND(0.0050) J [ND(0.0050) J]	ND(0.0050) J
1,2-Dibromoethane		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
1,2-Dichloroethane		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
1,2-Dichloropropan	е	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
1,4-Dioxane		ND(800) J	ND(80) J	ND(0.10) J [ND(0.10) J]	ND(0.10) J
2-Butanone		ND(40) J	ND(4.0)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
2-Chloro-1,3-butad	iene	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
2-Chloroethylvinyle	ther	ND(100) J	ND(10) J	ND(0.013) J [ND(0.013) J]	ND(0.013) J
2-Hexanone		ND(40)	ND(4.0)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
3-Chloropropene		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
4-Methyl-2-pentano	one	ND(40)	ND(4.0)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Acetone		ND(40) J	ND(4.0) J	0.0072 J [0.0035 J]	ND(0.0050) J
Acetonitrile		ND(160) J	ND(16) J	ND(0.020) J [ND(0.020) J]	ND(0.020) J
Acrolein		ND(200) J	ND(20) J	ND(0.025) J [ND(0.025) J]	ND(0.025) J
Acrylonitrile		ND(200) J	ND(20) J	ND(0.025) J [ND(0.025) J]	ND(0.025) J
Benzene		38	15	0.0014 [0.0012]	0.0027
Bromodichlorometh	nane	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Bromoform		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Bromomethane		ND(8.0)	ND(0.80) J	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Carbon Disulfide		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Carbon Tetrachloric	de	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Chlorobenzene		170	40	0.0051 J [0.0024 J]	0.015
Chloroethane		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Chloroform		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Chloromethane		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
cis-1,3-Dichloropro	pene	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Dibromochlorometh	nane	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Dibromomethane		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Dichlorodifluorome	thane	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Ethyl Methacrylate		ND(8.0) J	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Ethylbenzene		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Iodomethane		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Isobutanol		ND(400) J	ND(40) J	ND(0.050) J [ND(0.050) J]	ND(0.050) J
Methacrylonitrile		ND(80) J	ND(8.0)	ND(0.010) [ND(0.010)]	ND(0.010)
Methyl Methacrylat	е	ND(8.0) J	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Methylene Chloride	)	ND(40)	ND(4.0)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Propionitrile		ND(160)	ND(16) J	ND(0.020) J [ND(0.020) J]	ND(0.020) J
Styrene		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Tetrachloroethene		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Toluene		6.6 J	0.84	ND(0.0010) [ND(0.0010)]	0.00023 J
trans-1,2-Dichloroe	thene	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
trans-1,3-Dichlorop	ropene	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
trans-1,4-Dichloro-2	2-butene	ND(40)	ND(4.0)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Trichloroethene		14	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Trichlorofluorometh	nane	ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Vinyl Acetate		ND(20)	ND(2.0)	ND(0.0025) [ND(0.0025)]	ND(0.0025)
Vinyl Chloride		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Xylenes (total)		ND(8.0)	ND(0.80)	ND(0.0010) [ND(0.0010)]	ND(0.0010)
Total VOCs		230 J	56	0.014 J [0.0071 J]	0.018

Table D-1 Spring 2007 Groundwater Analytical Results

	Sample ID:	2A	16A	16B-R	16C-R
Parameter	Date Collected:	05/14/07	05/07/07	05/08/07	05/07/07
Semivolatile Org	ganics				
2-Chlorophenol		ND(0.010)	0.028 J	NA	NA
4-Chlorophenol		ND(0.010) J	ND(0.050) J	NA	NA
Natural Attenuat	tion Parameters				
Alkalinity		180	450	520 [530]	130
Chloride		10	1800	300 [280]	1.1
Dissolved Iron		ND(0.100) J	1.07	ND(0.100) [ND(0.100)]	ND(0.100)
Dissolved Organi	c Carbon	3.80	36.0	6.80 [6.80]	ND(1.00)
Ethane		ND(0.020)	ND(0.020)	ND(0.020) [ND(0.040)]	ND(0.020)
Ethene		ND(0.020)	0.35	ND(0.020) [ND(0.040)]	ND(0.020)
Methane		ND(0.00720)	0.793	1.05 [1.13]	ND(0.00720)
Nitrate Nitrogen		ND(0.0500)	ND(0.0500)	ND(0.0500) [ND(0.0500)]	0.120
Nitrite Nitrogen		0.0760	ND(0.100)	ND(0.100) [ND(0.10) J]	ND(0.0100)
Sulfate (turbidime	etric)	25.0	ND(2.00)	14.0 [12.0]	6.40

Table D-1 **Spring 2007 Groundwater Analytical Results** 

	Sample ID:	39B-R	39D-R	39E	43A	43B
Parameter	Date Collected:	05/07/07	05/14/07	05/14/07	05/09/07	05/09/07
Volatile Organics						
1,1,1,2-Tetrachloro		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,1,1-Trichloroetha		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,1,2,2-Tetrachloro		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,1,2-Trichloroethane		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,1-Dichloroethane		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,1-Dichloroethene		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2,3-Trichloroprop		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2-Dibromo-3-chlo		ND(2.0) J	ND(0.0050) J	ND(0.0050) J	ND(0.0050) J	ND(0.0050) J
1,2-Dibromoethane		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,2-Dichloroethane		ND(0.40)	ND(0.0010) J	ND(0.0010) J	ND(0.0010)	ND(0.0010)
1,2-Dichloropropan	e	ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
1,4-Dioxane		ND(40) J	ND(0.10) J	ND(0.10) J	0.19 J	ND(0.10) J
2-Butanone		ND(2.0)	ND(0.0050)	ND(0.0050)	ND(0.0050) J	ND(0.0050)
2-Chloro-1,3-butad		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
2-Chloroethylvinyle	etner	ND(5.0) J	ND(0.013) J	ND(0.013) J	ND(0.013) J	ND(0.013) J
2-Hexanone		ND(2.0)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
3-Chloropropene		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
4-Methyl-2-pentano	one	ND(2.0)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Acetone		ND(2.0) J	ND(0.0050) J	ND(0.0050) J	ND(0.0050) J	ND(0.0050) J
Acetonitrile		ND(8.0) J	ND(0.020) J	ND(0.020) J	ND(0.020) J	ND(0.020) J
Acrolein		ND(10) J	ND(0.025) J	ND(0.025) J	ND(0.025) J	ND(0.025) J
Acrylonitrile		ND(10) J	ND(0.025) J	ND(0.025) J	ND(0.025) J	ND(0.025) J
Benzene		0.66	ND(0.0010)	0.00031 J	ND(0.0010)	ND(0.0010)
Bromodichlorometh	nane	ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
Bromoform		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
Bromomethane		ND(0.40) J	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
Carbon Disulfide	1.	ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
Carbon Tetrachlori	ae	ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
Chlorobenzene		11	0.014	0.00051 J	ND(0.0010)	ND(0.0010)
Chloroethane		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010) J	ND(0.0010)
Chloroform		ND(0.40)	ND(0.0010) 0.00046 J	ND(0.0010) 0.00053 J	ND(0.0010)	ND(0.0010) 0.00050 J
Chloromethane cis-1,3-Dichloropro	none	ND(0.40)			ND(0.0010)	
Dibromochlorometh		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
Dibromocniorometi	iane	ND(0.40) ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
Dichlorodifluorome	thono	ND(0.40) ND(0.40)	ND(0.0010) ND(0.0010)	ND(0.0010) ND(0.0010)	ND(0.0010) ND(0.0010)	ND(0.0010) ND(0.0010)
	ınane		ND(0.0010)	ND(0.0010)		ND(0.0010)
Ethyl Methacrylate Ethylbenzene		ND(0.40) ND(0.40)	ND(0.0010) ND(0.0010)	ND(0.0010)	ND(0.0010) ND(0.0010)	ND(0.0010)
Iodomethane		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
Isobutanol		ND(20) J	ND(0.050) J	ND(0.050) J	ND(0.050) J	ND(0.050) J
Methacrylonitrile		ND(4.0)	ND(0.030) 3	ND(0.030) 3	ND(0.030) 3	ND(0.030) 3
Methyl Methacrylat	0	ND(0.40)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
		ND(2.0)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0050)
Methylene Chloride Propionitrile	,	ND(8.0) J	ND(0.000) ND(0.020) J	ND(0.0030)	ND(0.0030)	ND(0.0030)
Styrene		ND(0.40)	ND(0.020) 3 ND(0.0010)	ND(0.020) 3	ND(0.020) 3 ND(0.0010)	ND(0.020) 3 ND(0.0010)
Tetrachloroethene		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
Toluene		0.10 J	ND(0.0010)	0.00067 J	0.00067 J	ND(0.0010)
		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
trans-1,2-Dichloroethene trans-1,3-Dichloropropene		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
trans-1,3-Dichloropropene		ND(2.0)	ND(0.0010) ND(0.0050)	ND(0.0010) ND(0.0050)	ND(0.0010) ND(0.0050)	ND(0.0010)
Trichloroethene		0.092 J	ND(0.0050) ND(0.0010)	ND(0.0050)	ND(0.0050) ND(0.0010)	ND(0.0050)
Trichlorofluoromethane		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
Vinyl Acetate		ND(0.40) ND(1.0)	ND(0.0010)	ND(0.0010)	ND(0.0010) ND(0.0025)	ND(0.0010) ND(0.0025)
Vinyl Chloride		ND(1.0) ND(0.40)	ND(0.0023) ND(0.0010)	ND(0.0025)	ND(0.0023) ND(0.0010)	ND(0.0023) ND(0.0010)
Xylenes (total)		ND(0.40)	ND(0.0010)	ND(0.0010)	ND(0.0010)	ND(0.0010)
Total VOCs		12	0.014 J	0.0020 J	0.19 J	0.00050 J
TOTAL VOUS		14	U.U14 J	0.0020 J	U. 18 J	0.00030 J

Table D-1 Spring 2007 Groundwater Analytical Results

Parameter	Sample ID: Date Collected:	39B-R 05/07/07	39D-R 05/14/07	39E 05/14/07	43A 05/09/07	43B 05/09/07
Semivolatile Org		00/01/01	00/14/01	00/14/01	00/00/01	00/00/01
2-Chlorophenol		ND(0.050)	NA	NA	NA	NA
4-Chlorophenol		ND(0.050) J	NA	NA	NA	NA
Natural Attenuat	ion Parameters	· · · · · ·		•	•	•
lkalinity		310	130	21.0	490	590
Chloride		98	5.5	170	25	59
Dissolved Iron		0.0121 B	ND(0.100) J	0.0364 J	ND(0.100) J	ND(0.100) J
Dissolved Organic	c Carbon	6.50	ND(1.00)	2.00	1.80	2.50
Ethane		ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.20)
Ethene		ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.20)
Methane		0.162	ND(0.00720)	ND(0.00720)	0.0460	0.802
Nitrate Nitrogen		0.310	ND(0.0500)	0.670	ND(0.0500)	ND(0.0500)
Nitrite Nitrogen		ND(0.0100)	ND(0.0100)	ND(0.0100)	ND(0.0100)	ND(0.0100)
Sulfate (turbidime	tric)	7.30	22.0	4.80	93.0	ND(2.00)

Table D-1 **Spring 2007 Groundwater Analytical Results** 

	Sample ID:	89A	89B	89D-R	90A	90B
Parameter	Date Collected:	05/09/07	05/09/07	05/09/07	05/08/07	05/08/07
Volatile Organics						
1,1,1,2-Tetrachloro		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
1,1,1-Trichloroetha		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
1,1,2,2-Tetrachloro		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
1,1,2-Trichloroethane		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
1,1-Dichloroethane		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
1,1-Dichloroethene		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
1,2,3-Trichloroprop		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
1,2-Dibromo-3-chlo		ND(0.40) J	ND(0.025) J	ND(4.0) J	ND(0.0050) J	ND(0.0050) J
1,2-Dibromoethane		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
1,2-Dichloroethane		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
1,2-Dichloropropar	ne	ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
1,4-Dioxane		ND(8.0) J	ND(0.50) J	ND(80) J	ND(0.10) J	ND(0.10) J
2-Butanone	Р	ND(0.40) J	ND(0.025) J	ND(4.0) J	ND(0.0050)	ND(0.0050)
2-Chloro-1,3-butac		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
2-Chloroethylvinyle	etner	ND(1.0) J	ND(0.063) J	ND(10) J	ND(0.013) J	ND(0.013) J
2-Hexanone		ND(0.40)	ND(0.025)	ND(4.0)	ND(0.0050)	ND(0.0050)
3-Chloropropene		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
4-Methyl-2-pentano	urie	ND(0.40)	ND(0.025)	ND(4.0)	ND(0.0050)	ND(0.0050)
Acetone		ND(0.40) J	ND(0.025) J	ND(4.0) J	ND(0.0050) J	ND(0.0050) J
Acetonitrile		ND(1.6) J	ND(0.10) J	ND(16) J	ND(0.020) J	ND(0.020) J
Acrolein		ND(2.0) J	ND(0.13) J	ND(20) J	ND(0.025) J	ND(0.025) J
Acrylonitrile		ND(2.0) J	ND(0.13) J	ND(20) J	ND(0.025) J	ND(0.025) J
Benzene	L	0.33	0.017	8.3	ND(0.0010)	0.00027 J
Bromodichloromet	nane	ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Bromoform		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Bromomethane		ND(0.080) ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Carbon Disulfide	do	ND(0.080)	ND(0.0050) ND(0.0050)	ND(0.80) ND(0.80)	ND(0.0010) ND(0.0010)	ND(0.0010) ND(0.0010)
Carbon Tetrachlori Chlorobenzene	de	2.5	0.15	31	0.0010)	0.0017
Chloroethane		ND(0.080) J	ND(0.0050) J	ND(0.80) J	ND(0.0010)	ND(0.0010)
Chloroform		ND(0.080) 3	ND(0.0050) 3	ND(0.80) 3 ND(0.80)	ND(0.0010)	ND(0.0010)
Chloromethane		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
cis-1,3-Dichloropro	nene	ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Dibromochloromet		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Dibromomethane	IIalie	ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Dichlorodifluorome	ithane	ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Ethyl Methacrylate		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Ethylbenzene		0.076 J	ND(0.0050)	0.75 J	ND(0.0010)	ND(0.0010)
Iodomethane		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Isobutanol		ND(4.0) J	ND(0.25) J	ND(40) J	ND(0.050) J	ND(0.050) J
Methacrylonitrile		ND(0.80)	ND(0.050)	ND(8.0)	ND(0.010)	ND(0.010)
Methyl Methacrylat	te	ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Methylene Chloride		ND(0.40)	ND(0.0030)	ND(4.0)	ND(0.0050)	ND(0.0050)
Propionitrile	-	ND(1.6) J	ND(0.10) J	ND(16) J	ND(0.020) J	ND(0.020) J
Styrene		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.020) 3	ND(0.020) 3
Tetrachloroethene		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Toluene		ND(0.080)	ND(0.0050)	0.54 J	ND(0.0010)	ND(0.0010)
trans-1,2-Dichloroethene		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
trans-1,3-Dichloropropene		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
trans-1,4-Dichloro-2-butene		ND(0.40)	ND(0.025)	ND(4.0)	ND(0.0050)	ND(0.0050)
Trichloroethene		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Trichlorofluoromethane		ND(0.080)	ND(0.0050)	ND(0.80)	ND(0.0010)	ND(0.0010)
Vinyl Acetate		ND(0.20)	ND(0.013)	ND(2.0)	ND(0.0025)	ND(0.0025)
Vinyl Chloride		ND(0.080)	ND(0.0050)	0.98	ND(0.0010)	ND(0.0010)
Xylenes (total)		0.056 J	ND(0.0050)	1.9	ND(0.0010)	ND(0.0010)
Total VOCs		3.0 J	0.17	43 J	0.0011	0.0020 J
		0.00	ı	.50	0.0011	0.00200

Table D-1 **Spring 2007 Groundwater Analytical Results** 

_	Sample ID:	89A	89B	89D-R	90A	90B
Parameter	Date Collected:	05/09/07	05/09/07	05/09/07	05/08/07	05/08/07
Semivolatile Org	anics					
2-Chlorophenol		0.0072 J	ND(0.010)	NA	NA	NA
4-Chlorophenol		ND(0.010) J	ND(0.010) J	NA	NA	NA
Natural Attenuat	ion Parameters	•	·			
Alkalinity		360	170	330	160	130
Chloride		440	140	630	9.3	8.0
Dissolved Iron		ND(0.100) J	ND(0.100) J	ND(0.100) J	0.0670 B	3.62
Dissolved Organic	Carbon	5.60	2.60	9.20	ND(1.00)	4.80
Ethane		ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)
Ethene		ND(0.020)	ND(0.020)	0.80	ND(0.020)	ND(0.020)
Methane		0.738	0.188	1.06	0.108	0.0830
Nitrate Nitrogen		ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.0500)
Nitrite Nitrogen		ND(0.100)	ND(0.0100)	ND(0.100)	ND(0.0100)	ND(0.0100)
Sulfate (turbidime	tric)	ND(2.00)	7.50	2.80	21.0	2.00

Table D-1 Spring 2007 Groundwater Analytical Results

_	Sample ID:	95A	95B-R	111A-R	111B-R
Parameter	Date Collected:	05/10/07	05/10/07	05/07/07	05/08/07
Volatile Organics					
1,1,1,2-Tetrachlord		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
1,1,1-Trichloroetha		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
1,1,2,2-Tetrachlord		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
1,1,2-Trichloroetha		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
1,1-Dichloroethane		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
1,1-Dichloroethene		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
1,2,3-Trichloroprop		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
1,2-Dibromo-3-chlo		ND(0.0050) J [ND(0.0050) J]	ND(2.0) J	ND(0.0050) J	ND(0.0050) J
1,2-Dibromoethane		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
1,2-Dichloroethane		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
1,2-Dichloropropar	ne	ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
1,4-Dioxane		ND(0.10) J [ND(0.10) J]	ND(40) J	ND(0.10) J	ND(0.10) J
2-Butanone		ND(0.0050) [ND(0.0050)]	ND(2.0) J	ND(0.0050)	ND(0.0050)
2-Chloro-1,3-butad		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
2-Chloroethylvinyle	ether	ND(0.013) J [ND(0.013) J]	ND(5.0) J	ND(0.013) J	ND(0.013) J
2-Hexanone		ND(0.0050) [ND(0.0050)]	ND(2.0)	ND(0.0050)	ND(0.0050)
3-Chloropropene		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
4-Methyl-2-pentand	one	ND(0.0050) [ND(0.0050)]	ND(2.0)	ND(0.0050)	ND(0.0050)
Acetone		ND(0.0050) J [ND(0.0050) J]	ND(2.0) J	ND(0.0050) J	ND(0.0050) J
Acetonitrile		ND(0.020) J [ND(0.020) J]	ND(8.0) J	ND(0.020) J	ND(0.020) J
Acrolein		ND(0.025) J [ND(0.025) J]	ND(10) J	ND(0.025) J	ND(0.025) J
Acrylonitrile		ND(0.025) J [ND(0.025) J]	ND(10) J	ND(0.025) J	ND(0.025) J
Benzene		ND(0.0010) [ND(0.0010)]	2.3	ND(0.0010)	0.00038 J
Bromodichloromet	hane	ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Bromoform		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Bromomethane		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010) J	ND(0.0010)
Carbon Disulfide		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Carbon Tetrachlori	de	ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Chlorobenzene		ND(0.0010) [ND(0.0010)]	9.7	ND(0.0010)	0.0020 J
Chloroethane		ND(0.0010) [ND(0.0010)]			ND(0.0010)
Chloroform		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Chloromethane		0.00049 J [0.00063 J]	ND(0.40)	ND(0.0010)	ND(0.0010)
cis-1,3-Dichloropro		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Dibromochloromet	hane	ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Dibromomethane		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Dichlorodifluorome		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Ethyl Methacrylate		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Ethylbenzene		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Iodomethane		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Isobutanol		ND(0.050) J [ND(0.050) J]	ND(20) J	ND(0.050) J	ND(0.050) J
Methacrylonitrile		ND(0.010) [ND(0.010)]	ND(4.0)	ND(0.010)	ND(0.010)
Methyl Methacrylat		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Methylene Chloride	9	ND(0.0050) [ND(0.0050)]	ND(2.0)	ND(0.0050)	ND(0.0050)
Propionitrile		ND(0.020) J [ND(0.020) J]	ND(8.0) J	ND(0.020) J	ND(0.020) J
Styrene		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Tetrachloroethene		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Toluene		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
trans-1,2-Dichloroe		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
trans-1,3-Dichlorop		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
trans-1,4-Dichloro-2-butene		ND(0.0050) [ND(0.0050)]	ND(2.0)	ND(0.0050)	ND(0.0050)
Trichloroethene		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Trichlorofluoromethane		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Vinyl Acetate		ND(0.0025) [ND(0.0025)]	ND(1.0)	ND(0.0025)	ND(0.0025)
Vinyl Chloride		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Xylenes (total)		ND(0.0010) [ND(0.0010)]	ND(0.40)	ND(0.0010)	ND(0.0010)
Total VOCs		0.00049 J [0.00063 J]	12	ND(0.10)	0.0024 J

Table D-1 Spring 2007 Groundwater Analytical Results

	Sample ID:	95A	95B-R	111A-R	111B-R			
Parameter	Date Collected:	05/10/07	05/10/07	05/07/07	05/08/07			
Semivolatile Org	janics							
2-Chlorophenol		ND(0.010) [ND(0.010)]	0.0090 J	NA	NA			
4-Chlorophenol		ND(0.010) J [ND(0.010) J]	0.020 J	NA	NA			
Natural Attenuation Parameters								
Alkalinity		130 [130]	260	140	150			
Chloride		1.4 [1.4]	140	92	11			
Dissolved Iron		ND(0.100) J [ND(0.100) J]	ND(0.100) J	0.0101 B	ND(0.100)			
Dissolved Organi	c Carbon	ND(1.00) [ND(1.00)]	4.30	1.20	1.10			
Ethane		ND(0.020) [ND(0.020)]	0.051	ND(0.020)	ND(0.020)			
Ethene		ND(0.020) [ND(0.020)]	0.044	ND(0.020)	ND(0.020)			
Methane		0.134 [0.0880]	1.57	ND(0.00720)	ND(0.00720)			
Nitrate Nitrogen		ND(0.0500) [ND(0.0500)]	ND(0.0500)	ND(0.0500)	5.90			
Nitrite Nitrogen		ND(0.0100) [ND(0.0100)]	ND(0.100)	ND(0.0100)	ND(0.0100)			
Sulfate (turbidime	etric)	4.40 [4.20]	3.80	71.0	190			

Table D-1 **Spring 2007 Groundwater Analytical Results** 

Sample II	): 114A	114B-R	115A	115B
Parameter Date Collected		05/10/07	05/14/07	05/14/07
Volatile Organics		00010101	00111101	00111101
1,1,1,2-Tetrachloroethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
1,1,1-Trichloroethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
1.1.2.2-Tetrachloroethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
1.1.2-Trichloroethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
1,1-Dichloroethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
1,1-Dichloroethene	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
1,2,3-Trichloropropane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
1,2-Dibromo-3-chloropropane	ND(0.0050) J	ND(0.40) J	ND(0.0050) J	ND(0.0050) J
1.2-Dibromoethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
1,2-Dichloroethane	ND(0.0010)	ND(0.080)	ND(0.0010) J	ND(0.0010) J
1,2-Dichloropropane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
1,4-Dioxane	ND(0.10) J	ND(8.0) J	ND(0.10) J	ND(0.10) J
2-Butanone	ND(0.0050)	ND(0.40) J	ND(0.0050)	ND(0.0050)
2-Chloro-1,3-butadiene	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
2-Chloroethylvinylether	ND(0.013) J	ND(1.0) J	ND(0.013) J	ND(0.013) J
2-Hexanone	ND(0.0050)	ND(0.40)	ND(0.0050)	ND(0.0050)
3-Chloropropene	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
4-Methyl-2-pentanone	ND(0.0050)	ND(0.40)	ND(0.0050)	ND(0.0050)
Acetone	ND(0.0050) J	ND(0.40) J	ND(0.0050) J	ND(0.0050) J
Acetonitrile	ND(0.020) J	ND(1.6) J	ND(0.020) J	ND(0.020) J
Acrolein	ND(0.025) J	ND(2.0) J	ND(0.025) J	ND(0.025) J
Acrylonitrile	ND(0.025) J	ND(2.0) J	ND(0.025) J	ND(0.025) J
Benzene	ND(0.0010)	0.10	ND(0.0010)	ND(0.0010)
Bromodichloromethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Bromoform	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Bromomethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Carbon Disulfide	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Carbon Tetrachloride	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Chlorobenzene	ND(0.0010)	2.0	ND(0.0010)	ND(0.0010)
Chloroethane	ND(0.0010)	ND(0.080) J	ND(0.0010)	ND(0.0010)
Chloroform	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Chloromethane	0.00070 J	ND(0.080)	0.00040 J	0.00055 J
cis-1,3-Dichloropropene	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Dibromochloromethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Dibromomethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Dichlorodifluoromethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Ethyl Methacrylate	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Ethylbenzene	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Iodomethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Isobutanol	ND(0.050) J	ND(4.0) J	ND(0.050) J	ND(0.050) J
Methacrylonitrile	ND(0.010)	ND(0.80)	ND(0.010)	ND(0.010)
Methyl Methacrylate	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Methylene Chloride	ND(0.0050)	ND(0.40)	ND(0.0050)	ND(0.0050)
Propionitrile	ND(0.020) J	ND(1.6) J	ND(0.020) J	ND(0.020) J
Styrene	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Tetrachloroethene	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Toluene	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
trans-1,2-Dichloroethene	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
trans-1,3-Dichloropropene	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
trans-1,4-Dichloro-2-butene	ND(0.0050)	ND(0.40)	ND(0.0050)	ND(0.0050)
Trichloroethene	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Trichlorofluoromethane	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Vinyl Acetate	ND(0.0025)	ND(0.20)	ND(0.0025)	ND(0.0025)
Vinyl Chloride	ND(0.0010)	0.11	ND(0.0010)	ND(0.0010)
Xylenes (total)	ND(0.0010)	ND(0.080)	ND(0.0010)	ND(0.0010)
Total VOCs	0.00070 J	2.2	0.00040 J	0.00055 J

Table D-1 Spring 2007 Groundwater Analytical Results

	Sample ID:	114A	114B-R	115A	115B						
Parameter	Date Collected:	05/10/07	05/10/07	05/14/07	05/14/07						
Semivolatile Organ	nics										
2-Chlorophenol		NA	NA	NA	NA						
4-Chlorophenol		NA	NA	NA	NA						
Natural Attenuatio	Natural Attenuation Parameters										
Alkalinity		130	210	160	250						
Chloride		3.8	170	1.2	13						
Dissolved Iron		0.0434 J	ND(0.100) J	ND(0.100) J	ND(0.100) J						
Dissolved Organic (	Carbon	1.20	2.50	ND(1.00)	ND(1.00)						
Ethane		ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)						
Ethene		ND(0.020)	ND(0.020)	ND(0.020)	ND(0.020)						
Methane		0.285	0.205	ND(0.00720)	ND(0.00720)						
Nitrate Nitrogen		ND(0.0500)	ND(0.0500)	ND(0.0500)	0.110						
Nitrite Nitrogen		ND(0.0100)	ND(0.0500)	ND(0.0100)	ND(0.0100)						
Sulfate (turbidimetri	c)	3.40	12.0	4.20	14.0						

#### Notes:

- Samples were collected by ARCADIS BBL, and submitted to SGS Environmental Services, Inc. for analysis of volatiles, selected semivolatiles and natural attenuation parameters.
- Samples have been validated as per Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP), General Electric Company, Pittsfield, Massachusetts, ARCADIS BBL (approved March 15, 2007 and re-submitted March 30, 2007).
- 3. NA Not Analyzed.
- 4. ND Analyte was not detected. The number in parenthesis is the associated detection limit.
- 5. Field duplicate sample results are presented in brackets.

#### Data Qualifiers:

#### Organics (volatiles, semivolatiles)

J - Indicates that the associated numerical value is an estimated concentration.

#### Natural Attenuation Parameters

- B Indicates an estimated value between the instrument detection limit (IDL) and (PQL).
- J Indicates that the associated numerical value is an estimated concentration.

# **ARCADIS** BBL

### Appendix E

Historical Groundwater Data

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	2A	2A	2A	2A	2A	2A	2A
Parameter Dat	Sample ID: e Collected:	UBG02A 01/09/97	UBG2AX (Bailer) 01/09/97	UBG2A 04/30/97	UBG2AX (Bailer) 04/30/97	UBG2A 10/09/97	UBG02A 04/21/98	UBG2A 12/22/98
Volatile Organics								
Benzene		34	34 D	45	45	41	46	43
Chlorobenzene		110	100 D	140	150	150	130 DE	190
Trichloroethene		7.6	11	13	13	9.9	8.9	11
Vinyl Chloride		ND(10)	ND(2.0)	ND(12)	ND(12)	ND(10)	ND(3.3)	ND(10)
Total VOCs		150 J	150	200 J	210 J	200 J	350 J	250 J
Semivolatile Organics								
2-Chlorophenol		NA	NA	0.0010 J	NA	NA	NA	NA
4-Chlorophenol		NA	NA	NA	NA	NA	NA	2.1
Natural Attenuation Pa	rameters							
Alkalinity (Total)		NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 4.5		240	NA	240	NA	NA	NA	254
Alkalinity to pH 8.3		ND(1.00)	NA	ND(1.00)	NA	NA	NA	ND(1.00)
Ammonia Nitrogen		0.0900	NA	0.150	NA	NA	NA	ND(0.200)
Chloride		43	NA	36	NA	NA	NA	29
Dissolved Iron		NA	NA	NA	NA	NA	NA	ND(0.100)
Dissolved Organic Carbo	on	3.90	NA	3.50	NA	NA	NA	1.60
Ethane		ND(0.0050)	NA	ND(0.0050)	NA	NA	NA	ND(0.0050)
Ethene		ND(0.0050)	NA	ND(0.0050)	NA	NA	NA	ND(0.0050)
Methane		ND(0.00500)	NA	ND(0.00500)	NA	NA	NA	ND(0.00500)
Nitrate Nitrogen		NA	NA	NA	NA	NA	NA	NA
Nitrite Nitrogen		NA	NA	NA	NA	NA	NA	NA
Sulfate (turbidimetric)		47.6	NA	47.2	NA	NA	NA	37.6
Total Nitrate/Nitrite Nitro	gen	NA	NA	NA	NA	NA	NA	1.30

Page 1 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	2A	2A	2A	2A	2A	2A	2A	2A
D	Sample ID:	2A	2A	2A	2A	002A	2A	2A	2A
	e Collected:	04/30/99	10/20/99	05/12/00	11/17/00	04/23/02	04/12/04	04/07/05	04/19/06
Volatile Organics									
Benzene		41	29 D	17	31	4.4	21	27	34
Chlorobenzene		180	190 D	110	96	8.2	81	120	160
Trichloroethene		9.8 J	7.3 DJ	ND(5.0)	11	0.47	8.4	12	11
Vinyl Chloride		ND(12)	ND(0.10)	ND(10)	ND(0.010)	ND(0.0050)	ND(5.0)	ND(5.0)	ND(0.20)
Total VOCs		240 J	230 J	130	140	13	110	160	210
Semivolatile Organics									
2-Chlorophenol		NA	NA	NA	NA	NA	ND(0.010)	ND(0.010)	ND(0.010)
4-Chlorophenol		NA	NA	NA	NA	NA	ND(0.010)	1.8	1.9
Natural Attenuation Par	rameters								
Alkalinity (Total)		NA	NA	NA	NA	140	190	180	180
Alkalinity to pH 4.5		NA	NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 8.3		NA	NA	NA	NA	NA	NA	NA	NA
Ammonia Nitrogen		NA	NA	NA	NA	NA	NA	NA	NA
Chloride		NA	NA	NA	NA	40	16	10	8.0
Dissolved Iron		NA	NA	NA	NA	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.100)
Dissolved Organic Carbo	on	NA	NA	NA	NA	11.0	3.10	0.750 B	1.90
Ethane		NA	NA	NA	NA	0.017	0.0045	ND(0.0040)	ND(0.020)
Ethene		NA	NA	NA	NA	0.30	0.017	ND(0.0030)	ND(0.020)
Methane		NA	NA	NA	NA	0.0450	0.0110	ND(0.00200)	ND(0.00720)
Nitrate Nitrogen		NA	NA	NA	NA	0.0490 B	0.0170 B	0.0380 B	ND(0.100)
Nitrite Nitrogen		NA	NA	NA	NA	0.00300 B	0.0440 B	0.0820	ND(0.500)
Sulfate (turbidimetric)		NA	NA	NA	NA	30.0	26.0	21.0	20.0
Total Nitrate/Nitrite Nitrog	gen	NA	NA	NA	NA	NA	NA	NA	NA

Page 2 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	2A	16A	16A	16A	16A	16A
Parameter	Sample ID: Date Collected:	2A 05/14/07	PUEXG16A 02/22/91	UBG16A 12/13/96	UBG16AX (Bailer) 12/13/96	UBG16A 04/28/97	UBG16AX (Bailer) 04/28/97
Volatile Organics							
Benzene		38	17	20	15	13 [14]	8.1
Chlorobenzene		170	65	41	30	36 D [33 D]	11
Trichloroethene		14	ND(0.0050)	ND(1.3)	ND(1.0)	0.086 J [ND(0.42)]	ND(0.42)
Vinyl Chloride		ND(8.0)	ND(0.010)	ND(2.5)	ND(2.0)	0.15 J [0.14 J]	ND(0.83)
Total VOCs		230 J	82	62 J	46	54 J [51]	21 J
Semivolatile Orga	nics						
2-Chlorophenol		ND(0.010)	NA	0.035	NA	NA	NA
4-Chlorophenol		ND(0.010) J	NA	NA	NA	NA	NA
Natural Attenuation	on Parameters					•	
Alkalinity (Total)		180	NA	NA	NA	NA	NA
Alkalinity to pH 4.5		NA	NA	420	NA	424	NA
Alkalinity to pH 8.3		NA	NA	ND(1.00)	NA	ND(1.00)	NA
Ammonia Nitrogen		NA	NA	0.310	NA	0.320	NA
Chloride		10	NA	2400	NA	3300	NA
Dissolved Iron		ND(0.100) J	NA	NA	NA	NA	NA
Dissolved Organic	Carbon	3.80	NA	35.0	NA	35.1	NA
Ethane		ND(0.020)	NA	ND(0.0050)	NA	ND(0.0050)	NA
Ethene		ND(0.020)	NA	0.13	NA	0.26	NA
Methane		ND(0.00720)	NA	0.730	NA	1.50	NA
Nitrate Nitrogen		ND(0.0500)	NA	NA	NA	NA	NA
Nitrite Nitrogen		0.0760	NA	NA	NA	NA	NA
Sulfate (turbidimet	ric)	25.0	NA	2.20	NA	ND(2.00)	NA
Total Nitrate/Nitrite	Nitrogen	NA	NA	NA	NA	NA	NA

Page 3 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	16A	16A	16A	16A	16A	16A	16A	16A
	Sample ID:	UBG16A	UBG16A	UBG16A	16A	16A	16A	16A	16A
	e Collected:	10/08/97	04/14/98	12/14/98	04/27/99	10/19/99	05/12/00	11/17/00	04/26/02
Volatile Organics									
Benzene		19	17	94	17	16 D	14	16	7.5
Chlorobenzene		38	33 D	220	33	42 D	47	37	16
Trichloroethene		ND(1.3)	ND(0.62)	ND(17)	ND(3.3)	0.010	ND(10)	0.017	ND(0.010)
Vinyl Chloride		ND(2.5)	ND(1.2)	ND(17)	ND(3.3)	0.064	ND(20)	0.072	0.16
Total VOCs		58 J	51	320 J	51 J	59 J	61	53	24
Semivolatile Organics	•								
2-Chlorophenol		NA	NA	NA	NA	NA	NA	NA	NA
4-Chlorophenol		NA	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Par	ameters				•				
Alkalinity (Total)		NA	NA	NA	NA	NA	NA	NA	490
Alkalinity to pH 4.5		NA	NA	474	NA	NA	NA	NA	NA
Alkalinity to pH 8.3		NA	NA	ND(1.00)	NA	NA	NA	NA	NA
Ammonia Nitrogen		NA	NA	ND(0.200)	NA	NA	NA	NA	NA
Chloride		NA	NA	2400	NA	NA	NA	NA	1700
Dissolved Iron		NA	NA	1.00	NA	NA	NA	NA	1.30
Dissolved Organic Carbo	n	NA	NA	37.2	NA	NA	NA	NA	59.0
Ethane		NA	NA	ND(0.0050)	NA	NA	NA	NA	ND(0.050)
Ethene		NA	NA	ND(0.25)	NA	NA	NA	NA	0.15
Methane		NA	NA	1.10	NA	NA	NA	NA	1.40
Nitrate Nitrogen		NA	NA	NA	NA	NA	NA	NA	0.0140 B
Nitrite Nitrogen		NA	NA	NA	NA	NA	NA	NA	ND(0.0500)
Sulfate (turbidimetric)		NA	NA	ND(2.00)	NA	NA	NA	NA	5.30
Total Nitrate/Nitrite Nitrog	gen	NA	NA	ND(0.100)	NA	NA	NA	NA	NA

Page 4 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	16A	16A	16A	16A	16B	16B	16B				
Parameter	Sample ID: Date Collected:	16A 04/14/04	16A 04/08/05	16A 04/20/06	16A 05/07/07	UBG16B 12/13/96	UBG16B 04/28/97	UBG16BX (Bailer) 04/28/97				
Volatile Organics												
Benzene		13	13	14	15	0.0040 J	0.011	0.014				
Chlorobenzene		24	26	31	40	0.0050 J	0.010	0.016				
Trichloroethene		ND(0.50)	ND(1.0)	ND(5.0)	ND(0.80)	ND(0.0050)	ND(0.0050)	ND(0.0050)				
Vinyl Chloride		ND(0.50)	ND(1.0)	ND(2.0)	ND(0.80)	ND(0.010)	ND(0.010)	ND(0.010)				
Total VOCs		38	39	46 J	56	0.0090 J	0.062 J	0.056 J				
Semivolatile Organics												
2-Chlorophenol		0.027	0.035	0.019	0.028 J	ND(0.015)	NA	NA				
4-Chlorophenol		ND(0.010)	0.60	0.55	ND(0.050) J	NA	NA	NA				
Natural Attenuation Parameters												
Alkalinity (Total)		470	460	430	450	NA	NA	NA				
Alkalinity to pH 4.5		NA	NA	NA	NA	243	263	NA				
Alkalinity to pH 8.3		NA	NA	NA	NA	ND(1.00)	ND(1.00)	NA				
Ammonia Nitrogen		NA	NA	NA	NA	8.23	8.89	NA				
Chloride		1900	1300	1400	1800	53	63	NA				
Dissolved Iron		0.640	0.940	1.20	1.07	NA	NA	NA				
Dissolved Organic Carbon		38.0	28.0	25.0	36.0	7.00	7.90	NA				
Ethane		ND(0.020)	ND(0.0040)	ND(0.20)	ND(0.020)	ND(0.030)	ND(0.10)	NA				
Ethene		0.23	ND(0.0030)	0.23	0.35	ND(0.0050)	ND(0.0050)	NA				
Methane		1.30	0.330	3.10	0.793	2.80	ND(0.00500)	NA				
Nitrate Nitrogen		0.0170 B	0.00950 B	ND(0.100)	ND(0.0500)	NA	NA	NA				
Nitrite Nitrogen		ND(0.0500)	0.00280 B	ND(0.500)	ND(0.100)	NA	NA	NA				
Sulfate (turbidimetric)		1.60 B	0.540 B	ND(5.00)	ND(2.00)	ND(8.00)	ND(8.00)	NA				
Total Nitrate/Nitrite Nitrogen		NA	NA	NA	NA	NA	NA	NA				

Page 5 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

	cation ID:	16B	16B	16B-R	16B-R	16B-R	16B-R						
	Sample ID:	UBG16B	UBG16B	16B-R	16B-R	16B-R	16B-R						
	Collected:	10/09/97	04/14/98	04/26/02	04/15/04	10/07/04	04/08/05						
Volatile Organics													
Benzene		0.0030 J	ND(0.010)	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050) [ND(0.0050)]	0.0033 J						
Chlorobenzene		0.0020 J	ND(0.010)	ND(0.0050) [ND(0.0050)]	ND(0.0050)	0.00052 J [0.00056 J]	0.015						
Trichloroethene		ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050)	0.00061 J [0.00064 J]	ND(0.0050)						
Vinyl Chloride		ND(0.010)	ND(0.010)	ND(0.0020) [ND(0.0020)]	ND(0.0020)	ND(0.0020) [ND(0.0020)]	ND(0.0020)						
Total VOCs		0.0050 J	0.0020 J	ND(0.20) [ND(0.20)]	ND(0.20)	0.0011 J [0.0012 J]	0.018 J						
Semivolatile Organics													
2-Chlorophenol		NA	NA	NA	NA	NA	NA						
4-Chlorophenol		NA	NA	NA	NA	NA	NA						
Natural Attenuation Parameters													
Alkalinity (Total)		NA	NA	480 [480]	510	NA	440						
Alkalinity to pH 4.5		NA	NA	NA	NA	NA	NA						
Alkalinity to pH 8.3		NA	NA	NA	NA	NA	NA						
Ammonia Nitrogen		NA	NA	NA	NA	NA	NA						
Chloride		NA	NA	290 [280]	270	NA	160						
Dissolved Iron		NA	NA	0.360 [ND(0.0500)]	ND(0.0500)	NA	ND(0.0500)						
Dissolved Organic Carbon		NA	NA	11.0 [15.0]	11.0	NA	5.70						
Ethane		NA	NA	ND(0.10) [ND(0.20)]	ND(0.020)	NA	ND(0.0040)						
Ethene		NA	NA	ND(0.10) [ND(0.20)]	ND(0.015)	NA	0.12						
Methane		NA	NA	2.70 [2.70]	0.740	NA	0.690						
Nitrate Nitrogen		NA	NA	0.0270 B [0.0320 B]	0.100	NA	0.0560						
Nitrite Nitrogen		NA	NA	0.00360 B [0.00340 B]	ND(0.0500)	NA	0.00900 B						
Sulfate (turbidimetric)		NA	NA	15.0 [16.0]	23.0	NA	35.0						
Total Nitrate/Nitrite Nitrogen		NA	NA	NA	NA	NA	NA						

Page 6 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

Location		16B-R	16B-R	16C	16C	16C	16C
Sample Parameter Date Collect		16B-R 04/20/06	16B-R 05/08/07	PUEXG16C 02/22/91	UBG16C 12/17/96	UBG16C 04/28/97	UBG16C 10/09/97
Volatile Organics							
Benzene	ND(0.0050)	0.012 J	0.0014 [0.0012]	0.076	ND(0.010)	0.0030 J	0.0040 J
Chlorobenzene	ND(0.0050)	0.051 J	0.0051 J [0.0024 J]	0.16	ND(0.010)	0.0030 J	ND(0.010)
Trichloroethene	ND(0.0050)	ND(0.0050)	ND(0.0010) [ND(0.0010)]	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Vinyl Chloride	0.0015 J	ND(0.0020)	ND(0.0010) [ND(0.0010)]	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Total VOCs	0.0015 J	0.063 J	0.014 J [0.0071 J]	0.27 J	0.0040 J	0.0060 J	0.012 J
Semivolatile Organics							
2-Chlorophenol	NA	NA	NA	NA	ND(0.015)	NA	NA
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Parameters							
Alkalinity (Total)	NA	490	520 [530]	NA	NA	NA	NA
Alkalinity to pH 4.5	NA	NA	NA	NA	113	102	NA
Alkalinity to pH 8.3	NA	NA	NA	NA	ND(1.00)	ND(1.00)	NA
Ammonia Nitrogen	NA	NA	NA	NA	0.360	0.280	NA
Chloride	NA	570	300 [280]	NA	6.2	3.0	NA
Dissolved Iron	NA	ND(0.100)	ND(0.100) [ND(0.100)]	NA	NA	NA	NA
Dissolved Organic Carbon	NA	6.60	6.80 [6.80]	NA	2.00	1.50	NA
Ethane	NA	ND(0.20)	ND(0.020) [ND(0.040)]	NA	ND(0.0050)	ND(0.0050)	NA
Ethene	NA	ND(0.20)	ND(0.020) [ND(0.040)]	NA	ND(0.0050)	ND(0.0050)	NA
Methane	NA	2.20	1.05 [1.13]	NA	0.400	1.19	NA
Nitrate Nitrogen	NA	ND(0.100)	ND(0.0500) [ND(0.0500)]	NA	NA	NA	NA
Nitrite Nitrogen	NA	ND(0.500)	ND(0.100) [ND(0.10) J]	NA	NA	NA	NA
Sulfate (turbidimetric)	NA	11.0	14.0 [12.0]	NA	2.00 N	2.00 N	NA
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA

Page 7 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

Location II	D: 16C	16C	16C	16C	16C	16C	16C	16C-R
Sample II		UBG16C	16C	16C	16C	16C	16C	16C-R
Parameter Date Collected	d: 04/14/98	12/15/98	04/26/99	10/19/99	05/12/00	11/17/00	04/25/02	04/27/05
Volatile Organics								
Benzene	ND(0.010)	ND(0.010)	ND(0.010)	0.0020 J	ND(0.0050)	0.036	ND(0.0050)	0.0039 J
Chlorobenzene	ND(0.010)	0.0010 J	0.0020 J	0.0060 J	ND(0.0050)	0.021	0.0027 J	0.013
Trichloroethene	ND(0.0050)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.0020 J
Vinyl Chloride	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)	ND(0.0020)
Total VOCs	0.051 J	0.0020 J	0.0040 J	0.010 J	ND(0.20)	0.057	0.0027 J	0.023 J
Semivolatile Organics								
2-Chlorophenol	NA	NA	NA	NA	NA	NA	NA	NA
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Parameters								
Alkalinity (Total)	NA	NA	NA	NA	NA	NA	160	130
Alkalinity to pH 4.5	NA	104	NA	NA	NA	NA	NA	NA
Alkalinity to pH 8.3	NA	6.90	NA	NA	NA	NA	NA	NA
Ammonia Nitrogen	NA	ND(0.200)	NA	NA	NA	NA	NA	NA
Chloride	NA	ND(1.0)	NA	NA	NA	NA	4.0	9.0
Dissolved Iron	NA	ND(0.100)	NA	NA	NA	NA	ND(0.0500)	0.0480 B
Dissolved Organic Carbon	NA	1.10	NA	NA	NA	NA	8.70	ND(1.0)
Ethane	NA	ND(0.0050)	NA	NA	NA	NA	ND(0.50)	ND(0.0040)
Ethene	NA	ND(0.0050)	NA	NA	NA	NA	ND(0.50)	ND(0.0030)
Methane	NA	0.570	NA	NA	NA	NA	12.0	ND(0.00200)
Nitrate Nitrogen	NA	NA	NA	NA	NA	NA	0.150	0.0690
Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	ND(0.0500)	0.0140 B
Sulfate (turbidimetric)	NA	ND(2.00)	NA	NA	NA	NA	3.60	3.20
Total Nitrate/Nitrite Nitrogen	NA	ND(0.100)	NA	NA	NA	NA	NA	NA

Page 8 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

Location II		16C-R	16C-R	39B	39B	39B	39B
Sample II Parameter Date Collected		16C-R 05/31/06	16C-R 05/07/07	PU39B233 03/06/91	PUEX39BG 04/19/91	UBG39B 12/16/96	UBG39BX (Bailer) 12/16/96
Volatile Organics	0-720/00	00/01/00	00/01/01	00/00/01	04/10/01	12/10/30	12/10/00
Benzene	ND(0.0050)	NA	0.0027	0.0030 J	5.6	ND(0.77)	ND(0.50)
Chlorobenzene	0.0012 J	NA	0.015	0.0070	ND(1.5)	14	6.1
Trichloroethene	ND(0.0050)	NA	ND(0.0010)	0.0030 J	1.8	ND(0.38)	ND(0.25)
Vinyl Chloride	ND(0.0020)	NA	ND(0.0010)	ND(0.011)	ND(2.0)	ND(0.77)	ND(0.50)
Total VOCs	0.0012 J	NA	0.018	0.054 J	16	15	6.4 J
Semivolatile Organics	•						
2-Chlorophenol	NA	NA	NA	NA	0.042 J	0.010 J	NA
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Parameters	•						
Alkalinity (Total)	130	NA	130	NA	NA	NA	NA
Alkalinity to pH 4.5	NA	NA	NA	NA	NA	334	NA
Alkalinity to pH 8.3	NA	NA	NA	NA	NA	ND(1.00)	NA
Ammonia Nitrogen	NA	NA	NA	NA	NA	0.680	NA
Chloride	2.0	NA	1.1	NA	NA	4.2	NA
Dissolved Iron	ND(0.100)	NA	ND(0.100)	NA	20.1 *	NA	NA
Dissolved Organic Carbon	0.810 B	NA	ND(1.00)	NA	NA	10.0	NA
Ethane	NA	ND(0.020)	ND(0.020)	NA	NA	ND(0.0050)	NA
Ethene	NA	ND(0.020)	ND(0.020)	NA	NA	0.0070	NA
Methane	NA	0.0446	ND(0.00720)	NA	NA	0.640	NA
Nitrate Nitrogen	0.130	NA	0.120	NA	NA	NA	NA
Nitrite Nitrogen	ND(0.500)	NA	ND(0.0100)	NA	NA	NA	NA
Sulfate (turbidimetric)	6.30	NA	6.40	NA	NA	4.40	NA
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA

Page 9 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	39B	39B	39B	39B	39B	39B
Parameter	Sample ID: Date Collected:	UBG39B 04/23/97	UBG39BX (Bailer) 04/23/97	UBG39B 10/10/97	UBG39B 04/16/98	UBG39B 12/21/98	39B 04/29/99
Volatile Organics		0-1/20/01	0-1/20/01	10/10/01	0-110100	12/21/00	0-1/20/00
Benzene		5.6	4.9	4.1 [4.6]	ND(5.0)	3.6	2.9 J
Chlorobenzene		16	13	30 [35]	52	48	63
Trichloroethene		ND(0.50)	ND(0.50)	1.3 [1.5]	0.74 J	0.94 J	1.0 J
Vinyl Chloride		ND(1.0)	ND(1.0)	ND(2.0) [ND(2.0)]	ND(5.0)	ND(3.3)	ND(3.3)
Total VOCs		24 J	20 J	37 J [43 J]	54 J	55 J	69 J
Semivolatile Orga	anics				•		
2-Chlorophenol		NA	NA	NA	NA	NA	NA
4-Chlorophenol		NA	NA	NA	NA	NA	NA
Natural Attenuati	on Parameters						
Alkalinity (Total)		NA	NA	NA	NA	NA	NA
Alkalinity to pH 4.5	5	250	NA	NA	NA	334 [157]	NA
Alkalinity to pH 8.3	3	ND(1.00)	NA	NA	NA	ND(1.00) [3.10]	NA
Ammonia Nitroger	١	0.660	NA	NA	NA	0.990 [ND(0.200)]	NA
Chloride		69	NA	NA	NA	44 [2.3]	NA
Dissolved Iron		NA	NA	NA	NA	11.3 [ND(0.100)]	NA
Dissolved Organic	: Carbon	13.2	NA	NA	NA	10.7 [ND(1.00)]	NA
Ethane		0.010	NA	NA	NA	0.015 [ND(0.0050)]	NA
Ethene		0.021	NA	NA	NA	0.017 [ND(0.0050)]	NA
Methane		1.00	NA	NA	NA	1.10 [0.00580]	NA
Nitrate Nitrogen		NA	NA	NA	NA	NA	NA
Nitrite Nitrogen		NA	NA	NA	NA	NA	NA
Sulfate (turbidimet	tric)	ND(2.00)	NA	NA	NA	ND(2.00) [14.0]	NA
Total Nitrate/Nitrite	e Nitrogen	NA	NA	NA	NA	ND(0.100) [ND(0.100)]	NA

Page 10 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	39B	39B	39B	39B-R	39B-R	39B-R	39B-R	39B-R
	Sample ID:	39B	39B	39B	39B-R	39B-R	39B-R	39B-R	39B-R
Parameter	Date Collected:	10/20/99	05/12/00	11/17/00	04/13/04	04/07/05	10/21/05	04/20/06	05/07/07
Volatile Organics	S								
Benzene		1.3 DJ [1.5]	ND(5.0)	2.0	0.59	0.17 J	0.049	1.4 J	0.66
Chlorobenzene		36 D [31 D]	53	26	9.7	12	0.24	32	11
Trichloroethene		0.13 [0.13]	ND(5.0)	0.082	ND(0.50)	0.35 J	ND(0.010)	0.86 J	0.092 J
Vinyl Chloride		0.0090 J [0.010 J]	ND(10)	0.036	ND(0.50)	ND(0.50)	ND(0.010)	ND(2.0)	ND(0.40)
Total VOCs		37 J [34]	53	29	10	13 J	0.29	35 J	12
Semivolatile Org	janics								
2-Chlorophenol		NA	NA	NA	ND(0.010)	0.0096 J	NA	0.0094 J	ND(0.050)
4-Chlorophenol		NA	NA	NA	ND(0.010)	0.60	NA	0.71	ND(0.050) J
Natural Attenuat	ion Parameters								
Alkalinity (Total)		NA	NA	NA	490	500	NA	280	310
Alkalinity to pH 4.		NA	NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 8.3	3	NA	NA	NA	NA	NA	NA	NA	NA
Ammonia Nitroge	n	NA	NA	NA	NA	NA	NA	NA	NA
Chloride		NA	NA	NA	230	250	NA	400	98
Dissolved Iron		NA	NA	NA	ND(0.0500)	ND(0.0500)	NA	0.0250 B	0.0121 B
Dissolved Organic	c Carbon	NA	NA	NA	12.0	2.50	NA	8.00	6.50
Ethane		NA	NA	NA	ND(0.0040)	ND(0.0040)	NA	ND(0.020)	ND(0.020)
Ethene		NA	NA	NA	0.0033	ND(0.0030)	NA	ND(0.020)	ND(0.020)
Methane		NA	NA	NA	0.230	0.0300	NA	0.280	0.162
Nitrate Nitrogen		NA	NA	NA	1.30	1.90	NA	0.340	0.310
Nitrite Nitrogen		NA	NA	NA	ND(0.0500)	ND(0.0500)	NA	ND(0.500)	ND(0.0100)
Sulfate (turbidime		NA	NA	NA	9.90	9.20	NA	13.0	7.30
Total Nitrate/Nitrit	e Nitrogen	NA	NA	NA	NA	NA	NA	NA	NA

Page 11 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	39D	39D	39D	39D	39D	39D	39D
	Sample ID:		UBG39D	UBG39D	UBG39D	UBG39D	UBG39D	39D
Parameter	Date Collected:	04/19/91	12/16/96	04/23/97	10/10/97	04/16/98	12/21/98	04/29/99
Volatile Organics								
Benzene		0.11 J	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Chlorobenzene		5.5	0.026	0.020	0.027	0.025	0.030	0.030
Trichloroethene		0.14 J	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)	ND(0.010)
Vinyl Chloride		ND(0.33)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Total VOCs		6.1 J	0.026	0.020	0.027	0.027 J	0.033 J	0.032 J
Semivolatile Orga	nics							
2-Chlorophenol		0.011 J	ND(0.015)	NA	NA	NA	NA	NA
4-Chlorophenol		NA	NA	NA	NA	NA	NA	NA
Natural Attenuation	on Parameters							
Alkalinity (Total)		NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 4.5		NA	172	144	NA	NA	156	NA
Alkalinity to pH 8.3		NA	ND(1.00)	ND(1.00)	NA	NA	3.20	NA
Ammonia Nitrogen		NA	0.310	0.0600	NA	NA	ND(0.200)	NA
Chloride		NA	2.5	4.0	NA	NA	2.6	NA
Dissolved Iron		ND(0.0420) *	NA	NA	NA	NA	ND(0.100)	NA
Dissolved Organic	Carbon	NA	1.00	1.50	NA	NA	ND(1.00)	NA
Ethane		NA	ND(0.0050)	ND(0.0050)	NA	NA	ND(0.0050)	NA
Ethene		NA	ND(0.0050)	ND(0.0050)	NA	NA	ND(0.0050)	NA
Methane		NA	ND(0.00500)	0.00700	NA	NA	0.00610	NA
Nitrate Nitrogen		NA	NA	NA	NA	NA	NA	NA
Nitrite Nitrogen		NA	NA	NA	NA	NA	NA	NA
Sulfate (turbidimetr	ric)	NA	13.2	12.2	NA	NA	13.2	NA
Total Nitrate/Nitrite	Nitrogen	NA	NA	NA	NA	NA	ND(0.100)	NA

Page 12 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

Location	n ID: 39D	39D	39D	39D	39D	39D	39D-R	39D-R
Sample	e ID: 39D	39D	39D	39D	39D	39D	39D-R	39D-R
Parameter Date Collect	ted: 10/20/99	05/12/00	11/16/00	04/23/02	04/14/04	04/07/05	04/20/06	05/14/07
Volatile Organics								
Benzene	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.050	ND(0.0010)
Chlorobenzene	0.028 B	0.025	0.027	0.0063	0.019	0.019	0.64	0.014
Trichloroethene	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.12	ND(0.0010)
Vinyl Chloride	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0010)
Total VOCs	0.032 J	0.025	0.027	0.0063	0.019	0.023 J	0.83 J	0.014 J
Semivolatile Organics								
2-Chlorophenol	NA	NA	NA	NA	NA	NA	NA	NA
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Parameters	3							
Alkalinity (Total)	NA	NA	NA	160	140	140	140	130
Alkalinity to pH 4.5	NA	NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 8.3	NA	NA	NA	NA	NA	NA	NA	NA
Ammonia Nitrogen	NA	NA	NA	NA	NA	NA	NA	NA
Chloride	NA	NA	NA	4.0	4.3	4.2	8.4	5.5
Dissolved Iron	NA	NA	NA	0.130	0.0540	0.0360 B	ND(0.100)	ND(0.100) J
Dissolved Organic Carbon	NA	NA	NA	2.10	2.30	ND(1.00)	3.40	ND(1.00)
Ethane	NA	NA	NA	ND(0.020)	ND(0.0040)	ND(0.0040)	ND(0.020)	ND(0.020)
Ethene	NA	NA	NA	ND(0.020)	ND(0.0030)	ND(0.0030)	ND(0.020)	ND(0.020)
Methane	NA	NA	NA	0.0230	ND(0.00200)	ND(0.00200)	ND(0.00720)	ND(0.00720)
Nitrate Nitrogen	NA	NA	NA	0.0370 B	ND(0.0500)	ND(0.0500)	ND(0.100)	ND(0.0500)
Nitrite Nitrogen	NA	NA	NA	ND(0.0500)	ND(0.0500)	ND(0.0500)	ND(0.500)	ND(0.0100)
Sulfate (turbidimetric)	NA	NA	NA	18.0	19.0	19.0	56.0	22.0
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA	NA

Page 13 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

Location ID		39E	39E	39E	39E	39E	39E
Sample ID		PUG39E	UBG39E	UBG39E	UBG39E	UBG39E	UBG39E
Parameter Date Collected	04/19/91	02/26/92	12/16/96	04/23/97	10/10/97	04/16/98	12/21/98
Volatile Organics							
Benzene	0.011	ND(0.0050)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Chlorobenzene	0.24	0.0010 J	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Trichloroethene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)
Vinyl Chloride	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Total VOCs	0.29 J	0.027 J	ND(3.7)	0.085 J	0.0010 J	0.0040 J	0.0020 J
Semivolatile Organics							
2-Chlorophenol	ND(0.012)	NA	NA	NA	NA	NA	NA
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Parameters							
Alkalinity (Total)	NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 4.5	NA	NA	NA	116	NA	NA	119
Alkalinity to pH 8.3	NA	NA	NA	ND(1.00)	NA	NA	1.20
Ammonia Nitrogen	NA	NA	NA	NA	NA	NA	ND(0.200)
Chloride	NA	NA	NA	3.1	NA	NA	4.3
Dissolved Iron	ND(0.0420) *	NA	NA	NA	NA	NA	ND(0.100)
Dissolved Organic Carbon	NA	NA	NA	2.00	NA	NA	ND(1.00)
Ethane	NA	NA	NA	NA	NA	NA	ND(0.0050)
Ethene	NA	NA	NA	NA	NA	NA	ND(0.0050)
Methane	NA	NA	NA	NA	NA	NA	0.0270
Nitrate Nitrogen	NA	NA	NA	NA	NA	NA	NA
Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA
Sulfate (turbidimetric)	NA	NA	NA	NA	NA	NA	ND(2.00)
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	0.370

Page 14 of 47 9/4/2007

Table E-1 **Groundwater Analytical Results - Natural Attenuation Parameters** 

	Location ID:	39E	39E	39E	39E	39E	39E	39E
_	Sample ID:	39E	39E	39E	39E	MW-39-E	39E	39E
Parameter	Date Collected:	04/29/99	10/20/99	05/12/00	11/17/00	04/25/02	04/21/04	04/13/05
Volatile Organics								
Benzene		ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Chlorobenzene		0.0010 J	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Trichloroethene		ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050)
Vinyl Chloride		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)	ND(0.0020) [ND(0.0020)]	ND(0.0020)
Total VOCs		0.0050 J	0.0050 J	ND(0.20)	ND(0.20)	ND(0.20)	0.0017 J [ND(0.20)]	ND(0.20)
Semivolatile Organ	nics							
2-Chlorophenol		NA	NA	NA	NA	NA	NA	NA
4-Chlorophenol		NA	NA	NA	NA	NA	NA	NA
Natural Attenuatio	n Parameters							
Alkalinity (Total)		NA	NA	NA	NA	24.0	94.0 [97.0]	43.0
Alkalinity to pH 4.5		NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 8.3		NA	NA	NA	NA	NA	NA	NA
Ammonia Nitrogen		NA	NA	NA	NA	NA	NA	NA
Chloride		NA	NA	NA	NA	9.2	10 [10]	62
Dissolved Iron		NA	NA	NA	NA	ND(0.0500)	ND(0.0500) [ND(0.0500)]	0.0900
Dissolved Organic (	Carbon	NA	NA	NA	NA	5.20	2.30 [2.80]	ND(1.4)
Ethane		NA	NA	NA	NA	ND(0.0010)	ND(0.0040) [ND(0.0040)]	ND(0.0040)
Ethene		NA	NA	NA	NA	ND(0.0010)	ND(0.0030) [ND(0.0030)]	ND(0.0030)
Methane		NA	NA	NA	NA	ND(0.00100)	0.370 [0.310]	0.140
Nitrate Nitrogen		NA	NA	NA	NA	1.00	0.320 [0.290]	0.840
Nitrite Nitrogen		NA	NA	NA	NA	ND(0.0500)	ND(0.0500) [ND(0.0500)]	0.00770 B
Sulfate (turbidimetri	ic)	NA	NA	NA	NA	5.70	3.60 [3.00]	4.90
Total Nitrate/Nitrite	Nitrogen	NA	NA	NA	NA	NA	NA	NA

Page 15 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	39E	39E	43A	43A	43A	43A	43A
	Sample ID:	39E	39E	PUEXG43A	UBG43A	UBG43A	43A	43A
Parameter	Date Collected:	04/20/06	05/14/07	02/27/91	01/13/97	05/06/97	04/26/02	04/14/04
Volatile Organics								
Benzene		0.0015 J	0.00031 J	ND(0.0050)	ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.0050)
Chlorobenzene		0.068	0.00051 J	ND(0.0050)	ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.0050)
Trichloroethene		ND(0.0050)	ND(0.0010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Vinyl Chloride		ND(0.0020)	ND(0.0010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)	ND(0.0020)
Total VOCs		0.070 J	0.0020 J	0.024	ND(3.7)	0.086 J	ND(0.20)	ND(0.20)
Semivolatile Orga	nics							
2-Chlorophenol		NA	NA	ND(0.010)	NA	NA	NA	NA
4-Chlorophenol		NA	NA	NA	NA	NA	NA	NA
Natural Attenuation	n Parameters							
Alkalinity (Total)		81.0	21.0	NA	NA	NA	330	370
Alkalinity to pH 4.5		NA	NA	NA	NA	368	NA	NA
Alkalinity to pH 8.3		NA	NA	NA	NA	ND(1.00)	NA	NA
Ammonia Nitrogen		NA	NA	NA	NA	ND(0.0500)	NA	NA
Chloride		7.8	170	NA	NA	ND(1.0)	29	39
Dissolved Iron		0.180	0.0364 J	0.698 E	NA	NA	ND(0.0500)	ND(0.0500)
Dissolved Organic	Carbon	1.20	2.00	NA	NA	2.30	4.30	5.70
Ethane		ND(0.020)	ND(0.020)	NA	NA	ND(0.0050)	ND(0.050)	ND(0.0040)
Ethene		ND(0.020)	ND(0.020)	NA	NA	ND(0.0050)	ND(0.050)	ND(0.0030)
Methane		0.940	ND(0.00720)	NA	NA	0.240	0.730	0.110
Nitrate Nitrogen		ND(0.100)	0.670	NA	NA	NA	0.0200 B	0.0280 B
Nitrite Nitrogen		ND(0.500)	ND(0.0100)	NA	NA	NA	ND(0.0500)	ND(0.0500)
Sulfate (turbidimetr		ND(5.00)	4.80	NA	NA	55.3	42.0	48.0
Total Nitrate/Nitrite	Nitrogen	NA	NA	NA	NA	NA	NA	NA

Page 16 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

G:\GE\GE_Pittsfield_CD_GMA_3\Reports and Presentations\Spring 2007 Monitoring Report\

Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007 Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

	Location ID:	43A	43A	43A	43B	43B	43B	43B
_	Sample ID:	43A	43A	43A	PUEXG43B	UBG43B	UBG43B	43B
Parameter	Date Collected:	04/12/05	04/19/06	05/09/07	02/27/91	01/13/97	05/06/97	04/26/02
Volatile Organics								
Benzene		ND(0.0050)	ND(0.0050)	ND(0.0010)	ND(0.0050)	ND(0.010)	ND(0.010)	ND(0.0050)
Chlorobenzene		ND(0.0050)	ND(0.0050)	ND(0.0010)	ND(0.0050)	ND(0.010)	ND(0.010)	ND(0.0050)
Trichloroethene		ND(0.0050)	ND(0.0050)	ND(0.0010)	ND(0.0050)	ND(0.0050)	0.0020 J	ND(0.0050)
Vinyl Chloride		ND(0.0020)	ND(0.0020)	ND(0.0010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)
Total VOCs		0.077 J	ND(0.20)	0.19 J	0.043	ND(3.7)	0.0090 J	ND(0.20)
Semivolatile Organ	nics							
2-Chlorophenol		NA	NA	NA	ND(0.010)	NA	NA	NA
4-Chlorophenol		NA	NA	NA	NA	NA	NA	NA
Natural Attenuation	n Parameters							
Alkalinity (Total)		350	200	490	NA	NA	NA	570
Alkalinity to pH 4.5		NA	NA	NA	NA	496	486	NA
Alkalinity to pH 8.3		NA	NA	NA	NA	ND(1.00)	ND(1.00)	NA
Ammonia Nitrogen		NA	NA	NA	NA	0.880	0.970	NA
Chloride		40	38	25	NA	ND(1.0)	1.3	49
Dissolved Iron		ND(0.0500)	ND(0.100)	ND(0.100) J	0.493 E	NA	NA	ND(0.0500)
Dissolved Organic C	Carbon	ND(1.00)	1.60	1.80	NA	2.90	3.60	9.00
Ethane		ND(0.0040)	ND(0.20)	ND(0.020)	NA	ND(0.0050)	ND(0.0050)	ND(0.10)
Ethene		ND(0.0030)	ND(0.20)	ND(0.020)	NA	ND(0.0050)	ND(0.0050)	ND(0.10)
Methane		0.0830	1.60	0.0460	NA	0.800	2.80	1.30
Nitrate Nitrogen		ND(0.0500)	ND(0.100)	ND(0.0500)	NA	NA	NA	0.0170 B
Nitrite Nitrogen		ND(0.0500)	ND(0.500)	ND(0.0100)	NA	NA	NA	ND(0.0500)
Sulfate (turbidimetric		43.0	ND(5.00)	93.0	NA	ND(2.00)	ND(2.00)	1.30
Total Nitrate/Nitrite I	Nitrogen	NA	NA	NA	NA	NA	NA	NA

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

Location		43B	43B	43B	89A	89A	89A
Samp Parameter Date Colle	ole ID: 43B ected: 04/21/04	43B 04/07/05	43B 04/19/06	43B 05/09/07	PUEXG89A 02/21/91	UBG89A 12/05/96	UBG89AX (Bailer) 12/05/96
Volatile Organics	0 112 110 1	0 1/01/00	0 13 10700	00/00/01	02/2 //0 :	12/00/00	12/00/00
Benzene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0010)	11	16	13
Chlorobenzene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0010)	48	49	42
Trichloroethene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0010)	ND(1.2)	ND(1.7)	ND(1.2)
Vinyl Chloride	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0010)	2.1 J	0.48 J	0.43 J
Total VOCs	ND(0.20)	ND(0.20)	ND(0.20)	0.00050 J	63 J	65 J	55 J
Semivolatile Organics	·						
2-Chlorophenol	NA	NA	NA	NA	NA	0.0030 J	NA
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Paramete	rs						
Alkalinity (Total)	590	620	590	590	NA	NA	NA
Alkalinity to pH 4.5	NA	NA	NA	NA	NA	383	NA
Alkalinity to pH 8.3	NA	NA	NA	NA	NA	ND(1.00)	NA
Ammonia Nitrogen	NA	NA	NA	NA	NA	ND(0.0500)	NA
Chloride	57	58	50	59	NA	860	NA
Dissolved Iron	ND(0.0500)	ND(0.0500)	ND(0.100)	ND(0.100) J	NA	NA	NA
Dissolved Organic Carbon	11.0	7.60	2.70	2.50	NA	10.0	NA
Ethane	ND(0.020)	ND(0.0040)	ND(0.020)	ND(0.20)	NA	ND(0.010)	NA
Ethene	ND(0.015)	ND(0.0030)	ND(0.020)	ND(0.20)	NA	0.50	NA
Methane	0.770	0.880	0.980	0.802	NA	0.800	NA
Nitrate Nitrogen	ND(0.0500)	0.0800	ND(0.100)	ND(0.0500)	NA	NA	NA
Nitrite Nitrogen	ND(0.0500)	ND(0.0500)	ND(0.500)	ND(0.0100)	NA	NA	NA
Sulfate (turbidimetric)	ND(2.00)	ND(2.00)	ND(5.00)	ND(2.00)	NA	ND(2.00)	NA
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA

Page 18 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

Location ID:		89A	89A	89A	89A	89A	89A
Sample ID: Parameter Date Collected:		UBG89AX (Bailer) 04/24/97	UBG89A 10/07/97	UBG89A 04/15/98	UBG89A 12/17/98	89A 04/28/99	89A 10/21/99
Volatile Organics							
Benzene	25	19	18	14	10	8.8 [8.8]	2.1 D
Chlorobenzene	53	42	ND(3.3)	49	34	33 [33]	5.6 D
Trichloroethene	ND(1.7)	ND(1.3)	ND(1.7)	ND(1.2)	ND(2.5)	ND(2.5) [ND(2.5)]	ND(0.10)
Vinyl Chloride	ND(3.3)	ND(2.5)	0.80 J	ND(2.5)	ND(2.5)	ND(2.5) [ND(2.5)]	ND(0.10)
Total VOCs	100 J	74 J	73 J	63	45	42 [42]	7.7 J
Semivolatile Organics							
2-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
4-Chlorophenol	NA	NA	NA	NA	0.74	NA	NA
Natural Attenuation Parameters							
Alkalinity (Total)	NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 4.5	376	NA	NA	NA	368	NA	NA
Alkalinity to pH 8.3	ND(1.00)	NA	NA	NA	ND(1.00)	NA	NA
Ammonia Nitrogen	0.0900	NA	NA	NA	ND(0.200)	NA	NA
Chloride	1100	NA	NA	NA	580	NA	NA
Dissolved Iron	NA	NA	NA	NA	0.650	NA	NA
Dissolved Organic Carbon	11.5	NA	NA	NA	8.90	NA	NA
Ethane	0.13	NA	NA	NA	0.017	NA	NA
Ethene	1.3	NA	NA	NA	1.4	NA	NA
Methane	2.40	NA	NA	NA	2.30	NA	NA
Nitrate Nitrogen	NA	NA	NA	NA	NA	NA	NA
Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA
Sulfate (turbidimetric) ND(2.00)		NA	NA	NA	ND(2.00)	NA	NA
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	ND(0.100)	NA	NA

Page 19 of 47 9/4/2007

Table E-1 **Groundwater Analytical Results - Natural Attenuation Parameters** 

G:\GE\GE_Pittsfield_CD_GMA_3\Reports and Presentations\Spring 2007 Monitoring Report\

**Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007** Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Location ID:	89A	89A	89A	89A	89A	89A	89B	89B			
Sample ID:	89A	89A	89A	89A	89A	89A	PUEXG89B	UBG89B			
Parameter Date Collected:	05/15/00	11/22/00	05/12/04	05/02/05	05/02/06	05/09/07	02/21/91	12/05/96			
Volatile Organics											
Benzene	7.3	7.0	5.9	5.5	5.6	0.33	3.0 D	1.0			
Chlorobenzene	21	24	22	16	14	2.5	15 D	4.3			
Trichloroethene	ND(1.0)	ND(0.050)	ND(0.050)	ND(1.0)	ND(1.0)	ND(0.080)	ND(0.0050)	ND(0.14)			
Vinyl Chloride	ND(1.0)	ND(0.050)	ND(0.050)	ND(1.0)	ND(1.0)	ND(0.080)	ND(0.010)	ND(0.29)			
Total VOCs	28	31	28	22	20	3.0 J	18	5.3			
Semivolatile Organics											
2-Chlorophenol	NA	NA	ND(0.010)	NA	0.0068 J	0.0072 J	NA	0.0080 J			
4-Chlorophenol	NA	NA	ND(0.010)	NA	0.010	ND(0.010) J	NA	NA			
Natural Attenuation Parameters											
Alkalinity (Total)	NA	NA	350	340	340	360	NA	NA			
Alkalinity to pH 4.5	NA	NA	NA	NA	NA	NA	NA	173			
Alkalinity to pH 8.3	NA	NA	NA	NA	NA	NA	NA	ND(1.00)			
Ammonia Nitrogen	NA	NA	NA	NA	NA	NA	NA	0.270			
Chloride	NA	NA	390	320	340	440	NA	31			
Dissolved Iron	NA	NA	ND(0.0500)	ND(0.0500)	0.0290 B	ND(0.100) J	NA	NA			
Dissolved Organic Carbon	NA	NA	8.60	11.0	5.70	5.60	NA	4.00			
Ethane	NA	NA	0.044	0.023	ND(0.20)	ND(0.020)	NA	ND(0.010)			
Ethene	NA	NA	0.057	0.0054	ND(0.20)	ND(0.020)	NA	ND(0.0050)			
Methane	NA	NA	0.850 E	1.40	5.80	0.738	NA	0.230			
Nitrate Nitrogen	NA	NA	0.0100 B	0.0170 B	ND(0.100)	ND(0.0500)	NA	NA			
Nitrite Nitrogen	NA	NA	ND(0.0500)	ND(0.0500)	ND(0.500)	ND(0.100)	NA	NA			
Sulfate (turbidimetric)	NA	NA	ND(2.00)	ND(2.00)	ND(5.00)	ND(2.00)	NA	12.2			
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA	NA			

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

G:\GE\GE_Pittsfield_CD_GMA_3\Reports and Presentations\Spring 2007 Monitoring Report\

Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007 Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

	Location ID:	89B	89B	89B	89B	89B	89B
Parameter	Sample ID: Date Collected:	UBG89BX (Bailer) 12/05/96	UBG89B 04/24/97	UBG89BX (Bailer) 04/24/97	UBG89B 10/07/97	UBG89B 04/17/98	UBG89B 12/17/98
Volatile Organic		12,00,00	0.02.001	0.02.001	10/01/01	0 1,717,00	12,11700
Benzene		1.1	0.31	ND(0.14)	5.8	1.3	0.040 J
Chlorobenzene		4.5	1.6	ND(0.92)	14	5.6	0.63
Trichloroethene		ND(0.16)	ND(0.042)	ND(0.042)	ND(0.45)	ND(0.25)	ND(0.062)
Vinyl Chloride		ND(0.31)	ND(0.083)	ND(0.083)	ND(0.91)	ND(0.50)	ND(0.062)
Total VOCs		5.6	1.9	ND(31)	20	6.9	0.68 J
Semivolatile Org	janics		•	. ,	•		•
2-Chlorophenol		NA	NA	NA	NA	NA	NA
4-Chlorophenol		NA	NA	NA	NA	NA	NA
Natural Attenuat	ion Parameters		•		•		•
Alkalinity (Total)		NA	NA	NA	NA	NA	NA
Alkalinity to pH 4.	5	NA	150	NA	NA	NA	176
Alkalinity to pH 8.	3	NA	ND(1.00)	NA	NA	NA	ND(1.00)
Ammonia Nitroge	n	NA	0.180	NA	NA	NA	ND(0.200)
Chloride		NA	11	NA	NA	NA	29
Dissolved Iron		NA	NA	NA	NA	NA	7.03
Dissolved Organic	c Carbon	NA	4.10	NA	NA	NA	12.0
Ethane		NA	ND(0.0050)	NA	NA	NA	ND(0.0050)
Ethene		NA	ND(0.0050)	NA	NA	NA	ND(0.0050)
Methane		NA	0.140	NA	NA	NA	1.40
Nitrate Nitrogen		NA	NA	NA	NA	NA	NA
Nitrite Nitrogen		NA	NA	NA	NA	NA	NA
Sulfate (turbidime	etric)	NA	18.2	NA	NA	NA	ND(2.00)
Total Nitrate/Nitrit	e Nitrogen	NA	NA	NA	NA	NA	ND(0.100)

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	89B	89B	89B	89B	89B	89B
Parameter	Sample ID: Date Collected:	89B 04/28/99	89B 10/21/99	89B 05/15/00	89B 11/22/00	89B 04/30/04	89B 10/14/04
Volatile Organics							
Benzene		0.19	0.0030 J	ND(0.0050)	0.92	0.16 [0.16]	0.0014 J [0.079]
Chlorobenzene		1.2	0.17	0.027	4.4	0.91 [0.89]	0.010 J [0.56 J]
Trichloroethene		ND(0.077)	ND(0.010)	ND(0.0050)	ND(0.010)	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.050)]
Vinyl Chloride		ND(0.077)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020) [ND(0.0020)]	ND(0.0020) [ND(0.050)]
Total VOCs		1.4	0.18 J	0.027	5.3	1.1 [1.1]	0.011 J [0.64 J]
Semivolatile Organ	nics						
2-Chlorophenol		NA	NA	NA	NA	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]
4-Chlorophenol		NA	NA	NA	NA	NA	ND(0.010) [ND(0.010)]
Natural Attenuatio	n Parameters				•		
Alkalinity (Total)		NA	NA	NA	NA	220 [210]	NA
Alkalinity to pH 4.5		NA	NA	NA	NA	NA	NA
Alkalinity to pH 8.3		NA	NA	NA	NA	NA	NA
Ammonia Nitrogen		NA	NA	NA	NA	NA	NA
Chloride		NA	NA	NA	NA	91 [98]	NA
Dissolved Iron		NA	NA	NA	NA	2.10 [3.20]	NA
Dissolved Organic (	Carbon	NA	NA	NA	NA	8.70 [9.00]	NA
Ethane		NA	NA	NA	NA	ND(0.040) [ND(0.040)]	NA
Ethene		NA	NA	NA	NA	ND(0.030) [ND(0.030)]	NA
Methane		NA	NA	NA	NA	2.40 [2.30]	NA
Nitrate Nitrogen		NA	NA	NA	NA	0.0280 B [0.0610]	NA
Nitrite Nitrogen		NA	NA	NA	NA	ND(0.0500) [ND(0.0500)]	NA
Sulfate (turbidimetri	ic)	NA	NA	NA	NA	0.180 B [0.170 B]	NA
Total Nitrate/Nitrite	Nitrogen	NA	NA	NA	NA	NA	NA

Page 22 of 47

G:\GE\GE_Pittsfield_CD_GMA_3\Reports and Presentations\Spring 2007 Monitoring Report\

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

Location I		89B	89B	89B	89D	89D					
Sample I		89B	89B	89B	PUEXG89D	UBG89D					
Parameter Date Collecte	ed: 05/03/05	11/09/05	05/02/06	05/09/07	02/21/91	12/05/96					
Volatile Organics											
Benzene	0.16 [0.17]	0.0022 J [0.0022 J]	0.017	0.017	0.0010 J	ND(0.010)					
Chlorobenzene	1.4 [1.3]	0.23 [0.20]	0.15	0.15	0.0060	ND(0.010)					
Trichloroethene	ND(0.10) [ND(0.10)]	ND(0.0050) [ND(0.0050)]	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)					
Vinyl Chloride	ND(0.10) [ND(0.10)]	ND(0.0020) [ND(0.0020)]	ND(0.010)	ND(0.0050)	ND(0.010)	ND(0.010)					
Total VOCs	1.6 [1.5]	0.23 J [0.20 J]	0.17 J	0.17	0.011 J	ND(3.7)					
Semivolatile Organics											
2-Chlorophenol	0.0049 J [0.0068 J]	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	NA	ND(0.015)					
4-Chlorophenol	NA	NA	ND(0.010)	ND(0.010) J	NA	NA					
Natural Attenuation Parameters											
Alkalinity (Total)	270 [260]	NA	200	170	NA	NA					
Alkalinity to pH 4.5	NA	NA	NA	NA	NA	NA					
Alkalinity to pH 8.3	NA	NA	NA	NA	NA	NA					
Ammonia Nitrogen	NA	NA	NA	NA	NA	NA					
Chloride	130 [110]	NA	110	140	NA	NA					
Dissolved Iron	5.60 [5.80]	NA	1.90	ND(0.100) J	NA	NA					
Dissolved Organic Carbon	6.90 [5.20]	NA	4.60	2.60	NA	NA					
Ethane	ND(0.0040) [ND(0.0040)]	NA	ND(0.20)	ND(0.020)	NA	NA					
Ethene	ND(0.0030) [ND(0.0030)]	NA	ND(0.20)	ND(0.020)	NA	NA					
Methane	2.80 [2.80]	NA	2.70	0.188	NA	NA					
Nitrate Nitrogen	0.0150 B [0.0510]	NA	ND(0.100)	ND(0.0500)	NA	NA					
Nitrite Nitrogen	0.00790 B [0.0130 B]	NA	ND(0.500)	ND(0.0100)	NA	NA					
Sulfate (turbidimetric)	ND(2.00) [ND(2.00)]	NA	ND(5.00)	7.50	NA	NA					
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	NA					

Page 23 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

Location		89D	89D	89D	89D	89D	89D			
Sample		UBG89D	UBG89D	UBG89D	89D	89D	89D			
Parameter Date Collect	ted: 04/24/97	10/07/97	04/17/98	12/18/98	04/28/99	10/21/99	05/15/00			
olatile Organics										
Benzene	ND(0.010)	ND(0.010)	0.0020 J	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0050)			
Chlorobenzene	0.0020 J	0.0030 J	0.0080 J	ND(0.010)	ND(0.010)	0.0040 J	ND(0.0050)			
Trichloroethene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0050)			
Vinyl Chloride	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)			
Total VOCs	0.0020 J	0.0050 J	0.090 J	0.0020 J	0.0010 J	0.0090 J	ND(0.20)			
Semivolatile Organics										
2-Chlorophenol	NA	NA	NA	NA	NA	NA	NA			
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA			
Natural Attenuation Parameters	3									
Alkalinity (Total)	NA	NA	NA	NA	NA	NA	NA			
Alkalinity to pH 4.5	107	NA	NA	141	NA	NA	NA			
Alkalinity to pH 8.3	ND(1.00)	NA	NA	ND(1.00)	NA	NA	NA			
Ammonia Nitrogen	0.210	NA	NA	ND(0.200)	NA	NA	NA			
Chloride	ND(1.0)	NA	NA	1.4	NA	NA	NA			
Dissolved Iron	NA	NA	NA	0.870	NA	NA	NA			
Dissolved Organic Carbon	2.90	NA	NA	ND(1.00)	NA	NA	NA			
Ethane	ND(0.0050)	NA	NA	ND(0.0050)	NA	NA	NA			
Ethene	ND(0.0050)	NA	NA	ND(0.0050)	NA	NA	NA			
Methane	3.30	NA	NA	0.310	NA	NA	NA			
Nitrate Nitrogen	NA	NA	NA	NA	NA	NA	NA			
Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA			
Sulfate (turbidimetric)	ND(2.00)	NA	NA	ND(4.00)	NA	NA	NA			
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	ND(0.100)	NA	NA	NA			

Page 24 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	89D	89D-R	89D-R	89D-R	89D-R
Parameter	Sample ID: Date Collected:	89D 11/22/00	89D-R 04/26/05	89D-R 05/02/05	89D-R 05/02/06	89D-R 05/09/07
Volatile Organics	•				•	
Benzene		ND(0.0050)	0.15	NA	12	8.3
Chlorobenzene		ND(0.0050)	0.45	NA	34	31
Trichloroethene		ND(0.0050)	ND(0.010)	NA	ND(0.10)	ND(0.80)
Vinyl Chloride		ND(0.010)	ND(0.010)	NA	0.17	0.98
Total VOCs		ND(0.20)	0.62	NA	46	43 J
Semivolatile Orga	nics				•	
2-Chlorophenol		NA	NA	NA	NA	NA
4-Chlorophenol		NA	NA	NA	NA	NA
Natural Attenuation	on Parameters				•	
Alkalinity (Total)		NA	NA	330	330	330
Alkalinity to pH 4.5		NA	NA	NA	NA	NA
Alkalinity to pH 8.3		NA	NA	NA	NA	NA
Ammonia Nitrogen		NA	NA	NA	NA	NA
Chloride		NA	NA	540	620	630
Dissolved Iron		NA	NA	ND(0.0500)	ND(0.100)	ND(0.100) J
Dissolved Organic	Carbon	NA	NA	7.60	6.60	9.20
Ethane		NA	ND(0.0040)	NA	ND(0.020)	ND(0.020)
Ethene		NA	0.0032	NA	0.64	0.80
Methane		NA	0.00890	NA	1.30	1.06
Nitrate Nitrogen		NA	NA	0.00480 B	ND(0.100)	ND(0.0500)
Nitrite Nitrogen		NA	NA	ND(0.0500)	ND(0.500)	ND(0.100)
Sulfate (turbidimetr		NA	NA	18.0	ND(1.00)	2.80
Total Nitrate/Nitrite	Nitrogen	NA	NA	NA	NA	NA

Page 25 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	90A	90A	90A	90A	90A	90A
Damana atau	Sample ID:	PUEXG90A	UBG90A	UBG90A	UBG90A	UBG90A	UBG90A
Parameter	Date Collected:	02/20/91	12/10/96	04/29/97	10/07/97	04/14/98	12/22/98
Volatile Organics							
Benzene		ND(0.0050)	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]	ND(0.010)
Chlorobenzene		ND(0.0050)	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]	0.0040 J
Trichloroethene		ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.010)
Vinyl Chloride		ND(0.010)	ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]	ND(0.010)
Total VOCs		ND(0.12)	0.0040 J [0.0040 J]	ND(3.7)	ND(3.7)	0.0020 J [0.0020 J]	0.011 J
Semivolatile Organ	nics						
2-Chlorophenol		NA	NA	NA	NA	NA	NA
4-Chlorophenol		NA	NA	NA	NA	NA	NA
Natural Attenuatio	n Parameters						
Alkalinity (Total)		NA	NA	NA	NA	NA	NA
Alkalinity to pH 4.5		NA	135	147	NA	NA	135
Alkalinity to pH 8.3		NA	ND(1.00)	ND(1.00)	NA	NA	ND(1.00)
Ammonia Nitrogen		NA	0.170	0.150	NA	NA	ND(0.200)
Chloride		NA	4.3	4.9	NA	NA	3.3
Dissolved Iron		NA	NA	NA	NA	NA	2.53
Dissolved Organic (	Carbon	NA	1.00	1.70	NA	NA	ND(1.00)
Ethane		NA	ND(0.0050)	ND(0.0050)	NA	NA	ND(0.0050)
Ethene		NA	ND(0.0050)	ND(0.0050)	NA	NA	ND(0.0050)
Methane		NA	0.0280	0.0750	NA	NA	0.0200
Nitrate Nitrogen		NA	NA	NA	NA	NA	NA
Nitrite Nitrogen	litrite Nitrogen NA NA		NA	NA	NA	NA	NA
Sulfate (turbidimetric) NA 15.1		15.1	19.7	NA	NA	10.5	
Total Nitrate/Nitrite	Nitrogen	NA	NA	NA	NA	NA	ND(0.100)

Page 26 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

G:\GE\GE_Pittsfield_CD_GMA_3\Reports and Presentations\Spring 2007 Monitoring Report\

Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007 Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

	Location ID:	90A	90A	90A	90A	90A	90A	90A	90A			
_	Sample ID:	90A	90A	90A	90A	90A	90A	90A	90A			
Parameter	Date Collected:	04/28/99	10/22/99	05/10/00	11/15/00	04/26/04	04/14/05	04/25/06	05/08/07			
Volatile Organics												
Benzene		ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0010)			
Chlorobenzene		ND(0.010)	0.012	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.0011			
Trichloroethene		ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0010)			
Vinyl Chloride		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0010)			
Total VOCs		0.0020 J	0.028 J	ND(0.20)	ND(0.20)	ND(0.20)	0.00072 J	0.0056	0.0011			
Semivolatile Organ	nics											
2-Chlorophenol		NA	NA	NA	NA	NA	NA	NA	NA			
4-Chlorophenol		NA	NA	NA	NA	NA	NA	NA	NA			
Natural Attenuation	n Parameters											
Alkalinity (Total)		NA	NA	NA	NA	140	160	150	160			
Alkalinity to pH 4.5		NA	NA	NA	NA	NA	NA	NA	NA			
Alkalinity to pH 8.3		NA	NA	NA	NA	NA	NA	NA	NA			
Ammonia Nitrogen		NA	NA	NA	NA	NA	NA	NA	NA			
Chloride		NA	NA	NA	NA	4.6	7.4	10	9.3			
Dissolved Iron		NA	NA	NA	NA	ND(0.0500)	ND(0.0500)	ND(0.100)	0.0670 B			
Dissolved Organic C	Carbon	NA	NA	NA	NA	2.30	ND(1.0)	1.00	ND(1.00)			
Ethane		NA	NA	NA	NA	ND(0.0040)	ND(0.0040)	ND(0.020)	ND(0.020)			
Ethene		NA	NA	NA	NA	ND(0.0030)	ND(0.0030)	ND(0.020)	ND(0.020)			
Methane		NA	NA	NA	NA	0.0240	0.0190	0.150	0.108			
Nitrate Nitrogen		NA	NA	NA	NA	0.0130 B	0.0540	ND(0.100)	ND(0.0500)			
Nitrite Nitrogen		NA	NA	NA	NA	ND(0.0500)	ND(0.0500)	ND(0.500)	ND(0.0100)			
Sulfate (turbidimetric	/	NA	NA	NA	NA	13.0	20.0	18.0	21.0			
Total Nitrate/Nitrite I	Nitrogen	NA	NA	NA	NA	NA	NA	NA	NA			

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	90B										
Danamatan	Sample ID:	PUEXG90B	UBG90B	UBG90B	UBG90B	UBG90B	UBG90B	90B				
Parameter	Date Collected:	02/20/91	12/10/96	04/29/97	10/06/97	04/14/98	12/22/98	04/28/99				
	Volatile Organics											
Benzene		ND(0.0050)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)				
Chlorobenzene		ND(0.0050)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	0.0060 J	ND(0.010)				
Trichloroethene		ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)	ND(0.010)				
Vinyl Chloride		ND(0.010)										
Total VOCs		ND(0.12)	0.0040 J	ND(3.7)	ND(3.7)	0.0030 J	0.014 J	0.0010 J				
Semivolatile Org	janics											
2-Chlorophenol		NA										
4-Chlorophenol		NA										
Natural Attenuat	ion Parameters											
Alkalinity (Total)		NA										
Alkalinity to pH 4.	5	NA	117	129	NA	NA	113	NA				
Alkalinity to pH 8.	3	NA	ND(1.00)	ND(1.00)	NA	NA	ND(1.00)	NA				
Ammonia Nitroge	n	NA	0.160	0.180	NA	NA	ND(0.200)	NA				
Chloride		NA	4.2	3.7	NA	NA	4.0	NA				
Dissolved Iron		NA	NA	NA	NA	NA	4.95	NA				
Dissolved Organi	c Carbon	NA	4.00	3.70	NA	NA	6.60	NA				
Ethane		NA	ND(0.0050)	ND(0.0050)	NA	NA	ND(0.0050)	NA				
Ethene		NA	ND(0.0050)	ND(0.0050)	NA	NA	ND(0.0050)	NA				
Methane		NA	0.0330	0.0920	NA	NA	0.0570	NA				
Nitrate Nitrogen		NA										
Nitrite Nitrogen		NA										
Sulfate (turbidime	etric)	NA	18.9	9.90	NA	NA	10.1	NA				
Total Nitrate/Nitrit	te Nitrogen	NA	NA	NA	NA	NA	ND(0.100)	NA				

Page 28 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	90B	90B	90B	90B	90B	90B
	Sample ID:	90B	90B	90B	90B	90B	90B
Parameter	Date Collected:	10/22/99	05/10/00	11/15/00	04/23/04	04/29/04	10/07/04
Volatile Organics							
Benzene		ND(0.010)	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	NA	ND(0.0050)	ND(0.0050)
Chlorobenzene		0.024	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	NA	ND(0.0050)	ND(0.0050)
Trichloroethene		ND(0.010)	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	NA	ND(0.0050)	ND(0.0050)
Vinyl Chloride		ND(0.010)	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	NA	ND(0.0020)	ND(0.0020)
Total VOCs		0.029 J	ND(0.20) [ND(0.20)]	ND(0.20) [ND(0.20)]	NA	ND(0.20)	ND(0.20)
Semivolatile Organ	nics						
2-Chlorophenol		NA	NA	NA	ND(0.010)	NA	ND(0.010)
4-Chlorophenol		NA	NA	NA	NA	NA	NA
Natural Attenuatio	n Parameters						
Alkalinity (Total)		NA	NA	NA	130	NA	NA
Alkalinity to pH 4.5		NA	NA	NA	NA	NA	NA
Alkalinity to pH 8.3		NA	NA	NA	NA	NA	NA
Ammonia Nitrogen		NA	NA	NA	NA	NA	NA
Chloride		NA	NA	NA	5.0	NA	NA
Dissolved Iron		NA	NA	NA	2.90	NA	NA
Dissolved Organic O	Carbon	NA	NA	NA	6.90	NA	NA
Ethane		NA	NA	NA	ND(0.0040)	NA	NA
Ethene		NA	NA	NA	ND(0.0030)	NA	NA
Methane		NA	NA	NA	0.0160	NA	NA
Nitrate Nitrogen		NA	NA	NA	0.0400 B	NA	NA
Nitrite Nitrogen	ů –		NA	NA	ND(0.0500)	NA	NA
Sulfate (turbidimetri	\		NA	11.0	NA	NA	
Total Nitrate/Nitrite Nitrogen NA		NA	NA	NA	NA	NA	

9/4/2007

G:\GE\GE_Pittsfield_CD_GMA_3\Reports and Presentations\Spring 2007 Monitoring Report\

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

Location ID:	90B	90B	90B	90B	95A	95A	95A
Sample ID:	90B	90B	90B	90B	UBG95A	UBG95A	UBG95AX (Bailer)
Parameter Date Collected:	04/14/05	11/04/05	04/25/06	05/08/07	12/11/96	04/25/97	04/25/97
Volatile Organics							
Benzene	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.00027 J	ND(0.010)	ND(0.010)	ND(0.010)
Chlorobenzene	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.0017	ND(0.010)	ND(0.010)	ND(0.010)
Trichloroethene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0010)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Vinyl Chloride	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0010)	ND(0.010)	ND(0.010)	ND(0.010)
Total VOCs	ND(0.20)	ND(0.20)	0.0028 J	0.0020 J	ND(3.7)	0.22 J	ND(3.7)
Semivolatile Organics							
2-Chlorophenol	ND(0.010)	ND(0.010)	NA	NA	NA	NA	NA
4-Chlorophenol	NA						
Natural Attenuation Parameters							
Alkalinity (Total)	140	NA	130	130	NA	NA	NA
Alkalinity to pH 4.5	NA	NA	NA	NA	115	107	NA
Alkalinity to pH 8.3	NA	NA	NA	NA	ND(1.00)	ND(1.00)	NA
Ammonia Nitrogen	NA	NA	NA	NA	0.120	0.150	NA
Chloride	4.1	NA	5.8	8.0	ND(2.0)	ND(2.0)	NA
Dissolved Iron	2.60	NA	5.10	3.62	NA	NA	NA
Dissolved Organic Carbon	6.40	NA	6.10	4.80	1.00	1.40	NA
Ethane	ND(0.0040)	NA	ND(0.020)	ND(0.020)	ND(0.0050)	ND(0.0050)	NA
Ethene	ND(0.0030)	NA	ND(0.020)	ND(0.020)	ND(0.0050)	ND(0.0050)	NA
Methane	0.0340	NA	0.0900	0.0830	0.200	0.440	NA
Nitrate Nitrogen	0.140	NA	ND(0.100)	ND(0.0500)	NA	NA	NA
Nitrite Nitrogen	0.00260 B	NA	ND(0.500)	ND(0.0100)	NA	NA	NA
Sulfate (turbidimetric)	4.20	NA	6.80	2.00	ND(4.00)	ND(4.00)	NA
Total Nitrate/Nitrite Nitrogen	NA						

Page 30 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	95A	95A	95A	95A	95A	95A	95A	95A			
D	Sample ID:	UBG95A	UBG95A	UBG95A	95A	95A	95A	95A	95A			
Parameter	Date Collected:	10/07/97	04/20/98	12/16/98	04/29/99	10/21/99	05/09/00	11/20/00	05/07/04			
Volatile Organics	·											
Benzene		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0050)	0.014	ND(0.0050)			
Chlorobenzene		0.0010 J	ND(0.010)	ND(0.010)	0.0030 J	0.0010 J	ND(0.0050)	0.0070	ND(0.0050)			
Trichloroethene		ND(0.0050)	ND(0.0050)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)			
Vinyl Chloride		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)			
Total VOCs		0.0020 J	0.0040 J	0.0020 J	0.0060 J	0.0060 J	ND(0.20)	0.021	ND(0.20)			
Semivolatile Orga	anics											
2-Chlorophenol		NA	NA	NA	NA	NA	NA	NA	ND(0.010)			
4-Chlorophenol		NA	NA	NA	NA	NA	NA	NA	ND(0.010)			
Natural Attenuati	on Parameters											
Alkalinity (Total)		NA	NA	NA	NA	NA	NA	NA	100			
Alkalinity to pH 4.5	5	NA	NA	105	NA	NA	NA	NA	NA			
Alkalinity to pH 8.3	3	NA	NA	ND(1.00)	NA	NA	NA	NA	NA			
Ammonia Nitroger	า	NA	NA	ND(0.200)	NA	NA	NA	NA	NA			
Chloride		NA	NA	ND(1.0)	NA	NA	NA	NA	1.0			
Dissolved Iron		NA	NA	21.4	NA	NA	NA	NA	ND(0.0500)			
Dissolved Organic	Carbon	NA	NA	ND(1.00)	NA	NA	NA	NA	1.30			
Ethane		NA	NA	ND(0.0050)	NA	NA	NA	NA	NA			
Ethene		NA	NA	ND(0.0050)	NA	NA	NA	NA	NA			
Methane		NA	NA	1.20	NA	NA	NA	NA	NA			
Nitrate Nitrogen		NA	NA	NA	NA	NA	NA	NA	0.0620			
Nitrite Nitrogen		NA	NA	NA	NA	NA	NA	NA	ND(0.0500)			
Sulfate (turbidimet	tric)	NA	NA	ND(4.00)	NA	NA	NA	NA	2.60			
Total Nitrate/Nitrite	e Nitrogen	NA	NA	ND(0.100)	NA	NA	NA	NA	NA			

Page 31 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

	on ID: 95A	95A	95A	95B	95B	95B
Sam Parameter Date Coll	ple ID: 95A ected: 04/22/05	95A 05/01/06	95A 05/10/07	UBG95B 12/05/96	UBG95B 04/25/97	UBG95BX (Bailer) 04/25/97
Volatile Organics						
Benzene	ND(0.0050)	ND(0.0050)	ND(0.0010) [ND(0.0010)]	0.049 J	ND(2.1)	1.9
Chlorobenzene	0.00053 J	ND(0.0050)	ND(0.0010) [ND(0.0010)]	1.4	8.7	8.0
Trichloroethene	ND(0.0050)	ND(0.0050)	ND(0.0010) [ND(0.0010)]	ND(0.050)	ND(0.33)	ND(0.33)
Vinyl Chloride	ND(0.0020)	ND(0.0020)	ND(0.0010) [ND(0.0010)]	ND(0.10)	0.79	0.68
Total VOCs	0.00053 J	ND(0.20)	0.00049 J [0.00063 J]	1.4 J	12 J	11 J
Semivolatile Organics	·					
2-Chlorophenol	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]	NA	NA	NA
4-Chlorophenol	ND(0.010)	ND(0.010)	ND(0.010) J [ND(0.010) J]	NA	NA	NA
Natural Attenuation Paramet	ers					
Alkalinity (Total)	100	110	130 [130]	NA	NA	NA
Alkalinity to pH 4.5	NA	NA	NA	NA	269	NA
Alkalinity to pH 8.3	NA	NA	NA	NA	ND(1.00)	NA
Ammonia Nitrogen	NA	NA	NA	NA	0.340	NA
Chloride	ND(2.1)	1.7	1.4 [1.4]	NA	130	NA
Dissolved Iron	0.720	ND(0.100)	ND(0.100) J [ND(0.100) J]	NA	NA	NA
Dissolved Organic Carbon	ND(1.0)	1.40	ND(1.00) [ND(1.00)]	NA	4.70	NA
Ethane	ND(0.0040)	ND(0.020)	ND(0.020) [ND(0.020)]	NA	0.018	NA
Ethene	ND(0.0030)	ND(0.020)	ND(0.020) [ND(0.020)]	NA	0.18	NA
Methane	0.270	0.320	0.134 [0.0880]	NA	1.14	NA
Nitrate Nitrogen	ND(.05)	ND(0.100)	ND(0.0500) [ND(0.0500)]	NA	NA	NA
Nitrite Nitrogen	0.00370 B	ND(0.500)	ND(0.0100) [ND(0.0100)]	NA	NA	NA
Sulfate (turbidimetric)	0.700 B	15.0	4.40 [4.20]	NA	8.90	NA
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	NA

Page 32 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

Location ID:		95B	95B	95B	95B	95B	95B	95B
	Sample ID:	UBG95B	UBG95B	UBG95B	95B	95B	95B	95B
Parameter	Date Collected:	10/07/97	04/20/98	12/16/98	04/29/99	10/21/99	05/09/00	11/20/00
Volatile Organics								
Benzene		0.027 J	0.051 J	ND(0.010)	ND(0.010)	ND(0.010)	0.018	0.091
Chlorobenzene		1.1	1.0	0.054	0.060	0.036	0.21	1.2
Trichloroethene		ND(0.050)	ND(0.050)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.0050)
Vinyl Chloride		ND(0.10)	ND(0.10)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Total VOCs		1.1 J	1.1	0.055 J	0.063 J	0.041 J	0.23	1.3
Semivolatile Organ	nics							
2-Chlorophenol		NA	NA	NA	NA	NA	NA	NA
4-Chlorophenol		NA	NA	ND(0.0094) [ND(0.0094)]	NA	NA	NA	NA
Natural Attenuatio	n Parameters							
Alkalinity (Total)		NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 4.5		NA	NA	134 [179]	NA	NA	NA	NA
Alkalinity to pH 8.3		NA	NA	ND(1.00) [ND(1.00)]	NA	NA	NA	NA
Ammonia Nitrogen		NA	NA	0.220 [ND(0.200)]	NA	NA	NA	NA
Chloride		NA	NA	30 [29]	NA	NA	NA	NA
Dissolved Iron		NA	NA	1.93 [7.23]	NA	NA	NA	NA
Dissolved Organic (	Carbon	NA	NA	3.40 [12.2]	NA	NA	NA	NA
Ethane		NA	NA	ND(0.0050) [ND(0.0050)]	NA	NA	NA	NA
Ethene		NA	NA	ND(0.0050) [ND(0.0050)]	NA	NA	NA	NA
Methane		NA	NA	0.350 [1.30]	NA	NA	NA	NA
Nitrate Nitrogen		NA	NA	NA	NA	NA	NA	NA
Nitrite Nitrogen		NA	NA	NA	NA	NA	NA	NA
Sulfate (turbidimetric)		NA	NA	6.30 [ND(2.00)]	NA	NA	NA	NA
Total Nitrate/Nitrite	Nitrogen	NA	NA	ND(0.100) [ND(0.100)]	NA	NA	NA	NA

Page 33 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	95B-R	95B-R	95B-R	95B-R	95B-R	111A
	Sample ID:	95B-R	95B-R	95B-R	95B-R	95B-R	PUEXG111A
Parameter Da	ate Collected:	10/14/04	04/21/05	11/04/05	4/26-5/31/06	05/10/07	02/20/91
Volatile Organics							
Benzene		ND(0.0050)	0.047	ND(0.0050)	0.0031 J [0.0030 J]	2.3	ND(0.0050)
Chlorobenzene		0.077 J	0.37	0.012	0.073 [0.074]	9.7	ND(0.0050)
Trichloroethene		ND(0.0050)	ND(0.010)	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.40)	ND(0.0050)
Vinyl Chloride		ND(0.0050)	ND(0.010)	ND(0.0020)	ND(0.0020) [ND(0.0020)]	ND(0.40)	ND(0.010)
Total VOCs		0.077 J	0.42	0.012	0.076 J [0.077 J]	12	0.0050 J
Semivolatile Organic	s						
2-Chlorophenol		R	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]	0.0090 J	NA
4-Chlorophenol		R	ND(0.010)	NA	ND(0.010) [ND(0.010)]	0.020 J	NA
Natural Attenuation F	Parameters						
Alkalinity (Total)		NA	180	NA	180 [190]	260	NA
Alkalinity to pH 4.5		NA	NA	NA	NA	NA	NA
Alkalinity to pH 8.3		NA	NA	NA	NA	NA	NA
Ammonia Nitrogen		NA	NA	NA	NA	NA	NA
Chloride		NA	97	NA	87 [83]	140	NA
Dissolved Iron		NA	0.820	NA	0.510 [0.490]	ND(0.100) J	NA
Dissolved Organic Car	bon	NA	3.40	NA	3.80 [4.00]	4.30	NA
Ethane		NA	ND(0.020)	NA	ND(0.20) [ND(0.20)]	0.051	NA
Ethene		NA	ND(0.015)	NA	ND(0.20) [ND(0.20)]	0.044	NA
Methane		NA	0.600 J	NA	2.46 [2.71]	1.57	NA
Nitrate Nitrogen		NA	0.0130 B	NA	ND(0.100) [ND(0.100)]	ND(0.0500)	NA
Nitrite Nitrogen		NA	0.00440 B	NA	ND(0.500) [ND(0.500)]	ND(0.100)	NA
Sulfate (turbidimetric)		NA	2.00 J	NA	ND(5.00) [ND(5.00)]	3.80	NA
Total Nitrate/Nitrite Nitr	rogen	NA	NA	NA	NA	NA	NA

Page 34 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

Location		111A	111A	111A	111A	111A	111A
Sample		UBG111A	UBG111A	UBG111A	UBG111A	UBG111A	111A
Parameter Date Collec	ted: 12/09/96	05/05/97	10/09/97	04/14/98	12/21/98	12/22/98	04/30/99
Volatile Organics							
Benzene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	ND(0.010)
Chlorobenzene	ND(0.010)	ND(0.010)	0.0010 J	ND(0.010)	0.0050 J	NA	ND(0.010)
Trichloroethene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)	NA	ND(0.010)
Vinyl Chloride	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	ND(0.010)
Total VOCs	ND(3.7)	0.0020 J	0.0010 J	0.0030 J	0.012 J	NA	0.0020 J
Semivolatile Organics							
2-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Parameters	S						
Alkalinity (Total)	NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 4.5	63.0	108	NA	NA	NA	82.4	NA
Alkalinity to pH 8.3	ND(1.00)	ND(1.00)	NA	NA	NA	7.90	NA
Ammonia Nitrogen	0.250	0.320	NA	NA	NA	0.250	NA
Chloride	240	180	NA	NA	NA	150	NA
Dissolved Iron	NA	NA	NA	NA	NA	ND(0.100)	NA
Dissolved Organic Carbon	1.30	1.90	NA	NA	NA	1.40	NA
Ethane	ND(0.0050)	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA
Ethene	ND(0.0050)	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA
Methane	0.290	0.440	NA	NA	NA	0.190	NA
Nitrate Nitrogen	NA	NA	NA	NA	NA	NA	NA
Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA
Sulfate (turbidimetric)	43.2	52.0	NA	NA	NA	27.5	NA
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	ND(0.100)	NA

Page 35 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

Location ID:	111A	111A	111A	111A-R	111A-R	111A-R	111B
Sample ID:	111A	111A	111A	111A-R	111A-R	111A-R	PUEXG111B
Parameter Date Collected:	10/20/99	05/10/00	11/17/00	04/14/05	04/24/06	05/07/07	02/20/91
Volatile Organics							
Benzene	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0010)	ND(0.0050)
Chlorobenzene	0.0070 JB	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0010)	ND(0.0050)
Trichloroethene	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0010)	ND(0.0050)
Vinyl Chloride	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)	ND(0.0020) [ND(0.0020)]	ND(0.0010)	ND(0.010)
Total VOCs	0.016 J	ND(0.20)	ND(0.20)	0.017	ND(0.20) [ND(0.20)]	ND(0.10)	0.0040 J
Semivolatile Organics							
2-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Parameters							
Alkalinity (Total)	NA	NA	NA	120	140 [140]	140	NA
Alkalinity to pH 4.5	NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 8.3	NA	NA	NA	NA	NA	NA	NA
Ammonia Nitrogen	NA	NA	NA	NA	NA	NA	NA
Chloride	NA	NA	NA	110	92 [92]	92	NA
Dissolved Iron	NA	NA	NA	ND(0.0500)	ND(0.100) [ND(0.100)]	0.0101 B	NA
Dissolved Organic Carbon	NA	NA	NA	ND(1.4)	0.960 B [0.940 B]	1.20	NA
Ethane	NA	NA	NA	ND(0.0040)	ND(0.020) [ND(0.020)]	ND(0.020)	NA
Ethene	NA	NA	NA	ND(0.0030)	ND(0.020) [ND(0.020)]	ND(0.020)	NA
Methane	NA	NA	NA	ND(0.00200)	ND(0.00720) [ND(0.00720)]	ND(0.00720)	NA
Nitrate Nitrogen	NA	NA	NA	0.00810 B	ND(0.100) [ND(0.100)]	ND(0.0500)	NA
Nitrite Nitrogen	NA	NA	NA	ND(0.0500)	ND(0.500) [ND(0.500)]	ND(0.0100)	NA
Sulfate (turbidimetric)	NA	NA	NA	54.0	120 J [76.0 J]	71.0	NA
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA

Page 36 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

Location ID:	111B	111B	111B	111B	111B	111B	111B
Sample ID:	UBG111B	UBG111B	UBG111B	UBG111B	UBG111B	UBG111B	111B
Parameter Date Collected:	12/09/96	05/05/97	10/09/97	04/14/98	12/21/98	12/22/98	04/30/99
Volatile Organics							
Benzene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	ND(0.010)
Chlorobenzene	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	0.012	NA	ND(0.010)
Trichloroethene	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.010)	NA	ND(0.010)
Vinyl Chloride	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	NA	ND(0.010)
Total VOCs	ND(3.7)	ND(3.7)	ND(3.7)	0.0020 J	0.019 J	NA	0.0030 J
Semivolatile Organics							
2-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Parameters							
Alkalinity (Total)	NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 4.5	117	116	NA	NA	NA	134	NA
Alkalinity to pH 8.3	ND(1.00)	ND(1.00)	NA	NA	NA	ND(1.00)	NA
Ammonia Nitrogen	ND(0.00500)	ND(0.00500)	NA	NA	NA	ND(0.200)	NA
Chloride	3.4	3.8	NA	NA	NA	2.9	NA
Dissolved Iron	NA	NA	NA	NA	NA	ND(0.100)	NA
Dissolved Organic Carbon	1.40	1.90	NA	NA	NA	1.40	NA
Ethane	ND(0.0050)	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA
Ethene	ND(0.0050)	ND(0.0050)	NA	NA	NA	ND(0.0050)	NA
Methane	ND(0.00500)	ND(0.00500)	NA	NA	NA	ND(0.00500)	NA
Nitrate Nitrogen	NA	NA	NA	NA	NA	NA	NA
Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA
Sulfate (turbidimetric)	254	241	NA	NA	NA	230	NA
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	3.09	NA

Page 37 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

Location I	D: 111B	111B	111B	111B	111B	111-BR	111B-R	111B-R
Sample I	D: 111B	111B	111B	111B	111B	111-BR	111B-R	111B-R
Parameter Date Collecte	d: 10/20/99	05/10/00	11/17/00	04/22/04	10/22/04	11/03/05	04/21/05	04/25/06
Volatile Organics								
Benzene	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Chlorobenzene	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	0.0030 J	ND(0.0050)
Trichloroethene	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050) J
Vinyl Chloride	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)	ND(0.0020)
Total VOCs	0.0040 J	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)	ND(0.20)	0.0050 J	ND(0.20)
Semivolatile Organics								
2-Chlorophenol	NA	NA	NA	ND(0.010)	NA	ND(0.010)	ND(0.010)	ND(0.010)
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Parameters								
Alkalinity (Total)	NA	NA	NA	120	NA	NA	180	87.0
Alkalinity to pH 4.5	NA	NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 8.3	NA	NA	NA	NA	NA	NA	NA	NA
Ammonia Nitrogen	NA	NA	NA	NA	NA	NA	NA	NA
Chloride	NA	NA	NA	37	NA	NA	13	8.8
Dissolved Iron	NA	NA	NA	ND(0.0500)	NA	NA	ND(0.0500)	ND(0.100)
Dissolved Organic Carbon	NA	NA	NA	2.50	NA	NA	1.90	1.20
Ethane	NA	NA	NA	ND(0.0040)	NA	NA	ND(0.0040)	ND(0.020)
Ethene	NA	NA	NA	ND(0.0030)	NA	NA	ND(0.0030)	ND(0.020)
Methane	NA	NA	NA	ND(0.00200)	NA	NA	ND(0.00200)	ND(0.00720)
Nitrate Nitrogen	NA	NA	NA	5.20	NA	NA	5.90	6.30
Nitrite Nitrogen	NA	NA	NA	ND(0.0500)	NA	NA	0.0240 B	ND(0.500)
Sulfate (turbidimetric)	NA	NA	NA	310	NA	NA	250 J	170
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA	NA

Page 38 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

G:\GE\GE_Pittsfield_CD_GMA_3\Reports and Presentations\Spring 2007 Monitoring Report\

Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007 Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

	Location ID:	111B-R	114A	114A	114A	114A	114A
Parameter	Sample ID: Date Collected:	111B-R 05/08/07	PUEXG114A 02/21/91	UBG114A 12/11/96	UBG114A 05/02/97	UBG114A 10/08/97	UBG114A 04/20/98
Volatile Organics	•			•	•		•
Benzene		0.00038 J	ND(0.0050)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Chlorobenzene		0.0020 J	ND(0.0050)	0.0030 J	0.0020 J	0.0010 J	0.0010 J
Trichloroethene		ND(0.0010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0050)
Vinyl Chloride		ND(0.0010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)
Total VOCs		0.0024 J	0.0020 J	0.0030 J	0.0070 J	0.0010 J	0.0040 J
Semivolatile Orga	nics						
2-Chlorophenol		NA	NA	NA	NA	NA	NA
4-Chlorophenol		NA	NA	NA	NA	NA	NA
Natural Attenuation	on Parameters						
Alkalinity (Total)		150	NA	NA	NA	NA	NA
Alkalinity to pH 4.5		NA	NA	NA	132	NA	NA
Alkalinity to pH 8.3		NA	NA	NA	ND(1.00)	NA	NA
Ammonia Nitrogen		NA	NA	NA	0.110	NA	NA
Chloride		11	NA	NA	ND(1.0)	NA	NA
Dissolved Iron		ND(0.100)	NA	NA	NA	NA	NA
Dissolved Organic	Carbon	1.10	NA	NA	1.50	NA	NA
Ethane		ND(0.020)	NA	NA	ND(0.0050)	NA	NA
Ethene		ND(0.020)	NA	NA	ND(0.0050)	NA	NA
Methane		ND(0.00720)	NA	NA	0.340	NA	NA
Nitrate Nitrogen		5.90	NA	NA	NA	NA	NA
Nitrite Nitrogen		ND(0.0100)	NA	NA	NA	NA	NA
Sulfate (turbidimetr	ric)	190	NA	NA	4.20	NA	NA
Total Nitrate/Nitrite	Nitrogen	NA	NA	NA	NA	NA	NA

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	114A UBG114A	114A						
Parameter	Sample ID: Date Collected:	12/15/98	114A 04/27/99	114A 10/19/99	114A 05/09/00	114A 11/20/00	114A 04/30/04	114A 04/21/05	114A 12/08/05
Volatile Organics	•		•	•	•	•	•		
Benzene		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(1.0)	0.68 J
Chlorobenzene		ND(0.010)	ND(0.010)	0.0050 J	ND(0.0050)	ND(0.0050)	ND(0.0050)	12	ND(1.0)
Trichloroethene		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(1.0)	ND(1.0)
Vinyl Chloride		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)	ND(1.0)	ND(1.0)
Total VOCs		0.0050 J	0.0020 J	0.0050 J	ND(0.20)	ND(0.20)	ND(0.20)	12	97
Semivolatile Orga	nics		•					•	
2-Chlorophenol		NA	NA	NA	NA	NA	NA	NA	NA
4-Chlorophenol		NA	NA	NA	NA	NA	NA	NA	NA
Natural Attenuatio	n Parameters		•					•	
Alkalinity (Total)		NA	NA	NA	NA	NA	130	130	NA
Alkalinity to pH 4.5		127	NA						
Alkalinity to pH 8.3		ND(1.00)	NA						
Ammonia Nitrogen		ND(0.200)	NA						
Chloride		2.5	NA	NA	NA	NA	1.4	1.5	NA
Dissolved Iron		1.33	NA	NA	NA	NA	ND(0.0500)	ND(0.0500)	NA
Dissolved Organic	Carbon	ND(1.00)	NA	NA	NA	NA	2.20	0.510 B	NA
Ethane		ND(0.0050)	NA	NA	NA	NA	ND(0.0040)	ND(0.0040)	NA
Ethene		ND(0.0050)	NA	NA	NA	NA	ND(0.0030)	ND(0.0030)	NA
Methane		0.420	NA	NA	NA	NA	0.0440	0.100	NA
Nitrate Nitrogen		NA	NA	NA	NA	NA	0.0360 B	0.0260 B	NA
Nitrite Nitrogen		NA	NA	NA	NA	NA	ND(0.0500)	0.00470 B	NA
Sulfate (turbidimetri		ND(2.00)	NA	NA	NA	NA	4.80	1.20 J	NA
Total Nitrate/Nitrite	Nitrogen	ND(0.100)	NA						

Page 40 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

Location ID:	114A	114A	114B	114B	114B	114B	114B
Sample ID:	114A	114A	PUEXG114B	UBG114B	UBG114B	UBG114B	UBG114B
Parameter Date Collected:	05/09/06	05/10/07	02/21/91	01/29/97	05/01/97	10/08/97	04/20/98
Volatile Organics							
Benzene	ND(0.0050)	ND(0.0010)	0.0020 J	ND(0.010)	ND(0.033)	0.011 J	ND(0.010)
Chlorobenzene	ND(0.0050)	ND(0.0010)	0.13	ND(0.010)	0.33	0.40	0.079
Trichloroethene	ND(0.0050)	ND(0.0010)	ND(0.0050)	ND(0.0050)	ND(0.017)	0.017	ND(0.0050)
Vinyl Chloride	ND(0.0020)	ND(0.0010)	ND(0.010)	ND(0.010)	ND(0.033)	0.0060 J	ND(0.010)
Total VOCs	ND(0.20)	0.00070 J	0.13 J	ND(3.7)	0.33	0.45 J	0.081 J
Semivolatile Organics							
2-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Parameters							
Alkalinity (Total)	120	130	NA	NA	NA	NA	NA
Alkalinity to pH 4.5	NA	NA	NA	251	264	NA	NA
Alkalinity to pH 8.3	NA	NA	NA	ND(1.00)	ND(1.00)	NA	NA
Ammonia Nitrogen	NA	NA	NA	ND(0.00500)	0.0700	NA	NA
Chloride	1.6	3.8	NA	5.2	78	NA	NA
Dissolved Iron	ND(0.100)	0.0434 J	NA	NA	NA	NA	NA
Dissolved Organic Carbon	0.400 B	1.20	NA	6.80	6.40	NA	NA
Ethane	ND(0.020)	ND(0.020)	NA	ND(0.0050)	ND(0.0050)	NA	NA
Ethene	ND(0.020)	ND(0.020)	NA	ND(0.0050)	ND(0.0050)	NA	NA
Methane	0.330	0.285	NA	ND(0.00500)	0.310	NA	NA
Nitrate Nitrogen	ND(0.100)	ND(0.0500)	NA	NA	NA	NA	NA
Nitrite Nitrogen	ND(0.500)	ND(0.0100)	NA	NA	NA	NA	NA
Sulfate (turbidimetric)	7.70	3.40	NA	14.4	16.4	NA	NA
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA

Page 41 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

	Location ID:	114B	114B	114B	114B	114B	114B	114B	114B-R
	Sample ID:	UBG114B	114B	114B	114B	114B	114B	114B	114B-R
Parameter Da	te Collected:	12/16/98	04/27/99	10/19/99	05/09/00	11/20/00	05/06/04	05/12/04	10/14/04
Volatile Organics									
Benzene		0.0010 J	0.0050 J	0.0050 J	ND(0.0050)	ND(0.010)	ND(0.0050)	NA	ND(0.050)
Chlorobenzene		0.15	0.20	0.40 D	0.40	0.21	0.0083	NA	1.0
Trichloroethene		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0050)	ND(0.010)	ND(0.0050)	NA	ND(0.050)
Vinyl Chloride		ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)	NA	ND(0.050)
Total VOCs		0.15 J	0.21	0.41 J	0.40	0.21	0.0083	NA	1.0
Semivolatile Organics	i								
2-Chlorophenol		NA	NA	NA	NA	NA	ND(0.010)	NA	ND(0.010)
4-Chlorophenol		NA	NA	NA	NA	NA	NA	NA	NA
Natural Attenuation Pa	arameters								
Alkalinity (Total)		NA	NA	NA	NA	NA	NA	230	NA
Alkalinity to pH 4.5		198	NA	NA	NA	NA	NA	NA	NA
Alkalinity to pH 8.3		ND(1.00)	NA	NA	NA	NA	NA	NA	NA
Ammonia Nitrogen		ND(0.200)	NA	NA	NA	NA	NA	NA	NA
Chloride		54	NA	NA	NA	NA	NA	67	NA
Dissolved Iron		ND(0.100)	NA	NA	NA	NA	NA	ND(0.0500)	NA
Dissolved Organic Carb	on	5.20	NA	NA	NA	NA	NA	4.00	NA
Ethane		ND(0.0050)	NA	NA	NA	NA	NA	ND(0.0040)	NA
Ethene		ND(0.0050)	NA	NA	NA	NA	NA	0.0035	NA
Methane		0.170	NA	NA	NA	NA	NA	0.140	NA
Nitrate Nitrogen		NA	NA	NA	NA	NA	NA	0.00900 B	NA
Nitrite Nitrogen		NA	NA	NA	NA	NA	NA	ND(0.0500)	NA
Sulfate (turbidimetric)		7.00	NA	NA	NA	NA	NA	10.0	NA
Total Nitrate/Nitrite Nitro	ogen	ND(0.100)	NA	NA	NA	NA	NA	NA	NA

Page 42 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007 Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Locati		114B-R	114B-R	114B-R	115A	115A	115A			
	ole ID: 114B-R	114B-R	114B-R	114B-R	UBG115A	UBG115A	UBG115A			
Parameter Date Colle	ected: 04/21/05	12/08/05	04/20/06	05/10/07	12/12/96	05/05/97	10/08/97			
Volatile Organics										
Benzene	ND(0.050)	ND(0.050)	0.021 J	0.10	ND(0.010)	ND(0.010)	ND(0.010)			
Chlorobenzene	1.4	3.3	0.29	2.0	ND(0.010)	ND(0.010)	ND(0.010)			
Trichloroethene	ND(0.050)	ND(0.050)	ND(0.050)	ND(0.080)	ND(0.0050)	ND(0.0050)	ND(0.0050)			
Vinyl Chloride	ND(0.050)	ND(0.050)	0.013 J	0.11	ND(0.010)	ND(0.010)	ND(0.010)			
Total VOCs	1.4	3.3	0.32 J	2.2	ND(3.7)	ND(3.7)	ND(3.7)			
Semivolatile Organics	Semivolatile Organics									
2-Chlorophenol	ND(0.010)	R	NA	NA	NA	NA	NA			
4-Chlorophenol	NA	NA	NA	NA	NA	NA	NA			
Natural Attenuation Parameter	ers									
Alkalinity (Total)	250	NA	270	210	NA	NA	NA			
Alkalinity to pH 4.5	NA	NA	NA	NA	NA	148	NA			
Alkalinity to pH 8.3	NA	NA	NA	NA	NA	ND(1.00)	NA			
Ammonia Nitrogen	NA	NA	NA	NA	NA	0.0600	NA			
Chloride	87	NA	110	170	NA	ND(1.0)	NA			
Dissolved Iron	ND(0.0500)	NA	ND(0.100)	ND(0.100) J	NA	NA	NA			
Dissolved Organic Carbon	2.50	NA	2.20	2.50	NA	1.60	NA			
Ethane	ND(0.0040)	NA	ND(0.020)	ND(0.020)	NA	ND(0.0050)	NA			
Ethene	ND(0.0030)	NA	ND(0.020)	ND(0.020)	NA	ND(0.0050)	NA			
Methane	0.170	NA	0.140	0.205	NA	0.0130	NA			
Nitrate Nitrogen	0.0810	NA	ND(0.100)	ND(0.0500)	NA	NA	NA			
Nitrite Nitrogen	0.00470 B	NA	ND(0.500)	ND(0.0500)	NA	NA	NA			
Sulfate (turbidimetric)	5.50 J	NA	9.70	12.0	NA	5.40	NA			
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	NA	NA			

Page 43 of 47 9/4/2007

Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

G:\GE\GE_Pittsfield_CD_GMA_3\Reports and Presentations\Spring 2007 Monitoring Report\

Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007 Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

	Location ID:	115A	115A	115A	115A	115A	115A	115A		
	Sample ID:	UBG115A	UBG115A	115A	115A	115A	115A	115A		
Parameter	Date Collected:	04/21/98	12/23/98	04/30/99	10/22/99	05/08/00	11/17/00	05/10/06		
Volatile Organic	Volatile Organics									
Benzene		ND(0.050)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0050)	0.10	ND(0.0050)		
Chlorobenzene		0.012 J	ND(0.010)	ND(0.010)	0.0040 J	ND(0.0050)	ND(0.0050)	ND(0.0050)		
Trichloroethene		ND(0.025)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0050)	0.014	ND(0.0050)		
Vinyl Chloride		ND(0.050)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)		
Total VOCs		0.012 J	0.0020 J	0.0020 J	0.0080 J	ND(0.20)	0.11	ND(0.20)		
Semivolatile Org	Semivolatile Organics									
2-Chlorophenol		NA	NA	NA	NA	NA	NA	NA		
4-Chlorophenol		NA	NA	NA	NA	NA	NA	NA		
Natural Attenua	tion Parameters									
Alkalinity (Total)		NA	NA	NA	NA	NA	NA	150		
Alkalinity to pH 4	.5	NA	157	NA	NA	NA	NA	NA		
Alkalinity to pH 8	.3	NA	ND(1.00)	NA	NA	NA	NA	NA		
Ammonia Nitroge	en	NA	ND(0.200)	NA	NA	NA	NA	NA		
Chloride		NA	ND(1.0)	NA	NA	NA	NA	2.0		
Dissolved Iron		NA	0.250	NA	NA	NA	NA	ND(0.100)		
Dissolved Organi	ic Carbon	NA	ND(1.00)	NA	NA	NA	NA	0.610 B		
Ethane		NA	ND(0.0050)	NA	NA	NA	NA	ND(0.020)		
Ethene		NA	ND(0.0050)	NA	NA	NA	NA	ND(0.020)		
Methane		NA	ND(0.00500)	NA	NA	NA	NA	ND(0.00720)		
Nitrate Nitrogen		NA	NA	NA	NA	NA	NA	ND(0.100)		
Nitrite Nitrogen		NA	NA	NA	NA	NA	NA	ND(0.500)		
Sulfate (turbidime	/	NA	2.30	NA	NA	NA	NA	ND(5.00)		
Total Nitrate/Nitri	te Nitrogen	NA	ND(0.100)	NA	NA	NA	NA	NA		

9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007 Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

Location ID		115B	115B	115B	115B	115B			
Sample ID Parameter Date Collected		UBG115B 12/06/96	UBG115B 05/05/97	UBG115B 10/08/97	UBG115B 04/21/98	UBG115B 12/23/98			
Volatile Organics									
Benzene	ND(0.0010)	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)			
Chlorobenzene	ND(0.0010)	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)			
Trichloroethene	ND(0.0010)	ND(0.0050)	ND(0.0050)	ND(0.0050) [ND(0.0050)]	ND(0.0050) [ND(0.0050)]	ND(0.010)			
Vinyl Chloride	ND(0.0010)	ND(0.010)	ND(0.010)	ND(0.010) [ND(0.010)]	ND(0.010) [ND(0.010)]	ND(0.010)			
Total VOCs	0.00040 J	ND(3.7)	ND(3.7)	ND(3.7) [ND(3.7)]	0.0050 J [0.0050 J]	0.0030 J			
Semivolatile Organics									
2-Chlorophenol	NA	NA	NA	NA	NA	NA			
4-Chlorophenol	NA	NA	NA	NA	NA	NA			
Natural Attenuation Parameters									
Alkalinity (Total)	160	NA	NA	NA	NA	NA			
Alkalinity to pH 4.5	NA	284	199	NA	NA	203			
Alkalinity to pH 8.3	NA	ND(1.00)	ND(1.00)	NA	NA	ND(1.00)			
Ammonia Nitrogen	NA	ND(0.00500)	2.20	NA	NA	ND(0.200)			
Chloride	1.2	3.1	16	NA	NA	8.4			
Dissolved Iron	ND(0.100) J	NA	NA	NA	NA	ND(0.100)			
Dissolved Organic Carbon	ND(1.00)	2.00	10.1	NA	NA	1.10			
Ethane	ND(0.020)	ND(0.0050)	0.0070	NA	NA	ND(0.0050)			
Ethene	ND(0.020)	ND(0.0050)	ND(0.0050)	NA	NA	ND(0.0050)			
Methane	ND(0.00720)	0.00800	0.0110	NA	NA	0.0130			
Nitrate Nitrogen	ND(0.0500)	NA	NA	NA	NA	NA			
Nitrite Nitrogen	ND(0.0100)	NA	NA	NA	NA	NA			
Sulfate (turbidimetric)	4.20	16.8	0.190	NA	NA	11.0			
Total Nitrate/Nitrite Nitrogen	NA	NA	NA	NA	NA	0.170			

Page 45 of 47 9/4/2007

Table E-1
Groundwater Analytical Results - Natural Attenuation Parameters

Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007 Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

	Location ID:	115B	115B	115B	115B	115B	115B			
	Sample ID:	115B	115B	115B	115B	115B	115B			
	Date Collected:	04/30/99	10/22/99	05/08/00	11/20/00	05/10/06	05/14/07			
Volatile Organics										
Benzene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0010)			
Chlorobenzene		ND(0.010) [ND(0.010)]	0.0060 J	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0010)			
Trichloroethene		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.0050)	ND(0.0050)	ND(0.0050)	ND(0.0010)			
Vinyl Chloride		ND(0.010) [ND(0.010)]	ND(0.010)	ND(0.010)	ND(0.010)	ND(0.0020)	ND(0.0010)			
Total VOCs		0.0030 J [0.0020 J]	0.010 J	ND(0.20)	ND(0.20)	ND(0.20)	0.00055 J			
Semivolatile Organic	cs									
2-Chlorophenol		NA	NA	NA	NA	NA	NA			
4-Chlorophenol		NA	NA	NA	NA	NA	NA			
Natural Attenuation	Parameters									
Alkalinity (Total)		NA	NA	NA	NA	240	250			
Alkalinity to pH 4.5		NA	NA	NA	NA	NA	NA			
Alkalinity to pH 8.3		NA	NA	NA	NA	NA	NA			
Ammonia Nitrogen		NA	NA	NA	NA	NA	NA			
Chloride		NA	NA	NA	NA	8.6	13			
Dissolved Iron		NA	NA	NA	NA	ND(0.100)	ND(0.100) J			
Dissolved Organic Ca	ırbon	NA	NA	NA	NA	1.40	ND(1.00)			
Ethane		NA	NA	NA	NA	ND(0.020)	ND(0.020)			
Ethene		NA	NA	NA	NA	ND(0.020)	ND(0.020)			
Methane		NA	NA	NA	NA	ND(0.00720)	ND(0.00720)			
Nitrate Nitrogen		NA	NA	NA	NA	0.360	0.110			
Nitrite Nitrogen		NA	NA	NA	NA	ND(0.500)	ND(0.0100)			
Sulfate (turbidimetric)		NA	NA	NA	NA	13.0	14.0			
Total Nitrate/Nitrite Nit	trogen	NA	NA	NA	NA	NA	NA			

Page 46 of 47 9/4/2007

## Table E-1 Groundwater Analytical Results - Natural Attenuation Parameters

Groundwater Quality and NAPL Monitoring Interim Report for Spring 2007 Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts (Results are presented in parts per million, ppm)

#### Notes:

- 1. Samples were collected on behalf of General Electric Company and analyzed for Appendix IX+3 constituents and Natural Attenuation Parameters.
- 2. Select Volatile Organics, 2-Chlorophenol, 4-Chlorophenol and Natural Attenuation Parameter results are presented.
- 3. NA Not Analyzed.
- 4. ND Analyte was not detected. The number in parentheses is the associated detection limit.
- 5. Field duplicate sample results are presented in brackets.

#### Data Qualifiers:

#### Organics (volatiles, semivolatiles)

- B Analyte was also detected in the associated method blank.
- D Compound quantitated using a secondary dilution.
- E Analyte exceeded calibration range.
- J Estimated Value.
- R Rejected.

#### Natural Attenuation Parameters

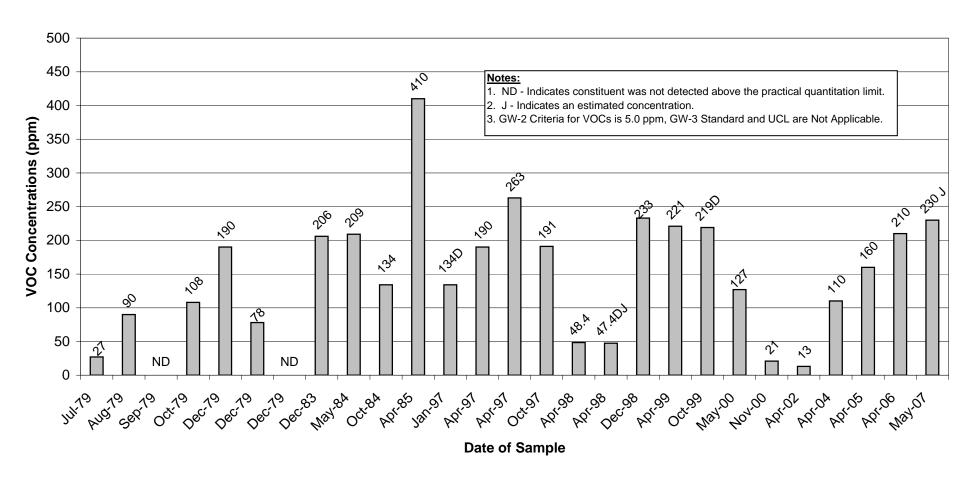
- B Indicates an estimated value between the instrument detection limit (IDL) and practical quantitation limit (PQL).
- E Serial dilution results not within 10%. Applicable only if analyte concentration is at least 50X the IDL in original sample.
- J Estimated Value.
- N Indicates sample matrix spike analysis was outside control limits.
- * Indicates laboratory duplicate analysis was outside control limits.

G:\GE\GE_Pittsfield_CD_GMA_3\Reports and Presentations\Spring 2007 Monitoring Report\ 410711324AppE_TblE1.xls - Table E-1 Notes

7711324App=_10ie1.xis - 1able e-1 Notes

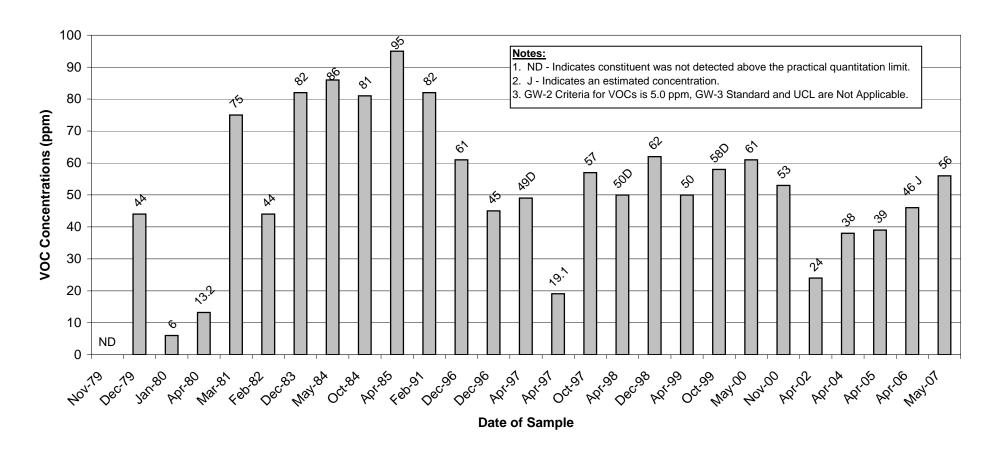
Page 47 of 47

9/4/2007


## **ARCADIS** BBL

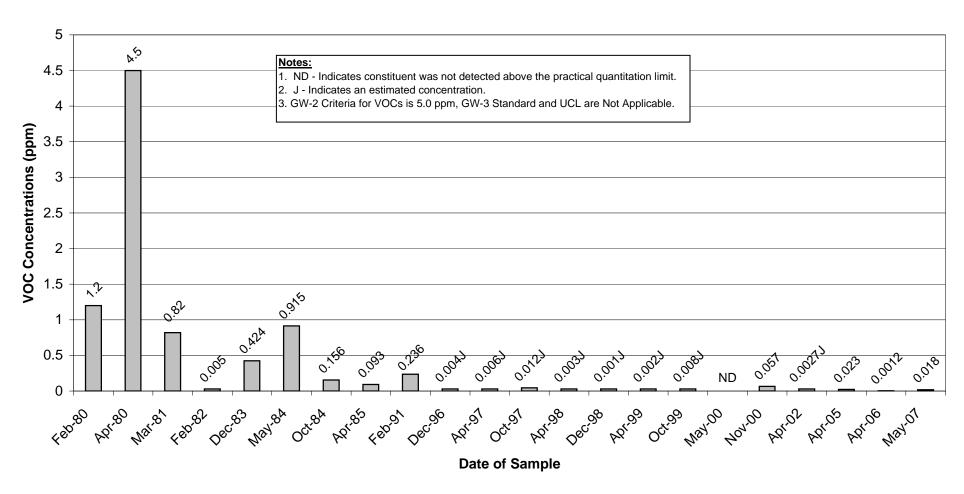
#### **Historical Groundwater Data**

Total VOC Concentrations – Wells Sampled in Spring 2007


## Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts

### **Well 2A Historical Total VOC Concentrations**




## Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts

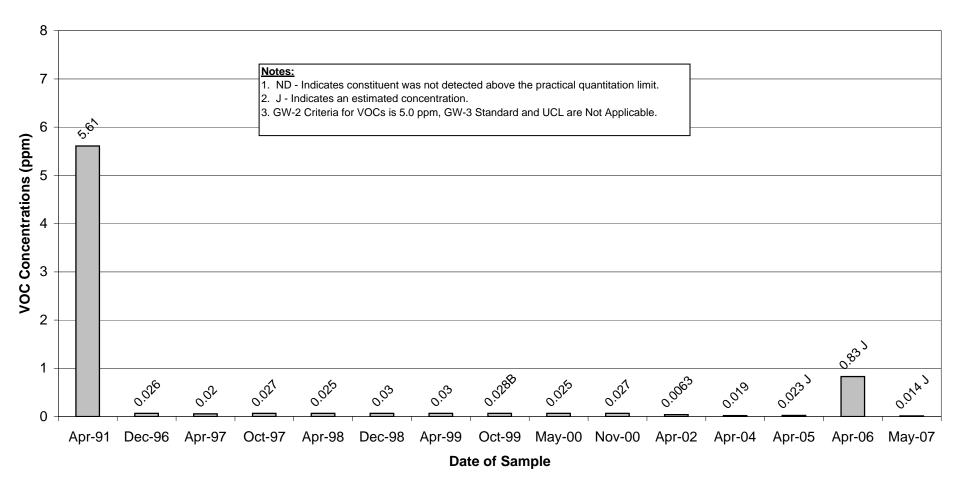
#### **Well 16A Historical Total VOC Concentrations**



## **Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts**

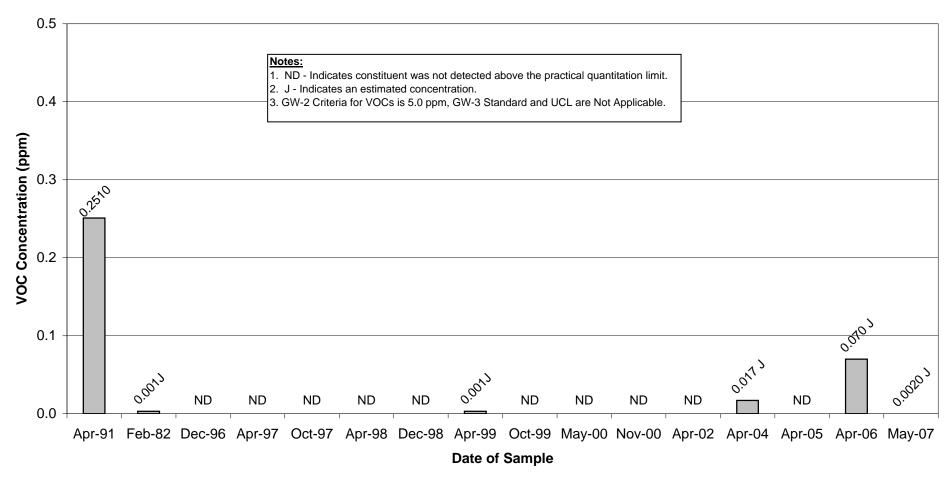
### Well 16C/16C-R Historical Total VOC Concentrations




## **Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts**

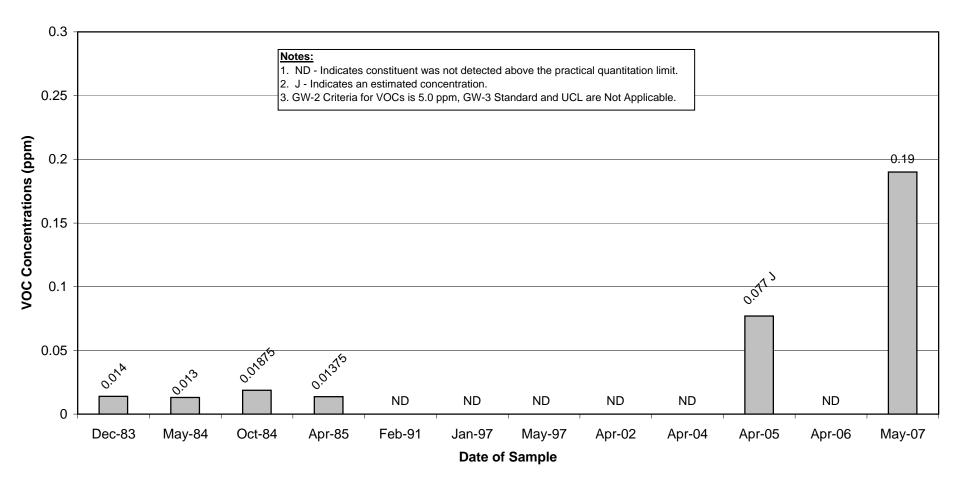
### Well 39B/39B-R Historical Total VOC Concentrations




## Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts

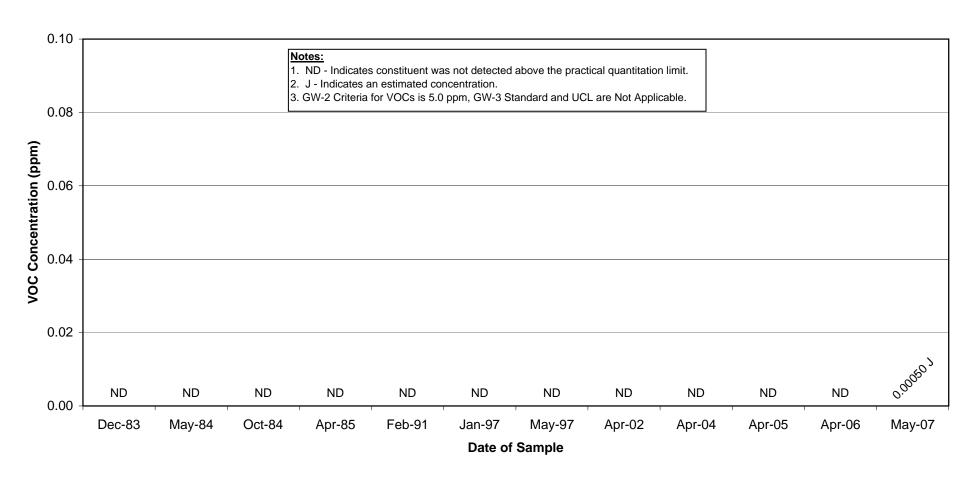
### Well 39D/39D-R Historical Total VOC Concentrations




## Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts

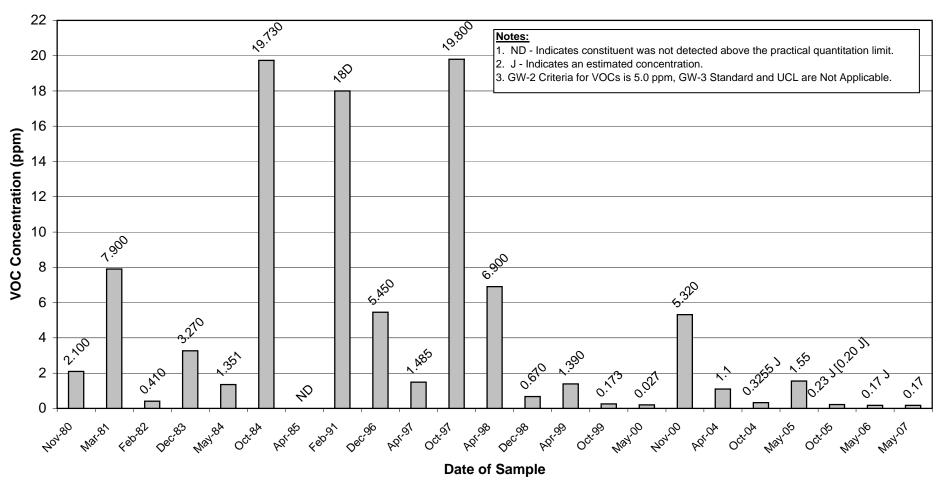
### **Well 39E Historical Total VOC Concentrations**




# Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts

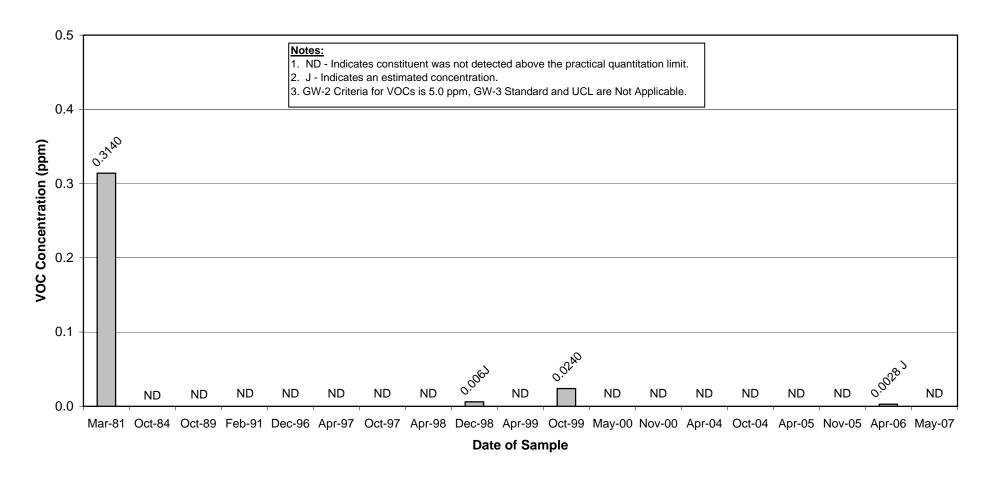
### **Well 43A Historical Total VOC Concentrations**




## **Groundwater Management Area 3 General Electric - Pittsfield, Massachusetts**

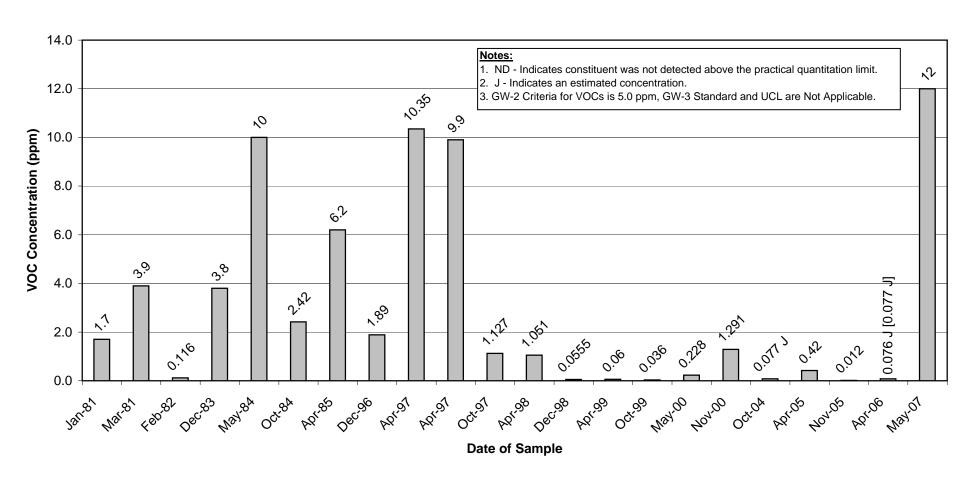
### **Well 43B Historical Total VOC Concentrations**




# Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts

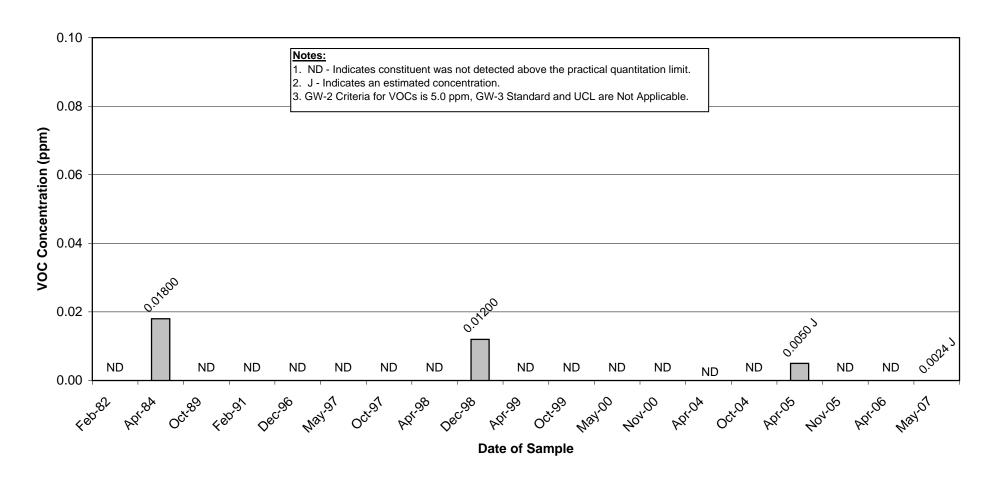
### **Well 89B Historical Total VOC Concentrations**




## **Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts**

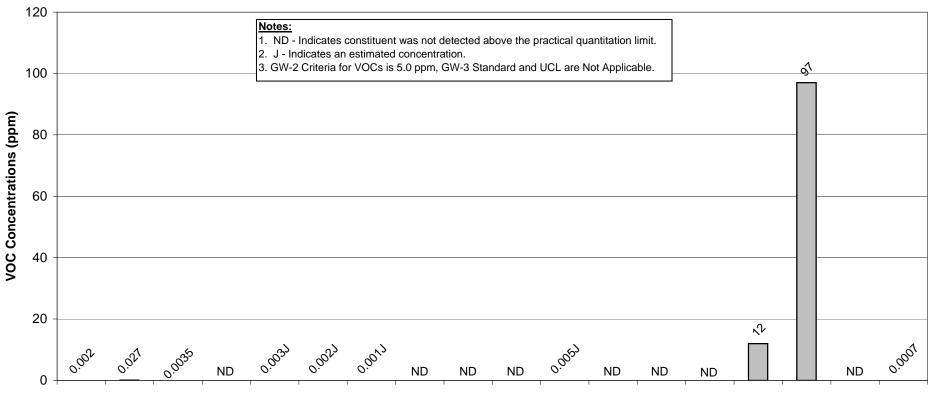
### **Well 90B Historical Total VOC Concentrations**




Appendix E

#### Well 95B/95B-R Historical Total VOC Concentrations

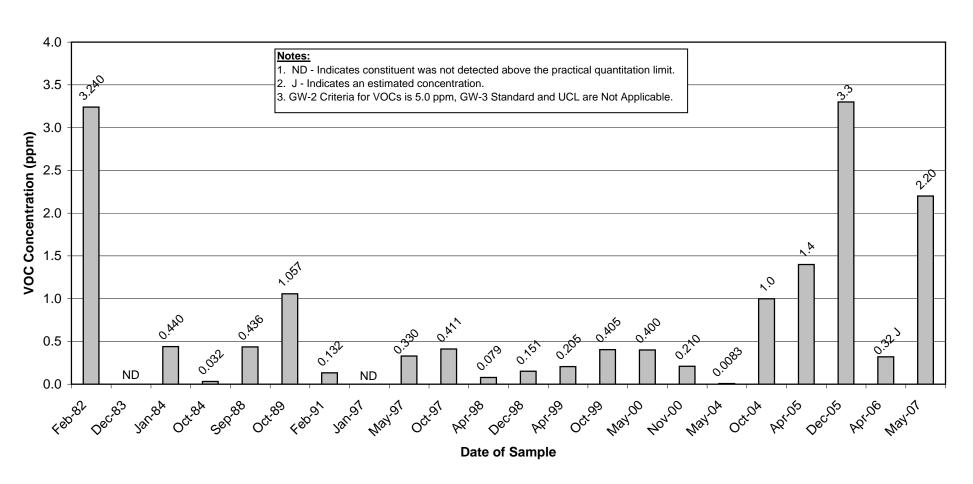



# **Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts**

#### Well 111B/111B-R Historical Total VOC Concentrations

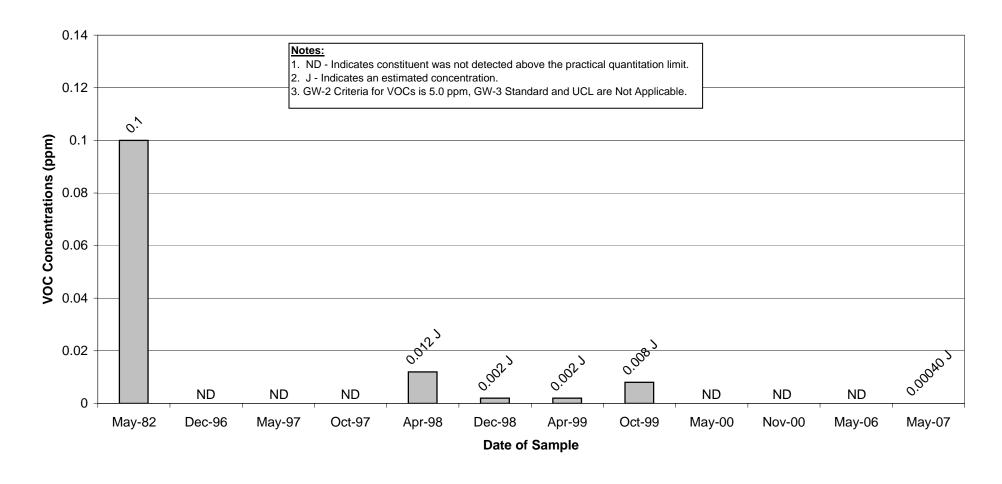


## Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts


#### **Well 114A Historical Total VOC Concentrations**

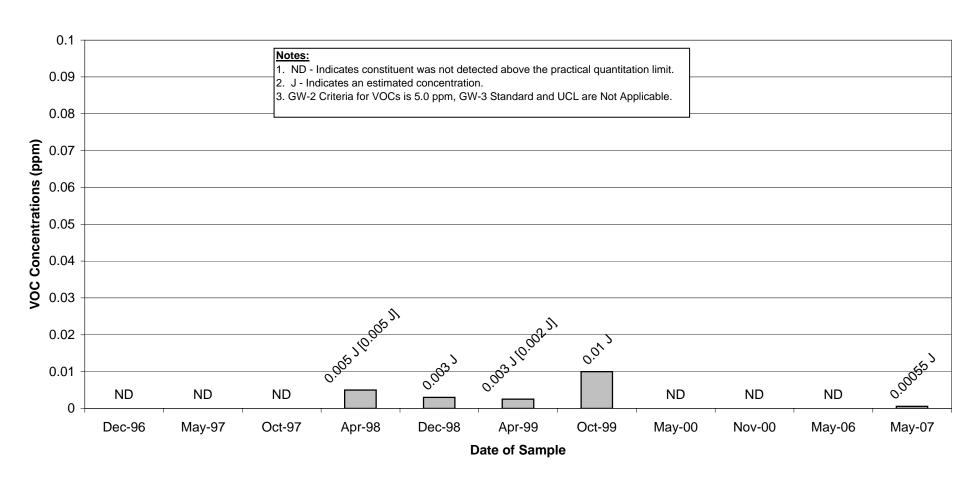


Dec-81 Feb-82 Oct-89 Feb-91 Dec-96 May-97 Oct-97 Apr-98 Dec-98 Apr-99 Oct-99 May-00 Nov-00 Apr-04 Apr-05 Dec-05 May-06 May-07 Date of Sample


## **Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts**

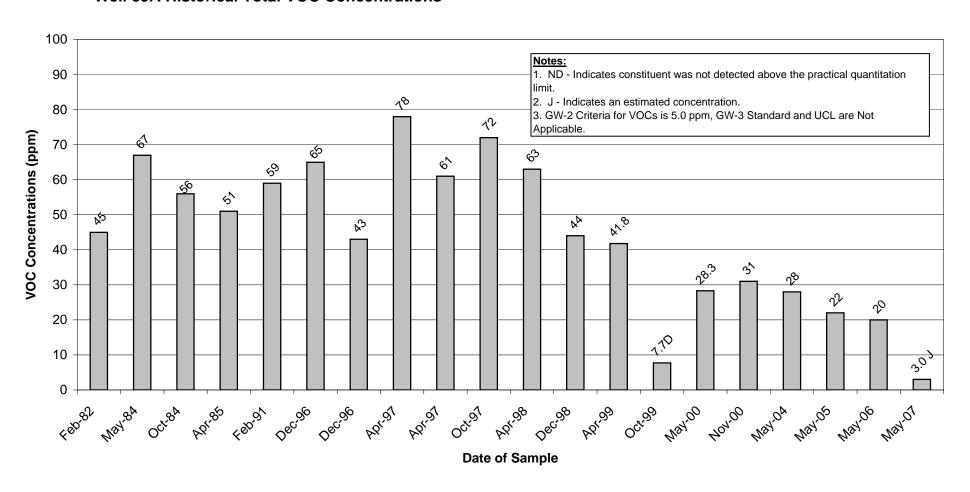
### Well 114B/114B-R Historical Total VOC Concentrations




## Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts

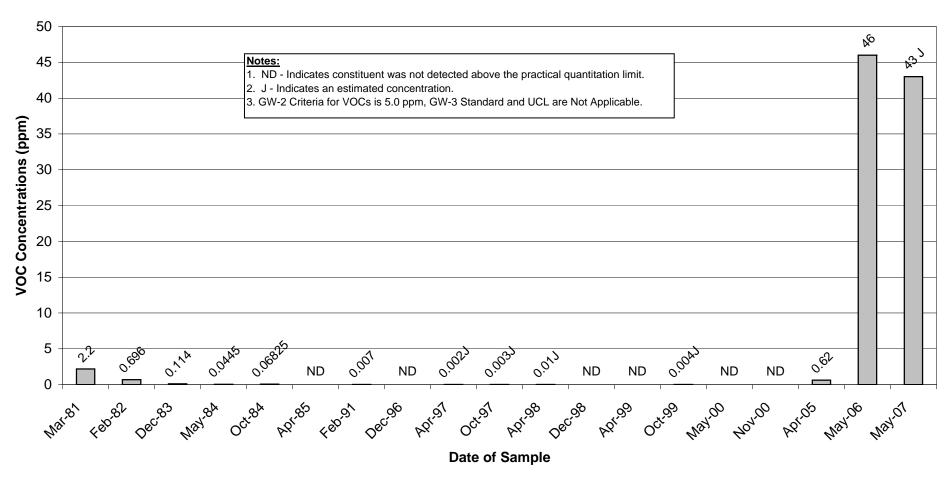
#### **Well 115A Historical Total VOC Concentrations**




## Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts

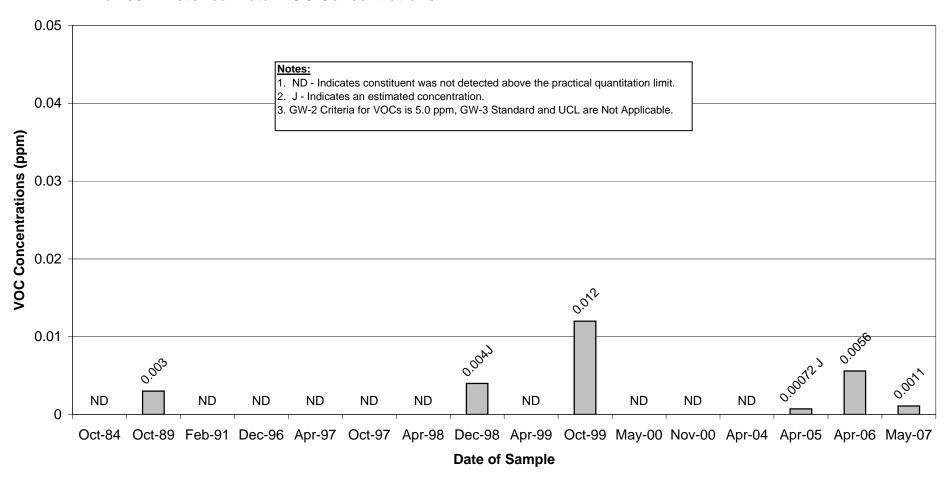
#### **Well 115B Historical Total VOC Concentrations**




Appendix E

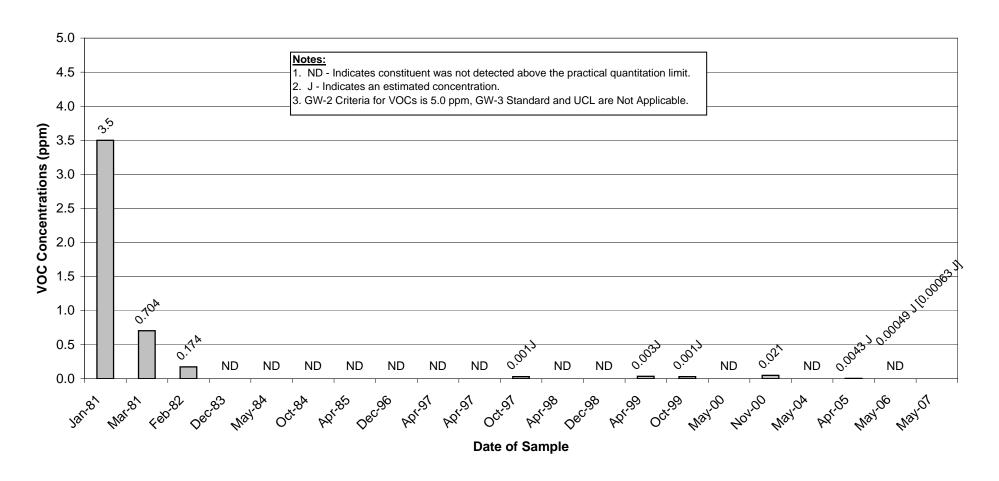
#### **Well 89A Historical Total VOC Concentrations**




## **Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts**

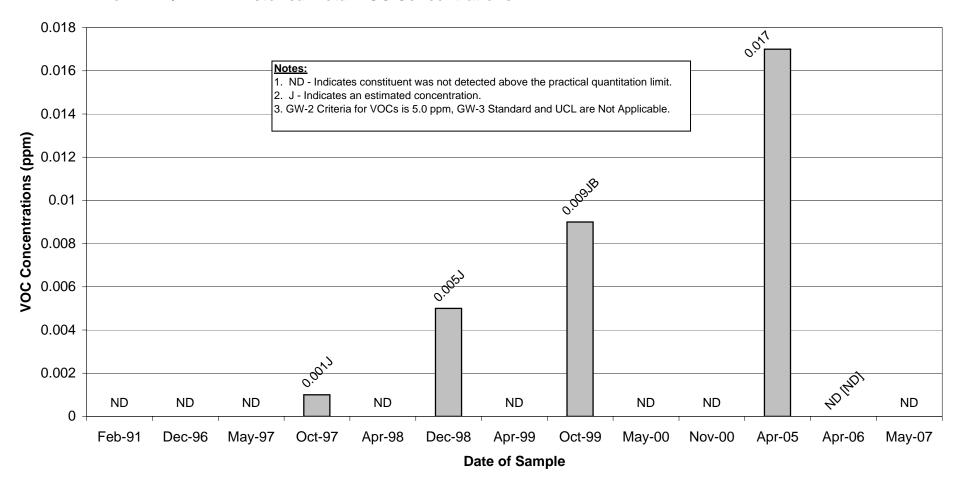
### Well 89D/89D-R Historical Total VOC Concentrations




## Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts

### **Well 90A Historical Total VOC Concentrations**




## **Groundwater Management Area 3 General Electric Company - Pittsfield, Massachusetts**

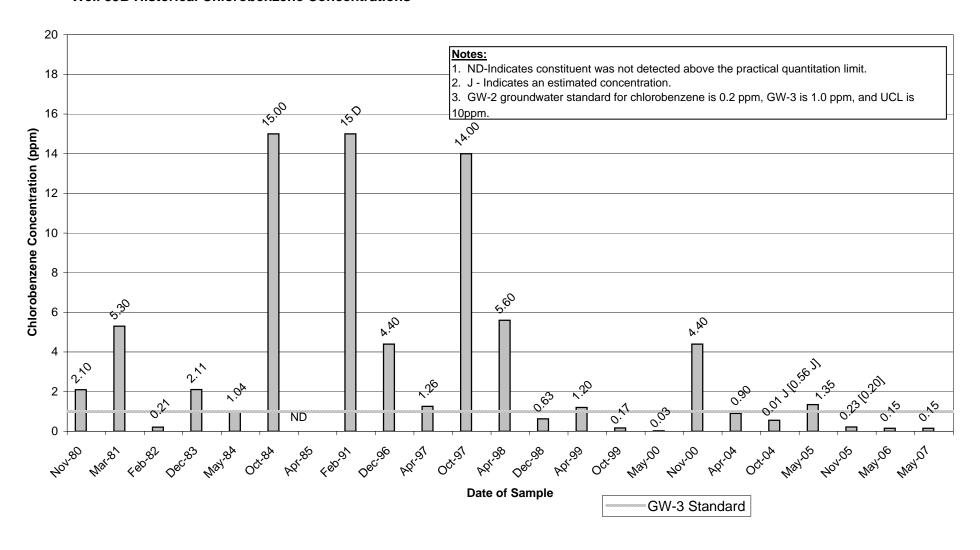
### **Well 95A Historical Total VOC Concentrations**



Appendix E

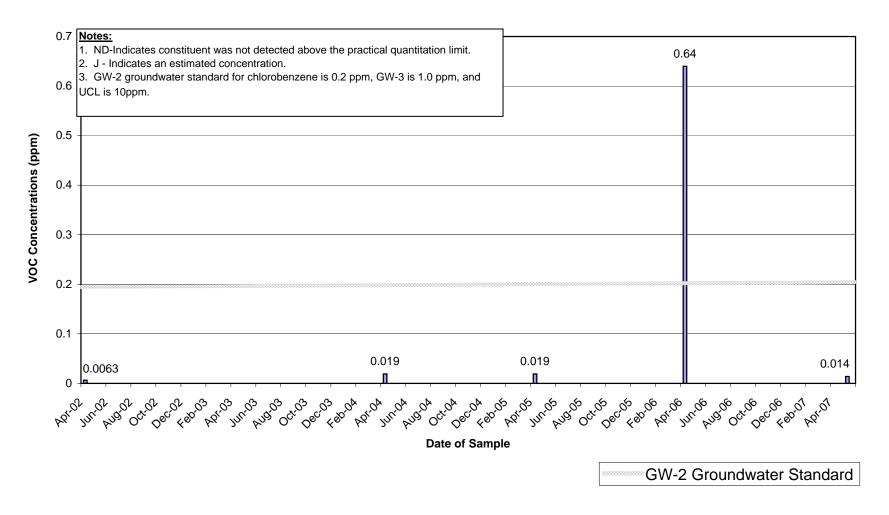
### Well 111A/111A-R Historical Total VOC Concentrations




## **ARCADIS** BBL

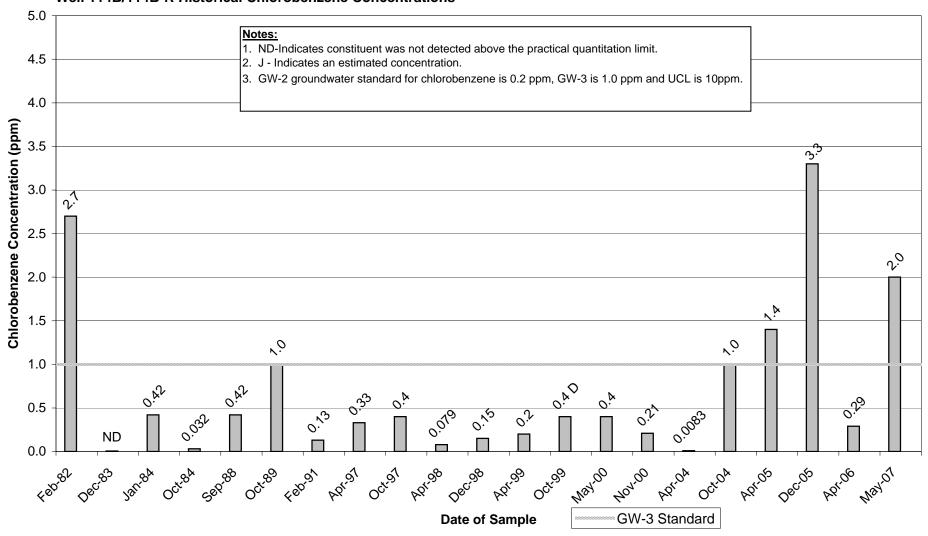
#### **Historical Groundwater Data**

Total Chlorobenzene Concentrations – Select Wells Sampled in Spring 2007


Appendix E

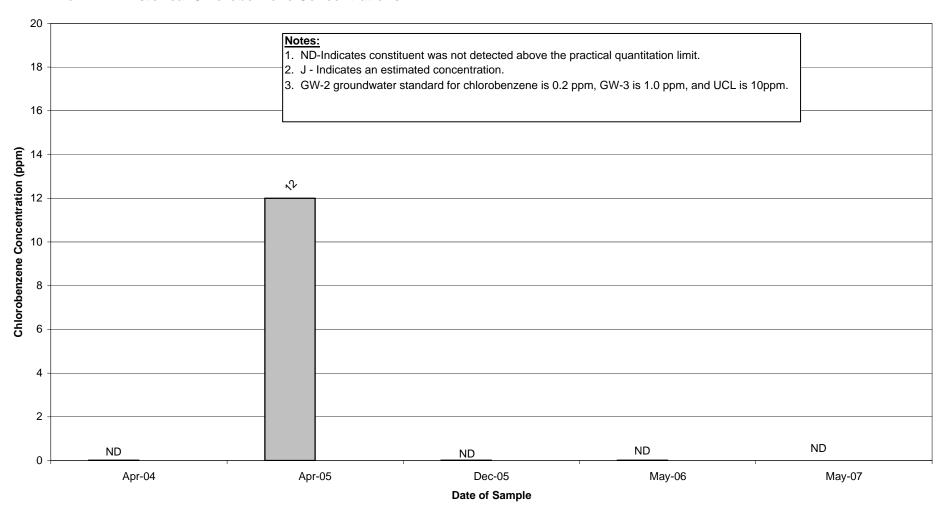
#### **Well 89B Historical Chlorobenzene Concentrations**




## Groundwater Management Area 3 General Electric Company - Pittsfield Massachusetts

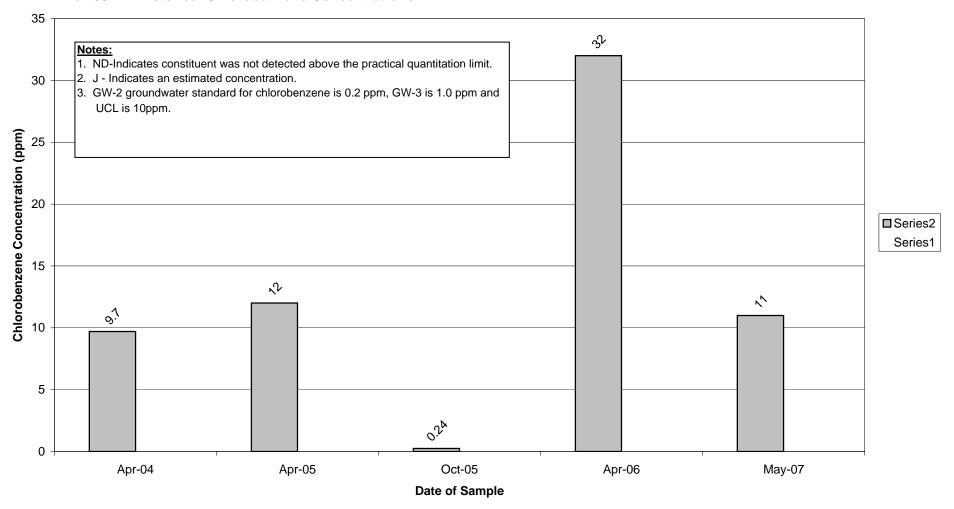
#### Well 39D/D-R Historical Chlorobenzene Concentrations




## **Groundwater Management Area 3 General Electric Company - Pittsfield Massachusetts**

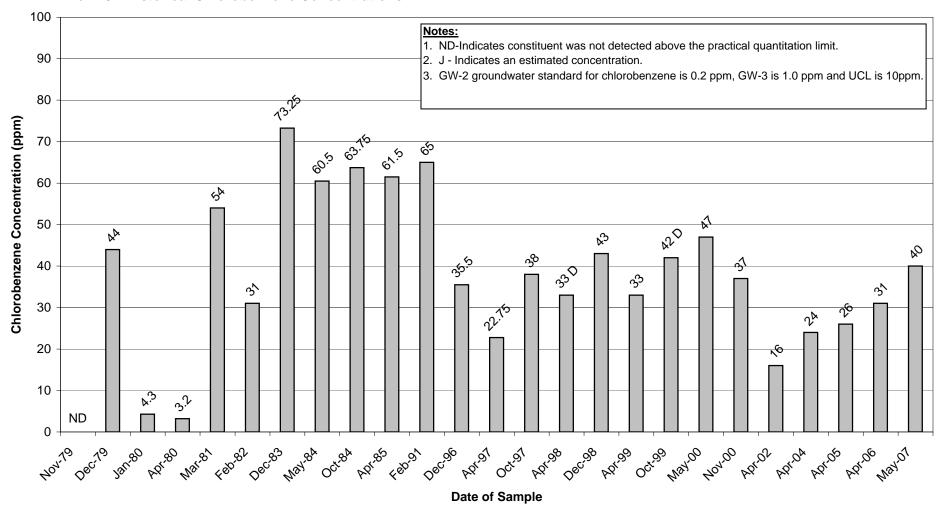
#### Well 114B/114B-R Historical Chlorobenzene Concentrations




## **Groundwater Management Area 3 General Electric Company - Pittsfield Massachusetts**

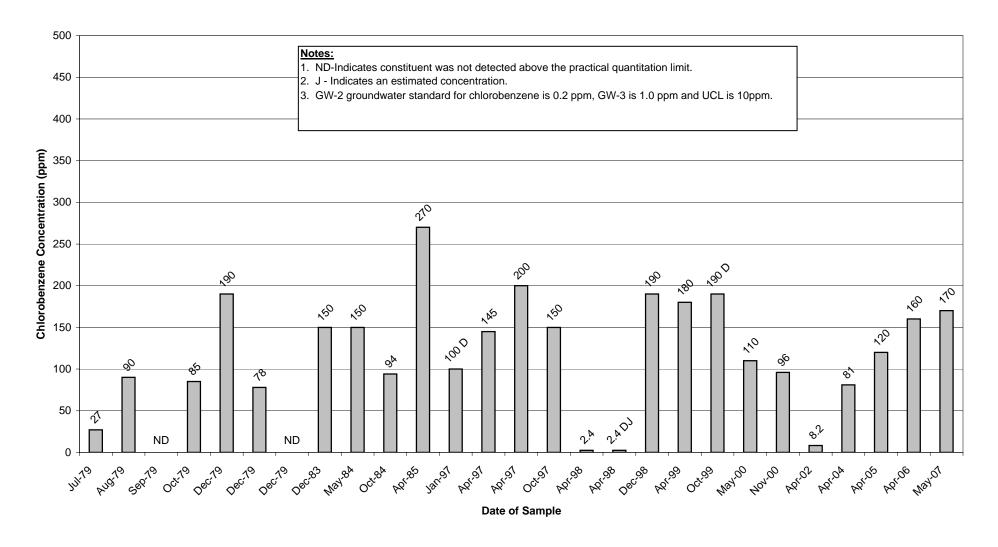
### **Well 114A Historical Chlorobenzene Concentrations**




## **Groundwater Management Area 3 General Electric Company - Pittsfield Massachusetts**

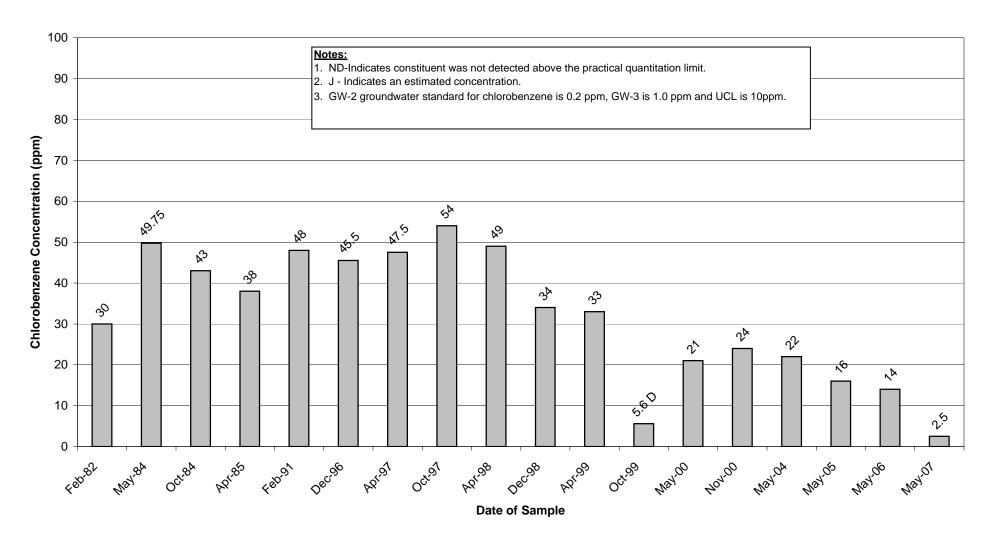
#### **Well 39B-R Historical Chlorobenzene Concentrations**




Appendix E

#### Well 16A Historical Chlorobenzene Concentrations

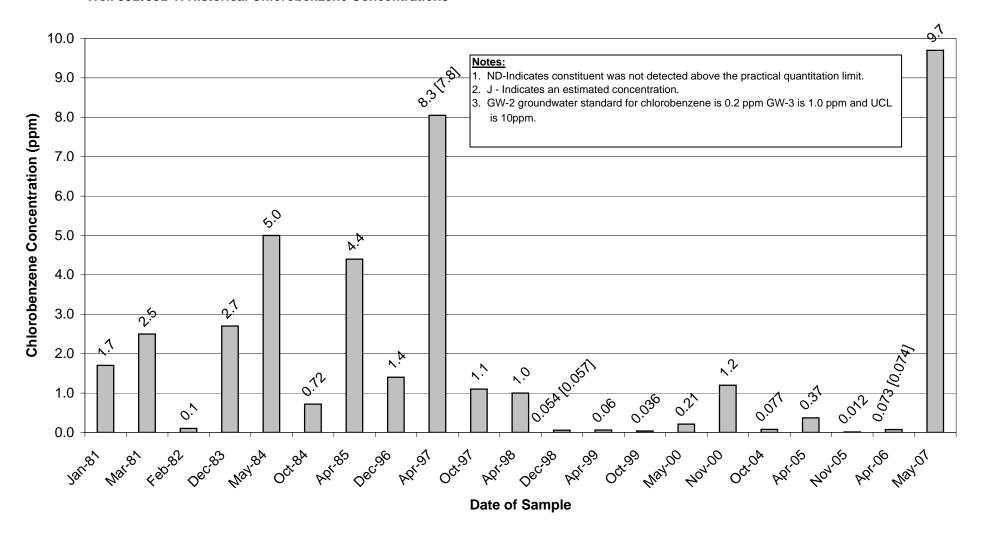



Appendix E

#### **Well 2A Historical Chlorobenzene Concentrations**



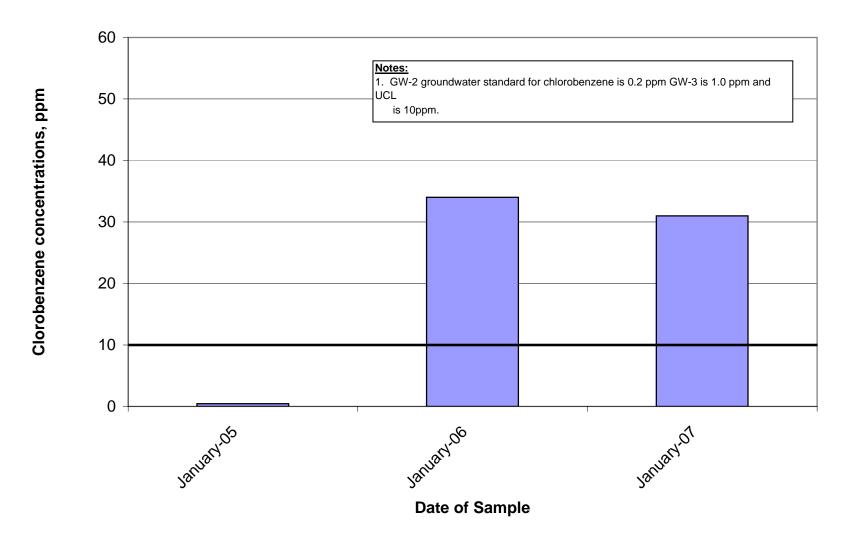
Appendix E


#### **Well 89A Historical Chlorobenzene Concentrations**



Appendix E

## **Groundwater Management Area 3 General Electric Company - Pittsfield Massachusetts**


#### Well 95B/95B-R Historical Chlorobenzene Concentrations



Appendix E

# Groundwater Management Area 3 General Electric Company - Pittsfield Massachusetts

#### **Well 89D-R Historical Chlorobenzene Concentrations**



### **ARCADIS** BBL

### Appendix F

Data Validation Report

Appendix F
Groundwater Sampling Data Validation Report
Groundwater Management Area 3 - Spring 2007

General Electric Company Pittsfield, Massachusetts

#### 1.0 General

This attachment summarizes the data validation review performed on behalf of the General Electric Company (GE) for groundwater samples collected in May 2007 as part of sampling activities conducted at the Plant Site 2 Groundwater Management Area (also referred to as GMA 3), located at the GE-Pittsfield/Housatonic River Site in Pittsfield, Massachusetts. The sampling was conducted by ARCADIS of New York (ARCADIS BBL), and the samples were analyzed for various other constituents listed in Appendix IX of 40 CFR Part 264, plus three additional constituents -- benzidine, 2-chloroethyl vinyl ether, and 1,2-diphenylhydrazine (hereafter referred to as Appendix IX+3) by SGS Environmental Services, Inc. (formerly Paradigm Analytical Labs, Inc.) of Wilmington, North Carolina. Data review was performed for 27 volatile organic compound (VOC) samples, eight semi-volatile organic compound (SVOC) samples, 25 metal samples, and 25 miscellaneous analyses.

#### 2.0 Data Evaluation Procedures

This attachment outlines the applicable quality control criteria utilized during the data review process and any deviations from those criteria. The data review was conducted in accordance with the following documents:

- Field Sampling Plan/Quality Assurance Project Plan (FSP/QAPP), General Electric Company, Pittsfield, Massachusetts, ARCADIS BBL (submitted by GE on March 30, 2007 and approved by EPA on June 13, 2007);
- Region I Tiered Organic and Inorganic Data Validation Guidelines, EPA Region I (July 1, 1993);
- Region I Laboratory Data Validation Functional Guidelines for Evaluating Organics Analyses, EPA Region
   I (Draft, December 1996); and
- National Functional Guidelines for Dioxin/Furan Data Validation, EPA (Draft, January 1996).

The data were validated to either a Tier I or Tier II level, as described below. Any deviations from the applicable quality control criteria utilized during the data review process are identified below. A tabulated summary of the Tier I/Tier II data review is presented in Table F-1. Each sample subject to evaluation is listed in Table F-1 to document that data review was performed. Samples that required data qualification are listed separately.

The following data qualifiers were used in this data evaluation:

- J The compound was positively identified, but the associated numerical value is an estimated concentration. This qualifier is used when the data evaluation procedure identifies a deficiency in the data generation process. This qualifier is also used when a compound is detected at an estimated concentration less than the corresponding practical quantitation limit (PQL).
- U The compound was analyzed for, but was not detected. The sample quantitation limit is presented. Non-detect sample results are presented as ND(PQL) within this report for consistency with documents previously prepared for investigations conducted at the GE-Pittsfield/Housatonic River Site.
- UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is estimated and may or may not represent the actual level of quantitation. Non-detect sample results that required qualification are presented as ND(PQL) J within this report for consistency with documents previously prepared for investigations conducted at the GE-Pittsfield/Housatonic River Site.
- R Indicates that the previously reported detection limit or sample result has been rejected due to a major deficiency in the data generation procedure. The data should not be used for any qualitative or quantitative purpose.

#### 3.0 Data Validation Procedures

Section 7.5 of the FSP/QAPP states that analytical data will be validated to a Tier I level following the procedures presented in the *Region I Tiered Organic and Inorganic Data Validation Guidelines* (EPA guidelines). All groundwater sampling analytical data collected in May 2007 were subjected to Tier I review. The Tier I review consisted of a completeness evidence audit, as outlined in the *EPA Region I CSF Completeness Evidence Audit Program* (EPA Region I, July 31, 1991), to ensure that laboratory data and documentation were present. In the event data packages were determined to be incomplete, the missing information was requested from the laboratory. Upon completion of the Tier I review, the data packages complied with the EPA Region I Tier I data completeness requirements.

The Tier II data review consisted of a review of data package summary forms for identification of quality assurance/quality control (QA/QC) deviations and qualification of the data according to the Region I Data Validation Functional Guidelines. Additionally, field duplicates were examined for relative percent difference (RPD) compliance with the criteria specified in the FSP/QAPP.

A tabulated summary of the samples subject to Tier I and Tier II data review is presented in the following table.

Summary of Samples Subjected to Tier I and Tier II Data Validation

_		Tier I Only					
Parameter	Samples	Duplicates	Blanks	Samples	Duplicates	Blanks	Total
VOCs	0	0	0	22	2	3	27
SVOCs	0	0	0	7	1	0	8
Metals	0	0	0	22	2	1	25
Miscellaneous	0	0	0	22	2	1	25
Total	0	0	0	73	7	5	85

When qualification of the sample data was required, the sample results associated with a QA/QC parameter deviation were qualified in accordance with the procedures outlined in EPA Region I data validation guidance documents. When the data validation process identified several quality control deficiencies, the cumulative effect of the various deficiencies was employed in assigning the final data qualifier. A summary of the QA/QC parameter deviations that resulted in data qualification is presented in Section 4 below.

#### 4.0 Data Review

The initial calibration criterion for organic analyses requires that the average relative response factor (RRF) has a value greater than 0.05. Sample results were qualified as estimated (J) when this criterion was not met. The compounds that did not meet the initial calibration criterion and the number of samples qualified are presented in the following table.

**Compounds Qualified Due to Initial Calibration Deviations (RRF)** 

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	1,2-Dibromo-3-chloropropane	27	J
	1,4-Dioxane	27	J
	2-Butanone	7	J
	2-Chloroethylvinylether	27	J
	Acetone	27	J
	Acetonitrile	27	J
	Acrolein	27	J
	Acrylonitrile	27	J
	Ethyl Methacrylate	1	J
	Isobutanol	27	J
	Methacrylonitrile	1	J
	Methyl Methacrylate	1	J
	Propionitrile	26	J

Several of the organic compounds (including the compounds presented in the above tables detailing RRF deviations) exhibit instrument response factors (RFs) below the EPA Region I minimum value of 0.05, but meet the analytical method criterion, which does not specify minimum RFs for these compounds. These compounds were analyzed by the laboratory at a higher concentration than the compounds that normally exhibit RFs greater than the EPA Region I minimum value of 0.05 in an effort to demonstrate acceptable response. EPA Region I guidelines state that non-detect compound results associated with a RF less than the minimum value of 0.05 are to be rejected (R). However, in the case of these select organic compounds, the RF is an inherent problem with the current analytical methodology; therefore, the non-detect sample results were qualified as estimated (J).

The continuing calibration criterion requires that the percent difference (%D) between the initial calibration RRF and the continuing calibration RRF for VOCs be less than 25%. Sample data for detect and non-detect compounds with %D values that exceeded the continuing calibration criteria were qualified as estimated (J). A summary of the compounds that exceeded the continuing calibration criterion and the number of samples qualified due to those deviations are presented in the following table.

Compounds Qualified Due to Continuing Calibration of %D Values

Analysis	Compound	Number of Affected Samples	Qualification		
VOCs	1,2-Dibromo-3-chloropropane	5	J		
	1,2-Dichloroethane	6	J		
	1,4-Dioxane	6	J		
	Acetone	11	J		
	Bromomethane	3	J		
	Chloroethane	5	J		
	4-Chlorophenol	8	J		

Contract required detection limit (CRDL) standards were analyzed to evaluate instrument performance at low-level concentrations that are near the analytical method PQL. These standards are required to have recoveries between 80% and 120% to verify that the analytical instrumentation was properly calibrated. When CRDL standard recoveries were outside the 80% to 120% control limits, the affected samples with detected results at or near the PQL concentration (i.e., less than three times the PQL) were qualified as estimated (J). The analytes that did not meet CRDL criteria and the number of samples qualified due to those deviations are presented in the following table.

Analytes Qualified Due to CRDL Standard Recovery Deviations

Analysis	Analyte	Number of Affected Samples	Qualification	
Inorganics	Iron	16	J	

Matrix spike/Matrix spike duplicate (MS/MSD) sample analysis recovery criteria for organic analysis require that the MS/MSD recoveries be within the laboratory-generated QC acceptance limits specified on the MS reporting form. Organic sample results associated with MS/MSD recoveries less than the specified control limit, but greater than 10%, were qualified as estimated (J). The compound that did not meet MS/MSD recovery criteria and the number of samples qualified due to those deviations are presented in the following table.

#### **Compound Qualified Due to MS/MSD Recovery Deviations**

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	Chlorobenzene	1	J

Analysis holding timing criterion for nitrite require that water samples are analyzed within 48 hours. The analyte that exceeded analysis holding time and the number of samples qualified due to deviation are presented in the following table.

#### **Compounds Qualified Due to Extraction Holding Time Deviations**

Analysis	Compound	Number of Affected Samples	Qualification
Miscellaneous	Nitrite	1	J

Field duplicate samples were analyzed to evaluate the overall precision of laboratory and field procedures. The RPD between field duplicate samples is required to be less than 30% for water sample values greater than five times the PQL for organics. Sample results that exceeded these limits were qualified as estimated (J). The compound that did not meet field duplicate RPD requirements and the number of samples qualified due to those deviations are presented in the following table.

#### **Compound Qualified Due to Field Duplicate Deviations**

Analysis	Compound	Number of Affected Samples	Qualification
VOCs	Chlorobenzene	2	J

#### 5.0 Overall Data Usability

This section summarizes the analytical data in terms of its completeness and usability. Data completeness is defined as the percentage of sample results that have been determined to be usable during the data validation process. The percent usability calculation included analyses evaluated under both the Tier I/II data validation reviews. The percent usability calculation also includes quality control samples (i.e., field/equipment blanks, trip blanks, and field duplicates) to aid in the evaluation of data usability. Data usability is summarized in the following table.

**Data Usability** 

Parameter	Percent Usability	Rejected Data
VOCs	100	None
SVOCs	100	None
Metals	100	None
Miscellaneous	100	None

The data package completeness, as determined from the Tier I data review, was used in combination with the data quality deviations identified during the Tier II data review to determine overall data quality. As specified in the FSP/QAPP, the overall precision, accuracy, representativeness, comparability, and completeness (PARCC) parameters determined from the Tier I and Tier II data reviews were used as indicators of overall data quality. These parameters were assessed through an evaluation of the results of the field and laboratory QA/QC sample analyses to provide a measure of compliance of the analytical data with the Data Quality Objectives (DQOs) specified in the FSP/QAPP. Therefore, the following sections present summaries of the PARCC parameters assessment with regard to the DQOs specified in the FSP/QAPP.

#### 5.1 Precision

Precision measures the reproducibility of measurements under a given set of conditions. Specifically, it is a quantitative measure of the variability of a group of measurements compared to their average value. For this investigation, precision was defined as the RPD between laboratory duplicates, field duplicates, LCS/LCSD, MS/MSD, and ICP serial dilution analyses. For this analytical program, 0.12% of the data required qualification due to field duplicate RPD deviations. None of the data required qualification due to MS/MSD, LCS/LCSD, or laboratory duplicate RPD deviations or ICP serial dilution deviations.

#### 5.2 Accuracy

Accuracy measures the bias in an analytical system or the degree of agreement of a measurement with a known reference value. For this investigation, accuracy was defined as the percent recovery of QA/QC samples that were spiked with a known concentration of an analyte or compound of interest. The QA/QC samples used to evaluate analytical accuracy included instrument calibration, internal standards, LCS/LCSDs, MS/MSD samples, CRDL samples, and surrogate compound recoveries. For this analytical program, 19.1% of the data required qualification due to instrument calibration deviations, 1.0% of the data required qualification due to MS/MSD recovery deviations. None of the data required qualification due to internal standard, LCS/LCSD, or surrogate compound recovery deviations.

#### 5.3 Representativeness

Representativeness expresses the degree to which sample data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, or an environmental condition. Representativeness is a qualitative parameter, which is most concerned with the proper design of the sampling program. The representativeness criterion is best satisfied by making certain that sampling locations are selected properly and a sufficient number of samples are collected. This parameter has been addressed by collecting samples at locations specified in the EPA-approved work plan, and by following the procedures for sample collection/analyses that were described in the FSP/QAPP. Additionally, the analytical program used procedures consistent with EPA-approved analytical methodology. A QA/QC parameter that is an indicator of the representativeness of a sample is holding time. Holding time criteria are established to maintain the samples in a state that is representative of the in-situ field conditions before analysis. For this analytical data set, none of the data required qualification due to holding time deviations.

#### 5.4 Comparability

Comparability is a qualitative parameter expressing the confidence with which one data set can be compared with another. This goal was achieved through the use of the standardized techniques for sample collection and analysis presented in the FSP/QAPP. Specifically, all the groundwater samples collected in May 2007 were analyzed by EPA method 8260 for VOCs, 8270 for SVOCs, 6000 for metals, and various methods for the miscellaneous parameters.

#### 5.5 Completeness

Completeness is defined as the percentage of measurements that are judged to be valid or usable to meet the prescribed DQOs. The completeness criterion is essentially the same for all data uses -- the generation of a sufficient amount of valid data. This analytical data set had an overall usability of 100%.

Table F-1
Analytical Data Validation Summary

Sample Delivery											
Group No. Metals	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
G135-406	111A-R (Filtered)	5/7/2007	Water	Tier II	No						
G135-406	111B-R (Filtered)	5/8/2007	Water	Tier II	No						
G135-406 G135-406	16A (Filtered) 16B-R (Filtered)	5/7/2007 5/8/2007	Water Water	Tier II Tier II	No No						
G135-406	16C-R (Filtered)	5/7/2007	Water	Tier II	No						
G135-406	39B-R (Filtered)	5/7/2007	Water	Tier II	No						
G135-406	90A (Filtered)	5/8/2007	Water	Tier II	No						
G135-406 G135-406	90B (Filtered) DUP#1 (Filtered)	5/8/2007 5/8/2007	Water Water	Tier II Tier II	No No						Parent Sample 16B-R (Filtered)
G135-409	114A (Filtered)	5/10/2007	Water	Tier II	Yes	Iron	CRDL Standard %R	146.0%	80% to 120%	0.0434 J	Parent Sample 166-R (Filtered)
G135-409	114B-R (Filtered)	5/10/2007	Water	Tier II	Yes	Iron	CRDL Standard %R	146.0%	80% to 120%	ND(0.100) J	
	43A (Filtered)	5/9/2007	Water	Tier II	Yes	Iron	CRDL Standard %R	121.0%	80% to 120%	ND(0.100) J	
G135-409	43B (Filtered)	5/9/2007 5/9/2007	Water	Tier II	Yes	Iron	CRDL Standard %R CRDL Standard %R	121.0% 121.0%	80% to 120%	ND(0.100) J ND(0.100) J	
G135-409 G135-409	89A (Filtered) 89B (Filtered)	5/9/2007	Water Water	Tier II Tier II	Yes Yes	Iron Iron	CRDL Standard %R CRDL Standard %R	121.0%	80% to 120% 80% to 120%	ND(0.100) J ND(0.100) J	
G135-409	89D-R (Filtered)	5/9/2007	Water	Tier II	Yes	Iron	CRDL Standard %R	121.0%	80% to 120%	ND(0.100) J	
G135-409	95A (Filtered)	5/10/2007	Water	Tier II	Yes	Iron	CRDL Standard %R	121.0%	80% to 120%	ND(0.100) J	
G135-409	95B-R (Filtered)	5/10/2007	Water	Tier II	Yes	Iron	CRDL Standard %R	146.0%	80% to 120%	ND(0.100) J	D 10 1 05A (5'W "
G135-409 G135-413	DUP#2 (Filtered) 115A (Filtered)	5/10/2007 5/14/2007	Water Water	Tier II Tier II	Yes Yes	Iron	CRDL Standard %R CRDL Standard %R	146.0% 126.00%	80% to 120% 80% to 120%	ND(0.100) J ND(0.100) J	Parent Sample 95A (Filtered)
G135-413	115B (Filtered)	5/14/2007	Water	Tier II	Yes	Iron Iron	CRDL Standard %R CRDL Standard %R	126.00%	80% to 120%	ND(0.100) J ND(0.100) J	
G135-413	2A (Filtered)	5/14/2007	Water	Tier II	Yes	Iron	CRDL Standard %R	126.00%	80% to 120%	ND(0.100) J	
G135-413	39D-R (Filtered)	5/14/2007	Water	Tier II	Yes	Iron	CRDL Standard %R	126.00%	80% to 120%	ND(0.100) J	
G135-413 G135-413	39E (Filtered)	5/14/2007	Water	Tier II Tier II	Yes	Iron	CRDL Standard %R CRDL Standard %R	126.00%	80% to 120% 80% to 120%	0.0364 J	
VOCs	GMA3-RB-1 (Filtered)	5/14/2007	Water	HerH	Yes	Iron	CRDL Standard %R	126.00%	80% to 120%	ND(0.100) J	L
	111A-R	5/7/2007	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	ICAL RRF	0.023	>0.05	ND(0.0050) J	
0.00 .00		0,7,2001	*******	1101 11		1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.10) J	
						2-Chloroethylvinylether	ICAL RRF	0.026	>0.05	ND(0.013) J	
						Acetone	ICAL RRF	0.047	>0.05	ND(0.0050) J	
						Acetonitrile Acrolein	ICAL RRF	0.003 0.024	>0.05 >0.05	ND(0.020) J ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Bromomethane	CCAL %D	36.6%	<25%	ND(0.0010) J	
						Isobutanol	ICAL RRF	0.004	>0.05	ND(0.050) J	
G135-406	444D D	5/8/2007	10/	T: II	V	Propionitrile 1,2-Dibromo-3-chloropropane	ICAL RRF	0.006 0.023	>0.05 >0.05	ND(0.020) J ND(0.0050) J	
G135-406	111B-R	5/8/2007	Water	Tier II	Yes	1,4-Dioxane	ICAL RRF	0.023	>0.05	ND(0.0050) J ND(0.10) J	
						1.4-Dioxane	CCAL %D	132.0%	<25%	ND(0.10) J	
						2-Chloroethylvinylether	ICAL RRF	0.026	>0.05	ND(0.013) J	
						Acetone	ICAL RRF	0.047	>0.05	ND(0.0050) J	
						Acetonitrile Acrolein	ICAL RRF	0.003 0.024	>0.05 >0.05	ND(0.020) J ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.024	>0.05	ND(0.025) J ND(0.025) J	
						Chlorobenzene	MS/MSD %R	70.6%, 65.4%	77.2% to 118%	0.0020 J	
						Isobutanol	ICAL RRF	0.004	>0.05	ND(0.050) J	
0405 400	404	F/7/0007	10/	T: "		Propionitrile	ICAL RRF	0.006	>0.05	ND(0.020) J	
G135-406	16A	5/7/2007	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane 1,4-Dioxane	ICAL RRF	0.023	>0.05 >0.05	ND(4.0) J ND(80) J	
						2-Chloroethylvinylether	ICAL RRF	0.026	>0.05	ND(10) J	
						Acetone	ICAL RRF	0.047	>0.05	ND(4.0) J	
						Acetonitrile	ICAL RRF	0.003	>0.05	ND(16) J	
						Acrolein	ICAL RRF	0.024 0.040	>0.05	ND(20) J	
						Acrylonitrile Bromomethane	CCAL %D	0.040 36.6%	>0.05 <25%	ND(20) J ND(0.80) J	+
						Isobutanol	ICAL RRF	0.004	>0.05	ND(40) J	
						Propionitrile	ICAL RRF	0.006	>0.05	ND(16) J	
G135-406	16B-R	5/8/2007	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	ICAL RRF	0.023	>0.05	ND(0.0050) J	
						1,4-Dioxane 1.4-Dioxane	ICAL RRF CCAL %D	0.001 132.0%	>0.05 <25%	ND(0.10) J ND(0.10) J	<b>+</b>
						2-Chloroethylvinylether	ICAL RRF	0.026	<25% >0.05	ND(0.10) J ND(0.013) J	
						Chlorobenzene	Field Duplicate RPD (Water)	73.1%	<30%	0.0051 J	
						Acetone	ICAL RRF	0.047	>0.05	0.0072 J	
						Acetonitrile	ICAL RRF	0.003	>0.05	ND(0.020) J	

Page 1 of 6

Table F-1
Analytical Data Validation Summary

Sample Delivery											
Group No. VOCs (contin	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
G135-406	16B-R	5/8/2007	Water	Tier II	Yes	Acrolein	ICAL RRF	0.024	>0.05	ND(0.025) J	1
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.004	>0.05	ND(0.050) J	
						Propionitrile	ICAL RRF	0.006	>0.05	ND(0.020) J	
G135-406	16C-R	5/7/2007	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	ICAL RRF	0.023	>0.05	ND(0.0050) J	
						1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.10) J	
						1,4-Dioxane	CCAL %D	132.0%	<25%	ND(0.10) J	
						2-Chloroethylvinylether Acetone	ICAL RRF	0.026 0.047	>0.05 >0.05	ND(0.013) J ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.047	>0.05	ND(0.0030) J	+
						Acrolein	ICAL RRF	0.003	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.004	>0.05	ND(0.050) J	
						Propionitrile	ICAL RRF	0.006	>0.05	ND(0.020) J	
G135-406	39B-R	5/7/2007	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	ICAL RRF	0.023	>0.05	ND(2.0) J	
					1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(40) J		
						2-Chloroethylvinylether	ICAL RRF	0.026	>0.05	ND(5.0) J	
						Acetone	ICAL RRF	0.047	>0.05	ND(2.0) J	
						Acetonitrile	ICAL RRF	0.003	>0.05	ND(8.0) J	
						Acrolein	ICAL RRF	0.024	>0.05	ND(10) J	
						Acrylonitrile Bromomethane	ICAL RRF CCAL %D	0.040 31.8%	>0.05 <25%	ND(10) J ND(0.40) J	
						Isobutanol	ICAL RRF	0.004	>0.05	ND(0.40) J ND(20) J	
					Propionitrile	ICAL RRF	0.004	>0.05	ND(8.0) J		
G135-406	3135-406 90A 5/8/2007 Wate	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	ICAL RRF	0.023	>0.05	ND(0.0050) J		
0.00 .00		0,0,2001	*******	1101 11		1.4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.10) J	
						1,4-Dioxane	CCAL %D	132.0%	<25%	ND(0.10) J	
						2-Chloroethylvinylether	ICAL RRF	0.026	>0.05	ND(0.013) J	
						Acetone	ICAL RRF	0.047	>0.05	ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.003	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.024	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol Propionitrile	ICAL RRF	0.004	>0.05 >0.05	ND(0.050) J ND(0.020) J	
G135-406	90B	5/8/2007	Water	Tier II	Vaa	1,2-Dibromo-3-chloropropane	ICAL RRF	0.006	>0.05	ND(0.020) J	
G135-406	906	5/6/2007	water	Her II	Yes	1,4-Dioxane	ICAL RRF	0.023	>0.05	ND(0.0050) J ND(0.10) J	
						1,4-Dioxane	CCAL %D	132.0%	<25%	ND(0.10) J	
						2-Chloroethylvinylether	ICAL RRF	0.026	>0.05	ND(0.013) J	
						Acetone	ICAL RRF	0.047	>0.05	ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.003	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.024	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.004	>0.05	ND(0.050) J	1
0405 400	DUD#4	F/0/0007	14/-4	T: II	V	Propionitrile	ICAL RRF	0.006	>0.05	ND(0.020) J	December Constant ACD D
G135-406	DUP#1	5/8/2007	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane 1,4-Dioxane	ICAL RRF	0.023 0.001	>0.05 >0.05	ND(0.0050) J ND(0.10) J	Parent Sample 16B-R
						1,4-Dioxane	CCAL %D	132.0%	>0.05 <25%	ND(0.10) J ND(0.10) J	1
						2-Chloroethylvinylether	ICAL RRF	0.026	>0.05	ND(0.013) J	
						Chlorobenzene	Field Duplicate RPD (Water)	73.1%	<30%	0.0024 J	
						Acetone	ICAL RRF	0.047	>0.05	0.0035 J	
						Acetonitrile	ICAL RRF	0.003	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.024	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.004	>0.05	ND(0.050) J	1
G135-409	1111	5/10/2007	\\/a+	T: U	V	Propionitrile	ICAL RRF	0.006 0.022	>0.05 >0.05	ND(0.020) J ND(0.0050) J	
G 135-409	114A	5/10/2007	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane 1,4-Dioxane	ICAL RRF	0.022	>0.05 >0.05	ND(0.0050) J ND(0.10) J	
						2-Chloroethylvinylether	ICAL RRF	0.001	>0.05	ND(0.10) J ND(0.013) J	+
						Acetone	ICAL RRF	0.023	>0.05	ND(0.013) J ND(0.0050) J	1
					Acetonie	ICAL RRF	0.005	>0.05	ND(0.000) J		
						Acrolein	ICAL RRF	0.02	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.006	>0.05	ND(0.050) J	
				1		Propionitrile	ICAL RRF	0.006	>0.05	ND(0.020) J	

Page 2 of 6

Table F-1
Analytical Data Validation Summary

A-Doxame   CAL, REF   0.001   >0.05   ND(0.10) J	Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
To Compare   Cold   Section   Cold   S												
1.0	G135-409	114B-R	5/10/2007	Water	Tier II	Yes						
Part												
Part												
Autority   Colored   Col												
Protection   Pro												
According   CAL MSP							Acetone	CCAL %D	38.3%	<25%	ND(0.40) J	
Fortrainer   CAL MST												
Consequence												
Model												
Proposition   Col. 1, 1657   Col.												
1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2   1.2												
1.2-Distortion - Selection -	G135-409	43A	5/9/2007	Water	Tier II	Yes						
1.4 Chesare	0100 400	40/1	0/3/2001	vvator	110111	103			*****			
2-distances												
Nembers   CAL RRF   0.039							2-Butanone	ICAL RRF		>0.05		
Rectional   CAL NO   S8.5%   4.25%   NRO.00500   J												
Academinis												
Accretion												
April												
Discontance   DCAL 95D   28.3%   -25%   ND(0.001)												
September   Sept												
August   A												
135-409   498   59/2007   Water   Ter iI   Yes   12-Disromo-3-chitopoppane   CAL RRF   0.002   >0.05   MD(0.056) J												
C-Chloroethyloryngheter   CAL RRF   0.023   5.0.05   ND(0.073 J	G135-409	43B	5/9/2007	Water	Tier II	Yes		ICAL RRF	0.022	>0.05	ND(0.0050) J	
Acetone							1,4-Dioxane			>0.05	ND(0.10) J	
Acetonimina												
Acrolein												
Acytonirile   ICAL RRF   0.040   >0.05   ND(0.025) J												
Sobutanol   CAL RRF   0.006   >0.05   ND(0.050) J												
Propioritrile   CAL RRF   0.006   >0.05   ND(0.020) J												
135-409   99A   59/2007   Water   Tier II   Ves   1,2-Dibromo-3-chilorpropane   ICAL RRF   0.030   >0.05   ND(0.40) J												
1.2-Dibromo-3-chloropropane   CAL %D   25.3%   c.25%   ND(0.40)	G135-409	89A	5/9/2007	Water	Tier II	Yes						
Page			3/3/2001									
Action							1,4-Dioxane			>0.05		
Acetone   ICAL RRF   0.039   >0.05   ND(0.40) J												
Acetone												
Actiontrile												
Acrolein												
Acrylonitrile												
Chloroethane   CCAL %D   28.3%   <25%   ND(0.080)												
Sobutanol   CAL RRF   0.003   >0.05   ND(4.0) J												
Sample												
Sample					<u> </u>		Propionitrile					
1,4-Dioxane   ICAL RRF   0,000   >0.05   ND(0.50) J	G135-409	89B	5/9/2007	Water	Tier II	Yes					ND(0.025) J	
2-Butanone   ICAL RRF   0.045   >0.05   ND(0.025) J												
2-Chloroethylvinylether   ICAL RRF   0.020   >0.05   ND(0.063) J												
Acetone												
Acetone   CCAL %D   38.3%   <25%   ND(0.025) J												
Acetonitrile												
Acrolein   ICAL RRF   0.014   >0.05   ND(0.13) J												
Acrylonitrile												
Chloroethane											( / -	
Propionitrile ICAL RRF 0.004 >0.05 ND(0.10) J  3135-409 89D-R 5/9/2007 Water Tier II Yes 1,2-Dibromo-3-chloropropane ICAL RRF 0.030 >0.05 ND(4.0) J  1,2-Dibromo-3-chloropropane CCAL %D 25.3% <25% ND(4.0) J								CCAL %D	28.3%	<25%	ND(0.0050) J	
3135-409 89D-R 5/9/2007 Water Tier II Yes 1,2-Dibromo-3-chloropropane ICAL RRF 0.030 >0.05 ND(4.0) J 1,2-Dibromo-3-chloropropane CCAL %D 25.3% <25% ND(4.0) J												
1,2-Dibromo-3-chloropropane												
	G135-409	89D-R	5/9/2007	Water	Tier II	Yes						
							1,2-Dibromo-3-chloropropane 1,4-Dioxane	ICAL RRF	25.3% 0.000	<25% >0.05	ND(4.0) J ND(80) J	

Page 3 of 6

Table F-1
Analytical Data Validation Summary

Sample Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
VOCs (contin		5/0/0007	14/ /			lo p	lion ppr	0.045		L ND(40)	
G135-409	89D-R	5/9/2007	Water	Tier II	Yes	2-Butanone 2-Chloroethylvinylether	ICAL RRF	0.045 0.020	>0.05 >0.05	ND(4.0) J ND(10) J	
						Acetone	ICAL RRF	0.039	>0.05	ND(4.0) J	
						Acetone	CCAL %D	38.3%	<25%	ND(4.0) J	
						Acetonitrile	ICAL RRF	0.003	>0.05	ND(16) J	
						Acrolein	ICAL RRF	0.014	>0.05	ND(20) J	
						Acrylonitrile	ICAL RRF	0.026	>0.05	ND(20) J	
						Chloroethane	CCAL %D	28.3%	<25%	ND(0.80) J	
						Isobutanol	ICAL RRF	0.003 0.004	>0.05 >0.05	ND(40) J	
G135-409	95A	5/10/2007	Water	Tier II	Yes	Propionitrile 1,2-Dibromo-3-chloropropane	ICAL RRF	0.004	>0.05	ND(16) J ND(0.0050) J	
0133-409	33A	3/10/2007	water	116111	163	1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.10) J	
						2-Chloroethylvinylether	ICAL RRF	0.023	>0.05	ND(0.013) J	
						Acetone	ICAL RRF	0.048	>0.05	ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.005	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.020	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.006	>0.05	ND(0.050) J	
G135-409	95B-R	5/10/2007	Water	Tier II	Yes	Propionitrile 1,2-Dibromo-3-chloropropane	ICAL RRF	0.006 0.030	>0.05 >0.05	ND(0.020) J ND(2.0) J	
G135-409	95D-K	5/10/2007	vvalei	Heili	res	1.4-Dioxane	ICAL RRF	0.000	>0.05	ND(2.0) J ND(40) J	
						2-Butanone	ICAL RRF	0.045	>0.05	ND(2.0) J	
						2-Chloroethylvinylether	ICAL RRF	0.020	>0.05	ND(5.0) J	
						Acetone	ICAL RRF	0.039	>0.05	ND(2.0) J	
						Acetonitrile	ICAL RRF	0.003	>0.05	ND(8.0) J	
						Acrolein	ICAL RRF	0.014	>0.05	ND(10) J	
						Acrylonitrile	ICAL RRF	0.026	>0.05	ND(10) J	
						Isobutanol	ICAL RRF	0.003	>0.05	ND(20) J	
G135-409	DUP#2	5/10/2007	Water	Tior II	Voc	Propionitrile 1,2-Dibromo-3-chloropropane	ICAL RRF	0.004 0.022	>0.05 >0.05	ND(8.0) J ND(0.0050) J	Parent Sample 95A
G135-409	DUP#2	5/10/2007	vvalei	Tier II	Yes	1.4-Dioxane	ICAL RRF	0.022	>0.05	ND(0.0050) J	Parent Sample 95A
						2-Chloroethylvinylether	ICAL RRF	0.023	>0.05	ND(0.013) J	
						Acetone	ICAL RRF	0.048	>0.05	ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.005	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.020	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.006	>0.05	ND(0.050) J	
G135-409	Trip Blank	5/10/2007	Water	Tier II	Yes	Propionitrile 1,2-Dibromo-3-chloropropane	ICAL RRF	0.006 0.022	>0.05 >0.05	ND(0.020) J ND(0.0050) J	
G135-409	тпр віапк	5/10/2007	vvater	HerH	res	1,4-Dioxane	ICAL RRF	0.022	>0.05	ND(0.0050) J ND(0.10) J	
						2-Chloroethylvinylether	ICAL RRF	0.023	>0.05	ND(0.10) J	
						Acetone	ICAL RRF	0.048	>0.05	ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.005	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.020	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.006	>0.05	ND(0.050) J	
C12E 412	1150	E/4.4/0007	\\/e+	Tie-U	V	Propionitrile	ICAL RRF	0.006	>0.05	ND(0.020) J	
G135-413	115A	5/14/2007	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane 1,2-Dichloroethane	ICAL RRF CCAL %D	0.022 27.3%	>0.05 <25%	ND(0.0050) J ND(0.0010) J	
						1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.10) J	
						2-Chloroethylvinylether	ICAL RRF	0.023	>0.05	ND(0.10) J	
						Acetone	ICAL RRF	0.048	>0.05	ND(0.0050) J	
						Acetone	CCAL %D	30.6%	<25%	ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.005	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.020	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.006	>0.05	ND(0.050) J	
G135-413	115B	5/14/2007	Water	Tier II	Yes	Propionitrile 1,2-Dibromo-3-chloropropane	ICAL RRF ICAL RRF	0.006 0.022	>0.05 >0.05	ND(0.020) J ND(0.0050) J	
0130-413	1100	3/14/2007	vvalei	116111	162	1,2-Dichloroethane	CCAL %D	27.3%	<25%	ND(0.0050) J	
						1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.0010) J	<u> </u>
						2-Chloroethylvinylether	ICAL RRF	0.023	>0.05	ND(0.013) J	
						Acetone	ICAL RRF	0.048	>0.05	ND(0.0050) J	
	I					Acetone	CCAL %D	30.6%	<25%	ND(0.0050) J	

Page 4 of 6

Table F-1
Analytical Data Validation Summary

Sample											
Delivery Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
VOCs (contin	ued)			•			•	•			
G135-413	115B	5/14/2007	Water	Tier II	Yes	Acetonitrile	ICAL RRF	0.005	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.020	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.006 0.006	>0.05	ND(0.050) J	
G135-413	2A	5/14/2007	Water	Tier II	Yes	Propionitrile 1,2-Dibromo-3-chloropropane	ICAL RRF ICAL RRF	0.006	>0.05 >0.05	ND(0.020) J ND(40) J	
0133-413	20	3/14/2007	**4101	116111	163	1,4-Dioxane	ICAL RRF	0.023	>0.05	ND(800) J	
						2-Butanone	ICAL RRF	0.003	>0.05	ND(40) J	
						2-Chloroethylvinylether	ICAL RRF	0.014	>0.05	ND(100) J	
						Acetone	ICAL RRF	0.026	>0.05	ND(40) J	
						Acetonitrile	ICAL RRF	0.002	>0.05	ND(160) J	
						Acrolein	ICAL RRF	0.008	>0.05	ND(200) J	
						Acrylonitrile	ICAL RRF	0.017	>0.05	ND(200) J	
						Ethyl Methacrylate	ICAL RRF	0.043	>0.05	ND(8.0) J	
						Isobutanol	ICAL RRF	0.002	>0.05	ND(400) J	
				Tier II	Yes	Methacrylonitrile	ICAL RRF	0.046 0.037	>0.05 >0.05	ND(80) J ND(8.0) J	
G135-413	39D-R	5/14/2007	Water			Methyl Methacrylate 1,2-Dibromo-3-chloropropane	ICAL RRF	0.037	>0.05 >0.05	ND(8.0) J ND(0.0050) J	
G135-413	39D-K	3/14/2007	water	i iei ii	165	1,2-Dichloroethane	CCAL %D	27.3%	<25%	ND(0.0030) J	
						1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.10) J	
						2-Chloroethylvinylether	ICAL RRF	0.023	>0.05	ND(0.013) J	
						Acetone	ICAL RRF	0.048	>0.05	ND(0.0050) J	
						Acetone	CCAL %D	30.6%	<25%	ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.005	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.020	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
				1		Isobutanol	ICAL RRF	0.006	>0.05	ND(0.050) J	
G135-413	39E	5/14/2007	Water	Tier II	Yes	Propionitrile 1,2-Dibromo-3-chloropropane	ICAL RRF ICAL RRF	0.006 0.022	>0.05 >0.05	ND(0.020) J ND(0.0050) J	
G135-413	39E	5/14/2007	vvater	HerH	res	1,2-Dibromo-3-chloropropane	CCAL %D	27.3%	>0.05 <25%	ND(0.0050) J ND(0.0010) J	
						1,4-Dioxane	ICAL RRF	0.001	>0.05	ND(0.0010) J	
						2-Chloroethylvinylether	ICAL RRF	0.023	>0.05	ND(0.013) J	
						Acetone	ICAL RRF	0.048	>0.05	ND(0.0050) J	
						Acetone	CCAL %D	30.6%	<25%	ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.005	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.020	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.006	>0.05	ND(0.050) J	
0.105.110	01440 BB 4	5/4.4/0007	147 /	T 0		Propionitrile	ICAL RRF	0.006	>0.05	ND(0.020) J	
G135-413	GMA3-RB-1	5/14/2007	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	ICAL RRF	0.022	>0.05	ND(0.0050) J	
						1,2-Dichloroethane 1,4-Dioxane	CCAL %D ICAL RRF	27.3% 0.001	<25% >0.05	ND(0.0010) J ND(0.10) J	
						2-Chloroethylvinylether	ICAL RRF	0.001	>0.05	ND(0.013) J	
						Acetone	ICAL RRF	0.023	>0.05	ND(0.013) J	
						Acetone	CCAL %D	30.6%	<25%	ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.005	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.020	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.006	>0.05	ND(0.050) J	
						Propionitrile	ICAL RRF	0.006	>0.05	ND(0.020) J	
G135-413	Trip Blank	5/15/2007	Water	Tier II	Yes	1,2-Dibromo-3-chloropropane	ICAL RRF	0.022	>0.05	ND(0.0050) J	
						1,2-Dichloroethane 1,4-Dioxane	CCAL %D ICAL RRF	27.3%	<25% >0.05	ND(0.0010) J ND(0.10) J	
						2-Chloroethylvinylether	ICAL RRF	0.001	>0.05	ND(0.10) J ND(0.013) J	
						Acetone	ICAL RRF	0.023	>0.05	ND(0.013) J	
						Acetone	CCAL %D	30.6%	<25%	ND(0.0050) J	
						Acetonitrile	ICAL RRF	0.005	>0.05	ND(0.020) J	
						Acrolein	ICAL RRF	0.020	>0.05	ND(0.025) J	
						Acrylonitrile	ICAL RRF	0.040	>0.05	ND(0.025) J	
						Isobutanol	ICAL RRF	0.006	>0.05	ND(0.050) J	
						Propionitrile	ICAL RRF	0.006	>0.05	ND(0.020) J	

Page 5 of 6

Table F-1 Analytical Data Validation Summary

Sample											
Delivery											
Group No.	Sample ID	Date Collected	Matrix	Validation Level	Qualification	Compound	QA/QC Parameter	Value	Control Limits	Qualified Result	Notes
SVOCs						·					•
G135-406	16A	5/7/2007	Water	Tier II	Yes	4-Chlorophenol	CCAL %D	112.9%	<25%	ND(0.050) J	
G135-406	39B-R	5/7/2007	Water	Tier II	Yes	4-Chlorophenol	CCAL %D	112.9%	<25%	ND(0.050) J	
G135-409	89A	5/9/2007	Water	Tier II	Yes	4-Chlorophenol	CCAL %D	112.9%	<25%	ND(0.010) J	
G135-409	89B	5/9/2007	Water	Tier II	Yes	4-Chlorophenol	CCAL %D	112.9%	<25%	ND(0.010) J	
G135-409	95A	5/10/2007	Water	Tier II	Yes	4-Chlorophenol	CCAL %D	112.9%	<25%	ND(0.010) J	
G135-409	95B-R	5/10/2007	Water	Tier II	Yes	4-Chlorophenol	CCAL %D	112.9%	<25%	0.020 J	
G135-409	DUP#2	5/10/2007	Water	Tier II	Yes	4-Chlorophenol	CCAL %D	112.9%	<25%	ND(0.010) J	Parent Sample 95A
G135-413	2A	5/14/2007	Water	Tier II	Yes	4-Chlorophenol	CCAL %D	106.5%	<25%	ND(0.010) J	
Miscellaneous	Miscellaneous										
	111A-R	5/7/2007	Water	Tier II	No						
	111B-R	5/8/2007	Water	Tier II	No						
G135-406	16A	5/7/2007	Water	Tier II	No						
G135-406	16B-R	5/8/2007	Water	Tier II	No						
G135-406	16C-R	5/7/2007	Water	Tier II	No						
G135-406	39B-R	5/7/2007	Water	Tier II	No						
G135-406	90A	5/8/2007	Water	Tier II	No						
G135-406	90B	5/8/2007	Water	Tier II	No						
G135-406	DUP#1	5/8/2007	Water	Tier II	Yes	Nitrite	Holdtimes (analysis)	72 hrs	<48 hrs	ND(0.10) J	Parent Sample 16B-R
G135-409	114A	5/10/2007	Water	Tier II	No						
G135-409	114B-R	5/10/2007	Water	Tier II	No						
G135-409	43A	5/9/2007	Water	Tier II	No						
G135-409	43B	5/9/2007	Water	Tier II	No						
	89A	5/9/2007	Water	Tier II	No						
G135-409	89B	5/9/2007	Water	Tier II	No						
G135-409	89D-R	5/9/2007	Water	Tier II	No						
G135-409	95A	5/10/2007	Water	Tier II	No						
G135-409	95B-R	5/10/2007	Water	Tier II	No	·					
G135-409	DUP#2	5/10/2007	Water	Tier II	No						Parent Sample 95A
G135-413	115A	5/14/2007	Water	Tier II	No						
G135-413	115B	5/14/2007	Water	Tier II	No						
G135-413	2A	5/14/2007	Water	Tier II	No						
G135-413	39D-R	5/14/2007	Water	Tier II	No						
G135-413	39E	5/14/2007	Water	Tier II	No	-					
G135-413	GMA3-RB-1	5/14/2007	Water	Tier II	No	·					